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Abstract

Background: Galectin-3 (gal-3), a member of the β-galactoside-binding animal lectins, is involved in the recruitment,
activation and removal of neutrophils. Neutrophilic asthma is characterized by a persistent elevation of airway
neutrophils and impaired efferocytosis. We hypothesized that sputum gal-3 would be reduced in neutrophilic
asthma and the expression of gal-3 would be associated with other markers of neutrophilic inflammation.

Methods: Adults with asthma (n = 80) underwent a sputum induction following clinical assessment and blood
collection. Sputum was dispersed for a differential cell count and ELISA assessment of gal-3, gal-3 binding protein
(BP), interleukin (IL)-1β, IL-1 receptor antagonist (RA), IL-8 and IL-6. Gal-3 and gal-3BP immunoreactivity were
assessed in mixed sputum cells.

Results: Sputum gal-3 (median, (q1,q3)) was significantly reduced in neutrophilic asthma (183 ng/mL (91,287))
compared with eosinophilic (293 ng/mL (188,471), p = 0.021) and paucigranulocytic asthma (399 ng/mL (213,514),
p = 0.004). The gal-3/gal-3BP ratio and IL-1RA/IL-1β ratio were significantly reduced, while gal-3BP and IL-1β were
significantly elevated in neutrophilic asthma compared with eosinophilic and paucigranulocytic asthma.

Conclusion: Patients with neutrophilic asthma have impairment in anti-inflammatory ratio of gal-3/gal-3BP and
IL-1RA/IL-1β which provides a further framework for exploration into pathologic mechanisms of asthma phenotypes.

Keywords: Asthma, Galectin-3, Induced sputum, Neutrophil, Macrophage, IL-1β, lectin
Background
Asthma is a heterogeneous chronic inflammatory airway
disease characterized by airway hyperresponsiveness
(AHR) and reversible airway obstruction [1]. While the
allergen-induced Th2-lymphocyte, IL-5 mediated, eosino-
philic response in asthma is now well characterized [1],
recent research has shown that up to 50% of all asthma
cases show no evidence of eosinophilic inflammation,
termed non-eosinophilic asthma, and a subgroup of these
have a persistence of airway neutrophilia, termed neutro-
philic asthma [2,3]. The non-eosinophilic inflammatory
phenotypes exhibit a poor response to inhaled corticoster-
oid [4,5]. We have previously described four distinct
subtypes of asthma based on the inflammatory cells count
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in induced sputum, namely, neutrophilic asthma (NA),
paucigranulocytic asthma (PGA), mixed eosinophilic and
neutrophilic asthma (mixed granulocytic asthma (MGA))
and eosinophilic asthma (EA). In recent years, many
studies have demonstrated that each subtype has a distinct
mechanism and a different response to therapy [6-8]. In
eosinophilic asthma, biomarkers such as eosinophilia
(blood, sputum), FeNO and periostin can indicate cor-
ticosteroid responsiveness [9], but for non-eosinophilic
asthma further work is needed to characterize the
chronic inflammation and inflammatory cell accumula-
tion to provide insights into effective, individual and
targeted therapeutic options and also to identify potential
biomarkers that can indicate phenotype and potential
treatment response.
Galectins are a family of β-galactoside-binding animal

lectins which function in a variety of biological processes
including inflammation and allergic pathologies [10,11].
The extracellular and intracellular concentrations and
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surface expression of galectin-3 (gal-3) are increased dur-
ing inflammation [12,13]. Gal-3 has an important role in
the recruitment, activation and removal of neutrophils
and can induce the release of IL-8, a key cytokine involved
in neutrophil recruitment and activation [14]. Data from
gal-3 null mice show reduced neutrophil recruitment dur-
ing infection [13] and gal-3 increases uptake of apoptotic
neutrophils. Therefore any alteration to gal-3 function
may impact on the ability to remove apoptotic neutrophils
from the site of inflammation [15]. This has several conse-
quences as reduced removal of apoptotic cells can result
in the release of damaging enzymes and oxidants which
can promote persistence of inflammation. In COPD, there
are reduced levels of bronchoalveolar lavage gal-3 which
when restored, improved macrophage efferocytosis sup-
porting an important role for gal-3 in the airways in
chronic non-eosinophilic airway diseases [16].
Galectin-3 binding protein (gal-3BP), also known as the

