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Abstract	

 

The objective of this research is to improve physics-based models of piezoelectric actuators 

through developing a global parameter identification method for the models and introducing a 

new high performance model. Piezoelectric actuators produce nano-metre scale displacements 

making them the dominant actuators in nanopositioning applications. In nanopositioning, the 

control of actuators’ displacement requires highly accurate displacement sensors. The sensors 

are expensive and difficult, if not impossible, to use. Therefore, the models are employed to 

estimate the displacement of piezoelectric actuators, using the voltage across them, without 

any displacement sensors. Accordingly, several mathematical models have been developed to 

estimate the displacement of piezoelectric actuators. However, due to the nonlinear behaviour 

of the actuators, the models cannot capture their behaviour precisely. Therefore, developing a 

model to simulate the nonlinear behaviour of the actuator would constitute an important 

contribution to the development of high precision sensorless nanopositioning systems. Models 

can also be used in control system design.  

To model piezoelectric actuators, this research utilises physics-based models that have a small 

number of parameters compared with standard black box models of piezoelectric actuators 

minimising the computation efforts in real-time applications. In this thesis, the physics-based 

models are enhanced by dealing with two main diagnosed weaknesses of these models: (1) the 

lack of a global parameter identification method and, (2) the relatively low accuracy of the 

models due to their inadequate mathematical structure.  

The method for identifying the parameters of the physics-based models is one of the main 

challenges for these models. In general, the parameters of physics-based models are 

determined by non-optimal ad-hoc methods. Hence, this research adopts a standard, optimal 

and global (non-ad-hoc) method to identify the parameters of the nonlinear models of the 

piezoelectric actuators.  

Another challenge for the physics-based models of piezoelectric actuators is the relatively low 

accuracy of the models compared with the black box models, partially arising from the rather 

simple mathematical structure and a small number of parameters of these models. Therefore, 

improving the model structure will increase the model accuracy. To address this matter, 

complementary terms/inputs are added to a physics-base model constructing an enhanced 

structure for the model. The new model doubles the estimation accuracy of the original model 
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and results in accuracies comparable with those of the best reported models of piezoelectric 

actuators.  

The proposed ideas are substantiated to increase the applicability and accuracy of the models 

of piezoelectric actuators. From the range of physics-based models, the Voigt model is a 

particular focus for this research. The Voigt model can capture the rate-dependent and 

nonlinear behaviour of piezoelectric actuators. Furthermore, this model has been reported to 

be adequate for a broad excitation frequency range (1-1000) Hz. However, the proposed ideas 

are easily extendable to other physics-based models of piezoelectric actuators. 
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1. Chapter	1	‐	Introduction	
 

 

Piezoelectric material is one of the smart materials which couples electrical voltage and 

mechanical force. If an electrical voltage is applied to a piezoelectric material which is in 

contact with an object, it will apply a force to the object; thus, the piezoelectric material 

plays the role of an actuator. Fine displacements of piezoelectric actuators in the range of 

(10-6-100) m  makes them suitable for various areas such as nanopositioning (Karam, 

1999) that is, the technology of manipulating materials at nano/micro metre scale 

(Adriaens et al., 2000, Salapaka et al., 2002). Figure 1.1 (a) shows a typical piezoelectric 

actuator in a nanopositioning application. In nanopositioning, in order to control the 

displacement of piezoelectric actuators accurately, feedback control systems are employed, 

wherein the actuator displacements are measured by a highly accurate displacement sensor. 

A typical feedback control system including a piezoelectric actuator and sensor is shown in 

Figure 1.1 (b). However, the application of the sensor is limited by its high expense and 

practical constraints including implementation, calibration and, insufficient resolution and 

bandwidth (Croft et al., 2000). Accordingly, to eliminate sensors from nanopositioning 

systems, several models have been developed to model the piezoelectric actuators using 

voltage across them (Bhikkaji et al., 2007, Mohammadzaheri et al., 2013).  

 

 

Figure  1.1: A typical piezoelectric actuator in (a) a nanopositioning application (Binnig et al., 1986) and (b) 

a feedback control system. 

 

(a)  (b) 
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The modelling of piezoelectric actuators is a challenging task as piezoelectric actuators 

have a highly nonlinear behaviour. A model that can accurately capture this behaviour is a 

sufficient model (Chen and Tan, 2008). Hence, improving the model is significant to utilise 

it in the control system in order to develop the positioning precision of the actuator in the 

system. In other words, to design a feedback controller appropriately, a precise 

mathematical model is necessary (Adriaens et al., 2000).  

This chapter introduces current models of piezoelectric actuators, the research motivation, 

gap statement and thesis overview including thesis contribution, methodology and 

structure. At the end of the chapter, the publications from the thesis are summarised. 

 

1.1. Present	Models	of	Piezoelectric	

Actuators	

 

In most research fields, the system models are constructed through either empirical 

observations or physical considerations (Richter et al., 2001). However in the case of 

nanopositioning systems, the nonlinear behaviour of piezoelectric actuators incurs a 

challenging task for the modelling. The models explaining the behaviour of piezoelectric 

actuators are presented through three types of mathematical models: (1) the finite element, 

(2) the black box and (3) physics-based models.  

The finite element technique divides the whole domain into small subdomain elements to 

model the system. This technique can be applied to complex geometries and dissimilar 

material properties and it can capture local defects. Through this technique, the behaviour 

of piezoelectric actuators has been explained using a multilayer approach (DeVoe and 

Pisano, 1997, Wang and Cross, 1999). However, the finite element technique is not 

appropriate for real-time control because it does not guarantee response at most working 

frequencies of the actuators (Ramtekkar, 2009, Han et al., 1999, Soderkvist, 1997).  

Black box models have standard mathematical structures and are created based on data 

mapping (Mohammadzaheri et al., 2012b). Both the mathematical structure and parameters 

of these models are identified based on the system input, output and transferred features 

without any knowledge about the internal behaviour of the system. A typical black box 

model is illustrated in Figure 1.2. Some examples of black box models include Artificial 
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Neural Networks (ANN), including perceptrons (Mohammadzaheri et al., 2012b), neuro-

fuzzy networks (Mohammadzaheri et al., 2012b), radial basis networks (Xie et al., 2009b) 

and Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX) 

(Deng and Tan, 2009). These models usually have a considerable number of parameters 

and the role of each parameter in the system’s behaviour is unclear. The large number of 

parameters increases the computational efforts to run and tune the model.  

 

 

Figure  1.2: A typical black box model. 

 

A few physics-based models, inspired by physical phenomena, have been introduced to 

estimate the displacement of piezoelectric actuators. Physics-based models are superior to 

black box models in terms of offering ‘physically interpretable’ and small numbers of 

parameters. Small numbers of parameters reduces the computation requirement for running 

the models and increases the potential use for real-time feedback control. Accordingly, 

through physics-based models, the static behaviour of piezoelectric actuators has been 

modelled by Weinberg using energy modelling (Weinberg, 1999). Furthermore, a few 

lumped-parameter models have been commercialised such as 20-Sim and Lab Amesim 

(Boukari et al., 2011, Ryou and Oldham, 2012). However, these products are valid around 

the functioning point based on the IEEE standard (Meeker, 1996). In (1987), the IEEE 

published a standard to model piezoelectric actuators through physics-based models 

(Meeker, 1996). These models, estimate only the linear behaviour of piezoelectric 

actuators occurring at electric field frequencies of zero/constant (Sirohi and Chopra, 2000). 

Moreover, physics-based models have been developed to model the nonlinear behaviour of 

piezoelectric actuators (Goldfarb and Celanovic, 1997, Sitti et al., 2001, Weinberg, 1999). 
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The most well-known physics-based models include the Preisach (Farsangi and Saidi, 

2012), Prandtl-Ishlinskii (Hassani and Tjahjowidodo, 2011), Maxwell-Slip (Quant et al., 

2009), Duhem (Hui et al., 2011) and Voigt (Yeh et al., 2008) models.  

This thesis is focused on the improvement of physics-based models of piezoelectric 

actuators for sensorless or model-based control purposes. 

 

1.2. Motivation	and	Gap	Statement	

 

Piezoelectric actuators have pervasive applications in different areas such as tactile 

displays (Pasquero and Hayward, 2003), minimally invasive surgery end effectors 

(Shimada et al., 2000), precision micromanipulators, vibration controllers and crawling 

robots (Kermani et al., 2002). In particular, the high precision positioning capability of 

piezoelectric actuators has been employed in Scanning Probe Microscopes (SPM), like 

Atomic Force Microscopes (AFM) collecting the nano-scale information of the under-

probe surface (Salapaka et al., 2002, Binnig et al., 1986). The AFM is commonly 

employed in scanning different surfaces such as organic/biological layers, polymer and 

crystal surfaces and materials that are sensitive to radiation (Eaton and West, 2010). 

Overall, in nanopositioning, there is a piezoelectric actuator displaced in nano-metre scale 

and a sensor measures its displacements but, the sensors are expensive and/or their 

application is limited by practical constraints, e.g. non-accessible installation or difficult 

calibration (Boukari, 2010). To remove the sensors, researchers and engineers were pushed 

to estimate the actuator displacement through different models (Aphale et al., 2007, 

Fairbairn et al., 2011, Ronkanen et al., 2011). As piezoelectric actuators have a nonlinear 

behaviour, a sufficient model can accurately capture this behaviour and can be employed 

as a controller (Bhikkaji et al., 2007, Mohammadzaheri et al., 2013). Accordingly, 

improving the models of piezoelectric actuators has high potential benefits in 

nanopositioning and has thus been a subject of much interest in various nanotechnology 

applications. Thus, this thesis improves physics-based models of piezoelectric actuators 

from two primary perspectives: parameter identification and model structure. 

The main challenge for physics-based models is how to identify the parameters of the 

governing equation of the model. It is diagnosed that these models suffer from ad-hoc, 
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tedious and non-optimal parameter identification methods. Many of the reported parameter 

identification strategies in the literature, e.g. Maxwell-Slip, Parandtl-Ishlinski, need the 

data collected immediately after a relatively long relaxation which might be difficult in 

practice, especially for working actuators.  

Another significant research gap is a lower model accuracy compared with black box 

models which benefit from universal approximators. This loss in the accuracy is partially 

due to inadequacy of mathematical structure for these models.  

To deal with the challenge of parameter identification, a standard, optimal and global 

parameter identification method is introduced. Furthermore, to improve the model 

accuracy, the structure of a well-known model will be modified by introducing 

complementary terms to the model. 

Having reviewed the literature, this thesis identifies and presents the following gaps in 

physics-based models of piezoelectric actuators:  

1- A systematic and comparative study has not been conducted on different features of 

physics-based models of piezoelectric actuators such as the frequency range of 

performance and invertibility. 

2- A global, standard and optimal method of parameter identification has not been 

ascertained for physics-based models of piezoelectric actuators. 

3- The reported accuracies for physics-based models are rather low compared with the 

best accuracies reported for black box models benefiting from mathematical 

structures in the form of universal approximators. This may be influenced by 

insufficiently proper mathematical structures or insufficient model inputs. 

 

1.3. Thesis	Overview		

 

1.3.1. Thesis Contribution 

 

This thesis deals with physics-based models of piezoelectric actuators to improve the 

models. The primary contributions of the project would be as follows: 
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1- To establish a novel global (non-ad-hoc) method of parameter identification for 

physics-based models of piezoelectric actuators, independent of the model, as 

detailed in Chapter 4.  

2- To improve the accuracy of a well-known physics-based model through performing 

an innovative modification in the model structure and model inputs. The superiority 

of the proposed model is clearly shown experimentally, as detailed in Chapter 5. 

The aforementioned contributions increase the applicability of physics-based models of 

piezoelectric actuators. The following aims will enable the achievement of the 

contributions described above: 

1- Identifying the parameters of a physics-based model by a genetic algorithm which 

is a global optimisation algorithm.  

2- Investigating the influence of different approaches, for model error estimation, on 

the model accuracy. 

3- Improving the model structure based on the model input: adding complementary 

terms including extrema of the voltage/displacement to improve the model 

accuracy. 

4- Assessing the enhanced model and comparing the model’s performance with 

conventional models of piezoelectric actuators. 

 

1.3.2. Methodology 

 

To fulfil the aims and contributions of the project, the experimental data will be utilised. 

These data have been collected from the Robotic Laboratory at the University of Adelaide. 

Then, the Voigt model, a well-established physics-based model, will be employed to model 

a piezoelectric stack actuator. Moreover, a genetic algorithm is employed to identify the 

model parameters.  

Subsequently, the structure of the Voigt model is improved by adding two complementary 

terms, inspired by the Preisach model, including extrema of the voltage/displacement as 

the model input.  
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The estimated displacements are compared with experimental displacements. The model 

error is defined as the average of absolute discrepancy for the model output and the system 

or real output. The small value of the model error is a sign of the high accuracy of the 

model. All stages to be completed are summarised as: 

 Discretisation for the Voigt model 

 Sampling time selection 

 Parameter identification for the discrete Voigt model using the experimental data 

a) Model error calculation 

b) Model error minimisation as parameter identification 

c) Model validation  

 Adding complementary terms 

 Parameter identification for the new model 

a) Model error calculation 

b) Model error minimisation as parameter identification 

c) Model validation  

 Selecting the most appropriate structure 

 

1.3.3. Thesis Structure 

 

This thesis opens by introducing the thesis scene. Then, the body of the thesis will be 

presented in six chapters: 

Chapter 1) Introduction: 

- Chapter 1 introduces a ‘big picture’ of the thesis including motivation, gap 

statement and thesis overview.  

Chapter 2) Piezoelectric Actuators:  

- Chapter 2 starts with the characteristics of piezoelectric materials. Then, the 

behaviour of piezoelectric actuators and challenges for their modelling are 

presented. 

Chapter 3) Physics-based Models of Piezoelectric Actuators: 
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- Chapter 3 follows on from chapter 2 by modelling piezoelectric actuators through 

physics-based models. The models are constructed analogous with either magnetic 

or mechanical systems. The material in Chapters 2 and 3 was presented in a 

conference paper [C1]. 

Chapter 4) Innovative Parameter Identification Method for Physics-based Models: 

- Chapter 4 discusses different approaches to estimate the model error for physics-

based models of piezoelectric actuators. It demonstrates the experimental setup for 

the piezoelectric actuator in the control system. Then, a global method of parameter 

identification defines the parameters of a model. The materials in this chapter were 

presented in a conference paper [C2] and journal paper [J2]. 

Chapter 5) Structural Enhancement for Physics-based Models:  

- Chapter 5 follows on from other chapters by proposing a new model for 

piezoelectric actuators. It introduces an enhanced form for the Voigt model, 

inspired by another physics-based model, to increase the model accuracy. To 

identify the model parameters, this chapter applies the introduced parameter 

identification method in Chapter 4. The concepts of this chapter were presented in a 

journal paper [J1]. 

The thesis is concluded in Chapter 6, with a discussion followed by suggestions for future 

research opportunities in the modelling of piezoelectric actuators. 

 

1.4. Publications	

 

1.4.1. Journal Papers 

 

[J1] An Enhanced physics-based model to estimate the displacements of piezoelectric 

actuators 

N. Miri, M. Mohammadzaheri, L. Chen 
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Journal of Intelligent Material Systems and Structures, Submitted date: 11/08/2013, 

Published date: 11/08/2014. 

[J2] An Evolutionary Approach to Physics-based Modelling of Piezoelectric Actuators, 

Supported by a Critical Review and Experimental Results 

N. Miri, M. Mohammadzaheri, L. Chen 

International Journal of Intelligent Systems Technologies and Applications, Submitted 

date: 11/06/2014. 

 

1.4.2. Conference Proceedings 

 

[C1] A Comparative Study of Different Physics-based Approaches to Modelling of Smart 

Piezoelectric Actuators 

N. Miri, M. Mohammadzaheri, L. Chen 

IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),  

Wollongong, Australia, (9-12) July 2013.   

