The influence of temperature on emissions of nitrous oxide and dinitrogen from soils # **Thang Viet Lai** Thesis submitted for the degree of Doctor of Philosophy in the School of Agriculture, Food & Wine at the University of Adelaide Discipline of Farming Systems Waite Campus The University of Adelaide September 2016 # Table of contents | LIST OF FIG | GURES | 1 | |-------------|--|----| | LIST OF TAI | BLES | 8 | | ACRONYMS | S AND ABBREVIATIONS | 11 | | ABSTRACT | | 12 | | DECLARAT | ION | 14 | | ACKNOWLI | EDGEMENTS | 15 | | CHAPTER 1 | INTRODUCTION | 16 | | 1.1 A | ims | 20 | | 1.2 T | hesis structure | 20 | | CHAPTER 2 | LITERATURE REVIEW | 22 | | 2.1 In | troduction | 22 | | 2.2 T | he nitrogen cycle and processes related to N2O | 23 | | 2.2.1 | Biotic transformations | 25 | | 2.2.2 | Abiotic transformations | 31 | | 2.3 Fa | actors influencing N2O production | 32 | | 2.3.1 | Temperature | 32 | | 2.3.2 | Oxygen and soil moisture | 32 | | 2.3.3 | Substrate availability | 35 | | 2.3.4 | Carbon availability | 36 | | 2.3.5 | Soil pH | 37 | | 2.3.6 | Availability of trace metals | 38 | |-----------|--|----| | 2.4 T | thermal response of N ₂ O production | 39 | | 2.4.1 | N ₂ O production from nitrification | 39 | | 2.4.2 | N ₂ O from denitrification | 45 | | 2.4.3 | N ₂ O from abiotic reactions | 48 | | 2.5 T | emperature patterns in Australia | 48 | | 2.6 S | ummary and critical knowledge gaps | 50 | | 2.7 T | hesis objectives | 50 | | CHAPTER 3 | ARE NITRIFICATION AND N2O EMISSIONS INFLUENCED BY | | | AMMONIUN | M SUPPLY OR FLUCTUATING TEMPERATURES? | 52 | | 3.1 In | ntroduction | 52 | | 3.2 N | Saterials and methods | 54 | | 3.2.1 | Study site and sample collection | 54 | | 3.2.2 | Measurement of water field capacity and bulk density | 56 | | 3.2.3 | Laboratory incubations | 57 | | 3.2.4 | Gas sampling and analysis | 60 | | 3.2.5 | Soil mineral N and analysis | 61 | | 3.2.6 | Most probable number count | 61 | | 3.2.7 | Calculation of nitrogen transformation rates | 62 | | 3.2.8 | Statistical analysis | 63 | | 3.3 R | esults | 63 | | 3.3.1 Experiment 1: The effect of NH ₄ ⁺ supply | 63 | |---|----------| | 3.3.2 Experiment 2: The effect of fluctuating temperatures | 68 | | 3.4 Discussion | 74 | | 3.5 Conclusions | 76 | | CHAPTER 4 NITROUS OXIDE PRODUCTION FROM NITRIFICATION IN SO | OILS AND | | ITS DEPENDENCE ON TEMPERATURE | 79 | | 4.1 Introduction | 79 | | 4.2 Materials and methods | 81 | | 4.2.1 Study site and sample collection | 81 | | 4.2.2 Laboratory incubations | 84 | | 4.2.3 Gas sampling and analysis | 86 | | 4.2.4 Soil mineral N and pH measurement | 87 | | 4.2.5 Most probable number count | 88 | | 4.2.6 Statistical analysis | 88 | | 4.3 Results | 89 | | 4.3.1 Experiment 1: N ₂ O emissions in response to temperature | 89 | | 4.3.2 Experiment 2: Effect of high temperature | 91 | | 4.4 Discussion | 99 | | 4.5 Conclusions | 103 | | CHAPTER 5 SOILS FROM TWO CONTRASTING CLIMATES DIFFER IN TH | EIR | | THERMAL PATTERNS OF N ₂ O AND NITRIFICATION | 104 | | 5.1 Introduction | 104 | | 5.2 I | Materials & methods | 105 | |-----------|---|-----| | 5.2.1 | Study sites and sample collection | 105 | | 5.2.2 | Laboratory incubation | 108 | | 5.2.3 | Sampling and analysis | 108 | | 5.2.4 | Calculation of nitrogen transformation rates | 109 | | 5.2.5 | Statistical analysis | 110 | | 5.3 I | Results | 112 | | 5.3.1 | Soil mineral N | 112 | | 5.3.2 | Total N ₂ O emissions | 116 | | 5.3.3 | N_2O from heterotrophic nitrification and/or denitrification | 116 | | 5.3.4 | Net rate of autotrophic nitrification | 119 | | 5.3.5 | N ₂ O from autotrophic nitrification | 119 | | 5.3.6 | The proportion of N ₂ O to NO ₃ ⁻ from autotrophic nitrification | 120 | | 5.3.7 | Ammonium oxidising bacteria (AOB) population | 120 | | 5.3.8 | Production of CO ₂ | 122 | | 5.3.9 | Inter-relationships | 122 | | 5.4 I | Discussion | 124 | | 5.5 | Conclusions | 128 | | CHAPTER | 6 SOIL MOISTURE AFFECTS THE THERMAL RESPONSE OF | | | DENITRIFI | CATION | 129 | | 6.1 I | ntroduction | 129 | | 6.2 N | Material and methods | 131 | |----------|---|-----| | 6.2.1 | Study sites and sample collection | 131 | | 6.2.2 | Laboratory incubation | 131 | | 6.2.3 | Sampling and analysis | 132 | | 6.2.4 | Gas measurement | 132 | | 6.2.5 | Calculation of nitrogen transformation rates | 133 | | 6.2.6 | Determining the activation energy (Ea) of a reaction | 133 | | 6.2.7 | Calculation of oxygen (O2) availability | 134 | | 6.2.8 | Statistical analysis | 135 | | 6.3 I | Results | 136 | | 6.3.1 | The production of total N ₂ O | 136 | | 6.3.2 | ¹⁵ N ₂ O production during denitrification | 138 | | 6.3.3 | ¹⁵ N ₂ O reduction during denitrification | 138 | | 6.3.4 | Total denitrification | 141 | | 6.3.5 | Soil respiration rate and O2 availability | 143 | | 6.3.6 | Soil nitrate contents | 145 | | 6.4 I | Discussion | 146 | | 6.5 | Conclusions | 148 | | CHAPTER | 7 N ₂ O AND N ₂ PRODUCTION FROM DENITRIFICATION RESPOND | | | DIFFEREN | TLY TO SOIL TEMPERATURE AND NITRATE SUPPLY | 150 | | 7.1 I | ntroduction | 150 | | 7.2 N | Iethods | 152 | |-----------|--|-----| | 7.2.1 | Study sites and sample collection | 152 | | 7.2.2 | Laboratory incubation | 152 | | 7.2.3 | Sampling and analysis | 153 | | 7.2.4 | Gas measurement | 153 | | 7.2.5 | Statistical analysis | 154 | | 7.3 R | esults | 154 | | 7.3.1 | Mineral nitrogen pools | 154 | | 7.3.2 | Overall N ₂ O production | 154 | | 7.3.3 | Net rate of ¹⁵ N ₂ O production | 157 | | 7.3.4 | Rate of ¹⁵ N ₂ O reduction | 157 | | 7.3.5 | Total dentirification and N ₂ O/N ₂ ratios | 160 | | 7.3.6 | The activation energy | 163 | | 7.3.7 | Soil respiration and O ₂ availability | 163 | | 7.3.8 | Inter-relationships | 163 | | 7.4 D | viscussion | 166 | | 7.5 C | conclusions | 169 | | CHAPTER 8 | GENERAL DISCUSSION | 17(| | 8.1 C | concept of research | 170 | | 8.2 S | ummary of results | 171 | | 8.2. | 1 The effects of fluctuating temperature and NH ₄ ⁺ content on nitrificat | ion | |--------|---|------| | and | N_2O | 171 | | 8.2. | 2 The influence of temperature on nitrification and associated N ₂ O | 172 | | 8.2. | 3 The influence of temperature, soil moisture and nitrate on denitrifica | tion | | | | 174 | | 8.3 | Conclusions | 176 | | 8.4 | Implications | 179 | | 8.5 | Future research | 180 | | REFERE | NCES | 183 | # List of figures | Figure 1.1. The pathways of N ₂ O from nitrification, denitrification and chemical reactions | |--| | in soil | | Figure 1.2. Thesis structure indicating the scientific relationships among chapters, | | indicated as solid blue lines, and some methodological relationships among | | chapters, indicated as broken red lines. Data from chapters bounding with | | double line were based on isotopic techniques (15N) | | Figure 2.1. The nitrogen cycle in agricultural systems (adapted from Bolan et al. (2004)) | | 24 | | Figure 2.2. Mineralisation of nitrogen in soil including the components of aminisation | | and ammonification (adapted from Bolan et al. (2004))26 | | Figure 2.3. Nitrification: outline of the pathway and enzymes involved (adapted from | | Wrage et al. (2001)) | | Figure 2.4. Denitrification: outline of the pathways and enzymes involved (adapted from | | Bolan et al. (2004)) | | Figure 2.5. Factors affecting nitrification, denitrification and N ₂ O production in soils (red | | shaded: proximal factors; blue shaded: distal factors). Adapted from Saggar et | | al. (2013) | | Figure 2.6. The effect of soil temperature on relative nitrification rates from different | | climatic regions: relative nitrification rates (lines) and the range of mean of | | monthly air temperatures for each site (bars). Data from Myers (1975), Sabey | | et al. (1959). Malhi and McGill (1982). Maag and Vinther (1996) | | Figure 2.7. The effect of temperature on N ₂ O and NO _x from soil based on the DAYCENT | |---| | model (Parton et al., 2001) | | Figure 3.1 (a) The variation in soil temperature (50mm top layer) and water content in | | study site from June 2012 until July 2013 (unpublished data from Kevin Kelly, | | Department of Agriculture, VIC.): Lines present daily soil maximum (red line) | | and minimum temperature (blue line), bars present the monthly volumetric | | water content; (b) The variation in daily soil temperature captured | | automatically every 30 minutes in February 2013, (each line represents one | | day); and (c) three temperature patterns tested (FTP ₁ : 8h -15 °C, 8h- 20 °C, 8h | | - 25 °; FTP ₂ : 12h -15 °C and 12h - 25 °C; CT maintained continually at 20 °C). | | 55 | | Figure 3.2. Experimental procedures outlined for experiment 1, testing different N supply | | and experiment 2, testing different temperature patterns during incubation 59 | | Figure 3.3 Variation in concentrations of soil ammonium and nitrate concentrations over | | time when subjected to different temperature patterns (FTP ₁ : 8h -15 °C, 8h- 20 | | °C, 8h - 25 °; FTP2: 12h -15 °C and 12h - 25 °C; CT maintained continually at | | 20 °C) and C_2H_2 pressure (without C_2H_2 -open symbols and with C_2H_2 -filled | | symbols). Soil moisture was maintained at 60% field capacity. Vertical bars | | are +1SE 69 | | Figure 3.4. Cumulative N ₂ O production in the chromosol soil under different temperature | |
patterns (FTP ₁ : 8h -15 °C, 8h- 20 °C, 8h - 25 °; FTP ₂ : 12h -15 °C and 12h - 25 | | °C; CT maintained continually at 20 °C) and C ₂ H ₂ treatments (without C ₂ H ₂ - | | open plots and with C ₂ H ₂ - filled plots). Soil moisture was maintained at 60% | | field capacity. Vertical bars are +1SE. Pooled ANOVA indicated no interaction | |---| | between temperature patterns and sapling time (p > 0.05) | | Figure 4.1. The variation in temperature and water content in study sites from June 2012 | | until July 2013. Lines indicate daily soil maximum (red line) and minimum | | temperature (blue line); bars present the monthly volumetric water content. 82 | | Figure 4.2. The production of N_2O from autotrophic nitrification and heterotrophic | | nitrification or denitrification in soils incubated at different temperatures for 5 | | days after application of 100 µg NH ₄ -N g ⁻¹ soil. Total bar height represents | | total N_2O production (all processes). Grey bar represents N_2O arising from | | heterotrophic nitrification and/or denitrification in C ₂ H ₂ -amended treatments. | | The size of the open bar represents ¹⁵ N-N ₂ O from autotrophic nitrification | | determined from the difference in N_2O from C_2H_2 and non- C_2H_2 treatments. | | | | Vertical bars are +1 SE of four replicates | | $\label{eq:Vertical bars} \ \text{are } +1 \ \text{SE of four replicates.} \qquad \qquad 90$ Figure 4.3. The response of N2O emissions to different temperatures and C2H2 pressures | | | | Figure 4.3. The response of N_2O emissions to different temperatures and C_2H_2 pressures | | Figure 4.3. The response of N_2O emissions to different temperatures and C_2H_2 pressures over the 10 days of incubation. Soil samples were amended with NH_4NO_3 and | | Figure 4.3. The response of N_2O emissions to different temperatures and C_2H_2 pressures over the 10 days of incubation. Soil samples were amended with NH_4NO_3 and maintained at 60% FC. Vertical bars are +1 SE of four replicates | | Figure 4.3. The response of N_2O emissions to different temperatures and C_2H_2 pressures over the 10 days of incubation. Soil samples were amended with NH_4NO_3 and maintained at 60% FC. <i>Vertical bars</i> are +1 SE of four replicates | | Figure 4.3. The response of N ₂ O emissions to different temperatures and C ₂ H ₂ pressures over the 10 days of incubation. Soil samples were amended with NH ₄ NO ₃ and maintained at 60% FC. <i>Vertical bars</i> are +1 SE of four replicates | | Figure 4.3. The response of N ₂ O emissions to different temperatures and C ₂ H ₂ pressures over the 10 days of incubation. Soil samples were amended with NH ₄ NO ₃ and maintained at 60% FC. <i>Vertical bars</i> are +1 SE of four replicates | | Figure 4.3. The response of N ₂ O emissions to different temperatures and C ₂ H ₂ pressures over the 10 days of incubation. Soil samples were amended with NH ₄ NO ₃ and maintained at 60% FC. <i>Vertical bars</i> are +1 SE of four replicates | | Figure 4.3. The response of N ₂ O emissions to different temperatures and C ₂ H ₂ pressures over the 10 days of incubation. Soil samples were amended with NH ₄ NO ₃ and maintained at 60% FC. <i>Vertical bars</i> are +1 SE of four replicates | | The pooled ANOVA was applied to determine the different rates of mineral N | |--| | change over incubation time. Different letters indicate significant difference | | among temperatures. <i>Vertical bars</i> are +1 SE of four replicates | | Figure 4.6. The production of CO ₂ in response to different incubation temperatures. Soil | | moisture was maintained at 60% field capacity (33kPa). Different letters | | indicate significant differences in CO ₂ concentration among temperature | | treatments for the dermosol (p < 0.05). Vertical bars are +1 SE of four | | replicates98 | | Figure 5.1. Study sites and major characteristics (0-10 cm depth) of unamended | | experimental soils used in this study106 | | | | Figure 5.2. The variation in daily air temperature with maximum temperature (red line), | | minimum temperature (blue line) and monthly total rainfall in two study sites | | (green vertical bars) from 2012-2014 (unpublished data from Nigel Swarts, The | | University of Tasmania for temperate soil and Melissa Royle, HCPSL for | | tropical soil) | | Figure 5.3. Experimenal procedures, including: Pre-incubation, repacking soil core, | | addition of NH_4^+ solution and C_2H_2 (0.01% v/v) then incuabtion at different | | temperatures111 | | Figure 5.4. Soil ammonium concentrations at different temperature and with and without | | acetylene addition in two tested soils after N application of 100µg N g-1 soil, | | as (NH ₄) ₂ SO ₄ . Soil moisture was maintained at 60% FC during incubation. | | Error bars represent +1 SE (n = 4) | | Figure 5.5. Soil nitrate concentrations at different temperature and with and without | | acetylene amendment in two tested soils after N application at 100 μg N g ⁻¹ | | son, as (NH4)2SO4. Son moisture was maintained at 60% FC during incubation | |--| | Error bars represent $+1$ SE $(n = 4)$ | | Figure 5.6. Cumulative N ₂ O production at different temperatures and with and without | | acetylene amendment in two soils after N application at 100µg N g-1 soil as | | (NH ₄) ₂ SO ₄ . Soil moisture was maintained at 60% FC. Bars represent +1 SE (r | | = 4) | | Figure 5.7. The rate of CO ₂ production at different temperature in two tested soils after N | | application at 100 μg N g ⁻¹ soil as (NH ₄) ₂ SO ₄ . Soil moisture was maintained a | | 60% FC during incubation. Bars represent +1 SE (n = 4) | | Figure 5.8. The effect of soil temperature on relative nitrification rate in this study | | compared with results from published results: relative nitrification rates (lines) | | and variation in mean of monthly air temperatures (bars) | | Figure 6.1. The relationship between the rate of a reaction (k) and temperature 134 | | Figure 6.2. Cumulative N ₂ O production over time in response to temperature and soil | | moisture following addtion of N fertiliser to soil at100 µg N g ⁻¹ soil as | | ¹⁴ NH ₄ ¹⁵ NO ₃ . Soil moisture was maintained at 60 % FC (a) and 75% FC (b) | | | | Figure 6.3. Cumulative ¹⁵ N-N ₂ from denitrification over the 10 days of incubation as | | different temperatures and soil water contents following the addition of 100 µg | | N g ⁻¹ soil as NH ₄ ¹⁵ NO ₃ . Different letters indicate significant differences among | | temperatures (lower letters for 60% FC and capital letters for 75% FC). There | | was no significant difference between the two field capacities at all | | temperatures. A trendline indictes the relationship between temperature and | | 15 N ₂ production. Vertical bars represent +1 SE (n = 4) | | Figure 6.4. Cumulative ¹⁵ N-(N ₂ O+N ₂) production from denitrification in soil incubated | |--| | at different temperatures and soil moisture contents after 10 days following the | | application of 100 µg N g ⁻¹ soil as NH ₄ ¹⁵ NO ₃ . Two-way ANOVA identified an | | interactive effect between temperature and soil moisture to control $^{15}\text{N}_2\text{O}$ | | production (p < 0.05). Different letters indicate significant differences in total | | N losses as $^{15}\text{N}_2\text{O}$ and $^{15}\text{N}_2$ among temperatures. Vertical bars indicate +1 SE | | (n = 4) | | Figure 6.5. Cumulative CO ₂ production in response to temperatures at different soil | | moisture contents (a & b) and estimated O2 availability (c) during the | | experiment. Soil samples had addition of 100 µg N g ⁻¹ soil as NH ₄ ¹⁵ NO ₃ . Error | | bars are +1 SE (n = 4) | | Figure 6.6. Nitrate availability (µg NO ₃ -N g ⁻¹ soil) exposed to different temperatures and | | soil moisture contents after 10 days of incubation. Soil NO ₃ ⁻ content measured | | on day 0 was 25.7 \pm 0.3 μg N g^{1} soil | | Figure 7.1 The cumulative production of N ₂ O over time in response to temperature | | following amendments of N fertiliser to soil at 0 (N_0), 100 (N_{100}), 200 (N_{200}) | | and 300 μg N $g^{\text{-}1}$ soil (N ₃₀₀) as NH ₄ ¹⁵ NO ₃ . Soil moisture was maintained at 75 | | % field capacity. Error bars indicate +1 SE (n = 4) | | Figure 7.2 Daily rates of ¹⁵ N-N ₂ O over time in response to temperature following | | amendments of N fertiliser to soil at 0 (N ₀), 100 (N ₁₀₀), 200 (N ₂₀₀) and 300 μg | | N g ⁻¹ soil (N ₃₀₀) as NH ₄ ¹⁵ NO ₃ . Soil moisture was maintained at 75 % field | | capacity. Error bars indicate $+1$ SE (n = 4). ns: non-significant difference; | | different letters indicate significant difference among temperatures within each | | N supply | | Figure 7.3 Daily rates of ¹⁵ N-N ₂ over time in response to temperature following | |---| | amendments of N fertiliser to soil at 0 (N0), 100 (N100), 200 (N200) and 300 μg | | N g $^{-1}$ soil (N $_{300}$) as NH $_{4}^{15}$ NO $_{3}$. Soil moisture was maintained at 75 % field | | capacity. Error bars indicate $+1$ SE (n = 4). ns: non-significant difference; | | different letters indicate significant difference among temperatures within each | | N supply | | Figure 7.4 Cumulative CO ₂ production vs time during incubation at different | |
temperatures, regardless of N application (a) and the relationship between CO ₂ | | production and O ₂ availability (b). Soil moisture was maintained at 75% field | | capacity (33kPa). Error bars are +1 SE (n = 12) | | Figure 8.1. A conceptual model of the effect of temperature on soil biological processes | | responsible for N ₂ O and N ₂ production, constructed by integrating results | | obtained from experimental chapters. The size of the circles and arrows | | indicates the relative impact of temperature on size of the pools of each | | nitrogen form. The diagrams in the lower portion of the figure indicate some | | key results of the study in relation to temperature optima for $N_2\text{O}$ production | | and the thermal effect on NH ₄ ⁺ 178 | # **List of Tables** | Table 2.1. The proportion of nitrified N as N ₂ O at specified temperatures in laboratory | |--| | and field studies43 | | Table 2.2. Denitrification and associated N_2O production at specified temperatures in | | laboratory and field studies | | Table 3.1. The concentrations of $\mathrm{NH_{4}^{+}}$ and $\mathrm{NO_{3}^{-}}$ over time following amendment with | | different amounts of NH_4^+ at time 0 (A ₀ : 0, A ₅₀ : 50, A ₁₀₀ : 100 & A ₁₅₀ : 150 μg | | N g-1 soil) with (0.01% v/v) and without C_2H_2 addition. Soil moisture was | | maintained at 60% of the gravimetric water content at field capacity. Each | | value is followed by the standard error of the mean (n=4)65 | | Table 3.2. The rate of total N_2O , N_2O from denitrification and/or heterotrophic | | nitrification (N_2O_{DH}) , N_2O from autotrophic nitrification (N_2O_A) , and | | autotrophic nitrification (N_{nit}) in the chromosol soil after additions at time 0 of | | 0 (A ₀), 50 (A ₅₀), 100 (A ₁₀₀), & 150 μg N g^{-1} soil (A ₁₅₀) as (NH ₄) ₂ SO ₄ . Soil | | moisture was maintained at 60% of the gravimetric water content at field | | capacity. Each value is followed by the standard error of the mean (n=4) 67 | | Table 3.3. Total N_2O emissions, N_2O production from different sources (autotrophic and | | heterotrophic nitrification, denitrification), autotrophic nitrification rate (N_{nit}) , | | ammonium oxidising bacteria (AOB) population and CO2 production in the | | chromosol soil after 4 weeks of incubation under different temperature patterns | | (FTP ₁ : 8h -15 °C, 8h- 20 °C, 8h - 25 °C; FTP ₂ : 12h -15 °C and 12h - 25 °C; CT | | at 20 °C). Soil sample was maintained at 60% of the gravimetric water content | | at field capacity (- 33 kPa). Each value is followed by the standard error of the | | $\operatorname{mean}(n-4) $ 73 | | Table 4.1. Some properties of unamended experimental soils used in this study. Soils | |---| | were sampled from 0-10 cm depth | | Table 4.2. Outline of the ^{15}N fertiliser and C_2H_2 inhibition treatments used to estimate the | | contribution of denitrification, autotrophic nitrification and heterotrophic | | nitrification to $^{15}NN_2O$ production (Baggs et al., 2003; Bateman and Baggs, | | 2005)85 | | Table 4.3. Daily rate of ¹⁵ N-N ₂ O emissions, cumulative ¹⁵ N-N ₂ O from different sources | | and ammonium oxidising bacteria (AOB) population after 10 days of the | | incubation in the dermosol. Soil was applied 100 μg N $g^{\text{-}1}$ as $^{14}\text{NH}_4{}^{15}\text{NO}_3$ or | | ¹⁵ NH ₄ ¹⁵ NO ₃ and maintained at 60% FC. Each value has a standard error of the | | mean indicated under it (n=4) | | Table 5.1. Daily rate of NO ₃ ⁻ production (N _{nit}), nitrous oxide (N ₂ O _A) from autotrophic | | nitrification, the proportion of N_2O to $NO_3^-(P_n)$ in the first 7 days of incubation | | and the growth rate of AOB population (d ⁻¹) after 14 days in soils added wtith | | 100 μg NH ₄ -N g ⁻¹ soil. Soil was maintained at 60% of field capacity (-33 kPa). | | | | Table 5.2. Correlation coefficients (r values) among temperature, total N_2O , CO_2 | | production, autotrophic nitrification (N_{nit}), N_2O from autotrophic nitrification | | (N_2O_A) , ammonium oxidising bacteria (AOB) and the proportion of NO_3^- to | | $N_2O(P_n) (n = 30)$ | | Table 6.1. Average of rates of $^{15}\text{N}_2\text{O}$ and ^{15}N production from denitrification in soil at | | different temperatures and water contents after addition 100 as NH ₄ ¹⁵ NO ₃ .139 | | Table 6.2. The activation energy (E_a) for N ₂ O reduction during denitrification between | |--| | 25 to 45 C in two water contents in the tested soil. Each value has a standard | | error of the mean followed it | | Table 7.1. The concentrations of ammonium and nitrate at days 0 and 10 days after | | incubation at different temperatures and N applications to soil at 0 (N_0), 100 | | $(N_{100}),200$ (N_{200}) and $300~\mu g$ N g^{1} soil (N_{300}) as $NH_4{}^{15}NO_3.$ Soil moisture was | | maintained at 75% field capacity | | Table 7.2. Average of rates of ¹⁵ N-N ₂ O production, ¹⁵ N-N ₂ production, the ratios of | | $N_2O/(N_2O+N_2)$ and N_2O/N_2 from denitrification in the first 7 days of | | incubation at different temperatures and N additions to soil at t 0 (N ₀), 100 | | $(N_{100}),200$ (N_{200}) and $300~\mu g$ N g^{1} soil (N_{300}) as $NH_4{}^{15}NO_3.$ Soil moisture was | | maintained at 75% field capacity (- 33 kPa) | | Table 7.3. The activation energy (E_a) for N_2 production from denitrification between 25 | | °C to 45 °C at N applied to tested soil (with 100 (N $_{100}$), 200 (N $_{200}$) and 300 μg | | $N g^{-1} soil as {}^{14}NH_4{}^{15}NO_3 (N_{300})).$ 164 | | Table 7.4. Correlation coefficients (r values) among temperature, nitrogen applied (N), | | N_2O , N_2 , denitrification (N_2O+N_2), N_2O/N_2 ratio and O_2 ($n=36$) in the first | | 7 days of incubation | ## Acronyms and abbreviations µg Microgram ¹⁵N (%) Labelling nitrogen (percentage of excess ¹⁵N atom) ANOVA Analysis of variance AOA Ammonia-oxidising archaea AOB Ammonium oxidising bacteria $\begin{array}{c} BD \\ C_2H_2 \end{array} \qquad \begin{array}{c} Bulk \ density \\ Acetylene \end{array}$ CT Constant temperature DEA Denitrification enzyme activity DNRA Dissimilatory nitrate reduction to ammonium $egin{array}{lll} E_a & & Activation\ energy \\ FC & Field\ capacity \\ \end{array}$ FTP Fluctuating temperature pattern HSD Honestly significant difference mg Milligram MPN Most probable number $egin{array}{lll} N & & & \mbox{Nitrogen} \\ N_2 & & \mbox{Dinitrogen} \\ N_2 O & & \mbox{Nitrous oxide} \\ \end{array}$ N₂OR Nitrous oxide reduction naNot applicable NH_2OH Hydroxylamine NH_4^+ AmmoniumNONitric oxide NO_2^- Nitrite NO_3^- Nitrate ns Not significant O₂ Oxygen OC Organic carbon P_n The proportion of N₂O to NO₃⁻ by nitrification SE Standard error WFPS Water-filled pore space #### **Abstract** Nitrification and denitrification are two major soil biological processes that release nitrous oxide (N2O) from soils. N2O production and reduction have been welldocumented at temperatures below 35 °C, but are poorly understood at higher temperatures. N₂O production from nitrification was compared at a range of temperatures (10 °C to 45 °C) to mimic the typical temperatures encountered in soils from dairy pasture systems in Australia. Temperature was more important than soil type in controlling N₂O from nitrification, which was slow at 10-25 °C and peaked at 35-40 °C, suggesting a higher optimum temperature for N₂O production from nitrification than previous studies reported. Autotrophic nitrification produced N₂O predominantly below 35 °C, while heterotrophic nitrification, which used NH₄⁺ for nitrifying, released N₂O principally between 35 °C and 40 °C. Total N₂O emissions measured at different temperatures were influenced by the climatic region from which the soils were sourced. The magnitudes of N₂O emissions in the tropical soil exceeded those in the temperate soil under experimental conditions, although N₂O/NO₃ from nitrification at different temperatures was independent of the climatic region from which soils were sourced. The N₂O/NO₃⁻ ratio was positively correlated with increased temperature and was above 1.0% at 35 °C, regardless of climate. Temperature interacted with soil moisture and NO_3^- availability to regulate N_2O from denitrification, while the conversion of N_2O to N_2 was affected principally by temperature. The highest denitrification $(N_2O + N_2)$ was found at 35 °C in the soils treated at 75% FC and N contents between $100 - 150 \text{ kg N ha}^{-1}$. Low N_2O/N_2 ratios at 40 - 45 °C was due to the enhancement of N_2 production at these temperatures, suggesting greater soil NO_3^- loss as N_2 during summer, particularly in soils that are wet at that time. Interestingly, high NH₄⁺ availability was observed at 45 °C, which was hypothesised to relate to low nitrification rate and high rates of N mineralisation or dissimilatory nitrate reduction to ammonium at this temperature. This work has improved the knowledge of N cycling processes at high temperatures. Soil moisture or NO₃⁻ content alone are poor predictors of N₂O and N₂ production, since these elements interacted with temperature to control denitrification. High soil NH₄⁺ availability at 45 °C is a particularly interesting finding with potential to contribute to N losses. The findings confirm that management of soil moisture and NO₃⁻ availability, and a consideration of crop N demand are likely to reduce N losses as N₂O and N₂. **Declaration** I
certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time. Thang Viet Lai September 2016 14 ### Acknowledgements Vietnam International Education Development (VIED) and The University of Adelaide (AFSIU scholarship) are gratefully acknowledged for funding this project. Special thanks to Matthew Denton, Ryan Farquharson, Nanthi Bolan – the most patient of supervisors. Thanks for your excellent guidance. I would like to thank Kevin Kelly (Department of Economic development), Melissa Royle (HCPSL), Nigel Swarts (The University of Tasmania) for allowing site access for soil collection and for provision of environmental data; Nigel Charman for soil sampling; Ann McNeill, Philippa Tansing and Suan Mason for providing technical assistance on mineral nitrogen analysis; Nang Nguyen for soil physical measurements, Judith Rathjen for assistance with laboratory work. Many thanks to Gupta Vadakattu and Stasia Kroker (CSIRO) for assistance with ¹⁵N diffusion technique; Eileen Scott, Michael Keller and Cameron Grant for allowing the use of incubators and the Farming Systems group for the general advice and feedback on the project. Peter Thorburn, Wendy Quayle, Ronald Smernik, Murrray Unkovich are acknowledged for their advice on some chapters in my thesis. I acknowledge and thank anonymous examiners for their efforts in ensuring my thesis is of international academic standard Last but not least, my family. Special thanks to my wife and son, who have been with me during the journey. ## Chapter 1 Introduction Nitrous oxide (N_2O) is a powerful greenhouse gas that contributes to global warming and is one of the most important ozone-depleting substances (Crutzen, 1981; Pierzynski et al., 2005; Ravishankara et al., 2009). Atmospheric N_2O concentrations have increased since pre-industrial times and the agriculture sector currently accounts for 60% of anthropogenic N_2O emissions (Butterbach-Bahl et al., 2013). The global N_2O production from soil increased by 17% from 1990 to 2005, due mainly to excess applications of N fertilisers to agricultural soils (IPCC, 2006). The applied nitrogen to soil can be lost into the atmosphere as NO, N_2O or N_2 , which reduces the efficiency of N utilisation and has adverse ecological impacts (Mosier et al., 2004). Thus, the sustainability of agricultural systems should involve the measurement of N losses as nitrogenous gases, particularly N_2O emissions. Nitrous oxide can be released from both chemical and biological processes in soil. The oxidation of hydroxylamine (Bremner, 1997; Heil et al., 2015) and chemo-denitrification (Van Cleemput, 1998) can release N₂O emissions but the amounts of N₂O production are considered to be much lower than that from biologically meditated pathways. The biological processes, which produce approximately 70% of global N₂O production (Butterbach-Bahl et al., 2013), include nitrification, denitrification and nitrifier-denitrification (Figure 1.1). The rates of these biological processes vary with climates, soil properties and agricultural practices, which result in high temporal and spatial variability of N₂O production (Hénault et al., 2012). Temperature is a fundamental factor regulating biological N_2O emission from soil because it has both direct and indirect effects on the biological processes responsible for N_2O production. Temperature may influence the growth of microorganisms and kinetic reactions for nitrification and denitrification. The indirect effects of temperature on N_2O production are mediated via changes in oxygen (O₂), organic carbon (OC), substrate availability (NH₄⁺ and NO₃⁻) and soil pH. Global warming was estimated to increase by $0.8\,^{\circ}\text{C}$ in the 20^{th} century and is predicted to continuously increase at an average rate of +0.2 °C per decade in the 21th century (IPCC, 2001; Hansen et al., 2006). The thermal responses of microorganisms mediating the N cycle may influence soil N losses as N₂O or N₂ from nitrification and denitrification and need to be better understood (Smith, 1997; Castaldi, 2000). Thus, it is vital to investigate the impact of the temperature on biological N₂O and N₂ production from agricultural soils. Temperature may interact with factors such as soil moisture and N availability to control N₂O production and N₂O reduction (corresponding to N₂ production) under field conditions. There are contradictory findings about the relationship between the N₂O/N₂ in relation to temperature, and therefore this needs further investigation, particularly at temperatures that have rarely been explored. Australian soils typically experience high diurnal temperature fluctuations and seasonal fluctuations vary from – 5 °C to 45 °C (Meteorology, 2015). It has been well-documented that N₂O emissions increase exponentially with rising soil temperature below 30 °C (Goodroad and Keeney, 1984; Maag and Vinther, 1996; Smith, 1997; Avrahami et al., 2003). Only a few studies have examined temperature responses above 30 °C in terms of quantification of N losses as N₂O and N₂ to the atmosphere. Thus, the production of N₂O and N₂ from soils at higher temperatures are poorly understood. In addition, most studies investigating the impact of temperature on biologically produced N₂O emissions have used a daily constant temperature and often neglected the diurnal fluctuations in temperature, which occur naturally under field conditions. Thus, it is important to assess The different magnitudes of N₂O production among geographic regions and ecosystems have been suggested to relate to the thermal acclimation and/or adaptation of soil the impact of diurnal temperature regimes on N₂O production. microorganisms. The available data on N₂O production are aggregated from separate experiments conducted under different experimental conditions (Goodroad and Keeney, 1984; Maag and Vinther, 1996; Gödde and Conrad, 1999; Holtan-Hartwig et al., 2002). Therefore, incorporation of thermal responses of N₂O production from further climatic regions, particularly from contrasting regions, will assist in model development. Some models such as DNDC (Li et al., 1992; Li, 2000) and NASA CASA (Potter et al., 1996) have been developed to predict N₂O emissions from different agricultural systems. However, these models have limitations in their applicability across climatic regimes and ecosystems (Chen et al., 2008) due to the high variability of climate and soil conditions, which alter the temperature optima, as described by Stark (1996). A better understanding of the relationship between temperature and N losses as N_2O and N_2 would contribute to improve the knowledge of N transformations in soil and provide direction for the development of effective management strategies to mitigate N_2O emissions from agricultural soils. Figure 1.1. The pathways of N_2O from nitrification, denitrification and chemical reactions in soil. #### **1.1** Aims The overall aim of the work described in this thesis was to investigate the effects of high temperatures, soil moisture and nitrogen availability on the rates of nitrification, denitrification and N_2O emissions from soils. The specific questions developed as experiments to address this overall question are identified in Figure 1.2. #### 1.2 Thesis structure This thesis structure is indicated in Figure 1.2. Chapter 1 provides the general introduction, research objectives and organisation of the chapters. Chapter 2 presents a review of the literature and methodologies applied in the experimental work. The influence of daily fluctuation temperature and substrate availability on nitrification and N₂O production are examined in Chapter 3. Chapter 4 and 5 cover two major research components that include: N₂O production from nitrification in response to high temperature (Chapter 4) and the temperature responses of nitrification and N₂O emissions in soils from contrasting climatic regions (Chapter 5). Chapter 6 presents the effect of temperature and soil moisture on denitrification. In Chapter 7, the effects of temperature and nitrate availability on N₂O production and N₂O reduction during denitrification are examined. Chapter 8, the general discussion, synthesizes the results of the experimental work, presents a conceptual model and discusses potential mechanisms in context with the literature and highlights some potential areas for future work. Figure 1.2. Thesis structure indicating the scientific relationships among chapters, indicated as solid blue lines, and some methodological relationships among chapters, indicated as broken red lines. Data from chapters bounding with double line were based on isotopic techniques (¹⁵N). ## Chapter 2 **Literature review** #### 2.1 Introduction This chapter provides a background on the nitrogen (N) cycle and N_2O production in soil as influenced by environmental factors. In