tumor-associated antigen 90 K, a native ligand of gal-3, is
a member of the macrophage scavenger receptor cysteine-
rich domain superfamily. Investigations have shown that
gal-3BP is involved in normal tissue homeostasis including
promoting cytokine secretion [17,18], modulating the in-
flammatory response [19] and participating in wound
healing [20]. Local and systemic levels of gal-3BP are ele-
vated in asthma and inhibit Th2 cytokine transcription
while promoting the production of IL-6. In addition, sys-
temic gal-3BP levels in asthma are significantly negatively
associated with peripheral blood eosinophil counts [21].
Recent studies indicate that gal-3 and its binding protein
might be involved in the pathophysiological mechanisms
of asthma [12,21] and in particular non-eosinophilic
asthma. Since gal-3BP binds active gal-3 and effectively
reduces its function, a persistent airway neutrophilia
could result from either reduced levels of gal-3, increased
gal-3BP, or both.
We hypothesized that levels of gal-3 and the ratio of

gal-3 to gal-3BP would be reduced in neutrophilic
asthma. Similarly, we also hypothesized that the ratio
of IL-1RA to inflammatory IL-1β would also be re-
duced in neutrophilic asthma and that sputum gal-3
levels would be associated with markers of neutrophilic
inflammation.

Methods
Participant population
Eligible adults with asthma that was sub-optimally con-
trolled were recruited from tertiary care centers around
Australia. A group of 80 adults with asthma were assessed
and sputum collected for the measurement of a panel of
biomarkers of inflammatory phenotype including gal-3,
gal-3BP, IL-1RA, IL-1β, IL-6 and IL-8. Serum was avail-
able in a sub-group of participants for the assessment of
gal-3 and gal-3BP (n = 57).
The diagnosis of asthma was established using the
American Thoracic Society guidelines based upon current
episodic respiratory symptoms (past 12 months), clinical
diagnosis and evidence of variable airflow obstruction
[22]. Participants were all prescribed inhaled cortico-
steroids (ICS) or combination inhaled corticosteroid/long
acting bronchodilator therapy (ICS/LABA)but remained
not well controlled (asthma control questionnaire 6
(ACQ6) >0.7) despite receiving this therapy. All partic-
ipants underwent a clinical assessment which included
history of smoking, respiratory symptoms, skin prick
allergy testing and sputum induction and gave written
informed consent. Ethical approval was granted by Hunter
New England Human Research Ethics Committee approval
number 08/11/19/3.03.
Participants were excluded if they had a post-broncho-

dilator FEV1 < 40% predicted, were a current smoker or
an ex-smoker who had ceased smoking within the last
year. Those with significant smoking related airspace dis-
ease (ex-smokers with more than 10 pack year history and
DLCO/VA <70% predicted OR a smoking history >10
pack years with an exhaled carbon monoxide >10 ppm)
were also excluded. Participants were assessed during a
stable phase of disease with no treatment with oral corti-
costeroids or antibiotics, no exacerbations and no change
in asthma medications over the previous four weeks.

Sputum and blood collection
Sputum induction and processing were performed as
previously described [23]. Briefly, a fixed sputum induc-
tion time of 15 minutes with hypertonic saline (4.5%) was
used for all participants. For inflammatory cell count, spu-
tum cells were dispersed using dithiothreitol (DTT) and
cells resuspended in phosphate-buffered saline (PBS) [23].
The suspension was filtered and a total cell count (TCC)
of leucocytes and cell viability was performed. Cytospins
were prepared, stained (May-Grunwald Giemsa) and a dif-
ferential cell count obtained from 400 non-squamous
cells. The quality of induced sputum samples was assessed
and considered adequate for samples with fewer than 50%
squamous epithelial cells and more than 40% cell viability.
Blood was collected in a 9 mL EDTA tube, mixed gen-

tly and then centrifuged at 700 g for 10 minutes at room
temperature and serum was stored at -80°C.