[C2] Physics-Based Modelling of a Piezoelectric Actuator Using Genetic Algorithm 

N. Miri, M. Mohammadzaheri, L. Chen, S. Grainger, M. Bazghaleh 

IEEE Symposium on Industrial Electronics and Applications (ISIEA 2013),  

Kuching, Malaysia, (22-25) September 2013. 
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2. Chapter	2	‐	Piezoelectric	Actuators	
 

 

Piezoelectric materials can convert electrical energy into mechanical energy in the form of 

displacement. This chapter opens by presenting characteristics of piezoelectric materials. 

Then, the behaviour of piezoelectric materials in interaction with electrical voltage and/or 

mechanical force is addressed. Finally, the modelling challenges for piezoelectric actuators 

are presented. 

 

2.1. Piezoelectricity		

 

Piezoelectric material is a smart material. It is called smart because the material is able to 

respond to external variations (e.g. loads) and internal changes (e.g. damage) (Chopra, 2002). 

It can couple electrical voltage and mechanical force. These materials are made of crystals 

(e.g. quartz), ferroelectric polycrystalline ceramic substances, piezoceramics (e.g. barium 

titanate (BaTio3)) and lead zirconate titanate (PZT) (Izyumskaya et al., 2007): the PZT is 

widely acceptable piezoelectric material (Minase et al., 2010). A typical PZT unit cell is 

illustrated in Figure 2.1.  

 

 

Figure  2.1: A typical PZT unit cell (Sirohi and Chopra, 2000). 

 

The interaction of mechanical and electrical quantities in piezoelectric materials was 

discovered in the 1880s, as the first experiment on a piezoelectric material was performed by 
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the Curie brothers on quartz, SiO2 (Minase et al., 2010). Subsequently, it was discovered that 

piezoelectric materials are deformed by applying an electrical field (Chopra, 2002). The 

modality of the material charge distribution explains this characteristic of piezoelectric 

materials. Charge distribution in materials is either symmetrical or non-symmetrical. As 

Figure 2.2 (a) demonstrates, in the symmetrical charge distribution, the applied mechanical 

force does not mutate the combination of gravity centres, whereas in the non-symmetrical 

charge distribution, the gravity centre is altered under the applied mechanical force, as Figure 

2.2 (b) demonstrates. The piezoelectric material has a non-symmetrical charge distribution. 

Therefore this innate feature of piezoelectric materials results in generating an electric voltage 

across the material, when a mechanical force is applied to the material. Conversely, the 

material is displaced, when an electric voltage is applied.  

 

 

Figure  2.2: (a) Symmetrical and (b) non‐symmetrical charge distribution of a material. 

 

2.2. Piezoelectric	Stack	Actuator	

 

Piezoelectric actuators are fabricated in different configurations such as piezoceramic thin flat 

patches (Halim and Reza Moheimani, 2003), piezoelectric stacks (Mohammadzaheri et al., 

2012b), piezoelectric tubes (Mohammadzaheri et al., 2012c) and piezoelectric strips 

embedded into a polymer matrix (Irschik et al., 2010). The piezoelectric stack actuators are 

the most widely spread actuators used for small displacements on the normal to the top and 

bottom of the actuator surfaces (Chopra, 2002).  

(a) (b)
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In order to fabricate a piezoelectric stack actuator, piezoelectric wafers are added together. 

The wafers have a thickness in the range (100-300) m  and two stack silver alloys are put on 

both sides of each wafer to be used as electrodes. The stacks should be prepared prior to being 

combined. The preparation involves a process called poling. In the poling process, a strong 

electrical current and a high temperature are applied to the piezoelectric stacks to align 

material dipoles in the direction of the external field. Initially, randomly oriented dipoles are 

aligned in the direction of the electrical field (dipole axes). At the end of the process, the 

temperature and electrical field are quickly reduced to ‘fix’ the dipoles in the aligned state 

(Shayegan et al., 2003). However, some domains switch their alignments by time, causing the 

nonlinear behaviour of piezoelectric actuators (Kim et al., 2010, Sakata et al., 1996). Finally, 

several layers of wafer and stack are assembled together to complete the fabrication process. 

The stacks are mechanically in series and electrically in parallel. This arrangement generates 

large forces and small displacements for the actuator (Chopra, 2002, Adriaens et al., 2000). A 

typical piezoelectric stack actuator is shown in Figure 2.3. 

 

 

Figure  2.3: A typical piezoelectric stack actuator. 

 

2.3. Challenges	to	Model	Piezoelectric	

Actuators	

 

Different models have been designed to estimate the displacement of piezoelectric actuators 

using the voltage across the actuators (Blackwood and Ealey, 1993, Lee, 1990, Bazghaleh et 

al., 2013).  
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In (1987), an American National Standard described the behaviour of piezoelectric actuators 

in the IEEE Standard on Piezoelectricity (Meeker, 1996). This well-known publication was 

based on two linear constitutive relations originally introduced by Woldemar Voigt, a German 

physicist in (1910) (Vasanthanathan and Raamachandran, 2008). Through these relations, a 

tensorial notation of two kinds of variables, mechanical (T, S) and electrical (E, D) variables, 

were used to describe the behaviour of piezoelectric materials. If electrical variables (E, D) 

are converted to mechanical variables (T, S), the piezoelectric material is an actuator and, 

inversely, it is a sensor (Tadigadapa and Mateti, 2009). Accordingly, the coupled 

electromechanical constitutive relations for piezoelectric actuators/sensors are written as: 

ETdD

EdTsS
T

tE

].[].[

.][].[




 , ( 2.1)	

where E, T, S and D are the electric field, stress vector, strain vector and electrical induction, 

respectively (Vasanthanathan and Raamachandran, 2008). As long as we deal with 

piezoelectric actuators, (E, D) are the inputs and (S, T) are the outputs. Es  and T  are 

mechanical flexibility and electrical permittivity matrices, respectively, E  and T indices 

show that the electrical field (E) and mechanical stress (T) are either constant or zero. 

Furthermore, d is the piezoelectric coefficient that couples the mechanical domain to the 

electrical domain. The parameters of Eq. (2.1) are determined by considering the boundary 

conditions and material symmetry (Sirohi and Chopra, 2000). This equation is useful to 

estimate the piezoelectric displacement when the actuator has an almost linear behaviour 

(Sirohi and Chopra, 2000). The equation fails to model the nonlinear behaviour of 

piezoelectric actuators occuring when the strain increases to more than 0.2% (Adriaens et al., 

2000, Tzou and Tseng, 1990, Hegewald et al., 2008). The nonlinear aspect for the 

performance of piezoelectric actuators comes about from a combination of two phenomena: 

hysteresis and creep (Liaw and Shirinzadeh, 2011).  

Hysteresis: Hysteresis is regarded as having different system outputs for identical system 

inputs, the outputs depend on the input history (Yeh et al., 2008). This phenomenon is a 

complex nonlinear behaviour observed in ferromagnetism, ferroelectricity, plasticity and 

superconductivity (Yu et al., 2002). It causes energy loss and nonlinearity in the voltage-

displacement relation of piezoelectric actuators (Han et al., 1999). Hysteresis is assumed to be 

rate(frequency)-dependent by many researchers (Yeh et al., 2008, Boukari et al., 2011, Al 

Janaideh et al., 2008). As Figure 2.4 shows, one distinctive loop is obtained for each 
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excitation frequency. Moreover according to this figure, when the excitation frequency 

increases, the system input-output (presented as the hysteresis loop in the literature) becomes 

shorter, wider and rotates clockwise. However, the hysteresis is not differentiable from other 

phenomena, i.e. the vibration and creep, so the rate dependency of the presented loops may be 

due to other phenomena. The hysteresis effect significantly reduces the precision of 

piezoelectric actuators in relatively long range positioning applications (Croft et al., 2000).  

 

 

Figure  2.4: The displacement of a piezoelectric actuator vs voltage for a) a sinusoidal and b) a triangular input 

voltage at three different excitation frequencies. 

 

Creep: Creep is a behaviour of piezoelectric actuators causing error in long operations (Jung 

and Gweon, 2000, Guillon et al., 2004). It is the decrease of the displacement of piezoelectric 

actuators over time for a constant applied electrical field (Yeh et al., 2008). The physical 

reason behind the creep phenomenon is switching process in microscopic domains of the 

piezoelectric materials (Zhou and Kamlah, 2006, Sakata et al., 1996). When positioning is 

performed over a period of time, the creep phenomenon becomes more critical (Croft et al., 

2000). A creep pattern is shown in Figure 2.5 and, the curves’ thickness in Figure 2.4 

indicates the presence of the creep phenomenon in the behaviour of piezoelectric actuators. 

 

(a)  (b) 
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Figure  2.5: A creep pattern for a piezoelectric actuator. A dynamic response region is upon applying an 

electrical field followed by a creep region (Jung and Gweon, 2000). 

 

Structural vibration: In addition to the hysteresis and creep, the structural vibration causes the 

loss of positioning precision in piezoelectric actuators (Baz and Poh, 1988). The structural 

vibration is a frequency dependent phenomenon influenced by physical characteristics of the 

actuator such as mass, stiffness and damping. The structural vibration is more significant 

close to resonance frequencies of the actuators (Hagood and von Flotow, 1991, Yeh et al., 

2008). Typically the operating bandwidth, sampling rate, of piezoelectric actuators should be 

10 to 100 times less than the first resonant vibrational frequency of the actuator to minimise 

the structural vibration  (Croft et al., 2000, Huber et al., 1997, Abramovitch et al., 2007). One 

approach to increase the bandwidth is to use a piezoelectric actuator with fast dynamic 

response, i.e. with large resonant vibrational frequency. This can be fulfilled by exploiting a 

small actuator and/or an alternate configuration for the actuator (Croft et al., 2000). 

Figure 2.4 illustrates the nonlinear behaviour of a piezoelectric stack actuator associated with 

the three phenomena. Such plots are normally assumed as hysteresis loops in the literature and 

they are used as an evidence for rate-dependency of the hysteresis. However, the rate-

dependency of these plots may be influenced by the structural vibration. To achieve a precise 

nanopositioning, all the three effects should be compensated for through the control system. 

As the three different phenomena cannot be differentiated, the author has found no 

experimental evidence proving the rate-dependency of the hysteresis phenomenon. However 

as a general rule, at high-input magnitudes and frequencies, respectively, the hysteresis and 

vibration effects are large and, for long-run operation of the nanopositioning system, the creep 

effect is significant.  
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A nonlinear rate-dependent model can capture the nonlinear behaviour of piezoelectric 

actuators by considering all training data sets. Accordingly, in model-based control techniques 

for nanopositioning applications, if the model accuracy improves, a significant enhancement 

is demonstrated in positioning speed and precision (Croft et al., 2000). 

 

2.4. Summary	

 

At the beginning of this chapter, important characteristics of piezoelectric materials were 

presented. Then, it was explained how the material is prepared to be used as an actuator. 

Finally, dominant challenges to model piezoelectric actuators were addressed.  

Overall in this chapter, the most important features of piezoelectric materials, actuators and 

challenges for their modelling were introduced. It provides background for the research 

carried out in this thesis.  
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3. Chapter	3	‐	Physics‐based	Models	of	
Piezoelectric	Actuators	

 

 

The models constructed by non-formal analogies with physical phenomena are called physics-

based models. Physics-based models of piezoelectric actuators are made based on an analogy 

between the behaviour of piezoelectric actuators and magnetic/mechanical systems. The 

parameters of these models are physically interpretable, at the same time; they do not use any 

physical properties of the system. Apart from application in sensorless and model-based 

control systems, due to the physical nature of physics-based models, the accordance between 

model predictions and experimental results may provide insight into the underlying actuation 

mechanisms of piezoelectric materials (Chen and Tan, 2008). In this chapter, the most well-

known physics-based models of piezoelectric actuators are presented and their important 

characteristics are discussed.  

 

3.1. Models	Analogous	with	Magnetic	Systems	

 

Magnetostrictive materials are composed of Weiss domains seeking to align themselves in the 

direction of the external magnetic field B, as shown in Figure 3.1. These domains have a 

tendency to rotate in the direction of the external magnetic field (Fontana, 1995). Hence, 

during magnetisation process, the external magnetic field and demagnetising field of each 

domain are superposed  (Della Torre et al., 1990). However, when the external field is 

removed, the domains revert partially, as illustrated in Figure 3.1 (c). This innate feature of 

these materials results in their nonlinear behaviour (Della Torre et al., 1990). 

 

 

Figure  3.1: Magnetostrictive materials in (a) no external magnetic field, (b) a strong external magnetic field 
and c) the removed magnetic field. 

(a)  (b) (c)
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In this section, physics-based models of piezoelectric actuators, inspired by the nonlinear 

behaviour of magnetostrictive materials in an external field, are explained. The most well-

known models of this category are explained, i.e. the Preisach (Mayergoyz, 1991) and 

Prandtl-Ishlinskii (Al Janaideh et al., 2011) models, and some important features of each are 

discussed. 

 

3.1.1. Preisach	Model	
 

The Preisach model was introduced in the early 1930s to model the hysteresis behaviour of 

ferromagnetic materials placed in a magnetic field, as the model input-output represented the 

applied elements of the magnetic field-magnetisation, respectively (Hegewald et al., 2008). 

This model explains the nonlinear behaviour of ferromagnetic materials by dividing it into 

small microscopic domains. Each domain is characterised by two magnetic fields: external 

and internal fields (Robert et al., 2001). As shown in Figure 3.2, in the case of piezoelectric 

actuator, the input-output is the applied electric voltage-displacement demonstrating a 

nonlinear behaviour similar to the ferromagnetic materials (Hegewald et al., 2008). This 

similarity resulted in introducing the Preisach model for piezoelectric actuators (Wolf et al., 

2011, Zelinka et al., 1987). According to the Preisach model, if a varying voltage is applied to 

a piezoelectric actuator, the piezoelectric displacement y is estimated by: 







 ddty ),()( , ( 3.1) 

where the vertical and horizontal axes,  and   , both represent the input voltage, 

),(    is the Preisach density function and different presentations have been offered for it 

(Zelinka et al., 1987, Mohammadzaheri, 2011, Robert et al., 2001).  
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Figure  3.2: Applied voltage to a piezoelectric actuator. 

 

 

Figure  3.3: (a) A varying input voltage (V) applied to a piezoelectric actuator and, (b) the corresponding 
integration area for Eq. (3.1). 

 

Figure 3.3 shows a varying input voltage applied to a piezoelectric actuator and the 

corresponding integration area for Eq. (3.1). In the Preisach model, for the input voltage 

behaviour (ascending/descending), Eq. (3.1) is converted to the following equations: 

Ascending:                    
 


)0( )(min min

),(),()(
VS VVS

ddddty  , ( 3.2) 

  

Descending:                   
 


)0( )(max max

),(),()(
VS VVS

ddddty  , 
( 3.3) 

where S is the integration area known as the Preisach plane. Consequently, Eq. (3.2) and Eq. 

(3.3) could be rewritten as:  

Ascending                      



)(

min

min

),()(
VVS

ddyty  , ( 3.4) 

  

Descending                    



)(

max

max

),()(
VVS

ddyty  , 
( 3.5) 

(a) 
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where maxy  is the last local maximum when descending and miny  is the last local minimum 

when ascending (Zhang et al., 2009). According to the Preisach model, Eq. (3.4) and Eq. (3.5) 

show that the current input V, the last extremum of the input )](or)([ maxmin VVVext  and its 

corresponding output )(or)([ maxmin yyyext  ] are used to estimate the current output )( ty  

(Miri et al., 2013a). 

The Preisach model is rate(frequency)-independent. To compensate for this, some 

modifications such as introducing a rate-dependent density function have been devised (Wolf 

et al., 2011). Furthermore, the classical Preisach model is not reversible for control purposes 

and it may fail to model large experimental areas (Mayergoyz and Friedman, 1988). 