particular, the possible effects of temperature on N_2O production from different processes and the advantages and disadvantages of different techniques used to distinguish N_2O emissions from biological processes will be discussed. Agricultural soils are the major source of N_2O emissions, contributing to 50 - 60% of global anthropogenic production (Kroeze et al., 1999; EPA, 2010). This source increased from 10 to 12 Tg N₂O-N yr⁻¹ between 1900 and 2000 and it is expected to increase up 16 Tg N_2 O-N yr^{-1} in 2050 (Bouwman et al., 2013) due mainly to excess application of N fertiliser. The magnitudes of N₂O production often vary with climatic regions (Hénault et al., 2012). Temperature is known as one of key factors that control biological N₂O production. Global warming has been recognised in many regions around the world (IPCC, 2001; Alexander et al., 2006; Holthaus, 2016), suggesting that high temperatures play a significant role in regulating soil microorganisms that mediate the N cycle, potentially influencing N losses as N₂O and N₂. Rising soil temperature would directly influence microbial communities such as nitrifiers and denitrifiers and has indirect effects on N₂O production by changing oxygen (O₂), N pools, OC availability and soil pH. The interactive effects among temperature, soil moisture and N availability likely control biological N₂O and N₂ production under field conditions. However, the interactive effect between temperature and soil moisture or temperature and soil nitrate availability is poorly documented. Therefore, these effects need further investigations to provide a better understanding of thermal responses of N_2O and N_2 in conjunction with other soil factors. #### 2.2 The nitrogen cycle and processes related to N_2O Dinitrogen gas is abundant in the atmosphere but it takes a lot of energy to break the triple bond to produce reactive forms of N that are readily used by plants. Essentially, N enters into soil via decomposition of organic matter (OM), N fixation by legumes and the application of N inorganic fertiliser (Figure 2.1). Symbiotic N fixation was annually estimated at 50 – 70 Tg N in agricultural systems, mainly from soybean (Herridge et al., 2008). Despite this, the major N sources in soil come from the application of N as inorganic fertiliser and OM (IFA, 2016). The increased use of N fertiliser in agricultural systems has caused environmental problems such as contaminated soil water via N leaching and N is lost from the soil via N₂O, N₂, or NO_x (Figure 2.1). For many agricultural systems, the addition of organic sources of N to soil has been considered as an alternative option for inorganic fertiliser application (Quilty and Cattle, 2011) since organic addition can also contribute to improved soil physical, chemical and biological properties (Benbi et al., 1998; Liu et al., 2010). Soil N added as fertiliser N and OM can be transformed into other forms of N by microbial processes (biotic transformation) and/or chemical reactions (abiotic transformations). Figure 2.1. The nitrogen cycle in agricultural systems (adapted from Bolan et al. (2004)) #### 2.2.1 Biotic transformations #### 2.2.1.1 Decomposition, mineralisation and immobilisation Soil microorganisms can decompose OM to capture energy for their activity through respiration, which results in the release of the nutrients into the soil, such as the breakdown of proteins and amino acids to mineral N. The microbial process by which protein and amino acid are converted into available mineral N forms (NH₄⁺ and NO₃⁻) is known as N mineralisation (Figure 2.2). There are two distinct microbial reactions in N mineralisation, aminisation and ammonification. In aminisation, the organic forms of N are first subjected to a microbial process in which heterotrophic microorganisms hydrolyse the macromolecules of organic N compounds such as proteins, into simple N compounds such as amines and amino acids (Dendooven et al., 1996) (Figure 2.2). Ammonification is a biological process in which microorganisms convert amines and amino acids into NH₄⁺. For example, urea [CO(NH₂)₂] in animal urine and fertilizer releases NH₄⁺ and hydroxyl (OH ⁻) ions via ammonification. This process is known as 'urea hydrolysis' and is carried out by the urease enzyme in the soil. Ammonium ions formed by ammonification or addition of ammonia based fertilisers undergo several processes such as uptake by plants, oxidation to NO₂⁻ and NO₃⁻ (nitrification), microbial utilisation (immobilisation), retention onto soil particles (NH₄⁺ fixation) and loss to the environment as NH₃ volatilisation. In the presence of readily available C containing OM, NH₄⁺ and NO₃⁻ ions are assimilated into microbial biomass, which is defined as N immobilisation. High C/N ratios in plant residues added to soils often inhibit decomposition or lead to soil the microbes competing (immobilising) available N from the soil (Pierzynski et al., 2005). Immobilisation often exceeds N mineralisation when the C/N ratios are above 30. The two processes of immobilisation and decomposition are about equal where the range C/N is around 20 to 30. Mineralisation typically exceeds immobilization when the C/N ratio of the residue is less than 20 (Bolan et al., 2004; Pierzynski et al., 2005). Figure 2.2. Mineralisation of nitrogen in soil including the components of aminisation and ammonification (adapted from Bolan et al. (2004)). #### 2.2.1.2 Nitrification When microbial growth is limited by available C and energy, NH₄⁺ is oxidised to NO₃⁻ to provide the energy for biosynthesis and maintenance (Schmidt, 1982). The microbial process of oxidation of NH₄⁺ to NO₃⁻ is defined as nitrification. The majority of microorganisms involved in nitrification are autotrophic nitrifiers, which use NH₄⁺ as a substrate. Autotrophic nitrification involves two steps, namely ammonium oxidation and nitrite oxidation (Bremner and Blackmer, 1981). In ammonium oxidation, the oxidation of NH₄⁺ to NH₂OH is followed by the reduction of NH₂OH to NO₂⁻ (Figure 2.3) by ammonia oxidising bacteria (AOB) or ammonia oxidising archaea (AOA). Ammonia oxidising bacteria are highly important for the turnover of inorganic N in agriculture. Most AOB occur in the two genera *Nitrospira* and *Nitrosomonas* (Schmidt, 1982). In nitrite oxidation, NO₂⁻ is oxidised to NO₃⁻ by autotrophic nitrite oxidising bacteria, namely *Nitrobacter* (Schmidt, 1982). N₂O can be produced directly from NH₂OH during nitrification or from NO₂⁻ during nitrifier-denitrification (Wrage et al., 2001). Heterotrophic nitrifiers, such as *Achromobacter and Corynebacterium* genera, can oxidise NH₄⁺ or organic N forms to form NO₃⁻ and produce N₂O during nitrification (Schmidt, 1982; De Boer and Kowalchuk, 2001). Some studies (Schimel et al., 1984; Islam et al., 2007) have suggested that NH₄⁺ is not as important as organic-N compounds for heterotrophic nitrification. It was hypothesised that OM may contain oxidised organic N, which is readily to turns to NO₃⁻ by heterotrophic nitrifiers (Schimel et al., 1984). However, a recent finding by Liu et al. (2015) found that the majority of NH₄⁺ added to soil is nitrified by heterotrophic nitrifiers, resulting in the enhanced NO₃⁻ from nitrification. Figure 2.3. Nitrification: outline of the pathway and enzymes involved (adapted from Wrage et al. (2001)). #### 2.2.1.3 Denitrification When O₂ becomes limiting in soil microsites, some microorganisms have the capacity to reduce nitrogen oxides and use them as electron acceptors for cell metabolism (Tiedje, 1988). The microbial process by which nitrogen oxides, principally NO₃⁻ and NO₂⁻, are reduced to dinitrogen gases is referred as the respiratory denitrification (Tiedje, 1988). Denitrification may ultimately produce N₂ through a series of gaseous N oxide products such as NO and N₂O (Figure 2.4). Denitrification is carried out by a diverse group of microorganisms, including bacteria, archaea, and fungi (Tiedje, 1988). The reduction of nitrogen oxides during denitrification is catalysed by a range of enzymes, namely nitrate reductase, nitrite reductase, nitricoxide reductase and nitrous oxide reductase (Figure 2.4). There are more than 60 genera of bacteria, archaea, fungi and yeast involved in denitrification (Philippot, 2002; Watanabe et al., 2009) but most soil denitrifiers fall under four major genera: *Pseudomonas, Bacillus, Alcaligenes,* and *Flavobacterium* (Tiedje, 1988). Heterotrophic bacteria such as *Flavobacterium* are very active under low O₂ levels and use NO₃⁻ as a terminal electron acceptor (Lin et al., 2009) while others such as *Thiosphaera pantotraopha* can denitrify in both aerobic and anaerobic conditions (Wang et al., 2009). # 2.2.1.4 Nitrifier-denitrification Nitrifier-denitrification is another pathway of nitrification in which the oxidation of NH_3 to NO_2^- is followed by the reduction of NO_3^- to N_2O and N_2 by only one group of microorganisms, namely autotrophic NH_3 -oxidisers (Wrage et al., 2001). These organisms are very responsive once O_2 becomes limiting under acidic conditions (Poth and Focht, 1985). Figure 2.4. Denitrification: outline of the pathways and enzymes involved (adapted from Bolan et al. (2004)). #### 2.2.2 Abiotic transformations ## 2.2.2.1 *Chemo-denitrification* Chemo-denitrification is a non-biological reaction which can occur under low soil pH and in the presence of Fe^{2+} (Van Cleemput, 1998). Nitrite (NO_2^-) produced during denitrification can rapidly react with Fe^{2+} in soil to release N_2O . The magnitudes of N_2O production from this pathway are closely related to the Fe^{2+} concentration in soil because it acts as a catalyst (Jones et al., 2013). The isotopic compositions of N_2O from chemodenitrification differ to N_2O production emitted from denitrification (Jones et al., 2013). #### 2.2.2.2 Hydroxylamine oxidation Hydroxylamine (NH₂OH), which is produced from the oxidation
of NH₄⁺ in nitrification, can chemically react with several transition metals in soil to form N₂O (Bremner, 1997). The amount of NH₂OH has been found to be positively correlated with AOB during nitrification, thus the oxidation of NH₂OH potentially plays an important role in N₂O production from soil, in the presence of transition metals and rising temperature (Heil et al., 2015). # 2.3 Factors influencing N₂O production Multiple factors are involved in the regulation of biological N₂O production from soil, which are presented in Figure 2.5. These will be described in more detail below. # **2.3.1** Temperature Soil temperature is one key factor controlling nitrification, denitrification and N₂O production in soil (Schmidt, 1982; Tiedje et al., 1983). Temperature has both direct and indirect effects on nitrification, denitrification and N2O emissions. Temperature can influence the growth of microorganisms and the enzymatic reactions, thus regulating N₂O production from soil. For example, denitrification rate was significantly higher in P.mandelii cells grown at 30 °C than those at 10 °C or 20 °C, due to the enhancement of cell numbers and enzyme rates of reaction at 30 °C (Saleh-Lakha et al., 2009). Reducing temperature (< 10 °C) may provide a challenge to the denitrifying bacteria, as total denitrification rate and associated N₂O production decrease (Holtan-Hartwig et al., 2002). Shifting temperature between 14 °C and 3 °C (12h – 12h) in a fluctuating temperature pattern (FTP) slowed the growth of nitrifiers, reducing the production of NO₃⁻ under FTP compared with that under a constant temperature (CT) of 10 °C (Campbell and Biederbeck, 1972). The indirect effects of temperature on biological N₂O production have been demonstrated by reducing O₂, OC availability via microbial respiration rate (Smith, 1997; Öquist et al., 2004; Butterbach-Bahl and Dannenmann, 2011) or changing mineral N (NH₄⁺ and NO₃⁻) contents and soil pH via nitrification (Bolan and Hedley, 2003). These changes would have significant effects on biological N₂O production. # 2.3.2 Oxygen and soil moisture Oxygen (O₂) availability in soil microsites is influenced by temperature, via microbial respiration, soil water content and O₂ consumption by plant roots and soil microorganisms (Figure 2.5). The availability of O₂ in the soil microsites determines the activity of nitrifiers and heterotrophic denitrifiers. As nitrification is an aerobic process, the majority of N₂O production in soil is produced by nitrification under aerobic conditions, which typically equates to less than 60% water-filled pore space (WFPS). An increase in anaerobic zones above 60% WFPS tends to increase the rates of denitrification (Davidson et al., 1991; de Klein and Van Logtestijn, 1996; Hefting et al., 2003) although it is acknowledged that the values of WFPS may differ according to soil type and may not accurately reflect the porosity volume (Farquharson and Baldock, 2008). The depletion of O₂ in the soil microsites tends to influence the product ratios from nitrification and denitrification. The ratio of N₂O to NO₃⁻ production from nitrification increases with a decrease in O₂ concentration, particularly at partial pressures below 3 kPa O₂ (Khalil et al., 2004; Zhu et al., 2013). Decreased O₂ availability often results in increased N₂O/N₂ ratio during denitrification (Davidson, 1992; Weier et al., 1993; Rudaz et al., 1999). Under anaerobic conditions, NO₃⁻ is increasingly used as a terminal electron acceptor (TEA) relative to N₂O production (Cho et al., 1997a; Strong and Fillery, 2002), thus increasing N₂O/N₂ ratio. Inhibition of the reduction of N₂O to N₂ during denitrification contributes to high N₂O/N₂ ratio. Reduction of N₂O in soils has been attributed exclusively to denitrifiers possessing nos operons with nosZ encoding N₂OR, the enzyme system catalysing N₂O to N₂ reduction (Kolb and Horn, 2012; Zheng and Doskey, 2015). N₂OR is likely to be inhibited as O₂ content drops below 0.02 atm (~ 2 kPa), where N₂O production still occurrs (Morley et al., 2008; Zhu et al., 2013), resulting in high N₂O/N₂ ratio. Therefore, O₂ availability in soil microsites has a large impact on the activity of nitrification, denitrification and the partitioning of gaseous N losses from these processes. Figure 2.5. Factors affecting nitrification, denitrification and N_2O production in soils (red shaded: proximal factors; blue shaded: distal factors). Adapted from Saggar et al. (2013) # 2.3.3 Substrate availability Soil mineral nitrogen (N) is the substrate for nitrification and denitrification and therefore influences N₂O production from soil. Soil ammonium, NH₄⁺, is a substrate for the initial step of nitrification process and is formed through mineralisation of organic N. The limitation of soil NH₄⁺ availability has been identified to slow the rates of nitrification and associated N₂O production in few studies (Gödde and Conrad, 1999; Avrahami et al., 2003; Blagodatskaya et al., 2014a). The addition of NH₄⁺ to soil increased the cumulative NO₃ production from nitrification in a study by (Jones and Hedlin, 1970) but the rate of nitrification decreased at NH₄⁺ supply above 200 µg N g⁻¹ soil (Malhi and McGill, 1982). The production of N₂O from nitrification was less affected by NH₄⁺ amendments from 50 to $150\,\mu g\,N\,g^{\text{--}1}$ soil (Vermoesen et al., 1996). Some recent studies have demonstrated that heterotrophic nitrifiers can use NH₄⁺ as a main substrate to produce a significant NO₃⁻ production (Liu et al., 2015) and N₂O production (Bateman and Baggs, 2005) below 25 °C. Despite this, N₂O production from heterotrophic nitrification has been observed under few controlled conditions and temperature regimes (Bateman and Baggs, 2005; Islam et al., 2007). Therefore, it is important to examine the thermal response of N₂O production from heterotrophic nitrification. Nitrate, is the substrate used by bacteria during denitrification. An increased NO₃⁻ concentration in soil resulting from either N fertiliser application or nitrification may increase the rate of denitrification and the N₂O/N₂ ratio (Smith et al., 1998; Gillam et al., 2008) when conditions such as O₂ and C contents are optimised for the activity of denitrifying bacteria. NO₃⁻ may be used as a TEA since O₂ availability becomes limiting in the soil microsites (Cho et al., 1997a; Strong and Fillery, 2002), which promotes the production of N₂O from denitrification. Increased NO₃⁻ in soil often results in high N₂O/N₂ ratios (Gillam et al., 2008) due mainly to a preference for NO₃⁻ as a TEA, relative to N₂O production (Cho et al., 1997a) and/or the inhibition of N₂O reductase by high NO₃⁻ availability (Blackmer and Bremner, 1978). The activity of N₂O reductase is likely to be inhibited once soil NO₃⁻ concentration is over 200 µg N g⁻¹ soil, which results in a high N₂O/N₂ ratio. (Blackmer and Bremner, 1978; Scholefield et al., 1997; Stevens and Laughlin, 1998). Thus, change in soil NO₃⁻ availability is likely to regulate the total N denitrified and the denitrification product ratios below 30 °C. # 2.3.4 Carbon availability Organic carbon (OC) impacts on the biological pathways of N_2O emission through provision of an energy source to stimulate microbial activity. An increase in C availability in soil microsites would enhance denitrification and associated N_2O production (Tiedje, 1988; Weier et al., 1993) because C supplies energy and electron for the activity of soil denitrifiers (Burford and Bremner, 1975; Azam et al., 2002; Gillam et al., 2008). The consumption of carbon by microbial respiration indirectly affects nitrification and denitrification by reducing O_2 in the soil microsites. A decrease in O_2 concentration determines the relative contribution of nitrification and denitrification to overall N_2O production. Increased carbon availability typically increases denitrification product ratios, such as $N_2O/(N_2O+N_2)$, as a result of the influence of C on the diffusion of NO_3^- into denitrifying microsites (Swerts et al., 1996; Weymann et al., 2010). The addition of C increases the demand for TEA and enhances the use of NO_3^- as a preferred TEA relative to N_2O once O_2 becomes limiting in the soil microsite. Thus, the $N_2O/(N_2O+N_2)$ ratio generally increase with greater OC and NO_3^- availability (Casella et al., 1984; Henry et al., 2008). # 2.3.5 Soil pH Soil pH can regulate the rates of nitrification and denitrification because pH directly affects the activity of soil microorganisms and indirectly influences biological processes by modifying substrate availability. The nitrification process is thought to be very sensitive to changes in soil pH (Goodroad and Keeney, 1984; Strong et al., 1997; Islam et al., 2006). The rate of nitrification often increases with increasing soil pH, reaching a maximum NO₃ production at around 5.0 – 6.5, regarded as the pH optima for the activity of nitrifiers (Islam et al., 2006). The production of NO₃⁻ from nitrification, however, has been recently measured in many acid soils (Šimek and Cooper, 2002; Islam et al., 2007; Liu et al., 2010) and has been identified from the activity of autotrophic and heterotrophic nitrification. The activity of nitrifiers under acid conditions has been considered to occur in either acid-sensitive or acid-tolerant autotrophic and heterotrophic nitrifiers (De Boer and Kowalchuk, 2001). One possibility for acid sensitive nitrifiers to be active under low pH (< 5) is through intracellular hydrolysis of urea, releasing NH₃ as a substrate for nitrification to proceed (De Boer et al., 1991). Acid-tolerant nitrification has been argued to be important in the lower organic layers in N-saturated forest and heathland soils (De Boer et al., 1992). The yield of N₂O production to nitrified N was much higher in very acidic conditions (pH 4.1 - 4.2) than in soil pH above 5 (Mørkved et al., 2007). Thus, a decrease in soil pH influences the ratio of
N₂O to NO₃ production from nitrification. Denitrification can occur over a pH range from 3.5 to 8.5 although the mechanisms of pH controlling denitrification are still poorly understood. Denitrification tends to reach a maximum rate at pH 6 to 8 and decline at lower pH (Parkin et al., 1985; Šimek and Hopkins, 1999; Saleh-Lakha et al., 2009). A decrease in soil pH affected both in the cell density and gene expression of *Pseudomonas mandelii* strain PD30 in cultures negatively, resulting in low denitrification rate and N₂O at pH 5, relative to higher pH (Saleh-Lakha et al., 2009). In another study, denitrifying enzyme activity decreased threefold as soil pH decreased from pH 6.02 to 4.08 (Parkin et al., 1985). The result from a study by (Šimek and Hopkins, 1999) found no significant relationship between soil pH and denitrifying enzyme activity, suggesting that the optimum pH for denitrification can only be identified when other factors (NO₃⁻, O₂, OC) are optimised. Despite this, denitrification product ratios are affected by changes in soil pH. The N₂O/N₂ ratio increased with decreased soil pH in some studies (Nägele and Conrad, 1990; Struwe and Kjøller, 1994; Liu et al., 2010) partially due to enhanced N₂O formation in acid soil (Parkin et al., 1985). The production of N₂O in acidic conditions may be related to the amounts of NO₂, which is released at greater amounts from abiotic transformations of NO₃⁻ (Koskinen and Keeney, 1982). The production of N₂ in acidic soils is often low due to inhibition of the activity of NosZ, the enzyme responsible for the reduction of N₂O to N₂, and can result in a high N₂O/N₂ ratio (Liu et al., 2010). The influence of soil pH on the N₂O/N₂ ratio was modelled by Rochester (2003), who showed that the N₂O/N₂ ratio can decrease exponentially with increasing soil pH from 5 to 8, although the impact of soil pH on the total amount of N denitrified, and lost from the system, was not considered. # 2.3.6 Availability of trace metals The availability of metal ions such as iron, copper and molybdenum can affect biological N₂O production. Denitrification enzymes require these ions as co-factors for their activities (Ferguson, 1998). Molybdate ion (Mo⁶⁺), for example, acts as a component of the Mo-cofactor for *Nar* and ferric ion (Fe³⁺) is essential for the cytochrome subunits of both *Nar* and *Nir*, the denitrifying enzymes in the reduction of NO₃⁻ to NO₂⁻ and NO₂⁻ to NO, respectively (Ferguson, 1998). Thus, lack of these metals in soil can potentially reduce N₂O production from denitrification due to incomplete assembly of *Nar* and *Nir*. This could explain the results observed in several studies (Labbé et al., 2003; Zhou et al., 2007; Pintathong et al., 2009) that the additions of Mo⁶⁺ and Fe³⁺ to soil increase the cumulative NO₂⁻ and N₂O production. Copper (Cu) is an obligate component of *NosZ* in the denitrification process. Thus insufficient Cu in soil can result in the failure of the full complement of the Cu-cofactors for *NosZ*, which inhibits the reduction of N₂O to N₂ during denitrification (Richardson et al., 2009). Therefore, the lack of Cu in soil would slow the rate of N₂ production from denitrification while the limitation of Fe³⁺ and Mo⁶⁺ would prevent the biological formation of NO₂⁻, NO and sequential N₂O production. # 2.4 Thermal response of N₂O production # 2.4.1 N₂O production from nitrification The response of nitrification rate (NO_3^- production) and associated N_2O emission to temperature have been studied in a variety of soils and climates. Below 35 °C, it is generally known that the rates of nitrification increase exponentially with increasing temperature. The thermal response of nitrification could be described by using Q_{10} , the relative difference in rate over a 10 °C increase in temperature in some studies. For example, Q_{10} of nitrification was estimated to be 2 within the temperature range 5-35 °C (Focht and Verstraete, 1977) while other studies (e.g. Malhi and McGill (1982); Maag and Vinther (1996)) found that Q_{10} is significantly higher at low temperatures (< 20 °C) than at higher temperatures. However, the use of Q_{10} to describe the response of nitrification to temperature does not allow for a plateau or decline in activity with increasing temperature (Dessureault-Rompré et al., 2010) while an optimum temperature (T_{opt}) for nitrification has been recognised in other studies (Campbell and Biederbeck, 1972; Stark, 1996). T_{opt} for nitrification may differ among geographic regions. For example, T_{opt} for nitrification was found at 20 °C in a cool climatic soil from Alberta, Canada (Malhi and McGill, 1982) but at 35 °C in a tropical soil from Northern Territory of Australia (Myers, 1975) (Figure 2.6). Figure 2.6. The effect of soil temperature on relative nitrification rates from different climatic regions: relative nitrification rates (lines) and the range of mean of monthly air temperatures for each site (bars). Data from Myers (1975), Sabey et al. (1959), Malhi and McGill (1982), Maag and Vinther (1996). Temperature optima for N₂O production from nitrification may vary with climatic regions. T_{opt} for N₂O production from soil is generally expected to be lower in cool climates than in warm climates, as predicted by the DAYCENT model (Figure 2.7). The variation of T_{opt} may relate to the ability of microorganisms to acclimate and/or adapt to the historic range of soil temperatures (Powlson et al., 1988). The difference in T_{opt} for N₂O production from nitrification among climatic regions challenges the application of general ecosystem models predicting N₂O production from soils across climatic regions (Farquharson and Baldock, 2008). Some complex models such as DNDC (Li et al., 1992; Li, 2000) or NASA CASA (Potter et al., 1996) have been developed to improve the simulation of N₂O production across regions, but their limitations have been recognised by Chen et al. (2008) due to the variability of climate, soil properties and agricultural practices. Thus, the thermal responses of nitrification and N₂O production are required from local regions such as southern Australia to test the accuracy of these models. Figure 2.7. The effect of temperature on N_2O and NO_x from soil based on the DAYCENT model (Parton et al., 2001). The proportion of N₂O to NO₃⁻ (P_n) released by from nitrification presents the yield of N losses as N₂O emission, during the nitrification process. P_n has been well-documented with the changes in soil moisture and oxygen availability in numerous studies (Table 2.1). P_n increased with decreasing O₂ pressure and has been frequently found to be less than 1.0%, although a few exceptions exist (Table 2.1). For example, the estimated P_n was 1.09% at 1.5 kPa O₂ (Khalil et al., 2004) and 2.9% at 3 kPa O₂ (Zhu et al., 2013). Despite this, there is little information about the response of P_n to temperatures above 30 °C. P_n was observed to decrease with rising temperature between 5 °C to 25 °C (Maag and Vinther, 1996) while others (Goodroad and Keeney (1984), Ingwersen et al. (1999)) found an increase in P_n with rising temperature, up to 30 °C. Thus, there is some uncertainty in the responses P_n to high temperatures. The thermal responses of N₂O specifically from autotrophic and heterotrophic nitrification are poorly understood. Autotrophic nitrification was originally thought to be more important than heterotrophic nitrification as the source of N₂O production, as heterotrophic nitrifiers produced a very small fraction of N₂O in agricultural soils such as sodosols (Tortoso and Hutchinson, 1990; Islam et al., 2007). However, recent studies have reported a larger contribution of heterotrophic nitrification to NO₃⁻ production from nitrification in both forest and pasture soils. Heterotrophic nitrification contributed up to 60% of total NO₃⁻ production during nitrification in cool (at 15 °C) and dry conditions (< 50% WFPS) (Liu et al., 2015). Heterotrophic nitrification accounted for 20% of total N₂O emissions in soil incubated at 22 °C and 50% WFPS (Bateman and Baggs, 2005). There is no study examining the production of N₂O from heterotrophic nitrification above 30 °C. Thus, the impact of high temperatures on N₂O production from autotrophic nitrification and heterotrophic nitrification should be considered. Table 2.1. The proportion of nitrified N as N_2O at specified temperatures in laboratory and field studies. | Reference | Soil type ^a | Method ^b | Experimental conditions | Temperature (°C) | P _n (%) | |--------------------------|--------------------------|---------------------------------------|-------------------------|------------------|--------------------| | | | ¹⁵ N | | | (, , , | | Bateman and Baggs (2005) | Silt loam | C_2H_2 | 35% WFPS | 21 | 0.53 | | | | (0.01% v/v) | 50%WFPS | | 0.18 | | | | | 60% WFPS | | 0.17 | | Carter (2007) | Loamy sand | 15 N | Field study (N.D.) | 10 | 0.02 | | | | | | | 0.29 | | Cheng et al. (2004) | Molisol | Direct
measure | 60% WFPS | 25 | 0.06-0.23 | | | Alphiol | | | | 0.08-0.36 | | | Aridisol | | | | 0.42 | | | Ultisol | | | | 0.14-0.15 | | Galbally et al. (2010) | Brown
sodosol | ^{15}N | Field study | 10-25 | 0.01-0.05 | | Garrido et al. (2002) | Redoxic
luvisol | C_2H_2 | - 0.01 MPa | 20 | 0.08 | | | Pachic calsisol | (0.1-10 kPa) | | | 0.031/0.04 | | | Hypercalcareous rendosol | S | | | 1.00 | | Goodroad and Keeney | Planosoil | Direct | $0.2/0.3\;m^3\!/m^3$ | 10 | 0.09/0.08 | | (1984) | | measure | | 20 | 0.08/0.12 | | | | | | 30 | 0.09/1.15 | | Ingwersen et al. (1999) | Acid forest | BaPS | 70% w/w | 5 | 0.01 | | | | | | 10 | 0.026 | | | | | | 15 | 0.036 | | | | | | 20 | 0.05 | | | | | | 25 | 0.054 | | Khalil et al. (2004) | Orthic luvisol | ¹⁵ N | 20.4 kPa O ₂ | 20 | 0.16 | | , | | | 4.3 kPa O ₂ | | 0.42 | | | | | 1.5 kPa O ₂ | | 1.09 | | | | | 0.76 kPa O ₂ | | 1.48 | | Maag and Vinther | Sandy loam | C ₂ H ₂ (10 Pa) | 55 /
70% FC | 5 | 0.49/0.55 | | (1996) | | • | | 10 | 0.37/0.42 | | | | | | 15 | 0.27/0.33 | | | | | | 20 | 0.18/0.27 | | Reference | Soil type ^a | Method ^b | Experimental | Temperature | Pn | | |-------------------------------|-------------------------|--|---------------------------------|-------------|-----------|--| | | | | conditions | (°C) | (%) | | | Martikainen et al. (1993) | Forest soil | C_2H_2 | 22% w/w | 20 | 0.03 | | | | | (2.5 kPa) | | | | | | Mathieu et al. (2006) | Gleyic luvisol | ^{15}N | 75% FC | 20 | 0.13 | | | | | | 150% FC | | 2.32 | | | Mørkved et al. (2006) | Molic gleysol | ¹⁵ N | -10 kPa | 5 | 0.27-1.0 | | | Mørkved et al. (2007) | Sapric histosol | ¹⁵ N | 18.4 w/w | 20 | 1.4 | | | | | | | | 7.6° | | | Tortoso and Hutchinson (1990) | Agricultural soil | Direct
measure | -0.1 MPa | 25 | 0.02 | | | | | | 50% WHC | | | | | Zhu et al. (2013) | Sandy loam to clay loam | $^{15}N \ + \ ^{18}O \ + \\ C_2H_{2 \ (0.01\% \ v/v)}$ | 21 kPa _{O2} | 22 | 0.08-0.11 | | | | | | $3~\mathrm{kPa}_{~\mathrm{O2}}$ | 22 | 0.52-2.9 | | | | | | 0.5 kPa O_2 | | 6.9-8.3 | | ^a Terminology for soil type is not standardised: usage varies from author to author $^{^{}b}$ Method used for quantifying N_2O by nitrification: indirect measure, authors assume that nitrification was the only source of N_2O , and they simply report measured N_2O fluxes to observe nitrification rates, C_2H_2 refers to the use of acetylene as nitrification inhibitor; ^{15}N refers to the use of ^{15}N isotopic tracers; BaPS refers to the barometric process separation method. ^c Data observed at pH 4.1 # 2.4.2 N₂O from denitrification Denitrification can occur at a wide range of soil temperatures ranging from sub-zero to 75 °C (Knowles, 1982). Denitrification enzyme activity (DEA) follows Michaelis—Menten kinetics with a typical Q₁₀ value of approximately 2 in soils (Stanford et al., 1975). Rates of denitrification in controlled experiments vary markedly among experiments and with temperature regimes (Table 2.2). The production of N₂O from denitrification exponentially increased with rising temperature (Keeney et al., 1979; Maag and Vinther, 1996; Holtan-Hartwig et al., 2002; Schaufler et al., 2010), with optimal measured denitrification rates close to 30 °C. The thermal response of N₂O production from denitrification was often greater at low temperatures than at high temperatures, with, for example, Q₁₀ estimated to be 3.7 between 5 °C to 12 °C and at 2.3 between 12 °C to 18 °C (Dobbie and Smith, 2001). Another important consideration of denitrification is the proportion of N lost as N_2O emission, relative to N_2 , often expressed as the N_2O/N_2 . This ratio is not only controlled by N_2O production but also depends on the biological reduction of N_2O to N_2 during denitrification. There has been some conjecture as to how the N_2O/N_2 ratio responds to rising temperatures. It has been suggested that more N_2O is produced at low temperatures, thus the N_2O/N_2 product ratio is increased with reduced temperature (< 15 °C) (Keeney et al., 1979; Avalakki et al., 1995; Maag and Vinther, 1999). Other studies (Focht, 1974; Rudaz et al., 1999) found that temperature had no effect on denitrification products. The production of N_2 in these studies were mainly estimated by the inhibition of N_2O reductase using the C_2H_2 technique (Table 2.2). Incomplete inhibition of N_2O reductase by C_2H_2 could affect the accuracy of the partitioning of gaseous N losses as N_2O and N_2 . Thus, the use of the isotopic tracer (^{15}N) technique enables a more precise measurement of N_2 production to evaluate of N_2O/N_2 responses to temperature and other important factors such as soil moisture and NO_3^- availability. Table 2.2. Denitrification and associated N_2O production at specified temperatures in laboratory and field studies. | Reference | Soil type | Method | Experimental conditions | N applied (kgN ha ⁻¹) | Temperature (°C) | Denitrification
(kgN ha ⁻¹ d ⁻¹)
Mean (min-
max) | |---------------------------------------|--------------------------------------|---|---|-------------------------------------|------------------|--| | Senbayram et al. (2012) | Sandy
loam | C ₂ H ₂ (10% v/v) | 65% WHC | 120-KN | 15 | 0.84 (0.72-
0.96) | | Carter (2007) | Loamy
sand | ¹⁵ N-
labeled N | 35%, 45%
WFPS | 529-U | | 0.140 | | Clough et al. (2004) | Silt loam | ¹⁵ N-
labeled N | 54, 80
%WFPS | 500-U | 23 | 0.046 (0.023-
0.1) | | de Klein and Van
Logtestijn (1996) | Sand, loam | C ₂ H ₂
(9% v/v) | 60-95% WFP | | 10, 20 | 1.413 (0.03-
3.6) | | Eckard et al. (2003) | Loam,
sandy
loam | C_2H_2 | 20-35% v/v air filled porosity | 200-AN | 10-22 | 0.04 (0.018-
0.061) | | Ellis et al. (1998) | Silty clay
loam | C ₂ H ₂ (10% v/v) | 22-31% WC
v/v | 45 to 60-
CS, AN | 25 | 0.117 (0.06-
0.151) | | Hixson et al. (1990) | Loam sand
Sandy
loam | C ₂ H ₂ | 10-45% v/v
WC | | 3-22 | 0.015 (0.007-
0.024) | | Horwath et al. (1998) | a | C ₂ H ₂
(5-10%
v/v) | 38-55% v/v
WC | 240-
U+KN | 13-16 | 0.142 (0.011-
0.280) | | Jarvis et al. (2001) | Coarse
sandy
loam | C ₂ H ₂ (10% v/v) | a | 280-NK | a | 0.0645 (0.02-
0.37 | | Kaiser et al. (1996) | Sandy
loam | C ₂ H ₂ (10% v/v) | 0.07-0.31 g ⁻¹ g ⁻¹ | 215-AN | 11-18 | 0.059 | | Luo et al. (2000) | Silt loam | C ₂ H ₂ (10% v/v) | Field study | a | 8-16 | 0.002 (0.003-
0.247 | | Marshall et al. (1999) | Sandy
loam,
loam, silt
loam | C ₂ H ₂ | a | 103 to
254-
poultry | a | 0.016 (0.002-
0.042) | | Misselbrook et al. (1996) | Sandy
loam | | | 44 to 72-
CS
223 to
278-PS | | 0.059 (0.002-
0.101) | | Reference | Soil type | Method | Experimental conditions | N applied (kgN ha ⁻¹) | Temperature
(°C) | Denitrification
(kgN ha ⁻¹ d ⁻¹) | |-------------------------------|-----------------------------------|---|-------------------------|-----------------------------------|---------------------|--| | | | | | (-8-:) | (2) | Mean (min-
max) | | Patra et al. (2005) | sandy | C ₂ H ₂ (10% v/v) | 100% WHC | Grazing intensity | 26 | 1.4 (1.2-1.8) | | Rudaz et al. (1999) | Sandy
loam | C ₂ H ₂ (12 kPa) | 60-87%
WFPS | 85-AN | 5-23 | 0.078 (0.065-
0.091) | | Ruz-Jerez and
White (1994) | Fine sandy loam | C ₂ H ₂ | Field study | 500-U | 4-6 | 0.014 (0.005-
0.031) | | Ryden (1983) | Loam over clay | | | 250, 500-
AN | | 0.038 (0.004-
0.080) | | Šimek et al. (2004) | Sandy
loam | C ₂ H ₂ (10% v/v) | 47-64%
WFPS | Clover,
grass | 25 | 0.141 (0.024-
0.464) | | Sullivan et al. (2005) | Sandy
loam | C ₂ H ₂ (10% v/v) | 8-18 % WC
v/v | 112-PS,
AN | a | 0.0003 | | Van Cleemput et al. (1994) | Sandy
loam | C ₂ H ₂ (10% v/v) | | 295-AN | nd | 0.240 | | Van der Salm et al. (2007) | Heavy clay | C ₂ H ₂ (5% v/v) | 10-60%
WFPS | 33 to
264-CS,
KN | 20 | 0.276 | | Velthof et al. (1996) | Sand | Direct
measurem
ent | Wet
conditions | | 12-16 | 0.152 (0.006-
0.382) | | Vermoesen et al. (1996) | Sandy
loam | Direct
measurem
ent | 100% FC | 200-NK | nd | 0.038 (0.024-
0.052) | | Walker et al. (1992) | Sandy
loam to
loamy
sand | C ₂ H ₂ (10% v/v) | 11-42 % WC
v/v | | 5-13 | 0.026 (0.024-
0.028) | | Xu et al. (2008) | Sandy
loam | C ₂ H ₂ (10% v/v) | 4-12% WC | Grazing intensity | 5-25 | 0.0001 | | Zaman and
Nguyen (2010) | Silt loam | C ₂ H ₂ (5% v/v) | 60-70%
WFPS | 400-U,
KN | 10-16 | 0.015 (0.0009-
0.003) | | Zaman et al. (2007) | Silt loam | C ₂ H ₂ (10% v/v) | 81% WFPS | 200-KN | 25 | 1.48 (0.80-
2.23) | ^a no data available Method used for quantifying N_2O : C_2H_2 refers to the use of acetylene to inhibit the reduction of N_2O to N_2 ; ^{15}N refers to the use of ^{15}N isotopic tracers. N application: AN: ammonium nitrate; AS ammonium sulphate; PS: Pig slurry; KN: potassium nitrate; U urea. Unit of N application was converted to kg N ha-1 if data are presented at mg N g-1 soil # 2.4.3 N₂O from abiotic reactions Some researchers have identified N₂O formation from abiotic pathways (Bremner, 1997; Stevens et al., 1998; Santoro et al., 2011). As chemical reactions normally occur at very high temperature (> 200 °C) (Tsang and Herron, 1991; Zhu et al., 2004), abiotic N₂O formation has often been neglected in studies measuring N₂O production from soil, while a reaction of hydroxylamine (NH₂OH) or nitrite (NO₂⁻) can release N₂O at temperatures below 50 °C. During nitrification, ammonium oxidising bacteria intermediately produce NH₂OH (Stüven et al., 1992; Schmidt et al., 2004), which can be rapidly oxidised by several soil constituents to form N₂O (Bremner, 1997). The production of this abiotic N₂O pathway was found to be positively correlated with the amounts of NH₂OH amendments and temperature in the range 10 °C to 50 °C (Liu et al., 2014; Heil et al., 2015). The oxidation of NH₂OH to form N₂O occurred faster at high temperatures than lower temperatures (Heil et al., 2015). Another chemical reaction producing N₂O production is chemo-denitrification, which is defined as a fast reaction of NO₂⁻ produced during denitrification in the presence of ferrous iron (Fe²⁺) in soil, forming N₂O(Jones et al., 2013). #### 2.5 Temperature patterns in Australia Australian agricultural soils experience particularly high diurnal and seasonal temperature fluctuations. In the northern to eastern regions, the highest mean monthly temperature (T_{max}) in 10 years (2004 – 2014) ranged from 30 °C to 35 °C in summer, particularly between November and