Biomarkers of neutrophilic inflammation
The levels of sputum IL-1β, IL-1RA, IL-6, IL-8, gal-3
(R&D Systems; Minneapolis, MS, USA) and gal-3BP
(eBioscience; San Diego, CA, USA) were measured by
ELISA according to the manufacturer’s instructions. We
have established the validity of IL-RA, gal-3 and gal-3BP
and IL-6 assays for the use in induced sputum and IL-8
and IL-1β validations have been reported elsewhere
[24,25]. The addition of DTT to the commercial standard
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showed no effect on the ELISA and all mediators showed
better than 80% recovery in spiking experiments. These
data are available in Additional file 1.

Asthma subtype classification
The granulocyte cut-off values used were 3% for sputum
eosinophils and 61% for sputum neutrophils [26,27]. In-
dividual patients were classified as eosinophilic asthma
(EA) with sputum eosinophils ≥3% of total cells, as
neutrophilic asthma (NA) with neutrophils ≥61%, as
paucigranulocytic asthma (PGA) with eosinophils ≤3%
and neutrophils <61% and as mixed granulocytic asthma
(MGA) with eosinophils ≥3% and neutrophils ≥61%.

Sputum immunocytochemistry
Sputum immunocytochemistry was performed as pre-
viously described (25). Briefly, cytospins were fixed in
PLP fixative, dried and coated in 15% sucrose and stored
at -20°C. Thawed cytospins were washed, permeabilized
and blocked. Primary antibodies anti-galectin-3 (EP2775Y)
and anti-LGALS3BP (3G8) (Abcam, Cambridge, UK) were
added followed by secondary donkey Alexa Fluor® anti-
bodies matched for species (Life Technologies, Carlsbad,
CA, USA). Cells were mounted using ProLong® Gold
Antifade Mountant with DAPI (Life Technologies). Slides
were observed on an Axio Imager A1 epifluorescence
microscope (Carl Zeiss MicroImaging Inc, Thornwood,
NY, USA) under fluorescent optics and pictures taken
using an Olympus DP70 digital microscope camera
(Olympus America, Centre Valley, PA, USA). Pictures
were observed visually with the inflammatory media-
tors represented by the colours green (gal-3) and red
(gal-3BP). Colocalization was assessed as both gal-3
and gal-3BP being present in the same location identi-
fied by the presence of a yellow colour.

Statistics
IBM SPSS Statistics 17.0 was used for statistical analysis.
Normally distributed data were summarized as the mean
and standard deviation (SD) and more than two groups
compared using ANOVA with least significant difference
(LSD) post hoc testing or Student’s t-test for two groups.
All levels of inflammatory mediators were log-transformed
and normal distribution was checked thereafter and the
analysis was conducted by using analysis of variance with
LSD post hoc test and adjusted for age and body mass
index (BMI) because there were significant correlations
between age, BMI and some inflammation mediators,
such as gal-3BP and IL-1β. Non-parametric data were re-
ported as the median and interquartile range (IQR) and
analyzed by Kruskal-Wallis test followed by Bonferroni
correction or the Mann-Whitney U test. Spearman’s rank
correlation coefficient was used to test correlations and
also adjusted for age and BMI. Categorical variables were
analyzed by Chi-squared test. A p value of <0.05 was con-
sidered statistically significant.
Logistic regression was used to establish whether the

ratio of gal-3 to gal-3BP was a predictor of asthmatic
phenotypes. We examined seven variables on the basis
of the strength of the univariate associations (p < 0.2):
atopy, FEV1, FVC and ratio of gal-3 to gal-3BP. Age, sex
and BMI were included and other variables were added
stepwise in a multivariable logistic regression model.