 

3.1.2. Parandtl‐Ishlinski	Model	
 

The Parandtl-Ishlinski (PI) model is a subclass of the Preisach model, originally designed for 

ferromagnetic materials (Hassani and Tjahjowidodo, 2011). The PI model identifies the model 

parameters more easily than the Preisach model (Hassani and Tjahjowidodo, 2011, Ang et al., 

2007). It estimates the piezoelectric displacement by: 

)()( iHiy  , ( 3.6) 

where iiHiy ),(),(  and   are the model output (displacement), backlash operator (play 

operator), width of the backlash operator and slope of the backlash operator, respectively.  

The PI model is formed by a number of backlash operators )(iH  where a backlash operator 

is defined as: 

)]}1(,)(min[,)(max{)(  iHriVriViH , ( 3.7) 

where )(iV  and r  are the input voltage and half-width, respectively, and the value of r  is 

between 0 and the maximum input voltage )(iV  (Wang et al., 2011, Deng et al., 2011). A 

typical backlash operator is shown in Figure 3.4.  
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Figure  3.4: A typical hysteresis operator of the Parandtl‐Ishlinski model (Ang et al., 2007). 

 

The initial condition for the backlash operator is: 

]},)0(min[,)0(max{)0( 0yrVrVH  , ( 3.8) 

where 0y  is the initial displacement and it equals zero, if the starting point is from the rest 

state. In a PI model, different backlash operators )(iH j  with different slopes j  and widths r  

are added together to model the complex behaviour of the piezoelectric actuator:  





N

j
jj iHiHiy

1

)()()( 


, ( 3.9) 

where j is the number of backlash operators/widths (Wang et al., 2011).  

The PI model is rather simple and can be analytically inverted. This model cannot capture the 

rate(frequency)-dependent behaviour of the system (Al Janaideh et al., 2008). Moreover, it is 

able to estimate the displacement of piezoelectric actuators at an excitation frequency range of 

[0.1-500] Hz (Wang et al., 2011). 

 

3.2. Models	Analogous	with	Mechanical	

Systems	

 

In force interaction with viscoelastic materials, there is an elastic force proportional with 

displacement and a viscose force proportional with velocity (Adhikari and Woodhouse, 2001). 

This behaviour is very similar to the behaviour of mechanical systems consisting of springs-

dampers. Hence, the governing equations of the mechanical systems were suggested for the 

viscoelastic materials. Moreover, a remarkable similarity between the behaviour of the 
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nonlinear viscoelastic systems and piezoelectric actuators resulted in introducing a non-formal 

analogical model for piezoelectric actuators (Richter et al., 2001). Hence, in this section, the 

main analogical models of piezoelectric actuators inspired by the mechanical systems are 

explained and important features for each model are discussed. These models include the 

Maxwell-Slip (Quant et al., 2009), Duhem (Xie et al., 2009b) and Voigt (Yeh et al., 2008) 

models. 

 

3.2.1. Maxwell-Slip Model 

 

The Maxwell-Slip model was initially suggested by Goldfarb and Celanovik in (1997) to 

model piezoelectric actuators. This model is based on a theory first formulated by James 

Maxwell in the mid-1800s to model friction phenomena (Goldfarb and Celanovic, 1997). The 

original friction model employs ideal massless springs and friction elements so as the springs 

are used for energy storage and Columb friction elements for rate-independent dissipation 

(Goldfarb and Celanovic, 1997). Consequently, the Maxwell-Slip model consists of a parallel 

connection of various elementary friction models, each with the same structure but a different 

set of parameters (Swevers et al., 2000). 

 

 
 

Figure  3.5: (a) A single and (b) multiple elasto‐slide element(s) of the Maxwell‐Slip model (Vo‐Minh et al., 

2011). 

 

Figure 3.5 demonstrates element(s) of the Maxwell-Slip model wherein kyyN b ,,,,  and F

are, respectively, the friction coefficient, normal force acting on the block, block position after 

exerting the external force, current position of the block, linear spring stiffness and the 

(a)  (b)
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external force (reaction force) (Goldfarb and Celanovic, 1997, Yeh et al., 2008). In the 

friction model, to define friction between two contacting surfaces, two regimes are 

distinguished: pre-sliding and sliding (Swevers et al., 2000). In the pre-sliding regime, the 

external force F is a function of the displacement rather than the velocity, the element will 

behave like a spring with certain stiffness. (Lampaert et al., 2003). The sliding regime occurs 

if the element keeps displacing until only the smooth contacts remain at the maximum force. 

The maximum force is called saturation force iw  (Vo-Minh et al., 2011). Hence, each 

element is defined by two parameters: stiffness and saturation force, as shown in Figure 3.6.  

 

 

Figure  3.6: A schematic of the Maxwell‐Slip model (Vo‐Minh et al., 2011). 

 

The Maxwell-Slip model consists of ‘n’ number(s) of such elements in parallel. The model 

accuracy increases with an increase in the number of elements. Considering iii Nw  , the 

friction force for each element is: 
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, ( 3.10) 

where ],1[ ni  .  

By analogy, the same structure is employed to model piezoelectric actuators. In this analogy, 

the voltage across the actuator and the actuator displacement play the role of the external 

force (F in Eq. (3.10)) and displacement y ,  respectively and, experimental voltage-

displacement data are used to determine the model parameters.  

This model is quasi rate(frequency)-dependent; the accuracy of this model decreases when the 

excitation frequency of the actuator increases. Moreover, the accuracy of the Maxwell-Slip 

model decreases for long-run operation of the system due to the creep phenomenon (Vo-Minh 
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et al., 2011). Moreover, this model is reversible for control purposes (Georgiou and Ben 

Mrad, 2006).  

 

3.2.2. Duhem Model 

 

The Duhem model is a dynamic friction model described by Duhem in (1897) distinguishing 

pre-sliding and sliding regimes (Hui et al., 2011, Padthe et al., 2008). The Duhem model is a 

first-order differential equation from which a number of other models have been derived, e.g. 

the Dahl (Dahl, 1977), Coleman-Hodgdon (Coleman and Hodgdon, 1987), Bouc-Wen (Wen, 

1976, JinHyoung and Bernstein, 2005) and Jiles-Atherton (Ozer and Royston, 2001, 

Hodgdon, 1988, Huang and Lin, 2008) models. 

The Duhem model for piezoelectric actuators is often presented by the nonlinear differential 

equation: 
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where y is the displacement of the piezoelectric actuator and V is the voltage across the 

actuator. In this equation when the piezoelectric input rate )(tV  increases, the hysteresis slope 

is 1g  and when it decreases, the hysteresis slope is 2g (see Section 2.3 for the hysteresis 

definition). The Duhem model is also presented by an alternative notation: 
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where the indices of du and represent the upward and downward curve of the displacement-

voltage plot, respectively (Hui et al., 2011). In this model,   is a constant number and, )(Vf  

and )(Vg  are functions of input voltage. 

The Duhem model cannot capture the frequency dependent behaviours of the system (Oh and 

Bernstein, 2004, Xie et al., 2009a) and it is reversible for control purposes (Sprekels, 1996).  
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3.2.3.  Voigt Model 

 

The Voigt model, also known as the Kelvin-Voigt model, is an analogical model originally 

designed for viscoelastic systems (Wood et al., 2005). This model consists of a series 

connection of different elementary friction models; each with the same structure but a 

different set of parameters. A single element of the Voigt model is illustrated in Figure 3.7. 

 

 

Figure  3.7: A single element of the Voigt model. 

 

The governing equation for a system shown in Figure 3.7 is presented by: 

,
b

F

b

ky
yFkyyb    ( 3.13) 

where y is the spring displacement, F is the external force acting on the system and, k and b 

are the spring stiffness and damping coefficient, respectively. 

In a qualitative sense, the behaviour of viscoelastic systems matches the characteristics 

observed in piezoelectric actuators as it inspires the model employment for piezoelectric 

actuators (Richter et al., 2001). By analogy, the mechanical parameters of the Voigt model are 

converted to piezoelectric parameters and, Fk  and  are replaced with VVd and)(1 , 

respectively, as VVd and)(  are considered the piezoelectric coefficient and voltage across 

the actuator, respectively. Accordingly, the governing equation of the Voigt model for 

piezoelectric actuators is:  

.)(
)(

P

b

V

bVd

y
y 


  ( 3.14) 

Note that for the spring-damper system, P is 1 but for the piezoelectric materials, P  may 

find other values. In addition, to avoid complex values for the right-hand side, which are 

likely to arise from parameter identification, a signum function is introduced to the right-hand 

side of Eq. (3.14) (Richter et al., 2001). Hence, the Voigt model presents the dynamic 

displacement of piezoelectric actuators by: 
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Boukari et al. (2011) defined )(Vd  by: 

2)))(exp(1(
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Vd , ( 3.16) 

wherein  ,,  are Sigmoid parameters (Boukari et al., 2011).  

The Voigt model can capture the rate(frequency)-dependent behaviour of piezoelectric 

actuators and is reversible for control purposes. This model can simulate the nonlinear effects 

of piezoelectric actuators operating over a long period of time and, it performs well at the 

excitation frequencies above 1 Hz and below 400 Hz (Boukari et al., 2011).  

 

3.3. Common	Challenges	for	the	Model	

Selection	and	Identification		

  

In spite of the findings highlighted in previous sections, the fundamental questions remain: 1) 

how to identify the parameters of physics-based models and, 2) are these models’ structures 

adequate to present the systems’ nonlinear behaviour. This section explains the deficiencies of 

existing parameter identification methods and mathematical structures for each of the 

aforementioned models. These issues are rarely addressed in the literature and are summarised 

below. 

Preisach model: A decisive task for the Preisach model is to identify the density function µ. 

Normally, a function dependent on both variables of the Preisach plane S, i.e.  and   , is 

proposed, then in order to find its parameters, a set of reversal (transition) curves should be 

experimentally found (Mayergoyz, 1986). For example, Kaltenbacher et al. (2007) applied an 

incremental triangular excitation voltage to the actuator (Kaltenbacher and Kaltenbacher, 

2007). Figure 3.8 shows a typical input-output of the system. 

 

 



Chapter 3 – Physics‐based Models of Piezoelectric Actuators 
 
 

29 
 

 
Figure  3.8: Typical first order reversal curves. 

 

In Figure 3.8, the correspondence output values to the inputs of    and   are  y and  y , 

respectively (Mayergoyz, 1986). Then, to identify the density function, below definition was 

performed: 

.2/)(),(    yyF  ( 3.17) 

Considering the Preisach half plane and geometrical interpretations explained by Mayergoys 

et al. (1986), Eq. (3.17) was expressed in terms of the density function as:  
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Hegawald et al. (2008) identified the density function of each element by considering Eq. 

(3.17), Eq. (3.18) and symmetrical hysteresis loop, avoiding evaluation of the double integral 

(Hegewald et al., 2008). Accordingly, the density function was represented as: 







),(

),(
2 F

zx . ( 3.19) 

Therefore, they identified a density function through using available system input-output data 

and a least-square approach. However, the hysteresis loop is not necessarily symmetric in 

practice. 

Overall, the main difficulties with the Preisach function are: 1) the error for the density 

function is amplified, due to the inherited experimental error in ),(  F , to perform the 

differentiation, 2) the need to solve the double integral of Eq. (3.1) to compute the output, 3) a 

large number of reversal transition inputs should excite the piezoelectric actuator and a large 
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set of density functions should be identified in order to allocate an appropriate Preisach 

function. (Kaltenbacher and Kaltenbacher, 2007).  

Prandtl-Ishlinskii model: To characterise a Prandtl-Ishlinskii model, the core task is to define 

the backlash operators. To this purpose, the rising curve of the hysteresis is created by a 

uniform increasing input signal initiated from a relaxed state. This is a practical restriction for 

working actuators (Kuhnen, 2003). To define the rising curve, the number, width and slope of 

backlash operators should be identified. The number of the operators is normally determined 

by trial and error and the width and slope values of each operator are defined by different 

optimisation methods (Wang et al., 2011). Jiang et al. (2010) and Wang et al. (2011) 

identified the operator parameters by reformulating the problem as a recursive least-square fit 

using experimental data (Jiang et al., 2010, Wang et al., 2011). Kuhnen et al. (2003) used 

quadratic optimisation to identify the model parameters (Kuhnen, 2003). Two main problems 

with the PI model are the convex property of the rising curve and symmetric features of the 

model operator around the centre point, whereas, in practice, the hysteresis loops are non-

convex and asymmetric (Jiang et al., 2010). These issues result in the model inaccuracies. 

Maxwell-Slip model: In order to identify the parameters of a Maxwell-Slip model, the initial 

rising curve of the hysteresis should be parameterised  (Huang and Lin, 2008). As explained in 

Section 3.2.1, the curve is divided into ‘n’ elements with different slopes and saturation 

voltages. Therefore, the model parameters are a pair of ( ik , iw ) for each element; 2n 

parameters totally. These parameters are determined by different algorithms fitting the 

experimental data of the initial rising curve to the mathematical model  (Quant et al., 2009). 

The accuracy of the model increases with a larger number of elements, if sufficient set of data 

are available. The main drawback of this model is the need to start the piezoelectric actuator 

from a relaxed state, to achieve the initial rising curve, which is difficult in practice. 

Moreover, to identify the model parameters, many set of experiments should be conducted 

and parameter identification should be performed for each different signal frequency, 

magnitude and waveform (Richter et al., 2001, Huang and Lin, 2008). 

Duhem model: In order to model piezoelectric actuators using the Duhem model, the model’s 

mathematical structure should meet below conditions: 

a) )0(f  is monotone increasing, piecewise smooth and )(lim VfV


  is finite . 

b) )0(g  is piecewise continuous, even and satisfies  )(lim)(lim VfVg VV


  . 



Chapter 3 – Physics‐based Models of Piezoelectric Actuators 
 
 

31 
 

c) For all V>0,   degfeVgVf
V

V 


 )()()()(  . 

If the three conditions are met, with proper selection of )(Vf  and )(Vg , the model is ready 

to be used for piezoelectric actuators (Stepanenko and Su, 1998). However, defining the 

mathematical structure and parameters of )(Vf  and )(Vg is a challenging task for the Duhem 

model. These functions have been approximated by different approaches such as Weierstrass 

theory and using polynomial functions (Ying, 1998). Moreover, Stepanenko et al. (1998) have 

used fuzzy systems to identify the functions (Stepanenko and Su, 1998).  

Voigt models: The governing equation of the Voigt model is a first order differential equation, 

as detailed in Section 3.2.3. Therefore, the structure of this model is simpler than other 

physics-based models. However, the mechanism of parameter identification for this model is 

a momentous task. The following are some commonly used ad-hoc parameter identification 

methods for this model: 

 Using Multiple Voigt equations: In this method, a staircase odd function of voltage,  

f(-V)=-f(V), is applied to the actuator and for each step, the displacement is measured as a 

series arrangement of n Voigt units and functions are generated (Yeh et al., 2008, Richter et 

al., 2001, Wood et al., 2005). The solution of the equations for the total n elements is: 
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 , ( 3.20)

where kci and bci are respectively, the spring stiffness and damping coefficient of each element 

and, Fc and n are the initial applied force and number of elements, respectively. Fc was 

initially identified by considering bci=0 and the actuator as a spring with the stiffness of km. 

Then, km was replaced with a series connection of the Voigt elements (Yeh et al., 2008). To 

identify kci and bci, they formed a series with n=20 elements of Eq. (3.20) within a specific 

timeframe. Finally, they determined the parameters by least-square fit optimisation to 

minimise the absolute discrepancy for the experimental and estimated displacement through 

Eq. (3.20).  

 Using single Voigt equation: Boukari et al. (2011) used the Voigt model Eq. (3.15) 

representing one element of the Voigt model. They first identified the Sigmoid parameters of 

the Eq. (3.16) using experimental data obtained in static condition so as they could calculate 
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the value of d(V) at each voltage. Then, they looked for P and bof Eq. (3.15) using the 

hysteresis loop areas hystA in two steps:  

1- Identifying the mean value of  meanb : 

 Set dm: the mean value of d (V), 

 1P ,  

 Analytical solution of (3.15). 

