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Abstract 
The use of images for the identification of criminals is becoming more prevalent 

with the increased use of video surveillance systems. Any anatomical trait that is visible 

on an image could be used to identify an individual, as long as its usefulness as a 

biometric indicator is known and can be accurately measured.  

The mug shot, which was introduced in 1879 by Alphonse Bertillon was the first 

photograph used in forensic identification from images and since then the human face 

has been the focus for identification and recognition. However, the usefulness of the 

face or any other part of the body that could be measured from an image has not been 

thoroughly investigated.  

Population frequencies of various traits are known. However, many studies 

which investigate the frequencies of traits, use categorical scales of measurement. 

Categorical scales of measurement have been used to describe the human face and body 

for centuries, it is not a new technique. The advantages of using categorical scales to 

describe various anatomical features is, that it is inexpensive to study and does not 

require specialised technology. As long as an individual is well trained with sufficient 

knowledge of the human body, categorical scales are generally accepted as a means of 

describing human variation. The use of categories for description of the human body is 

currently accepted for research purposes and cases of skeletal identification. However, 

the use of categories is questioned when describing an individual from an image.  

A possible reason for this could be that in image analyses the traits are often too 

small to see, they are covered by clothing (such as those of the face by a balaclava) or 

they are subject to image distortion. Therefore, statements made by an expert witness in 

court proceedings regarding descriptions of anatomical features using categorical scales 

from images can often be questioned as it is primarily opinion based evidence. 
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Morphological analyses which use categories for image analyses have been labelled as 

‘unreliable’ for the reasons stated above. Much research has concentrated on using 

interval scales of measurement on anatomical features seen in images. Using metric 

measurements of images is an attempt to make image identification more reliable by 

removing the ‘opinions’ of expert witnesses. The methods which are used currently to 

take measurements from images are time consuming, tedious, have unacceptable error 

rates and are often expensive.  

Increased use of images for identification that will be used as evidence in court 

cases lead to the establishment of standards by which scientific evidence can be 

accepted by courts. These standards require the evidence provided by expert witnesses 

to be reliable, repeatable, peer reviewed and to have known error rates. The only way to 

make image-based evidence reliable and repeatable is to use interval scales of 

measurement and to minimize errors.  

This thesis proposes that humans are singular in their overall surface anatomy. 

Therefore the use of interval scales to measure anatomical features for identification 

from images is justified as a biometric tool. Various methods have been proposed to 

take reliable measurements from images and to identify the associated error rates.  

In order to accomplish this, several investigations were carried out, where each 

was concerned with a different issue that was involved with the reliable identification of 

individuals from images.  

The first analysis considered whether or not measurements of the human body 

can be taken from images with precision, regardless of wearing clothes. Light clothing 

did not affect accuracy of measurements. Bulky and patterned clothing produced greater 

inaccuracies, but the overall accuracy rate remained at 96%. It was also found that 
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anatomists had the ability to locate anthropometric points with greater precision than the 

specialists in image analysis. 

The second analysis considered the development of a method which could be 

used in forensic identification to establish the similarities or differences between 

individuals when large numbers of samples are available (n=3982). The method 

involves searching for duplicate individuals within a large database and once 

individuals did not match with another on anthropometric measurements, then they are 

considered ‘singular’. The term singularity was introduced, as it cannot be debated in a 

court of law, being a method that could be tested compared to ‘uniqueness’ that is 

universal.  Measurements of the human face were examined to evaluate the value of the 

method in the identification of an individual. Results showed that the probability of 

finding two individuals with the exact same eight facial measurements is 1 in a trillion. 

Thus this is comparable with fingerprints.  

The third analysis used the method proposed in the second analysis to 

investigate the value of body measurements as well as measurements of the face in the 

identification of an individual. Measurements of the body were compared with those of 

the face to examine, which measurements were better for the identification of an 

individual. Results showed that measurements of the body are superior to those of the 

face with a probability of 1 in a quintillion of finding two “duplicate individuals”. This 

exceeds the probabilities associated with measurements of the face and is comparable 

with fingerprint and DNA analyses.  

The fourth analysis investigated the effect that measurement errors have in 

analyses of large anthropometric datasets. In order to achieve this, a formula was 

developed which converted standard metric units to ‘units of TEM’ (technical error of 

measurement) and incorporated the measurement errors into reported values. Two large 
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datasets were used, ANSUR (n=3982) and The National Size and Shape Survey of 

Australia (n =1265). Three examples were used to illustrate the application of the 

formula: i.e. in forensic investigations, garment construction and study of biological 

variation. In all examples, using units of TEM was superior to using standard metric 

units, as it removed inevitable adverse effects that measurement errors have on data.  

The final investigation showed that body proportions were not a reliable method 

for the identification of individuals from images. The error rates associated with the 

body proportional measurements were equal to the biological variation of individuals.  

The information gathered from these five experiments indicates that surface 

anatomy is sufficient as a biometric tool, which could be applied to identification of 

individuals from images. Findings in these investigations show that measurements can 

successfully be taken from images. However, more work needs to be done within the 

field to reduce error rates.  
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Context 
 

Surveillance images have been routinely recorded for several decades to 

maintain security of institutions (i.e. public and private) and public places. They provide 

evidence for criminal activities carried out by people. To identify a person committing a 

crime shown on an image, anatomical characteristics of this person must be matched 

with those of the suspects. Traditionally, this matching has been based on categorical 

descriptions given by expert witnesses trained in anatomy. Such an approach, could be 

criticized, since categorical classifications of descriptive traits may be subjective.  

Therefore, it would be better to replace categorical observations with measurements in 

interval scales. The problems associated with taking anthropometric measurements from 

digital images are, technical image distortions, presence of clothing and quality of 

images. Anthropometry has been used for hundreds of years to identify individuals. 

Image based evidence is becoming increasingly popular, thus attempts have been made 

to take measurements from images. Criminals who are  aware of the surveillance 

systems, inevitably cover their faces to avoid identification. Therefore, researchers need 

to apply anthropometry to other, more visible, parts of the body. It has been suggested 

that different clothing can alter the perception of an individual’s body shape. However, 

a study conducted by Lucas, Kumaratilake and Henneberg (2014) found that clothing 

has very little effect on classification of body shape of males in surveillance images.  

Currently, surveillance images are recorded digitally and therefore they can be 

subjected to computer analysis. The capabilities of computer software in placing 

anthropometric points on 2D low quality images may produce measurement errors. 

Education, age and prior experience of persons analyzing images may influence 

precision with which they will locate anthropometric points and thus influence the 

accuracy of measurements. 
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The aims of the research described in this paper were to investigate 1) the effect 

that different types of garments had on the placement of anatomical points used for 

anthropometric measurements of the upper limb 2) error rates for the placements of the 

points.  

This research suggested that those working in image analysis should have had 

specific training in photoanthropometry, which could lead to lower error rates. The 

results of this study found that thickness and the patterns on the garments produce less 

accurate results, this would be useful in real life forensic cases.  

This method is time consuming and tedious, thus presenting a problem in large 

scale forensic studies. However, if this method is to be applied for the identification of 

persons in actual forensic cases, the pool of suspects needs to be narrowed down by 

other methods initially 
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Abstract 
 

Person identification from images is an important task in many security 

applications and forensic investigations. The essence of the problem comes down to 

measuring key observable anatomical features which can help describing similarities or 

differences between two or more individuals. In this paper, we examine how different 

types of garments affect the placement of body markers that enable precise anatomical 

human description. We focus in particular on landmark positioning errors on the upper 

limb. Closed-form formulae are provided to compute the maximum likelihood estimate 

of upper limb length from an image. Subject stature is then predicted from it through a 

regression model and used as identification criterion. Following initial laboratory 

experiments, the technique is demonstrated to be invariant to posture and applicable to 

uninformed subjects in unconstrained environments. Seven technical errors of 

measurement and statistical tests are quantified empirically from statures obtained by 

three assessors. Results show that thicker garments produce higher inaccuracies in 

landmark localisation but errors decrease as placement is repeated, as expected. Overall, 

comparison to truth reveals that on average statures are predicted with accuracy in 

excess of 96% for the worse assessor. 

 

Key words: human height estimation, person identification, human characterisation, 

image measurement, clothing effects, CCTV 
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Introduction 
 

The use of closed circuit television videos (CCTV) in crime control and 

prevention has rapidly grown in the present security context. As a counteraction, 

criminals often disguise their faces to preclude identification. When a person lies within 

close proximity of a camera, their face features can be acquired with high fidelity. 

Reliable identification is then achievable, for instance, by finding the smallest distance 

between the outline of anatomical landmarks on the target face and the corresponding 

outline of 3-D faces in a gallery (Yoshino et al. 2002). This assumes that the target face 

is only partially masked and, depending on the viewing geometry and visible facial 

components, different anatomical points must be identified every time. Further manual 

intervention is required to register (orientate and scale) the outline of the target face to 

that of each 3-D face. This task is extremely labour intensive and time consuming the 

larger the database is. 

For the majority of surveillance systems though, the quality of the recorded 

imagery remains poor. The cost associated with better optical and digital components is 

often considered too high so many institutions opt for quantity rather than quality 

(Burton et al.1999). Recorded CCTV images thus display optical distortions, object blur, 

wrong colours and have low resolution which makes fine details invisible (Chen et al. 

2011; Kovesi 2009). To circumvent these issues, attempts have been made using 

anthropometry to identify individuals based on larger and more easily observable 

aspects, such as body shape (Henneberg 2007; Henneberg 2008). The use of 

anthropometric measurements have been included in the description and identification 

of individuals from photographs as early as the 19th century (Bertillion 1886; Bertillion 

1890) and today they are combined with image analytical techniques (Barron and 
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Kakadiaris 2001; BenAbdelaker and Davis 2006; BenAbdelaker and Yacoob 2008; Cao 

et al. 2011; Scoleri and Henneberg 2012).  

When looking at body shape, the choice of garment has been reported to alter 

the perception of the human body (Rudd and Chattaraman 2006). In particular, the 

colour of clothing is noted to have an effect on body appearance. In a survey of male 

subjects (Frith and Gleeson 2004), it is reported that black is chosen when trying to 

minimise body size, and light colours, such as white, are worn to maximise body shape 

definition. The optical illusions presented by patterns such as horizontal stripes are 

considered to have a contradictory effect by either making the body appear wider and 

shorter (Johnson 1991) or slimmer and taller (Thompson and Mikellidou 2011). The 

size of clothing can also affect an individual’s perception of body shape, presenting the 

wearer as larger or smaller than normal depending on the fit of clothing to their actual 

body parts (Fan and Yu 2004). Latest research using LIDAR technology (McCoppin et 

al. 2012) has demonstrated that gender classification can be achieved with an accuracy 

of 70% to 80% for subjects wearing three clothing styles (summer, fall, winter). 

