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A novel method for nonperturbative renormalization of lattice operators is introduced, which lends itself 
to the calculation of renormalization factors for nonsinglet as well as singlet operators. The method is 
based on the Feynman–Hellmann relation, and involves computing two-point correlators in the presence 
of generalized background fields arising from introducing additional operators into the action. As a first 
application, and test of the method, we compute the renormalization factors of the axial vector current 
Aμ and the scalar density S for both nonsinglet and singlet operators for N f = 3 flavors of SLiNC 
fermions. For nonsinglet operators, where a meaningful comparison is possible, perfect agreement with 
recent calculations using standard three-point function techniques is found.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

To relate bare lattice results of hadron matrix elements and 
decay constants to phenomenological numbers, which are usu-
ally given in the MS scheme, the underlying operators need to be 
renormalized. This requires a nonperturbative method, because lat-
tice perturbation theory is considered to be unreliable at present 
couplings.

A general nonperturbative method is the RI′-MOM subtraction 
scheme, which has been proposed in [1], with some refinements 
being added in [2]. Starting from the bare vertex function

ΓO(p) = S−1(p)GO(p)S−1(p), (1)

where

GO(p) = 1

V

∑
x,y,z

e−ip(x−y)
〈
q(x)O(z)q̄(y)

〉
(2)

is the quark Green function with operator insertion O, and

* Corresponding author.
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S(p) = 1

V

∑
x,y

e−ip(x−y)
〈
q(x)q̄(y)

〉
(3)

is the quark propagator, the renormalized vertex function is de-
fined by

Γ R
O(p) = Z−1

q ZOΓO(p). (4)

Zq denotes the quark field renormalization constant, which is 
taken as

Zq(p) = Tr[−i
∑

λ γλ sin(pλ)S−1(p)]
12

∑
ρ sin2(pρ)

. (5)

The renormalization factor ZO(μ) is determined by imposing the 
renormalization condition

1

12
Tr

[
Γ R
O(p)Γ Born

O (p)
−1] = 1 (6)

at the scale p2 = μ2. Thus

Z−1
O (μ) = 1

12
Tr

[
ΓO(μ)Γ Born

O (μ)
−1]

Z−1
q (μ). (7)
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The lattice spacing a is assumed to be one, if not stated otherwise. 
V is the lattice volume.

The evaluation of ZO requires the calculation of three-point 
functions. In the case of flavor singlet matrix elements this entails 
the computation of quark-line disconnected diagrams, which re-
quires inversions of the fermion matrix at every lattice point and 
still leads to a poor signal to noise ratio. In this paper we pro-
pose an alternative method, based on the Feynman–Hellmann (FH) 
relation, which eliminates the issue of computing disconnected 
contributions directly at the expense of requiring the generation of 
additional ensembles of gauge field configurations. This essentially 
involves computing two-point correlators only in the presence of 
generalized background fields, which we show arise from intro-
ducing the operator O into the action,

S → S(λ) = S − λ
∑

x

O(x), S = SF + SG , (8)

where SF and SG are the fermionic and gauge field actions. A fur-
ther advantage of this method is that the signal to noise ratio will 
be directly proportional to the external parameter λ, and thus can 
be controlled from the outside, as opposed to the standard three-
point function calculation.

The quark propagators in (1) are calculated by inverting the 
fermion matrix, and so must be modified if we change the quark 
action. This change is straightforward to apply, only requiring a re-
definition of the Dirac operator. In addition, any modification we 
make to the action in (8) should be included during the gener-
ation of the background gauge fields. By choosing to neglect ei-
ther one of these modifications, we are able to individually isolate 
connected and disconnected contributions to the vertex function. 
Thus, modifications to the gauge configurations allow access to 
disconnected quantities, and modifications to the calculation of 
propagators allow access to connected quantities.

This paper follows previous work on hyperon sigma terms [3], 
the glue in the nucleon [4], and the spin structure of hadrons [5], 
already showing the potential of the Feynman–Hellmann approach 
to the calculation of hadron matrix elements. The outline of the 
paper is as follows. Section 2 describes the Feynman–Hellmann 
relation as relevant for the calculation of renormalization factors. 
In Sections 3.1 and 3.2 we apply the method to the computa-
tion of renormalization factors of the axial vector current Aμ and 
the scalar density S , respectively, for singlet and nonsinglet op-
erators. The calculations are done with N f = 3 flavors of SLiNC 
fermions [6,7]. Section 4 contains our conclusions.