 Determining the experimental and theoretical hysteresis loop areas, hystA and thA , 

respectively, at each frequency in the range of [1-400] Hz 

Note: To define thA , it was known to be proportional to the energy loss. For more detail for 

the definition, see (Boukari, 2010). 

 Set  meanb : b minimising the differences between hystA  and thA .  

Note: Minimisation was performed using Mathematica function NMinimize.  

2- Identifying P and b. 

 Setting a table of numbers for P  symmetrical around 1 

 Setting a table of numbers for b symmetrical around meanb  

 Solving Eq. (3.15) numerically for each couple of ( bP , ) at each frequency 

 Determining the hysteresis loop areas for each couple of ( bP , ) at each frequency. 

 Finding the couple of ( bP , ) minimising the differences between hystA  and thA

(Boukari et al., 2011).  

No rendered approaches for parameter identification of the Voigt model are global because of 

the many approximations and simplifications made during identification algorithm 

development. In addition, in all suggested methods of parameter identification, a large number 

of experiments should be conducted at different frequencies and time domains (Richter et al., 

2001). 

In summary, the strategies to identify the parameters of the physics-based models and their 

mathematical structures were addressed in this section. It has been identified that although 

some introduced methods of parameter identification characterise the model as accurate, they 

are ad-hoc to the specific parameter identification problem requiring specific, often difficult 

to carry out, experiments. These methods are not global, and there is no evidence showing 

that they are optimal even for their particular case. 
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A mathematical structure is appropriate/sufficient for this particular research area that has 

four characteristics: 1- Simplicity, the model should not be complicated; 2- Causality, the 

model should address cause-effect relationships; 3- Identifiability, the model parameters and 

structure should be identifiable using available information and; 4- Predictive capability, the 

model should be valid for reasonable experimental conditions. Finally, the analysis of the 

identified models may result in proposing to add/eliminate some terms/equations to the model 

structure to improve the model performance (Donoso-Bravo et al., 2011). For more details 

about the model structure, see Appendix A.  

 

3.4. Summary	

 

This chapter reviewed the foremost physics-based models of piezoelectric actuators and 

identified the common strengths and weaknesses of these models. A non-formal analogy of 

well-known physical phenomena with the behaviour of piezoelectric actuators is used to 

construct the mathematical structure for physics-based models of piezoelectric actuators. 

These models are not directly constructed based on physics laws; therefore, the analogy is of 

limited use in gaining physical insight about the piezoelectric actuator. Instead, the model 

parameters are normally identified using the experimental data and mathematical methods.  

These models are constructed analogous with two physical systems: 

 Magnetic systems: Preisach and Parandtl-Ishlinski (PI) models. 

 Mechanical systems: Maxwell-Slip, Duhem and Voigt models. 

 

Table  3.1: Summary of the key features of physics‐based models. 

Model Rate-dependency Frequency range of validity (Hz) Reversibility 
Preisach × - × 

Parandtl-Ishlinski × 0.1-500 √ 
Duhem × 1-40 √ 

Maxwell-Slip Quasi 0-100 √ 
Voigt √ 1-1000 √ 

 

The literature review in this chapter addresses the most important features of each model 

including rate(frequency)-dependency, reversibility for control purposes and validity range of 

the excitation frequency. These models’ features have been summarised in Table 3.1. 
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These models suffer from ad-hoc and tedious solutions rendered to identify their parameters. 

As many of the reported parameter identification methods need the information of the very 

first instances of the actuator operation, after a relatively long relaxation of the actuator, 

which might be difficult to collect, especially for working actuators. Moreover, improving the 

sufficiency of the mathematical structure for these models may result in enhancing the models 

performance.  

Overall, this chapter paved the way for identifying the gaps in the physics-based models of 

piezoelectric actuators and developing strategies through which to improve them.  



 

 

4. Chapter	4	–	Innovative	Parameter	
Identification	Method	for	Physics‐based	
Models	

 

 

This chapter introduces an innovative parameter identification method for physics-based 

models of piezoelectric actuators. The method is then applied to a real problem and the 

identification of the model parameters. Experimental validation of the model is also addressed 

in this chapter. 

 

4.1. Parameter	Identification	

 

As explained in Chapter 3, all current methods of parameter identification render ad-hoc 

solutions and/or need the data of some special operation areas such as the data collected after 

a long relaxation of the actuator which are difficult to collect, in practice. Therefore, this 

thesis introduces a global and optimal method of parameter identification. 

In this research, the available recorded experimental input-output (piezoelectric voltage-

piezoelectric displacement) data are used to identify the model parameters (Mohammadzaheri 

et al., 2012b). The model error is defined as the average of absolute discrepancy for the model 

output and the system output:  

l

kyky
l

k
systemel




 1

mod )()(
error model , 

( 4.1) 

where l is the number of estimations. The small value of the model error is a sign of the 

closeness of the model parameters to their correct values. As a result, a ‘cost function’ or 

model error exists requiring minimisation through fine-tuning the values of the model 

parameters. This process is a classical optimisation problem. In other words, the parameter 

identification problem is converted into an optimisation problem. In system identification 

problems, to optimise the ‘cost function’, several numerical algorithms have been developed. 

These algorithms are divided into two main categories: local and global algorithms.  
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Local algorithms are fast converging optimisation methods as in ideal conditions, they can 

converge in one iteration after a small number of basic mathematical operations 

(Mohammadzaheri et al., 2009). However, the main drawback of these methods is trapping in 

local minima (Donoso-Bravo et al., 2011). To avoid the trapping, initial parameters are started 

from several random points extending the search space. Therefore, the initialisation stage is 

very important in local algorithms and several methods have been proposed to determine the 

initial conditions. Gradient-based methods are one of the most common algorithms in which 

the first and second derivative of the cost function are used. Some examples of this method 

are steepest descent, Gauss-Newton and Levenberg-Marquadt method (Hulhoven et al., 

2005). These methods are relatively appropriate for linear unconstrained optimisation. 

However, to perform nonlinear constrained optimisation, local algorithms such as sequential 

quadratic programming (SQP) have been devised (Figueiredo et al., 2007). All 

aforementioned approaches sequentially evaluate the cost function through a call to a time 

integrator and are relatively unstable  (Müller et al., 2002). They are more or less sensitive to 

the local minima and they may result in wrong convergences (Donoso-Bravo et al., 2011). 

Global algorithms, however, are the other search techniques numerically approaching the 

optimum values of the parameters. Unlike local algorithms, global algorithms do not require 

the differentiation of the objective function. Global methods aim at finding the best solution to 

nonlinear parameter identification problems through searching a broad area so they do not 

trap at local minima at the cost of being computationally demanding. They find the optimum 

value for each parameter minimising the discrepancy between the outputs of model and actual 

system (Wolf et al., 2008). The most common global algorithms are grid search, branch and 

bound, simulated annealing, tabu search, genetic algorithm (GA), differential evolution, 

colony optimisation and particle swarm optimisation (PSO). The initial idea of these 

algorithms was inspired by natural/social phenomena such as annealing techniques in 

metallurgy and animal social behaviour in a group (Chang et al., 2013). GAs are based on 

evolutionary algorithms inspired by natural evolution including inheritance, mutation, 

selection and crossover (Coello and Lamont, 2004). Some advantages of GAs are taken 

below: 

 GAs have the ability to avoid the premature convergence due to a parallel search in the 

population space. 
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 GAs conduct a fine-tuning of the parameters because they work on encoded versions 

of the potential optimum values of the parameters (chromosomes), rather the 

parameters themselves.  

 GAs can solve every optimisation problem using cost values, which are obtained from 

objective functions, without other derivative or auxiliary information. Therefore, these 

algorithms are highly efficient to solve noisy, stochastic, multi-dimensional, non-

differential, and noncontinuous objective functions. 

 GAs are a method which is easy to understand and do not demand a broad knowledge 

of mathematics. 

 GAs are easily transferred to existing simulations and models (Gutell and Jansen, 

2006). 

However, this method has never been employed to minimise the model error of physics-based 

models of piezoelectric actuators (Sivanandam and Deepa, 2008). In this research, a GA is 

used for this purpose and MATLAB R2011b is utilised as a computer environment.  

 

4.1.1. Approaches for Modelling Error Estimation 

 

There are two approaches to estimate the model error (Ljung, 1998). In one approach, all the 

inputs to the model are assumed to be known at a given instant, then the model output at the 

next instant (step) is estimated, and the output is compared with the real output of the system. 

The resultant discrepancy is called ‘One Step Prediction’ (OSP) error (Mohammadzaheri et 

al., 2012a). 

In the second approach for calculating the model error, after the first estimation, previously 

estimated value(s) of the system output(s) is/are used as the model input(s) (instead of the real 

values). The model error in this approach is called ‘Simulation’ error (Mohammadzaheri et 

al., 2012a). 

In dynamic systems, the current values of the system output depend on their previous 

value(s). However, the previous values are not measured/available to be fed into the model 

during long-term simulations. Therefore for dynamic systems, previously model outputs are 

used as the model inputs to estimate the outputs at each instant. This approach is the 

Simulation approach. 
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Figure  4.1: Estimation of the model error through (a) One Step Prediction (OSP) and (b) Simulation 

approaches. 

 

Let us consider a first order discrete model representing a single-input-single-output (SISO) 

system: 

 )(),()1( kykVfky  . ( 4.2)

After the initial steps, for the OSP approach, the model output to be used in Eq. (4.1) is 

calculated as:  

 )(),()1( kykVfky realmodel  , ( 4.3) 

  
and for the Simulation approach: 

 )(),()1( kykVfky modelmodel  . ( 4.4) 

Figure 4.1 illustrates the difference between the OSP and Simulation approaches. The 

variables with hat are estimated values which are different in two approaches as shown in Eq. 

(4.3) and Eq. (4.4). Generally, both approaches presented by Eq. (4.3) and Eq. (4.4), together 

with Eq. (4.1), are used to find the model error. The model error is used both for the purpose 

of modelling, e.g. parameter identification, and model validation. In modelling, the 

parameters require identification so as to minimise the model error while in model validation, 

the model error shows the accuracy/validity of the model.  

The OSP model error is usually much lower than the Simulation model error due to the error 

accumulation phenomenon in the Simulation approach. Nevertheless, the OSP approach is not 

applicable to validate the models of dynamic systems (Mohammadzaheri et al., 2012a). 

Therefore in this research, the simulation approach is employed to validate a model.  

 

 

(a)  (b)
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4.1.2. Parameter Identification using Optimisation 

 

In this research, a GA is used for parameter identification through minimising the model 

error, because it is a global optimisation method. (Haupt and Haupt, 1998). Moreover, the 

original binary GA is employed in which a binary number is assigned to each parameter so as 

to minimise the model error as presented in Eq. (4.1). This binary number is called a gene. 

First, a number of bits with the value of 0 or 1 are assigned to each gene. The whole set of 

genes forms a chromosome, which is a full set of parameters and a probable solution to the 

optimisation problem. A number of chromosomes are made and tuned to solve the problem. 

The whole set of chromosomes is called the population and the mechanism for fine-tuning the 

genes and chromosomes is called evolution (Popov, 2005). The algorithm starts from 

assigning random values to the bits to form the initial population. Subsequently, the model 

error for each chromosome (set of parameters) is evaluated, then the chromosomes are 

evolved; that is, they go through a selection, cross over and mutation process (Homaifar et al., 

1994, Chipperfield and Fleming, 1995a), and a new population is generated. For more detail 

about evolution, see Appendix C. This sequence is repeated several times until it is 

demonstrated that there will be no further improvement through evolution; this happens when 

the cost function does not decrease through more evolutions. Each time that the evolution is 

repeated is called iteration. After several iterations, the best chromosome amongst the 

population (with the lowest model error) is selected as the solution.  

As a subtle point, a gene with m bits may have a value between 0 and 




1

0

2
m

i

i
 (equal to )12 m

, where m is the number of bits in a gene. Initially, an arbitrary binary population is created, 

and then the population is converted to decimal values. These values may fall obviously 

outside the ranges of some parameters. In order to address this issue, before evaluation of the 

chromosomes, the real value of each parameter (presented by a gene) is found by mapping the 

range presented by its associated gene onto its real range. For example, the value of a gene pb 

should go through the following mapping to produce its real value at the range of [pmin, pmax]: 
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where pmin and pmax are the minimum and maximum values of each parameter respectively. 

According to Eq. (4.5), as the minimum absolute change of pb is 1, the minimum absolute 

change (MAC) of each parameter is: 









1

0

minmax

2
MAC

m

i

i

pp
. 

( 4.6) 

Therefore, as the number of bits increases, the minimum absolute change for the parameters 

decreases, and consequently the global minima are less likely to be missed out by the 

algorithm. However, the number of bits is problem dependent initially generated by a random 

value  (Cao and Wu, 1999). A schematic of parameter identification by the GA is illustrated in 

Figure 4.2. 

 

Figure  4.2: A standard procedure of a genetic algorithm. 

 

4.1.3. Over-fitting Phenomenon in System Identification 

 

Over-fitting is a term in learning or system identification used in relation to the identification 

of a model through a series of input-output data. A model which has been over-fit will 
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generally have poor predictive performance, exaggerating minor fluctuations of the validation 

data (Donoso-Bravo et al., 2011). Over-fitting occurs when a model memorises training data 

rather than learning to generalise from the trend. In parameter identification, first the model 

error is defined, then the algorithm tunes the model parameters so as to minimise the model 

error. If this excessive tuning generates a very small model error for the training data but a 

large error for the validation data, then the over-fitting has occurred (Coca and Billings, 

2001). If the minimum validation error happened sooner than the minimum modelling error, 

then the over-fitting has occurred in parameter identification. 

 

4.2. Solving	a	Real	Problem	

 

4.2.1. Experimental Setup and Data Gathering 

 

An experimental setup was devised to mount the piezoelectric actuator in the control system. 

The experiments were performed in the Robotics Laboratory of the School of Mechanical 

Engineering at the University of Adelaide. The setup includes a PC, dSpace (electronic 

input/output board), voltage amplifier, piezoelectric stack actuator and a sensor. A function is 

generated in Simulink in a PC and transferred through the dSpace board to a voltage amplifier 

then, it is applied to the piezoelectric actuator. Finally, the actuator displacement is measured 

by an optical sensor. The measured signal is then amplified and transferred to the PC through 

the dSpace board.  

 

DSpace (Electronic Input/Output (I/O) Board): The dSpace (DS1104 R&D Controller 

Board) connects the computer to the external hardware. A dSpace is shown in Figure 4.3.  

 



Chapter 4 – Innovative Parameter Identification Method for Physics‐based Models 
 
 

42 
 

 

Figure  4.3: An electronic input/output (I/O) board. 

 

Signal Amplifier: The signal amplifier amplifies the signals both before being applied to the 

actuator and after being received by the sensors. A signal amplifier has been demonstrated in 

Figure 4.4. 

 

 

Figure  4.4: A signal amplifier. 

 

Piezoelectric Actuator: The piezoelectric actuator, used for all experiments, is a piezoelectric 

stack known as Nek AE0505D44H40 which is composed of several ceramic layers developed 

by the factory of NEC/TOKIN (Micromechatronics, 2013). This piezoelectric stack is smaller 

than the conventional multilayer piezoelectric stacks, 1/10, leading to a faster scan rate and 

higher displacement/force at low voltages (Croft et al., 2000, Micromechatronics, 2013). The 

small size of the piezoelectric stack allows for a wide range of applications from ultra-fine 

positioning to drive sources such as printer/magnetic head position adjustment, mirror/prism 

positioning, linear motors and manipulators (Takahashi, 1985, Takahashi, 1989). A multilayer 

piezoelectric stack is demonstrated in Figure 4.5.  
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Figure  4.5: Configuration of a multilayer piezoelectric stack (Micromechatronics, 2013). 

 

 

 

Figure  4.6: Multilayer piezoelectric stacks made by NEC/TOKIN (Micromechatronics, 2013). 