February (Meteorology, 2015). The hottest day in these regions was recorded at 45 °C. Monthly mean temperature decreases from March to August with the lowest monthly temperature (T_{min}) at 11-24 °C (Meteorology, 2015). The lowest daily temperature was 5 °C in July or August. In southern Australia, T_{max} ranged from 17 °C to 33 °C while T_{min} was around 5 – 18 °C. The highest daily temperature, observed in January or February, was 46.5 °C while the lowest temperature was 3 °C in August to September (Meteorology, 2015). In western regions, T_{max} experienced between December and February was 20 °C to 34 °C. The daily temperature could reach 45 °C in summer and down to 0.5 °C in winter (Meteorology, 2015). These data indicate that environments in Australia have large fluctuating temperatures among seasons and regions. Air temperature was predicted to increase of 1.0 – 2.0 °C by 2050 in almost regions of Australia (Hendon et al., 2007). T_{max} is expected to rise 1.0 – 1.5 °C in the southern half and 1.5 – 2.0 °C in the northern half Australia by 2050 (Hendon et al., 2007). Thus, the impact of high temperatures, particularly above 35 °C, on biological N_2 O production requires further investigation. Laboratory experiments have often used daily constant temperature (Table 2.1 & Table 2.2) to assess the thermal response of N₂O emissions although diurnal temperature actually occurs on field sites. Soil biological processes, particularly N mineralisation and nitrification, under these controlled conditions may differ from those under daily fluctuating temperature. For example, the rates of N mineralisation were significantly higher under the fluctuating temperatures than at a constant temperature having the same mean temperature in some experiments (Campbell and Biederbeck, 1972; Sierra, 2002). It was noted by Goodroad and Keeney (1984) that a fluctuating temperature may induce higher N₂O emissions than under a constant temperature. The result from that study suggests that the actual rates of N₂O production might be underestimated from the laboratory experiments through the use of the daily mean temperatures. The data, however, are limited to a narrow range of experimental conditions and temperature regimes, thus the results cannot be generalised. Therefore, the response of biological N₂O emissions to the fluctuating temperature needs to be better understood. # 2.6 Summary and critical knowledge gaps In summary, there are some uncertainties in understanding N_2O and N_2 production from soils at high temperature: - The effect of fluctuating temperature and ammonium supply on nitrification and N₂O emissions in soil. - The effect of fluctuating temperature on nitrification and N₂O emissions in soil - The response of N_2O emission from nitrification to high temperatures. - The production of N₂O in soils from different climatic regimes in response to temperature variations. - The production of N_2O and N_2 from denitrification in soil as influenced by temperature and soil moisture. - The production of N₂O and N₂ production from denitrification in soil as influenced by temperature and NO₃⁻ content. Laboratory experiments were designed to address these issues, using the techniques outlined above. # 2.7 Thesis objectives The general aim of this project is to evaluate nitrification, denitrification and N_2O emissions from soils in response to temperature and to provide a detailed mechanistic understanding of the processes. The main objectives of the work presented in this thesis will: • Evaluate if fluctuating temperature or ammonium concentration influences the nitrification process and the production of N₂O in a dairy soil (Chapter 3) - Understand N_2O production from nitrification in response to a range of soil temperatures (**Chapter 4**) - Determine the temperature response of N₂O emissions in soils from contrasting climatic regimes (Chapter 5) - Evaluate the effect of temperature and soil moisture content on the production of N₂O and N₂ from denitrification (Chapter 6) - Evaluate the effect of temperature and nitrate availability on the total denitrification and the N_2O/N_2 ratio from denitrification (**Chapter 7**) - Summarise the effect of temperature on N₂O and N₂ production from biological processes through a conceptual model and highlight some questions for future research (Chapter 8). # Chapter 3 Are nitrification and N₂O emissions influenced by ammonium supply or fluctuating temperatures? #### 3.1 Introduction Ammonium (NH₄⁺) is a substrate for the initial step of nitrification, which produces nitrate (NO₃⁻) and releases nitrous oxide (N₂O) as intermediate product. The influence of NH₄⁺ concentration on the rate of nitrification has been investigated in some studies (Jones and Hedlin, 1970; Malhi and McGill, 1982; Avrahami et al., 2003) but the data are equivocal. A positive relationship between NH₄⁺ availability and nitrification rate was reported by Jones and Hedlin (1970) but decreased NO₃⁻ formation by nitrification was found with increasing NH₄⁺ supplied, above 200 μ g NH₄-N g⁻¹ soil in another study (Malhi and McGill, 1982). The production of N₂O from nitrification was reported to be limited by soil NH₄⁺ availability (Avrahami et al., 2003; Blagodatskaya et al., 2014a) while N₂O production from nitrification was less affected by increased NH₄⁺ amendments from 50 to 150 μ g N g⁻¹ soil in another study (Vermoesen et al., 1996). Thus, it is important to investigate the effect of NH₄⁺ concentrations on the rates of nitrification and associated N₂O production, particularly when investigating responses to high temperature. Soil temperature can influence the growth of soil microorganisms and the enzymatic reactions they carry out, influencing N_2O production from soil. The rates of N transformations and N_2O production from soils have been described to exponentially increase with rising temperature between 5 °C and 25 °C (Focht and Verstraete, 1977; Goodroad and Keeney, 1984; Smith, 1997). Most laboratory studies have used constant temperatures to measure the thermal responses of nitrification, denitrification and N_2O emissions. The rates of these processes under constant temperatures (CT) may differ from those that occur under a fluctuating temperature pattern (FTP), typical of field environments, which vary diurnally in temperature (Campbell and Biederbeck, 1972; Goodroad and Keeney, 1984; Sierra, 2002). For example, the rate of nitrification was significantly slower under a FTP that varied between 3 °C and 14 °C compared with a CT of 10 °C (Campbell and Biederbeck, 1972). Conversely, a FTP between 10 °C to 30 °C induced a higher rate of N_2O emissions than a CT of 20 °C over 5 days of incubation in a study by Goodroad and Keeney (1984), suggesting that N_2O emissions may be underestimated when using a CT in the laboratory, rather than a more realistic FTP. However, the impact of FTP on N_2O production was only explored in a silt loam soil and a certain temperature regime (10 – 30 °C), limiting the generalisations that can be made across regions due to variations in soils and climates. N_2O production in soil is thought to be influenced by the amplitude of temperature changes (Das et al., 1995); these fluctuations are typically experienced in soils from southern Australia, but the influence of FTP on N_2O production is poorly understood. Therefore, an investigation of the effects of FTP on N_2O emissions in soil will improve our knowledge of varying temperature in different environments. The aims of this work were therefore to (1) determine the rates of nitrification and associated N_2O emission responses to different amounts of substrate (NH_4^+) under a constant temperature; and to (2) investigate if fluctuating temperature induces higher N_2O production compared with a constant temperature. #### 3.2 Materials and methods # 3.2.1 Study site and sample collection The soil used in this study was obtained at a non-irrigated commercial dairy farm (38° 14' S, 142°55'E) in south west Victoria, Australia, and was referred to as a 'chromosol' (Isbell, 1996). The mean annual rainfall of this site is about 745mm. Low soil temperatures (10 – 20 °C) recorded at 10 cm topsoil were associated with high soil water contents (0.3 – 0.5 mm³ mm⁻³) between May and November. Higher soil temperatures (20 – 45 °C) were associated with lower water contents (0.1 – 0.3 mm³ mm⁻³) between December and April as shown in Figure 3.1. Experimental soil was collected from a plot of 100 m² that had been bare for 6 months prior to soil sampling. The soil is a brown chromosol [59.8% sand, 24.4% silt, 15.8% clay, pH-CaCl₂ 4.9, 4.06% organic carbon, 6.76 μg NH₄-N g⁻¹ and 11.52 μg NO₃-N g⁻¹ soil] according to the Australian soil classification (Isbell, 1996). Experimental soil samples were collected from the top 10 cm layer of a 2 m² area in February 2013. Intact soil cores were used to measure bulk density (BD) and gravimetric water content at field capacity (FC) at –33 kPa. After sampling, the soil was sieved to remove the > 2 mm fraction, and thoroughly mixed to ensure uniformity. Sieved soil was stored in sealed containers at 4 °C to retain the field moisture and minimise microbial activity until use in March 2013. Figure 3.1 (a) The variation in soil temperature (50mm top layer) and water content in study site from June 2012 until July 2013 (unpublished data from Kevin Kelly, Department of Agriculture, VIC.): Lines present daily soil maximum (red line) and minimum temperature (blue line), bars present the monthly volumetric water content; (b) The variation in daily soil temperature captured automatically every 30 minutes in February 2013, (each line represents one day); and (c) three temperature patterns tested (FTP₁: 8h -15 °C, 8h- 20 °C, 8h - 25 °; FTP₂: 12h -15 °C and 12h - 25 °C; CT maintained continually at 20 °C). # 3.2.2 Measurement of water field capacity and
bulk density "Field capacity" (FC) is a generic agronomic term used to describe the amount of water remaining in field soil after having been wetted to saturation and then being allowed to drain freely in the absence of evaporation for several days (GSST, 2008). In the laboratory, 'field capacity' was estimated by placing a soil sample onto a porous ceramic plate, saturating it and allowing it to come to hydraulic equilibrium at a static water potential of –33 kPa. To determine the FC of our soil, four undisturbed soil cores were removed from the field in stainless steel rings (50 mm diameter \times 50 mm high), trimmed and fitted with a nylon mesh (38 µm holes) on the base of the sample, and placed in a tray of distilled water filled to the top of the rings. After 24 hours, the samples were placed on ceramic pressure plates, which were then transferred into steel chambers and pressurized with N_2 gas to generate an equivalent soil water potential of -33 kPa. The weight of each sample was checked repeatedly every day until the weight stopped changing significantly (usually 4 days), at which point the samples were deemed to have come to equilibrium at FC. Samples were weighed then dried at 105 °C for 24 hours to determine the gravimetric water content (g water per g dry soil). The bulk density (BD) of the soil samples was also calculated from the dry mass of the soil and the volume of the ring containing the soil, and this allowed the gravimetric water contents to be converted to volumetric water contents (cm³ water per cm³ bulk volume). # 3.2.3 Laboratory incubations #### 3.2.3.1 Pre-incubation Soil samples were wetted to 60% FC–33 kPa (0.23 g water g⁻¹ soil) and placed into a plastic bag with holes to allow gas exchange with the atmosphere. All soil samples were pre-incubated for 7 days at 25 °C to recover biological activity after sampling and processing (Davidson, 1991). Soil moisture was checked every 3 days and water added, if necessary, to maintain 60% FC. After this pre-incubation, soil moisture was maintained at 50% FC and soil subsamples (50 g dry weight equivalent) were repacked into cores (37 mm diameter × 42 mm height; 10.75 cm² surface area) to a bulk density of 1.02 g cm⁻³, equivalent to that in the field. The experimental set up is presented in Figure 3.2. #### 3.2.3.2 Incubation #### • Experiment 1: The effect of NH_4^+ supply The objective of this experiment was to investigate the effect of NH_4^+ on nitrification rate and associated N_2O production. After seven days of pre-incubation, N solution, $(NH_4)_2SO_4$ was added to soil to provide final additions of NH_4^+ of 0, 50, 100 and 150 μ g N g⁻¹ soil. This N solution was added slowly onto the top of upright soil cores with duplicate times to promote uniformity of NH_4^+ through the soil and reach a final water content of 60% FC (0.22 g water g⁻¹ soil). Each soil core was placed into a 250 ml jar with a gas-tight lid equipped with a rubber septum (Suber-seal#25, Sigma-Aldrich, St Louis, MO, USA). The jars were flushed with synthetic air for 2 minutes and acetylene (C_2H_2) was added though a 25 mL gas-tight syringe (Hamilton Company, Reno, NV, USA) to provide a final partial pressure of 10 Pa (0.01% v/v) in half of the jars, which is known to inhibit autotrophic nitrification (Yoshinari et al., 1977; Klemedtsson et al., 1988). After injecting C_2H_2 , the syringe was pushed forward and backward a few times to aid in mixing and promote diffusion of the C_2H_2 in the soil. Half of the jars were not amended with C_2H_2 . All jars were incubated at 20 °C for 11 days using four replicates (Figure 3.2). Figure 3.2. Experimental procedures outlined for experiment 1, testing different N supply and experiment 2, testing different temperature patterns during incubation. #### • Experiment 2: The effect of fluctuation temperature The objective of this experiment was to assess the influence of fluctuating temperature on total N₂O emissions and NO₃⁻ production from soil. Although a range of temperatures are experienced in field conditions of the site where soil was collected (Figure 3.1a & b), two FTPs, namely FTP₁ and FTP₂, and one CT at 20 °C were tested (Figure 3.1c). The characteristics of the temperature patterns were FTP₁: 8h at 15 °C, 8h at 20 °C, 8h at 25 °C, mean 20 °C; FTP₂: 12h at 15 °C and 12h at 25 °C, mean 20 °C. FTP₁ and FTP₂ were chosen in this study as they mimicked typical temperature amplitudes experienced at the site (Figure 3.1). The incubation temperature patterns were obtained using an incubator with a programmed temperature controller (UP150, Yokogawa, Lascar, UK). After addition of N as (NH₄)₂SO₄ solution to obtain 100 μg N g⁻¹ soil at 60% FC, each temperature pattern was repeated daily for 30 days (Figure 3.2). The jars were opened after each gas sampling, aerated for 5 minutes, and the water content was checked by weighing and adjusting, as necessary. Two sets of soil incubations were established to monitor gas production (the first set incubations) and mineral N transformations (the second set incubations) in both experiments. #### 3.2.4 Gas sampling and analysis Gas samples were taken from the headspace of jars in the first set of incubations every three days after addition of the N solution. Briefly, a 20 ml sample of headspace gas was taken using a Hamilton 50 ml gas-tight syringe (Hamilton Company, Reno, NV, USA) and transferred into a pre-evacuated 12 ml glass exetainer (Labco, Ceredigion, UK) for measurement of N₂O and CO₂. After gas sampling, the headspace of all jars was refreshed using a mini-fan for one minute. Acetylene was injected back into appropriate jars to maintain uniform pressure. The CO₂ concentration of headspace gas samples was measured using a gas Chromatograph (Hewlett Packard 5890, Bremen, Germany) fitted with a thermal conductivity detector (TCD) at 60 °C. The separation was performed on a 1.5 m column (80 °C) packed with Porapak Q, 50-80 mesh using grade A helium (BOC) as carrier gas (40 ml min⁻¹). N₂O was analysed on a Varian 450 gas chromatograph (Agilent 7890, Bremen, Germany) equipped with a ⁶³Ni electron capture detector (ECD) at 360 °C, using Pureshield Argon as the carrier gas (35 ml min⁻¹). Separation was carried out on a 1 m column (55 °C) packed with HayeSep Q 60-80 mesh (Haye Seperations, Bandera, TX). # 3.2.5 Soil mineral N and analysis Soil samples were taken from the second set of incubations at 0, 7, 14 and 30 days in the first experiment and at 0, 3, 7 and 11 days in the second experiment, to measure mineral N contents (NH₄⁺ and NO₃⁻). NH₄⁺ and NO₃⁻ were extracted from 10 g of moist soil by shaking for one hour with 50 ml of 2M KCl. The analyses of mineral N were performed colorimetrically with an AutoAnalyser (AA3 HR, SEAL, West Midlands, UK) using the hydrazine reduction method for NO₃⁻ (Kamphake et al., 1967) and the nitroprusside method for NH₄⁺ (Kaplan, 1965). # 3.2.6 Most probable number count The numbers of ammonium oxidising bacteria (AOB) in the three temperature patterns were estimated from soils without C₂H₂ on day 0, 7, 14 and 30 days after incubation. The most probable number count (MPN) described by Schmidt and Belser (1994) was applied to estimate AOB population. Briefly, 2.0 g of dry soil was mixed with 18 ml of 1mM sterile phosphate buffer to make the initial solution (10⁻¹). Serial dilutions of soil (from 10⁻² to 10⁻⁶) were made with 1mM sterile phosphate buffer. One ml of each dilution was inoculated into 4 ml of MPN media tubes containing the 1 mM ammonium solution and each inoculation dilution (from 10⁻¹ to 10⁻⁶) was replicated five times. Inoculated MPN tubes were incubated at 28 °C in the dark. At intervals of one week for a maximum of 12 weeks, each tube was tested for NO₃ production by observing colour change from blue green to yellow due to pH drop, which indicated acid production during the nitrification process. A Griess–Ilosvay colorimetric spot test and a Merckoquant strip test were also carried out to confirm the nitrification process in the positive MPN tubes (Schmidt and Belser, 1994). The AOB population (cells g⁻¹ dry soil) was estimated using population estimates derived by Woomer (1994). # 3.2.7 Calculation of nitrogen transformation rates Autotrophic nitrification was inhibited in the samples with C_2H_2 addition (0.01% v/v) (Yoshinari et al., 1977; Klemedtsson et al., 1988), so the production of N_2O ($\mu g N_2O$ -N $g^{-1} d^{-1}$) in these samples was attributed to denitrification and heterotrophic nitrification (N_2O -DH). The production of N_2O in samples without C_2H_2 addition was emitted from denitrification and from autotrophic and heterotrophic nitrification (N_2O_{DN}). Therefore, the difference in N_2O production between samples with and without C_2H_2 addition was attributed to autotrophic nitrification (N_2O_A) (Davidson et al., 1986; Klemedtsson et al., 1988). $$N_2 O_A = N_2 O_{DN} - N_2 O_{DH}$$ (Equation 3.1) The autotrophic nitrification rate (N_{nit} , $\mu g \, NO_3$ - $N \, g^{-1} \, d^{-1}$) was estimated by the difference in NO_3^- concentration in the samples with (+ace) and without C_2H_2 addition (-ace) divided by the time of incubation (t, days). $$N_{nit} = (NO_{3(-ace)} - NO_{3(+ace)})/t$$ (Equation 3.2) # 3.2.8 Statistical analysis The pooled ANOVA for measurement over time (Gomez and Gomez, 1984) was applied to determine the rates of change over time (N₂O and mineral N contents). One-way ANOVA was used to determine the difference between treatments at the end of the experiments. The Tukey (HSD_{0.05}) test was applied *post hoc* to identify any significant differences among treatments. All statistical analyses were performed using Statistix 10 (Tallahassee, USA). #### 3.3 Results # 3.3.1 Experiment 1: The effect of NH₄⁺ supply #### 3.3.1.1 Soil mineral N In the absence of C_2H_2 , NH_4^+ concentrations decreased at all treatments throughout the
experiment, except in the control (A_0) , where changes were negligible (Table 3.1). Following amendment with of C_2H_2 , NH_4^+ contents in the first 3 days of incubation remained close to stable as soil was either added with $100~(A_{100})$ or $150~(A_{150})~\mu g~NH_4^ N~g^{-1}$ soil but increased at A_0 and A_{50} . In the subsequent measurements, cumulative NH_4^+ in presence of C_2H_2 occurred in all NH_4^+ treatments (A_0-A_{150}) (Table 3.1). In the absence of C₂H₂, NO₃⁻ in the control was accumulated in the first 3 days of incubation (Table 3.1). NO₃⁻ contents in the subsequent measurements did not differ to that measured on day 3 in this treatment. Following NH_4^+ addition (A_{50} , A_{100} , A_{150}), the concentration of NO_3^- increased with incubation time in the samples without C_2H_2 , indicating the production of NO_3^- from nitrification. In the presence of C_2H_2 , the concentration of NO_3^- remained stable in the first 3 days but decreased in all treatments over the period 3-11 days (Table 3.1). Table 3.1. The concentrations of NH_4^+ and NO_3^- over time following amendment with different amounts of NH_4^+ at time 0 (A₀: 0, A₅₀: 50, A₁₀₀: 100 & A₁₅₀: 150 μ g N g⁻¹ soil) with (0.01% v/v) and without C₂H₂ addition. Soil moisture was maintained at 60% of the gravimetric water content at field capacity. Each value is followed by the standard error of the mean (n=4). | Treatments | N | | | Without C ₂ H ₂ | | | | With | C ₂ H _{2 (0.01%v/v)} | | |--------------------|---|---------------------|---------------------|---------------------------------------|----------------------|-------|---------------------|---------------------|--|-------| | | form | Day 0 | Day 3 | Day 7 | Day 11 | ANOVA | Day 3 | Day 7 | Day 11 | ANOVA | | \mathbf{A}_0 | | 2.92 ± 1.2 | 2.88 ± 0.5 | 3.59 ± 0.6 | 2.02 ± 0.1 | ns | 9.55 ± 0.4 | 14.05 ± 0.5 | 17.29 ± 2.3 | * | | \mathbf{A}_{50} | im
soil) | 53.42 ± 1.9 | 49.68 ± 1.8 | 44.71 ± 2.8 | 35.98 ± 1.5 | * | 64.26 ± 0.9 | 69.45 ± 0.5 | 69.57 ± 11.7 | * | | \mathbf{A}_{100} | Ammonium
g N g ⁻¹ dry soil) | 102.45 ± 5.9 | 92.54 ± 4.5 | 85.73 ± 4.8 | 81.01 ± 7.9 | * | 102.78 ± 3.8 | 115.31 ± 2.5 | 125.54 ± 2.1 | * | | \mathbf{A}_{150} | Am)
(μg N | 153.93 ± 1.0 | 151.11 ± 1.9 | 147.05 ± 9.7 | 136.37 ± 10.0 | * | 156.76 ± 2.4 | 164.67 ± 2.3 | 169.92 ± 6.0 | * | | ANOVA | | * | * | * | * | | * | * | * | | | \mathbf{A}_0 | | 11.50 ± 0.4 | 13.47 ± 0.5 | 12.22 ± 1.1 | 12.10 ± 0.6 | ns | 11.40 ± 0.4 | 8.98 ± 0.8 | 7.90 ± 0.6 | * | | \mathbf{A}_{50} | soil) | 11.32 ± 0.6 | 13.67 ± 0.9 | 15.66 ± 0.6 | 16.87 ± 1.2 | * | 10.90 ± 0.7 | 10.53 ± 0.5 | 8.98 ± 0.7 | * | | \mathbf{A}_{100} | Nitrate
(μg N g ⁻¹ dry soil) | 11.56 ± 0.5 | 13.70 ± 1.3 | 15.58 ± 0.3 | 16.60 ± 0.3 | * | 11.28 ± 1.2 | 10.03 ± 0.4 | 8.59 ± 0.4 | * | | \mathbf{A}_{150} | N gu) | 11.62 ± 0.4 | 12.96 ± 0.2 | 15.60 ± 0.5 | 16.42 ± 0.2 | * | 11.01 ± 0.4 | 10.08 ± 0.2 | 8.68 ± 0.3 | * | | ANOVA | | ns | ns | * | * | | ns | ns | ns | | ns: non-significant difference; * significant difference among NH_4^+ treatments (column) and sampling time (row) at $\alpha=0.05$ #### 3.3.1.2 Production of N_2O During the first three days of incubation, 2.2 to 3.3 ng N_2O_-N g^{-1} d^{-1} was emitted from nitrification and denitrification (Table 3.2). In the control, A_0 , the daily rate of N_2O emissions decreased over the period 3 to 11 days. The total N_2O varied from 3.3 to 3.8 ng N_2O_-N g^{-1} d^{-1} in the soil in treatments $A_{50} - A_{150}$ over this period and these rates of total N_2O production were significantly higher than in A_0 (Table 3.2). The rate of N_2O from denitrification and/or heterotrophic nitrification (N_2O_{DH}) was unaffected by NH_4^+ supply during the experiment (p > 0.05, Table 3.2). The average rate of N_2O_{DH} was 1.3 to 2.2 ng N_2O_-N g⁻¹ d⁻¹. Autotrophic nitrification released from 0.6 to 1.1 ng N_2O_-N g^{-1} d^{-1} in the first 3 days and there was no significant difference among treatments (p > 0.05, Table 3.2). The daily rate of N_2O from autotrophic nitrification (N_2O_A) reduced after 3 days in the A_0 while N_2O_A produced 1.6 – 2.3 ng N_2O_-N g^{-1} d^{-1} in soils with A_{50} – A_{150} , although the amounts of N_2O_A did not differ among NH_4^+ treatments (Table 3.2). # 3.3.1.3 Autotrophic nitrification rate Net rates of autotrophic nitrification (N_{nit}) ranged from 0.65 to 0.92 μg NO₃–N g^{-1} d⁻¹ soil in the first 3 days of incubation but there was no significant difference among NH₄⁺ treatments (p > 0.05,Table 3.2). After 3 days, N_{nit} were significantly higher in the treatments with $A_{50} - A_{150}$ than in A_0 . From days 7 –11, N_{nit} was limited by low NH₄⁺ content in the A_0 but contributed 0.58 – 0.69 μg NO₃–N g^{-1} d⁻¹ in the soils with N additions, although there was no difference between among these NH₄⁺ additions (Table 3.2). Table 3.2. The rate of total N_2O , N_2O from denitrification and/or heterotrophic nitrification (N_2O_{DH}), N_2O from autotrophic nitrification (N_2O_A), and autotrophic nitrification (N_{nit}) in the chromosol soil after additions at time 0 of 0 (A_0), 50 (A_{50}), 100 (A_{100}), & 150 μ g N g^{-1} soil (A_{150}) as ($N_1O_2O_2O_3O_4$). Soil moisture was maintained at 60% of the gravimetric water content at field capacity. Each value is followed by the standard error of the mean (n=4). | | Day 0-3 | | | | Day 3-7 | | | | Day 7-11 | | | | |---------------------|------------------------|----------------------|-------------------------------|---------------------------------------|------------------------|---------------------|------------------------|-------------------------|------------------------|----------------------|-------------------------------|--------------------------| | | Total N ₂ O | N_2O_{DH} | N ₂ O _A | N _{nit} | Total N ₂ O | N_2O_{DH} | N_2O_A | N _{nit} | Total N ₂ O | N_2O_{DH} | N_2O_A | N_{nit} | | | $ng N g^{-1}d^{-1}$ | $ng N g^{-l} d^{-l}$ | $ng N g^{-l} d^{-l}$ | $\mu g N g^{\text{-}1} d^{\text{-}1}$ | $ng N g^{-1}d^{-1}$ | $ng N g^{-1}d^{-1}$ | $ng N g^{-1} d^{-1}$ | $\mu g N g^{-l} d^{-l}$ | $ng N g^{-1}d^{-1}$ | $ng N g^{-1} d^{-1}$ | $ng N g^{-1}d^{-1}$ | $\mu g N g^{-1} d^{-1}$ | | \mathbf{A}_{0} | 2.9 ± 0.1 | 1.9 ± 0.1 | 0.9 ± 0.2 | 0.69 ± 0.13 | 1.9 $\pm 0.1^{b}$ | 1.6 ± 0.1 | 0.3 ± 0.1^{c} | 0.29 ± 0.02^b | 1.5 $\pm 0.1^{b}$ | 1.3 ± 0.2 | 0.3 ± 0.0 ^b | 0.24 ± 0.14^{b} | | A_{50} | 2.2 ± 0.3 | 1.7 ± 0.2 | 0.6 ± 0.2 | 0.92 ± 0.09 | 3.3 ± 0.2^a | 1.5 ± 0.2 | 2.0 ± 0.1^a | 0.66 ± 0.08^a | 3.5 ± 0.4^a | 1.4 ± 0.1 | 1.9 $\pm 0.2^{a}$ | 0.69 ± 0.01^a | | A ₁₀₀ | 2.6 ± 0.2 | 1.7 ± 0.6 | 1.1 ± 0.3 | 0.81 ± 0.12 | 3.8 ± 0.1^a | 1.5 ± 0.1 | 2.3 ± 0.3^a | 0.78 ± 0.07^a | 3.3 ± 0.4^a | 1.4 ± 0.1 | 1.8 ± 0.3 ^a | 0.61 $\pm 0.06^a$ | | A ₁₅₀ | 3.3 ± 0.2 | 2.2 ± 0.1 | 1.1 ± 0.2 | 0.65 ± 0.08 | 3.4 ± 0.1^a | 1.8 ± 0.2 | 1.6 $\pm 0.1^a$ | 0.89 ± 0.15^a | 3.3 ± 0.8^a | 1.7 ±0.1 | 1.7 ± 0.1 ^a | 0.58 ± 0.10^a | | Sig. | ns | ns | ns | ns | * | ns | * | * | * | ns | * | * | | HSD _{0.05} | - | - | - | - | 0.8 | - | 0.7 | 0.35 | 0.9 | - | 0.9 | 0.32 | ns: non-significant difference (p>0.05); *: significant difference (p<0.05). Different letters in each column indicate significant difference among NH_4 treatments. # 3.3.2 Experiment 2: The effect of fluctuating temperatures #### 3.3.2.1 Soil mineral N The changes in mineral N under different incubation temperature patterns are presented in Figure 3.3. In samples without C_2H_2 addition, the concentration of NH_4^+ declined with incubation time for all three temperature patterns (Figure 3.3a). In contrast, the contents of NH_4^+ increased slightly in the samples with C_2H_2 addition. In the samples without C_2H_2 , NO_3^- contents increased throughout the experiment, particularly from 7 – 14 days (p < 0.05, Figure 3.3b). The temperature patterns affected cumulative NO_3^- during the experiment. Cumulative NO_3^- contents were significantly greater under FTP₂ than those under FTP₁ and CT at all sampling time (Figure 3.3b). In the presence of C_2H_2 , NO_3^- decreased in the first 7 days but generally remained stable after days 7 under CT and FTP₁. Under FTP₂, the amount of NO_3^- did not change in first 14 days but slightly reduced in the second 14 days (p < 0.05, Figure 3.3). Figure 3.3 Variation in concentrations of soil ammonium and nitrate concentrations over time when subjected to different temperature patterns (FTP₁: 8h -15 °C, 8h- 20 °C, 8h - 25 °; FTP₂: 12h -15 °C and 12h - 25 °C; CT maintained continually at 20 °C) and C_2H_2 pressure (without C_2H_2 -open symbols and with C_2H_2 -filled symbols). Soil moisture was maintained at 60% field capacity. Vertical bars are +1SE. # 3.3.2.2 Production of N_2O In the samples without C_2H_2 amendment, N_2O production was emitted from both denitrification and nitrification, and is referred to here as total N_2O emissions. Total N_2O production occurred slowly over the period 0-3 days (Figure 3.4). Cumulative N_2O
was $0.35~\mu g~N_2O_-N~g^{-1}~d^{-1}$ after 3 days of incubation and did not differ among temperature patterns. N_2O was produced faster after 7 days at all temperature patterns. There was no interaction between temperature patterns and sampling time (p>0.05, Figure 3.4). Cumulative N_2O production in the last 14 days was significantly higher under FTP2 than FTP1 and CT (p<0.05). The patterns of N_2O in samples with C_2H_2 addition were similar to those without C_2H_2 (Figure 3.4). The production of N_2O in the presence of C_2H_2 , which was attributed to denitrification and/or heterotrophic nitrification, were lower than those without C_2H_2 over 30 days at all the temperature patterns. Figure 3.4. Cumulative N_2O production in the chromosol soil under different temperature patterns (FTP₁: 8h -15 °C, 8h- 20 °C, 8h - 25 °; FTP₂: 12h -15 °C and 12h - 25 °C; CT maintained continually at 20 °C) and C_2H_2 treatments (without C_2H_2 - open plots and with C_2H_2 - filled plots). Soil moisture was maintained at 60% field capacity. Vertical bars are +1SE. Pooled ANOVA indicated no interaction between temperature patterns and sapling time (p > 0.05). #### 3.3.2.3 N₂O from autotrophic, heterotrophic nitrification and denitrification Autotrophic nitrification produced 1.9 to 2.5 ng N_2O_-N g^{-1} d^{-1} over 30 days of incubation and there was no significant difference among temperature patterns (Table 3.3). N_2O from denitrification and/or heterotrophic nitrification (N_2O_{DH}) was unaffected by the temperature patterns in the first 14 days of incubation. In the second 14 days, N_2O_{DH} was significantly higher under FTP₂ than CT (p < 0.05, Table 3.3) but there were no significant difference between FTP₂ and FTP1. A high variability (se) associated with the average rate of N_2O_{DH} was estimated under FTP₂ in the last two weeks of incubation (Table 3.3). # 3.3.2.4 Autotrophic nitrification rate In first two weeks of incubation, net autotrophic nitrification rate (N_{nit}) varied from 0.5 to 0.6 μg NO₃–N g^{-1} d⁻¹ with the temperature patterns but there was no significant difference among these patterns (p > 0.05,Table 3.3). N_{nit} slowed over the period 14 – 30 days of incubation, at 0.2 – 0.3 μg NO₃–N g^{-1} d⁻¹, under all the temperature patterns. The FTP did not trigger a higher N_{nit} compared to a CT in the last 14 days of incubation (p > 0.05,Table 3.3). #### 3.3.2.5 Ammonium oxidising bacteria (AOB) population The AOB population was estimated at 1632 to 1985 cells g^{-1} in the first two weeks of incubation and increased to 1961 to 2335 cells g^{-1} in the last two weeks of incubation (Table 3.3). The numbers of AOB were not affected by the temperature patterns used during the experiment (p > 0.05,). Table 3.3. Total N_2O emissions, N_2O production from different sources (autotrophic and heterotrophic nitrification, denitrification), autotrophic nitrification rate (N_{nit}), ammonium oxidising bacteria (AOB) population and CO_2 production in the chromosol soil after 4 weeks of incubation under different temperature patterns (FTP₁: 8h -15 °C, 8h - 20 °C, 8h - 25 °C; FTP₂: 12h -15 °C and 12h - 25 °C; CT at 20 °C). Soil sample was maintained at 60% of the gravimetric water content at field capacity (- 33 kPa). Each value is followed by the standard error of the mean (n=4). | | From 0-14 days | | | | | | From 14-30 days | | | | | | | |---------------------|------------------------|---|----------------------|-------------------------|-----------------------|-------------------------------|-------------------------------|------------------------------------|-------------------------------|-------------------------|--------------------------|-------------------------------|--| | | Total N ₂ O | N ₂ O _{DH} ¹ | $N_2O_A^2$ | N _{nit} | AOB | CO ₂ | Total N ₂ O | N ₂ O _{DH} | N ₂ O _A | N _{nit} | AOB | CO ₂ | | | | $ng N g^{-1} d^{-1}$ | $ng N g^{-l} d^{-l}$ | $ng N g^{-1} d^{-1}$ | $\mu g N g^{-1} d^{-1}$ | cells g ⁻¹ | $\mu g C g^{-1} d^{-1}$ | $ng N g^{-1} d^{-1}$ | $ng N g^{-1} d^{-1}$ | $ng N g^{-1} d^{-1}$ | $\mu g N g^{-1} d^{-1}$ | cells g ⁻¹ | $\mu g C g^{-1} d^{-1}$ | | | FTP ₁ | 3.4 ± 0.2 | 1.5 ± 0.6 | 1.9 ± 0.2 | 0.5 ± 0.02 | 1985 ± 282 | 4.9 $\pm 0.1^b$ | 3.4 ± 0.1 ^b | 1.5 \pm 0.1 ^{ab} | 1.9 ± 0.1 | 0.2 ± 0.01 | 2335 ± 159 | 7.1 ± 0.1 ^a | | | FTP ₂ | 4.5 ± 0.7 | 2.2 ± 0.2 | 2.3 ± 0.3 | 0.6 ± 0.03 | 1772 ± 461 | 8.5 ± 0.2 ^a | 4.2 ± 0.6 ^a | 2.6 \pm 0.5 ^a | 1.6 ± 0.5 | 0.2 ± 0.01 | 2198 ± 203 | 4.9 ± 0.3 ^b | | | CT | 3.7 ± 0.2 | 1.6 ± 0.6 | 2.1 ± 0.2 | 0.5 ± 0.02 | 1632 ± 412 | 5.8 ± 0.6 ^b | 3.7 $\pm 0.1^b$ | 1.2 ± 0.4 ^b | 2.5 ± 0.1 | 0.3 ± 0.01 | 1961 ± <i>134</i> | 8.0 ± 0.2 ^a | | | ANOVA | ns | ns | ns | ns | ns | * | * | * | ns | ns | ns | ** | | | HSD _{0.05} | - | - | - | - | -
0.05) Digg | 1.9 | 0.4 | 1.3 | - | - | - | 0.9 | | ns: non-significant difference (p>0.05); *: significant difference (p<0.05). Different letters in each column indicate significant difference among temperature patterns $^{^{1}}$ Denitrification and/or heterotrophic nitrification ² Autotrotphic nitrification #### 3.3.2.6 Soil respiration rate The production of CO₂, a measure of the soil respiration rate, was influenced by the temperature pattern in the soil tested (Table 3.3). The rate of CO₂ was significantly greater under FTP₂ than under FTP₁ and CT in the first two weeks of incubation. In contrast, soil respiration rates under FTP₁ and CT exceeded that under FTP₂ in last two weeks of incubation (Table 3.3). #### 3.4 Discussion Our results demonstrate that soil NH_4^+ concentration is vital for the activity of autotrophic nitrification but it does not appear to determine the magnitudes of NO_3^- and N_2O production from autotrophic nitrification. The production of NO_3^- and N_2O from autotrophic nitrification were relatively low in the soil without N addition. This finding supports the previous results by Gödde and Conrad (1999) and Avrahami et al. (2003) that low NH_4^+ (< 5 μ g N g⁻¹ soil) limits the thermal response of nitrification rate and associated N_2O production. In agreement with Vermoesen et al. (1996), our data show that autotrophic nitrification was unaffected by increased NH_4^+ addition above 50 μ g N g⁻¹ soil. These results suggest that the activity of autotrophic nitrification is likely to be regulated by other factors such as oxygen availability rather than simply NH_4^+ content. Oxygen availability in the soil microsite is known to be influenced by soil moisture (Smith et al., 2003) and temperature via soil microbial respiration (de Klein and Van Logtestijn, 1996). Once the threshold of NH_4^+ was met for autotrophic nitrification, the production of NO_3^- and N_2O from this biological process were constant with additional soil NH_4^+ . Autotrophic nitrification rate and associated N_2O production were unaffected by the temperature pattern tested throughout the experimental period. This result supports the finding by Sierra (2002) that NO₃⁻ production from nitrification occurred consistently under FTPs and a CT of the same mean temperature. The growth of ammonium oxidising bacteria (AOB) was unaffected by FTPs, potentially explaining the consistent rate of autotrophic nitrification and associated N2O achieved under different temperature patterns. Despite that, ammonium oxidising archaea (AOA) might have been involved in nitrification in agricultural soils (Di et al., 2010). However, the growth and activity of AOA are often limited under high soil mineral N contents (Di et al., 2009; Schauss et al., 2009; Di et al., 2010), thus cumulative NO₃ in the chromosol with addition of 100 µg N g⁻¹ soil was likely attributed to AOB. The same rate of autotrophic nitrification under different temperature patterns indicates that a relatively constant NH₄⁺ was biologically nitrified to produce NO₃⁻, according to the mean of daily temperature rather than diurnal temperature between 15 to 25 °C. An FTP with a wider diurnal fluctuation in temperature may potentially influence nitrification rate. Campbell and Biederbeck (1972) showed that shifting temperature between 3 °C and 14 °C (12h -12h) had a detrimental effect on the growth of nitrifiers, which resulted in a lower NO₃ production under FTP than under a CT of 10 °C. However, air temperatures below 5 °C were not experienced in the field site where the experimental soil was collected for the current work, so temperature regimes below 5 °C were not relevant for the present study. With daily temperature variation from 15 °C to 25 °C, the production of NO₃ and N₂O from autotrophic nitrification were primarily determined by the mean of daily temperature. The results suggest that daily constant temperature can be used to assess the thermal response of nitrification. Our result identifies that the rate of total N₂O emission was significantly higher under FTP₂ than under CT after two weeks of incubation. This finding does not support the result by Goodroad and Keeney (1984), who reported a significant difference in total N₂O production between FTP ranging from 10 °C to 30 °C and a CT of 20 °C over 5 days of incubation in a silt loam soil. That result, also at a 10 °C temperature differential as tested using FTP₂, suggests that N₂O production may be underestimated by using the CT in the laboratory study rather than a more realistic FTP. Our data indicate that total N₂O production from soil is unlikely to be affected by diurnal temperature variation of up to 10 °C in first 14 days of incubation. It has been explained that the thermal acclimation and/or