Another recent study (Lucas, Kumaratilake and Henneberg 2012) has reached similar 

conclusions, that clothed individuals seen in CCTV images can only be matched above 

random expectation for a general body shape. These two lines of research have proved 

independently that the acquisition of body descriptors from images is largely deceived 

by clothing whether it is obtained from automatic machine learning or based on human 

perception. Although this statement is intuitive, the challenge is to acquire those 

descriptors with highest precision from a range of scenarios and body postures. 

 

Our criterion for person identification relies on estimating the body height or 

stature. When the entire body is visible, image metrology techniques and virtual scene 

superimposition can be used to measure stature directly from the top of the head to the 
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feet (; Criminisi 1999; DeAngelis et al. 2007; Edelman, Alberink and Hoogeboom 

2010). In urban scenes though, pedestrians are often partially occluded in a way that 

prevents application of such techniques. In other circumstances, only a single image of 

the person is available rather than a video so stature cannot be derived from gait 

analysis. Recent research has thus looked at reconstructing the total body height from 

body parts measurements (Nguyen and Hartley 2012; Scoleri and Henneberg 2012). 

Clothing style then affects the accuracy to which this may be done. The work in this 

paper quantifies the effects of garments on photoanthropometry of body parts by first 

measuring the upper limb length of a person, predicting their stature by linear regression 

from this length and finally assessing errors from the obtained stature. 

In all error functions, part of the error is induced by either the human 

intervention, when manually locating anthropometric points, or by automatic body part 

detectors and classifiers. This paper focuses on assessing the human error in the process. 

Initial laboratory experiments have been conducted on nine male participants wearing 

no shirt, a black shirt, a horizontally striped shirt and a padded leather jacket. Each of 

these garments is specifically chosen to evaluate how garment colour, pattern and type 

alter an assessor’s perception on body landmark location. Subsequent experiments 

estimate the errors for eighteen uninformed male subjects observed in an uncontrolled 

(airport) environment. Three assessors have examined the videos and marked points to 

measure the upper limb length of each subject. The assessors come with varying 

knowledge in anatomy and computer vision which provides valuable feedback on the 

spread of errors. 

The main contribution of this research is to quantify the variations in placing 

critical body landmarks when these points are covered by different garment styles 

(Section 3). Seven error measures are described to estimate those variations and their 
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statistical significance. The second contribution is the overall frame work (Section 2) 

which includes robust image analytical techniques. In particular, closed-form formulae 

are proposed for computing the maximum likelihood estimate of the upper limb length 

(Section 2.2). This framework is advantageous especially for its application to 

uncontrolled scenes, independence from subject posture and flexibility of integrating 

other body part measurements as necessary. Contrary to many identification techniques 

based on facial recognition, the proposed method can be applied to low resolution 

images and offers limited user interaction (only a few clicks are necessary). This comes 

as a result of the particular choice of anthropometric landmarks which are 

distinguishable under arbitrary perspective camera views and suppress the need for 

intensive image manipulation or alignment. The achievement is that, for stature 

estimation, average accuracy (or recognition rate) is in excess of 96% for the worst 

assessor when compared to truth. 

Stature estimation 
 

For some years now, researchers in computer vision have tried to find 

appropriate markers for soft biometry retrieval from videos. Most notable is the work on 

estimating a person’s stature. When the scene is accessible for surveying, a virtual 

model can be created and superimposed onto the original imagery (DeAngelis et 

al.2007). As for face recognition, human stature can accurately be measured when 

subjects walk in vicinity of the camera. In general though, alternative methods are 

needed in cases where the environment is more challenging (e.g. outdoor), surveying is 

not possible (e.g. hazardous trafficking area) or subjects are remote from the camera and 

not standing in perfectly upright position. Besides, whether the  person appears in a 

single frame or is seen in motion through a video sequence, great difficulties arise in 

precisely extracting the top of the head (vertex) and heel position on the ground 
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(Aggarwal and Cai 1999; BenAbdelaker, Cutler and Davis 2002; Collins, Gross and Shi 

2002; Lee and Choi 2010; Nguyen and Hartley 2012). In all undertakings, the process is 

image-driven, relying on some variant of silhouette extraction to define the head and 

feet locations. This resulted in different authors having different definitions for how 

these points should be retrieved from images. Recent research (Nguyen and Hartley 

2012) has settled some of these questions, however, when measuring several partial 

body dimensions to obtain complete stature, the location of body part markers remains 

debatable. 

In contrast, the scheme we propose is evolved from a well-defined anatomical 

model of body landmarks extensively tested in anthropological research. The 

uncertainty in extracting the landmarks from images becomes of prime importance 

before carrying out any measurement. This is examined in our experiments as well as its 

effect on a person’s stature estimation. Forensic scientists and anthropologists routinely 

perform measurements of long bones to reconstruct total body height from regression 

equations that relate those body parts to the human stature (Blau and Ubelaker 2009; 

Byers and Myster 2009) Such reconstructions have been widely successful and achieve 

about 95% accuracy on body height prediction (Willey 2009). Statistically, the upper 

limb length relates significantly to the human stature and is commonly observable and 

measurable in CCTV videos. Besides, its length does not undergo any diurnal change 

unlike stature. It is indeed a well-recognised phenomenon that stature begins to decrease 

immediately after rising in the morning and further loss continues throughout the day up 

to a maximum of 28.1mm (Krishan and Vij 2007). A person should be measured 

preferably in the afternoon to reduce the variation in stature as loss of height occurs 

most rapidly in the morning (Krishan and Vij 2007; Voss and Bailey 1997). Since this 

constraint is not realisable in general surveillance context, the upper limb length 

presents a good alternative to infer stature. 
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Upper limb model 
 

The upper limb length of a subject is measured as 

𝑢𝑢 = sgn(ℎ𝑎𝑎 − ℎ𝑑𝑑). (ℎ𝑎𝑎 − ℎ𝑑𝑑), 

where sgn(x) stands for the signum function of a real number x, ha is the height 

from a ground point to the acromiale (the shoulder point) and hd is the height from the 

same ground point to the dactylion (the tip of the middle finger). These heights are 

obtained from an image by asking a user to place three markers corresponding to the 

acromiale, dactylion and a point on the ground. The use of the signum function enables 

to mark the acromiale and dactylion in any order of preference. One assumption here is 

that these two points are situated at the same depth in the scene and therefore define an 

upright vertical segment to the ground. Their depth is estimated as the distance from the 

third point placed on the ground and a world origin11. Once the acromiale and dactylion 

points are set, their corresponding  Maximum Likelihood (ML) location is computed 

such that the ML points are aligned with the vertical scene direction, see Figure 1. 

Details of the alignment procedure are deferred to the next section. To assist the user in 

choosing the ground point, a guide line is drawn through the ML points. The ground 

marker can then be set along the line where the heels of the subject are touching the 

floor. A short procedure is also applied to ensure that this point lies on the guide line 

perfectly. With the three collinear points, heights ha and hd are orthogonal to the ground 

and can be calculated as described in Section 2.3. 

 

1 The world origin is chosen on the ground during camera calibration. 
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Figure 1. Upper limb model. The user-marked points are shown in red and computed 

ML points in green.  

 

Maximum Likelihood estimation of limb endpoints  
 

Image perspective, subject posture and user interaction mean that the upper limb 

segment will rarely stand in the vertical scene direction required to measure  its length. 

This limitation is addressed by computing new endpoints which are aligned with the 

vertical vanishing point, v𝑧𝑧, obtained during calibration. 
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Suppose that the input markers are given by two points x = [𝑥𝑥1, 𝑥𝑥2]T and x′ = �𝑥𝑥1′ , 𝑥𝑥2′ �
T
 

with associated 2 x 2 isotropic Cartesian covariance matrices 𝚲𝚲x and 𝚲𝚲x′ defining 

perturbation around x and x′ by circles of radius 𝑟𝑟 and 𝑟𝑟 ′, respectively. The Maximum 

Likelihood estimates x� and x�′ of input markers x and x′ can be determined by 

minimising the squared Mahalanobis distance 

 𝑑𝑑Mahal 2 = (𝐱𝐱 − 𝐱𝐱�)⊤ Λ𝐱𝐱− 𝟏𝟏 (𝐱𝐱 −  𝐱𝐱�) + (𝐱𝐱′ −  𝐱𝐱�′)⊤ Λ 𝐱𝐱′
− 𝟏𝟏 (𝐱𝐱′ −  𝐱𝐱�′) 

 

subject to the alignment constraint v𝑧𝑧𝑇𝑇𝒍𝒍 = 0, with 𝒍𝒍 = [𝐱𝐱�T, 1]T  × [x� ,T, 1]. This is a 

constrained optimization problem which can be solved in closed-form using the 

Lagrange multiplier method. For v𝑧𝑧 = [𝑣𝑣1,𝑣𝑣2,𝑣𝑣3]T and z = [𝑟𝑟, 𝑟𝑟 ′, xT, x′T, v𝑧𝑧𝑇𝑇 ]T, it can be 

shown that 

 

𝒍𝒍 =  

⎣
⎢
⎢
⎡ 1 +  �1 +  [ξ (𝐳𝐳)]𝟐𝟐

ξ
− 𝑣𝑣1 𝑣𝑣3− 1  �1 +  � [ξ (𝐳𝐳)]2� −  𝑣𝑣2 𝑣𝑣3− 1  ξ (𝐳𝐳)

  ⎦
⎥
⎥
⎤
  , 

 

where the real-valued rational function 𝜉𝜉: ℝ9  ↦  ℝ has the form 

 

ξ (𝐳𝐳) = 2 
𝑟𝑟′ 𝑑𝑑1𝑑𝑑2 +  𝑟𝑟𝑟𝑟1′𝑑𝑑2′

𝑟𝑟′(𝑑𝑑12 −  𝑑𝑑22) + 𝑟𝑟(𝑑𝑑 1
′2 −  𝑑𝑑 2

′2)   

 

with 𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖 −  𝑣𝑣𝑖𝑖𝑣𝑣3−1, 𝑑𝑑𝑖𝑖′ = 𝑥𝑥𝑖𝑖′ −  𝑣𝑣𝑖𝑖𝑣𝑣3−1, 𝑖𝑖 = 1, 2. The previous formulae hold as long 

as the vertical vanishing point is not ideal (𝑣𝑣3 ≠ 0).  