 

In these experiments, the piezoelectric stack is a resin-coated type made at the temperature of 

850C. Its cross section and length is mmmm 55   and mm40 , respectively. The stack 

actuator is capable of generating a typical force in the order of 3500 Ncm-2 and high speed 

responses in the order of 10 kHz. It has a nominal displacement of 44 m  

(Micromechatronics, 2013). The piezoelectric stack is shown in Figure 4.6 and its key 

characteristics have been summarised in Tables 4.1 and 4.2. 
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Table  4.1: Standard characteristics of the piezoelectric stack. 

Model 
Displacement( m ) 

Generated 
force(N) 

Resonance 
frequency 

(kHz) 

Capacitance 
( F ) 

Insulation 
resistance 

(  ) 

min 

Overall 
length 
(mm) 

Maximum 
driving 
voltage 

Recommend
ed driving 

voltage 
AE0505D44H40 6.60.42   6.60.28   850 34 3.4 5 40 

 

Table  4.2: Outer dimension of the piezoelectric stack. Unit: mm, l*: Length of the lead wire. 

Model T1 W1 H T2 W2 L* 
AE0505D44H40 1.05 1.05  1.040   6.5max 6.5max 100 

 

Sensor: An optical sensor is used to measure the displacement of the piezoelectric actuator. A 

PHILTECH D20 is a fast responding optical sensor ideal to measure relative motions in 

dynamic applications (PHILTEC, 2013). It measures the actuator displacement using the 

reflected light from the actuator. The optical sensor and basics of its work are illustrated in 

Figure 4.7 and the sensor’s key features are summarised in Table 4.3.  

 

 

Figure  4.7: Optical sensor and the basics of its work (PHILTEC, 2013). 

 

Table  4.3: Key physical features of the optical sensor. 

Model 
Linear 

range near 
side(mm) 

Resolution at 
100Hz near 

side( m ) 

Linear 
range far 
side(mm) 

Resolution at 
100Hz far 

side( m ) 

Tip 
diameter(mm) 

Total 
range(mm) 

PHILTECHD20 02.0  007.0 25.0 06.0 81.0  3.1

 

The excitation voltage, in different experiments, generates sinusoidal and triangular functions 

of time. For the both functions, three frequencies of 1, 10 and 100 Hz were used and the 
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voltage amplitude was within the range of V20  which are common values in 

nanopositioning (Wang et al., 2011, Hegewald et al., 2008). Each experiment lasted 2 second. 

The data gathered through the excitation by the triangular voltage function at a frequency of 

10 Hz was used for the model validation. The rest of the data was employed for modelling. 

For more details about the actuator input-output, see Appendix B. 

In a system modelling, if the model is trained by the data of different wave form-frequency 

combinations, e.g. sinusoidal/triangular waves at different frequencies, and it is still valid for 

the data of any other wave form-frequency combinations (unseen data), the model validity has 

been demonstrated. This is called cross validation and there is no need to validate the model 

for every single frequency/magnitude. A great number of works in the modelling of 

piezoelectric actuators have exploited this strategy (Goldfarb and Celanovic, 1997, Quant et 

al., 2009, Mohammadzaheri et al., 2012c).  

 

4.2.2. Modelling: Sampling Time and Initial Condition 

 

This section investigates the optimum sampling time for the discrete form of the Voigt model. 

As explained in Sections 3.1 and 3.2, the Preisach and Duhem models are presented by at 

least two functions resulting in a relatively high level of complexity to identify their 

parameters. Moreover, the Maxwell-Slip and Parandtl-Ishlinski model require the data 

achieved exactly after the relaxed state which are difficult to collect in practice. However, the 

Voigt model is formed by only five parameters presenting a more straightforward structure. In 

addition, the literature has shown that this model is reversible and can capture the frequency-

dependent behaviour of piezoelectric actuators. It can also offer a wide frequency range of 

validity (Boukari et al., 2011). Therefore, the Voigt model is employed to model the 

piezoelectric actuator.  

At the first stage, the Voigt model should be discretised. Considering:  

,
)()1(

St

kyky
y


  ( 4.7) 

and Eq. (3.15), the discrete form of the Voigt model estimating the piezoelectric displacement 

is: 
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where tS is the model sampling time. In this case study, the first natural/resonant frequency of 

the actuator is 34 kHz and driving frequencies up to about 1/3×34 kHz is possible 

(Micromechatronics, 2013). Therefore, a dSpace (DS1104 R&D Controller Board) on a PC-

compatible computer with a sampling rate of 10 kHz was used to generate the digital driving 

voltage for the actuator, i.e., an experimental sampling rate every s410  (Mohammadzaheri et 

al., 2012c). In the literature, the range of sampling time for the models of piezoelectric 

actuator is between s5103.3   and s310  (Mohammadzaheri et al., 2012a). To find the 

optimum sampling time for the current model, the modelling was performed for a few 

sampling times of larger than s410   and the model error was identified for each of them. 

Table 4.4 summarises MAEs of the model validation for different sampling times and Figure 

4.8 shows these results. Based on these outcomes, a sampling time of 4105  s is selected for 

the model (Miri et al., 2013b). 

The OSP model error, explained in Section 4.1.1, and the experimental data, explained in 

Section 4.2.1, were used during the optimisation/identification process.  

 

Table  4.4: Mean absolute errors (MAEs) of the model simulation for different sampling times. 

Sampling time –ts (s ) 410   4102   4105  310  3102   3105   210   

MAE( m ) 0.5063 0.6129 0.3811 0.5054 0.6470 0.4777 1.0365 

 

 

Figure  4.8: Validation errors for different sampling times. The circle refers to the optimum sampling time. 

Time(s)
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As explained in Section 4.1.2, a range should be defined for each parameter. Considering the 

literature (Boukari et al., 2011), after trial and error explained in Appendix C, the parameter 

ranges were defined as seen in Table 4.5. The full ranges and minimum absolute changes for 

each parameter are listed in this table.  

 

Table  4.5: Parameter ranges and minimum absolute changes (MACs). 

Parameters    Min      Max         Range        MAC 
][ m  100 2500 2400 2.35 
][V  200 1000 800 0.78 

][ 1V  0.001 0.01 0.009 61079.8   
][b  5000 200000 195000 190.61 

P  0.1 1.2 1.1 0.0011 

 

For the model Eq. (4.8), each chromosome has five genes (equal to the number of parameters) 

and the number of bits for each gene is considered 10. The population is formed by 64 

chromosomes. Therefore, each population has 3200 bits.  

 

4.3. Simulation	Results	and	Analysis	

 

The parameters of the model Eq. (4.8) were identified by considering the investigated 

sampling time in Section 4.2.2. The parameter identification was performed through 

minimising the model error Eq. (4.1). A set of parameters is the solution when the model error 

reaches a constant value; meaning that the model error obtains the minimum value through 

increasing the number of iterations (Miri et al., 2013b).  

The model error was obtained through the two approaches detailed in Section 4.1.1, the OSP 

and Simulation. The identified parameters, which form two models with similar structure, 

have been listed in Table 4.6.  
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Table  4.6: Identified model parameters by two different approaches. 

Model error approach OSP Simulation 

 
Parameters 

742.0

754.95923

00725.0

423.729

434.672

1











P

b

V

V

m






 

754.0

126.90777

00772.0

755.749

296.1139

1











P

b

V

V

m






 

 

The parameters of Table 4.6 have physical interpretations and find the equivalent SI units. As 

explained in Section 3.2.3,  ,,  construct d(V) corresponding to the system 

piezoelectric capacitance, piezoelectric coefficient. Moreover, b corresponds to the 

piezoelectric losses. d(V) and b are analogous with the spring and damper of the Voigt unit, 

respectively (Boukari et al., 2011).  

Having identified the model parameters, the model Eq. (4.8) can be readily constructed and 

validated for other inputs. To assess the predictive quality of the new models, each is 

validated by ‘unseen data’ in the identification process. The validation errors of both models 

are presented in Table 4.7. 

 

Table  4.7: Modelling and validation errors for the models made by two different approaches. 

No Model error approach  OSP  Simulation  
 Error indicator MAE  MAE  

1 Modelling error value ( m ) 0.3258  0.4993  

 Iteration (#) 88th  356th  

      

2 Model validation error value ( m ) 0.3324  0.3357  

 Iteration (#) 185th  360th  

 

According to Table 4.7, the minimum modelling error for the two models happened in the 88th 

and 356th iteration number, respectively (MAE=0.3258 m  and MAE=0.4993 m ) whereas 

the minimum validation error for these models occurred in the 185th and 360th iteration 

number (MAE=0.3324 m  and MAE=0.3357 m ). Therefore, for both approaches, the 

minimum validation error happened later than the minimum modelling error, as shown in 

Figures 4.9 and 4.10. Larger iteration number for the ‘minimum validation error’ than 
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‘minimum modelling error’ shows that no over-fitting has occurred in the computations. 

Hence, the parameter tuning has been performed appropriately.  

 

 

 

Figure  4.9: MAEs versus iteration for the (a) modelling (OSP approach) and (b) model validation. 

 

 

 

Figure  4.10: MAEs versus iteration for the (a) modelling (Simulation approach) and (b) model validation. 

 

Table 4.8 brings forward two representatives for the model error: the mean of the absolute 

error (MAE) and the maximum of the absolute error (MAX). 

 

(a) 

Minimum MAE of 

the validations 

X=185 

Y=3.324e‐007 

Minimum MAE of the 
modellings 

X=88 

Y=3.258e‐007 

Minimum MAE of 

the validations 

X=360 

Y=3.357e‐007 

(b) (a) 

Minimum MAE of the 

modellings 

X=356 

Y=4.993e‐007 

(b) 

It(#) 

Iteration (#)  Iteration (#) 

Iteration (#)  Iteration (#) 
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Table  4.8: Validation errors for the models made by two different approaches. 

Minimised model error  OSP  Simulation  
Error Indicator MAE MAX MAE MAX 

Error value ( m ) 0.3324 0.9937 0.3357 0.9313 

 

As seen in Table 4.8, there is not a meaningful difference between the modelling approaches; 

both the OSP and Simulation approaches result in models with rather similar accuracies. As 

the OSP approach is also less computationally demanding, it is recommended for modelling 

in similar research works. 

The estimated displacement by the models identified through both approaches is shown in 

Figure 4.11. In this figure, the measured and simulated displacements through the model Eq. 

(4.8) are graphed using bold dashed and solid lines. The error for each model is demonstrated 

by narrow dashed lines. 

 

 

Figure  4.11: Real and estimated displacement values of the piezoelectric actuator made through Eq. (4.8) 
(Parameter tuning by the GA with minimal model error achieved through the (a) OSP and (b) Simulation 

approaches.) 

 

4.4. Summary	

 

The central innovation of this chapter was introducing a global method for the most 

challenging task for physics-based models of piezoelectric actuators: parameter identification. 

The parameters of physics-based models are normally identified using the experimental data 
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presenting an ad-hoc solution to a particular problem. This task was tackled in this chapter by 

establishing a standard and global approach based on a GA. In the introduced method, 

parameter identification was defined as the process of fine-tunning the model parameters so as 

to minimise the model error. Therefore, the parameter identification problem was converted to 

an optimisation problem. Two models were made, by minimising the model errors obtained 

through the ‘One-Step-Prediction’ and ‘Simulation’ approaches: both led to rather similar 

accuracies.  

From the range of physics-based models, the Voigt model was opted due to its rather simple 

structure and small number of parameters compared with other physics-based models, as well 

as its other reported advantages. 

An important factor not raised in this chapter is the model improvement through structural 

enhancement. In the literature, improving black box models by adding complementary inputs 

has been shown to increase the model accuracy. Similarly, adopting an enhanced structure for 

physics-based models may increase the model accuracy. This is investigated in the next 

chapter.  

Overall, this chapter employed a standard, optimal and global algorithm that successfully 

identified the parameters of a physics-based model.  
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5. Chapter	5	‐	Structural	Enhancement	for	
Physics‐based	Models	

 

 

In Chapter 5, an enhanced model is presented to model piezoelectric actuators. The enhanced 

model is the modified Voigt model inspired by the Preisach model. Moreover, the enhanced 

model has new terms integrating new inputs into the model. The new terms consist of four 

parameters. All parameters are defined through the global optimisation method introduced in 

Chapter 4. 

 

5.1. Model	Structure	

 

One of the primary challenges for physics-based models of piezoelectric actuators is the rather 

low accuracy of the models, partially due to inadequate mathematical structure of the models 

(Sjöberg et al., 1995, Richter et al., 2001). Accordingly, as stated in Section 3.3, introducing 

new inputs to the model would be a novel approach to improve the model performance 

(Donoso-Bravo et al., 2011).  

 

5.1.1. Preisach Model 

 

According to Eq. (3.4) and Eq. (3.5) of the Preisach model, the last extremum value of the 

input )](or)([ maxmin VVVext   and its corresponding output )(or)([ maxmin yyyext  ] are used 

to estimate the current output )(ty  of the piezoelectric actuator. Therefore, the original 

Preisach model can be defined as: 

 extext yVtVfty ,),()(  , ( 5.1) 

where ext stands for the extremum values of either voltage or displacement (Miri et al., 

2013a). This means that in the Preisach model, the model input includes the extremum values 

of the voltage and displacement of the actuator. In summary, the Preisach model inspires the 

approach of adding complementary inputs, including extremum values of the 

voltage/displacement, to other models to improve their accuracies. 
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5.1.2. Modified Black Box Models  

 

The structure of the Preisach model inspired introducing new inputs to black box models. In 

these models, the extremum values of the system input/output were used as the model inputs 

(Mohammadzaheri et al., 2012a). There are different categories of these models such as: 1) 

Preisach-like static models (Yang et al., 2008), 2) Preisach-like dynamic models (Zhang and 

Xu, 2011) and 3) System identification-based models (Dong et al., 2008).  

In the first category, in addition to the voltage, the extremum values of the voltage and 

displacement are the inputs to the black box model. This approach, inspired by Eq. (5.1), was 

initially introduced to model the materials’ behaviour in magnetic fields (Makaveev et al., 

2001, Sixdenier et al., 2008, Makaveev et al., 2002). Then, the approach was employed in 

black box models to model piezoelectric actuators (Mohammadzaheri et al., 2012b). In the 

second category, temporal derivatives and the output/input gradient are used as the inputs to 

the black box model but not in the form of universal approximators used in classical system 

identification. In contrast with the previous models, these models are dynamic. In the third 

category, the classical universal approximators are used as black box models with some 

additional inputs. For instance, the input voltage, input voltage rate and displacement 

gradients are the inputs to the black box models  (Khan and Lagoudas, 2002). However, 

derivative and gradient-based inputs are not applicable at a practical level because of their 

sensitivity to the measurement noise. Therefore, Mohammadzaheri et al. (2012) used the first 

approach to improve black box models of piezoelectric actuators (Mohammadzaheri et al., 

2012a). The results for this approach are shown in Table 5.1. In this table, the model has been 

validated by two validation approaches: the Simulation and OSP (see Section 4.1.1 for more 

explanation about these approaches) for three different output orders ry. The first, second and 

third columns contain the model validation error respectively for the black box models, ‘black 

box models including extremum values of the voltage’ and, ‘black box models including 

extremum values of the voltage and displacement’. Furthermore, they used Classical 

Nonlinear Auto-Regressive models with eXogenous inputs (NARX models) as the black box 

technique. As Table 5.1 shows, the model error decreases significantly when the extremum 

values of the voltage/displacement are introduced to the model. Overall, the result of 

introducing the new inputs to the black box models demonstrated a significant improvement 

in the models accuracies.  
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Table  5.1: Validation errors for the enhanced black box model. 

Error Without extrema ( m ) With vext ( m ) With both vext & yext ( m ) 

 Simulation/OSP Simulation/OSP Simulation/OSP 
ry=1 2.2227/0.0837 0.2184/0.0222 0.2421/0.0290 
ry=2 8.0331/0.0339 0.1145/0.0185 0.1866/0.0292 

ry=3 1.2911/0.0362 0.1747/0.0194 0.1025/0.0259 

 

Note: For all validation errors shown in Table 5.1, the simulation error is more than the OSP’s 

due to error accumulation developed in the model error estimation through the Simulation 

approach (Mohammadzaheri et al., 2012a). 