Results
Gal-3 and gal-3BP in asthma inflammatory phenotypes
Participants’ sex, age, BMI, smoking history, atopy and
ACQ6 were similar among the four asthma subgroups
[Table 1]. Participants with PGA had the best lung func-
tion compared to other groups. Those with NA had the
greatest sputum total cell count and number of neutro-
phils compared with the other groups, followed by MGA.
There were higher numbers of eosinophils in MGA and
EA than in NA and PGA, while EA had a decreased num-
ber of macrophages and lymphocytes compared with PGA
and MGA respectively.
Serum gal-3 and gal-3BP were similar across the inflam-

matory phenotypes [Table 1]. Due to the small numbers
of participants with MGA further analyses are conducted
among those with NA, PGA and EA.

Inflammatory mediators by asthma inflammatory subtype
Sputum gal-3 was significantly reduced in NA compared
with PGA and EA and gal-3BP was increased in NA
compared with EA. The gal-3 to gal-3BP ratio was signifi-
cantly reduced in participants with NA compared with EA
and PGA. Participants with NA also had significantly in-
creased concentrations of sputum IL-1β, IL-6 and IL-8
compared with PGA and EA. Although the level of IL-
1RA was not different between the asthma inflammatory
subtypes, the ratio of IL-1RA to IL-1β was significantly
lower in NA compared with EA and PGA [Figure 1].

Association between inflammatory mediators and clinical
characteristics
Sputum gal-3 was negatively associated with the total
number of sputum cells, the number of sputum neutrophils
and lymphocytes while gal-3BP was positively associated
with sputum total cells, neutrophils, macrophages and
lymphocytes [Table 2].
Sputum IL-1β, IL-8 and IL-6 were all positively associated

with the sputum total cell count, number of neutrophils
and lymphocytes. While sputum IL-6 was significantly as-
sociated with the number of sputum macrophages. There
were no significant relationships between IL-1RA and
sputum inflammatory cell counts (data not shown). None
of the sputum markers were associated with sputum eo-
sinophil number (all p > 0.05).



Table 1 Clinical characteristics and sputum cell numbers by asthma inflammatory subtypes

MGA NA PGA EA p value

N 5 18 29 28

Sex (m/f) 4/1 8/10 15/14 12/16 0.461

Age (y) 64 ± 11 62 ± 12 58 ± 14 61 ± 8 0.518

BMI 28 ± 3.6 30 ± 6.7 33 ± 7.0 30 ± 6.8 0.270

Atopy (y/n) 4/0 19/6 22/6 14/1 0.390

Ex-smoker (y/n) 3/2 11/17 10/19 6/11 0.741

Pack years 3 (2.3,17) 28 (14,49) 9.3(1,42) 15 (3.6,26) 0.772

FEV1 predicted (%) 64 (51,64) 65 (51,71) 80 (71,84) ¶*§ 69 (54,78) 0.007

FEV1/FVC (%) 72 (67,79) 77 (68,86) 86 (76,95) 78 (71,88) 0.157

ACQ6 1.2 (1.2,1.3) 1.8 (1.3,2.3) 1.7 (1.3,2.2) 1.5 (1.2,2.4) 0.264

ICS/LABA, n (%) 5 (100%) 18 (100%) 27 (93%) 2 (86%) 0.291

ICS dose 1000 (1000,2000) 2000 (1000,2000) 1000 (800,2000) 1600 (800,2000) 0.767

Total cell counts (106/mL) 8.2 (8.1,17) 12 (8.8,29)#▽ 5.4 (3.8,11) 6.2 (2.5,9.5) 0.001

Viability (%) 90 (85,91) 89 (83,93) 79 (64,86) 74 (62,84) 0.001

Neutrophils (106/mL) 5.8 (5.1,13)#▽ 10 (6.7,24)¶#▽ 1.6 (1.0,3.3) 1.9 (0.5,3.5) <0.001

Eosinophils (106/mL) 0.4 (0.3,1.5)†# 0.1 (0.0,0.2) 0.0 (0.0,0.1) 0.6 (0.3,2.0) #§ <0.001

Macrophages (106/mL) 2.3 (2.0,2.7) 2.4 (1.5,3.9) 3.2 (1.9,6.0)▽ 1.6 (1.0,3.5) 0.014

Lymphocytes (106/mL) 0.2 (0.1,0.2)* 0.1 (0.0,0.3) 0.0 (0.0,0.04) 0.0 (0.0,0.1) 0.009