2. The Feynman–Hellmann method

Throughout this paper we will consider quark-bilinear, flavor 
diagonal operators

O(x) = q̄(x)Γ q(x) (9)

only, where Γ is some combination of gamma matrices. The gen-
eralization to operators including covariant derivatives is straight-
forward. The modified fermionic action then reads

SF (λ) =
∑

q=u,d,s

∑
x

q̄(x)[D + M − λΓ ]q(x), (10)

where D is the lattice Dirac operator including the Wilson and 
clover terms, and M is the Wilson mass term. The latter is a diag-
onal 3 × 3 matrix in flavor space,

M =
⎛
⎝

1/2κu

1/2κd
1/2κs

⎞
⎠ . (11)

Fig. 1. Diagrams contributing to the renormalization of quark-bilinear operators (in-
serted at point ×). The left figure shows the connected (nonsinglet) contribution, 
the right figure the disconnected (singlet minus nonsinglet) contribution. Gluon 
lines have been omitted.

One is mainly interested in renormalization factors in a mass-
independent scheme, such as the MS scheme. To comply with that, 
we choose the quarks to be mass degenerate,

M = (1/2κ)1, κu = κd = κs ≡ κ, (12)

and tune κ to its critical value, κc , at the end of the calculation. 
A better choice might be to only take the u and d quarks as mass-
degenerate, κu = κd ≡ κ� , and keep the sum of the quark masses 
fixed [7], 2/κ� + 1/κs = constant, while taking κ� to its critical 
value, κ�,c . In that case we would have

M =
⎛
⎝

1/2κ�

1/2κ�

1/2κs

⎞
⎠ . (13)

After integrating out the quark fields, the fermion propagator 
becomes

S(λsea, λval) =
∫
DU [D + M − λvalΓ ]−1 det[D + M − λseaΓ ]exp{−SG (U )}∫

DU det[D + M − λseaΓ ]exp{−SG (U )} ,

(14)

where we differentiate between operator insertions in the quark 
propagator (λval) and the fermion determinant (λsea), to separate 
connected and disconnected diagrams eventually. In what follows 
Fourier transformation of S(λsea, λval) to momentum space is un-
derstood. For the sake of simplicity any dependence on external 
momenta will be omitted. Expanding the propagator in terms of 
λsea, λval gives

S(λsea, λval) = 〈[D + M]−1〉 + λval
〈[D + M]−1Γ [D + M]−1〉

− λsea
{〈[D + M]−1Tr

(
Γ [D + M]−1)〉

− 〈[D + M]−1〉〈Tr
(
Γ [D + M]−1)〉}

+ O
(
λ2

sea, λseaλval, λ
2
val

)
, (15)

where the expectation values 〈· · ·〉 refer to the unmodified action. 
By differentiating the quark propagator with respect to λval and 
λsea we obtain

∂ S(0, λval)

∂λval

∣∣∣∣
λval=0

= 〈[D + M]−1Γ [D + M]−1〉 ≡ Gcon
O (16)

and

∂ S(λsea,0)

∂λsea

∣∣∣∣
λsea=0

= −〈[D + M]−1Tr
(
Γ [D + M]−1)〉

+ 〈[D + M]−1〉〈Tr
(
Γ [D + M]−1)〉 ≡ Gdis

O ,

(17)

where Gcon
O and Gdis

O are the fermion-line connected and discon-
nected quark Green functions, respectively. In Fig. 1 we sketch 
both types of contributions. Note that (17) only includes diagrams 
where gluon lines connect the quark loop to the external legs. The 



32 QCDSF Collaboration / Physics Letters B 740 (2015) 30–35

unitary (full) quark Green function, including both connected and 
disconnected diagrams, is given by

GO = ∂ S(λ,λ)

∂λ

∣∣∣∣
λ=0

= Gcon
O + Gdis

O . (18)

By multiplying GO and Gcon
O with the inverse unmodified prop-

agator from left and right we obtain singlet,

Γ S
O = S(0,0)−1GO S(0,0)−1, (19)

and nonsinglet,

Γ NS
O = S(0,0)−1Gcon

O S(0,0)−1, (20)

vertex functions. The corresponding renormalization factors are 
then given by

Z S
O

−1 = 1

12
Tr

[
Γ S
OΓ Born

O
−1]

Z−1
q (21)

and

Z NS
O

−1 = 1

12
Tr

[
Γ NS
O Γ Born

O
−1]

Z−1
q . (22)

We could have started from singlet and nonsinglet operators with 
a single parameter λ, as stated in (8), instead of differentiating 
between operator insertions in propagator and determinant. For 
example

OS(x) =
∑

q=u,d,s

q̄(x)Γ q(x), (23)

ONS(x) = ū(x)Γ u(x) − d̄(x)Γ d(x). (24)

For the singlet operator (23) nothing changes. The nonsinglet op-
erator (24) would contribute O (λ2) to the determinant for either 
choice of M , Eqs. (12) and (13), which leaves us with

∂ S(λ,λ)

∂λ

∣∣∣∣
λ=0

= Gcon
O . (25)

We have just added the singlet operator to the action. If we also 
added a term λNS

sea O NS it would not change anything, the non-
singlet operator would contribute to the determinant at O ((λNS

sea)
2), 

and so not change the derivative at λ = 0.