 

5.1.3. Enhanced Physics-based Models  

 

The structure of the Preisach model, Eq. (5.1), inspires the enhancement for physics-based 

models by adding complementary terms/inputs to the models, similar to the modification for 

black box models explained in Section 5.1.2. To this purpose, the Voigt model, Eq. (4.8), is 

considered to be improved. Therefore, the new introduced model is presented as:  
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In the discrete domain, Eq. (5.2) is written as: 
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where g, h, e and f are the model parameters presenting the contribution of the extremum 

values of the piezoelectric voltage and displacement in the model. 

In short, the Voigt model is enhanced by adding terms containing extremum values of the 

displacement and voltage. This new model has nine independent parameters, five parameters 

of the Voigt model and four parameters of the extremum terms. To identify the parameters of 

this model, the same strategy of parameter identification presented in Chapter 4 is employed. 

This strategy is the global optimisation method by a GA.  
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Two reduced versions of the introduced model, only using the extremum of the piezoelectric 

voltage or displacement, are also presented in this thesis: 
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  ( 5.5) 

In Eq. (5.4), the extremum values of the voltage are used as the model input; while in Eq. 

(5.5), the extremum values of the piezoelectric displacement are used as the model input. In 

both models, numbers of parameters is seven, requiring identification. 

 

5.2. Simulation	Results	and	Analysis		

 

The parameters of three versions of the introduced model were identified based on minimising 

the model error obtained through the two approaches explained in Section 4.1.1: the OSP and 

Simulation. These parameters are shown in Table 5.2. 
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Table  5.2: Identified parameters for three versions of the new model made by two different approaches. 

Model Eq. (5.4) Eq. (5.5) Eq. (5.3) 

OSP 
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Accuracy of the new model is verified by validating the model for arbitrary inputs. The 

validation errors for these models are presented in Tables 5.3 and 5.4. These tables present the 

two representatives of the model error: the mean of absolute error (MAE) and the maximum 

of absolute error (MAX).  

 

Table  5.3: Validation errors for three models made by the OSP approach. 

Model Structure Eq. (5.4) Eq. (5.5) Eq. (5.3) 
Error Indicator MAE MAX MAE MAX MAE MAX 

Error value ( m ) 0.299 1.02 0.381 0.778 0.163 0.586 

 

Table  5.4: Validation errors for three models made by the Simulation approach. 

Model Structure Eq. (5.4) Eq. (5.5) Eq. (5.3) 
Error Indicator MAE MAX MAE MAE MAE MAX 

Error value ( m ) 0.294 0.973 0.365 1.041 0.252 0.804 
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Table  5.5: Validation errors for the Voigt model made by the two approaches. 

Minimized model error OSP Simulation 
Error Indicator MAE MAX MAE MAX 

Error value( m ) 0.3324 0.9937 0.3357 0.9313 

 

As seen in Table 5.3, the model Eq. (5.4) offers the best accuracy of the estimations while 

according to Table 5.5, the Voigt model resulted in the minimum MAE of 0.3324 m . The 

model Eq. (5.4) decreases the estimation error to 0.299 m  implying that introducing 

extremum values of the voltage, in the form of the new terms, to the Voigt model boosts the 

model accuracy. However, the influence of adding extremum terms of the displacement, as 

presented by Eq. (5.5), did not meaningfully increase the accuracy, as shown in Tables 5.3 

and 5.4, probably due to the displacement measurement noises. Nonetheless, the estimation 

accuracy increased considerably by adding the both terms including the extrema; as presented 

in the last columns of Tables 5.3 and 5.4. The estimated displacement through the enhanced 

model Eq. (5.3) showed a significant improvement for the model accuracy compared with the 

Voigt model. This accuracy is comparable with similar studies using black box models 

(Mohammadzaheri et al., 2012a). 

Furthermore, the comparison between Table 5.3 and 5.4, i.e. Eq. (5.4) and Eq. (5.5), shows 

that there is not a meaningful difference between the two introduced modelling approaches: 

both OSP and Simulation approaches resulted in models with rather similar accuracies. 

However according to Tables 5.3 and 5.4, the model Eq. (5.3) made through the OSP 

approach shows the highest accuracy among the presented models. As the OSP approach is 

also less computationally demanding, it is recommended for modelling in similar research 

work. 

Real and estimated displacement values of the piezoelectric actuators, generated through three 

different models, are illustrated in Figures (5.1)-(5.6). In these figures, the measured and 

simulated displacements made through the models are graphed using bold dashed and solid 

lines, respectively. The validation error for each model is demonstrated by narrow dashed 

lines. 
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Figure  5.1: Real and estimated displacement values of the piezoelectric actuator made through Eq. (5.4) 

(Parameter tuning by the GA with minimal model error achieved through the OSP approach). 

 

 

 

Figure  5.2: Real and estimated displacement values of the piezoelectric actuator made by Eq. (5.5) 

(Parameter tuning by the GA with minimal model error achieved through the OSP approach). 
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Figure  5.3: Real and estimated displacement values of the piezoelectric actuator made by Eq. (5.3) 

(Parameter tuning by the GA with minimal model error achieved through the OSP approach). 

 

 

 

Figure  5.4: Real and estimated displacement values of the piezoelectric actuator made by Eq. (5.4) 

(Parameter tuning by the GA with minimal model error achieved through the Simulation approach). 
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Figure  5.5: Real and estimated displacement values of the piezoelectric actuator made by Eq. (5.5) 

(Parameter tuning by the GA with minimal model error achieved through the Simulation approach). 

 

 

 

Figure  5.6: Real and estimated displacement values of the piezoelectric actuator made by Eq. (5.3) 

(Parameter tuning by the GA with minimal model error achieved through the Simulation approach). 
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5.3. Summary	

 

In this chapter, improving the accuracy for a physics-based model of piezoelectric actuators 

was addressed. The model performance was enhanced through improving the sufficiency of 

the mathematical structure of the model, by modifying the model structure. The structural 

modification was performed by adding two terms, including four new parameters, inspired by 

another physics-based model. The new structure has a total of nine parameters. Subsequently, 

the parameters were identified through the optimisation method using a GA. 

The models’ errors were minimised through two approaches: ‘One-Step-Prediction’ and 

‘Simulation’. Both approaches and the new structure were assessed appropriately. 

Modification of black box models by adding new inputs has been proven to increase the 

model accuracy. However, physics-based models are popular due to physically interpretable 

and a small number of parameters. Accordingly, this chapter aimed to enhance physics-based 

models. The enhanced model, on a rather similar basis with the black box models, doubled the 

estimation accuracy. 

 

 

 

 

 



 

 

6. Chapter	6	‐	Conclusions	and	Future	Work	
 

 

Chapter 6 provides an overview of the research undertaken in this thesis, and it summarises 

the conclusions arising from the thesis. It also makes some suggestions for future research.  

 

6.1. Conclusions	

 

This thesis focused on pursuing physics-based and control-oriented models for piezoelectric 

actuators. The literature shows that an accurate model would be a valuable tool for the control 

of various nano-materials, design of nanopositioning and nano-manufacturing systems. 

Accordingly the aim of this research was to improve the models of piezoelectric actuators to 

develop accurate sensorless control systems for the actuators positioning. Such a model can 

eliminate limited applicable and/or expensive sensors from the control system. The model 

improvement was fulfilled through developing a global parameter identification method for 

the models and presenting an enhanced performance model. 

The research was commenced with a literature review of various physics-based models of 

piezoelectric actuators. Each model was presented with its own specific advantages and 

limitations. The models are supposed to estimate the displacement of piezoelectric actuators 

using the voltage across the actuator; the closer the estimated displacement to the 

experimental displacement, the more accurate the model.  

Current methods of parameter identification for physics-based models are not general or 

optimal treatments and they are solutions for particular problems. In this research, an optimal 

and global method is developed to identify the models’ parameters (or, in general, modelling) 

using a GA. Consequently, parameter identification was defined as the process of identifying 

the model parameters so as to minimise the ‘model error’. 

An inadequate mathematical structure of the models was a reason for the relatively low 

accuracy of physics-based models due to the lack of any proof for their optimality. Therefore, 

in order to improve the models’ accuracy, a model structure was modified by introducing two 

complementary terms inspired by the Preisach model. The new model contained nine 

parameters requiring identification.  
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From the range of physics-based models, the Voigt model was opted for this research due to 

its small number of parameters and other reported advantages. Under laboratory condition, the 

electrical voltage is applied to piezoelectric actuators and the displacements of the actuators 

are recorded. 

In this research, the average absolute discrepancy for the estimated displacement by the model 

and real displacement was called the model error. Consequently, the model error was defined 

by the ‘OSP’ and ‘Simulation’ approaches. In each step of the calculations, the OSP approach 

uses the ‘real’ displacement of the previous step to estimate the current displacement while 

the Simulation approach employs the ‘estimated’ displacement of the previous step. 

According to the previous models of dynamic systems, the model error through the 

Simulation approach was higher than the OSP’s due to the phenomenon of error accumulation 

in the Simulation approach. However, this research demonstrated that both approaches of 

minimising the model error resulted in almost the same model accuracy. Hence, it is 

recommended to employ the OSP approach for other similar research work as it is less 

computationally demanding.  

Finally, high agreement between the measurements and simulations highlighted the 

appropriateness/sufficiency of the enhanced model. The proposed enhanced Voigt model 

presented significantly higher accuracy than the conventional Voigt model. The enhanced 

model's accuracy is also comparable with the accuracy of the black box models. In the 

literature, the enhanced black box models have been reported for the same actuator/modelling 

and validation data while they have around 25 times larger the number of parameters than the 

proposed physics-based model. This may result in the superiority of physics-based models 

over black box models.  

 

6.2. Future	Work	

 

This research demonstrated that the model accuracy increases through the structural 

modification including adding extremum values of the actuator’s voltage/displacement. 

Furthermore, the parameters of the models were identified through a global optimisation 

method. The presented ideas can be extended to other physics-based models of piezoelectric 

actuators or to other nonlinear systems. 
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The following suggestions are recommended for further research on the modelling of 

piezoelectric actuators in the future: 

 Introducing complementary terms; including extremum values of the 

voltage/displacement, to the other physics-based models. 

 Introducing complementary terms with higher orders (considering a greater number of 

the previous input/output) to the models. 

 Assessing the reversibility of the enhanced model, the model ability to predict the 

induced voltage by loading the piezoelectric actuator, i.e. sensoriactuator model. 

 Assessing the proposed model for nonlinear systems including other configurations of 

piezoelectric actuators such as piezoelectric tube. 

 The global method of parameter identification may be further investigated and 

implemented for other physics-based models of piezoelectric actuators. 

 Other global methods of parameter identification (e.g. Particle Swarm Optimisation or 

PSO) may be assessed for the models of piezoelectric actuators and their complexity 

level may be compared with the employed optimisation method.  

 At this research, the model hasn’t taken into account any load/temperature effect. 

Therefore, assessing the impact of force and/or temperature loading on the improved 

model could be performed in future. 

 Assessing the effect of a weighted or exponentially weighted feedback to reduce the 

effect of ‘error accumulation’ phenomenon obtained through ‘simulation’ modelling 

approach.   
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Appendices		
 

 

A.	Black	Box	Models	

 

Black box models are universal approximators used to model piezoelectric actuators. These 

models are composed of a large number of parameters requiring identification.  

 

A.1. Model Structure 

 

To identify the structure of the feedback/feedforward control system including a piezoelectric 

actuator, an appropriate model structure is required (Sjöberg et al., 1995). Considering prior 

knowledge and physical insight of the system, three ‘colour coded’ models are defined:  

1- White-box models: The structure of a white-box model is perfectly defined by current 

knowledge and physical properties of the system. 

2- Gray-box models: In a gray-box model, although some physical knowledge are available, 

there are some parameters need to be identified. Physic-based models are example of gray-

box models. 

3- Black-box models: A black box model is a model that is viewed by the system input and 

output without any knowledge about its internal working (Juditsky et al., 1995). No physical 

insights to the system is available but a flexible successful mathematical structure could be 

used to identify the system structure (Sjöberg et al., 1995).  

 

A.2. Structure of Black Box Models 

 

Black box models are divided into two categories: linear and nonlinear models. A linear 

structure has been successful in identifying the structure of the linear systems. However, 

nonlinear black box models cover more complicated structures and they identify a large 
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spectrum of systems (Mohammadzaheri et al., 2012a). The nonlinear behaviour of 

piezoelectric actuators sits in this area (Sjöberg et al., 1995).  

If the inputs to the system are: 

,)](....,)3()2()1([ tVVVVV  (A. 1)   

and the system outputs are:  

,)](....,)3()2()1([ tVVVVV  (A. 2) 

a black box model would estimate the next instances’ outputs by: 

,)(),()( 11 tyVgty tt     (A. 3) 

where ),( 11  tt yVg  and )(ty  are system input and output, respectively, and )(t  is a term 

showing that the future data is not an exact function of the past data (Sjöberg et al., 1995).  

The Eq. (A.3) is a general structure for both dynamic and static systems. Defining the 

function of ),( 11  tt yVg  is the main task for black box models. In order to parameterize the 

function, the parameter vector of   is added to structure parameters as: 

,),,( 11  tt yVg  (A. 4) 

  is approximated by fitting the model and real system data according to: 

,),,()(
2

1

11



N

t

tt yVgty    (A. 5) 

The model structure of Eq. (A.4) is a general structure and it is divided into two 

concatenations:  

1- Mapping the input values into the finite dimensional vector of )(t : 

.),()( 11  tt yVt   (A. 6) 

)(t  is called the regression vector and its components are called the repressors. 

2- Mapping the )(t  values into the output space: 

)),((),,( 11  tgyVg tt 
  (A. 7) 

Identifying the two aforementioned concatenations would define the structure of the black 

box model. In other word, If Eq. (A.7) is identified, the model structure is defined. Some 

examples of the most popular model structures are Wavelet, Kernel estimators, Sigmoid 
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neural networks, partial least squares and fuzzy models. All these models are defined based 

on the function they present to model the variables but they are often explained by networks 

(Mohammadzaheri et al., 2012a). In all the model structures, the aim is to identify the model 

parameters so as the model fit Eq. (A.5) minimises; this is the optimisation process (Sjöberg 

et al., 1995).  

 

A.3. Fuzzy Models 

 

Fuzzy model is one of the most common black box models. The mapping role of the input 

variables to the output ones is performed by fuzzy interference systems. The fuzzy model uses 

fuzzy values (fuzzy sets) for variables rather than crisp values. It is composed of fuzzy sets, 

implication and aggregation and defuzzifier functions. The base of fuzzy models is fuzzy 

logic (Juditsky et al., 1995). According to the fuzzy logic, a variable statement could be 

partially true or false which is expressed by a probability range between 0 and 1 

(Mohammadzaheri et al., 2012b, Ying, 1998). 

Adaptive neuro fuzzy systems are usually used for fuzzy modelling. The parameters of these 

fuzzy models are often identified through a combined use of a derivative-based optimisation 

algorithm and the least square of error (LSE) using the modelling/training data 

(Mohammadzaheri et al., 2012e). Then, the model is validated by another set of data and the 

model accuracy is estimated. 
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B.	Actuator	Input‐Output	

 

Appendix B covers behaviour of the piezoelectric actuator for different excitation functions. 

The displacement of the actuator was measured for a variety excitation voltage functions. 

Triangular and sinusoidal voltage functions at three different frequencies of f= (1, 10 and 100) 

Hz, and amplitude range of A=±20V were employed to operate the piezoelectric actuator.  

Figures (B.1)-(B.18) show the piezoelectric voltage and displacement at different functions 

and frequencies. 

 

 

.   
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Figure B.1: Sinusoidal excitation voltage at a frequency of 1 Hz. 