adaptation of soil microbial organisms only occur after 2 weeks (Campbell and Biederbeck, 1972) or 6 weeks (Avrahami et al., 2003). FTP ranging from 15 °C to 25 °C (12h – 12h) impacted on the activity of denitrification and/or heterotrophic nitrification, resulting in higher total N₂O production in last two weeks of incubation. However, this should be treated with caution due to the high variability of emissions observed in FTP₂. Isotope techniques (¹⁵N) should be applied to further distinguish N₂O production from heterotrophic nitrification and denitrification, which was not achieved with the use of C₂H₂ (0.01% v/v) in our experiments. Despite this, the magnitude of N₂O and NO₃⁻ production was lower in the soils with C₂H₂ than those without C₂H₂ addition, reflecting the efficiency of C₂H₂ to inhibit autotrophic nitrification. We conclude that total N₂O emissions from soil are likely to be insensitive to fluctuating temperature in short term experiments using the types of soil examined in these experiments. Daily mean constant temperature, therefore, can be used to assess the thermal response of N₂O production from these soils. #### 3.5 Conclusions The findings in the present study demonstrate that autotrophic nitrification was limited in the soil without addition of NH_4^+ , resulting in lower NO_3^- and N_2O production than those from the soils amended with NH_4^+ . The activity of autotrophic nitrification was not influenced by NH_4^+ amendments once the threshold had met ($\geq 50 \mu g NH_4 N g^{-1} soil$). Fluctuating temperature patterns did not trigger higher rates of autotrophic nitrification, associated N₂O production and AOB population over the 30 days of incubation. Cumulative N₂O production was significantly greater under FTP₂ than under CT in the second 14 days of incubation, due to denitrification and/or heterotrophic nitrification. However, this should be treated with caution due to the high variability of N₂O production associated with FTP₂. The results suggests that there is a requirement to supply \geq 50 µg NH₄-N g⁻¹ soil to avoid the limitation of NH₄⁺ when testing nitrification responses to environmental factors such as temperature. The use of daily constant temperature should be suitable for short-term experimentation to assess the thermal responses of N₂O production. # Statement of Authorship | Title of Paper | Nitrons oxide produ | netten from nihipication in soils and netemberature | |---------------------|--------------------------------------|--| | Publication Status | Published Submitted for Publication | Accepted for Publication Unpublished and Unsubmitted work written in manuscript style | | Publication Details | | | # **Principal Author** | Name of Principal Author (Candidate) | Thang Lai | | | | | | |--------------------------------------|--|--|--|--|--|--| | Contribution to the Paper | Conducted experiments, performed dratysis on sample interpreted data, wrote manuscript and acted as corresponding author | | | | | | | Overall percentage (%) | 70% | | | | | | | Certification: | This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper. | | | | | | | Signature | Date 10/9/2016 | | | | | | #### **Co-Author Contributions** By signing the Statement of Authorship, each author certifies that: - the candidate's stated contribution to the publication is accurate (as detailed above); - ii. permission is granted for the candidate in include the publication in the thesis; and - iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution. | Name of Co-Author | Mathew Denton | |---------------------------|---| | Contribution to the Paper | Supervised development of work; helped in data interpretation and manuscrip evaluation. | | Signature | Date 14/9/16 | | | | | Name of Co-Author | | | Contribution to the Paper | | | Signature | Date | Please cut and paste additional co-author panels here as required. # Chapter 4 Nitrous oxide production from nitrification in soils and its dependence on temperature* #### 4.1 Introduction Nitrous oxide (N₂O) is a potent greenhouse gas that contributes to global warming and the depletion of ozone in the stratosphere (IPPC, 2006). The primary N₂O emissions in the atmosphere come from soil, resulting largely from the conversion of ammonium to nitrate during nitrification and the reduction of NO₃⁻ to N₂ during denitrification (Conrad, 1996). The production of N₂O in soils is influenced by environmental conditions such as soil moisture, organic carbon, N concentration, pH and temperature. Increasing temperature affects soil moisture content, microbial activity, N pools, OC and pH, thus it has been regarded as a key factor regulating N₂O fluxes between soil and the atmosphere. Global warming was estimated at 0.8 °C over the past century and is predicted to increase at an average rate of +0.2 °C per decade in the 21th century (IPCC, 2001; Hansen et al., 2006). In a recent report (Holthaus, 2016), average temperature across the northern hemisphere increased +2 °C in comparison with pre-industrial levels. This could have a large effect on plant and soil systems by enhancing the rates of biological processes. Nitrification and denitrification under global warming scenarios are expected to increase (Davidson and Janssens, 2006), and could impact N₂O production (Smith, 1997; Castaldi, 2000). Therefore, it is important to understand the impact that increased soil temperature will have on the loss of N as N_2O emissions. The effect of temperature on N₂O production from nitrification in soil has been investigated in many studies, which were typically conducted at temperatures below 30 ___ ^{*} Submitted to Soil Biology & Biochemistry °C. The decrease in N₂O production from nitrification was observed with rising incubation temperature between 5 °C to 25 °C (Maag and Vinther, 1996; Avrahami et al., 2003), while a positive correlation between N₂O production and temperature from 15 °C to 30 °C was demonstrated in other studies (Goodroad and Keeney, 1984; Smith, 1997). The impact of high temperatures (above 35 °C) on N₂O production is poorly understood. As the temperature increases above 35 °C, it may influence the soil bacterial / archaeal nitrifying communities, and /or change soil microsite conditions such as oxygen and OC availability, which may alter N₂O emissions and the relative contributions that autotrophic and heterotrophic nitrification make to the production of N₂O from nitrification. Autotrophic nitrification has often been considered to be the predominant source of N_2O production from nitrification but recent studies have reported a significant contribution from heterotrophic micro-organisms to nitrification. Depending on soil properties, autotrophic nitrification accounted for 60 - 90% of N_2O produced from nitrification during the oxidation of NH_4^+ or NO_2^- to NO_3^- (Goreau et al., 1980; Abbasi and Adams, 2000; Wrage et al., 2001). The ability of heterotrophic micro-organisms to nitrify both NH_4^+ and organic-N compounds has been previously observed (Papen et al., 1989; Anderson et al., 1993; De Boer and Kowalchuk, 2001), indicating potential N_2O production from heterotrophic nitrification. For example, in soils incubated at 20 - 22 °C, heterotrophic nitrification accounted for 19% of N_2O from nitrification (Islam et al., 2007) and 20% of overall N_2O production (Bateman and Baggs, 2005). In a recent study, heterotrophic nitrification contributed up to 69% of NO_3^- production at 15 °C, but was reduced to less than 10% as temperature increased to either 25 °C or 35 °C in an acidic soil with 50 - 75% water filled pore space (WFPS) (Liu et al., 2015). However, the thermal response of N_2O production from heterotrophic nitrification has not been documented. Thus, the relative contributions of autotrophic and heterotrophic nitrification to total N₂O production at high temperatures is the focus of this study. The aim of this work was therefore to investigate N_2O emissions from nitrification as influenced by increasing temperature from 10-45 °C. A ^{15}N labelling technique was applied with acetylene (C_2H_2 , 0.01% v/v) inhibition to determine the respective contributions of autotrophic and heterotrophic nitrification processes. ## 4.2 Materials and methods # 4.2.1 Study site and sample collection The soils used in this study were obtained from south west Victoria, Australia, at the TAFE Glenormiston College Campus, referred to as the 'dermosol', and a commercial dairy farm, referred to as the 'chromosol' (Isbell, 1996). These sites are not irrigated and have an average annual rainfall of 745 mm (chromosol) and 522 mm (dermosol). Low soil temperatures recorded in the top 10 cm of soil (8 – 20 °C) were associated with high soil moisture contents $(0.3 - 0.5 \text{ mm}^3/\text{mm}^3)$ between May and November (Figure 4.1). High soil temperatures (20 - 45 °C) were associated with low moisture contents between December and April $(0.1 - 0.3 \text{ mm}^3/\text{mm}^3)$. Some characteristics of the top 10 cm of these soils are provided in Table 4.1. Experimental soil samples were collected from the upper 10 cm layer of a 2 m² area within each site, and soil cores were used to measure bulk density (BD)
and gravimetric water content at field capacity (FC) at -33 kPa (Chapter 3). The soils then were sieved to remove the fraction > 2 mm, and thoroughly mixed to increase uniformity. Sieved soil was stored at field moisture in sealed containers at 4 °C to minimise microbial activity until use. Figure 4.1. The variation in temperature and water content in study sites from June 2012 until July 2013. Lines indicate daily soil maximum (red line) and minimum temperature (blue line); bars present the monthly volumetric water content. Table 4.1. Some properties of unamended experimental soils used in this study. Soils were sampled from 0-10 cm depth. | | chromosol | dermosol | | | |--|-----------------------|-----------------------|--|--| | General | | | | | | Location | 38° 14' S, 142°55'E | 38°10'S, 142°58'E | | | | Land use | Rainfed Dairy pasture | Rainfed Dairy pasture | | | | Soil | | | | | | Soil type* | Brown chromosol | Black dermosol | | | | Texture | Light fine sandy-clay | Clay loam | | | | | loam | | | | | Clay (%) | 15.7 | 37.0 | | | | Silt (%) | 24.4 | 21.0 | | | | Coarse sand (%) | 5.9 | 9.0 | | | | Fine sand (%) | 52.8 | 16.0 | | | | Gravel (%) | 1.2 | 17 | | | | Bulk Density (g/cm ³) | 1.02 | 1.12 | | | | Moisture content at FC _{33 kPa} | 0.38 | 0.37 | | | | (g water/g soil) | | | | | | Moisture content at 60%FC | 0.23 | 0.22 | | | | (g water/g soil) | | | | | | pH- CaCl ₂ | 4.9 | 5.5 | | | | NH_4^+ - N (mg N kg ⁻¹ d.w) | 16.5 | 12.8 | | | | NO_3^- - N (mg N kg ⁻¹ d.w) | 6.2 | 8.5 | | | | Organic carbon (%) | 4.06 | 5.24 | | | ^{*}Australian Soil Classification (Isbell, 1996) # 4.2.2 Laboratory incubations #### 4.2.2.1 Experiment 1 The objective was to assess N₂O emissions in two soils at temperatures ranging from 10 °C to 45 °C over 5 days. Soil was placed in plastic bags and wetted to achieve 60% FC (at 0.23 g water g⁻¹ soil for the chromosol and 0.22 g water g⁻¹ soil for the dermosol). All soil samples were pre-incubated at 25 °C for 7 days to recover biological activity after sampling and processing (Davidson, 1991). Soil samples (50 g dry weight) were repacked into cores (42×36 mm) to achieve the original bulk density measured at field sites (1.02) and 1.12 g cm⁻³ for the chromosol and dermosol respectively). After the pre-incubation, soil water was maintained at 50% of FC. To avoid the limitation of substrate (NH₄⁺) on nitrification (Chapter 3), 2 ml of the nitrogen solution [0.09 mM (NH₄)₂SO₄] was added to each soil core to provide the final concentration of NH₄⁺ at 100 µg N g⁻¹ soil. This solution was added slowly onto the top of upright soil cores with duplicate times to promote uniformity of NH₄⁺ through the soil and reach a final water content of 60% FC. Each soil core was placed into a 250 ml jar with a gas-tight lid equipped with a rubber septum (Subaseals#25, Sigma-Aldrich, St Louis, MO, USA). The jars were flushed with atmospheric air for 2 minutes and, in half set of the jars, acetylene (C₂H₂) was then added though a 25ml gas-tight syringe (Hamilton Company, Reno, NV, USA) to provide a final partial pressure of 10 Pa (0.01% v/v), to inhibit autotrophic nitrification (Yoshinari et al., 1977; Klemedtsson et al., 1988). After injecting C₂H₂, the syringe was pushed forward and backward a few times to aide mixing and increase diffusion of the C₂H₂ into the soil. Jars were incubated at constant temperatures of 10, 20, 25, 30, 35, 40 or 45 °C for 5 days using four replicates. #### *4.2.2.2 Experiment 2* The objective was to assess the production of N₂O from autotrophic and heterotrophic nitrification as influenced by temperatures between 35 °C and 45 °C, where an asymptotic maximum of N₂O production from nitrification likely occurs (based on data of the experiment 1). A ¹⁵N labelled technique was coupled with C₂H₂ to determine the pathways of N₂O from denitrification, autotrophic nitrification and heterotrophic nitrification, as described by Bateman and Baggs (2005). Briefly, ¹⁵N₋N₂O derived from the ¹⁵NH₄¹⁵NO₃ amendment is attributed to denitrification and nitrification (N₂O_{DN}). The production of ¹⁵N-N₂O emitted from ¹⁵NH₄¹⁵NO₃ with C₂H₂ addition (0.01% v/v) is attributed to denitrification and heterotrophic nitrification (N₂O_{DH}). ¹⁵N-N₂O production from the ¹⁴NH₄¹⁵NO₃ amendment is attributed to denitrification (N₂O_D). Therefore, the difference in ¹⁵N-N₂O between ¹⁵NH₄¹⁵NO₃ and ¹⁵NH₄¹⁵NO₃ plus C₂H₂ (0.01% v/v) amendments is attributed to autotrophic nitrification (N₂O_A). Likewise, the difference in ¹⁵N-N₂O between ¹⁴NH₄¹⁵NO₃ and ¹⁵NH₄¹⁵NO₃ + C₂H₂ (0.01% v/v) amendments is attributed to heterotrophic nitrification (N₂O_H) (Table 4.2). Table 4.2. Outline of the ^{15}N fertiliser and C_2H_2 inhibition treatments used to estimate the contribution of denitrification, autotrophic nitrification and heterotrophic nitrification to $^{15}N_-N_2O$ production (Baggs et al., 2003; Bateman and Baggs, 2005). | Treatment | Source of ¹⁵ N-NO ₂ | |---|---| | (a) $^{14}NH_4^{15}NO_3$ | Denitrification (N ₂ O _D) | | (b) $^{15}NH_4^{15}NO_3$ | Denitrification and nitrification (N ₂ O _{DN}) | | (c) $^{15}\text{NH}_4^{15}\text{NO}_3 + \text{C}_2\text{H}_2$ (0.01% v/v) | Denitrification and heterotrophic nitrification (N_2O_{DH}) | | (c) minus (a) | Heterotrophic nitrification (N ₂ O _{H)} | | (b) minus (c) | Autotrophic nitrification (N ₂ O _A) | Two sets of incubations were used in this experiment, one to monitor gas sampling and the other to monitor soil mineral nitrogen concentrations. The first set of incubations included 36 jars (three temperatures \times three labelled $^{15}N + C_2H_2$ amendments \times four replicates) which were used for gas sampling during the experiment. In this set, three different amendments with ¹⁵N labelled NH₄NO₃ (100 µg N g⁻¹ soil, 10 atom% excess ¹⁵N) and C_2H_2 were applied: ¹⁴NH₄¹⁵NO₃, ¹⁵NH₄¹⁵NO₃ and ¹⁵NH₄¹⁵NO₃ + C_2H_2 (0.01 % v/v) (Table 4.2). For the samples with C_2H_2 , the jars were flushed with air for two minutes and C₂H₂ was then injected though a syringe (50 mL, PTFE, SGE, Australia) to provide a final partial C₂H₂ pressure of 10 Pa. All jars were incubated at 35, 40 or 45 °C in the dark for 10 days. Soil moisture was maintained at 60% FC on a weight for weight basis after each sampling time. The soil used in this experiment was the dermosol (pH_5.4) to minimise the production of N₂O from nitrifier denitrification (where the oxidation of NH₄⁺ to NO₂⁻ is followed by the denitrification of NO₂⁻ to N₂O), as was previously observed in our early study (Chapter 2), and is often active under acidic soils (Wrage et al., 2001). The ¹⁵N labelled technique applied in the present study was not able to distinguish N₂O production from nitrifer-denitrification (Wrage et al., 2005). The second set of incubations were included for mineral N measurement in soil treated with the above ^{15}N labelled NH₄NO₃ source ($^{14}NH_4^{15}NO_3$). This set included 48 jars (three temperatures × four replicates × four sampling times) for subsoil sampling on days 0, 3, 7 and 10 after N addition for measurement of NH₄⁺ and NO₃⁻ contents. # 4.2.3 Gas sampling and analysis A 20 ml gas sample was taken from the headspace of each jar using a Hamilton 50 ml gas-tight syringe (Hamilton Company, Reno, NV, USA) on days 0, 3, 5 and stored in a pre-evacuated 12 ml glass exetainer (Labco, Ceredigion, UK) for analysis of N₂O and CO₂ production in the first experiment. In the second experiment, the headspace of each jar was sampled twice on days 0, 3, 7, 10 after incubation: one for analysis of total N₂O, ¹⁵N₋N₂O and ¹⁵N₋N₂, and the other for measurement of CO₂ production. After collecting gas samples, all jars were aerated with the atmosphere by a mini fan for two minutes and C₂H₂ was injected back into appropriate jars to maintain C₂H₂ pressure. Gas samples were sent to The Stable Isotope Facility (UCDAVIS, California, USA) for gas analyses. The methods for measurement of N₂O and CO₂ production were presented at section **3.2** in **Chapter 3**. Trace gas isotope ratios ($\delta^{15}/\delta^{14}N$) were determined using a ThermoFinnigan GasBench + PreCon trace gas concentration system interfaced to a Delta VTM Isotope-ratio Mass Spectrometer (Thermo-Scientific, Bremen, Germany). # 4.2.4 Soil mineral N and pH measurement A 10 g sample of moist soil was taken from the second incubation set on days 0, 4, 7 and 10 after incubation. Soil NH₄⁺ and NO₃⁻ were extracted from 10 g of moist soil by shaking for one hour in 50 ml of 2M KCl. The analyses of mineral N were performed colorimetrically with an AutoAnalyser (AA3 HR, SEAL, West Midlands, UK) using the hydrazine reduction method for NO₃⁻ (Kamphake et al., 1967) and the nitroprusside method for NH₄⁺ (Kaplan, 1965). For pH measurement, 5.0 g of dry soil sample was mixed with 25 ml of calcium chloride (CaCl₂) (0.01M), shaken for one hour. After allowing sediment to settle for 30 minutes, pH in the supernatant was measured using an electrode. The measurements of pH were done on 4 replicates at the beginning and the end of incubation in each treatment to evaluate if incubation temperature impacted on soil pH. # 4.2.5 Most probable number count The numbers of ammonium oxidising bacteria (AOB) in the different temperature treatments were estimated from soil samples without the addition of C₂H₂, at the beginning and end of the experiment. The most probable number (MPN) count described by Schmidt and Belser (1994) was applied to estimate AOB populations. Briefly, 2.0 g of dry soil was mixed with 18 ml of 1 mM sterile phosphate buffer to make the initial solution (10⁻¹). Serial dilutions of soil (from 10⁻² to 10⁻⁶) were made with 1mM sterile phosphate buffer. One ml of each dilution was inoculated into 4 ml of MPN media tubes containing the 1 mM
ammonium solution and each inoculation (10⁻¹ to 10⁻⁶) was replicated five times. Inoculated MPN tubes were incubated at 28 °C in the dark. At intervals of one week for a maximum of 12 weeks, each tube was tested for NO₃ production by observing colour change from blue green to yellow due to pH drop, which indicated acid production during the nitrification process. A Griess–Ilosvay colorimetric spot test and a Merckoquant strip test were also carried out to confirm the nitrification process in the positive MPN tubes (Schmidt and Belser, 1994). The AOB population was estimated using population estimates following Woomer (1994). #### 4.2.6 Statistical analysis The pooled ANOVA for measurement over time (Gomez and Gomez, 1984) was applied to determine the rate of change over time of N₂O production and mineral N concentrations. One-way ANOVA was used to determine the significant difference between temperature treatments at the end of experiment. Tukey's Honestly Significant Difference (HSD_{0.05}) test was applied *post hoc* to identify a specific difference among treatments. Statistical analysis of percentage values such as %N₂O from different sources was based on Arcsine transformed data, as described by Ireland (2010). All statistical analyses were performed on Statistix 10.0 (Tallahassee, US). # 4.3 Results # **4.3.1** Experiment 1: N₂O emissions in response to temperature Total N_2O production in the samples without C_2H_2 addition occurred slowly at 10-20 °C but increased at temperatures above 25 °C in the two tested soils (Figure 4.2). The total production of N_2O was greatest at 40 °C in the chromosol and between 30 °C to 40 °C in the dermosol, and N_2O production declined at 45 °C in the two soils (Figure 4.2). The production of N_2O in the samples with C_2H_2 addition, which was attributed to denitrification and/or heterotrophic nitrification, was generally consistent across temperatures in the chromosol soil. N_2O production from denitrification and/or heterotrophic nitrification increased within the temperature range 10-30 °C and decreased above 35 °C in the dermosol (Figure 4.2). The rates of N_2O production from autotrophic nitrification (indicated by the difference between the treatments with and without C_2H_2) increased with rising temperature and peaked at 40 °C then decreased with further increases in temperature in both soils tested (Figure 4.2). Figure 4.2. The production of N_2O from autotrophic nitrification and heterotrophic nitrification or denitrification in soils incubated at different temperatures for 5 days after application of $100~\mu g~NH_4-N~g^{-1}$ soil. Total bar height represents total N_2O production (all processes). Grey bar represents N_2O arising from heterotrophic nitrification and/or denitrification in C_2H_2 -amended treatments. The size of the open bar represents $^{15}N-N_2O$ from autotrophic nitrification determined from the difference in N_2O from C_2H_2 and non- C_2H_2 treatments. Vertical bars are +1 SE of four replicates. # **4.3.2** Experiment 2: Effect of high temperature # 4.3.2.1 Production of N_2O The production of N_2O in the absence of C_2H_2 ranged from 0.06 to 0.18 μ g N_2O_-N g⁻¹ with incubation temperatures over the period 0 – 3 days (Figure 4.3a). The average of N_2O production was significantly greater at 40 °C than at 35 °C and 45 °C over this period (p < 0.05). N_2O production increased rapidly at 35 °C and 40 °C from days 3 to 10, while N_2O production was emitted at a lower rate with increasing temperature to 45 °C. A similar pattern of temperature response of N_2O production was found in the presence of C_2H_2 (Figure 4.3b) and the magnitudes of N_2O production were lower than those without C_2H_2 addition. Cumulative N_2O production at 35 °C and 40 °C was much greater than at 45 °C over the 10 days, regardless of C_2H_2 treatment (Figure 4.3). Figure 4.3. The response of N_2O emissions to different temperatures and C_2H_2 pressures over the 10 days of incubation. Soil samples were amended with NH_4NO_3 and maintained at 60% FC. *Vertical bars* are +1 SE of four replicates. # 4.3.2.2 Production of $^{15}N_2O$ The amounts of 15 N-N₂O production from samples amended with 15 NH₄¹⁵NO₃ were attributed to nitrification and denitrification processes. The production of 15 N-N₂O from the soil over the 10 days of incubation differed between 35 °C to 45 °C (Table 4.2). The daily rates of 15 N-N₂O production for the first three days of incubation varied from 0.9 – 2.2 ng 15 N-N₂O-N g⁻¹ d⁻¹ but there was no difference among incubation temperatures (Table 4.3). From days 3 – 7, the highest rate of 15 N-N₂O production was measured at 35 °C, followed by 40 °C and the lowest rate of was emitted at 45 °C (p < 0.001, Table 4.3). After day 7, the daily rates of 15 N-N₂O production were 2.2 – 2.4 ng 15 N-N₂O-N g⁻¹ d⁻¹ between 35 °C to 40 °C and 0.3 ng 15 N-N₂O-N at 45 °C (Table 4.3). 4.3.2.3 The production of $^{15}N_2O$ from autotrophic and heterotrophic nitrification. The differences observed in $^{15}N_-N_2O$ between $^{14}NH_4^{15}NO_3$ and $^{15}NH_4^{15}NO_3 + C_2H_2$ (0.01% v/v) (Figure 4.4) indicate that heterotrophic microorganisms nitrified $^{15}NH_4$ and released $^{15}N_2O$, since autotrophic nitrifiers were inhibited by C_2H_2 . The production of N_2O from nitrification at 35-40 °C was 2-3 fold that at 45 °C (Table 4.3). N_2O production from autotrophic and heterotrophic nitrification responded dissimilarly to temperatures between 35 °C to 40 °C. Increased temperature from 35 to 40 °C reduced the production of N_2O from autotrophic nitrification but did not affect N_2O release from heterotrophic nitrification. Cumulative N_2O from heterotrophic nitrification at 40 °C was similarly high as at 35 °C. At 45 °C, there was a rapid decrease in N_2O from heterotrophic nitrification (Table 4.3). Nitrification accounted for 54-68% of total N_2O production at 35-45 °C over the 10 days (Table 4.3). The percentage of N_2O production from heterotrophic nitrification increased from 31% to 46% as temperature increased from 35 °C to 40 °C, while autotrophic nitrification declined from 25% to 8% of total N_2O production. The contribution of autotrophic and heterotrophic nitrification to N_2O emissions were 33 – 35% at 45 °C (Table 4.3). # 4.3.2.4 AOB population The size of the population of ammonium oxidising bacteria (AOB) was affected by incubation temperature. Although AOB population in tested soil at 45 $^{\circ}$ C did not change after 10 days of incubation in comparison with the initial AOB abundance, the populations of AOB increased at 35 $^{\circ}$ C and 40 $^{\circ}$ C (p < 0.05, Table 4.3). Figure 4.4. Production of ¹⁵N-N₂O emissions in soil incubated at different temperatures for 10 days after application of NH₄NO₃. Open bars represent ¹⁵N-N₂O from denitrification, grey bars represent ¹⁵N-N₂O from denitrification and heterotrophic nitrification (since autotrophic nitrification was blocked with C₂H₂). *Vertical bars* are +1 SE of four replicates. Table 4.3. Daily rate of $^{15}N\text{-}N_2O$ emissions, cumulative $^{15}N\text{-}N_2O$ from different sources and ammonium oxidising bacteria (AOB) population after 10 days of the incubation in the dermosol. Soil was applied $100\mu g~N~g^{\text{-}1}$ as $^{14}NH_4{}^{15}NO_3$ or $^{15}NH_4{}^{15}NO_3$ and maintained at 60% FC. Each value has a standard error of the mean indicated under it (n=4) . | | Temperature | | $HSD_{0.05}$ | | |--|-----------------------------|-------------------------------|--------------------------|------| | | 35 | 40 | 45 | | | Daily rate of N ₂ O emission | $(ng^{-15}N_2O-N g^{-1} d)$ | [· 1) | | | | 0-3 | 1.99 | 2.17 | 0.90 | ns | | | ± 0.9 | ± 0.7 | ± 0.3 | | | 3-7 | 3.82 ^a | 2.29 ^b | 0.77 ^c | 0.76 | | | ± 0.3 | ± 0.02 | ± 0.09 | | | 7-10 | 2.46 ^a | 2.16 ^a | 0.31 ^b | 0.43 | | | ± 0.20 | ± 0.05 | ± 0.03 | | | Cumulative N ₂ O emissions | over the 10 da | ays $(ng^{-15}N_2O-N)$ | (g^{-1}) | | | Overall | 28.62 ^a | 22.14 ^b | 6.68 ^c | 2.1 | | | ± 1.8 | ± 2.2 | ± 0.6 | | | Denitrification (N ₂ O _D) | 12.73 ^a | 10.35 ^a | 2.16 ^b | 8.0 | | | $\pm 2.1(44)^*$ | $\pm 2.7(47)$ | $\pm 0.8 (32)$ | | | Nitrification (N ₂ O _N) | 15.90 ^a | 11.80 ^a | 4.58 ^b | 6.22 | | | $\pm 3.5(56)$ | $\pm 1.1(53)$ | $\pm 0.5 (68)$ | | | Autotrophic nitrification | 7.05 ^a | 1.68 ^b | 2.35 ^b | 4.05 | | (N_2O_A) | | | | | | | $\pm 2.5 (25)$ | $\pm 0.8 (8)$ | $\pm 0.7 (35)$ | | | Heterotrophic nitrification | 8.89 <i>a</i> | 10.09 <i>a</i> | 2.23 ^b | 5.13 | | (N_2O_H) | | | | | | | $\pm 1.6 (31)$ | $\pm 1.0 (45)$ | $\pm 0.8 (33)$ | | | AOB ** (cell g ⁻¹ dry soil) | 220545 ^a | 7998 ^b | 718 ^c | 3617 | | | ± 0 | ± 1264 | ± 104 | | ^{*}Contributions of autotrophic and heterotrophic nitrification to total ¹⁵N₂O are given in parentheses (%). Different letters indicate significant differences in total ¹⁵N-N₂O-N among temperatures. ^{**:} The initial AOB size was 688 ± 138 cells g⁻¹ dry soil. The counts of AOB population at different temperatures were estimated from samples without C_2H_2 amendment after 10 days of incubation. # 4.3.2.5 Soil mineral nitrogen and pH Changes in soil mineral N during the incubations indicated that little change in NH₄⁺ at 35 °C and at 40 °C, and an increase in NH₄⁺ at 45 °C during the experiment (Figure 4.5). From days 0-7, soil NO₃⁻ concentration increased from 21 to 28 and 32 μ g NO₃-N g⁻¹ dry soil at 35 °C and 40 °C, respectively (Figure 4.5). The concentrations of NO₃⁻ at these temperatures continuously increased over the period 7-10 days and reached 33-35 μ g NO₃-N g⁻¹ soil at the end of experiment (Figure
4.5). The soil NO₃⁻ concentration at 45 °C did not change in the first 7 days of incubation but decreased in the last 3 days of the experiment (Figure 4.5). At the beginning of the experiment, soil pH_{CaCl2} was measured at 5.45 (\pm 0.005). At day 10, the pH was 5.50 (\pm 0.009) in the treatment at 45 °C. The pH decreased in soil samples incubated at 35 or 40 °C. The largest decrease in the pH was observed in the treatments at 35 °C, which had a mean value of 5.29 (\pm 0.003) at the end of the experiment. The differences in pH change could be attributed to the difference in the rate of nitrification process ((Bolan and Hedley, 2003). #### 4.3.2.6 Soil respiration rate The production of CO_2 , a measure of the soil respiration, was affected by incubation temperatures in both soils in the present study (Figure 4.6). Soil respiration rates were significantly lower at 10 - 25 °C than at the range of 30 - 45 °C over the 5 days of incubation in both tested soils (p < 0.05, Figure 4.6). Cumulative CO_2 production in the dermosol over the 10 days in the second experiment was significantly less at 35 °C than at 40 °C and 45 °C (p < 0.05, Figure 4.6). Figure 4.5. The concentrations of ammonium and nitrate in the dermosol soil exposed at different temperatures after application of $100~\mu g$ N g^{-1} as NH_4NO_3 to soil on day 0. Soil samples were maintained at 60% FC during the incubation time. The pooled ANOVA was applied to determine the different rates of mineral N change over incubation time. Different letters indicate significant difference among temperatures. *Vertical bars* are +1 SE of four replicates. Figure 4.6. The production of CO_2 in response to different incubation temperatures. Soil moisture was maintained at 60% field capacity (33kPa). Different letters indicate significant differences in CO_2 concentration among temperature treatments for the dermosol (p < 0.05). *Vertical bars* are +1 SE of four replicates. #### 4.4 Discussion Our results demonstrated that N₂O emission from nitrification increased between 10 °C and 40 °C in two soils tested and accounted for more than 50% of total N₂O emissions in the dermosol. This suggests an important role of nitrification as the pathway of N₂O in dry conditions (~ 0.25 g water cm⁻³) and supports the assumption that high nitrification activity likely occurs at temperatures between 35 °C and 40 °C in soils during summer time. In previous studies, the highest nitrification rate (NO₃⁻ production) was observed at 35 °C in tropical soils (Myers, 1975; Liu et al., 2015) while in another study, which did not specifically measure heterotrophic nitrification, N2O production from nitrification increased with rising temperature from 13 °C to 35 °C (Gödde and Conrad, 1999). In our study, N₂O production from nitrification (both autotrophic and heterotrophic nitrification) peaked between 35 °C and 40 °C, then declined at 45 °C. This suggests that an optimum function may describe the relationship between temperature and N₂O production from nitrification, such as is used in the DAYCENT model (Parton et al., 2001). The optimal temperature for N₂O production appeared to be similar in the two tested soils, reflecting that the activity of nitrification relative to N₂O production may be largely affected by climate rather than soil type for samples arising from similar climatic environments. In such a case, the pattern of N loss as N2O via nitrification may be principally controlled by temperature although soil moisture and oxygen concentration may affect the magnitude of N₂O production from nitrification (Khalil et al., 2004; Bateman and Baggs, 2005). Heterotrophic nitrification produced more N₂O production than autotrophic nitrification at temperatures between 35 °C to 40 °C. Autotrophic nitrification has been considered to be more important than heterotrophic nitrification, as the pathways of N₂O production in soil (Goreau et al., 1980; Inubushi et al., 1996; Abbasi and Adams, 2000; Wrage et al., 2001). However, we found that autotrophic nitrification only contributed 25% of N₂O at 35 °C and reduced to 8% of total N₂O emissions at 40 °C. This reduction was potentially linked to the size of AOB population, which was lower at temperatures above 35 °C. Interestingly, heterotrophic nitrification produced the predominant N₂O emission at 40 °C and therefore supports the recent findings (Bateman and Baggs, 2005; Islam et al., 2007) that heterotrophic nitrification contributes a significant source of N₂O production. The relatively high contribution of heterotrophic nitrification to total N₂O production at 35 – 40 °C, however, contrasts with the finding by Liu et al. (2015) that heterotrophic nitrifiers decreased their activity, according to NO₃⁻ production, with increased temperature from 15 °C to 35 °C. Higher N₂O production from heterotrophic nitrification with increasing temperature from 30 °C to 40 °C suggests an increasing role of heterotrophic nitrification in total N₂O emissions from agricultural soils. Studies that applied C₂H₂ to all treatments would underestimate N₂O from nitrification, by neglecting N₂O from heterotrophic nitrification (Knowles, 1990; Bateman and Baggs, 2005). This N₂O produced would be mistakenly attributed to denitrification even though our study showed that heterotrophic nitrification was one of the dominant processes of N₂O emissions at the temperature range of 35 to 40 °C. There has been some controversy in the past about the substrates for heterotrophic nitrification. A general concept is that NH₄⁺ is not considered as important as organic-N compounds for the activity of heterotrophic nitrifiers (Schimel et al., 1984; Islam et al., 2007). Our result indicated that heterotrophic nitrification used NH₄⁺ as a prime substrate for nitrification, particularly at 35 °C to 40 °C, as evidenced by high ¹⁵N₂O production in the presence of C₂H₂. It was suggested by Bateman and Baggs (2005) that N₂O emitted by heterotrophic nitrification from organic N is negligible if the soil has sufficient inorganic N. Thus, the addition of 100 μg N g⁻¹ soil in the present study may influence the substrate selection of heterotrophic nitrifiers by oxidising the NH₄⁺ supply, in preference to organic N. This is similar to the results of Liu et al. (2015), who demonstrated that NH₄⁺ was predominantly converted to NO₃⁻ by heterotrophic nitrification in soil with 100 µg NH₄⁺ added. Another possible effect on the oxidation of NH₄⁺ by heterotrophic nitrifiers may relate to oxygen (O₂) concentration in the soil microsites as an indirect impact of temperature. High respiration rates at temperatures above 30 °C resulted in low O₂ concentrations due to the consumption of O₂ by soil microbial respiration (de Klein and Van Logtestijn, 1996). As O₂ concentration declines in soil microsites, N₂O production from heterotrophic nitrification tends to increase (Anderson et al., 1993; Zhu et al., 2013). High rates of N₂O from heterotrophic nitrification at 35 °C to 40 °C in the present study suggested the large proportion of NH₄⁺ subject to heterotrophic nitrification at these temperatures. Increasing the temperature to 45 °C reduced N₂O production both from autotrophic and heterotrophic nitrification, contributing to maintain a higher NH₄⁺ availability than at lower temperatures. Soil NH₄⁺ availability is primarily determined by other microbial processes such as N mineralisation and immobilisation. Net N mineralisation rate, a difference between gross N mineralisation and immobilisation (Schmidt et al., 1999), has been reported to increase rapidly with rising temperature from 25 °C to 40 °C (Zaman and Chang, 2004) and to 50 °C (Sierra and Marban, 2000) due to increased substrate decomposition. Thus, high NH₄⁺ availability measured at 45 °C in the present experiment suggested an increasing role of high temperatures in regulating net N mineralisation as the present study provided an evidence of low autotrophic nitrification at 45 °C. More research will be needed to thoroughly understand the rates of gross N mineralisation, which provides the information of microbial activities (Hart et al., 1994), and nitrification at temperatures between 40 °C to 50 °C. The other pathways of N₂O production in soil, namely denitrification, nitrifierdenitrification or an oxidation of hydroxylamine (NH₂OH), could be important subjects for future work. Denitrification accounted for 44% to 47 % total N2O production at temperature range of 35 to 40 °C in the dermosol and it is expected to be higher if the soil moisture content is greater than 60% FC (Sexstone et al., 1988; Renault and Stengel, 1994). Nitrifier-denitrification, a reduction of NO₂⁻ following the oxidation of NH₄⁺ in nitrification, could produce 30% of total N₂O production in acidic soils associated with low OC and O₂ concentration (Wrage et al., 2001; Zhu et al., 2013). This process was presumably limited by pH 5.3 to 5.5 and high OC, as indicated by soil respiration rates in the present study. However, it is imperative to quantify N₂O production from nitrifierdenitrification in many acidic soils in southern Australia by applying the isotope techniques (15N and 18O) described by Wrage et al. (2005). In addition, chemical oxidation of NH₂OH could result in N₂O formation (Bremner, 1997; Heil et al., 2015). The release of NH₂OH from AOB has been reported by previous studies (Stüven et al., 1992; Schmidt et al., 2004), thus potentially enhancing this abiotic N₂O production, particularly at the temperature range 30 - 50 °C (Heil et al., 2015). Therefore, further research will be needed to measure the proportion of N₂O from the oxidation of NH₂OH during nitrification, to have a better understanding of the mechanisms of N₂O production in soil. Although the growth and activity of AOA were presumably negligible in the soils with the additions above 50 µg NH₄-N g⁻¹ in the experiments presented in the present studies, the thermal response of AOA