Serum gal-3 (ng/mL) 2.1 (2.0-2.1) N = 2 1.4 (1.1-2.0) N = 13 1.5 (1.0-1.9) N = 21 1.4 (1.1-1.8) N = 21 0.480

Serum gal-3BP (mg/mL) 2.9 (2.8-3.1) 3.4 (3.3-5.8) 4.5 (2.9-6.0) 3.9 (2.9-5.2) 0.575

Data are expressed as mean ± SD or median (IQR). Data were analyzed by ANOVA or Kruskal-Wallis. MGA: mixed granulocytic asthma; NA: neutrophilic asthma;
PGA: paucigranulocytic asthma; EA: eosinophilic asthma; BMI: body mass index; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; ACQ6:
asthma control questionnaire 6; ICS: inhaled corticosteroid; LABA: long-acting beta agonist; gal-3: galectin-3; gal-3BP: galectin-3 binding protein.
p < 0.05: ¶vs. MGA, † vs. NA, *vs. EA. p < 0.01: §vs. NA, #vs. PGA, ▽vs. EA.
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Gal-3 had a significant inverse association with IL-1β
and positive association with IL-6. Gal-3BP was signifi-
cantly positively associated with IL-1β, IL-6, and IL-8.
The typical pro-inflammatory mediators such as IL-1β,
IL-6, and IL-8 were positively associated with each other.
There were no significant correlations between IL-1RA
and other mediators (data not shown).
Only IL-1RA had a significant relationship with FEV1

(r = 0.386, p < 0.001) and FVC (r = 0.332, p < 0.001)
Table 3.
In participants with neutrophilic asthma sputum gal-3

levels were significantly positively associated with mean
ACQ score (spearman’s r = 0.500, p = 0.049) but not
with FEV1% predicted or FEV1/FVC (data not shown).
There were no significant associations between sputum
gal-3BP or the gal-3/gal-3BP with ACQ, FEV1 % predicted
for FEV1/FVC (data not shown).

Gal-3 and gal-3BP in sputum cells
Gal-3 and gal-3BP immunoreactivity was observed in spu-
tum macrophages from all subtypes of asthma [Figure 2i].
Macrophages in neutrophilic asthma appeared to have less
gal-3 staining compared with both eosinophilic and pauci-
granulocytic asthma and when gal-3 was present, it was
colocalized with gal-3BP. Macrophages in EA and PGA
appeared to have very intense staining for gal-3 and
markedly less gal-3BP immunoreactivity. In the sputum
neutrophils, there appeared to be less nuclear gal-3 in
the participant with NA compared with EA and PGA
[Figure 2ii].

Logistic regression analysis to identify predictors of
asthma phenotypes
The ratio of gal-3 to gal-3BP was an independent
predictor of the presence of NA from EA and PGA
after correcting for age, sex and BMI. The model
reached statistical significance with an adjusted R2 of
0.322, p = 0.019. Full details of the regression can be
found in Table S1 of Additional file 2.

Effect of asthma medication
We compared the sputum inflammatory mediator levels
in those taking ICS only with those taking combination
ICS/LABA therapy. Sputum IL-β levels were very low in
those participants taking ICS only and significantly re-
duced compared to ICS/LABA. There were no differences
in any other mediators. Similarly, there was no difference
in any mediator in those participants taking very high



Figure 1 Induced sputum concentrations of inflammatory mediators in asthmatic inflammatory subtypes. Gal-3 (A) was decreased,
gal-3BP (B) was increased and the gal-3 to gal-3BP ratio (C) was decreased in NA. IL-1RA (D) was not different, IL-1β (E) was increased and the
IL-1RA to IL-1β ratio (F) was reduced in NA. IL-6 (G) and IL-8 (H) were both increased in NA. Group comparisons were conducted using analysis
of variance with least significant difference (LSD) post hoc test after being log-transformed and adjusted by age and BMI. The horizontal bar
denotes median value. NA; neutrophilic asthma, PGA; paucigranulocytic asthma, EA; eosinophilic asthma.