3. Numerical results and tests

We shall now apply the Feynman–Hellmann method of nonper-
turbative renormalization to the axial vector current and the scalar 
density. It is convenient to introduce the primitive

ΛO(λsea, λval) = 1

12
Tr

[
S(0,0)−1 S(λsea, λval)S(0,0)−1Γ Born

O
−1]

.

(26)

Expanding the propagator S(λsea, λval) in terms of λsea, λval, using 
(15), we obtain

ΛO(λsea, λval) = a0 + aseaλsea + avalλval + O
(
λ2

sea, λseaλval, λ
2
val

)
.

(27)

The coefficients asea and aval are what we need to compute,

Z NS
O = Zq

aval
, Z S

O = Zq

aval + asea
. (28)

The proposed method involves the computation of two-point func-
tions only. In the case of nonsinglet operators no extra gauge 
field configurations need to be generated. The parameters λsea, λval

Table 1
The parameters λval and λsea employed in the simulations.

λval λsea

−0.0125 −0.03 0.0 0.00625 0.0125
−0.00625 −0.03 0.0 0.00625 0.0125
−0.003125 −0.03 0.0 0.00625 0.0125

0.0 −0.03 0.0 0.00625 0.0125
0.03 −0.03 0.0 0.00625 0.0125

should be chosen large enough to give a strong signal, but small 
enough so that ΛO can be fitted by a low-order polynomial in 
λsea, λval.

The calculations are performed on 323 × 64 lattices at β =
5.50, corresponding to a lattice spacing of a = 0.074(2) fm [8]. 
We will use momentum sources [2] throughout the calcula-
tion. Using twisted boundary conditions, the momenta are cho-
sen to be strictly diagonal, p = (ρ, ρ, ρ, ρ). They are (ap)2 =
0.1542, 0.6169, 1.3879, 2.4674, 3.8553, 5.5517, 7.5564 and 9.8696, 
as given in the first column of Table III in [9]. This choice of mo-
menta will leave us with O ((ap)2) scaling violations only, but with 
no direction-specific corrections, which we consider a great advan-
tage.

We are finally interested in renormalization factors in the RGI 
and MS schemes. The conversion from the RI′-MOM scheme to the 
RGI scheme is preferably done by a two-step process [10]

Z RGI
O = �Z MOM

O (μ)Z MOM
RI′-MOM(μ)Z RI′-MOM

O (μ), (29)

which we follow here. The renormalization factors in the MS
scheme are given by

Z MS
O (μ) = �Z MS

O (μ)
−1

Z RGI
O . (30)

The conversion factors �Z MOM
O (μ), Z MOM

RI′-MOM(μ) and �Z MS
O (μ) are 

computed in continuum perturbation theory [12,13]. They depend 
on ΛMS, which we choose as ΛMS = 339 MeV [11].

3.1. Axial vector current

In order to proceed with the determination of the renormaliza-
tion constant of the axial current, we add the third component of 
the axial current

A3(x) = q̄(x)γ3γ5q(x), (31)

to the action (8). This operator is γ5-hermitean, and hence suitable 
for inclusion as part of the Hybrid Monte Carlo when generat-
ing the new sets of gauge configurations required for the deter-
mination of the disconnected contributions. The simulations are 
performed at the SU(3) flavor symmetric point κu = κd = κs =
0.12090 [7], corresponding to mπ = mK = 465 MeV, for five differ-
ent λval values with four different values of λsea each. The actual 
run parameters are listed in Table 1.