needs to be understood, particularly in low fertilised or unfertilised soils. The abundance of Archaeal *amo*A genes can be quantified using primers crenamoA23F and crenamoA616R (Tourna et al., 2008) for amplification in QuantiFastTM qPCR master mix (Qiagen). Amplification efficiency for archaeal *amo*A qPCR helps improve the knowledge of the role of AOA in N cycle and the thermal response of AOA relative to N₂O production. Ammonium oxidising bacteria populations estimated by MPN are often variable in response, and time-consuming. Amplification of bacterial *amo*A genes can be performed similarly to archaeal *amo*A qPCR, except for the primers. The primers for bacterial *amo*A can be A-1R and amoA-2R (Rotthauwe et al., 1997). Future research should apply these qPCR techniques to precisely evaluate the growth and activity of bacterial *amo*A genes and archaeal *amo*A genes in response to high temperatures. #### 4.5 Conclusions Our results indicated that the rate of N_2O production from nitrification increased with rising temperature and peaked between 35 °C to 40 °C, where nitrification accounted for 55 % of total N_2O emissions. Heterotrophic nitrifiers used NH_4^+ as prime substrate during nitrification and produced the dominant N_2O production at 35 °C to 40 °C, while autotrophic nitrification declined above 35 °C. The activity of autotrophic nitrification appeared to relate to the growth of ammonium oxidising bacteria, as influenced by incubation temperature. Temperature might have indirect effects on N_2O production from nitrification, by reducing O_2 concentration in the soil microsite as indicated by high soil respiration rates above 30 °C. Denitrification was the dominant pathway of N_2O production between 35 °C and 40 °C, suggesting high potential N losses as N_2O emissions at these temperatures. At 45 °C, high soil NH_4^+ concentration could have resulted from low nitrification rate and/or high gross N mineralisation rate, indicating a great impact of high temperatures on N cycle. # Chapter 5 Soils from two contrasting climates differ in their thermal patterns of N₂O and nitrification #### 5.1 Introduction The magnitude of N_2O production from soils across climatic regions has been related to soil properties, climate and land management, since these factors influence the abundance and activity of soil microorganisms responsible for the production of N_2O . Microorganisms that mediate N have been observed to adapt to local temperature regimes in some studies (Powlson et al., 1988; Malhi et al., 1990; Stark and Firestone, 1996; Schimel and Gulledge, 1998). The thermal adaptation of these microorganisms may influence their capacities to produce N_2O with seasonal change and climatic zones. However, the available data of N_2O production are based on studies conducted under different experimental conditions (Goodroad and Keeney, 1984; Maag and Vinther, 1996; Gödde and Conrad, 1999; Holtan-Hartwig et al., 2002). Therefore, it is difficult to make comparisons of the thermal responses of N_2O production among different climatic regions because the effect of temperature may be confounded with other factors such as soil moisture or substrate (N_1H_4 and N_2) availability. Thus direct investigation of the thermal response of N_2O production in soils from different climates is, therefore, a novel approach. Nitrification is one of the major biological processes of N₂O emissions from soils (Bremner, 1997; Groffman et al., 2006), particularly in dry conditions such as southern Australia. It was reported that bacterial growth is very responsive above 30 °C (Bárcenas-Moreno et al., 2009) but the growth rates of nitrifiers, i.e., ammonium oxidising bacteria (AOB) (Schmidt, 1982), have not been previously examined at high temperatures. The evidence that bacteria meditating N mineralisation in soils originating from different climates respond dissimilarly to temperature (Dessureault-Rompré et al., 2010) suggests that this may be similar for AOB. Thus, it is important to evaluate the thermal responses of AOB, nitrification rate and associated N₂O production in soils sourced from contrasting climates. In this study, we evaluated the magnitudes of N_2O emissions in soils from two contrasting climatic zones following incubation between 20 °C to 40 °C over two weeks. In addition, the thermal responses of AOB to temperature and NO_3^- and N_2O production from autotrophic nitrification were investigated in the soils. #### 5.2 Materials & methods #### **5.2.1** Study sites and sample collection The soils used in this study were collected from two contrasting environments in July 2014. A loam soil collected from a sugar cane system in Queensland (18°35' S, 146°08' E) represented the tropical climate while a sandy loam collected from an apple orchard system in Tasmania (42° 57' S, 147°05' E) represented a temperate climate (Figure 5.1). The variations in daily air temperature and soil moisture (0-10 cm) from these sites are shown in Figure 5.2. After sampling, the soil samples were kept cool and immediately transported to the laboratory. Soils were sieved to remove the > 2 mm fraction to remove any stone and plant's roots then thoroughly mixed to ensure uniformity. Figure 5.1. Study sites and major characteristics (0-10 cm depth) of unamended experimental soils used in this study. Figure 5.2. The variation in daily air temperature with maximum temperature (red line), minimum temperature (blue line) and monthly total rainfall in two study sites (green vertical bars) from 2012-2014 (unpublished data from Nigel Swarts, The University of Tasmania for temperate soil and Melissa Royle, HCPSL for tropical soil). #### **5.2.2** Laboratory incubation The procedures of laboratory incubation are shown in Figure 5.3. Briefly, soil samples were wetted up to 60% FC then placed into a plastic bag with holes to allow gas exchange with the atmosphere. All soil samples were pre-incubated 7 days at average monthly temperatures of sampling time, 8 °C for the temperate and 22 °C for the tropical soil to re-establish soil microbial activity. Soil moisture was checked every 3 days and water added, if necessary, to maintain at 60% FC. After this pre-incubation, soil samples (50 g dry weight equivalent) were repacked into cores (37 mm diameter × 42 mm height; 10.75 cm² surface area) to achieve the original bulk density from field sites at 1.04 and 1.10 g soil cm⁻³ for the temperate and tropical soil, respectively. To avoid the limitation of NH₄⁺ on nitrification (Chapter 3), 2ml of 0.09 mM of (NH₄)₂SO₄ was added to each soil core to provide final addition of NH_4^+ of $100~\mu g~N~g^{\text{--}1}$ soil. This solution was added slowly onto the top of upright soil cores to reach a final water content of 60% FC, which reflects the soil moisture in the field at certain times during summer, between December to March (Figure 5.2). Each soil core was placed into a 250ml jars with a tight seal and a lid equipped with a rubber septum (Subaseals#25, Sigma-Aldrich, St Louis, MO, USA). The air in the jars was refreshed for two minutes using a mini fan before being sealed. Acetylene (C₂H₂) was applied to distinguish N₂O production from autotrophic nitrification and N₂O from other sources (heterotrophic nitrification and denitrification), as described in section **3.2** (**Chapter 3**). All jars were incubated at constant temperatures of 20, 25, 30, 35 and 40 °C for 14 days using four replicates (Figure 5.3). #### **5.2.3** Sampling and analysis Two sets of incubations were used in this experiment, one to monitor gas sampling and the other to monitor soil mineral nitrogen concentrations. In the first set of incubations, the headspace of 40 jars (two soils \times five temperatures \times four replicates) was sampled on days 0, 3, 7 and 10 after incubation. A 20 ml sample of headspace gas was taken using a Hamilton 50 ml gas-tight syringe (Hamilton Company, Reno, NV, USA) and transferred into a pre-evacuated 12 ml glass Exetainer (Labco, Ceredigion, UK) for measurement of N₂O and CO₂ production, as presented in section **3.2** in **Chapter 3**. After gas sampling, the headspace of all jars were refreshed using a mini-fan for two minutes and re-injected C₂H₂ to the relevant jars for re-establishing the inhibition of autotrophic nitrification. In the second set of incubations, soil samples were taken on 0, 7 and 14 days for measurement of NH₄⁺ and NO₃⁻ concentrations, as described in section **3.2** (**Chapter 3**). Subsoil samples (10 g of dry soil) were taken on day 0 and 14 for estimation of the populations of ammonium oxidising bacteria (AOB) using the Most Probable Number (MPN) method as described in **Chapter 4**. ## 5.2.4 Calculation of nitrogen transformation rates The estimation of autotrophic nitrification (N_{nit} , $\mu g~NO_3$ - $N~g^{-1}~d^{-1}$) and associated N_2O (N_2O_A , $\mu g~N_2O$ - $N~g^{-1}~d^{-1}$) was described in section 3.2 (**Chapter 3**). The proportion (P_n) of N_2O to NO_3^- by autotrophic nitrification was calculated by dividing the amount of N_2O and NO_3^- production. $$P_n = \frac{N_2 O}{NO_3} \times 100$$ (Figure 5.1) The change in the rate of a biological process with increasing the temperature can be assessed by using the function of Q_{10} (Van't Hoff, 1884) The influence of temperature on the growth of AOB population could be expressed as: $$\mathbf{P_t} = P_0 \times e^{\mu t} \tag{Figure 5.2}$$ where p_t (cells g^{-1}) is the counts of AOB at time t (day), p_0 is the initial AOB at t = 0 and μ (d^{-1}) is the growth rate. #### 5.2.5 Statistical analysis The pooled ANOVA for measurement over time (Gomez and Gomez, 1984) was applied to determine the rates of change over time of N₂O and mineral N contents in each soil. Two-way ANOVA was used to determine the significant differences in N₂O and CO₂ production or mineral N between soils and temperatures
over the 14 days of incubation. The Tukey (HSD_{0.05}) test was applied *post hoc* to determine any significant differences between treatments. Statistical tests on ratios like N₂O/NO₃⁻ was based on Arcsine transformed data, as described by Ireland (2010). Correlations (Pearson) were applied to determine the relationships among temperature and nitrification products. All statistical analysis was performed using Statistix 10 (Tallahassee, USA). Figure 5.3. Experimenal procedures, including: Pre-incubation, repacking soil core, addition of NH_4^+ solution and C_2H_2 (0.01% v/v) then incuabtion at different temperatures. #### 5.3 Results #### 5.3.1 Soil mineral N ## 5.3.1.1 *NH*₄⁺ *content* In the temperate soil, the concentrations of NH_4^+ decreased over the period 0-7 days in the absence of C_2H_2 , then remained relatively stable after day 7, except for 40 °C where NH_4^+ increased in the last 3 days of incubation (Figure 5.4). Following amendment with C_2H_2 , NH_4^+ contents remained stable during the first 7 days then increased after that at all temperatures, except for 30 °C. In the tropical soil, the amount of NH_4^+ did not change at 20 °C and 40 °C throughout the experimental period in the absence of C_2H_2 (Figure 5.4). The reduction of NH_4^+ was observed after 3 days at 25 °C and 35 °C and after 7 days at 30 °C. Ammonium increased at 35 °C to 40 °C in last three days of incubation while NH_4^+ remained consistent between 20 °C and 30 °C in the sample without C_2H_2 . In the presence of C_2H_2 , the concentration of NH_4^+ remained stable during the first 7 days at all temperatures (Figure 5.4). #### 5.3.1.2 *NO*₃ content The concentration of soil NO_3^- in the temperate soil increased rapidly in the first 7 days of incubation at 25 - 30 °C without C_2H_2 addition (Figure 5.5). Nitrate increased slowly at 20 °C and 35 °C over the period 0 - 7 days while NO_3^- did not change over this period in the 40 °C treatment. After day 7, the concentrations of NO_3^- were remained similar at 25 - 30 °C but increased at other temperatures (Figure 5.5). In the samples with amendment of C_2H_2 , the concentrations of NO_3^- declined at all temperatures through the experiment to a similar extent at different temperatures (Figure 5.5). In the tropical soil, NO_3^- concentrations increased rapidly at 30-35 °C in soil without C_2H_2 addition over the period 0-7 days and steadily at other temperatures during the experiment (Figure 5.5). The highest NO_3^- concentration after 14 days of incubation was found at 30-35 °C and followed by 25 °C and 40 °C while the lowest NO_3^- concentration was measured at 20 °C (Figure 5.5). In samples with C_2H_2 addition, NO_3^- declined from days 0-3 at all temperatures then remained at $0.4~\mu g$ N g^{-1} soil over the period 3-14 days (Figure 5.5). Figure 5.4. Soil ammonium concentrations at different temperature and with and without acetylene addition in two tested soils after N application of $100\mu g$ N g^{-1} soil, as $(NH_4)_2SO_4$. Soil moisture was maintained at 60% FC during incubation. Error bars represent +1 SE (n = 4). Figure 5.5. Soil nitrate concentrations at different temperature and with and without acetylene amendment in two tested soils after N application at 100 μ g N g⁻¹ soil, as (NH₄)₂SO₄. Soil moisture was maintained at 60% FC during incubation. Error bars represent +1 *SE* (n = 4). #### 5.3.2 Total N₂O emissions The concentration of N_2O in the absence of C_2H_2 was attributed to both nitrification and denitrification, and is referred to here as total N_2O production (Figure 5.6). Total N_2O production differed with incubation time among temperatures (Pooled ANOVA, p < 0.05). In the temperate soil, total N_2O emissions were produced slowly over the period 0 to 3 days but increased rapidly after 3 days of incubation at all temperatures, except for $20~^{\circ}C$, where total N_2O increased steadily (Figure 5.6). The highest cumulative N_2O production after 14 days was measured at 30 $^{\circ}C$ and 35 $^{\circ}C$, followed by 40 $^{\circ}C$ and 25 $^{\circ}C$; the lowest N_2O production was at 20 $^{\circ}C$. In the tropical soil, total N_2O production occurred fastest at 35 $^{\circ}C$ and 40 $^{\circ}C$ than at 20 $^{\circ}C$ to 30 $^{\circ}C$ (Figure 5.6). The production of N_2O at 35 - 40 $^{\circ}C$ accumulated rapidly in the first 7 days then slowed from 7 to 14 days. Cumulative N_2O production was threefold less between 20 $^{\circ}C$ and 30 $^{\circ}C$ than at 35 $^{\circ}C$ to 40 $^{\circ}C$ (Figure 5.6). Over the 14 days of incubation, the rates of total N_2O production in the tropical soil were significantly higher than in the temperate soil at all sampling times (p < 0.05). Cumulative N_2O production over the 14 days ranged from $0.06-0.20~\mu g~N_2O-N~g^{-1}$ soil in the temperate soil and from $0.12-0.79~\mu g~N_2O-N~g^{-1}$ soil in the tropical soil (Figure 5.6). ## 5.3.3 N₂O from heterotrophic nitrification and/or denitrification The amounts of N_2O produced in the soils with addition of C_2H_2 (0.01% v/v) were attributed to denitrification and/or heterotrophic nitrification (Figure 5.6). In the temperate soil, the rates of N_2O from these processes were low in the first 3 days of incubation and there was no significant difference among temperatures. Cumulative N_2O emissions were higher at 30 °C to 40 °C than at lower temperatures in subsequent measurements. In the tropical soil, the thermal response of N_2O production from heterotrophic nitrification and/or denitrification followed a similar pattern to total N_2O production (Figure 5.6). The low rates of N_2O production from heterotrophic nitrification and/or denitrification in this soil over the period 3 –14 days were presumably due to low soil NO_3^- concentration, which inhibited the production of N_2O from denitrification in the presence of C_2H_2 (Figure 5.6). Figure 5.6. Cumulative N_2O production at different temperatures and with and without acetylene amendment in two soils after N application at $100\mu g$ N g^{-1} soil as $(NH_4)_2SO_4$. Soil moisture was maintained at 60% FC. Bars represent +1 SE (n = 4). #### 5.3.4 Net rate of autotrophic nitrification The daily net rate of nitrification (N_{nit}) in first 7 days of incubation varied from 0.47 to 1.68 µg NO_3^- -N g^{-1} d^{-1} in the temperate soil (Table 5.1). N_{nit} increased with rising temperature from 20 °C to 30 °C, then declined above 30 °C, indicating the T_{opt} at 25 – 30 °C in this soil from 3 to 7 days (Table 5.1). In the tropical soil, N_{nit} occurred slowly at 20 °C, at 1.31 μ g NO_3 ⁻-N g⁻¹ d⁻¹, but increased to 2.15 μ g NO_3 ⁻-N g⁻¹ d⁻¹ at 35 °C. N_{nit} at 40 °C was as low as 20 °C, suggesting that T_{opt} for autotrophic nitrification rate was between 30 °C and 35 °C (Table 5.1). #### 5.3.5 N_2O from autotrophic nitrification The differences in N_2O production between samples with and without C_2H_2 indicated N_2O from autotrophic nitrification (Figure 5.6). Differential responses of N_2O from autotrophic nitrification to temperatures were primarily observed after 7 days in the temperate soil but 3 days in the tropical soil (Figure 5.6). Estimation of N_2O from autotrophic nitrification was likely to be overestimated from 3 to 14 days in the tropical soil because N_2O arising from denitrification (Figure 5.6) was potentially limited by low NO_3^- contents in the presence of C_2H_2 (Figure 5.5). The thermal response of N_2O from autotrophic nitrification were clearly determined in the first 3 days in the tropical soil. Thus, the data reported in Table 5.1 focus on the thermal response of N_2O from autotrophic nitrification in the first 7 days in the temperate soil and the first 3 days in the tropical soil. In the temperate soil, daily rate of N_2O from autotrophic nitrification was 0.002 - 0.008 $\mu g N_2O-N g^{-1} d^{-1}$ in the first 7 days of incubation (Table 5.1). Autotrophic nitrification produced $0.004 - 0.051 \mu g N_2O-N g^{-1} d^{-1}$ in the tropical soil in the first 3 days of incubation (Table 5.1). The highest daily rate of N_2O from autotrophic nitrification, referred to as the optimal value (T_{opt}), was found between 30 °C and 35 °C in the temperate soil but between 35 °C and 40 °C in the tropical soil (Table 5.1). #### 5.3.6 The proportion of N₂O to NO₃⁻ from autotrophic nitrification In the temperate soil, the proportion of N_2O to NO_3^- (P_n) production from autotrophic nitrification varied from 0.1% to 0.4% between 20 °C to 30 °C but there was no significant difference among temperatures (Table 5.1). Above 30 °C, P_n were above 1.0% the first 7 days of incubation due to a faster decline of NO_3^- than N_2O production from autotrophic nitrification. In the tropical soil, P_n did not differ between 20 °C and 30 °C although P_n ranged from 0.3% to 1.3% in the first 3 days of incubation (Table 5.1). P_n was above 2.0% in the treatments at 35 °C and 40 °C (Table 5.1) in this period. #### 5.3.7 Ammonium oxidising bacteria (AOB) population Incubation temperature had a great influence on the growth of AOB in two soils after 14 days of incubation (Table 5.1). The growth rate of AOB was greater at 20-30 °C than at higher temperatures in the temperate soil while the growth rate of AOB in the tropical soil was greatest at temperatures of 25-30 °C. Higher temperatures slowed the abundance of AOB in the tropical soil and had a detrimental effect on the growth of AOB in the temperate soil. Table 5.1. Daily rate of NO_3^- production (N_{nit}), nitrous oxide (N_2O_A) from autotrophic nitrification, the proportion of N_2O to $NO_3^-(P_n)$ in the first 7 days of incubation and the growth rate of AOB population (d^{-1}) after 14 days in soils added with 100 μ g NH₄-N g^{-1} soil. Soil was
maintained at 60% of field capacity (-33 kPa). | | From 0 – 3 days | | | | From 3 – 7 days | | | | | | From 0 – 14 days | |-----------------------|-------------------------------|-----------------------------|---------------------------|----|-------------------------|----|-----------------------------|---|---------------------------|----|---------------------------------| | | N_2O_A | $\mathbf{N}_{\mathrm{nit}}$ | $\mathbf{P}_{\mathbf{n}}$ | | N_2O | | $\mathbf{N}_{\mathrm{nit}}$ | | $\mathbf{P}_{\mathbf{n}}$ | | μ-AOB | | | $\mu g N g^{-1} d^{-1}$ | $\mu g N g^{-1} d^{-1}$ | % | | $\mu g N g^{-1} d^{-1}$ | | $\mu g N g^{-1} d^{-1}$ | | % | | (d^{-1}) | | Temperate soil | | | | | | | | | | | | | 20 | 0.002 ± 0.001 c | 0.97 ± 0.31 | ab 0.18 | b | 0.003 ± 0.001 | b | 0.68 ± 0.05 | b | 0.43 | b | 0.42 \pm 0.03 <i>a</i> | | 25 | 0.003 ± 0.001 c | 1.12 ± 0.27 | ab 0.27 | b | 0.005 ± 0.001 | b | 1.52 ± 0.15 | a | 0.34 | b | 0.35 \pm 0.01 <i>a</i> | | 30 | 0.007 ± 0.002 a | 1.55 ± 0.15 | a 0.42 | b | 0.008 ± 0.001 | a | 1.49 ± 0.19 | a | 0.57 | b | 0.25 \pm 0.10 <i>a</i> | | 35 | 0.007 ± 0.002 a | 0.68 ± 0.32 | ab 1.01 | a | 0.007 ± 0.002 | ab | 0.65 ± 0.07 | b | 1.04 | ab | -0.10 ± 0.04 b | | 40 | 0.005 ± 0.001 b | 0.47 ± 0.17 | b 1.05 | a | 0.005 ± 0.00 . | b | 0.40 ± 0.09 | b | 1.19 | a | -0.20 ± 0.07 b | | $\mathrm{HSD}_{0.05}$ | 0.001 | 1.03 | (5.24)* | | 0.002 | | 0.53 | | (3.26) | | 0.28 | | Tropical soil | | | | | | | | | | | | | 20 | 0.004 ± 0.001 c | 1.31 ± 0.16 | b 0.28 | b | 0.005 ± 0.001 | c | 0.65 ± 0.04 | c | 0.82 | b | 0.24 ± 0.09 b | | 25 | 0.011 ± 0.004 <i>c</i> | 1.55 ± 0.11 | b 0.70 | b | 0.009 ± 0.001 | bc | 0.94 ± 0.07 | c | 0.94 | b | 1.19 ± 0.03 <i>a</i> | | 30 | 0.022 ± 0.009 c | 1.72 ± 0.13 | ab 1.27 | ab | 0.021 ± 0.006 | b | 1.45 ± 0.09 | b | 1.42 | ab | 1.22 ± 0.03 a | | 35 | 0.051 ± 0.006 a | 2.15 ± 0.07 | a 2.39 | a | 0.039 ± 0.005 | a | 2.00 ± 0.14 | а | 1.94 | а | 0.13 ± 0.04 b | | 40 | 0.045 ± 0.008 a | b 1.33 ± 0.08 | b 3.40 | a | 0.041 ± 0.005 | a | 0.85 ± 0.12 | c | 4.85 | a | 0.19 ± 0.13 b | | $\mathrm{HSD}_{0.05}$ | 0.017 | 0.51 | (6.80) | | 0.015 | | 0.51 | | (6.91) | | 0.34 | | Two-way ANOVA | * | * | ns | | * | | ns | | ns | | * | ^{*} significant difference between two soils at p < 0.05; **non-significant difference. The same letters within one column and soil indicate no significant difference at $\alpha = 0.05$; Values in parentheses were based on Arcsine transformed data #### 5.3.8 Production of CO₂ The production of CO_2 , indicated soil microbial respiration, increased with rising temperatures in both soils (Figure 5.7). The daily rates of soil respiration were significantly lower at 20 - 25 °C than at higher temperatures over the first 7 days of incubation in both tested soils (p < 0.05, Figure 5.7). #### **5.3.9** Inter-relationships The relationships among temperature, total N_2O production, autotrophic nitrification products and CO_2 production from two soils are shown at Table 5.2. Total N_2O production was positively correlated with temperature (r = 0.54, p < 0.01). N_{nit} was closely related to the growth rate of AOB (r = 0.42, p < 0.05). P_n was strongly influenced by the rate of N_2O from autotrophic nitrification (r = 0.90), indicating the impact of temperature on P_n by regulating N_2O production (Table 7.4). The rate of N_2O_A was negatively correlated with the rate of CO_2 (r = -0.43, p < 0.05). Figure 5.7. The rate of CO_2 production at different temperature in two tested soils after N application at 100 μ g N g⁻¹ soil as (NH₄)₂SO₄. Soil moisture was maintained at 60% FC during incubation. Bars represent +1 *SE* (n = 4). Table 5.2. Correlation coefficients (r values) among temperature, total N_2O , CO_2 production, autotrophic nitrification (N_{nit}), N_2O from autotrophic nitrification (N_2O_A), ammonium oxidising bacteria (AOB) and the proportion of NO_3^- to N_2O (P_n) (n=30). | | Temperature | Total N ₂ O | N _{nit} | AOB | N ₂ O _A | P _n | |------------------------|-------------|------------------------|------------------|---------|-------------------------------|----------------| | Total N ₂ O | 0.54** | | | | | | | N_{nit} | -0.10 | 0.49^{**} | | | | | | AOB | -0.43* | -0.07 | 0.42^{*} | | | | | N_2O_A | 0.43^{*} | 0.94^{**} | 0.48^{**} | -0.02 | | | | P_n | 0.57** | 0.84^{**} | 0.17 | -0.13 | 0.90^{**} | | | CO_2 | 0.62^{**} | -0.18 | -0.53** | -0.60** | -0.43* | -0.05 | ^{*} significant at P < 0.05 ^{**} significant at P < 0.01 #### 5.4 Discussion Our study revealed that the tropical soil was more responsive to temperature in total N₂O production than the temperate soil. This finding supports Bouwman's scaling model (Bouwman et al., 2002) that N₂O emissions in tropical climates exceed those in temperate climates. The results reflect that relative N₂O production from soil microorganisms in contrasting climates respond dissimilarly to temperature. Above 30 °C, the AOB population increased in the tropical soil but declined in the temperate soil. The distinct growth rate of AOB in each climate could be a result of the physiological adaptation of microorganisms to local temperature regimes, which has been identified by previous studies (Powlson et al., 1988; Malhi et al., 1990; Stark and Firestone, 1996; Schimel and Gulledge, 1998). The different capacities of soil microorganisms in responding to high temperatures influenced the magnitudes of N₂O production in two tested soils. We postulate that the higher N losses as N₂O emissions in response to high temperatures are more likely to occur in tropical climate soils rather than in temperate climate soils. Our results confirm that an optimum function (T_{opt}) can be used to describe the response of autotrophic nitrification to temperature, although it may vary between regions. T_{opt} for NO_3^- production from autotrophic nitrification was $20-30\,^{\circ}$ C in the temperate soil and was at $30-35\,^{\circ}$ C in the tropical soil. This finding supports the suggestion that different T_{opt} for nitrification are observed for different climatic regions, as described by Stark (1996) and employed in the DayCent model (Parton et al., 2001). A comparison of soils from different regions indicates that nitrifiers in warm regions have higher T_{opt} than those from cooler areas. For example, nitrifiers from temperate soils in Denmark (Maag and Vinther, 1996) and Canada (Malhi and McGill, 1982) had T_{opt} of $20\,^{\circ}$ C while those from tropical Australian soils (Myers, 1975) had T_{opt} at $35\,^{\circ}$ C (Figure 5.8). The differences in T_{opt} for nitrification rate may suggest that ecosystem models predicting N_2O should consider this characteristic for a better understanding of N_2O production across climatic regions. The proportion of N_2O to NO_3^- production from autotrophic nitrification (P_n) increased with rising temperature (r = 0.57, p < 0.01) and was above 1.0% at 35 °C in both tested soils. P_n was often reported to be less than 1.0% in previous studies at the temperature range 5 °C to 30 °C (Table 2.3, Chapter 2). There was a significant effect of temperature on P_n, with a greater P_n at high temperatures, due to a faster decline of NO₃⁻ than N₂O production from nitrification. Decreased NO₃⁻ and N₂O production above 35 °C was not only influenced by the growth of AOB (r = 0.42, p < 0.05) but also affected by the presence of high anaerobic zones caused by high microbial respiration rates (r = -0.53, p < 0.01). Increased soil respiration rate results in reduced O₂ availability in soil microsites (Smith, 1997; Öquist et al., 2004; Butterbach-Bahl and Dannenmann, 2011), which increases P_n. As the partial pressure of O₂ dropped from 20 kPa to 0.7 kPa and 0.5 kPa, P_n increased from 0.1% to 1.4% and up to 6.9 %, respectively (Khalil et al., 2004; Zhu et al., 2013). The mechanism of the effect of O₂ on P_n was hypothesised to relate to the use of nitrite (NO₂⁻) as the terminal electron acceptor, since O₂ becomes limiting in the soil microsites (Poth and Focht, 1985; Remde and Conrad, 1990). Wrage et al. (2001) confirmed this hypothesis by observing the production of N₂O from NO₂⁻ following nitrifier-denitrification. Since P_n increased above 35 °C, the loss of N as N₂O during nitrification should be observed even under low nitrification rate (low NO₃⁻ production). An effective function describing the dependence of P_n on temperature may allow a quick estimate of N₂O through measurement of NO₃ produced during nitrification across regions. However, greater replicates will be needed to validate the relationship between P_n and temperature, identified in the present study. The use of C₂H₂ to distinguish N₂O released by autotrophic nitrification from denitrification has been used in many previous studies (Maag and Vinther, 1996; Gödde and Conrad, 1998; Garrido et al., 2002; Avrahami et al., 2003). In the soil with a low NO₃ content, N₂O from denitrification is likely to have been underestimated due to lack of NO₃⁻ supply from autotrophic nitrification in the presence of C₂H₂ (0.01 % v/v) (Mosier, 1980; Knowles, 1990; Malone et al., 1998; Groffman et al., 2006). In other words, the amount of N₂O from autotrophic nitrification may be overestimated. In the tropical soil, low NO₃⁻ contents after 3 days in the presence of C₂H₂ appeared to limit the production of N₂O from denitrification, and may have led to an overestimation of N₂O from autotrophic nitrification from days 3 to 14. However, this did not have a big impact on the thermal response of autotrophic
nitrification since N₂O from autotrophic nitrification among temperatures diverged primarily within the first 3 days in the tropical soil. Generally, the magnitudes of N₂O and NO₃ were lower in the soils treated with C_2H_2 (0.01% v/v) than those without C_2H_2 treatments (Figure 5.4), indicating the efficient inhibition of autotrophic nitrification by the C₂H₂ method in the present study. Total N₂O production was estimated from the soils without C₂H₂ addition, so the thermal response of total N₂O production was unaffected by the C₂H₂ method. It is acknowledged that this study was based on just two soils from contrasting climates and did not take into account variations in soil properties, which may affect total N_2O production and thermal responses of N_2O emissions (Davidson, 1991; Aulakh et al., 1992). Thus, future research should be conducted with greater samples from each zone to confirm the important findings on the influence of climate on total N_2O production and the optimal temperatures for nitrification. Heterotrophic nitrification and/or denitrification were very responsive above 35 °C, evidenced from the amounts of N₂O from soils with the presence of C₂H₂. Stable isotope techniques (¹⁵N) should be employed to measure N₂O production from heterotrophic nitrification and denitrification, which cannot be distinguished using amendments of C₂H₂ (Hynes and Knowles, 1982; Bateman and Baggs, 2005), to better understand thermal responses of biological processes of N₂O at a range of climatic regimes. Figure 5.8. The effect of soil temperature on relative nitrification rate in this study compared with results from published results: relative nitrification rates (lines) and variation in mean of monthly air temperatures (bars). #### 5.5 Conclusions Our results indicate that total N_2O production in soils from two contrasting climates responded dissimilarly to rising temperature. The production of total N_2O was higher in the tropical than in the temperate soil. An optimum function can be used to describe the response of autotrophic nitrification to temperature, although it may vary with climates. The temperature optima for autotrophic nitrification (NO_3^-) were higher in the tropical ($30-35\,^{\circ}C$) than the temperate climate ($25-30\,^{\circ}C$). N_2O from autotrophic nitrification peaked at $30-35\,^{\circ}C$ in the temperate soil and was ($35-40\,^{\circ}C$) at in the tropical soil. The proportion of N_2O released to NO_3^- by nitrification increased with rising temperature and was over 1.0% at 35 $^{\circ}C$, regardless of climatic zone. The results suggest that nitrogen losses as N_2O emissions are likely to be higher in the tropical than temperate climate in response to rising temperature. Heterotrophic nitrification and/or denitrification appear to be important sources of N_2O production from agricultural soils exposed to high temperatures. ## Chapter 6 Soil moisture affects the thermal response of denitrification* #### 6.1 Introduction The rates of denitrification in soil are controlled by multiple factors including climate, soil properties (pH, percentage of clay) and agricultural practices (tillage, fertiliser supply, stubble retention, irrigation, etc). Many studies have attempted to understand the influence of these factors on the activity of denitrification from agriculture soil. It has been shown that soil moisture plays an important role in regulating denitrification products (NO, N₂O and N₂). An increase in soil moisture tends to increase the rate of denitrification and change the proportions of denitrification products, particularly above 60% water-filler pore space (WFPS). At high soil water contents, denitrification appears to be the key process related to N₂O and N₂ production (de Klein and Van Logtestijn, 1996; Hefting et al., 2003; Bateman and Baggs, 2005), while NO production is very small as a result of its high reactivity and low diffusion from soil to the atmosphere (Firestone and Davidson, 1989). Soil moisture content controls oxygen (O₂) availability, gas and nitrate (NO₃⁻) diffusion into soil microsites (Smith et al., 2003), which regulates the total N denitrified and denitrification product ratios, i.e., the N₂O/N₂. Increasing soil water content above 60% WFPS results in an increasing proportion of the soil volume that is anaerobic (Sexstone et al., 1988; Renault and Stengel, 1994), promoting the activity of heterotrophic denitrification (Dobbie and Smith, 2001) and increasing the N₂O/N₂ ratio. As O₂ content drops below 0.02 atm (~ 2 kPa), the reduction of N₂O to N₂ is likely to be inhibited ^{*} To be submitted to Science of the Total Environment (Morley et al., 2008; Zhu et al., 2013), thus increasing the N_2O/N_2 ratio. Under anaerobic conditions, NO_3^- can act as a terminal electron acceptor (Strong and Fillery, 2002), potentially increasing the N_2O/N_2 ratio from denitrification. Several studies measured denitrification at different temperatures (e.g., (Keeney et al., 1979; Maag and Vinther, 1996; Holtan-Hartwig et al., 2002; Schaufler et al., 2010) and observed that N_2O production exponentially increased with rising temperature, up to 25 °C. These studies, however, were conducted under constant moisture contents, while others (Dobbie and Smith, 2001; Bateman and Baggs, 2005; Senbayram et al., 2012) used the constant temperatures with varying moisture or O_2 contents to evaluate the change in N_2O/N_2 ratio. The interactive effect between soil moisture and temperature in regulating the total N denitrified and N_2O/N_2 ratio is not documented and therefore is the focus of this study. Futhermore, the measurements of N_2 production in previous studies (Keeney et al., 1979; Avalakki et al., 1995; Maag and Vinther, 1999; Rudaz et al., 1999; Dobbie and Smith, 2001)) were indirectly estimated by the inhibition of N_2O reductase using the C_2H_2 technique. Importantly, uneven distribution of C_2H_2 in soil can prevent the inhibition of N_2O reduction, causing an error in the calculation of N_2O/N_2 ratio. The use of an isotopic tracer (^{15}N) enables a more precise evaluation of the reduction of N_2O to N_2 and N_2O/N_2 responses to temperature and soil moisture. The aim of this study was, therefore, to assess the total denitrification rate and the responses of N_2O and N_2 at different temperatures and soil moisture contents. The use of an isotopic tracer (^{15}N) was employed to measure gas transformations during denitrification at temperatures in the range 25 °C to 45 °C and at moisture contents of 60% and 75% of field capacity. #### **6.2** Material and methods #### **6.2.1** Study sites and sample collection The soil used in this study was a black dermosol, according to the Australian soil classification (Isbell, 1996) with 45% clay, 25% silt, 30% sand, total carbon 5.2%, total N 0.2%, pH (CaCl₂) 6.9, bulk density 1.12 g cm⁻³, field capacity at – 33 kPa (FC_{33 kPa}) 0.37 g water g⁻¹. The annual variations in daily soil temperature and monthly water content from the field site are shown in Figure 4.1 (Chapter 4). ## **6.2.2** Laboratory incubation #### 6.2.2.1 Pre-incubation Soil samples were wetted up to 60% FC_{33 kPa} (0.21 cm³ cm⁻³ soil) then placed into a plastic bag with holes to allow gas exchange with the atmosphere. All soil samples were preincubated for 7 days at 25 °C to re-establish soil microbial activity. #### 6.2.2.2 Incubation Soil moisture after the pre-incubation was maintained at 50% of FC. Soil subsamples (50 g dry weight equivalent) were repacked in a core (\emptyset 37 mm \times 42 mm; 10.75 cm² surface area) to a bulk density of 1.12 g cm⁻³, equivalent to that measured from the field. To avoid substrate limitation affecting denitrification (**Chapter 5**), isotopically labelled nitrate solutions as 14 NH₄ 15 NO₃ were added slowly onto the top of upright cores. To reach final water contents of 60% FC (0.25 cm³ cm⁻³) and 75% FC (0.31 cm³ cm⁻³), 2 ml of 14 NH₄ 15 NO₃ concentration at 0.09 mM and 5ml of 14 NH₄ 15 NO₃ at 0.036 mM were used to achieve the final concentration of 100 μ g N g⁻¹. These water contents reflect the range of soil moisture at the field site during summer. Soil cores were then placed into 250ml jars equipped with a rubber septum (Subaseals#25, Sigma-Aldrich, St Louis, MO, USA) in the cap. All jars were then incubated at 25, 35, 40 or 45 °C for 10 days using 4 replicates. Two sets of soil incubations were established to monitor gas production and mineral nitrogen transformations during the experiment ### 6.2.3 Sampling and analysis In the first set of incubations, the headspace of 32 jars (two levels of soil moistures × four temperatures × four replicates) was sampled on days 0, 3, 7 and 10 after addition of the N solution. A 20 ml sample of headspace gas was taken using a Hamilton 50 ml gas-tight syringe (Hamilton Company, Reno, NV, USA); and transferred into a pre-evacuated 12 ml Exetainer (Labco, Ceredigion, UK) for measurement of ¹⁴⁺¹⁵N-N₂O, ¹⁵N-N₂O, ¹⁵N-N₂ and CO₂. After gas sampling, the headspace of all jars was refreshed using a mini-fan for one minute. In the second set of incubations, soil samples were taken on day 0 and 10 to measure NO₃⁻ concentrations as a substrate for denitrification. Briefly, NO₃⁻ was extracted from 10 g of moist soil by shaking for one hour in 50 ml of 2 M KCl. The analysis of NO₃⁻ was performed colorimetrically with an AutoAnalyser (AA3 HR, SEAL, West Midlands, UK) using the hydrazine reduction method (Kamphake et al., 1967). #### **6.2.4** Gas measurement The measurement of CO₂ and N₂O production was described in **Chapter 3**. Trace gas isotope ratios ($\delta^{15}/\delta^{14}N$) were determined a Delta VTM Isotope-ratio Mass Spectrometer (Thermo-Scientific, Bremen, Germany) as described in section 4.2 (**Chapter 4**). #### **6.2.5** Calculation of nitrogen transformation rates Nitrogenous gas (
