
 

 

 

A Framework for the Minimization of Greenhouse Gas Emissions 

Associated with Water Distribution Systems Considering the Time-

Dependency of Emissions Factors Associated with the Generation of 

Electricity 

 

by 

Christopher Sean Stokes 

BEng (Civil & Structural) Hons 

 

 

Thesis submitted to The University of Adelaide, 

Faculty of Engineering, Computer & Mathematical Sciences, 

School of Civil, Environmental & Mining Engineering  

in fulfilment of the requirements for the degree of 

Doctor of Philosophy 

 

Submitted July 2014 

 

 

 

 

Copyright
©
 July, 2014.  

  



 

 

 



 

i 

 

Abstract 

While water distribution systems (WDSs) form an integral part of 

modern cities, it is desirable to minimize the considerable costs that can 

be associated with their design and pumping operations. However, 

WDSs are complex systems and complete enumeration of all possible 

alternative solutions as a way of minimizing costs is generally not 

possible. As such, formal optimization algorithms have become a 

popular way to minimize the cost of WDSs within reasonable 

computational timeframes. Another important objective, minimizing the 

environmental impact of WDSs, has only more recently been 

considered. Human-induced climate change caused by greenhouse gas 

(GHG) emissions has become one of the most significant problems faced 

by human-kind. Water distribution systems contribute to the release of 

GHG emissions through both their design/construction and pumping 

operations.  

 

When electricity used for pumping purposes is generated by fossil fuel 

generation sources, a significant amount of GHG emissions can be 

released over the project life of a WDS. This occurs to the extent where 

the majority of GHG emissions can be associated with electricity 

consumed for pumping purposes. However, within the literature 

considering the minimization of costs and GHG emissions associated 

with WDSs, most research has focused on design optimization, with less 

consideration being given to the pumping operations of a WDS. 

Therefore, there remains a need to consider the important aspects of 

pumping operations so that their associated costs and GHG emissions 

can be evaluated with the same level of accuracy as those associated 

with the design of a WDS. Consequently, this research incorporates the 

elements that are necessary to accurately evaluate costs and GHG 
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emissions associated with the pumping operations of WDS into a single 

framework for the minimization of costs and GHG emissions.  

 

The major research contributions are presented in four journal 

publications. Firstly, the water distribution cost-emissions nexus 

(WCEN) conceptual framework is presented, which represents the nexus 

of elements required to accurately model and evaluate costs and GHG 

emissions when optimizing the design and pumping operation of a 

WDS. Secondly, in order to facilitate the practical application of these 

concepts, the WCEN computational software framework, which 

combines hydraulic simulation with multi-objective heuristic 

optimization, is presented. In particular, the WCEN computational 

software framework allows the design and pumping operations of a 

WDS to be optimized while considering both the short and long-term 

time-dependency of operational conditions, such as emissions factors 

associated with electricity generation, of which generally only average 

values have been considered. Thirdly, a methodology for calculating 

time-dependent emissions factors from electricity generation data is 

presented. Finally, a study on the effect of water storage tank size on the 

optimal design and pumping operations of a WDS is presented. While 

other design parameters can affect the costs and GHG emissions of 

WDS, storage tank size has been given little consideration in the past, 

especially when the time-dependency of emissions factors is also 

considered. It is hoped that this research will lead to the greater 

consideration of minimizing both costs and GHG emissions when 

developing designs and pumping operational management strategies for 

WDSs in the real world. 
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