 

 

Figure B.2: Displacement vs time for the piezoelectric actuator excited through a sinusoidal voltage (A= ±20 V 
and f= 1 Hz). 
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Figure B.3: Piezoelectric displacement versus voltage at a frequency of 1 Hz. 

 

 

Figure B.4: Sinusoidal excitation voltage at a frequency of 10 Hz. 

 

 

Time(s)



Appendices 
 
 

84 
 

 

Figure B.5: Displacement vs time for the piezoelectric actuator excited through a sinusoidal voltage (A= ±20 V 
and f= 10 Hz). 

 

 

Figure B.6: Piezoelectric displacement versus voltage at a frequency of 10 Hz. 
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Figure B.7: Sinusoidal excitation voltage at a frequency of 100 Hz. 

 

 

Figure B.8: Displacement vs time for the piezoelectric actuator excited through a sinusoidal voltage (A= ±20 V 
and f= 100 Hz). 
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Figure B.9: Piezoelectric displacement versus voltage at a frequency of 100 Hz. 

 

 

Figure B.10: Triangular excitation voltage at a frequency of 1 Hz. 
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Figure B.11: Displacement vs time for the piezoelectric actuator excited through a triangular voltage (A= ±20 
V and f= 1 Hz). 

 

 

Figure B.12: Piezoelectric displacement versus voltage at a frequency of 1 Hz. 
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Figure B.13: Triangular excitation voltage at a frequency of 10 Hz. 

 

 

Figure B.14: Displacement vs time for the piezoelectric actuator excited through a triangular voltage (A= ±20 
V and f= 10 Hz). 
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Figure B.15: Piezoelectric displacement versus voltage at a frequency of 10 Hz. 

 

 

Figure B.16: Triangular excitation voltage at a frequency of 100 Hz.  
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Figure B.17: Displacement vs time for the piezoelectric actuator excited through a triangular voltage (A= ±20 
V and f= 100 Hz).  

 

 

Figure B.18: Piezoelectric displacement versus piezoelectric voltage at a frequency of 100 Hz. 
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C.	Genetic	Algorithms	

 

Initially, a random coded population (0 and 1) was created as detailed in section 4.1.2. Then 

the population, including the model parameters, is mapped into realistic values and the cost 

function for each set of parameter is determined. The experimental data (~5000#) are called to 

calculate the cost function of the model. The calculations are performed by the two methods, 

OSP and simulation methods. Then the population is evolved. The next section, first explains 

the evolution stages in the GA, and then presents a reasonable range for each parameter of the 

Voigt model addressed in Section 4.2.2.   

 

C.1. Evolution 

 

The evolution encompasses three major stages: Selection, Crossover and Mutation.  

In the Selection stage, the chromosomes are selected to be mated and create a new generation. 

Roulette Wheels, Tournament, Boltzmann, Ranking and Steady State methods are different 

strategies for Selection (Cao and Wu, 1999). In all methods, the Selection deals with the 

chromosomes and their ‘cost functions’. In this research a well-known method, the Roulette 

Wheel, is employed to select the parents. In this method, each chromosome is presented by a 

slice proportional to the chromosome’s ‘cost function’ in which the least ‘cost functions’ are 

selected over a period of time (Cao and Wu, 1999).  

Crossover is an important stage in which a new generation is created. The Crossover point is a 

random place in the string in which the values of two strings are replaced with each other in 

genes after that point. Different methods of Crossover include single-point, two-point, multi 

point, uniform and matrix methods. However, a significant discrepancy between the 

effectiveness of these methods has not been reported in the literature. In this research, the 

single-point method has been adopted for Crossover (Chipperfield and Fleming, 1995b).  

At the Mutation stage, each bit in the string could mutate with a random low probability. A 

Mutation operator changes the bit code from ’0’ to ‘1’ or vice-versa (Fraser, 1960). 

For more details about different stages, see the program description in Appendix D defined by 

% at the beginning of the lines. 
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C.2. Parameter Ranges 

 

In GAs, the initial population may fall outside the range of some parameters. Therefore, each 

parameter should be mapped within a correct range. The ranges should be identified before 

going through evolution stages. Moreover, selecting the number of bits for each parameter is a 

compromise between the computation time and accuracy. A greater number of bits per gene 

decreases MAC as defined in Section 4.1.2, so it may increase the accuracy. However, the 

number of bits is problem dependent initially generated by a random value  (Cao and Wu, 

1999). To find appropriate ranges and MACs, the GA was used with different arrangements 

according to Table C.1. Accordingly, the parameters of the model Eq. (4.8) were identified, as 

seen in Table C.2. As this table shows, the estimation accuracy increases by increasing the 

number of bits.  

According to Table C.2, the values of the model parameters present a guideline to each 

parameter range. The resultant ranges have been demonstrated in Table 4.2. 

 

Table C.1: Three different computational conditions. 

No  Population(#) Bit(#)
1  32 6 
2  64 6 
3  64 10 

 

Table C.2: Identified parameters for the model (4.8) considering the conditions of Table C.1. 

No )(    b P MAE ( m ) 

1 1969.8 547.619 0.00586 8761.90 1.095 0.4008 
2 308.0 553.275 0.00606 13571.8 0.799 0.4004 
3 1392.7 753.666 0.00584 11648.1 0.865 0.3561 
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D.	Genetic	Algorithm	Code	in	MATLAB	

 

In Appendix D, the GA code, written for the Voigt model, is presented. In order to avoid 

repetition, the written codes for the three enhanced models are not presented here. Their 

structure is slightly different, although the algorithm is the same.  

 

1- Body Code: 

 

clc 
clear all 
% Genetic Algorithm (GA) is an Optimisation Program. 
% The approach of data calling is One Step Prediction (OSP). 
% It finds the model parameters of the performance function. 
% The performance function is the Voigt function. 
% Parameters are p11, p22, p33, p44 and p55. 
% Experimental Displacement and Voltage are put into the equation. 
  
%Initial condition 
Npar=input('enter number of parameters=')                   
% Npar is the number of the model parameters; columns. 
maxit=input('enter the maximum iteration=')                 
% The maximum number of evolution is called the iteration. 
popsize=input('enter the population size, rows=')            
% popsize is the number of rows; chromosomes. 
nbit=input('enter the number of bits of each parameter=')   
% nbit is the number of bits assigned to each parameter. 
ts=input('enter sampling time=')                            
% ts is the sampling time of the gathered data. 
mutrate=0.15;                                               
% Sets mutration rate. 
W=Npar*nbit;                                                
% Total number of bits in each row; chromosome. 
  
% Ranges of parameters. 
varlo1=10^-6*290; varhi1=10^-6*2000;    varlo2=540; varhi2=780;    
varlo3=0.0058; varhi3=0.0062;    
varlo4=6500; varhi4=13000;   varlo5=0.799; varhi5=1.099;    
  
% Data import 
[am]=importdata('sin1.mat'); 
[bm]=importdata('sin10.mat'); 
[cm]=importdata('sin100.mat'); 
[dm]=importdata('tr100.mat'); 
[em]=importdata('tr1.mat');  
[data]=[am bm cm dm em]; 
  
pop=round(rand(popsize,W));   
% Creates the initial population by randomly selected '0' and '1''s. 
[popsize,colu]=size (pop);     
% It calls the 'popsize' and 'colu' to the number of rows and columns of 
the 'pop' matrix, respectively.  



Appendices 
 
 

94 
 

  
finalpop=[];                  
% It is a gauge to put the selected population of each evolution. 
finalcode=[];                 
% It is a gauge to put the selected code of each evolution. 
 
myfhandle;                    
% This stage both maps the population data and calculates the model error, 
then selects the genes with minimum cost function. 
 
% Genetic algorithm (GA). 
 for it=1:maxit;              
% Increasing the generation counter incrementally before the maximum 
iteration;maxit. 
  
mytournamentmethod;           
% Tournament selection differentiates lower cost functions.    
mycrossover;                  
% Crossover stage produces children of each two chromosomes. 
mymutation;                   
% Mutation stage mutates the codes of each gene. 
myevaluation;                 
% It evaluates the created population and selects the genes with minimum 
cost function. 
  
% It compares the cost function of the initial population and created one, 
then it selects the population of smaller cost function. 
if aa<=a,                                                        
% aa is the cost function of the selected initial population a is the cos 
function of the selected population from GA.                                         
finalpop=[finalpop;pf(bb,:)];                                    
% All selected rows in one matrix. Decimal values. 
finalcode=[finalcode;popcoddd(bb,:)];                            
% All selected rows in one matrix. binary values. 
else 
finalpop=[finalpop;pff(b,:)];                                    
% All selected rows in one matrix.    
finalcode=[finalcode;popcoddd(b,:)];                             
% All selected rows in one matrix. binary values. 
end 
pop=popcoddd;                                                    
% Replacement of the generated population with the previous one. 
it=it+1                                                          
% Increasing the iteration; evolution. 
 end 
  
[val,dd]=min(finalpop(:,6));                                     
% It selects the minimum cost function of all rows. 
selectedpop=finalpop(dd,:)                                       
% It gives the selected row in the decimal format. 
selectedcod=finalcode(dd,:)                                      
% It gives the selected row in the binary format. 
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1-1- Myfhandle: 

 

% This stage both maps parameters within the range and calculates the cost 
function of each set of parameter.                                           
  
 pf=[];                                            % Population gauge. 
 popcod=[];                                        % Code gauge. 
  
for i=1:popsize; 
st1=pop(i,1:nbit);                                 % First parameter. 
st2=pop(i,nbit+1:2*nbit) ;                         % Second Parameter. 
st3=pop(i,2*nbit+1:3*nbit) ;                       % Third parameter. 
st4=pop(i,3*nbit+1:4*nbit) ;                       % Fourth parameter. 
st5=pop(i,4*nbit+1:5*nbit);                        % Fifth parameter. 
p1=bin2dec(num2str(st1));                           
% It attributes number to the string 1; st1. 
p2=bin2dec(num2str(st2));                           
% It attributes number to the string 2; st2. 
p3=bin2dec(num2str(st3));                           
% It attributes number to the string 3; st3. 
p4=bin2dec(num2str(st4));                           
% It attributes number to the string 4; st4. 
p5=bin2dec(num2str(st5));                           
% It attributes number to the string 5; st5. 
p11=varlo1+(varhi1-varlo1)*p1/(2^nbit-1);           
% It takes p1 and maps it within the available range. 
p22=varlo2+(varhi2-varlo2)*p2/(2^nbit-1);           
% It takes p2 and maps it within the available range. 
p33=varlo3+(varhi3-varlo3)*p3/(2^nbit-1);           
% It takes p3 and maps it within the available range. 
p44=varlo4+(varhi4-varlo4)*p4/(2^nbit-1);           
% It takes p4 and maps it within the available range. 
p55=varlo5+(varhi5-varlo5)*p5/(2^nbit-1);           
% It takes p5 and maps it within the available range. 
p=[p11 p22 p33 p44 p55];                            
% p includes the values of parameters. 
                                                        
% Model evaluation 
functv3;                                           %M-file 
  
% Attribution of a mean cost function to each set of parameters. 
pf=[pf;p mean1] ;                                   
% It gives the values of each set of population and the value of the cost 
function.                                          
popcod=[popcod;pop(i,:)];                           
% It gives the code of each set of population.  
[aa,bb]=min(pf(:,6));                               
% It gives the minimum cost of all rows. aa is the value of that cost 
function and bb is the row number of that cost function. 
end 
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1-1-1 

A) Funcv3 (OSP approach): 

 

% Model error by OSP approach. The experimental inputs are from five 
functions with different frequencies; sin1 Hz, sin 10 Hz, sin100 Hz, tr100 
Hz and tr1 Hz. 
  
fs=1/ts;      % Experimental sampling Frequency. 
ss=ts/0.0001; % Step of data sample reading. 
  
% Sin 1 Hz. 
cost1=[];     % Gauge for cost functions. 
    for   j=1:ss:20000,    % Loop for data reading.  
 aaa=j+ss;                 % Next step. 
 D=10^-6*data(3,aaa);      % Experimental displacement of the next step. 
 m=10^-6*data(3,j);        % Experimental displacement of the current step. 
 v=data(2,j);              % Input voltage of the current step.  
  
subfm                      % Calculating the cost function of the model. 
cost1=[cost1;func];        % Cost functions in a gauge.                              
  
end 
x1=mean(cost1);            % Mean value of the cost function matrix.  
     
% Sin10 Hz.   
cost2=[];    % Gauge for cost functions. 
    for j=20002:ss:40001,  % Loop for data reading.      
 bbb=j+ss;                 % Next step. 
 D=10^-6*data(3,bbb);      % Experimental displacement of the next step. 
 m=10^-6*data(3,j);        % Experimental displacement of the current step. 
 v=data(2,j);              % Input voltage of the current step.            
      
subfm                      % Calculating the cost function of the model. 
cost2=[cost2;func];        % Cost functions in a gauge.                              
  
end 
 x2=mean(cost2);           % Mean value of the cost function matrix.                
  
%Sin100 Hz.     
cost3=[];   % Gauge for cost functions. 
    for j=40003:ss:60002,  % Loop for data reading.         
 ccc=j+ss;                 % Next step. 
 D=10^-6*data(3,ccc);      % Experimental displacement of the next step. 
 m=10^-6*data(3,j);        % Experimental displacement of the current step. 
 v=data(2,j);              % Input voltage of the current step.        
  
subfm                     % Calculating the cost function of the model. 
cost3=[cost3;func];       % Cost functions in a gauge.                               
                                            
end 
 x3=mean(cost3);          % Mean value of the cost function matrix.  
  
%tr100 Hz. 
cost4=[];   % Gauge for cost functions. 
    for j=60004:ss:80003, % Loop for data reading.       
 ddd=j+ss;                % Next step. 
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 D=10^-6*data(3,ddd);     % Experimental displacement of the next step. 
 m=10^-6*data(3,j) ;      % Experimental displacement of the current step. 
 v=data(2,j);             % Input voltage of the current step.             
         
subfm                     % Calculating the cost function of the model. 
cost4=[cost4;func];       % Cost functions in a gauge.                               
  
end 
 x4=mean(cost4);          % Mean value of the cost function matrix.    
  
%tr1 Hz.     
 cost5=[]; % Gauge for cost functions. 
    for j=80005:ss:100004,% Loop for data reading.             
eee=j+ss;                % Next step. 
D=10^-6*data(3,eee);     % Experimental displacement of the next step. 
m=10^-6*data(3,j);       % Experimental displacement of the current step. 
v=data(2,j);             % Input voltage of the current step.  
        
subfm                    % Calculating the cost function of the model. 
cost5=[cost5;func];      % Cost functions in a gauge.                                
  
 end 
 x5=mean(cost5);         % Mean value of the cost function matrix.   
  
  
cost=[x1 x2 x3 x4 x5];   % Achieved cost functions in one matrix.  
mean1=mean(cost);        % Mean value of the cost functions. 
 

 Subfm: 

 

% calculating the cost functions of the model. 
  
f=inline('(sign(v).*(abs(v)/p44).^p55)/fs-(m.*(1+exp(-p33.*(v-
p22))).^2./(fs*p44*p11*p33*exp(-p33.*(v-
p22))))+m','m','fs','p33','v','p22','p44','p11','p55');  
%Objective function from the Voigt model. 
functi=f(m,fs,p33,v,p22,p44,p11,p55);     
% It replaces the values of(m,fs,p33,v,p22,p44,p11,p55) in the function. 
dif=functi-D;                             
% It subtracts the experimental displacement from estimated one. 
func=abs(dif);                            
% absolute value of (D(experimental)-D(theoretical)). 
                                                       
 

B) Funcv3 (Simulation approach): 

 

% Model error by Simulation approach. The experimental iputs are from five 
functions  
% with different frequencies; sin1 Hz, sin 10 Hz, sin100 Hz, tr100 Hz and 
tr1 Hz. 
  
fs=1/ts;      % Experimental sampling Frequency. 
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ss=ts/0.0001; % Step of data sample reading. 
  
dis=[];       % A gauge for experimental displacement. 
DIS=[];       % A gauge for theoretical displacement. 
  