$^{15}N_2O$ or $^{15}N_2$) was calculated using ^{15}N atom % excess determined by mass spectrometry and the amount of total N (N_2O or N_2), taking into account the natural abundance of ^{15}N in replicate control (blank) samples. $$^{15}\text{N}_2\text{O} = ^{(14+15)}\text{N}_2\text{O} \times \%$$ atom ^{15}N excess (Equation 6.1) The production of $^{15}N_2O$ and the reduction of $^{15}N_2O$ to $^{15}N_2$ (corresponding to $^{15}N_2$ production) were estimated from the accumulation of each nitrogenous gas during the experiment. The reduction of NO_3^- to N_2O and reduction of N_2O to N_2 assessed were; $$^{15}\text{NO}_3$$ \longrightarrow $^{15}\text{N}_2\text{O}$ \longrightarrow $^{15}\text{N}_2$ (Equation 6.2) As N_2 production was exclusively derived from N_2O , it was assumed that both gases have the same isotopic composition, i.e., that the ratio of N_2O/N_2 was equal to the measured ratio of $^{15}N_2O/^{15}N_2$. #### 6.2.6 Determining the activation energy (E_a) of a reaction The rate of a reaction, i.e., N_2O reduction, depends on the temperature. As temperature increases, the molecules move faster and collide more frequently. The molecules, which carry kinetic energy, requires energy to start a reaction, defining as the 'activation energy (E_a). The relationship between temperature (T) and the rate of a reaction (k) was modelled by Arrhenius (1889), as: $$k = A e^{\frac{-E_a}{RT}}$$ (Equation 6.3) where A is a constant, E_a (kJ mol⁻¹) the apparent activation energy, R is the universal gas constant (0.082 J mol⁻¹ K⁻¹), and T is the absolute temperature (K). The activation energies for a reaction (i.e., for N_2O reduction) were determined from Arrnenius equation by taking the natural logarithm of both side of equation. $$\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A$$ (Equation 6.4) According the *equation 6.4*, a plot of ln(k) versus 1/T should give a straight line with a slope of –Ea/R, as: Figure 6.1. The relationship between the rate of a reaction (k) and temperature. ## 6.2.7 Calculation of oxygen (O2) availability The partial pressure of O₂ availability was calculated from the Universal Gas Law, as: $$P = \frac{nRT}{V}$$ (Equation 6.5) Where P is the pressure at certain the volume (atm), n is number of mole, R is the Universal Gas Constant (0.082 J mol⁻¹ K⁻¹), T is the temperature (K) and V is the volume (L). During soil respiration, microorganisms consume O2 and release CO2, as; $$C_6H_{12}O_6 + 6O_2 = 6CO_2 + 6H_2O + \text{energy}$$ (Equation 6.6) The partial pressure of O_2 is expected to reduce with rising CO_2 production; and O_2 consumption (mole) is equal to CO_2 production (mole) at each sampling time (t). Change in the partial pressure of O_2 (P_t) and its volume (V_t) can be expressed as; $$\frac{P_t}{P_0} = \frac{V_t}{V_0}$$ (Equation 6.7) Where P_0 and V_0 are, respectively, the pressure of O_2 (20.3 kPa) and volume of O_2 (0.21 L) at t = 0; P_t and V_t are the pressure (kPa) and volume of O_2 (L) at measurement time (t), respectively. ## **6.2.8** Statistical analysis Two-way ANOVA was used to determine the interaction between water contents and temperature treatments. The Tukey's test was applied *post hoc* to identify significant differences among treatments and to determine whether N_2O production, reduction and total denitrification rates varied significantly with soil water content and temperature. Statistical tests on ratios such as N_2O/N_2 were based on log-transformed data. All statistical analysis was performed using Statistix 10 (Tallahassee, USA). #### 6.3 Results The use of isotopically labelled nitrate in the incubation allowed measurement of three key gaseous products of denitrification: (i) total N_2O ($^{15}N_2O$ + $^{14}N_2O$), (ii) isotopically labelled N_2O ($^{15}N_2O$) and (iii) isotopically labelled N_2 ($^{15}N_2$) under different temperature and soil moisture content conditions. ### 6.3.1 The production of total N_2O Total N₂O production was relatively low for the first 3 days of the incubation at all temperatures in the soil kept at 60% FC (Figure 6.2a). After 3 days, N₂O production increased at all temperatures, particularly at 35 °C and 40 °C. The average rate of N₂O production over the period 3-7 days was three times that over the period 0-3 days in the treatments at 35 °C and 40 °C. From day 7-10, N₂O production increased at these temperatures while rates of N₂O production did not change at 25 °C and 45 °C over this period. Cumulative N₂O production after 10 days of incubation was greatest at 35 °C (0.75 μ g N₂O-N g⁻¹ soil), followed by 40 °C (0.55 μ g N₂O-N g⁻¹ soil), and around 2.0 μ g N₂O-N g⁻¹ soil at 25 °C and 45 °C (Figure 6.2a). There was a significantly higher rate of N_2O production at 75% FC than at 60% FC all temperatures (Figure 6.2b). Divergence in N_2O production was observed at different temperatures after 3 days of incubation. In contrast to the slower rates of N_2O production at 60% FC, N_2O was produced at a constant rate at 25 °C over the course of the experiment at 75% FC. Rates of N_2O production at this FC increased at the higher temperatures after day 3. The average of N_2O production after 10 days was $1.0 - 1.2 \mu g N_2O-N g^{-1}$ soil between 35 °C and 40 °C, $0.9 \mu g N_2O-N g^{-1}$ soil at 45 °C and $0.55 \mu g N_2O-N g^{-1}$ soil at 25 °C (Figure 6.2b). Figure 6.2. Cumulative N_2O production over time in response to temperature and soil moisture following addtion of N fertiliser to soil at $100 \mu g \ N \ g^{-1}$ soil as $^{14}NH_4^{15}NO_3$. Soil moisture was maintained at 60 % FC (a) and 75% FC (b). #### 6.3.2 ¹⁵N₂O production during denitrification The rate of $^{15}\text{N}_2\text{O}$ during denitrification was influenced by both soil moisture and temperature over 10 days of incubation (Table 6.1). $^{15}\text{N}_2\text{O}$ was produced slowly at 25 °C and 45 °C over the first 7 days while the daily rate of $^{15}\text{N}_2\text{O}$ between 35 °C and 40 °C was 1.0-1.6 ng N. The greatest $^{15}\text{N}_2\text{O}$ production was at 35 °C and between 35 °C and 40 °C in soils treated at 60% and 75% FC, respectively. From days 7-10, $^{15}\text{N}_2\text{O}$ production slowed at all temperatures. #### 6.3.3 ¹⁵N₂O reduction during denitrification The rate of $^{15}N_2O$ reduction from denitrification (corresponding to $^{15}N_2$ production) was less than $^{15}N_2O$ production at all temperatures, except at 45 °C, where $^{15}N_2$ production was equal or higher than $^{15}N_2O$ production (Table 6.1). The magnitudes of N_2 production did not differ between 60% and 75% FC treatments at all temperatures (Table 6.1& Figure 6.3). Cumulative N_2 production after 10 days of incubation was positively correlated with temperature (r = 0.68, p < 0.01, Figure 6.3). The activition energy (E_a) for N_2 production varied from 47 to 72 kJ mol⁻¹ from 25 °C to 45 °C (Table 6.2). Activition energy for N_2 O reduction estimated between 25 °C and 35 °C did not differ that at 35-45 °C (p > 0.05, Table 6.2). E_a was similar at the soil moisture contents (Table 6.2). Table 6.1. Average of rates of $^{15}N_2O$ and ^{15}N production from denitrification in soil at different temperatures and water contents after addition 100 as $NH_4^{15}NO_3$. | Days | Temperature | 60% F | C | 75% FC | | | | |---------------------|-------------|-------------------------------------|---------------------------------|---------------------------------|---|--|--| | | (°C) | $^{15}\mathrm{N}_2\mathrm{O}$ | $^{15}\mathrm{N}_2$ | ¹⁵ N ₂ O | $^{15}\mathrm{N}_2$ | | | | | | $(ng N g^{-1} d^{-1})$ | $(ng N g^{-1} d^{-1})$ | $(ng N g^{-1} d^{-1})$ | $(ng\ N\ g^{\text{-}1}\ d^{\text{-}1})$ | | | | 0-3 | 25 | 0.52 ± 0.26 bc | 0.15 ± 0.05 ^a | 0.54 ± 0.03 ^b | 0.14 ± 0.01 ^c | | | | | 35 | 1.45 \pm 0.22 a | 0.26 ± 0.05 a | 1.22 ± 0.28 a | 0.28 ± 0.03 ^c | | | | | 40 | 1.05 ± 0.25 ab | 0.26 \pm 0.04 a | 1.27 ± 0.26 ^a | 0.32 ± 0.04 b | | | | | 45 | 0.20 ± 0.11 ^c | 0.25 \pm 0.14 a | 0.58 ± 0.05 b | 0.52 ± 0.02 a | | | | 3-7 | 25 | 0.44 ± 0.21 ^c | 0.27 ± 0.05 ^b | 0.48 ± 0.13 ^b | 0.22 ± 0.02 ° | | | | | 35 | 1.55 \pm 0.26 a | 0.30 ± 0.11 b | 1.64 ± 0.24 a | 0.27 ± 0.04 bo | | | | | 40 | 1.02 ± 0.12 | 0.34 \pm 0.15 b | 1.56 ± 0.23 a | 0.39 \pm 0.03 ^b | | | | | 45 | 0.40 ± 0.06 ^c | 0.64 ± 0.13 ^a | 0.57 ± 0.15 ^b | 0.56 ± 0.04 a | | | | 7 – 10 | 25 | 0.47 \pm 0.12 ab | 0.13 ± 0.04 ^b | 0.37 ± 0.14 ^a | 0.11 ± 0.02 ^b | | | | | 35 | 0.93 \pm 0.19 ^a | 0.25 \pm 0.11 b | 0.69 ± 0.12 a | 0.15 \pm 0.04 b | | | | | 40 | 0.74 \pm 0.14 a | 0.31 ± 0.13 ^b | 0.55 ± 0.05 a | 0.24 ± 0.03 a | | | | | 45 | 0.16 \pm 0.02 b | 0.57 \pm 0.12 a | 0.23 ± 0.02 b | 0.38 \pm 0.01 a | | | | HSD _{0.05} | | 0.48 | 0.22 | 0.51 | 0.16 | | | Different letters indicate significant difference among temperatures within each sampling time $\alpha = 0.05$. Figure 6.3. Cumulative $^{15}\text{N-N}_2$ from denitrification over the 10 days of incubation at different temperatures and soil water contents following the addition of $100\,\mu\text{g}$ N g⁻¹ soil as NH₄¹⁵NO₃. Different letters indicate significant differences among temperatures (lower letters for 60% FC and capital letters for 75% FC). There was no significant difference between the two field capacities at all temperatures. A trendline indictes the relationship between temperature and $^{15}\text{N}_2$ production. Vertical bars represent +1 SE (n = 4). Table 6.2. The activation energy (E_a) for N₂O reduction during denitrification between 25 to 45 C in two
water contents in the tested soil. Each value has a standard error of the mean followed it. | Time of incubation (days) | 60% FC | 75% FC | Sig. | |---------------------------|---------------------|---------------------|------| | 0-3 | 21.25 ± 12.2 | 49.24 ± 12.5 | ns | | 3 – 7 | 29.41 ± 10.1 | 35.94 ± 10.2 | ns | | 3 – 10 | 55.10 ± 13.4 | 47.83 ± 16.5 | ns | ns: non-significant difference (p<0.05) #### **6.3.4 Total denitrification** Cumulative denitrification rate ($^{15}N_2O + ^{15}N_2$) after 10 days of incubation varied from 6 to 16 ng ^{15}N g⁻¹ soil with the treatments (Figure 6.4). Total denitrification rate was around 6 ng ^{15}N g⁻¹ soil at 25 °C. Cumulative denitrification rate increased with rising temperature from 25 °C to 35 °C at the both FC tested. Denitrification responded differently to higher temperatures in soils, depending on moisture content. At 60% FC the rates decreased above 35 °C but at 75% FC the rates remained stable between 35 °C and 40 °C then decline at 45 °C (p > 0.05, Figure 6.4). Temperature interacted with soil moisture to control total denitrification rate (p < 0.05, Figure 6.4). The majority of N losses via denitrification was N₂O at all temperatures, except for 45 °C where N₂O production was almost equal to N₂ production. Figure 6.4. Cumulative 15 N-(N₂O+N₂) production from denitrification in soil incubated at different temperatures and soil moisture contents after 10 days following the application of $100 \,\mu g \, N \, g^{-1}$ soil as NH₄¹⁵NO₃. Two-way ANOVA identified an interactive effect between temperature and soil moisture to control 15 N₂O production (p < 0.05). Different letters indicate significant differences in total N losses as 15 N₂O and 15 N₂ among temperatures. Vertical bars indicate +1 SE (n = 4). #### 6.3.5 Soil respiration rate and O₂ availability The rate of CO_2 production, a measure of soil respiration rate, in response to temperature and soil moisture, is shown in Figure 6.5. The soil respiration rates during the experiment were greatly influenced by temperature in both 60% and 75% FC treatments. The highest soil respiration rate was found at 45 °C, followed by 40 °C and 35 °C and the lowest CO_2 production was measured at 25 °C at all sampling times; the patterns were similar at both soil moisture contents. From days 7 – 10, soil moisture content impacted on the response of CO_2 production to temperature, as the rate of CO_2 production at 25 °C slighly decreased at 60 % FC while it increased under wetter soil (Figure 6.5a). The concentration of O_2 availability decreased with increased CO_2 production (Figure 6.5c). As CO_2 production varied from $50 - 160 \,\mu g$ C g^{-1} soil, often occurred at 25 - 35 °C, the pressure of O_2 was calculated at 16 - 18 kPa. The concentration of O_2 decreased to $14 \,kPa$ since CO_2 was cumulative at $200 - 250 \,\mu g$ C g^{-1} soil, which was often measured between 35 °C and 40 °C. At the highest soil respiration rate, $\sim 500 \,\mu g$ C g^{-1} soil at 45 °C and 75% FC, the partial pressure of O_2 concentration was $6 \,kPa$ (Figure 6.5c). Figure 6.5. Cumulative CO_2 production in response to temperatures at different soil moisture contents (a & b) and estimated O_2 availability (c) during the experiment. Soil samples had addition of $100\,\mu g$ N g^{-1} soil as $NH_4^{15}NO_3$. Error bars are +1 SE (n = 4). #### **6.3.6** Soil nitrate contents The average soil NO₃⁻ content after 10 days of incubation ranged from 23 to 46 μg N g⁻¹ soil across all treatments (Figure 6.6). The concentration of NO₃⁻ increased with rising temperature from 25°C to 35 °C at 60% FC and from 25 °C to 40 °C at 75% FC. Thus, soil NO₃⁻ concentration was higher at 40 °C than at lower temperatures in soil at 75% FC while NO₃⁻ concentration did not differ between 35 °C and 40 °C at 60% FC. NO₃⁻ concentrations decreased above 40 °C both 60% FC and 75% FC (Figure 6.6). Figure 6.6. Nitrate availability ($\mu g \ NO_3$ -N $g^{-1} \ soil$) exposed to different temperatures and soil moisture contents after 10 days of incubation. Soil NO_3^- content measured on day 0 was $25.7 \pm 0.3 \ \mu g \ N \ g^{-1} \ soil$. #### 6.4 Discussion Our study identified that N₂O emissions were major N losses during denitrification. The results demonstrated that temperature interacted with soil moisture to control N₂O production from denitrification. The production of N₂O at 35 °C was similarly high as 40 °C in soil treated at 75%, while N₂O decreased above 35 °C at 60% FC, suggesting the influence of increased anaerobic zones on the rate of N₂O production. A greater anaerobic conditions at 75 % FC potentially allowed more NO₃⁻ to act as a termial electron acceptor and resulted in higher N₂O production, particularly at 35 to 40 °C, than at 60% FC, where higher aerobic microsites might have suppressed denitrification. Our results support the hypothesis of de Klein and Van Logtestijn (1996) that the highest denitrification rates likely occur under wet and warm conditions as a result of an interaction between soil moisture and temperature. During summertime under field conditions, often experienced temperatures between 30 °C to 45 °C (Chapter 2), high N losses as N₂O emission from denitrification may be expected once soil moisture is around 0.31 cm³ cm⁻³ (or 75% FC). Soil water management by remaining at 0.25 cm³ water cm⁻³ soil during the periods associated with high temperatures can reduce N loss as N2O emisison from denitrification. Temperature, rather than soil moisture, impacted on the reduction of N_2O to N_2 during denitrification in the present study. This N_2O reduction was previously estimated by using C_2H_2 (10% v/v) to inhibit N_2O reductase (N_2OR), in many studies (Keeney et al., 1979; Avalakki et al., 1995; Maag and Vinther, 1999; Rudaz et al., 1999; Dobbie and Smith, 2001). The thermal response of N_2 production is a challenging task in studies applied the C_2H_2 method because the incomplete activity of N_2OR may occur if there is uneven distribution of C_2H_2 in the whole soil. The results of this study, using an isotope-based approach, revealed $^{15}N_2$ production was positively correlated with increased temperature up to 45 °C (r = 0.68, p < 0.01), regardless of soil moisture. This result suggested the thermal effect on N_2OR during denitrification by affecting the activation energy (E_a). Estimated E_a for N_2O reduction ranged from 47 to 74 kJ mol⁻¹, which is constent with previous values estimated by Holtan-Hartwig et al. (2002). Temperature may have an indirect effect on N_2OR by reducing oxygen availability in the soil microiste via soil respiration. Low O_2 pressure (< 2kPa) likely inhibits the activity of N_2OR , resulting in inhibition of N_2 production (Morley et al., 2008; Zhu et al., 2013). Our estimated O_2 pressures in the present study were much greater than 2 kPa, thus the activity of N_2OR was unaffacted by the deleption of O_2 concentration induced by soil respiration at high temperatures. A positive relationship between N_2 production and temperature implies that the proportion of N losses as N_2 would vary seasonally and a greater loss as N_2 would be associated with temperatures measured (range 35 °C to 45 °C) in summer (December to February) in the tested soil. Large soil nitrogen losses as N₂O via denitrification occurred in the first 7 days, then slowed at days 7 – 10, suggesting that management of N₂O should be targeted in the first week after N fertiliser application. Our results reflect that effective land management that maintains low soil water during the period associated with high temperatures would reduce N₂O emissions. A decline in N₂O production from denitrification after day 7 could be related to the deleption of OC, as observed by CO₂ production. The increased N₂ production with rising temperature contributed to decreased N₂O emissions, which need further study in relation to other factors in soil such as copper (Cu), ferric ion (Fe²⁺), or molybdate ion (Mo²⁺). These ions may have a significant impact on the activity of N₂OR (Ferguson, 1998). Soil with insufficient Cu, which is used as co-factors of NosZ, would lead to incompete assembly of NosZ, inhibiting the reduction of N₂O (Richardson et al., 2009). An improved knowledge of the impact of these metals and temperature on N₂OR may help in the development of strategies to reduce N losses, as N_2O emissions from agricultural systems. Further work aimed at understanding the expression of these enzymes may consider the presence of metal ions in conjunction with temperature. The optimal conditions for the reduction of N_2O to N_2 would contribute to reduce N_2O emisions from agricultural soil. #### 6.5 Conclusions The results in our study demonstrated that temperature primarily controlled denitrification activity. The rate of denitrification increased with rising temperature from 25 °C to 35 °C, regardless of soil moisture, but denitrification responded differently to higher temperatures in soils, depending on moisture content. Denitrification rates decreased above 35 °C in soil treated at 60% FC but the rates remained stable between 35 °C and 40 °C then declined at 45 °C and 75% FC. The magnitudes of N₂O production at 75% FC exceeded those at 60% FC at all temperatures, due to greater anaerobic conditions. The reduction of N₂O to N₂ was enhanced by increasing temperature up to 45 °C while soil moisture beweeen 60% and 75% FC had little impact on N₂ production. The results suggest that the greatest denitrification likely occurrs under wet and warm conditions, where temperature may interact with soil moisture to promote the activity of denitrification, particularly N₂O emission. Soil water management by keeping low as 0.25 cm³ water cm⁻³ soil during the periods exprienced with high temperatures may slow N loss as N₂O
emission via denitrification and reduce N losses from the system. ### Statement of Authorship | Title of Paper | | ion from denihipication respond
I temperauture and nitrate supply | |---------------------|--------------------------------------|---| | Publication Status | Published Submitted for Publication | Accepted for Publication Unpublished and Unsubmitted work written in manuscript style | | Publication Details | | | #### **Principal Author** | Name of Principal Author (Candidate) | Thang Lai | |--------------------------------------|--| | Contribution to the Paper | Conducted experiments, performed analysis on same | | | interpreted data, wrote manuscript and acted as | | | correspinding author | | Overall percentage (%) | 70% | | Certification: | This paper reports on original research I conducted during the period of my Higher Degree by Research candidature and is not subject to any obligations or contractual agreements with a third party that would constrain its inclusion in this thesis. I am the primary author of this paper. | | Signature | Date 10/9/2016 | #### **Co-Author Contributions** By signing the Statement of Authorship, each author certifies that: - i. the candidate's stated contribution to the publication is accurate (as detailed above); - ii. permission is granted for the candidate in include the publication in the thesis; and - iii. the sum of all co-author contributions is equal to 100% less the candidate's stated contribution. | Name of Co-Author | Matthew Denton | |---------------------------|---| | Contribution to the Paper | supervised development of work, helped in data interpretation and manuscrip evaluation. | | Signature | Date 14 /9/2016 | | Name of Co-Author | | | Contribution to the Paper | | | Signature | Date | Please cut and paste additional co-author panels here as required. # Chapter 7 N₂O and N₂ production from denitrification respond differently to soil temperature and nitrate supply* #### 7.1 Introduction Denitrifiers use NO₃⁻ as a substrate during denitrification, which results in the depletion of NO₃⁻ around the microsite, where denitrification occurs. NO₃⁻ is highly mobile in soil and can move rapidly from the bulk soil to microsites in wet conditions. Nitrate can potentially act as a terminal electron acceptor (TEA) when O₂ becomes limiting (Cho et al., 1997a; Strong and Fillery, 2002). Total denitrification rate (N₂O+N₂) generally increases with increased the amounts of NO₃⁻ amendment (Luo et al., 1996a; Scholefield et al., 1997; Smith et al., 1998; Zhu et al., 2013). Changes in soil NO₃⁻ concentrations have significant impacts on the denitrification product ratios, i.e., N₂O/N₂ ratio. Increased soil NO₃⁻ often results in high N₂O production and increased N₂O/N₂ ratios (Gillam et al., 2008), due mainly to the inhibition of the activity of N₂O reductase (Blackmer and Bremner, 1978) and/or a preference for NO₃⁻ as a TEA in N₂O production (Cho et al., 1997a). Thus, soil NO₃⁻ concentration is commonly identified as one of the important factors in the regulation of total denitrification rate and partitioning of gaseous N losses from denitrification. The impact of temperature on the partitioning of gaseous N losses as N₂O and N₂ during denitrification has been observed in some previous studies but the data are conflicted. Studies by Focht (1974)_and Rudaz et al. (1999) reported no significant effects of temperature on denitrification products, while others (Keeney et al., 1979; Avalakki et _ ^{*} To be submitted Soil Biology & Biochemistry al., 1995; Dobbie and Smith, 2001) have identified that low temperatures (< 15 °C) favoured N_2O formation, resulting in greater N_2O/N_2 ratios than at higher temperatures. A decrease in N_2O/N_2 ratios were found when temperatures increased above 15 °C (McKenney et al., 1984; Maag and Vinther, 1996). Temperature may have an impact on the N_2O/N_2 ratios by affecting the apparent activation energy, the energy required for a reaction to occur, for N_2O production and N_2O reduction to N_2 during denitrification (Holtan-Hartwig et al., 2002). Rising temperature can also enhance soil microbial respiration by simulating high O_2 consumption, resulting in O_2 deficiency at the denitrifying microsites, which potentially allows the supply of NO_3^- to act as a TEA and inhibits the reduction of N_2O to N_2 . Soils in southern Australia experience temperatures above 35 °C during summertime (see **Chapters 3 & 4**), that could impact on the reduction of NO_3^- and N_2O during denitrification, particularly following NO_3^- fertiliser application, although there are currently no data on the total N denitrified and the partitioning of gaseous N losses to N_2O and N_2 at these temperatures. Although the impact of soil NO₃⁻ concentration and temperature as individual factors on the activity of denitrification are generally recognised, little is known as to whether these factors interact to control N₂O and N₂O/N₂ ratios. Several studies (Malhi et al., 1990; Weier et al., 1993; White et al., 2002; Gillam et al., 2008) have tested the impact of NO₃⁻ on denitrification rate and the N₂O/N₂ ratio under constant temperatures. Others (Avalakki et al., 1995; Rudaz et al., 1999; Holtan-Hartwig et al., 2002) have evaluated the effect of a range of temperatures on denitrification at a single NO₃⁻ concentration. The combined effect of temperature and NO₃⁻ availability on the total denitrification rate and the N₂O/N₂ ratios therefore remains to be tested. In the study reported in this chapter, a dermosol collected from a pasture was supplied with ^{15}N in the equivalent rates of $0-150\,kg\,N$ ha $^{-1}$ and incubated at temperatures ranging from 25 °C to 45 °C in a short-term experiment. Denitrification gaseous products ($^{15}N_2O$ and $^{15}N_2$) were measured during the experiment to evaluate their thermal responses to different N availability. #### 7.2 Methods #### 7.2.1 Study sites and sample collection The soil used in this study is a black dermosol (Isbell, 1996), collected from a dairy pasture farm in Victoria, Australia. Some characteristics of this soil are presented at Table 4.1 (**Chapter 4**). The annual variations in daily soil temperature and monthly water content from the field site are shown in Figure 4.1 (**Chapter 4**). #### 7.2.2 Laboratory incubation #### 7.2.2.1 Pre-incubation Loose soil samples were wetted up to 60% FC_{33 kPa} (0.21 cm³ cm⁻³ soil) then placed into a plastic bag with holes to allow gas exchange with the atmosphere. All soil samples were pre-incubated for 7 days at 25 °C to re-establish soil microbial activity. Soil moisture was checked every three days and water added if necessary to maintain the soil at 60% FC. #### 7.2.2.2 Incubation Soil subsamples (50 g dry weight equivalent) were repacked in a core (ø37 mm × 42 mm; 10.75 cm² surface area) to a bulk density of 1.12 g cm⁻³, equivalent to that measured in the field. Isotopically labelled nitrate solution (¹⁴NH₄¹⁵NO₃) was added slowly onto the top of upright cores to achieve the additions of 0, 100, 200 and 300 µg N g⁻¹ soil (equivalent to 0, 50, 100, 150 kg N ha⁻¹). This solution increased soil moisture to 0.32 cm³ cm⁻³ (or 75% FC), which reflects the average of soil moisture in the field during summer. Soil cores were then placed into 250ml jars equipped with a rubber septum (Subaseals#25, Sigma-Aldrich, St Louis, MO, USA) in the cap. Each set of jars with various N treatments were incubated at 25, 35 or 45 $^{\circ}$ C for 10 days. There were 12 treatment combinations (4 N \times 3 temperature treatments) with 4 replications. Two sets of soil incubations were established to monitor gas production and mineral nitrogen transformations during the experiment. #### 7.2.3 Sampling and analysis In the first set of incubations, the headspace of 36 jars (three levels of $NO_3^- \times$ three temperatures \times four replicates) was sampled on 0, 3, 7 and 10 days after addition of the N solution. A 20 ml sample of headspace gas was taken using a Hamilton 50 ml gas-tight syringe (Hamilton Company, Reno, NV, USA); and transferred into a pre-evacuated 12 ml Exetainer (Labco, Ceredigion, UK) for measurement of $^{14+15}N-N_2O$, $^{15}N-N_2O$ and $^{15}N-N_2O$. After gas sampling, the headspace of all jars was refreshed using a mini-fan for one minute. In the second set of incubations, soil samples were taken on day 0 and 10 to measure NH_4^+ and NO_3^- concentrations. #### 7.2.4 Gas measurement The concentration of N₂O was analysed on a Varian 450 Gas Chromatograph (Agilent 7890, Bremen, Germany), as described in Section 3.2 (**Chapter 3**). Trace gas isotope ratios ($\delta^{15}/\delta^{14}N$) were determined using a ThermoFinnigan GasBench and a Delta V^{TM} Isotope-ratio Mass Spectrometer (Thermo-Scientific, Bremen, Germany) (**Chapter 4**). The estimation of nitrogen gases rates and O_2 availability are described in section 6.3 (**Chapter 6**). #### 7.2.5 Statistical analysis Two-way ANOVA was used to determine the interaction between NO_3^- contents and temperature treatments. The Tukey (HSD_{0.05}) test was applied *post hoc* to identify any significant difference between treatments and to determine whether N_2O production, N_2O reduction and total denitrification varied significantly with NO_3^- content and temperature. Statistical tests on ratio such as N_2O/N_2 were based on log-transformed data. All statistical analyses were performed using Statistix 10
(Tallahassee, USA). #### 7.3 Results #### 7.3.1 Mineral nitrogen pools The concentrations of NH_4^+ in soil after 10 days of incubation was influenced by temperature (Table 7.1). The amounts of NH_4^+ did not differ between 25 °C and 35 °C at all N supply. NH_4^+ concentration was much higher at 45 °C than at 25 °C to 35 °C, regardless of N amendments. At 45 °C, the net rates of NH_4^+ ranged from 27 to 35 μ g N g⁻¹ d⁻¹ (Table 7.1). Unlike the response of NH_4^+ , NO_3^- concentration increased at all temperatures in the control and supplied with 100 μ g N g⁻¹ soil (N_{100}). The greatest increase in NO_3^- was found at 35 °C in soil with N_{100} , followed by 25 °C and at least at 45 °C. In soils added with N_{200} and N_{300} , more NO_3^- accumulated in soil incubated at 25 °C compared to that at 35 °C, but NO_3^- decreased at 45 °C (Table 7.1). #### 7.3.2 Overall N₂O production The addition of N supply to soil affected the temperature response of total N_2O production (from all processes) over the 10 days of incubation (Figure 7.1). In the soil without N application (control_N₀), N₂O production was relatively low and consistent at 25 °C throughout the experimental period but increased similarly with rising temperature at 35 °C and 45 °C between 3 and 7 days. The production of N_2O increased in the soil with N_{100} (equivalent to 50 kg N ha⁻¹) compared with N_0 (Figure 7.1). The average cumulative N_2O production after 10 days at 35 °C and 40 °C was ~1.0 μ g N_2O_-N g⁻¹ soil in N_{100} . In the soils with 200 – 300 μ g N g⁻¹ soil added (equivalent to 100 – 150 kg N ha⁻¹, respectively), N_2O production responded similarly to temperature (Figure 7.1). The production of N_2O at 35 °C in N_{200} and N_{300} increased greatly with incubation time. N_2O production at 25 °C and 45 °C in N_{200} and N_{300} increased from 0 – 7 days, then attenuated from 7 – 10 days, and reached 0.8 μ g N_2O_-N g⁻¹ dry soil on day 10. The average of cumulative N_2O production measured over the 10 days at 35 °C was 1.6 and 2.3 μ g N_2O_-N g⁻¹ soil in N_{200} and N_{300} respectively (Figure 7.1). Table 7.1. The concentrations of ammonium and nitrate at days 0 and 10 days after incubation at different temperatures and N applications to soil at 0 (N_0), 100 (N_{100}), 200 (N_{200}) and 300 μ g N g⁻¹ soil (N_{300}) as $NH_4^{15}NO_3$. Soil moisture was maintained at 75% field capacity. | N | N form | Doy 0 | Day 10 | | | | | | | |-----------------------|---|---------------------|----------------------|----|----------------------|----|----------------------|-----|---------------------| | applied | | Day 0 | 25 °C | | 35 °C | | 45 °C | | HSD _{0.05} | | No | | 7.82 ± 0.8 | 7.41 ± 2.4 | dΒ | 8.36 ± 2.9 | dB | 283.48 ± 12.4 | cA | 212.32 | | N ₁₀₀ | i um
/ soil) | 99.32 ± 3.2 | 52.38 ± 3.6 | cB | 40.91 ± 6.2 | сВ | 409.23 ± 19.7 | bA | 51.34 | | N_{200} | Ammonium
1g Ng ⁻¹ dry soil) | 169.84 ± 3.2 | 151.83 ± 9.4 | bB | 174.84 ± 12.9 | bB | 510.99 ± 37.5 | bA | 79.69 | | N300 | Amı
(µg N; | 272.38 ± 5.4 | 319.19 ± 13.3 | аВ | 288.14 ± 15.1 | аВ | 627.69 ± 31.7 | aA | 92.64 | | $\mathrm{HSD}_{0.05}$ | | | 42.37 | | 28.65 | | 105.54 | | | | No | | 12.37 ± 1.1 | 15.16 ± 2.2 | сВ | 22.28 ± 1.9 | cA | 18.17 ± 2.0 | cAB | 5.54 | | N_{100} | e
/ soil) | 26.80 ± 1.2 | 39.44 ± 1.2 | bΒ | 46.79 ± 2.3 | bA | 31.53 ± 0.9 | bcC | 4.85 | | N ₂₀₀ | Nitrate
(μg N g ⁻¹ dry soil) | 48.84 ± 2.0 | 53.58 ± 1.3 | aA | 58.98 ± 2.1 | aA | 41.92 ± 1.8 | abB | 7.74 | | N300 | N gu) | 55.55 ± 2.2 | 62.88 ± 2.9 | aA | 63.01 ± 2.32 | aA | 50.15 ± 4.6 | aA | 15.84 | | HSD _{0.05} | | | 10.04 | | 11.05 | | 13.82 | | | Lower case letters indicate significant differences among N applied at each temperature, Upper case letters indicate significant differences among temperatures within each N supply ($\alpha < 0.05$) #### 7.3.3 Net rate of ¹⁵N₂O production Temperature interacted with N supply to control net rate of $^{15}N_2O$ production from denitrification throughout the experimental period (p < 0.05, Figure 7.2). Net rate of $^{15}N_2O$ was produced at 0.5 - 0.9 ng N g⁻¹ d⁻¹ in soil with N₁₀₀ in the first three days of incubation and there was no significant difference among temperatures. The net rates of $^{15}N_2O$ were significantly higher at 35 °C than at 25 °C over the period 3 – 7 days (p < 0.05) but slowed at all temperatures in the last 3 days in soil with N₁₀₀. At higher N supply, the daily net rates of $^{15}N_2O$ varied from 0.5 to 2.5 ng N g⁻¹ d⁻¹ with temperatures, except for 45 °C, where $^{15}N_2O$ was relatively low at the period days 7 – 10. The rates of $^{15}N_2O$ production at 35 °C exceeded the amounts at 25 °C and 45 °C at all measurements in soils with N₂₀₀ and N₃₀₀. The net rate of $^{15}N_2O$ at 35 °C in these treatments was 3 fold higher than at 25 °C or 45 °C (Figure 7.2). #### 7.3.4 Rate of ¹⁵N₂O reduction Temperature was more important factor than N supply controlling the reduction of $^{15}N_2O$ to $^{15}N_2$ during denitrification (Figure 7.3). With N supply, the rate of $^{15}N_2O$ reduction increased with rising temperature in the first 7 days of incubation. The highest rate of $^{15}N_2O$ reduction was measured at 45 °C, average on 0.50-0.65 ng N g⁻¹ d⁻¹, followed by 35 °C at 0.2-0.40 ng N g⁻¹ d⁻¹ and the lowest rate occurred at 25 °C, producing at 0.10-0.18 ng $^{15}N_2$ -N g⁻¹ d⁻¹. From days 7-10, the production of $^{15}N_2$ slowed at all temperatures (Figure 7.3). Thermal response of $^{15}N_2O$ reduction was unaffected by the addition of N, except for the control, where the rate of $^{15}N_2O$ reduction was below 0.05 ng N g⁻¹ d⁻¹ at all temperatures. Figure 7.1 The cumulative production of N_2O over time in response to temperature following amendments of N fertiliser to soil at 0 (N₀), 100 (N₁₀₀), 200 (N₂₀₀) and 300 μ g N g⁻¹ soil (N₃₀₀) as NH₄¹⁵NO₃. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 *SE* (n = 4). Figure 7.2 Daily rates of $^{15}\text{N-N}_2\text{O}$ over time in response to temperature following amendments of N fertiliser to soil at 0 (N₀), 100 (N₁₀₀), 200 (N₂₀₀) and 300 μ g N g⁻¹ soil (N₃₀₀) as NH₄¹⁵NO₃. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 *SE* (n = 4). *ns*: non-significant difference; different letters indicate significant difference among temperatures within each N supply. #### 7.3.5 Total dentirification and N₂O/N₂ ratios Total denitrification ($N_2O + N_2$) rates at all temperature were low in the control but increased between 0.45 to 2.66 ng N g⁻¹ d⁻¹ in the soils with N supply (Table 7.2). High $N_2O/(N_2O + N_2)$ ratios between 25 °C to 35 °C indicated that the major N losses via denitrification was N_2O emission, particularly with N_{300} . The proportion of N_2O to total denitrification at these treatments was around 0.8 (or accounting for 80% of total denitrification rate). The greatest denitrification rate was found at 35 °C in the soil with N_{200} and N_{300} (Table 7.2). The changes in the N_2O/N_2 ratio were regulated by both N_2O production and reduction. The N_2O/N_2 ratios between 25 °C and 35 °C were 3.2 to 7.8 due to high N_2O and low N_2 production. A decrease in N_2O production and increased N_2O reduction resulted in a low N_2O/N_2 ratio at 45 °C. $^{15}N_2$ production was nearly equal to $^{15}N_2O$ production (ratio 1.0 – 1.2) at 45 °C (Table 7.2). Figure 7.3 Daily rates of $^{15}\text{N-N}_2$ over time in response to temperature following amendments of N fertiliser to soil at 0 (N₀), 100 (N₁₀₀), 200 (N₂₀₀) and 300 μ g N g⁻¹ soil (N₃₀₀) as NH₄¹⁵NO₃. Soil moisture was maintained at 75 % field capacity. Error bars indicate +1 *SE* (n = 4). *ns*: non-significant difference; different letters indicate significant difference among temperatures within each N supply. Table 7.2. Average of rates of $^{15}\text{N-N}_2\text{O}$ production, $^{15}\text{N-N}_2$ production, the ratios of $N_2\text{O}/(N_2\text{O}+N_2)$ and $N_2\text{O}/N_2$ from denitrification in the first 7 days of incubation at different temperatures and N additions to soil at t 0 (N₀), 100 (N₁₀₀), 200 (N₂₀₀) and 300 μ g N g⁻¹ soil (N₃₀₀) as NH₄¹⁵NO₃. Soil moisture was maintained at 75% field capacity (-33 kPa). | Factors | | ¹⁵ N ₂ O production | ¹⁵ N ₂ production | $^{15}N_2O + ^{15}N_2$ | $N_2O/(N_2O+N_2)$ | N ₂ O/N ₂ | |---------------------|------------------|---|---|-------------------------------------|----------------------|---------------------------------| | | | $ng N g^{-1} d^{-1}$ | $ng N g^{-1} d^{-1}$ | $ng N g^{-1} d^{-1}$ | | | | N applied | Temperature (°C) | | | | | | | | 25 | 0.03 ± 0.002 a | 0.04 ± 0.02 a | 0.08 ± 0.03 ^a | 0.49 <i>a</i> | 1.2 a | | N_0 | 35 | 0.04 \pm 0.007 a | 0.06 ± 0.01 a | 0.10 \pm 0.02 ^a | 0.45 a | 0.8 <i>a</i> | | | 45 | 0.05 ± 0.002 a | 0.06 ± 0.02 a | 0.11 ± 0.04 ^a | 0.33 a | 0.8 a | | | 25 | 0.35 ± 0.10 | 0.10 \pm 0.02 b | 0.45 \pm 0.10 a | 0.76 a | 3.6 a | | N ₁₀₀ | 35 | 0.93 \pm 0.04 a | 0.18 \pm 0.04 b | 1.11 \pm 0.07 ^a | 0.83 a | 5.2 a | | | 45 | 0.44 ± 0.08 ^b | 0.42 ± 0.06 a | 0.86 ± 0.13 ^a | 0.50 <i>b</i> | 1.0 <i>b</i> | | | 25 | 0.64 ± 0.07 ^b | 0.11 ± 0.03 ^b | 0.75 ± 0.08 ^b | 0.86 a | 7.8 a | | N ₂₀₀ | 35 | 1.26 \pm