In our implementation, anisotropic anisotropic Cartesian covariances 𝚲𝚲�x and 

𝚲𝚲�x′  are first calculated (Brooks et al. 2001) and then employed to yield 

 

𝑟𝑟 =  �det(𝚲𝚲�x)�1/4      𝑟𝑟′ =  �det(𝚲𝚲�x′)�
1/4. 
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Writing  𝒍𝒍 = �𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦, 𝑙𝑙𝑤𝑤�
T
, the ML estimates of x and x′ are given by the Cartesian 

coordinates 

 

𝐱𝐱� =  �
𝑥𝑥1𝑙𝑙𝑦𝑦2 −  𝑥𝑥2𝑙𝑙𝑥𝑥𝑙𝑙𝑦𝑦 − 𝑙𝑙𝑥𝑥𝑙𝑙𝑤𝑤

𝑙𝑙𝑥𝑥2 + 𝑙𝑙𝑦𝑦2 ,   
𝑥𝑥2𝑙𝑙𝑥𝑥2 −  𝑥𝑥1𝑙𝑙𝑥𝑥𝑙𝑙𝑦𝑦 − 𝑙𝑙𝑦𝑦𝑙𝑙𝑤𝑤

𝑙𝑙𝑥𝑥2 + 𝑙𝑙𝑦𝑦2
�
⊤

 

 

x�′ =  �
𝑥𝑥1′ 𝑙𝑙𝑦𝑦2  −  𝑥𝑥2′ 𝑙𝑙𝑥𝑥𝑙𝑙𝑦𝑦 − 𝑙𝑙𝑥𝑥𝑙𝑙𝑤𝑤 

𝑙𝑙𝑥𝑥2 + 𝑙𝑙𝑦𝑦2
,   
𝑥𝑥2′ 𝑙𝑙𝑥𝑥2 − 𝑥𝑥1′ 𝑙𝑙𝑥𝑥𝑙𝑙𝑦𝑦 − 𝑙𝑙𝑦𝑦𝑙𝑙𝑤𝑤

𝑙𝑙𝑥𝑥2 + 𝑙𝑙𝑦𝑦2
�
⊤

 

 

These points are taken as the true locations of the upper limb endpoints. The above 

derivation differs from its original form in Criminisi (1999) in that it critical entities are 

readily programmable as given here with some of them explicitly calculated in 

Cartesian rather than projective coordinated to prevent potential errors.  

 

Upper limb length 
 

Without loss of generality, suppose we wish to determine the actual height ℎ𝑎𝑎 

from the ground point 𝑮𝑮 to the acromiale 𝑨𝑨. Let 𝒈𝒈 and 𝒂𝒂 denote their corresponding 

image points, with 𝒂𝒂 the ML estimate of the user-defined acromiale. Assuming a 

perspective projection camera model, these relationships may be written as 

 

 {𝜆𝜆1[𝒂𝒂𝑇𝑇 , 1]𝑇𝑇 = P[𝑨𝑨𝑇𝑇 , 1]𝑇𝑇 , 𝜆𝜆2[𝒈𝒈𝑇𝑇 , 1]𝑇𝑇 = P[𝑮𝑮𝑇𝑇 , 1]𝑇𝑇 
 
where P encodes the projection matrix and the 𝜆𝜆𝑖𝑖’s some perspective scale factors. The 

above system of equations can be expressed in a matrix form as M𝑨𝑨=b. This follows 

from using the assumption that 𝐀𝐀 and 𝐆𝐆 are at the same depth, so one may write 𝐀𝐀 =

[A1, A2, ha]T and 𝐆𝐆 = [A1, A2, 0]T which provides four equations in three unknowns. 
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The least-squares solution 𝑨𝑨�=�M𝑇𝑇M�
−1

M𝑇𝑇b  gives ℎ𝑎𝑎 as the third component of 𝑨𝑨�. 

Height ℎ𝑑𝑑 can be calculated in a similar manner. The upper limb length ensues from the 

formula given in Section 2.1. 

 

Anthropometric stature prediction 
 

Anthropometric data were collected from 109 adult males resident in Australia. 

These included upper limb length and body height measured in accordance with the 

Martin’s Technique (Martin and Saller 1957) and in compliance with the International 

Standards Organisation (ISO 7250). Two linear regression techniques, namely the 

Ordinary Least-Squares (OLS) and Reduced Major Axis2 (RMA), can be applied to 

these data to predict stature from upper limb length. If u and s denote the upper limb 

length and stature respectively, both expressed in millimetres (mm), then 

 

OLS: 𝑠𝑠 = 1.4052𝑢𝑢 + 678.74, 

RMA: 𝑠𝑠 = 1.7435𝑢𝑢 + 413.94. 

 

The variances associated with the OLS and RMA stature predictions are 48.5 mm and 

50.6 mm, respectively. 

 

Experiments 
 

Clothing effects are first examined under controlled conditions in a laboratory 

(Sections 3.1 to 3.3). Various qualitative measures are calculated to evaluate the errors 

in landmark placement and differences between assessors. Visual influence of garment 

2 RMA is also known as the Total Least-Squares method.  
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styles is deduced from those errors. Section 3.4 reports the results when our technique is 

applied to uninformed subjects in an unconstrained (airport) scene. In all laboratory 

tests, only the OLS regressor is used to predict stature from upper limb length. The 

RMA method is temporarily discarded because RMA statures are linearly related to 

OLS ones and therefore would reveal similar trends. RMA is used in Section 3.4 on 

every-day life surveillance imagery taken in an airport. 

 

Laboratory experiments overview 

 

 Laboratory set-up 
 

Nine adult male participants have been recruited within South Australia. Each 

of them is made to wear a pair of surgical pants, shoe coverings, a cap and a face mask 

to eliminate identifying features. This strategy also intends to focus the assessors’ 

attention on the upper body with no other distractions. Participants are recorded using a 

CCTV camera (axis p3304 with a resolution of 1280 x 800 pixels) in the Bioskills 

laboratory of the Medical School at The University of Adelaide. The camera is fixed to 

the ceiling at a height of 2.5 metres from the floor. Still photographs are extracted from 

the videos and calibrated using the technique in (Scoleri 2010). Each participant is 

standing approximately 8 metres from the camera shown in either an anterior or 

posterior view. They are imaged four times wearing no shirt, a black shirt, a 

horizontally striped shirt and a padded leather jacket (n = 36 photographs). Figure 2 

shows the garments on a participant. In order to reduce the influence of diurnal variation 

on stature, the men have been measured and recorded in the afternoon. This provided an 

estimate of their “true” stature. The quotation marks are used because although every 

care has been taken to minimise the errors in true statures, it was reported that some 

may still exist (Ulijaszek and Lourie 1994). 
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Figure 2. Anterior views of the same male in four different types of wear. (a) 
Shirtless; (b) Black shirt; (c) Striped shirt; (d) Padded jacket 

 

Several challenges became apparent when analysing the images. Despite 

instructing the participants on the correct pose to hold, they are often slouching or 

leaning to one side, their upper limb is slightly bent and not straightened out, their hands 

are curled up and not fully opened, their feet are not together but separated (Figure 3). 

These various postures do not adhere to the correct anatomical model and therefore 

introduce errors. However, they offer realistic conditions as would be encountered in 

real-life CCTV images, which is important. 

 

 
 

 

 

 

 

 

Assessors 
 

Three assessors have viewed each of the photographs and marked the three 

points as described in Section 2.1. Their level of experience in anatomy can be ranked 

as expert, trained and novice. The “expert” has over forty years of experience studying 

Figure 3. Sample images of feet position for different participants. (a) Anatomically correct 
position;   (c-d) Incorrect pose. 
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and measuring the human body and is employed as a Professor of Anatomical Sciences, 

teaching students as well as conducting research in the field. The person who is referred 

to as “trained” is educated in the field of Biological Anthropology and has three years of 

experience in measuring and studying the human body. The “novice” assessor, although 

expert in computer vision gait analysis, has limited experience in defining a person’s 

anatomical features. The broad range of expertise is valuable for observing the 

variations of errors. In the experiments, assessors only have a single attempt at marking 

points for each participant. This guarantees integrity in revealing the effects of garments 

on landmark placement. It also means that error values can improve if an assessor could 

mark points repeatedly. Assessor 2 was chosen to complete the task twice in order to 

calculate the intra-observer error. The landmark positioning took just over an hour for 

each assessor to go through the 36 images; assessor 2 was given a two-hour break in 

between repeats in order to reduce the effects of fatigue and memory on the task. 

 

Error analysis for three uncertain markers 
 

The Technical Error of Measurement (TEM) is a suitable quality measure to 

assess the difference between stature measurements (Ulijaszek and Lourie 1994). 

Several such TEMs are described in the following sections. In addition, the bias 

between assessors’ measurements and the significance of variances between TEM 

values are examined. In total, seven tests are presented to understand how errors 

fluctuate under the influence of landmark positioning and garment style. 

 

Comparison to truth 
 

The first TEM evaluates the discrepancy between all predicted statures and their 

“truth” values. It is given by the formula: 
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TEMtruth = �
1

2𝑛𝑛�
(𝑠̅𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖)²

𝑛𝑛

𝑖𝑖=1

�
1 2⁄

, 

where 𝑛𝑛 is the total number of test images,  𝑠̅𝑠𝑖𝑖 and 𝑠𝑠𝑖𝑖 stand for the true and predicted 

statures, respectively. The assessors produced TEMs as shown in Table 1.  

 
Table 1. Errors (mm) between predicted statures and truth.  

 
 

 

In our model, the total error on stature prediction stems from a combination of 

the errors in placing the anthropometric points, calibrating the camera and the OLS 

regressor. Given that the variance for OLS is estimated at 48:5 mm, these errors are 

within that threshold and thus very encouraging. Considering the worst score and 

comparing to the average participant’s height of 1758 mm yields an accuracy in excess 

of 97%. For the best TEM score, the accuracy reaches over 98%. 

 

Inter-observer error 
 

An inter-TEM is used to measure the extent to which predictions from assessors 

differ from one another: 

TEMinter = �
1

𝑛𝑛(𝑘𝑘 − 1)���𝑠𝑠𝑖𝑖,𝑗𝑗2
𝑘𝑘

𝑗𝑗=1

−
�∑ 𝑠𝑠𝑖𝑖,𝑗𝑗𝑘𝑘

𝑗𝑗=1 �²
𝑘𝑘 �

𝑛𝑛

𝑖𝑖=1

�

1 2⁄

, 

where sij is the i-th predicted stature obtained by the j-th assessor and k refers to the total 

number of assessors (here k = 3). Table 2 shows the values obtained for different 

selections of assessors. More experienced anatomists (assessors 1-2) have a lower TEM 

than less experienced anatomists (assessors 2-3). So, these results confirm the assessor’s 

experience in anatomy. 