In Fig. 2 we show our results for ΛA(λsea, λval) and the dif-
ference ΛA(λsea, λval) − ΛA(0, λval) for one of our intermediate 
momenta, (ap)2 = 2.4674. Within the range of parameters we have 
explored, ΛA(λsea, λval) (shown in the top figure) appears to be 
a linear function of both λsea and λval. The figure indicates that 
asea � aval for the axial vector current. In spite of being a rather 
small number, the disconnected contribution asea can be computed 
very accurately by our method. This is illustrated by the differ-
ence ΛA(λsea, λval) − ΛA(0, λval) = aseaλsea + O (λ2

sea, λseaλval, λ2
val)

(shown in the bottom figure). It helps the fit that higher order cor-
rections are small. Similar results are found for the other momenta. 
We thus may fit our data for ΛA(λsea, λval) by the ansatz
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Fig. 2. Top panel: ΛA(λsea, λval) as a function of λsea and λval for (ap)2 =
2.4674. Bottom panel: The difference ΛA(λsea, λval) − ΛA(0, λval) = aseaλsea +
O (λ2

sea, λseaλval, λ2
val) as a function of λsea, for (ap)2 = 2.4674.

ΛA(λval, λsea) = a0 + aseaλsea + avalλval. (32)

This is done for each momentum source separately. The result is 
shown in Fig. 3. From asea and aval, together with Zq defined in (5), 
we obtain the renormalization factors in the RI′-MOM scheme. The 
result is given in Fig. 4 (left panel) for singlet and nonsinglet oper-
ators. The obvious question now is: how does that result compare 
with previous results using standard methods? In [9] we have 
computed the nonsinglet renormalization factor from three-point 
functions using the same action. We compare that result with the 
Feynman–Hellmann result of this paper in Fig. 4 (right panel). We 
find perfect agreement.

Let us now convert our numbers to the RGI and MS schemes, 
using (29) and (30). In the nonsinglet case �Z MOM

A (μ) =
�Z MS

A (μ) = 1, as the anomalous dimension is zero. In the singlet 
case both �Z MOM

A (μ) and �Z MS
A (μ) are nonzero and depend on 

the scale μ = √
p2 [12,13]. In Fig. 5 we show Z RGI

A for both singlet 
and nonsinglet operators. We restrict ourselves to (ap)2 ≥ 2. Below 
that long-distance effects become dominant. As in [9], the nonsin-
glet data show scaling violations which can be approximated by a 
linear ansatz in (ap)2. We fit the singlet data by a quadratic ansatz. 
The result is

Z RGI,NS
A = 0.8458(8), Z RGI,S

A = 0.9285(36). (33)

The renormalization factors Z MS
A (μ) are obtained by multiplying 

the numbers in (33) by �Z MS
A (μ)

−1
. They are scale dependent. At 

μ = 2 GeV we obtain

Z MS,NS
A = 0.8458(8), Z MS,S

A = 0.8662(34). (34)

The difference of singlet and nonsinglet renormalization factors 
of the axial vector current turns out to be small. That is not sur-
prising since it is already known that in perturbation theory singlet 
and nonsinglet numbers start to depart only at two loops [14]. The 
good news is that the Feynman–Hellmann method enables us to 
compute the disconnected contribution asea, in spite of being a fac-
tor of 20 smaller than the connected one aval , to an unprecedented 
precision of less than a percent.

It should be remembered that our results (33) and (34) refer 
to the flavor symmetric point κ� = κs = 0.12090. To extrapolate 
the renormalization factors to the chiral limit, we would have to 
perform more simulations with the modified fermionic action at 
smaller quark masses.

3.2. Scalar density

We now turn to the scalar density

S(x) = q̄(x)q(x). (35)

In this case the modification of the fermionic action, S F → S F −
λ 

∑
x S(x), is equivalent to changing the κ values to κ + δ, with 

δ = 2λκ2/(1 − 2λκ). As before, κu = κd = κs is assumed. We allow 
the kappa values of sea and valence quarks to be different, and 
express the primitive (26) in terms of the new variables δsea and 
δval. Expanding ΛS (δsea, δval) about the reference point (κsea, κval)

then gives

Fig. 3. The coefficients asea and aval as a function of (ap)2.
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Fig. 4. Left panel: singlet and nonsinglet renormalization factors Z A in the RI′-MOM scheme at κsea = 0.12090. Right panel: comparison of the nonsinglet renormalization 
factor Z A in the RI′-MOM scheme obtained from the Feynman–Hellmann (FH) approach (this work) and the three-point function method [9].

Fig. 5. Singlet and nonsinglet renormalization factors in the RGI scheme, together 
with a linear (quadratic) fit to 2 ≤ (ap)2 ≤ 10 for the nonsinglet (singlet) Z RGI.

Table 2
The parameters of background field configurations, κval and κsea , used in the calcu-
lation of the scalar density.