Table 2 Correlations between sputum inflammatory cells and sputum inflammatory mediators in asthma patients

Total cells (×106/mL) Neutrophils (×106/mL) Macrophages (×106/mL) Lymphocytes (×106/mL)

Log gal-3 -0.333# -0.412* NS -0.278#

Log gal-3BP 0.488* 0.378# 0.361# 0.254#

Log IL-1β 0.599* 0.607* NS 0.425*

Log IL-8 0.520* 0.521* NS 0.439*

Log IL-6 0.380# 0.338# 0.232# 0.255#

The data were analyzed by partial correlation, adjusted by age and BMI. *p < 0.001, #p < 0.05, NS: not significant (p > 0.05). Gal-3: galectin-3; gal-3BP: galectin-3
binding protein; IL-1β: interleukin 1β; IL-8: interleukin 8; IL-6: interleukin 6.
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Table 3 Correlations between sputum inflammatory
mediators in asthma patients

Log gal-3BP Log IL-1β Log IL-8 Log IL-6

Log gal-3 NS -0.238# NS 0.251#

Log gal-3BP N/A 0.570* 0.552* 0.532*

Log IL-1β 0.570* N/A 0.701* 0.552*

Log IL-8 0.552* 0.701* N/A 0.758*

Log IL-6 0.532* 0.552* 0.758* N/A

Data were analyzed by the Partial Correlation test, adjusted by age and BMI.
*p < 0.001, #p < 0.05, NS: not significant (p > 0.05). Gal-3: galectin-3; gal-3BP:
galectin-3 binding protein; IL-1β: interleukin 1β; IL-8: interleukin 8; IL-6:
interleukin 6.
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doses of ICS compared with those taking lower doses of
ICS [Table 4].
We then conducted a multiple linear regression to in-

vestigate the factors that are independently associated
with sputum gal-3 levels. The dose of ICS was not asso-
ciated with sputum gal-3 levels (p = 0.289) and therefore
was not included in the final model. The model was
Figure 2 Sputum cells from; A) neutrophilic, B) eosinophilic and C) pa
(red) with nuclear DAPI.
highly significant with BMI, sputum bronchial epithelial
cell proportion, sputum IL-1β and previous smoking be-
ing independently associated with sputum gal-3 levels
[Table 5].

Discussion
In this study we found that both gal-3 and gal-3BP protein
levels were more abundant in sputum than in serum. This
may suggest a functionally important difference or it may
reflect alterations in proteins during sputum processing.
The lowest concentrations of sputum gal-3 were seen in
neutrophilic asthma compared with paucigranulocytic and
eosinophilic asthma and the highest concentrations of gal-
3BP were seen in neutrophilic asthma. Binding of gal-3 to
its binding protein would be expected to reduce the
functional activity of gal-3 and this overall effect can be
summarized as the gal-3/gal-3BP ratio which was also
significantly lower in neutrophilic asthma. Together, these
results suggest that the balance of gal-3 and gal-3BP is a de-
terminant of airway neutrophilia, where gal-3BP appears to
ucigranulocytic asthma stained for gal-3 (green) and gal-3BP



Table 4 Analysis of mediators according to ICS and/or LABA use and ICS dose categories

ICS group ICS/LABA group ICS dose <1000 ICS dose <2000 ICS dose ≥2000 P value P’ value

N 6 74 24 19 37

gal-3 (ng/mL) 356 (293,471) 274 (166,471) 318 (210,493) 289 (162,420) 273 (163,471) 0.454 0.526

gal-3BP (ng/mL) 43 (25,115) 71 (27,161) 58 (21,158) 75 (23,196) 71 (33,142) 0.559 0.930

gal-3/gal-3BP 10.3 (2.4,19.1) 5.2 (1.7,10.6) 6.2 (2.3,23) 5.6 (3.0,9.3) 4.7 (1.3,9.5) 0.352 0.501

IL-1RA (ng/mL) 80 (67,233) 176 (103,288) 200 (97,323) 161 (111,286) 162 (102,271) 0.100 0.855