 

 Assessor 1 Assessor 2 Assessor 3 
TEMtruth 30.0 39.2 44.3 
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Table 2. inter-TEM (mm) for selections of assessors 
 

 

 

Intra-observer error 
 

Assessor 2 has performed the point marking twice for all nine participants. This 

allows the intra-TEM to be measured as 

TEMintra = �
1

2𝑛𝑛�
(𝑠𝑠𝑖𝑖1 − 𝑠𝑠𝑖𝑖2)2

𝑛𝑛

𝑖𝑖=1

�
1 2⁄

 

 

where 𝑠𝑠𝑖𝑖1and 𝑠𝑠𝑖𝑖2are the predicted statures obtained in the first and second round of 

marking, respectively. The intra-TEM may be interpreted as an indicator of the 

measurements’ reliability. As measurements are repeated, some variations are initially 

expected until a point where the error is reduced to a small value and progress can no 

longer occur. When the intra-TEM stagnates, one can be confident about the predicted 

statures. For assessor 2, the TEMintra is found to be equal to 35. 1 mm. This value 

suggests that possible improvement of the landmark positioning can be made. 

 

Assessor’s bias 
 

The bias between two assessors placing markers can be quantified as 

bias𝑎𝑎−𝑏𝑏 =
1
𝑛𝑛��𝑠𝑠𝑖𝑖𝑎𝑎 − 𝑠𝑠𝑖𝑖𝑏𝑏�

𝑛𝑛

𝑖𝑖=1

 

where 𝑠𝑠𝑖𝑖𝑎𝑎and 𝑠𝑠𝑖𝑖𝑏𝑏are the i-th predicted statures obtained from assessor a and b, 

respectively. The variables a and b take distinct values in the range 1,...,k. Results are 

summarised in Table 3. Again, the more experienced anatomists (pair 1-2) recorded 

  Assessors  
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 

TEMinter 23.5 26.5 27.4 25.9 
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much smaller bias than less experienced ones (pair 1-3). Looking at pair 1-2, the 

positive value for the bias means that on average the first assessor predicted taller 

statures than the second one. A similar reasoning can be deduced regarding the other 

two pairs. 

Table 3. Bias (mm) between different pairs of assessors. 
 
  Assessors  
 1 – 2 1 – 3 2 – 3 
Bias +0.1 +22.2 +22.1 

 

Effects of garments 
 

TEMtruth provides an error measure which is too generic and does not reveal the 

effect of a particular garment on the assessors’ ability to mark the required points. The 

analysis in this section addresses this limitation. First, the inter-TEM is calculated by 

including the measurements that only relate to a specific clothing style: (a) All 

participants are shirtless, (b) with a black shirt, (c) a striped shirt or (d) a padded jacket 

(n = 9). Table 4 presents the results. Overall, the TEM for shirtless participants turn out 

to be the largest due to the roundness of the shoulder and thus the increased ambiguity 

to mark the acromiale. Lowest TEM is achieved for participants wearing a black shirt as 

it defines the silhouette better around the shoulders. When looking at the various 

garment types, those with stripes or padded produce higher inaccuracies, which is to be 

expected. 

Table 4. Inter-TEM (mm) for (a) shirtless participants; (b) with black shirt; (c) with 

striped shirt; (d) with padded jacket.  

 

 

 

 

 Assessors 
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 
(a) 30.0 28.3 37.7 32.3 
(b) 16.6 26.0 10.0 18.7 
(c) 22.5 21.3 25.8 23.3 
(d) 22.8 29.8 28.7 27.3 
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In a second series of tests, the bias is examined by comparing the shirtless 

case to the clothed ones. The formula in Section 3.2.4 is used with 𝑠𝑠𝑖𝑖𝑎𝑎 taken as the 

stature measurement obtained for a shirtless participant and 𝑠𝑠𝑖𝑖𝑏𝑏 as the measurement for 

the corresponding participant wearing either the black shirt, the striped shirt or the 

padded jacket for all assessors (n = 27). Results are given in Table 5. 

 

Table 5. Bias (mm) between different garment types. The abbreviation ‘SL’ stand for 

‘Shirtless’.  

 SL-Black SL-Striped SL-Padded 
Bias +14.5 +36.4 +37.8 

 
 

As can be seen, the difference in marking anthropometric points is significantly 

smaller when shirtless participants are compared to those wearing a black shirt. The 

striped shirt and padded jacket increase the difficulty in identifying points which yields 

larger errors in both cases. The consistently positive bias across all three categories 

indicates that the estimated statures are taller on average for shirtless participants and 

thus may suggest a tendency to place markers more incorrectly in this situation. This 

would agree with the results in Table 4 where the inter-TEMs (almost) always show 

greater variation in the shirtless case than in the other three cases. 

 

Snedecor’s F-test 
 

Technical errors of measurements are essentially variances of one measurement 

around another measurement. Their random errors are thus a result of the measurement-

to-measurement differences and sample sizes. This means that the difference between 

two TEM values can be tested for statistical significance in the same way the difference 

of two variances is. The Snedecor’s F-test is an appropriate tool to use. This test is 
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based on the ratio of two variances in general populations to assess significance because 

the distribution of errors of ratios of larger to smaller variances depends on the 

combination of their degrees of freedom that are determined by sample sizes minus one. 

The F-test is given by 

F =  
𝑣𝑣1
𝑣𝑣2

 

where v1 is the larger variance, v2 the smaller variance. Both v1 and v2 are 

estimates of population variances derived from sample values in the following way: 

𝑣𝑣1 =
𝑣𝑣1′ .𝑁𝑁
𝑁𝑁 − 1 ,          𝑣𝑣2 =

𝑣𝑣2′ .𝑁𝑁
𝑁𝑁 − 1 

with 𝑣𝑣1′  and 𝑣𝑣2′   the sample variances and N the number of observations. TEMs are 

square roots of sample variances, hence after squaring TEM values, multiplying them 

by N and dividing the result by N - 1, we obtain equivalents of variances appropriate to 

form ratios for the F-test. Note that with large numbers of observations, the N/(N - 1) 

term approaches 1 and thus direct ratio of squared TEMs is an approximation of the F-

test value. For the TEMs discussed in Sections 3.2.1, 3.2.2 and 3.2.5, with the number 

of observations N = 9, most squared TEM ratios do not exceed appropriate cut-off F-test 

values for the 0.05 significance of differences. In Table 4, the TEMs in rows (a)-(b) for 

assessors 1-2 and 2-3 are the two instances where the F-tests are statistically different. 

This is because locating landmarks is much easier when a person wears a black shirt 

than no shirt, as explained in Section 3.2.5. 

 

Error analyses for a single marker 
 

Among the three markers to place, only one of them is truly covered by clothing: 

the acromiale. In this section, we investigate the errors and effects of garments on this 

particular landmark. Since all three markers are recorded per assessor for all 

photographed subjects, we conducted a first series of tests whereby the dactylion and 
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ground points are always taken as those from the expert assessor. This means that the 

location of the acromiale remains as chosen by the individual assessor. The error 

measures presented in Section 3.2 are labelled with a superscript exp to mark this 

distinction. We have also recalculated all the errors when the dactylion and ground 

points originate from the novice assessor. These are labelled with a superscript nov. The 

two data manipulation strategies are employed to examine how the errors fluctuate for 

radically different expertise levels and whether it reveals any pattern. 

 

 Comparison to truth 
 

 

Table 6 summarises the results for TEMtruth. The values in brackets indicate the 

relative difference with the results in Table 1 when all three markers are chosen by each 

assessor. Since Assessor 1 is the person with expert anatomical knowledge, his score for 

TEMtruth
exp

 remains unchanged from Table 1 (identical data). A considerable 

improvement can be noted for the novice anatomist (Assessor 3) who progresses to a 

comparable level to that of the expert assessor. The TEM for the trained anatomist 

decreased minimally. This overall trend is to be expected since Assessor 1 has a better 

selection of points (smallest error to truth in Table 1). 

 

Table 6. TEMtruth (mm) when then dactylion and ground points are those from the 

expert and novice assessors.  

 Assessor 1 Assessor 2 Assessor 3 
TEMtruth

exp  30.0 (+0.0) 38.7 (-0.5) 32.9 (-11.4) 
TEMtruth

nov  44.1 (+14.1) 48.9 (+9.7) 44.3 (+0.0) 
 
In the second row, the fixed dactylion and ground points come from Assessor 3 

so his score is unchanged from Table 1. The increase in value for the results of the other 

assessors is understandable given that Assessor 3 has the largest discrepancy to truth 
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when all three markers are specified. Looking globally at the results, the relative 

difference between assessors 1 and 3 is negligible for both TEMtruth
exp and TEMtruth

nov . This 

suggests that they have consistently placed the acromiale around the same location. The 

difference in landmark placement is more noticeable for assessor 2 who has a larger 

residual error in both tests. 

 

Inter-observer error 
 
 

Table 7 shows the new inter-TEM values. The numbers in brackets indicate the 

difference with the results in Table 2 when all three markers are chosen freely by each 

assessor. 

 

Table 7. Inter-TEM (mm) for selections of assessors. 

  Assessors  
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 

TEMinter
exp  18.6 (- 4.9) 12.2 (- 14.3) 17.5(- 9.9) 16.3 (-9.6) 

   TEMinter
nov  18.7 (- 4.8) 12.6 (-13.9) 17.1 (-10.3) 16.4 (- 9.5) 

 

All errors have decreased and turned out about the same magnitude. The smaller 

variations between assessors are a direct consequence of fixing two of the three markers. 

Assessors 1-3 produced the smallest inter-TEM values whereas the largest values are 

observable when statures from assessor 2 are compared to those of assessors 1 and 3. 

Since the only source of uncertainty arises from the location of the acromiale, these 

results confirm that assessors 1 and 3 placed similar landmarks, and that assessor 2 was 

visually more affected by the clothing styles. 
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Assessors’ bias 
 

The bias is now calculated for the new data, refer to Table 8. All errors are small 

and about the same magnitude. Statures from assessor 3 are shorter than those of 

assessor 1 (positive bias) but taller than those of assessor 2 (negative bias) with similar 

amount of variation in each case. From column 1, assessor 2 yielded shortest statures. 

This agrees with prior findings that this assessor has tangibly different point locations 

than the other assessors. Assuming equal difficulty in marking the acromiale and 

dactylion, one may deduce from the bias values in Tables 3 and 8 that a large part of the 

error stems from the location of the ground point. Assessor 2 must have placed this 

point much better than assessor 3 because all relevant errors in Section 3.2 are larger for 

assessor 3 and we have identified in this section that his placement of the acromiale is 

comparable to the expert anatomist. 

 

Table 8. Bias (mm) between different pairs of assessors.  

  Assessors  
 1 – 2 1 – 3 2 – 3 
Biasexp 

Biasnov 
+3.8 
+4.0 

+2.0 
+1.8 

-1.8 
-2.2 

 

Effects of garments 
 

Following the analysis in Section 3.2.5, we consider the inter-TEMs for statures 

that only relate to a particular type of clothing. Results are summarised in Tables 9 and 

10. 
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Table 9. TEMinter
exp  (mm) for (a) shirtless participants; (b) with black shirt; (c) with 

striped shirt; (d) with padded jacket.  