  
%sin1 Hz. 
m=10^-6.*[data(3,1)];     % Initial experimental displacement. 
v=[data(2,1)];            % Initial voltage. 
fisrtdisplacement;         
% Estimation of the second displacement. M-file. 
cost1=[abs(D-(10^-6.*data(3,1+ss)))]; 
% Cost function of the first estimation by the model. 
m=10^-6.*data(3,1+2*ss);  % Next experimental displacement. 
    for   j=1+2*ss:ss:20001-ss,  % Loop for data reading.     
 DD=10^-6.*data(3,j+ss);  % Experimental displacement of the next step. 
 dis=[dis;DD];             
% Experimental displacement of the next steps in a gauge. 
 v=data(2,j);             % Input voltage of the current step.            
 subfm                    % Calculating the cost function of the model. 
 cost1=[cost1;func];      % Cost functions in a gauge.                               
  
    end 
x1=mean(cost1);           % Mean value of the cost function matrix. 
  
  
%sin10 Hz. 
m=10^-6.*[data(3,20002)];    % Initial experimental displacement. 
v=[data(2,20002)];           % Initial voltage. 
fisrtdisplacement;            
% Estimation of the second displacement. M-file. 
cost2=[abs(D-(10^-6.*data(3,20002+ss)))]; 
% Cost function of the first estimation by the model. 
m=10^-6.*data(3,20002+2*ss); % Next experimental displacement. 
    for j=20002+2*ss:ss:40002-ss,  % Loop for data reading.     
DD=10^-6.*data(3,j+ss);       
% Experimental displacement of the next step. 
dis=[dis;DD];                 
% Experimental displacement of the next steps in a gauge. 
v=data(2,j);                 % Input voltage of the current step.   
subfm                         
% Calculating the cost function of the model. 
cost2=[cost2;func];          % Cost functions in a gauge.   
    end 
x2=mean(cost2);              % Mean value of the cost function matrix. 
  
  
%sin100 Hz. 
m=10^-6.*[data(3,40003)];    % Initial experimental displacement. 
v=[data(2,40003)];           % Initial voltage. 
fisrtdisplacement;            
% Estimation of the second displacement. M-file. 
cost3=[abs(D-(10^-6.*data(3,40003+ss)))]; 
% Cost function of the first estimation by the model. 
m=10^-6.*data(3,40003+2*ss); % Next experimental displacement. 
    for j=40003+2*ss:ss:60003-ss,    % Loop for data reading.      
 DD=10^-6.*data(3,j+ss);      
% Experimental displacement of the next step. 
 dis=[dis;DD];                
% Experimental displacement of the next steps in a gauge. 
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 v=data(2,j);                % Input voltage of the current step. 
 subfm                        
% Calculating the cost function of the model. 
 cost3=[cost3;func];         % Cost functions in a gauge.                            
  
    end 
x3=mean(cost3);              % Mean value of the cost function matrix. 
  
  
%tr100 Hz. 
m=10^-6.*[data(3,60004)];    % Initial experimental displacement. 
v=[data(2,60004)];           % Initial voltage. 
fisrtdisplacement;            
% Estimation of the second displacement. M-file. 
cost4=[abs(D-(10^-6.*data(3,60004+ss)))]; 
% Cost function of the first estimation by the model. 
m=10^-6.*data(3,60004+2*ss); % Next experimental displacement.        
    for j=60004+2*ss:ss:80004-ss, % Loop for data reading.      
 DD=10^-6.*data(3,j+ss);      
% Experimental displacement of the next step. 
 dis=[dis;DD];                
% Experimental displacement of the next steps in a gauge. 
 v=data(2,j);                % Input voltage of the current step.  
 subfm                        
% Calculating the cost function of the model. 
 cost4=[cost4;func];         % Cost functions in a gauge.                            
  
    end 
x4=mean(cost4);              % Mean value of the cost function matrix.            
    
  
%tr1 Hz. 
m=10^-6.*[data(3,80005)];   % Initial experimental displacement. 
v=[data(2,80005)];          % Initial voltage. 
fisrtdisplacement;           
% Estimation of the second displacement. M-file. 
cost5=[abs(D-(10^-6.*data(3,80005+ss)))]; 
% Cost function of the first estimation by the model. 
m=10^-6.*data(3,80005+2*ss);% Next experimental displacement.         
    for j=80005+2*ss:ss:100005-ss, % Loop for data reading.     
 DD=10^-6.*data(3,j+ss);     
% Experimental displacement of the next step. 
 dis=[dis;DD];               
% Experimental displacement of the next steps in a gauge. 
 v=data(2,j);               % Input voltage of the current step.  
 subfm                      % Calculating the cost function of the model. 
 cost5=[cost5;func];        % Cost functions in a gauge.                             
  
    end 
x5=mean(cost5);             % Mean value of the cost function matrix.  
           
     
cost=[x1 x2 x3 x4 x5];      % Achieved cost functions in one matrix.  
mean1=mean(cost);           % Mean value of the cost functions. 
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 Firstdisplacement (Simulation approach): 

 

f=inline('(sign(v).*(abs(v)/p44).^p55)/fs-(m.*(1+exp(-p33.*(v-
p22))).^2./(fs*p44*p11*p33*exp(-p33.*(v-
p22))))+m','m','fs','p33','v','p22','p44','p11','p55');  
% Objective function from the Voigt model. 
D=f(m,fs,p33,v,p22,p44,p11,p55);                    
% It replaces the values of(m,fs,p33,v,p22,p44,p11,p55) in the function. 
 

 Subfm (Simulation approach): 

 

% Calculating the cost functions of the model. 
  
f=inline('(sign(v)*(abs(v)/p44)^p55)/fs-(m*(1+exp(-p33*(v-
p22)))^2/(fs*p44*p11*p33*exp(-p33*(v-
p22))))+m','m','fs','p33','v','p22','p44','p11','p55');   
%Objective function from the Voigt model. 
functi=f(m,fs,p33,v,p22,p44,p11,p55);                   
% It replaces the values of(m,fs,p33,v,p22,p44,p11,p55) in the function. 
DIS=[DIS;functi];                                       
% It puts the estimated displacement in a gauge. 
dif=functi-DD;                                          
% It subtracts the experimental displacement from estimated one. 
func=abs(dif);                                          
% absolute value of (D(experimental)-D(theoretical)). 
m=functi;                                               
% It replaces the previous estimated displacement as the input displacement 
for the next step. 
 
 
 

1-2- Mytournamentmethod: 

 

% Pairing by tournament method: Selecting parents. It differentiates lower 
cost functions each time in loop, two rows are randomly selected and their 
costs are compared.  
  
popcodd=[];                    % The parent gauge in the binary format. 
popul=[];                      % The parent gauge in the decimal format. 
  
for n=1:popsize;               % Loop number to scan all rows, popsizes. 
     
% Choosing two random numbers between 1 and popsize. It randomly selects 
numbers, counter of two rows, from the population.  
  
n1=max(1, round(rand*popsize));    
% a random number between 1 and popsize;For selecting the first parent. 
n2=max(1, round(rand*popsize));    
% a random number between 1 and popsize;For selecting the second parent. 
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%finding the relevant cost of the chromosomes; each selected row.     
co1=pf(n1,6);                   % Selects the cost of the n1 row./Mate1.  
co2=pf(n2,6);                   % Selects the cost of the n2 row./Mate2.  
   
% It re-arrange selected rows based on the value of the cost function.      
if co1<co2;                            
% If co1 is smaller, it is selected as parent and co2 is removed.            
    popul=[popul;pf(n1,:)];            
% Puting the row of n1 in popul gauge; in digit format. 
    popcodd=[popcodd;popcod(n1,:)];    
% Puting the row of n1 in popcodd gauge; in binary format. 
  
else                                   
% If co1 is not smaller, co2 is selected as parent and co1 is removed. 
    popul=[popul;pf(n2,:)];            
% Puting the row of n2 in popul gauge; in digit format. 
    popcodd=[popcodd;popcod(n2,:)];   
 % Puting the row of n1 in popcodd gauge; in binary format. 
end                                   % If end. 
  
end                                   % For end. 
  
 
1-3- Mycrossover: 

 

% Crossover stage produces children of each two chromosomes. 
  
n1=max(1, round(rand*Npar*nbit));      
% A random number between 1 and N*nbit. 
popn=[]; 
  
for i=1:2:popsize-1                % i is the counter of rows. 
    for j=1:W          % j is the counter of culomns.'0' and '1' digits. 
    if j<=n1    
% It selects codes from the parent1 before selected point(n1). 
ch1(j)=popcodd(i,j);               % Selection of the parameters of ch1. 
ch2(j)=popcodd(i+1,j);             % Selection of the parameters of ch2. 
    else 
         
% It selects codes from the parent2 for points after (n1). 
ch1(j)=popcodd(i+1,j);             % Selection of the parameters of ch1. 
ch2(j)=popcodd(i,j);               % Selection of the parameters of ch2.   
    end 
    end 
    popn=[popn;ch1;ch2] ;          % popn is the codded population after 
crossover. This population is in binary form. 
  
end 
 
 

1-4- Mymutation: 

 

% Mutation stage mutates the codes of each chromosome; children. 
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nmut=ceil(mutrate*Npar*nbit*(popsize-1));  % Total number of mutation. 
  
for mi=1:nmut                      
% Counting is carried on to the number of mutation.  
i=ceil(popsize*rand) ;             
% Random selection of population elements, row, to mutate. 
j=ceil(Npar*nbit*rand);           
 % Random selection of population elements, column , to mutate. 
a=1-popn(i,j);                     
% Changing the selected element. '1' to '0' or '0' to '1'. 
popn(i,j)=a;                       
% Substitution of the new element in the population. 
  
end 
popn;                              
% This is the population after all mutations. 
 
 

1-5- Myevaluation: 

 

% Myevaluation evaluates the created population and calculates the cost 
function of each set of genes. 
  
popu=popn;      % Calling the created population, popu. 
pff=[];         % Population gauge. 
popcoddd=[];    % Code gauge. 
  
for i=1:popsize; 
st1=popu(i,1:nbit);                        % First parameter. 
st2=popu(i,nbit+1:2*nbit) ;                % Second Parameter. 
st3=popu(i,2*nbit+1:3*nbit) ;              % Third parameter. 
st4=popu(i,3*nbit+1:4*nbit) ;              % Fourth parameter. 
st5=popu(i,4*nbit+1:5*nbit);               % Fifth parameter. 
p1=bin2dec(num2str(st1));                   
% It attributes number to the string 1; st1. 
p2=bin2dec(num2str(st2));                   
% It attributes number to the string 2; st2. 
p3=bin2dec(num2str(st3));                   
% It attributes number to the string 3; st3. 
p4=bin2dec(num2str(st4));                   
% It attributes number to the string 4; st4. 
p5=bin2dec(num2str(st5));                   
% It attributes number to the string 5; st5. 
p11=varlo1+(varhi1-varlo1)*p1/(2^nbit-1);      
% It takes p1 and maps it within the available range. 
p22=varlo2+(varhi2-varlo2)*p2/(2^nbit-1);       
% It takes p2 and maps it within the available range. 
p33=varlo3+(varhi3-varlo3)*p3/(2^nbit-1);       
% It takes p3 and maps it within the available range. 
p44=varlo4+(varhi4-varlo4)*p4/(2^nbit-1);       
% It takes p4 and maps it within the available range. 
p55=varlo5+(varhi5-varlo5)*p5/(2^nbit-1);      
 % It takes p5 and maps it within the available range. 
p=[p11 p22 p33 p44 p55];     % P includes the values of the parameters. 
  
% Model evaluation 
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functv3;  %M-file 
  
% Attribution of a mean cost function to each set of parameters. 
po=[p mean1]; 
pff=[pff;po] ;                                          % It gives the 
values of each population pack and the value of the cost function.                   
popcoddd=[popcoddd;popu(i,:)] ;                         % It gives the code 
of each chromosome.  
[a,b]=min(pff(:,6));                                    % It gives the 
minimum cost of all rows. 
  
end 
 

2- Voigt model validation: 
 
% Validation of the Voigt Model. 
clc 
clear all 
[data]=importdata('tr10.mat');  % It takes the input data. 
 
ts=5*1e-4; fs=0.2*1e4;           
% Sampling time and frequency. 
% Selected population. 
P=1.0e+04 *[0.000000160045455   0.074293255131965   0.000000608269795   
1.277761485826002   0.000087905865103   0.000000000074163]; 
y=1; x=1; %y is row number. 
p11=P(y,x);p22=P(y,x+1);p33=P(y,x+2);p44=P(y,x+3);p55=P(y,x+4);   
% Matrix elements in the row. 
  
t=[];   % Time gauge. 
d=[];   % Experimental displacement gauge. 
v=[];   % Experimental voltage gauge. 
DIS=[]; % Estimated displacement matrix. 
ddd=10^-6.*[data(3,1)];% Initial experimental displacement. 
vvv=[data(2,1)];% Initial experimental voltage. 
ss=ts/0.0001;   % Number of steps. 
  
% First estimation of the displacement. 
f=inline('(sign(vvv).*(abs(vvv)/p44).^p55)/fs-(ddd.*(1+exp(-p33.*(vvv-
p22))).^2./(fs*p44*p11*p33*exp(-p33.*(vvv-
p22))))+ddd','ddd','fs','p33','vvv','p22','p44','p11','p55');  
% Objective function by the Voigt model. 
D=f(ddd,fs,p33,vvv,p22,p44,p11,p55);          
% It replaces the values of(m,fs,p33,v,p22,p44,p11,p55) in the function. 
initid=D;                                     
% Estimation of the second displacement. 
ddd=10^-6.*[data(3,1+2*ss)];          % Next experimental displacement. 
     
for i=1+2*ss:ss:19991  % Loop for data reading.     
  
ttt=data(1,i); 
% Reading experimental times and putting them into a matrix. 
t=[t;ttt]; 
  
vvv=data(2,i);        
% Reading experimental voltages and putting them into a matrix. 
v=[v;vvv]; 
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ja=10^-6.*data(3,i);  
% Reading experimental displacements and putting them into a matrix. 
d=[d;ja]; 
  
f=inline('(sign(vvv).*(abs(vvv)/p44).^p55)/fs-(ddd.*(1+exp(-p33.*(vvv-
p22))).^2./(fs*p44*p11*p33*exp(-p33.*(vvv-
p22))))+ddd','ddd','fs','p33','vvv','p22','p44','p11','p55');  
% Objective function by the Voigt model. 
D=f(ddd,fs,p33,vvv,p22,p44,p11,p55);  
% It replaces the values of(m,fs,p33,v,p22,p44,p11,p55) in the function. 
ddd=D;            
% It considers the estimated displacement as the input displacement for the 
next step. 
DIS=[DIS;D];     % Estimated displacements. 
  
end 
                                                 
t=[data(1,1+ss);t];% Experimental time without the first one. 
[x,xx]=size(t); 
  
v=[data(2,1+ss);v];% Experimental voltage without the first one. 
[y,yy]=size(v); 
  
d=[10^-6.*data(3,1+ss);10^-6.*data(3,1+2*ss);d(2:3997,1)]; 
% Experimental displacement without the first one. 
[z,zz]=size(d); 
  
[w,ww]=size(DIS); 
www=w-1; 
DIS=[initid;10^-6.*data(3,1+2*ss);DIS(1:www,1)];  
% All estimated displacements. 
  
a=DIS-d;        
% It subtracts the experimental displacements from estimated ones. 
plot(t(1:400),DIS(1:400),'--','LineWidth',2,'Color','red')  
hold on  
plot(t(1:400),d(1:400)) 
hold on 
plot(t(1:400),a(1:400),'--','LineWidth',1,'Color','black')  
  
max(abs(a))     
% Maximum of the absolute value of (D(experimental)-D(theoretical)). 
mae(a)          
% Mean of the absolute value of (D(experimental)-D(theoretical)). 
  
%plot(v,DIS,'r') 
%hold on  
%plot(v,d) 
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