κval κsea

0.120900 0.120920 0.120950 0.120990 0.120900
0.190920 0.120920

0.120950 0.120950
0.120990 0.120990

0.121021 0.121021

ΛS(δsea, δval) = a0 + (
asea/2κ2

sea

)
δsea + (

aval/2κ2
val

)
δval

+ O
(
δ2

sea, δseaδval, δ
2
val

)
. (36)

Here we can draw on existing background gauge field configura-
tions [7]. In Table 2 we list the κ parameters of the configurations 
used in this calculation.

In Fig. 6 we show ΛS (δ, δ) as a function of δ at the reference 
point κref = κsea = κval = 0.12090 for one of our intermediate fit 
momenta, (ap)2 = 7.5564. To a good approximation, the data lie 
on a straight line. From the slope at δ = 0 (κ = κref) we obtain the 
singlet renormalization factor in the RI′-MOM scheme,

∂ΛS(δ, δ)

∂δ

∣∣∣∣
δ=0

= asea + aval

2κ2
ref

= Zq

2κ2
ref Z RI′-MOM,S

S

. (37)

Repeating the calculation at κref = 0.12092, 0.12095, 0.12099 and
0.121021, with pion masses ranging from 465 MeV (κ = 0.12090) 
to 290 MeV (κ = 0.121021) [9], we can perform the chiral extrap-
olation of Z RI′-MOM,S

S . In Fig. 7 we show Z RI′-MOM,S
S as a function of 

Fig. 6. The primitive ΛS (δ, δ) at the reference point κref = κsea = κval = 0.12090 as 
a function of δ for (ap)2 = 7.5564, together with a linear fit.

Fig. 7. The singlet renormalization factor in the RI′-MOM scheme as a function of 
m2

π for two momenta, (ap)2 = 2.4674 and 9.869, together with a linear extrapola-
tion to the chiral limit.

m2
π for two different momenta, together with the extrapolated val-

ues. Singlet Z RI′-MOM,S
S is practically independent of the pion mass.

To convert Z RI′-MOM,S
S to the RGI and MS schemes we proceed 

as before. In Fig. 8 we show Z RGI,S
S . The data show scaling viola-

tions approximately linear in (ap)2, which appear to be common 
to all our results [9]. We restrict ourselves to (ap)2 ≥ 2 and fit the 
data by the ansatz Z RGI

S + C(ap)2. The result is

Z RGI,S
S = 0.2617(35), (38)
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Fig. 8. The singlet renormalization factor Z RGI,S
S in the chiral limit, together with a 

linear fit to 2 ≤ (ap)2 ≤ 10.

which upon conversion to the MS scheme at μ = 2 GeV gives

Z MS,S
S = 0.3544(48). (39)

In contrast to (33) and (34), both numbers refer to the chiral limit.
As a further test, we have computed the nonsinglet renormal-

ization factor Z RI′-MOM,NS
S at κref = 0.12090 and compared the out-

come with our previous result from three-point functions [9]. We 
find perfect agreement, as before.

Using raw momentum data from [9] we found in the chiral 
limit

Z RGI,NS
S = 0.5635(61) (40)

and

Z MS,NS
S = 0.7631(82) at μ = 2 GeV, (41)

giving

rS = Z RGI,NS
S

Z RGI,S
S

= Z MS,NS
S

Z MS,S
S

= 2.15(4). (42)

Note that �Z RGI
S (μ) = �Z MS

S (μ). In continuum perturbation theory 
and for chiral fermions rS = 1. The deviation from one is an arti-
fact of Wilson-type fermions. In [15] it was found that rS rapidly 
approaches rS = 1 as the lattice spacing is decreased. An indepen-
dent estimate of rS can be obtained from the ratio of valence to 
sea quark masses [7]. An updated value is rS = 1.82(8), which is 
in reasonable agreement with the result (42).

4. Conclusions

We have demonstrated that the Feynman–Hellmann method is 
an effective approach to calculating renormalization factors. For 
nonsinglet operators no additional gauge field configurations have 
to be generated. For singlet operators it appears that only a couple 
of different background field strengths need to be realized in order 
to make an accurate and precise calculation. We have demon-
strated this through the determination of singlet and nonsinglet 
renormalization factors of the axial vector current and the scalar 

density. Simulations of the axial vector current at smaller quark 
masses are in progress.

There is room for improvement. The renormalization factors 
show scaling violations in (ap)2, which has puzzled us already 
in [9]. So far we have worked with unimproved quark propaga-
tors. Improving off-shell quark propagators should be simpler than 
improving three-point functions. Our goal is to remove lattice arti-
facts as far as possible. A first step in this direction has been taken 
in [16].
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