 Assessors 
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 
(a) 26.6 14.2 16.2 19.8 
(b) 13.4 15.8 13.3 14.2 
(c) 13.0 8.7 18.5 14.0 
(d) 17.9 8.3 21.0 16.7 

 
 

Table 10. TEMinter
nov  (mm) for (a) shirtless participants; (b) with black shirt; (c) with 

striped shirt; (d) with padded jacket. 

 Assessors 
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 
(a) 27.0 14.2 16.0 19.9 
(b) 14.1 16.5 13.6 14.8 
(c) 12.2 8.7 17.3 13.2 
(d) 17.9 9.1 20.9 16.7 

 
 
Performing a row-wise comparison between the two tables, we see that all errors 

have about the same order of magnitude and have decreased compared to their 

corresponding values in Table 4. In relation to clothing effects, the decrease is more 

significant for striped shirt and padded jacket which demonstrates that these garments 

present a greater challenge for someone to place markers correctly.  This corroborates 

the conclusion in Section 3.2.5. Other experiments focus specifically on the errors 

between different clothing styles. Looking at Table 11, the effect of a particular garment 

is clearly visible since most often the bias is positive with large magnitude. The trends 

are shown more prominently here compared to Table 5 because the uncertainty is 

assessed precisely in the marker covered by clothing. Note that the bias in column 1, 

row 2, is small and negative. This peculiarity is a consequence of using the ground 

points from assessor 3, which we know from previous experiments are not well placed. 

This result may be ignored. 
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Table 11. Bias (mm) between different garment types. The abbreviations ‘SL’ stands 

for ‘shirtless.  

 SL-Black SL-Striped SL-Padded 
Biasexp 
Biasnov 

+33.4 
   -5.3 

+45.1 
+31.8 

+34.7 
+38.0 

 
 
 

Snedecor’s F-test 
 
 

F-tests have been performed in a similar fashion to those in Section 3.2.6. 

Looking at Tables 2 and 7, the TEMs for the assessors’ pair 1-3 exhibit statistically 

significant differences at the 95% confidence level. This result is a formal confirmation 

that the provision of better ground points has improved the stature estimates of assessor 

3 and thus reduced the inter-TEM with assessor 1 noticeably. Other statistically 

significant differences can be found in both Tables 9 and 10 between rows (a)-(b) and 

(a)-(c) for assessors’ pair 1-2, between rows (b)-(d) for pair 1-3 in Table 9 and rows (b)-

(c) for pair 1-3 in Tables 10. Since acromiale is the only variable point, the F-tests prove 

that assessors 1-2 have consistently  placed that point when participants wear shirts (low 

inter-TEMs in rows (b), (c)) compared to no shirt (row (a)). For assessors 1-3, the F-

tests reveal that they had similar point marking for participants wearing a striped shirt 

and a padded jacket (rows (c), (d)) compared to when they wear a black shirt (row (b)). 

 

Real-life surveillance images 
 

 

Our model is now applied to an airport surveillance video released for the 

Performance Evaluation of Tracking and Surveillance 2007 workshop (PETS 2007). We 

have examined 4,500 images (of resolution 720 x 576 pixels) of a particular video clip. 

Over 95% of passengers and bypassers are found to be missing lower limbs due to 
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luggage and other people obstructing. To have benchmark statures for comparison, we 

have considered the same 30 men as those in (Scoleri and Henneberg 2012), however 

several challenges appeared immediately:  

1. Some bypassers wear clothes of colour similar to the scene 

background. This especially precludes the marking of the acromiale;  

2. Many waiting passengers stand with their arms crossed over their chest 

or behind their back, their upper limb is partially occluded, their hands 

are closed or hidden;  

3. Image resolution is too poor to clearly distinguish body parts of 

pedestrians far in the scene. Markers would need to be placed with 

sub-pixel accuracy, which is not straightforward to do. 

 

In these situations, the point placement is not trustworthy or possible, so the men 

are discarded. Such situations are illustrated in Figure 4. This brings the number of test 

subjects down to 18. Two of these subjects are viewed facing the camera, one from the 

back and fifteen others under various side-way postures. The latter postures are most 

difficult to deal with, even when the complete upper limb is visible (Figure 5). It is 

indeed easier to locate the acromiale when both shoulders are observable as in our 

laboratory experiments where participants are in anterior or posterior view. Among the 

test subjects, four passengers have garments of colour similar to the background and 

two others walk with their arms bent pushing trolleys. We kept these six candidates to 

see how the assessors and our model would cope with extreme situations. Figures 5 and 

6 depict some workable examples and other more challenging cases in our test set.  

In order to carefully examine the effects of garments, the 18 selected men are 

separated into six categories of equal size. In this context, garment style but also subject 

posture must be taken into account, the latter being a novel addition compared to the 
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laboratory experiments. People for whom the upper limb is reasonably visible are 

considered as having an adequate posture; otherwise, they are labelled as having 

inadequate posture. The categories are:  

(a) Easy-shirt: people are wearing a shirt and stand with adequate posture;  

(b) Easy-jumper: people are wearing a jumper and stand with adequate posture; 

(c) Easy-jacket: people are wearing a padded jacket or thick coat and stand with 

adequate posture;  

(d) Hard-shirt: people are wearing a shirt and stand with inadequate posture;  

(e) Hard-jumper: people are wearing a jumper and stand with inadequate 

posture;  

(f) Hard-jacket: people are wearing a padded jacket or thick coat and stand with 

inadequate posture; 

Figure 4. examples of subjects discarded from our experiments. 
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Figure 5. Subjects with visible upper limb.  

Figure 6. Challenging situations for point marking.  
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Experimental arrangements 
 

 

In the test images, all 18 passengers have partially occluded legs and feet, so no 

ground point is markable. The authors in (Scoleri and Henneberg 2012) have kindly 

provided the camera calibration, a list of subjects, their predicted statures from head 

heights, top and base head point locations and their projections onto a reference plane. 

Our experimental set-up could thus replicate their exact conditions. We show next how 

the ground point entering the calculation of the upper limb length is obtained from this 

starting information.  

The world coordinate system is set such that the X-Y plane is on the ground and 

the positive Z-axis represents the upward vertical scene direction. Let ow  be the image 

of the world origin, t the head top point and 𝐭̃𝐭 its projection onto a reference plane 

perpendicular to the ground plane (Figure 7). Furthermore, let vx, vy, vz denote the 

vanishing points in the X-, Y-, Z-directions, respectively. Viewing the 3-D world as a 

collection of three orthogonal pencils of parallel planes (Criminisci1999), it can be 

shown that the projection of 𝐭̃𝐭 onto the ground plane, which is aligned with t and vz, is 

the homogeneous point 

g = ([tT, 1]T  ×  vz) x (vx  ×  𝐦𝐦) 
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with m = �[owT , 1]T  ×  vy� ×  ([𝐭̃𝐭T, 1]T  ×  vz).  Point 𝐠𝐠 is then projected orthogonally 

onto the guide line formed by the (ML) acromiale and dactylion points (Figure 7). This 

technique yields a valid ground point for upper limb measurement. Only two points are 

now required, the acromiale and the dactylion. As in the laboratory experiments, 

assessors have marked each point in a single action. This is a major improvement over 

methods which require extensive repeats of the point placement and need to operate at a 

sub-pixel level (Scoleri and Henneberg 2012). 

Figure 7. Construct of upper limb length measurement with point 𝐭̃𝐭 (magenta) on the 

reference plane (green), t (cyan) on the head vertex, g (yellow) on the ground and its 

projection (red) onto the guide line.  
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Test results 
 

The same three assessors as those in Section 3.1 have placed markers to obtain 

the upper limb lengths for all subjects. These lengths are subsequently used to infer 

statures through OLS and RMA regressions (Section 2.4). The final statures are taken as 

the average values of the two predictions to match the approach in (Scoleri and 

Henneberg 2012) and compare estimates. Figures 8 and 9(a) show the results for all 

three assessors along with the predicted statures from (Scoleri and Henneberg 2012). 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 8. Stature estimates for 18 passengers. Benchmarks statures originate from 

(Scoleri and Henneberg 2012). 

 

One may consider the statures from (Scoleri and Henneberg 2012) as “truth” and 

obtain a technical error of measurement using the assessors’s body heights and the 

formula given in Section 3.2.1. As can be seen from Table 12, assessor 3 produced the 

lowest score. This surprising result may be explained by the fact that assessor 3 gained 
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familiarity with the subjects as a consequence of spending a significant amount of time 

setting up the experimental images. We also believe that the laboratory experiments 

have been beneficial for training. His landmarks are therefore better placed, in particular 

for subjects standing with their upper limb at an angle from their body (e.g. when 

pushing a trolley). The other two assessors performed equally to each other, although 

with larger errors than assessor 3. 

 

Table 12. Errors (mm) between predicted statures and (Scoleri and Henneberg 2012). 

 

 

The assessors’ inter-TEM and bias have been tested as per Sections 3.2.2 and 

3.2.4, refer to Table 13. Given that assessors 2 and 3 have obtained better scores for 

TEMtruth, their inter-TEM and bias values are lower than those of other combinations of 

assessors. The negative bias values suggest that assessor 1 has obtained shorter statures 

on average compared to the other assessors. 

 

Table 13. inter-TEM and bias (mm) for selections of assessors.  

  Assessors  
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 

TEMtruth 34.9 40.3 32.3 36.0 
   Bias -24.3 -30.8 -6.5  

 
 

 Assessor 1 Assessor 2 Assessor 3 
TEMtruth 60.8 61.2 45.3 
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Figure 9. Stature estimates shown on a macro scale. Benchmark stature originate from 
(Scoleri and Henneberg 2012). 
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Re-test results 
 

A re-test session was organised to calculate the intra-observer TEM and observe 

the variations of other errors. So, the three assessors have repeated the point marking a 

second time for all subjects. Results are shown in Tables 14 and 15 with an 

accompanying graph in Figure 9(b).  

Compared to TEMs in Table 12, the new values show improvement in landmark 

localisation and therefore stature estimation. Two of the assessors have scored TEMs 

equivalent to those in the laboratory experiments, which is encouraging. The average 

stature from (Scoleri and Henneberg 2012) is 1775 mm. Considering the worst error 

(assessor 1), this still gives an accuracy of about 97%. Looking at the intra-TEMs 

reveals that assessors have either become more precise in their marking or changed  

their approach (indicated by the large values). This is supported by the variations of 

predicted statures in the graphs of Figure 9. These intra-TEMs also suggest that 

assessors have a margin of progress. 

