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Abstract

Supersymmetric extensions of the standard model may resolve the outstanding dark mat-
ter problem by producing viable dark matter candidates, including a stable weakly inter-
acting particle called a neutralino. The next-to-minimal supersymmetric standard model
(NMSSM) is first explored with a scan of the parameter space for neutralino-hadron scat-
tering using an updated value for the strange quark sigma commutator.

This is followed by an extensive exploration of the parameter space of the Eg-inspired
supersymmetric standard model (EgSSM). It is demonstrated that this model still provides
neutralino dark matter candidates that may be detected in the near-future by upcoming

experiments, despite tightening experimental constraints.
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