IL-1β (pg/mL) 1 (0.6,3) 156 (3,694) 157 (2.8,734) 53 (1.5,732) 157 (3.5,603) 0.030 0.733

IL-1RA/IL-1β 73 (35,122) 2.1 (0.23,41) 3.3 (0.3,43) 5.34 (0.2,90) 1.1 (0.2,26) 0.144 0.755

IL-6 (pg/mL) 447 (397,502) 337 (169,1186) 501 (311,1140) 400 (197,903) 326 (178,1195) 0.770 0.874

IL-8 (ng/mL) 14.7 (11.0,40.6) 17.5 (8.5,50 18 (11.5,56) 25 (7.2,51) 14 (9.3,31) 0.985 0.819

Data are expressed as median (IQR). P value: ICS group vs. ICS/LABA group, data were analyzed by Mann-Whitney U test. P’ value: among different ICS dose
categories, data were analyzed by Kruskal-Wallis. ICS: inhaled corticosteroid; LABA: long-acting beta agonist; gal-3: galectin-3; gal-3BP: galectin-3 binding protein;
IL-1RA: IL-1 receptor antagonist; IL-1β: interleukin 1β; IL-6: interleukin 6; IL-8: interleukin 8.
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be a positive regulator and gal-3 may be a negative
regulator of airway neutrophilia. These conclusions are
supported by the direction of correlations between gal-
3 and gal-3BP and sputum total cells, the number of
neutrophils and lymphocytes, the correlation with other
pro-inflammatory mediators and the results of the logistic
regression analysis which identified the gal-3/gal-3BP ratio
as a significant independent predictor of the neutrophilic
asthma phenotype.
Reduced gal-3 levels in neutrophilic asthma may alter

neutrophil function and accumulation. Addition of gal-3
to leukocytes increases uptake of apoptotic neutrophils
and therefore any alteration to gal-3 expression may im-
pact on the ability to remove apoptotic neutrophils from
the site of inflammation [15]. This has several conse-
quences, as poor removal of apoptotic cells can result in
release of damaging enzymes and oxidants which can
promote persistence of inflammation. This means that
when there is relatively less gal-3 in the airway in neu-
trophilic asthma, neutrophil persistence could occur by
reduced clearance. We have recently shown that effero-
cytosis is reduced in patients with non-eosinophilic
asthma [28] of which neutrophilic asthma constitutes
around 40% of the population. Similarly, in COPD where
airway gal-3 is also reduced, addition of exogenous gal-3
Table 5 Multivariate linear regression outcomes with depend

Variable Coefficient SE

Age -0.002 0.0

Sex -0.022 0.0

BMI -0.201 0.0

Bronchial epithelial cells, % 0.019 0.0

Ever smoked 0.210 0.1

Il-1β pg/mL -3.8×10-5 8.0

Constant 3.114 0.3

BMI: Body Mass Index; IL-1β: interleukin 1β.
improved the ability of macrophages to efferocytose
apoptotic epithelial cells [16], suggesting a restoration in
the ability of airway macrophages to remove dead cells
and therefore avoid cell necrosis. Our results are sup-
ported by a small study of patients with asthma and
healthy controls where significantly reduced gal-3 mRNA
expression was shown compared to healthy controls along
with expression of gal-3 in sputum macrophages and neu-
trophils [29].
The binding of gal-3 to its soluble binding protein

may explain the reduced levels of gal-3 observed in our
study. Alternative explanations for the reduced gal-3 levels
observed in neutrophilic asthma may be due to proteolytic
cleavage of gal-3 by endogenous proteases and bacterial
collagenases [13,30,31] which may include neutrophil elas-
tase which is also elevated in neutrophilic asthma (24).
These mechanisms require further exploration in future
studies.
Gal-3 is involved in innate immune responses and

recognition of bacteria. Higher gal-3 levels are associated
with alternative macrophage activation [16,32] and clas-
sical activation of macrophages via LPS is associated with
inhibition of gal-3 [33]. Interestingly, the classically acti-
vated macrophage phenotype is associated with cortico-
steroid resistant asthma suggesting that low gal-3 levels
ent variable sputum supernatant gal-3 levels