 
Table 14. Quantification of errors (mm) after re-test. 
 
 Assessor 1 Assessor 2 Assessor 3 

TEMtruth 53.5 40.9 36.5 
TEMintra 41.0 48.3 34.1 

 
 
Table 15. Inter-TEM and bias (mm) after re-test.  
 
  Assessors  
 1 – 2 1 – 3 2 – 3 1 – 2 – 3 
TEMinter 46.4 47.1 28.1 41.5 
Bias -35.9 -39.8 -3.9  

 
 

According to Table 14, assessors 2 and 3 have close stature estimates (from 

TEMtruth), which implies that their landmark positions may be similar. In turn, this 

means they should produce a lower inter-TEM and bias compared to other pairs of 

assessors. This is indeed confirmed in Table 15. Results of assessor 1 are about as far 
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apart from each of the other two assessors. The negative bias confirms that assessor 1 

generally produces shorter statures as can be seen in Figure 9(b). Overall, the two 

graphs of Figure 9 show that assessors’ predicted statures after re-test are less spread 

out, which is expected as they repeat the experiments. 

 

Effects of garments 
 

In the previous sections, TEMtruth gives some global value with no distinction 

about the garment type. Using the statures obtained from the re-test experiments, we 

follow the same analytical process as in Section 3.2.5. The distribution of TEMtruth per 

garment style and posture is summarised in Table 16. “Truth” is again taken as the 

predicted statures in (Scoleri and Henneberg 2012). The results for assessor 1 show that 

the error values are generally increasing with the complexity in garment style and 

subject posture. An inconsistency exists in row (d) where the error is abnormally  large. 

This is rationalised by the fact that two of the three subjects in this category are pushing 

a trolley which creates an ambiguous situation, see Figure 6(a). The dactylion can be 

marked near the hand on the trolley or approximately half way down the thigh 

(according to the upper limb model of Figure 1). Assessor 1 decided on the former 

approach. The resulting upper limb lengths turn out much shorter than their actual 

lengths due to the bent elbow, hence the large TEM value. Assessors 2 and 3 opted for 

the latter approach. They have obtained greater lengths and consequently lower errors 

for this category and in row (e). Our current model would benefit from a multiple-part 

regression for resolving the ambiguity.  Although this is not the intended focus of the 

present work, future extensions to accommodate the issue are possible and discussed in 

Section 4. 
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Table 16. TEMtruth (mm) per assessor based on the garment style and subject posture. 

Categories (a) to (f) are described in the start of section 3.4.  

 Assessor 1 Assessor 2 Assessor 3 
(a) 27.3 13.1 8.5 
(b) 37.0 39.5 43.5 
(c) 44.6 52.3 41.2 
(d) 74.3 23.4 16.5 
(e) 63.7 33.5 6.5 
(f) 58.8 62.5 63.2 

 
 

Aside from these results, we also observe increasing error values (or very similar 

values) in other categories of assessors 2 and 3. Drawing special attention to row (e) of 

assessor 3, the error turned out very small. Investigation revealed that some of the 

images here are those that were used for developing the model. So, assessor 3 

subconsciously gained familiarity with the subjects. Some level of progress is also 

expected from the first round of marking. This result is very powerful in that it indicates 

the extent to which the error may be decreased. 

Table 17 presents the inter-TEMs for measurements which relate to specific 

garment types and subject postures. Most variations (largest errors) occur in the three 

hard-cases categories (rows d,e,f), especially in row (d) for the pairs 1-2 and 1-3. This is 

expected since assessor 1 has placed the landmarks most differently from the other two 

assessors for subjects in these classes. The inter-TEM for the pair 2-3 in row (d) is 

understandably smaller since these assessors have followed the same marking strategy. 

Performing Snedecor F-tests with N = 18 between rows (a)-(d), (a)-(e) and (a)-(f) of 

pairs 1-2 and 1-3 confirm that there are statistically significant differences at the 0.05 

significance level. 
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Table 17. Inter-TEM (mm) for groups of assessors based on the garment style and 

subject posture.  

                Assessors  
 1 – 2  1 – 3  2 – 3  1 – 2 – 3  
(a) 30.5 24.4 12.5 23.7 
(b) 24.9 26.6 23.5 25.1 
(c) 31.9 29.5 12.7 26.1 
(d) 68.9 80.7 19.8 62.3 
(e) 58.4 66.7 33.3 54.7 
(f) 47.2 12.2 48.7 39.8 

 
 

Overall, although results have improved from the first experiments, substantial 

differences are present. Indeed, even when considering the best results (for assessors 2-

3), squared inter-TEM ratios exceed cut-off F-test values. This proves that there still 

exists significant variations in the measurements and therefore all errors should be 

reducible further. This analysis agrees with the conclusion from examining the intra-

TEMs (Table 14). 

The bias between garments (which includes subject posture) is calculated by 

selecting statures from the first category (easy-shirt) and comparing to other categories 

for all assessors, see Table 18. Clearly, the effects on stature estimation become 

increasingly important as the garment style gets thicker and the subject posture is more 

complicated. The inconsistency for the pair (a)-(d) simply reflects the incorrect 

measurements of assessor 1 as seen in row (d), column 1 of Table 16. 

 
Table 18. Bias (mm) between different garment style and subject posture.  
 (a)-(b) (a)-(c) (a)-(d) (a)-(e) (a)-(f) 
Bias +13.2 +32.1 +70.3 +45.2 -40.7 
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Discussion 
 
 

The experiments have shown that, despite landmark positioning errors, the 

accuracy of height estimates from real-life CCTV images can be commensurate with, if 

not surpass, the expected 95% accuracy of height reconstruction from direct 

measurement of skeletal remains. This has been a long challenge. The use of the upper 

limb length compared to the head height (Scoleri and Henneberg 2012) has decreased 

user interaction to a single action or two instead of extensive repeats to guarantee 

equivalent accuracy. This claim is supported by the results of assessors coming from a 

range of backgrounds in anatomy and computer vision. Variations between assessors 

suggest that some training in photoanthropometry is beneficial to reduce marking 

errors—Practice makes perfect. 

We infer from the results that at present the weakest component in our procedure 

lies in the regression model, not the human factor. Large international databases of body 

measurements exist through the Civilian American and European Surface 

Anthropometry Resource (CAESAR) project (2002). We intend to use these 

anthropomeasures to construct improved regression equations. This would include 

multiple regressions from various body dimensions to refine our current upper limb 

model and combine it with other ones such as (Scoleri and Henneberg 2012) to allow 

for a more complete characterisation of human beings.  

This research has permitted us to learn about the extent of errors involved in 

precise body part measurement from real-life surveillance imagery. The lessons may 

now be applied to enhance body-part acquisition from an automated detector or tracker. 

In addition, this knowledge could help in improving the recognition rate when matching 

subjects in uncontrolled scenes to ideal CAESAR data (2002). 
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Conclusion  
 

This paper has examined the effects of various types of garments on human 

stature estimation from images. To this end, we have developed a procedure whereby 

the upper limb length is first measured from the image and then stature is inferred by 

linear regression from it. Three assessors have experimentally marked upper limb points 

of subjects in both laboratory and real-life surveillance videos. In both scenarios, thicker 

garments and those with stripes produce higher inaccuracies in stature prediction, which 

is to be expected. Seven error measures are used to study the variations between 

obtained statures. The most valuable outcome is that errors are within the expected 

variance of the stature regressor. Thus, body heights from imaged upper limbs can be 

inferred with confidence that is no worse than the accuracy of reconstructed body parts 

in routine skeletal forensic work. 
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Context 
 

Personal identification in the forensic sciences rely on the notion that each 

individual is ‘unique’. Without individuality, prosecutions of guilty people based on 

biological evidence would cease to exist. Many studies have shown that different 

biological characters have a low probability of being repeated in the human population, 

these include: DNA (Jeffreys et al. 1985), fingerprints (Jain et al. 1997; Jain, Prabhakar 

and Pankanti 2002), bite marks (Mahaja et al. 2012) elbow prints (Oatess 2000) and ear 

prints (Meijerman et al. 2004). The increased use of closed circuit television video 

(CCTV) systems is reintroducing anthropometric measurements as a forensic biological 

marker (source), although their usefulness is often debated. In order to prosecute a 

person based on biological evidence, it must be shown beyond reasonable doubt that a 

biological characteristic (trace) left at the crime scene is a ‘match’ with the suspect 

(source). Although the methodology supporting these studies is sound, many 

researchers debate the term ‘unique’, claiming that it cannot be proven (Cole, 2009).  

The aims of this study were to introduce the term ‘singularity’ which is defined 

as ‘a situation when only one individual in a specific population has a particular set of 

characteristics’. To achieve this aim, a large anthropometric survey of facial 

measurements was used to search for the presence of duplicates (two or more 

individuals who match on a specified set of characteristics). A secondary aim was to 

calculate probabilities of finding two or more duplicate individuals in the world.  

Studies that use the human face for identification are doing so assuming that no 

two individuals have the same set of characteristics. After an extensive literature search 

and analyses, it was found that no references were provided for studies that claim the 

face is ‘unique’ or sufficient to use to isolate an individual from a large sample. Thus, 

this research aimed to provide such a reference while introducing the term ‘singularity’, 
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which would avoid any ambiguity associated with the word ‘unique’. This research 

showed that singularity can be achieved in a large population of anthropometric 

measurements. It also showed that probabilities of finding a duplicate individual are so 

low that no two human beings in the world have the same face/head measurements.  

Singularity is a new concept and there was some difficulty in illustrating its 

meaning to reviewers of the paper. However, this was overcome by improving the 

definitions.  

The previous manuscript ‘Effects of garments on photoanthropometry of body 

parts: Application to stature estimation’, demonstrated that measurements can reliably 

be taken from images.  This manuscript aims to provide theoretical information about 

the human face (which may be measured from images by other studies) and its 

usefulness in isolating an individual in a population.  
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Abstract 
 

In the forensic sciences it is inferred that human individuals are unique and thus 

can be reliably identified. The concept of individual uniqueness is claimed to be 

unprovable because another individual of same characteristics may exist if population 

size were infinite. It is proposed to replace “unique” with “singular” defined as a 

situation when only one individual in a specific population has a particular set of 

characteristics. The likelihood that in a population there will be no duplicate individual 

with exactly the same set of characteristics can be calculated from datasets of relevant 

characteristics. To explore singularity, the ANSUR database which contains 

anthropometric measurements of 3982 individuals was used. Eight facial metric traits 

were used to search for duplicates. With the addition of each trait, the chances of 

finding a duplicate were reduced until singularity was achieved. Singularity was 

consistently achieved at a combination of the maximum of seven traits. The larger the 

traits in dimension, the faster singularity was achieved.  By exploring how singularity is 

achieved in subsamples of 200, 500 etc. it has been determined that about one trait 

needs to be added when the size of the target population increases by 1000 individuals.  