0.12 ^a | 0.24 \pm 0.05 b | 1.49 \pm 0.15 ^b | 0.84 <i>a</i> | 5.8 a | | | 45 | 0.48 ± 0.04 ^b | 0.45 ± 0.03 ^a | 0.92 ± 0.05 ^a | 0.51 b | 1.1 b | | | 25 | 0.66 ± 0.06 ^b | 0.10 \pm 0.02 b | 0.76 ± 0.05 ° | 0.87 a | 7.6 a | | N_{300} | 35 | 2.30 \pm 0.09 ^a | 0.36 ± 0.07 a | 2.66 ± 0.15 ^a | 0.87 <i>a</i> | 7.0 a | | | 45 | 0.56 \pm 0.07 b | 0.48 \pm 0.08 a | 1.05 \pm 0.14 b | 0.55 <i>b</i> | 1.2 <i>b</i> | | $P_{(T\timesN)}$ | | < 0.01 | 0.07 | < 0.01 | 0.45 | 0.08 | | HSD _{0.05} | | 0.38 | 0.22 | 0.54 | (4.21) | (2.45) | Different letters in the column indicate significant difference among temperatures within each N supply.. Values in parentheses were based on Arcsine transformed data #### 7.3.6 The activation energy Estimated activition energy (E_a) required for the N_2O reductase (N_2OR) during denitrification varied from 20 to 98 kJ mol⁻¹ with N supply (Table 7.3). There was no significantly difference in E_a for N_2OR among N amendements at all sampling time (p > 0.05, Table 7.3), suggesting that *NosZ* was unaffected by N availability during the experiment. #### 7.3.7 Soil respiration and O_2 availability The rates of soil microbial respiration were affected by incubation temperature but insensitive to N concentration throughout the experiment (Figure 7.4a). Soil respiration rate increased with increasing temperature, regardless of N content. The highest cumulative CO₂ production was found at 45 °C, followed by 35 °C; the lowest CO₂ production was measured at 25 °C (Figure 7.4a). As CO₂ production varied from $120 - 140 \,\mu g$ C g^{-1} soil, often occurred at 25 °C, the pressure of O₂ was calculated at around $17 - 18 \,\mathrm{kPa}$ (Figure 7.4b).. The concentration of O₂ decreased to 15 kPa since CO₂ increased to $200 - 250 \,\mu g$ C g^{-1} soil, which was measured at 35 °C. Higher soil respiration rate, ~250 – 350 $\,\mu g$ C g^{-1} soil, at 45 °C resulted in lower O₂ concentrations (Figure 7.4b). #### 7.3.8 Inter-relationships The relationships among temperature, N supply, O_2 availability and denitrification products are shown at Table 7.4. N_2 production was positively correlated with temperature $(r=0.83,\ p<0.01)$ but unaffected by N amendments $(p>0.05,\ Table\ 7.4)$. The rate of denitrification was largely influenced by N supply $(r=0.50,\ p<0.01)$. The N_2O/N_2 ratio and O_2 content were negatively correlated with temperature, indicating the impact of temperature on N_2O/N_2 by regulating O_2 availability. Table 7.3. The activation energy (E_a) for N_2 production from denitrification between 25 °C to 45 °C at N applied to tested soil (with 100 (N_{100}), 200 (N_{200}) and 300 μ g N g⁻¹ soil as $^{14}NH_4^{15}NO_3$ (N_{300})). | Time of incubation (days) | N ₁₀₀ | N_{200} | N300 | Sig. | |---------------------------|---------------------|---------------------|---------------------|------| | 0-3 | 48.84 ± 12.9 | 71.65 ± 25.7 | 91.30 ± 34.5 | ns | | 3-7 | 98.89 ± 9.8 | 80.17 ± 3.6 | 61.01 ± 11.1 | ns | | 7-10 | 20.93 ± 7.3 | 42.94 ± 17.5 | 54.49 ± 21.8 | ns | ns: non significant difference (p > 0.05) Table 7.4. Correlation coefficients (r values) among temperature, nitrogen applied (N), N_2O , N_2 , denitrification ($N_2O + N_2$), N_2O/N_2 ratio and O_2 (n = 36) in the first 7 days of incubation. | | Temperature | N | N_2O | N_2 | $N_2O + N_2$ | N_2O/N_2 | |------------------|-------------|--------|--------|------------|--------------|------------| | N ₂ O | -0.04 | 0.49** | | | | | | N_2 | 0.83** | 0.18 | 0.17 | | | | | $N_2O + N_2$ | 0.18 | 0.50** | 0.97** | 0.42^{*} | | | | N_2O/N_2 | -0.62** | 0.31 | 0.41* | -0.60** | 0.22 | | | Oxygen | -0.72** | -0.22 | 0.19 | -0.63** | 0.02 | 0.44^{*} | ^{*} significant at p < 0.05 ^{**} significant at p < 0.01 Figure 7.4 Cumulative CO_2 production vs time during incubation at different temperatures, regardless of N application (a) and the relationship between CO_2 production and O_2 availability (b). Soil moisture was maintained at 75% field capacity (33kPa). Error bars are +1 SE (n = 12). #### 7.4 Discussion Our results demonstrated that N₂O production and total denitrification rate were controlled by an interactive effect between N supply and temperature, which have been often neglected in previous studies (Malhi et al., 1990; Weier et al., 1993; Holtan-Hartwig et al., 2002; White et al., 2002; Gillam et al., 2008). Irrespective of temperature, N₂O and N₂O/(N₂O+N₂) were positively correlated with increased NO₃⁻ additions to soil, which supports other studies (Luo et al., 1996b; Scholefield et al., 1997; Gillam et al., 2008). However, NO₃⁻ concentration alone accounted for less than 50% of total N₂O emission in the present study, since NO₃ interacted with temperature to influence N₂O production and denitrification rate. The rate of N₂O production was highest at 35 °C when either 200 or 300 µg N g⁻¹ dry soil was added (equivalent to 100 or 150 kg N ha⁻¹, respectively) while N₂O was less affected by temperature at lower soil N (50 kg N ha⁻¹). This result supports the previous finding by Blagodatskaya et al. (2014b) that the thermal response of N₂O emissions in soil can be influenced by soil nitrogen and oxygen availability. Rising temperature in our study increased soil respiration rates and resulted in the depletion of O₂ in soil microsites, which could affect whether NO₃ or N₂O is used as a terminal electron acceptor (TEA) during denitrification (Cho et al., 1997b; Strong and Fillery, 2002; Gillam et al., 2008). The preference for TEAs in the denitrifying pathway is typically in the order $O_2 > NO_3^- > N_2O$ (Firestone and Davidson, 1989). Once O_2 was limited following high respiration rates and NO₃ was depleted around the microsites due to the reduction of nitrate, the increasing demand for TEAs would promote the movement of NO₃⁻ to the microsites, resulting in high N₂O production at 35 °C. A reduction in N₂O from denitrification at 45 °C could be both related to an optimal temperature controlling the reduction of nitrate and an enhancement of the reduction of N₂O to N₂. The results suggest that high potential N losses as N₂O from denitrification would be expected during summertime in similar soil types following N fertiliser application and high soil moisture content (0.32 cm³ cm⁻³). An effective management of N in the field would be one that was monitored to meet crop N demand, particularly during summertime, to reduced N losses as N₂O from denitrification. Temperature was more important than NO₃⁻ availability in regulating the reduction of N₂O to N₂ from denitrification, with lower N₂O/N₂ ratios above 35 °C. The influence of temperature on the N_2O/N_2 ratio has been unclear in previous studies. It is typically known that low temperatures (< 15 °C) favoured N₂O formation, leading to greater N₂O/N₂ ratios than at higher temperatures (Keeney et al., 1979; Avalakki et al., 1995; Dobbie and Smith, 2001) but some exceptions exist. The results from (Focht (1974) and Rudaz et al. (1999) found no significant effects of temperature on denitrification products. Our results demonstrate that the N₂O/N₂ ratio increased between 25 °C and 35 °C then decreased between 35 °C and 45 °C due to a decline in N₂O production and an increase in N₂ production above 35 °C. A positive effect of temperature on N₂ production at all NO₃⁻ treatments (r = 0.83, p < 0.01) indicates a significant role of temperature in regulating N₂O reductase. Reduction of N₂O in soils has been attributed exclusively to denitrifiers possessing nos operons with nosZ encoding N₂OR, the enzyme system catalysing N₂O to N₂ reduction (Kolb and Horn, 2012; Zheng and Doskey, 2015). However, it is now recognised that nosZ is harboured by a much broader range of denitrifier and nondentrifier microorganisms, including archaeal, bacterial and fungal phyla, than previously thought (Sanford et al., 2012; Graf et al., 2014). Although some studies (Knowles, 1982; Weier et al., 1993; Ruser et al., 2006) have reported the inhibition of N₂OR at high soil NO₃⁻ concentration (between 200 – 300 µg N g⁻¹ soil), this impact was unlikely to have had an effect on the activity of N₂OR since the NO₃⁻ contents $(15.1 - 63.0 \,\mu g \,N \,g^{-1} \,soil)$ were much lower than the reported critical amounts. The activation energy (Ea) required for N_2OR is consistent with previous findings (Holtan-Hartwig et al., 2002), who estimated the Ea for N_2OR of 60 kJ mol⁻¹. Increased N_2 production above 35 °C reflects high potential N loss as N_2 (~ 50% of N losses via denitrification), which is rarely measured in the field due to the high atmospheric background of N_2 . These rates would be typical of summertime irrigated conditions where soil NO_3^- is not limiting denitrification in wet soil $(0.31 \text{ cm}^3 \text{ cm}^{-3})$. High soil NH₄⁺ contents observed at 45 °C at the end of experiment suggests an increasing impact of high temperature on the regulation of NH₄⁺ availability. Soil NH₄⁺ content is a result from the balance between NH₄⁺ production processes (N mineralisation, dissimilatory nitrate reduction to ammonium (DNRA) and consumption processes (nitrification, N immobilisation). Cumulative NH₄⁺ content at 45 °C resulted from high rates of N mineralisation and/or the activity of DNRA. Nitrogen mineralisation rate is generally described to increase with rising temperature (Sierra and Marban, 2000; Zaman and Chang, 2004; Thangarajan et al., 2015) and gross N mineralisation rates are 3 – 4 fold higher at 40 - 50 °C than at 20 - 30 °C (Zaman and Chang, 2004), which supports the higher NH₄⁺ contents at 45 °C in the present study. It was argued that high NH₄⁺ from N
mineralisation is related to increased substrate decomposition at temperatures above 40 °C (Sierra and Marban, 2000; Zaman and Chang, 2004). DNRA, a biological process to convert nitrate to ammonium, however, is not well understood (Schmidt et al., 2011) and few studies have attempted to examine the rate of DNRA under anaerobic conditions. It was reported by Silver et al. (2001) that DNRA rate exceeded the amounts of N losses as N₂O and N₂ from nitrification and denitrification and accounted for 75% turnover of NO₃⁻ pool in the ultisols. However, the dependence of DNRA on soil temperature has not been assessed, although temperature explain 35% of the variation in DNRA rates in river sediments (Tomaszek and Rokosz, 2007). The rapid conversion of NO₃⁻ to NH₄⁺ via DNRA in soil has the potential implications for ecosystem N conservation by reducing soil NO_3^- availability, potentially preventing the N loss via leaching and denitrification. Increased DNRA rate also contributes to prevent nitrate toxicity in grazing animals under high N fertiliser application (> 200 kg N ha⁻¹) (Bolan and Kemp, 2003). More research will be needed to evaluate the thermal response of DNRA, particularly at high temperatures (35 – 50 °C) to understand the source of high NH_4^+ availability observed at 45 °C in the present study. #### 7.5 Conclusions Temperature and nitrogen supply interacted to affect the total N losses as N_2O emission, which accounted for 50-80% of total denitrification rate. The reduction of N_2O to N_2 was influenced by incubation temperature but was unaffected by soil N supply. The production of N_2 increased up to 45 °C, but N_2O production declined, resulting in the low N_2O/N_2 ratios at high temperatures. The results suggest that high potential N losses as N_2O would be expected following N fertiliser application and high soil moisture content in the tested soil exposed to around 35 °C. Temperatures above this would decrease the N losses as N_2O because the reduction of N_2O to N_2 was promoted, possibly due to denitrifying nitrous oxide reductase. The results demonstrate how temperature and NO_3^- availability regulate the magnitude of N_2O and N_2 production from denitrification. The finding explained why temperature or NO_3^- concentration alone is a poor predictor of N_2O emission, since temperature interacts with NO_3^- influencing the total N denitrified and associated N_2O production. High soil NH_4^+ availability observed at 45 °C suggests an increasing impact of high temperature on the regulation of NH_4^+ availability via N mineralisation and the potential for dissimilatory nitrate reduction to ammonium. #### Chapter 8 General discussion This chapter provides an overview of the research conducted as part of this thesis. The key results from various laboratory experiments are summarised and some potential implications are discussed. Future research is proposed to address some remaining challenging questions. #### 8.1 Concept of research The effects of temperature on N₂O production from soil are very complicated as temperature influences the growth and activity of soil microorganisms and the activation energy for a number of processes that are responsible for the production of N₂O. Temperature may also change soil OC, N availability, soil moisture, O2 concentration and pH, which affect biological N₂O production. The overall aim of this thesis is to investigate the effects of high temperatures (> 30 °C) on biologically produced N₂O and N₂ from Australian soils. Acetylene inhibition (Yoshinari et al., 1977) and ¹⁵N labelling techniques (Bateman and Baggs, 2005) were applied to determine nitrogenous gases (N₂O and N₂) from nitrification and denitrification processes in soil, which account for 60% of globally anthropogenic N₂O production (Butterbach-Bahl et al., 2013). The thermal responses of nitrification and denitrification are typically described below 30 °C, while Australian agricultural soils experience particularly high diurnal and seasonal temperature fluctuations, often 30 - 45 °C during the summer months, December to February (Meteorology, 2015). The response of N₂O production, particularly from heterotrophic nitrification, has rarely been explored at high temperatures. The direct interactions among temperature, soil moisture and NO₃⁻ on N₂O and N₂ production during nitrification and denitrification processes are difficult to quantify under field conditions (Knowles, 1990; Groffman et al., 2006), while the laboratory studies) have been often neglected these interactive effects (Chapter 2. Therefore, these interactive effects need further investigation under relevant conditions experienced in Australian soils. #### 8.2 Summary of results ## 8.2.1 The effects of fluctuating temperature and NH_4^+ content on nitrification and N_2O Laboratory experiments in Chapter 3 investigated if soil NH_4^+ availability affected nitrification rate (NO_3^-) and associated N_2O production. By comparing nitrification rates at different NH_4^+ contents, it was demonstrated that NO_3^- and N_2O production from nitrification were limited when initial soil NH_4^+ was below 4 μ g N g^{-1} soil at 20 °C. The addition of N (between 50 to 150 μ g N g^{-1} dry soil) to soil resulted in higher net rates of nitrification and associated N_2O production than in the control (without addition of N). The rates were unaffected by an increase in NH_4^+ between 50 and 150 μ g N g^{-1} soil. The results confirm that soil NH_4^+ is vital for the activity of autotrophic nitrification at the temperatures tested, and that the magnitudes of NO_3^- and N_2O production from this process would be regulated by factors other than NH_4^+ . Once the threshold of soil NH_4^+ concentration was reached for autotrophic nitrification, temperature and oxygen availability would be important factors in regulation of nitrification and associated N_2O production from soils. Diurnal fluctuating temperature, which occurs naturally under field conditions, has been neglected in most studies that have assessed the thermal response of nitrification and N_2O production. When fluctuating temperature regimes induce different rates of nitrification and N_2O emissions compared with those under a daily constant temperature, the rates of N_2O and nitrification estimated from soils using the daily constant temperature would be problematic. Through an examination of nitrification and N_2O production under fluctuating temperature protocol ranging from 15 °C to 25 °C compared with a constant temperature (CT, 20 °C – 24h) over 30 days, our results revealed that nitrification and associated N_2O emission did not differ between a CTP and the FTPs with the same mean temperature under the experimental conditions. The growth responses of ammonia oxidising bacteria (AOB) populations were the same when fluctuating temperature patterns applied or when a constant temperature was maintained throughout the experimental period. The consistent rate of nitrification or N_2O production could be explained by a lack of difference in AOB populations between a CT and FTPs, due to the thermal adaption of AOB to local climate. N_2O production from heterotrophic nitrification and/or denitrification was higher under FTP2 (15 °C – 12h and 25 °C – 12h) than under a CTP in the second 14 days of incubation but this should be treated with caution due to high variability of N_2O under FTP2. In the first 14 days of incubation, total N_2O production and nitrification rate were unaffected by fluctuating temperature patterns. This result simplified the assessment of thermal responses of nitrification and N_2O production by using daily constant temperature in further experiments. #### 8.2.2 The influence of temperature on nitrification and associated N₂O By assessing the production of N_2O from nitrification at a range of constant temperatures from 10 °C to 45 °C, which are encountered in Australian soils, the thermal responses of autotrophic and heterotrophic nitrification as the pathway of N_2O production were investigated (Chapter 4). The results suggested that temperature was more important than soil type in controlling N_2O from nitrification. The production of N_2O from nitrification increased with rising temperature and peaked between 35 °C and 40 °C, where nitrification accounted for 55 % of total N_2O emissions. The result demonstrates an important role of nitrification as the source of N_2O in dry conditions (~ 0.25 g water cm⁻³) and supports a temperature optimum function (T_{opt}) for N_2O production from nitrification. This result is indicated as a part of the conceptual diagram integrating key results from the thesis (Figure 8.1). T_{opt} for N₂O production from nitrification was higher than the values reported in previous studies. Below 35 °C, autotrophic nitrification was the main source of N₂O, and was positively correlated with the growth of the AOB population. Between 35 °C and 40 °C, heterotrophic nitrification was the primary source of N₂O, principally due to decreased O₂ availability in the soil microsites, which was induced by higher microbial respiration rates at these temperatures. The finding indicates a significant N₂O production from heterotrophic nitrification in soils exposed to high temperatures, typically between December to February in Australia (Meteorology, 2015). Heterotrophic nitrifiers used NH₄⁺ as the prime substrate for nitrification, particularly at 35 °C and 40 °C, as evidenced by an increase in ¹⁵N₂O production in the presence of C₂H₂. The substrate selection of heterotrophic nitrifiers, namely the oxidation of NH₄⁺, may be influenced by the addition of 100 $\mu g~NH_4-N~g^{-1}$ soil in our studies, although the use of organic N as the preferred substrate has been previously identified (Schimel et al., 1984; Islam et al., 2007).
When soil NH₄⁺ was not limiting, autotrophic and heterotrophic nitrification responded dissimilarly to temperatures above 35 °C. In a study comparing N₂O production in soils from two contrasting climates, Chapter 5 showed that the tropical soil produced higher N₂O emissions than the temperate soil did, at a range of temperatures from 20 °C to 40 °C. T_{opt} for nitrification also varied between climatic regions, at 20 °C to 30 °C in the temperate and at 30 °C to 35 °C in the tropical soil. The differences in the thermal response of nitrification could be related to the growth rates of the AOB populations. Estimated AOB populations in the tropical soil exceeded those in the temperate soil between 25 °C and 35 °C, suggesting that soil microorganisms mediating N in contrasting climates responded differently to temperature. The distinct growth rate of AOB in each climate was considered to be a result of the physiological adaptation of microbial communities to local temperature regimes. Autotrophic nitrification had greater N_2O emissions than heterotrophic nitrification and/or denitrification below 35 °C, regardless of the climate from which soils were tested. At higher temperatures, a decrease in nitrification rate resulted in increased the proportion of N_2O to NO_3^- (P_n), regardless of climatic regions. P_n increased with rising temperature and was above 1.0% at 35 °C (Figure 8.1). The results suggest that an effective function describing the dependence of P_n on temperature may allow a quick estimate of N_2O through measurement of NO_3^- produced during nitrification across regions. # 8.2.3 The influence of temperature, soil moisture and nitrate on denitrification By examining the production of N_2O at different temperatures and soil moisture contents (Chapter 6), an interactive effect between temperature and soil moisture was identified to control the production of N_2O from denitrification. At 60% FC, N_2O production declined above 35 °C while, at 75% FC, N_2O production from soil incubated at 35 °C was similar to that at 40 °C. Temperature, rather than soil moisture, impacted on the conversion of N_2O to N_2 during denitrification. N_2O reduction has been attributed mainly to denitrifying-nosZ, although there is new evidence that nosZ is harboured by denitrifier and non-dentrifier microorganisms (Kolb and Horn, 2012; Zheng and Doskey, 2015). Our results revealed that $^{15}N_2$ production was positively correlated with increased temperature up to 45 °C (r = 0.68, p < 0.01), suggesting the possible impact of temperature on nosZ. The maxium denitrification rate ($N_2O + N_2$) measured between 35 °C and 40 °C indicates that greater amount of N losses as N_2O and N_2 may be expected once soil moisture is around 0.31 cm³ cm⁻³ (or 75% FC) in summer than in winter or spring under field conditions. Denitrification rate occurred faster in the first 7 days of incubation, suggesting that key management to mitigate N_2O should be targeted in the first week after N fertiliser application. Thus, the management soil water, partiallarly the retention of soil moisture at $0.25~\text{cm}^3$ water cm⁻³ soil during the periods associated with high temperatures can reduce N loss as N₂O from denitrification. By evaluating the response of N_2O production at different temperatures and NO_3^- contents (Chapter 7), it was identified that temperature interacted with NO_3^- to control N_2O production from denitrification. Temperature or NO_3^- concentration alone was a poor predictor of N_2O emission and total denitrification rate in our study. The rate of N_2O production was greatest at 35 °C when either 200 or 300 μ g N g^{-1} dry soil was added (equivalent to 100 or 150 kg N ha^{-1} , respectively) while N_2O was less affected by temperature at lower N addition (~ 50 kg N ha^{-1}). Increasing temperature enhanced soil microbial respiration rate, resulting in decreased O_2 availability in the soil microsites. The deficiency of O_2 presumably increased the use of NO_3^- as a preferred terminal electron acceptor (TEA) during denitrification, resulting in high N_2O released from denitrification at 35 °C (Figure 8.1). The reduction of N_2O to N_2 during denitrification increased up to 45 °C, regardless of NO_3^- concentrations (Figure 8.1), resulting in decreased N_2O/N_2 ratios between 40 °C and 45 °C. Interestingly, cumulative NH₄⁺ contents in the soils at 45 °C were greater than at lower temperatures (Chapter 4, Chapter 6, Chapter 7, Figure 8.1). This finding suggests a significant impact of high temperatures on biological processes controlling NH₄⁺ availability. Cumulative NH₄⁺ in the tested soils (chromosol and dermosol) at 45 °C reflects that the production of NH₄⁺ from N mineralisation and/or dissimilatory nitrate reduction to ammonium (DNRA) exceeded the consumption of NH₄⁺, including nitrification and N immobilisation. Mineralisation of N is known to increase with rising temperature up to 45 °C (Sierra and Marban, 2000; Zaman and Chang, 2004). DNRA is a biological process of conversion of NO₃⁻ to NH₄⁺ with the lack of O₂ availability by organisms that have fermentative rather than oxidative metabolism (Tiedje, 1988). Temperature was identified as one of key factors determining the rate of DNRA in the water of rivers (Tomaszek and Rokosz, 2007) while the thermal response of DNRA in soil is poorly understood (Schmidt et al., 2011). In our studies, DNRA could be a potential mechanism that might explain the changes in NH₄⁺ and NO₃⁻ pools at 45 °C. Increased soil DNRA rate has implications for ecosystem N conservation, as the reduction of NO₃⁻ to NH₄⁺ would potentially prevent NO₃⁻ toxicity in grazing animals under high N fertiliser application (Bolan and Kemp, 2003) and slow the rates of leaching and denitrification. ### 8.3 Conclusions This work has improved the knowledge of biological N_2O and N_2 production at high temperatures, typical of environments of southern Australia, which have had relatively little research focus regarding N_2O emissions. High temperatures (> 30 °C) could potentially increase the losses of N applied as N_2O and N_2 from nitrification and denitrification. Temperature appeared to be more important than soil type in controlling N_2O from nitrification, which slowed at 10 °C to 25 °C and peaked at 35 °C to 40 °C. These results suggest a higher optimum temperature for the N_2O from nitrification than previous studies. Autotrophic nitrification produced N_2O predominantly below 35 °C, while heterotrophic nitrification, which used N_2O predominantly below 35 °C, while heterotrophic nitrification, which used N_2O predominantly below 35 °C and 40 °C. Climatic conditions affected the magnitudes of total N_2O emissions in soils. N_2O emissions in the tropical soil exceeded those in the temperate soil. N_2O/NO_3^- from nitrification at different temperatures was independent of climatic region. The ratio of N_2O/NO_3^- was positively correlated with increased temperature, and was above 1.0% at 35 °C, regardless of climate. The rates of nitrification and associated N₂O production were closely related to the growth of AOB population, as influenced by temperature. Temperature interacted with soil moisture and NO_3^- supply to regulate N_2O from denitrification, while the reduction of N_2O to N_2 was affected mainly by temperature. The highest denitrification rate ($N_2O + N_2$) was found at 35 °C in the soils maintained at 75% FC and treated with N additions between 100 - 150 kg N ha⁻¹. Decreased N_2O/N_2 ratios at 40 °C to 45 °C was due to both the decreased N_2O production and increased N_2O reduction at these high temperatures, suggesting a significant NO_3^- loss as N_2 during summer, particularly in soils that are wet during that period. Increased temperature encouraged the use NO_3^- as TEA in soil microsites, since O_2 became limiting, thereby increasing N_2O production. Temperature likely influenced the regulation of denitrifying enzyme expressions. The reduction of N_2O to N_2 during denitrification was independent of NO_3^- availability in our controlled experiments. Interestingly, the study indicated that NH_4^+ contents increased rapidly at 45 °C after 10 days of incubation in both chrososol and dermosol soils. This result was hypothesised to be a result of high rates of mineralisation N and/or the action of DNRA at this temperature (Figure 8.1). Figure 8.1. A conceptual model of the effect of temperature on soil biological processes responsible for N_2O and N_2 production, constructed by integrating results obtained from experimental chapters. The size of the circles and arrows indicates the relative impact of temperature on size of the pools of each nitrogen form. The diagrams in the lower portion of the figure indicate some key results of the study in relation to temperature optima for N_2O production and the thermal effect on NH_4^+ . ## 8.4 Implications The production of N₂O from soils has been measured across climatic regions that varied markedly with temperature. Our results indicate that an optimum function should be used to describe the effect of temperature on biological N₂O production from soils. The temperature optima for N₂O production is likely to vary between climatic regions. The comparison of N₂O production at a range of temperatures between two contrasting climates demonstrated that the optimum temperature for N₂O production is lower in the temperate than in the tropical climate. The magnitudes N₂O emission and nitrification are also likely to be greater in the tropical than the temperate climates, based on our current data set. These results reflect that soil microorganisms from different climates respond dissimilarly to temperature. Therefore, ecosystem models predicting N₂O should consider an optimum function of temperature
for a better prediction of N₂O emission from soils across regions. Temperature interacted with soil moisture or NO_3^- availability to regulate N losses as N_2O emission from denitrification. These interactions are likely to occur under field conditions to influence the production of N_2O . One practical recommendation to farmers based on our work would be to manage soil moisture and N availability carefully in the field, taking into account the crop demand for N throughout the season. Managing the system to reduce excesses of soil water and NO_3^- will reduce N_2O emissions from denitrification under field conditions, particularly during summer time, which often experience high temperatures. Nitrogen mineralisation and DNRA might be important processes regulating soil NH₄⁺ availability at high temperatures. It is possible to take advantage of the hottest months (December to February) to promote the rates of N mineralisation and/or DNRA under natural conditions, which help to conserve soil N. ### **8.5** Future research The research work in this thesis suggests a number of areas that require further investigation, including: Ammonium oxidising archaea (AOA), which may be involved in the nitrification process (Di et al., 2010), were not measured by the most probable number (MPN) technique in our studies. Although the growth and activity of AOA were presumably negligible in the soils with the additions above 50 µg NH₄-N g⁻¹ in the experiments presented in this thesis, the thermal response of AOA needs to be understood, particularly in low fertilised or unfertilised soils. The abundance of Archaeal amoA genes can be quantified using primers crenamoA23F and crenamoA616R (Tourna et al., 2008) for amplification in QuantiFastTM qPCR master mix (Qiagen). Amplification efficiency for archaeal amoA qPCR helps improve the knowledge of the role of AOA in N cycle and the thermal response of AOA relative to N₂O production. Ammonium oxidising bacteria populations estimated by MPN are often variable in response and time-consuming. Amplification of bacterial amoA genes can be performed similarly to archaeal amoA qPCR, except for the primers. The primers for bacterial amoA can be A-1R and amoA-2R (Rotthauwe et al., 1997). Future research should apply these qPCR techniques to precisely evaluate the growth and activity of bacterial amoA genes and archaeal amoA genes in response to high temperatures. The isolation of nitrifying and denitrifying strains responsible for N_2O and N_2 production in tested soils is needed to confirm the mechanisms that control these nitrogenous gases. The growth of nitrifying and denitrifying strains in cultures allows better evaluation of the effects of temperature on the growth and gene expression, relative to N_2O and N_2 production, particularly *NosZ*. This would provide a clear understanding of the mechanisms of high temperature in controlling N_2O and N_2 production from nitrification and denitrification. The production of N₂O from other processes such as nitrifier-denitrification and chemical reactions could be an interesting subject for future work. Nitrifier-denitrification, a reduction of NO₂⁻ following the oxidation of NH₄⁺ in nitrification, could contribute to significant N₂O production under low soil pH, since O₂ becomes limiting (Wrage et al., 2001; Zhu et al., 2013), suggesting an important role for nitrifier-denitrification as the source of N₂O in acidic soils. Chemo-denitrification can also occur under low soil pH and in the presence of Fe²⁺ (Van Cleemput, 1998). In this process, nitrite (NO₂⁻) produced during denitrification can rapidly react with Fe²⁺ in soil to release N₂O. Another abiotic pathway of N₂O is the oxidation of hydroxylamine (NH₂OH), which is formed during nitrification as a mediated product (Bremner, 1997; Heil et al., 2015). Although these reactions may contribute relatively small quantities of N₂O, further research will be needed to understand these processes as the sources of N₂O and N₂ from soils. The thermal response of DNRA could be an interesting area to explore in future work. This biological process, however, is one of the least understood in the N cycle (Schmidt et al., 2011). Few studies have examined the rates of DNRA from soils under anaerobic conditions. DNRA rate was responsible for 75% turnover of the NO_3^- pool in the ultisols (Silver et al., 2001). In that study, the conversion of NO_3^- to NH_4^+ exceeded the total N gas losses ($N_2O + N_2$) from nitrification and denitrification. The evidence that temperature is a key factor controlling the variation in DNRA rates in rivers was reported by (Tomaszek and Rokosz, 2007). However, the dependence of DNRA on soil temperature has not been documented. Increased DNRA in soil would potentially benefit N conservation because a high rate of DNRA reduces NO_3^- concentration in soil, slowing N losses as N_2O from denitrification or leaching. More research will be needed to evaluate the thermal response of DNRA, particularly at high temperatures (35 – 45 °C), which are typically experienced in Australian soils during summer. ## References Abbasi, M., Adams, W., 2000. Gaseous N emission during simultaneous nitrification—denitrification associated with mineral N fertilization to a grassland soil under field conditions. Soil Biology and Biochemistry 32, 1251-1259. Alexander, L., Zhang, X., Peterson, T., Caesar, J., Gleason, B., Klein Tank, A., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research 111. Anderson, I.C., Poth, M., Homstead, J., Burdige, D., 1993. A comparison of NO and N₂O production by the autotrophic nitrifier *Nitrosomonas europaea* and the heterotrophic nitrifier *Alcaligenes faecalis*. Applied and environmental microbiology 59, 3525-3533. Aulakh, M., Doran, J., Mosier, A., 1992. Soil denitrification-significance, measurement, and effects of management, Advances in soil science. Springer, pp. 1-57. Avalakki, U., Strong, W., Saffigna, P., 1995. Measurement of gaseous emissions from denitrification of applied ¹⁵N₂. Effects of temperature and added straw. Soil Research 33, 89-99. Avrahami, S., Liesack, W., Conrad, R., 2003. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology 5, 691-705. Azam, F., Müller, C., Weiske, A., Benckiser, G., Ottow, J., 2002. Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen. Biology and fertility of Soils 35, 54-61. Baggs, E., Richter, M., Cadisch, G., Hartwig, U., 2003. Denitrification in grass swards is increased under elevated atmospheric CO₂. Soil biology and Biochemistry 35, 729-732. Bárcenas-Moreno, g., Gómez-Brandón, m., Rousk, J., Bååth, E., 2009. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biology 15, 2950-2957. Bateman, E., Baggs, E., 2005. Contributions of nitrification and denitrification to N₂O emissions from soils at different water-filled pore space. Biology and Fertility of Soils 41, 379-388. Benbi, D., Biswas, C., Bawa, S., Kumar, K., 1998. Influence of farmyard manure, inorganic fertilizers and weed control practices on some soil physical properties in a long-term experiment. Soil Use and Management 14, 52-54. Blackmer, A., Bremner, J., 1978. Inhibitory effect of nitrate on reduction of N₂O to N₂ by soil microorganisms. Soil Biology and Biochemistry 10, 187-191. Blagodatskaya, E., Zheng, X., Blagodatsky, S., Wiegl, R., Dannenmann, M., Butterbach-Bahl, K., 2014a. Oxygen and substrate availability interactively control the temperature sensitivity of CO₂ and N₂O emission from soil. Biology and Fertility of Soils. Blagodatskaya, E., Zheng, X., Blagodatsky, S., Wiegl, R., Dannenmann, M., Butterbach-Bahl, K., 2014b. Oxygen and substrate availability interactively control the temperature sensitivity of CO₂ and N₂O emission from soil. Biology and Fertility of Soils, 1-9. Bolan, N.S., Hedley, M.J., 2003. Role of carbon, nitrogen, and sulfur cycles in soil acidification. Handbook of soil acidity. Marcel Dekker, New York, 29-56. Bolan, N.S., Kemp, P., 2003. A review of factors affecting and prevention of pasture-induced nitrate toxicity in grazing animals. New Zealand Grassland Association Incorporated. Bolan, N.S., Saggar, S., Luo, J., Bhandral, R., Singh, J., 2004. Gaseous emissions of nitrogen from grazed pastures: processes, measurements and modelling, environmental implications, and mitigation. Advances in Agronomy 84, 37-120. Bouwman, A., Beusen, A., Griffioen, J., Van Groenigen, J., Hefting, M., Oenema, O., Van Puijenbroek, P., Seitzinger, S., Slomp, C., Stehfest, E., 2013. Global trends and uncertainties in terrestrial denitrification and N_2O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences 368, 20130112. Bouwman, A., Boumans, L., Batjes, N., 2002. Modeling global annual N₂O and NO emissions from fertilized fields. Global Biogeochemical Cycles 16, 1080. Bremner, J., Blackmer, A., 1981. Terrestrial nitrification as a source of atmospheric nitrous oxide in: Delwiche, C.C. (Ed.), Denitrification, nitrification and atmospheric nitrious oxide. Wiley, New York. Bremner, J.M., 1997. Sources of nitrous oxide in soils. Nutrient cycling in Agroecosystems 49, 7-16. Burford, J., Bremner, J., 1975. Relationships between the denitrification capacities of soils and total, water-soluble and readily decomposable soil organic matter. Soil biology and biochemistry 7, 389-394. Butterbach-Bahl, K., Baggs, E.M., Dannenmann, M., Kiese, R., Zechmeister-Boltenstern, S., 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London B: Biological Sciences 368,