P 95% confidence interval

04 0.686 -0.010 to 0.007

94 0.813 -0.212 to 0.167

07 0.007 -0.035 to -0.006

09 0.041 0.008 to 0.037

02 0.042 0.008 to 0.413

×10-6 <0.001 -5.8×10-5 to -2.2×10-5

85 <0.001 2.347 to 3.882
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may identify those who are corticosteroid resistant [34].
When macrophages are deficient in gal-3 there is in-
creased responses to LPS [35], reduced bacterial replica-
tion and increased expression of IL-1β, TLR2 and IL-6
[36], which are similar observations to those we have
previously reported in patients with the neutrophilic
subtype of asthma and COPD [25,37,38]. In the present
study we observed a negative association between gal-3
and IL-1β levels in sputum supernatant suggesting that
gal-3 may indeed be anti-inflammatory while IL-1β is
known to be an important inflammatory mediator
increased in the airways of patients with neutrophilic
asthma [25].
Gal-3 and gal-3BP are expressed in many airway cell

types including macrophages, eosinophils, neutrophils
and mast cells [13,39,40]. We observed gal-3 and gal-
3BP expression in airway macrophages and neutrophils
however the pattern of expression was quite different in
neutrophilic asthma compared with eosinophilic and
paucigranulocytic asthma, supporting the protein data
which suggest altered levels of gal-3 and gal-3BP in
neutrophilic asthma. Expression of gal-3 was observed
in both the nucleus and cytoplasm which is consistent
with the variable subcellular location [41] and may indi-
cate different processes in different asthma inflammatory
phenotypes as have been observed for gal-3 in cancer [42].
Further studies may help identify the precise location of
gal-3 in airway cells from patients with asthma and the
role of galectin in specific inflammatory phenotypes.
Sputum levels of IL-1β were also significantly elevated

in neutrophilic asthma, in agreement with our previous
data [25,38] and we extend this by showing that levels of
IL-1RA, the receptor antagonist for IL-1β, was not
different between the asthma phenotypes. This suggests
that the increased IL-1β observed in neutrophilic asthma
is not due to reduced IL-1 receptor antagonism by
IL-1RA. Similar IL-1RA levels in asthma inflamma-
tory phenotypes also suggest an impairment of anti-
inflammatory responses where increased IL-1RA could
oppose the high IL-1β levels. When we compared the
IL-1RA/IL-1β ratio it was significantly reduced in neu-
trophilic asthma suggesting an imbalance of available
anti-inflammatory mediators similar to that observed
with the gal-3/gal-3BP ratio. The sputum IL-1RA levels
were significantly correlated positively with lung func-
tion in patients with asthma and negatively with IL-6,
which supports IL-1RA being anti-inflammatory in the
airways [43]. This is further supported by the observa-
tion that treatment of antigen-sensitized animals with
IL-1RA inhibits in vivo airway hyperresponsiveness
and airway inflammation [44].
Due to the cross-sectional design of this study we are

not able to determine cause or effect. The strengths of
the present study are the carefully characterized asthma
population and the assessment of the inflammatory medi-
ators in sputum. Further studies are needed to determine
if gal-3 can improve the impaired phagocytosis identified
in adults with non-eosinophilic asthma and to assess the
response of gal-3 levels to inhaled corticosteroids.

Conclusions
In conclusion, this study demonstrates for the first time,
that the sputum gal-3/gal-3BP and IL-1RA/IL-1β ratios
are associated with neutrophilic asthma and may suggest
impairment of anti-inflammatory mediator expression.
The results support the molecular heterogeneity of asthma
and provide a further framework for exploration into
pathologic mechanisms of asthma phenotypes, important
for the development of more effective treatment.

Additional files

Additional file 1: Mediator validation for assessment in induced
sputum. The addition of DTT to the commercial standard shows no
effect on the ELISA and all mediators show better than 80% recovery in
spiking experiments.

Additional file 2: Logistic regression analysis to identify a predictor
of asthma phenotypes. Table S1 shows the logistic regression analysis
to identify a predictor of asthma phenotypes.
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