With the combination of four facial dimensions, it is possible to achieve a probability of 

finding a duplicate of the order of 10-7,while, the combination of 8 traits reduces 

probability to the order of 10-14, that is less than one in a trillion. 

 

Keywords: Forensics; Human variation; Identification; Singularity  
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Introduction 
 

In the forensic sciences the process of identification relies upon a finding that a 

trace left at the crime scene (or other location relevant to the investigation) and the 

suspected source, often an object or a person, correspond to each other in essential 

characteristics. In brief, they match. In order to make a match between a trace and a 

source that allows conclusion of identification, the probability of finding a duplicate 

trace or a duplicate source must be negligible. If this probability equals zero the match 

is unique (Page, Taylor and Blenkin 2011). However, it can be argued that unless the 

whole world is included in searches for duplicates, the probability cannot be firmly 

established as zero (Cole, 2009).  This makes the term “unique” debatable. In real 

situations populations of traces and of sources are not infinite, thus probabilities of 

finding a duplicate can only approach zero. In those cases, when the probability of 

finding a duplicate is less than what the population size predicts, the actual match 

between the trace and the source is a single occurrence (Page, Taylor and Blenkin 

2011). We propose to call this match a “singularity”. In everyday terms it could be 

called a “unique correspondence of trace and source essential characteristics”, but the 

ambiguity of the term “uniqueness” remains a problem.  We define singularity as the 

correspondence between essential characteristics of the trace and the source that in a 

given population has a probability of occurrence less than that predicted from random 

combination of characteristics of the trace and the source. This probability predicts that 

no duplicate of the trace or of the source can be found in the given population. 

The term “singular” as defined here is free from the ambiguity of the word 

“unique” and thus may be more appropriate to use in forensic statements and court 

proceedings. Unlike statements saying that a particular individual is unique, the 
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statement that the individual is singular in a defined population is easily testable both 

empirically and in court proceedings. 

The lower the probability of finding a duplicate trace the more reliable the 

evidence is considered. Some widely recognised claims of unique traces left by humans 

are: DNA (Jeffreys et al. 1985) fingerprints (Jain et al. 1997; Jain, Prabhakar and 

Pankanti 2002) bite marks (Mahaja et al. 2012). The lesser known traces of this kind 

include: elbow prints (Oatess 2000) ear prints (Meijerman et al. 2004) lip prints 

(Mishra, Ranganathan and Saraswathi 2009) and behavioural characteristics such as gait 

(Bouchrika et al. 2011) and handwriting (Crane 1999).  Uniqueness of these traces is 

claimed on the principle that only one individual would be a source of such trace. This 

is to be criticised because, theoretically, another individual could be born with the same 

essential characteristics if we wait long enough. In practice, what is considered 

uniqueness of such traces is actually a singularity since populations from which those 

traces emanate are limited by time and space and thus are of a finite size.  

The word ‘traces’ can refer to light rays producing changes on photographic film 

or on light sensitive digital photograph chips, that is to images. In recent years 

photographic traces have become increasingly popular as forensic evidence. In cases of 

morphological analyses, an expert witness specialising in the field of biological 

anthropology is often called upon to provide evidence of a match or mismatch between 

an image of an individual  (a trace) and a suspect (a source) based on anatomical 

similarities of morphological traits. The current method for analysing image based 

traces is to use categorical scales of morphological traits (Henneberg 2007: 2008, 

Rosing 2006). For example, body height may be described as short, medium or tall.  

This method has been highly criticised on the grounds that it is not accurate and reliable 

(Edmond 2008, Edmond et al. 2009, Edmond 2010). Attempts have been made to 
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address criticisms by attempting to take measurements from images, however, this 

research is still in progress (Scoleri and Henneberg 2012, Scoleri, Lucas and Henneberg 

2014).  

Over the last few decades, facial recognition systems have been increasingly 

researched due to the proliferating use of images for identification. Some studies 

explain that the face is used as humans are good at recognising facial features (Shi, 

Samal and Marx 2006, Burton et al. 1999), others say that obtaining images of the face 

is cheap and non-invasive (Jafri and Arabnia, 2009).  According to Jafri and Arabnia 

(2009) facial recognition is used for two primary tasks, verification (one to one 

matching) and identification (one to many matching). 

There are a number of different scenarios where face recognition can be used 

including: passports, drivers licences, security, surveillance etc.  Some factors that make 

identification from images difficult include: illumination, facial expression, pose, 

distortions and pixelation (Chen et al. 2010). Therefore research has concentrated on 

eliminating the confounding effects from images when making an identification.  

There are two ways to analyse facial traits, descriptives and metrics. The use of 

descriptive traits involves adjectives such as ‘wide’ and ‘curved’ to categorise facial 

features such as the nose. Metric traits most commonly involve measuring the distances 

between specific points on the face. Theoretically, any descriptive trait, such as, for 

instance, face shape, can be converted to a metric one by taking measurements of its 

constituent properties such like the width, the height, the curvature, angles between its 

parts etc. As mentioned earlier, descriptives are not considered as a reliable method of 

evaluation, especially in court proceedings (Edmond 2008, Edmond et al. 2009, 

Edmond 2010). Therefore, many facial recognition systems and methods have 

concentrated on moving towards metrics (Cattaneo et al. 2012) or a combination of 
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metrics and descriptives (Klare and Jain 2010; Ritz-Timme et al. 2011). Facial 

recognition methods which use metrics alone or metrics and descriptives report high 

accuracy rates (>95%) (Turk and Pentland 1991; Belhumeur, Hespanha and Kriegman 

1997). However, each method of finding a match between a photograph and a person is 

tested on a small sample of subjects ie. less than one hundred. Many photographs are 

used and a large number of measurements taken, but the number of people appearing on 

these photographs is limited. Small sample size automatically assures that no duplicate 

matches are found within the sample. These studies are based on the assumption that a 

face is unique, but very few justify this assumption quantitatively. In those studies that 

mention ‘uniqueness’ of the face, the term is not referenced nor defined. Therefore it 

seems that many people believe that the face is adequate to be used as a biometric tool, 

without it being sufficiently studied, especially when using metrics. A number of papers 

have identified the lack of knowledge in this area (Spaun 2007: 2009, Klare and Jain 

2010).  

The aim of this study is to investigate whether or not two or more faces within a 

specified population have the same combination of several measurements. A secondary 

aim is to calculate the probability of not finding more than one face with same 

measurements (a duplicate) using a defined number of measurements in order to find 

the minimum number of facial dimensions needed to achieve singularity. We are not 

aiming here to investigate the accuracy with which measurements can be taken of 

various images and how such accuracy may influence findings of singularity. We only 

aim to introduce the principle of finding singularity that can be applied to any traces or 

sources, while the precision of its application requires a separate discussion of 

measuring techniques that may differ from case to case. 
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Materials and Methods 
 

 The U.S Army Anthropometric Survey (ANSUR) database is a result of an 

anthropometric survey conducted in 1988 of U.S military personnel. The dataset 

contains 132  manually measured dimensions of the human body and head. The sample 

consisted of 1774 men and 2208 women aged 17 – 51 years. This dataset was chosen as 

it is a sample of anthropometric measurements covering a range of variation of facial 

features. Even though the survey was conducted in 1988, it is still valid for the purposes 

of this study because the human face has not varied statistically within that time. Details 

of this study are described in ANSUR (1998). Initially males and females were analysed 

separately to see if sex influenced the numbers of metric traits needed to have no 

duplicates. Males and females were then combined to increase sample size and because 

sexual dimorphism accounts for only 25% variation in major measurable characters 

(Henneberg 2010). No further separation of the dataset (i.e. population of origin) was 

included as upwards of 95% of variation occurs between two randomly selected 

individuals rather than between individuals of different populations (Cavalli-Sforza and 

Bodmer 1971) 

A team of 22 individuals conducted all measurements on the sample. The team 

was trained in anthropometry over a four week period. During this time, each member 

of the team was allocated specific measurements to learn and repeat continuously. 

These dimensions were then measured on the 3982 participants during data collection. 

By allocating specific measurements to each measurer, the measuring team aimed to 

reduce measurement errors. Measurement errors were calculated and reported alongside 

the database. Measurement errors ranged between 2.2% and 2.4% which is very small. 

For the purposes of this paper, measurement errors will not affect the results. 
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The following face/head measurements were used (Figure 1): Bitragion 

submandibular arc – The surface distance between the right and left tragion across the 

submandibular landmark at the juncture of the jaw and the neck was measured with a 

measuring tape . Bizygomatic breadth – The maximum horizontal breadth of the face 

between the zygomatic arches was measured with a spreading caliper. Ear length – The 

length of the right ear is measured with a sliding caliper from its highest to lowest 

points on a line parallel to the long axis of the ear. Ear protrusion – The horizontal 

distance between the mastoid process and the outside edge of the right ear at its most 

lateral point (ear point) is measured with a sliding caliper. Head breadth – The 

maximum horizontal breadth of the head above the ears is measured with a spreading 

caliper. Head circumference – a measuring tape is used to measure the maximum 

circumference of the head above the supraorbital ridges and ears. Head Length – the 

distance from the glabella landmark between the brow ridges to opisthocranion is 

measured with a spreading caliper. Interpupillary distance – a pupillometer is used to 

measure the distance between the centres of the right and left pupils. The dimensions 

are illustrated in Figure 1. The dimensions that are not influenced by facial expression 

were chosen.  
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Figure 1: Anterior view of the head/face showing: (a) bitragion submandibular arc (b) 

bizygomatic breadth (c) Ear length (d) Ear protrusion (e) Head breadth (f) head 

circumference (g) head length (h) Interpupillary distance. 

 

Duplication is defined here as ‘a situation where another trace is found 

matching a given trace’ since we have at our disposal only measurements (traces) of 

participants in the survey. In real forensic situations dimensions of a trace can be 

compared with dimensions of the actual person – the source.  Depending on the number 

of traits measured on a trace and the accuracy with which they are measured, the ease of 

finding a duplicate will vary. If only a combination of two metric traits is used, it will be 

easier to find duplicates than when more dimensions will be used to characterise traces. 

As long as dimensions are not perfectly correlated with others (r<1.00), adding a 

dimension should reduce the number of possible duplicates. In a defined sample, when a 

larger number of combinations of metric traits (traces) is used, a situation can be 

reached where no duplicates will be found. In the case of identification, a trace left 

behind by a particular individual can be analysed and described by a number of metric 

traits. This trace can be compared to the traces produced by the same measuring 
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methods of any number of possible suspects from a defined population. . If only one 

duplicate of the source is found in this sample, an ‘identification’ can be made.  