20130122. Butterbach-Bahl, K., Dannenmann, M., 2011. Denitrification and associated soil N₂O emissions due to agricultural activities in a changing climate. Current Opinion in Environmental Sustainability 3, 389-395. Campbell, C., Biederbeck, V., 1972. Influence of fluctuating temperatures and constant soil moistures on nitrogen changes in amended and unamended loam. Canadian Journal of Soil Science 52, 323-336. Carter, M.S., 2007. Contribution of nitrification and denitrification to N₂O emissions from urine patches. Soil Biology & Biochemistry 39, 2091-2102. Casella, S., Leporini, C., Nuti, M., 1984. Nitrous oxide production by nitrogen-fixing, fast-growing rhizobia. Microbial ecology 10, 107-114. Castaldi, S., 2000. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biology and Fertility of Soils 32, 67-72. Chen, D., Li, Y., Grace, P., Mosier, A.R., 2008. N₂O emissions from agricultural lands: a synthesis of simulation approaches. Plant and Soil 309, 169-189. Cheng, W., Tsuruta, H., Chen, G., Yagi, K., 2004. N₂O and NO production in various Chinese agricultural soils by nitrification. Soil Biology & Biochemistry 36, 953-963. Cho, C., Burton, D., Chang, C., 1997a. Denitrification and fluxes of nitrogenous gases from soil under steady oxygen distribution. Canadian Journal of Soil Science 77, 261-269. Cho, C., Burton, D., Chang, C., 1997b. Kinetic formulation of oxygen consumption and denitrification processes in soil. Canadian journal of soil science 77, 253-260. Clough, T.J., Kelliher, F.M., Sherlock, R.R., Ford, C.D., 2004. Lime and soil moisture effects on nitrous oxide emissions from a urine patch. Soil Science Society of America Journal 68, 1600-1609. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H₂, CO, CH₄, OCS, N₂O, and NO). Microbiological Reviews 60, 609-640. Crutzen, P., 1981. Atmospheric chemical processes of the oxides of nitrogen including nitrous oxide. p 17-44. Denitrification, nitrification and atmospheric nitrous oxide. New York, USA: Wiley. Das, B., Kluitenberg, G.J., Pierzynski, G., 1995. Temperature dependence of nitrogen mineralization rate constant: a theoretical approach. Soil Science 159, 294-300. Davidson, E., Hart, S., Shanks, C., Firestone, M., 1991. Measuring gross nitrogen mineralization, and nitrification by ¹⁵N isotopic pool dilution in intact soil cores. Journal of Soil Science 42, 335-349. Davidson, E.A., 1991. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems, in: J.E, R., W.B, W. (Eds.), Microbial production and consumption of greenhouse gases: Methane, nitrogen oxides and halomethanes. Am. Soc. Microbiol., Washington, DC, USA, pp. 219-235. Davidson, E.A., 1992. Sources of nitric oxide and nitrous oxide following wetting of dry soil. Soil Science Society of America Journal 56, 95-102. Davidson, E.A., Janssens, I., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173. Davidson, E.A., Swank, W.T., Perry, T.O., 1986. Distinguishing between nitrification and denitrification as sources of gaseous nitrogen production in soil. Applied and Environmental Microbiology 52, 1280-1286. De Boer, W., Gunnewiek, P.K., Veenhuis, M., Bock, E., Laanbroek, H., 1991. Nitrification at low pH by aggregated chemolithotrophic bacteria. Applied and Environmental Microbiology 57, 3600-3604. De Boer, W., Kowalchuk, G., 2001. Nitrification in acid soils: Micro-organisms and mechanisms. Soil biology and biochemistry 33, 853-866. De Boer, W., Tietema, A., Gunnewiek, P.K., Laanbroek, H., 1992. The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH-dependent nitrifying activity. Soil Biology and Biochemistry 24, 229-234. de Klein, C., Van Logtestijn, R., 1996. Denitrification in grassland soils in the Netherlands in relation to irrigation, N-application rate, soil water content and soil temperature. Soil Biology and Biochemistry 28, 231-237. Dendooven, L., Splatt, P., Anderson, J., 1996. Denitrification in permanent pasture soil as affected by different forms of C substrate. Soil Biology and Biochemistry 28, 141-149. Dessureault-Rompré, J., Zebarth, B.J., Georgallas, A., Burton, D.L., Grant, C.A., Drury, C.F., 2010. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 157, 97-108. Di, H., Cameron, K., Shen, J.P., Winefield, C., O'Callaghan, M., Bowatte, S., He, J., 2009. Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils. Nature Geoscience 2, 621-624. Di, H.J., Cameron, K.C., Shen, J.-P., Winefield, C.S., O'Callaghan, M., Bowatte, S., He, J.-Z., 2010. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiology Ecology 72, 386-394. Dobbie, K., Smith, K., 2001. The effects of temperature, water-filled pore space and land use on N_2O emissions from an imperfectly drained gleysol. European Journal of Soil Science 52, 667-673. Eckard, R., Chen, D., White, R., Chapman, D., 2003. Gaseous nitrogen loss from temperate perennial grass and clover dairy pastures in south-eastern Australia. Australian Journal of Agricultural Research 54, 561-570. Ellis, S., Howe, M., Goulding, K., Mugglestone, M., Dendooven, L., 1998. Carbon and nitrogen dynamics in a grassland soil with varying pH: Effect of pH on the denitrification potential and dynamics of the reduction enzymes. Soil biology and biochemistry 30, 359-367. EPA, A., 2010. Methane and Nitrous Oxide Emissions from Natural Sources. US Environmental Protection Agency Washington, DC, USA. Farquharson, R., Baldock, J., 2008. Concepts in modelling N₂O emissions from land use. Plant and Soil 309, 147-167. Ferguson, S.J., 1998. Nitrogen cycle enzymology. Current opinion in chemical biology 2, 182-193. Firestone, M., Davidson, E., 1989. Microbiological basis of NO and N₂O production and consumption in soil, in: Andreae, M., DS, S. (Eds.), Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Son, Chichester, pp. 7-21. Focht, D., 1974. The effect of temperature, pH, and aeration on the production of nitrous oxide and gaseous nitrogen-a zero-order kinetic model. Soil science 118, 173. Focht, D., Verstraete, W., 1977. Biochemical ecology of nitrification and denitrification [Soils]. Advances in microbial ecology 1. Galbally, I.E., Meyer, M.C., Wang, Y.-P., Smith, C.J., Weeks, I.A., 2010. Nitrous oxide emissions from a legume pasture and the influences of liming and urine addition. Agriculture, Ecosystems & Environment 136, 262-272. Garrido, F., Hénault, C., Gaillard, H., Perez, S., Germon, J., 2002. N₂O and NO emissions by agricultural soils with low hydraulic potentials. Soil Biology & Biochemistry 34, 559-575. Gillam, K., Zebarth, B., Burton, D., 2008. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration. Canadian Journal of Soil Science 88, 133-143. Gödde, M., Conrad, R., 1998. Simultaneous measurement of nitric oxide production and consumption in soil using a simple static incubation system, and the effect of soil water content on the contribution of nitrification. Soil Biology & Biochemistry 30, 433-442. Gödde, M., Conrad, R., 1999. Immediate and adaptational temperature effects on nitric oxide production and nitrous oxide release from nitrification and denitrification in two soils. Biology and Fertility of Soils 30, 33-40. Gomez, K.A., Gomez, A.A., 1984. Statistical procedures for agricultural research. John Wiley & Sons. Goodroad, L., Keeney, D., 1984. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biology & Biochemistry 16, 39-43. Goreau, T.J., Kaplan, W.A., Wofsy, S.C., McElroy, M.B., Valois, F.W., Watson, S.W., 1980. Production of NO₂⁻ and N₂O by nitrifying bacteria at reduced concentrations of oxygen. Applied and Environmental Microbiology 40, 526-532. Graf, D.R., Jones, C.M., Hallin, S., 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N₂O emissions. PloS one 9, e114118. Groffman, P.M., Altabet, M.A., Böhlke, J., Butterbach-Bahl, K., David, M.B., Firestone, M.K., Giblin, A.E., Kana, T.M., Nielsen, L.P., Voytek, M.A., 2006. Methods for measuring denitrification: Diverse approaches to a difficult problem. Ecological Applications 16, 2091-2122. GSST, 2008. Glossary of Soil Science Terms Soil Science Society of America. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D.W., Medina-Elizade, M., 2006. Global temperature change. Proceedings of the National Academy of Sciences 103, 14288-14293. Hart, S.C., Nason, G.E., Myrold, D.D., Perry, D.A., 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75, 880-891. Hefting, M.M., Bobbink, R., de Caluwe, H., 2003. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones. Journal of Environmental Quality 32, 1194-1203. Heil, J., Liu, S., Vereecken, H., Brüggemann, N., 2015. Abiotic nitrous oxide production from hydroxylamine in soils and their dependence on soil properties. Soil Biology and Biochemistry 84, 107-115. Hénault, C., Grossel, A., Mary, B., Roussel, M., Léonard, J., 2012. Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22, 426-433. Hendon, H.H., Thompson, D.W., Wheeler, M.C., 2007. Australian rainfall and surface temperature variations associated with the Southern Hemisphere annular mode. Journal of Climate 20, 2452-2467. Henry, S., Texier, S., Hallet, S., Bru, D., Dambreville, C., Chèneby, D., Bizouard, F., Germon, J., Philippot, L.,
2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environmental Microbiology 10, 3082-3092. Herridge, D.F., Peoples, M.B., Boddey, R.M., 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311, 1-18. Hixson, S., Walker, R., Skau, C., 1990. Soil denitrification rates in four subalpine plant communities of the Sierra Nevada. Journal of environmental quality 19, 617-620. Holtan-Hartwig, L., Dörsch, P., Bakken, L., 2002. Low temperature control of soil denitrifying communities: kinetics of N₂O production and reduction. Soil biology & Biochemistry 34, 1797-1806. Holthaus, E., 2016. Northern hemisphere temperature breaches a terrifying milestone. Horwath, W.R., Elliott, L.F., Steiner, J.J., Davis, J.H., Griffith, S., 1998. Denitrification in cultivated and noncultivated riparian areas of grass cropping systems. Journal of environmental quality 27, 225-231. Hynes, R., Knowles, R., 1982. Effect of acetylene on autotrophic and heterotrophic nitrification. Canadian Journal of Microbiology 28, 334-340. IFA, 2016. Short-Term Fertilizer Outlook 2015 – 2016. Ingwersen, J., Butterbach-Bahl, K., Gasche, R., Papen, H., Richter, O., 1999. Barometric process separation: New method for quantifying nitrification, denitrification, and nitrous oxide sources in soils. Soil Science Society of America Journal 63, 117-128. Inubushi, K., Naganuma, H., Kitahara, S., 1996. Contribution of denitrification and autotrophic and heterotrophic nitrification to nitrous oxide production in andosols. Biology and fertility of soils 23, 292-298. IPCC, 2001. Climate change 2001: The scientific basis. 'Contribution of working group I to the third assessment report of the intergovernmental panel on climate change', in: Honghton, J., Ding, Y., Gridds, D., Noguer, M., Linden, P.v., Dai, X., Maskell, K., Johson, C. (Eds.), Weather. Cambridge University Press: Cambridge, UK, pp. 267-269. IPCC, 2006. Greenhouse gas emissions from agricutture. forestry and other land use, in: Egglaston, H., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.), Guidelines for National Greenhouse Gas Inventories. Institute for Global Environmental Strategies (IGES), Hayama, Japan. IPPC, 2006. Greenhouse gas emissions from agriculture, forestry and other land use, in: Egglaston, H., Buendia, L., Miwa, K., Ngara, T., Tanabe, K. (Eds.). Institute for Global Environmental Strategies (IGES), Hayama, Japan. Ireland, C.R., 2010. Experimental statistics for agriculture and horticulture. CABI. Isbell, R., 1996. The Australian soil classification. Australian Soil and Land Survey Handbook. CSIRO Melbourne. Islam, A., Chen, D., White, R., 2007. Heterotrophic and autotrophic nitrification in two acid pasture soils. Soil biology and biochemistry 39, 972-975. Islam, A., White, R., Chen, D., 2006. Nitrification activity in acid soils of north-eastern Victoria, Australia, as affected by liming and phosphorus fertilisation. Soil Research 44, 739-744. Jarvis, S., Hatch, D., Lovell, R., 2001. An improved soil core incubation method for the field measurement of denitrification and net mineralization using acetylene inhibition. Nutrient Cycling in agroecosystems 59, 219-225. Jones, L., Peters, B., Lezama, J., Casciotti, K., Fendorf, S., 2013. Emission of the greenhouse gas nitrous oxide resulting from ferrous iron disturbance of denitrification, AGU Fall Meeting Abstracts, p. 0413. Jones, R., Hedlin, R., 1970. Ammonium, nitrite and nitrate accumulation in three Manitoba soils as influenced by added ammonium sulfate and urea. Canadian Journal of Soil Science 50, 331-338. Kaiser, E.A., Eiland, F., Germon, J., Gispert, M., Heinemeyer, O., Henault, C., Lind, A.-M., Maag, M., Saguer, E., Van Cleemput, O., 1996. What predicts nitrous oxide emissions and denitrification N-loss from European soils? Zeitschrift für Pflanzenernährung und Bodenkunde 159, 541-547. Kamphake, L., Hannah, S., Cohen, J., 1967. Automated analysis for nitrate by hydrazine reduction. Water research 1, 205-216. Kaplan, A., 1965. Standard Methods of Clinical Chemistry. Academic Press, New York. Keeney, D., Marx, G., Fillery, I., 1979. Effect of temperature on the gaseous nitrogen products of denitrification in a silt loam soil. Soil Science Society of America Journal 43, 1124-1128. Khalil, K., Mary, B., Renault, P., 2004. Nitrous oxide production by nitrification and denitrification in soil aggregates as affected by O₂ concentration. Soil Biology & Biochemistry 36, 687-699. Klemedtsson, L., Svensson, B., Rosswall, T., 1988. A method of selective inhibition to distinguish between nitrification and denitrification as sources of nitrous oxide in soil. Biology and Fertility of Soils 6, 112-119. Knowles, R., 1982. Denitrification, in: Paul, E.A., Ladd, J.N. (Eds.), Soil biochemistry. Marcel Dekker, New York, pp. 323-369. Knowles, R., 1990. Acetylene inhibition technique: development, advantages, and potential problems, Denitrification in soil and sediment. Springer, pp. 151-166. Kolb, S., Horn, M.A., 2012. Microbial CH₄ and N₂O consumption in acidic wetlands. Front. Microbiol 3, 10.3389. Koskinen, W., Keeney, D., 1982. Effect of pH on the rate of gaseous products of denitrification in a silt loam soil. Soil Science Society of America Journal 46, 1165-1167. Kroeze, C., Mosier, A., Bouwman, L., 1999. Closing the global N₂O budget: A retrospective analysis 1500–1994. Global Biogeochemical Cycles 13, 1-8. Labbé, N., Parent, S., Villemur, R., 2003. Addition of trace metals increases denitrification rate in closed marine systems. Water Research 37, 914-920. Li, C., 2000. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems 58, 259-276. Li, C., Frolking, S., Frolking, T.A., 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research: Atmospheres 97, 9759-9776. Lin, Y.-M., Tay, J.-H., Liu, Y., Hung, Y.-T., 2009. Biological nitrification and denitrification processes, Biological Treatment Processes. Springer, pp. 539-588. Liu, B., Mørkved, P.T., Frostegård, Å., Bakken, L.R., 2010. Denitrification gene pools, transcription and kinetics of NO, N₂O and N₂ production as affected by soil pH. FEMS Microbiology Ecology 72, 407-417. Liu, R., Suter, H., He, J., Hayden, H., Chen, D., 2015. Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. Journal of Soils and Sediments 15, 2304-2309. Liu, S., Vereecken, H., Brüggemann, N., 2014. A highly sensitive method for the determination of hydroxylamine in soils. Geoderma 232, 117-122. Luo, J., Tillman, R., Ball, P., 2000. Nitrogen loss through denitrification in a soil under pasture in New Zealand. Soil Biology and Biochemistry 32, 497-509. Luo, J., White, R., Roger Ball, P., Tillman, R., 1996a. Measuring denitrification activity in soils under pasture: optimizing conditions for the short-term denitrification enzyme assay and effects of soil storage on denitrification activity. Soil biology and biochemistry 28, 409-417. Luo, J., White, R., Roger Ball, P., Tillman, R., 1996b. Measuring denitrification activity in soils under pasture: Optimizing conditions for the short-term denitrification enzyme assay and effects of soil storage on denitrification activity. Soil Biology & Biochemistry 28, 409-417. Maag, M., Vinther, F.P., 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4, 5-14. Maag, M., Vinther, F.P., 1999. Effect of temperature and water on gaseous emissions from soils treated with animal slurry. Soil Science Society of America Journal 63, 858-865. Malhi, S., McGill, W., 1982. Nitrification in three Alberta soils: Effect of temperature, moisture and substrate concentration. Soil Biology & Biochemistry 14, 393-399. Malhi, S., McGill, W., Nyborg, M., 1990. Nitrate losses in soils: effect of temperature, moisture and substrate concentration. Soil Biology and Biochemistry 22, 733-737. Malone, J., Stevens, R., Laughlin, R., 1998. Combining the ¹⁵N and acetylene inhibition techniques to examine the effect of acetylene on denitrification. Soil Biology & Biochemistry 30, 31-37. Marshall, S., Cabrera, M., Braun, L., Wood, C., Mullen, M., Guertal, E., 1999. Denitrification from fescue pastures in the southeastern USA fertilized with broiler litter. Journal of environmental quality 28, 1978-1983. Martikainen, P.J., Lehtonen, M., Lång, K., De Boer, W., Ferm, A., 1993. Nitrification and nitrous oxide production potentials in aerobic soil samples from the soil profile of a Finnish coniferous site receiving high ammonium deposition. FEMS Microbiology Ecology 13, 113-121. Mathieu, O., Hénault, C., Lévêque, J., Baujard, E., Milloux, M.-J., Andreux, F., 2006. Quantifying the contribution of nitrification and denitrification to the nitrous oxide flux using ¹⁵N tracers. Environmental Pollution 144, 933-940. McKenney, D., Johnson, G., Findlay, W., 1984. Effect of temperature on consecutive denitrification reactions in Brookston clay and Fox sandy loam. Applied and environmental microbiology 47, 919-926. Meteorology, B.o., 2015. Climate Data Online, Australian Government. Misselbrook, T., Laws, J., Pain, B., 1996. Surface application and shallow injection of cattle slurry on grassland: nitrogen losses, herbage yields and nitrogen recoveries. Grass and forage science 51, 270-277. Mørkved, P.T., Dörsch, P., Bakken, L.R., 2007. The N₂O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biology & Biochemistry 39, 2048-2057. Mørkved, P.T., Dörsch, P., Henriksen, T.M., Bakken, L.R., 2006. N₂O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing. Soil Biology & Biochemistry 38, 3411-3420. Morley,
N., Baggs, E.M., Dörsch, P., Bakken, L., 2008. Production of NO, N₂O and N₂ by extracted soil bacteria, regulation by NO₂⁻ and O₂ concentrations. FEMS microbiology ecology 65, 102-112. Mosier, A., 1980. Acetylene inhibition of ammonium oxidation in soil. Soil Biology & Biochemistry 12, 443-444. Mosier, A.R., Syers, J.K., Freney, J.R., 2004. Nitrogen fertilizer: an essential component of increased food, feed, and fiber production. Island Press. Scientific Committee on Problems of the Environment (SCOPE) Series. Myers, R., 1975. Temperature effects on ammonification and nitrification in a tropical soil. Soil Biology & Biochemistry 7, 83-86. Nägele, W., Conrad, R., 1990. Influence of soil pH on the nitrate-reducing microbial populations and their potential to reduce nitrate to NO and N₂O. FEMS Microbiology Letters 74, 49-57. Öquist, M.G., Nilsson, M., Sörensson, F., Kasimir-Klemedtsson, Å., Persson, T., Weslien, P., Klemedtsson, L., 2004. Nitrous oxide production in a forest soil at low temperatures–processes and environmental controls. FEMS Microbiology Ecology 49, 371-378. Papen, H., Von Berg, R., Hinkel, I., Thoene, B., Rennenberg, H., 1989. Heterotrophic nitrification by Alcaligenes faecalis: NO₂-, NO₃-, N₂O, and NO production in exponentially growing cultures. Applied and Environmental Microbiology 55, 2068-2072. Parkin, T.B., Sexstone, A.J., Tiedje, J.M., 1985. Adaptation of denitrifying populations to low soil pH. Applied and environmental microbiology 49, 1053-1056. Parton, W., Holland, E., Del Grosso, S., Hartman, M., Martin, R., Mosier, A., Ojima, D., Schimel, D., 2001. Generalized model for NO_x and N_2O emissions from soils. Journal of Geophysical Research: Atmospheres (1984–2012) 106, 17403-17419. Patra, A., Abbadie, L., Clays-Josserand, A., Degrange, V., Grayston, S., Loiseau, P., Louault, F., Mahmood, S., Nazaret, S., Philippot, L., 2005. Effects of grazing on microbial functional groups involved in soil N dynamics. Ecological Monographs 75, 65-80. Philippot, L., 2002. Denitrifying genes in bacterial and archaeal genomes. Biochimica et biophysica acta (BBA)-Gene structure and expression 1577, 355-376. Pierzynski, G.M., Vance, G.F., Sims, J.T., 2005. Soils and environmental quality. CRC press. Pintathong, P., Richardson, D.J., Spiro, S., Choorit, W., 2009. Influence of metal ions and organic carbons on denitrification activity of the halotolerant bacterium, Paracoccus pantotrophus P16 a strain from shrimp pond. Electronic Journal of Biotechnology 12, 4-5. Poth, M., Focht, D.D., 1985. ¹⁵N kinetic analysis of N₂O production by Nitrosomonas europaea: an examination of nitrifier denitrification. Applied and Environmental Microbiology 49, 1134-1141. Potter, C.S., Matson, P.A., Vitousek, P.M., Davidson, E.A., 1996. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research: Atmospheres 101, 1361-1377. Powlson, D., Saffigna, P., Kragt-Cottaar, M., 1988. Denitrification at sub-optimal temperatures in soils from different climatic zones. Soil biology and biochemistry 20, 719-723. Quilty, J., Cattle, S., 2011. Use and understanding of organic amendments in Australian agriculture: a review. Soil Research 49, 1-26. Ravishankara, A., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century. science 326, 123-125. Remde, A., Conrad, R., 1990. Production of nitric oxide in *Nitrosomonas europaea* by reduction of nitrite. Archives of Microbiology 154, 187-191. Renault, P., Stengel, P., 1994. Modeling oxygen diffusion in aggregated soils: I. Anaerobiosis inside the aggregates. Soil Science Society of America Journal 58, 1017-1023. Richardson, D., Felgate, H., Watmough, N., Thomson, A., Baggs, E., 2009. Mitigating release of the potent greenhouse gas N_2O from the nitrogen cycle–could enzymic regulation hold the key? Trends in biotechnology 27, 388-397. Rochester, I.J., 2003. Estimating nitrous oxide emissions from flood-irrigated alkaline grey clays. Soil Research 41, 197-206. Rotthauwe, J.-H., Witzel, K.-P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and environmental microbiology 63, 4704-4712. Rudaz, A., Wälti, E., Kyburz, G., Lehmann, P., Fuhrer, J., 1999. Temporal variation in N₂O and N₂ fluxes from a permanent pasture in Switzerland in relation to management, soil water content and soil temperature. Agriculture, ecosystems & environment 73, 83-91. Ruser, R., Flessa, H., Russow, R., Schmidt, G., Buegger, F., Munch, J., 2006. Emission of N₂O, N₂ and CO₂ from soil fertilized with nitrate: effect of compaction, soil moisture and rewetting. Soil Biology and Biochemistry 38, 263-274. Ruz-Jerez, B., White, R., 1994. Long-term measurement of denitrification in three contrasting pastures grazed by sheep. Soil Biology and Biochemistry 26, 29-39. Ryden, J., 1983. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. Journal of Soil Science 34, 355-365. Sabey, B.R., Frederick, L.R., Bartholomew, W.V., 1959. The formation of nitrate from ammounium in soils. III. Influence of temperature and initial population of nitrifying organisms on the maximum rate and delay period. Processing. Soil Science Society of America 23. Saggar, S., Jha, N., Deslippe, J., Bolan, N., Luo, J., Giltrap, D., Kim, D.-G., Zaman, M., Tillman, R., 2013. Denitrification and N₂O:N₂ production in temperate grasslands: processes, measurements, modelling and mitigating negative impacts. Science of the total Environment 465, 173-195. Saleh-Lakha, S., Shannon, K.E., Henderson, S.L., Goyer, C., Trevors, J.T., Zebarth, B.J., Burton, D.L., 2009. Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Applied and environmental microbiology 75, 3903-3911. Sanford, R.A., Wagner, D.D., Wu, Q., Chee-Sanford, J.C., Thomas, S.H., Cruz-García, C., Rodríguez, G., Massol-Deyá, A., Krishnani, K.K., Ritalahti, K.M., 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proceedings of the National Academy of Sciences 109, 19709-19714. Santoro, A.E., Buchwald, C., McIlvin, M.R., Casciotti, K.L., 2011. Isotopic signature of N₂O produced by marine ammonia-oxidizing archaea. Science 333, 1282-1285. Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. European Journal of Soil Science 61, 683-696. Schauss, K., Focks, A., Leininger, S., Kotzerke, A., Heuer, H., Thiele-Bruhn, S., Sharma, S., Wilke, B.M., Matthies, M., Smalla, K., 2009. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environmental Microbiology 11, 446-456. Schimel, J.P., Firestone, M.K., Killham, K.S., 1984. Identification of heterotrophic nitrification in a Sierran forest soil. Applied and Environmental Microbiology 48, 802-806. Schimel, J.P., Gulledge, J., 1998. Microbial community structure and global trace gases. Global Change Biology 4, 745-758. Schmidt, C.S., Richardson, D.J., Baggs, E.M., 2011. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils. Soil Biology and Biochemistry 43, 1607-1611. Schmidt, E.L., 1982. Nitrification in soil. Nitrogen in agricultural soils, 253-288. Schmidt, E.L., Belser, L., 1994. Autotrophic nitrifying bacteria, Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, pp. 159-177. Schmidt, I., van Spanning, R.J., Jetten, M.S., 2004. Denitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK-and NorB-deficient mutants. Microbiology 150, 4107-4114. Schmidt, I.K., Jonasson, S., Michelsen, A., 1999. Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Applied Soil Ecology 11, 147-160. Scholefield, D., Hawkins, J., Jackson, S., 1997. Use of a flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biology & Biochemistry 29, 1337-1344. Senbayram, M., Chen, R., Budai, A., Bakken, L., Dittert, K., 2012. N_2O emission and the N_2 O/(N_2 O+ N_2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations. Agriculture, Ecosystems & Environment 147, 4-12. Sexstone, A., Parkin, T., Tiedje, J., 1988. Denitrification response to soil wetting in aggregated and unaggregated soil. Soil Biology and Biochemistry 20, 767-769. Sierra, J., 2002. Nitrogen mineralization and nitrification in a tropical soil: Effects of fluctuating temperature conditions. Soil biology and biochemistry 34, 1219-1226. Sierra, J., Marban, L., 2000. Nitrogen mineralization pattern of an oxisol of Guadeloupe, French West Indies. Soil Science Society of America Journal 64, 2002-2010. Silver, W.L., Herman, D.J., Firestone, M.K., 2001. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. Ecology 82, 2410-2416. Šimek, M., Cooper, J., 2002. The influence of soil pH on denitrification: Progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science 53, 345-354. Šimek, M., Elhottová, D., Klimeš, F., Hopkins, D.W., 2004. Emissions of N₂O and CO₂, denitrification measurements and soil properties in red clover and ryegrass stands. Soil Biology and Biochemistry 36, 9-21. Šimek, M., Hopkins, D., 1999. Regulation of potential denitrification by soil pH in long-term fertilized arable soils. Biology and fertility of Soils 30, 41-47. Smith, K., 1997. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global
Change Biology 3, 327-338. Smith, K., Ball, T., Conen, F., Dobbie, K., Massheder, J., Rey, A., 2003. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science 54, 779-791. Smith, K.A., McTaggart, I.P., Dobbie, K.E., Conen, F., 1998. Emissions of N₂O from Scottish agricultural soils, as a function of fertilizer N. Nutrient Cycling in Agroecosystems 52, 123-130. Stanford, G., Frere, M., VANDER POL, R.A., 1975. Effect of fluctuating temperatures on soil nitrogen mineralization. Soil Science 119, 222-226. Stark, J.M., 1996. Modeling the temperature response of nitrification. Biogeochemistry 35, 433-445. Stark, J.M., Firestone, M.K., 1996. Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biology & Biochemistry 28, 1307-1317. Stevens, R., Laughlin, R., 1998. Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils. Nutrient Cycling in Agroecosystems 52, 131-139. Stevens, R., Laughlin, R., Malone, J., 1998. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biology and Biochemistry 30, 1119-1126. Strong, D., Fillery, I., 2002. Denitrification response to nitrate concentrations in sandy soils. Soil Biology and Biochemistry 34, 945-954. Strong, D.T., Sale, P.W.G., Helyar, K.R., 1997. Initial soil pH affacts the pH at which nitrification ceases due to seff induced acidification of microbial microsites. Australian Journal of Soil Research 35, 565-570. Struwe, S., Kjøller, A., 1994. Potential for N₂O production from beech (Fagus silvaticus) forest soils with varying pH. Soil Biology and Biochemistry 26, 1003-1009. Stüven, R., Vollmer, M., Bock, E., 1992. The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Archives of Microbiology 158, 439-443. Sullivan, D., Wood, C., Owsley, W., Norfleet, M., Wood, B., Shaw, J., Adams, J., 2005. Denitrification following land application of swine waste to bermudagrass pasture. Communications in soil science and plant analysis 36, 1277-1288. Swerts, M., Merckx, R., Vlassak, K., 1996. Denitrification, N₂-fixation and fermentation during anaerobic incubation of soils amended with glucose and nitrate. Biology and Fertility of Soils 23, 229-235. Thangarajan, R., Bolan, N.S., Naidu, R., Surapaneni, A., 2015. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environmental Science and Pollution Research 22, 8843-8854. Tiedje, J.M., 1988. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biology of anaerobic microorganisms, 179-244. Tiedje, J.M., Sexstone, A.J., Myrold, D.D., Robinson, J.A., 1983. Denitrification: Ecological niches, competition and survival. Antonie van Leeuwenhoek 48, 569-583. Tomaszek, J., Rokosz, G.R., 2007. Rates of dissimilatory nitrate reduction to ammonium in two Polish reservoirs: impacts of temperature, organic matter content, and nitrate concentration. Environmental technology 28, 771-778. Tortoso, A.C., Hutchinson, G., 1990. Contributions of autotrophic and heterotrophic nitrifiers to soil NO and N₂O emissions. Applied and Environmental Microbiology 56, 1799-1805. Tourna, M., Freitag, T.E., Nicol, G.W., Prosser, J.I., 2008. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environmental Microbiology 10, 1357-1364. Tsang, W., Herron, J.T., 1991. Chemical kinetic data base for propellant combustion I. Reactions involving NO, NO₂, HNO, HNO₂, HCN and N₂O. Journal of physical and chemical reference data 20, 609-663. Van't Hoff, J.H., 1884. Studies in chemical dynamics, Revised and enlarged by Ernst Cohen ed, F.Muller & Co, Ansterdan. Van Cleemput, O., 1998. Subsoils: chemo-and biological denitrification, N₂O and N₂ emissions. Nutrient Cycling in Agroecosystems 52, 187-194. Van Cleemput, O., Vermoesen, A., de Groot, C.-J., van Ryckeghem, K., 1994. Nitrous oxide emission out of grassland, Non-CO₂ Greenhouse Gases: Why and How to Control? Springer, pp. 145-152. Van der Salm, C., Dolfing, J., Heinen, M., Velthof, G., 2007. Estimation of nitrogen losses via denitrification from a heavy clay soil under grass. Agriculture, ecosystems & environment 119, 311-319. Velthof, G., Jarvis, S., Stein, A., Allen, A., Oenema, O., 1996. Spatial variability of nitrous oxide fluxes in mown and grazed grasslands on a poorly drained clay soil. Soil Biology and Biochemistry 28, 1215-1225. Vermoesen, A., de Groot, C.-J., Nollet, L., Boeckx, P., Van Cleemput, O., 1996. Effect of ammonium and nitrate application on the NO and N₂O emission out of different soils, Progress in Nitrogen Cycling Studies. Springer, pp. 645-654. Walker, R., Hixson, S., Skau, C., 1992. Soil denitrification rates in a subalpine watershed of the eastern Sierra Nevada. Forest ecology and management 50, 217-231. Wang, L.K., Wu, Z., Shammas, N.K., 2009. Rotating biological contactors, Biological Treatment Processes. Springer, pp. 435-458. Watanabe, T., Masaki, K., Iwashita, K., Fujii, T., Iefuji, H., 2009. Treatment and phosphorus removal from high-concentration organic wastewater by the yeast Hansenula anomala J224 PAWA. Bioresource technology 100, 1781-1785. Weier, K., Doran, J., Power, J., Walters, D., 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Weymann, D., Geistlinger, H., Well, R., Heide, C.v.d., Flessa, H., 2010. Kinetics of N₂ O production and reduction in a nitrate-contaminated aquifer inferred from laboratory incubation experiments. Biogeosciences 7, 1953-1972. White, R., Cai, G., Chen, D., Fan, X., Pacholski, A., Zhu, Z., Ding, H., 2002. Gaseous nitrogen losses from urea applied to maize on a calcareous fluvo-aquic soil in the North China Plain. Soil Research 40, 737-748. Woomer, P.L., 1994. Most probable number counts. Methods of Soil Analysis: Part 2—Microbiological and Biochemical Properties, 59-79. Wrage, N., Van Groenigen, J., Oenema, O., Baggs, E., 2005. A novel dual-isotope labelling method for distinguishing between soil sources of N2O. Rapid Communications in Mass Spectrometry 19, 3298-3306. Wrage, N., Velthof, G., Van Beusichem, M., Oenema, O., 2001. Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology and Biochemistry 33, 1723-1732. Xu, Y., Wan, S., Cheng, W., Li, L., 2008. Impacts of grazing intensity on denitrification and N₂O production in a semi-arid grassland ecosystem. Biogeochemistry 88, 103-115. Yoshinari, T., Hynes, R., Knowles, R., 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biology & Biochemistry 9, 177-183. Zaman, M., Chang, S., 2004. Substrate type, temperature, and moisture content affect gross and net N mineralization and nitrification rates in agroforestry systems. Biology and Fertility of Soils 39, 269-279. Zaman, M., Nguyen, M., 2010. Effect of lime or zeolite on N₂O and N₂ emissions from a pastoral soil treated with urine or nitrate-N fertilizer under field conditions. Agriculture, ecosystems & environment 136, 254-261. Zaman, M., Nguyen, M., Matheson, F., Blennerhassett, J., Quin, B., 2007. Can soil amendments (zeolite or lime) shift the balance between nitrous oxide and dinitrogen emissions from pasture and wetland soils receiving urine or urea-N? Soil Research 45, 543-553. Zheng, J., Doskey, P.V., 2015. Modeling nitrous oxide production and reduction in soil through explicit representation of denitrification enzyme kinetics. Environmental science & technology 49, 2132-2139. Zhou, Q., Takenaka, S., Murakami, S., Seesuriyachan, P., Kuntiya, A., Aoki, K., 2007. Screening and characterization of bacteria that can utilize ammonium and nitrate ions simultaneously under controlled cultural conditions. Journal of bioscience and bioengineering 103, 185-191. Zhu, Q., Van Teeffelen, R., Van Santen, R., Hensen, E., 2004. Effect of high-temperature treatment on Fe/ZSM-5 prepared by chemical vapor deposition of FeCl₃: II. Nitrous oxide decomposition, selective oxidation of benzene to phenol, and selective reduction of nitric oxide by isobutane. Journal of Catalysis 221, 575-583. Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., 2013. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N₂O and NO under low oxygen availability. Proceedings of the National Academy of Sciences 110, 6328-6333.