All anthropometric measurements in the ANSUR database are reported to the 

nearest millimetre.  IBM SPSS statistics 20 was used to search for duplicate cases 

within the sample. To put it simply, duplicates occur when exact values of all metric 

traits (traces) selected for analysis are found in more than one person. Sorting of cases 

was done stepwise, adding one dimension at a time to the previous dimension(s) and 

noting how many duplicates are found with the combination of that number of traits. 

This procedure was continued, increasing the number of traits until no duplicate cases 

were identified within the sample. For example, the first measurement analysed was 

bitragion submandibular arc, the number of duplicate cases identified in a sample of 

males was 1686. Then bizygomatic breadth was added as a second trait reducing the 

number of duplicate cases to 908. The third trait added was ear length, and then the 

number of duplicates fell down to 122. This was continued by adding ear protrusion, 

and then head breadth at which point no duplicates were found. 

Polynomial regressions were used to study the shape of relationships between 

numbers of traits considered and numbers of duplicates. Those regressions allowed us to 

extrapolate results beyond sample sizes available. 

 

Results 
 

Table 1 shows the metric traits used with their means for males and females 

combined, the order of the  list changes throughout analysis (as discussed) to establish 

any effect the order of traits may have on the outcome. 
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Table 1: List of metric traits and their means (mm) for the entire sample of 3982 

females and males. 

 

 

 

 

 

 

 

 

Note: this list is in alphabetical order as presented in the ANSUR database. The order of 

metric traits has been changed throughout the analyses as indicated. 

 

The sample was divided by sex to determine how many traits are needed to have 

no duplicate cases in each sex. The order of traits chosen was alphabetical as found in 

the original ANSUR files. Figure 2 shows the percentage and number of duplicate cases 

for males (N=1774) and females (N= 2208). There is a rapid decline in the number (and 

thus percentage) of duplicate cases with the addition of each trait to the previous trait(s). 

In order to have no duplicate cases in males only 5 traits are needed, whereas in 

females, 6 traits are needed. Thus there is little difference between the sexes in the 

number of traits required to reduce number of duplicate cases to zero.  

 

 

Metric traits Mean 

Bitragion submandibular arc 288.6 

Bizygomatic breadth 135.4 

Ear length 62.0 

Ear protrusion 22.9 

Head Breadth 147.7 

Head circumference 555.8 

Head length  191.6 

Interpupillary distance 63.4 
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Figure 2: The percentage and number of duplicate cases for males and females. The 

order of metric traits chosen is alphabetical.  

 

Due to there being little difference in the number of traits needed to find no 

duplicates and thus achieve a singularity in males and females separately, the sexes 

were combined for all further analyses and the order of individuals was randomised. 

73 
 



 

The order of metric traits has been changed from alphabetical to largest - 

smallest based on the mean of each trait measured (Table 1). The order was changed to 

establish any differences in the number of traits needed to achieve singularity when 

larger metric traits were chosen first. There is a large decrease in percentage of 

duplicate cases (59.4%) when the second trait (bitragion submandibular arc) is added to 

the first trait (head circumference). In contrast, when using alphabetical order, the 

largest decrease between the first (Bitragion submandibular arc) and second 

(bizygomatic breadth) traits was found in males at only 43.8% (Figure 2). It is important 

to note that the overall outcome of needing 5-6 traits to achieve singularity remains the 

same when the order of metric traits is changed. However, the rate of decrease in 

duplicate cases when using metric traits in largest-to-smallest order is faster, especially 

with the combination of two traits.  
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Figure 3. The percentage and number of duplicate cases for males and females. The 

order of metric traits chosen from largest to smallest.  

 

The numbers of traits needed to achieve singularity was determined for sample 

sizes beginning at 200 subjects then adding 300, followed by adding 500 repeatedly at 

1000, 1500 etc. until all subjects were included. This was conducted on the list of traits 

ranging from largest to smallest and then from smallest to largest as shown in Figure 4. 

The average and maximum number of traits needed to achieve singularity when the list 

is ordered largest to smallest is 5. The average number of traits needed to achieve 

singularity when the list is ordered smallest to largest is 6 with a maximum of 7. A 

smaller number of traits is needed to achieve singularity when the traits are larger in 

dimension since they have a greater range of numerical values. However, the average 

number of traits (5-6) needed to achieve singularity still remains consistent, no matter in 

what order the traits are included into calculation.  The polynomial regression equation 

(Fig.4) indicates that approximately one more trait is needed for every 1000 people 
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added to the sample in order to reduce the number of duplicate cases to zero. 

Polynomial regression was used to predict the number of traits needed in a sample of 

specific size exceeding that of the ANSUR database (Table 2). The number of possible 

combinations for each set of metric traits was calculated using a stepwise approach. The 

traits labeled 1-8 are seen here combined into sets in the order largest to smallest based 

on their means (Table 1). The number of units (range) is the number of possible metric 

values (mm) for a given metric trait, i.e. the difference between the minimum and the 

maximum size of the trait in full millimeters.  

Figure 4: The number of traits needed to have no duplicates, the list of traits is ordered 

largest to smallest and smallest to largest.  

Probabilities of sets of traits to occur together are difficult to calculate because 

of the intercorrelation between them. If there is a correlation between two traits then 

they cannot be viewed independently of one another and their joint probability of 

occurrence cannot be calculated by simple multiplication of individual probabilities. 
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This is the case with dimensions of the human face. Adjusted R squared values (or 

correlation coefficients) were calculated for each set in a stepwise approach by SPSS 

version 20. The R squared value was subtracted from one (1-R²) to determine parts of 

traits that are not correlated and thus can be combined randomly. The total number of 

units possible in each set is a product of numbers of units in traits of the set reduced by 

their intercorrelation. The number of combinations is calculated by multiplying the 1-R² 

value by the number of units in the first trait, then number of units in the second trait 

etc. The addition of each new trait to a set increases the number of combinations as long 

as the trait is not completely correlated with others, and thus decreases the possibility of 

finding another individual with the same set of traits.  
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Table 2: The calculation of probability of finding another duplicate within the sample, using eight metric traits, their respective ranges and 𝑅𝑅2 values. 

 

  

Traits Number of units 
(range) in mm 

R2 correlation 
with preceding 
units 

1-R2 Multiplication of 
units 

Number of 
combinations (1/p) 

p 

1 127   127 127 0.01 
1,2 138 0.415 0.585 17526 10253 0.0001 

1,2,3 62 0.780 0.220 1086612 239055 0.000004 
1,2,3,4 47 0.638 0.362 51070764 18487617 0.00000005 

1,2,3,4,5 44 0.736 0.264 2247113616 593237995 0.000000002 
1,2,3,4,5,6 26 0.380 0.620 58424954016 36223471490 0.00000000003 

1,2,3,4,5,6,7 35 0.336 0.664 2044873390560 1357795931332 0.0000000000007 
1,2,3,4,5,6,7,8 27 0.229 0.771 55211581545120 42568129371288 0.00000000000002 
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Discussion 
 

With the increased use of video surveillance systems for identification, using the 

face as an example to illustrate the method proposed in this paper seemed only fitting. 

Many people identify individuals by the face as it is believed to be the most variable 

part of the human body. The findings presented in this paper have a direct application to 

facial analysis by providing the probabilities of finding two individuals with the exact 

same facial metric characteristics. As a general rule the combination of traits is the key 

to reducing the number of duplicates within a specified population. Depending on the 

exact variation of each trait, and its intercorrelation with other traits, the number of traits 

needed to find no duplicates and thus achieve singularity varies. This number also 

increases with the target population size. The larger the range of each trait, the more 

possible combinations per set of traits and thus the faster a result of singularity is 

achieved. More variable, i.e. larger traits should always be chosen first, especially in 

sample sizes lower than 500 individuals. In cases of applying this theory to 

identification from images, the traits chosen depend on the quality of the images, the 

angle of the cameras, whether or not the person is covering their face and many more 

factors. Each case is different and must be treated accordingly. However, the general 

guidelines still apply and the theory remains the same. If , for whatever reasons, 

singularity is not achieved with 8 traits, simply adding more traits will increase the 

probability of achieving singularity by decreasing the probabilities of finding duplicates. 

When comparing metric traits with traditional descriptive traits (which use 

categorical scales) metric traits have a significantly larger range of values since they 

include more intervals (eg. millimeters) than categorical scales. This fine gradation 

decreases the chances of finding a duplicate. Goldstein, Harmon and Lesk (1970) used 

descriptive traits with a maximum range of 5 categories per trait. Goldstein et al.’s study 
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was able to isolate an individual from a set of 256 photographs. Not to complicate their 

analysis too much the authors assumed no correlation between traits, however they 

realised that at least some of them are correlated. Despite the simplicity of their method, 

Goldstein, Harmon and Lesk (1970) showed that in order to isolate an individual from a 

predicted population size of 107 it is sufficient to use 16 traits each with 5 categories. 

Although forensic sciences shift towards the use of traditional metric analysis for 

comparisons of images, the use of descriptives, however debated,  is not without merit. 

Descriptive traits can be quantified to increase reliability. In Goldstein et al.’s case, only 

a limited number of categories per descriptive trait was used, thus the limited range 

produced inferior results. However, descriptive traits can have a significantly large 

range. For example, a mole above an individual’s lip can be measured. Its height, width, 

diameter and location compared to anatomical landmarks can be calculated. Its colour 

can be measured metrically as a wavelength of light reflected from its surface. It may 

have an uneven shape that yields it to be measured in parts. Each case is different and 

each descriptive trait can be measured in endless ways that apply to a specific case. The 

same rules that apply to traditional metrics apply to descriptives, the larger the range the 

less chance of finding two individuals who match. However, in the case of descriptive 

traits, knowing the population frequencies of the occurrence of the traits would be 

useful in calculating probabilities.  

In a study conducted by Kleinberg and colleagues (2007), it was found that 

proportions of 4 anthropometric measurements taken from photographs were not 

sufficient to make significant positive identification of 80 individuals. From this study it 

was deemed that ‘anthropometry failed as an identification technique’. It should be 

discussed that in this study there were a limited number of measurements being taken 

and each of these measurements was on a very small area of the face. Two of the 

measurements included in the four were essentially the same measurement, the distance 
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between the ectocanthions and the stomion on both the right and left side of the face. 

The variability of the measurements is very limited; therefore the ability to match an 

individual would have been limited. This study is discussed to reinforce the importance 

of variability and size of the traits chosen, the larger the size and variability the higher 

the probability of achieving singularity.  

Here we have considered correlation of traits and used only the part of each 

trait which varies independently from other traits. By using traits measured in interval 

scales and considering intercorrelations among traits we are ensuring that the method is 

presenting the biological variation between individuals as accurately as possible. The 

accuracy with which traits are measured will also affect the results. When measurement 

errors are known, ranges of variation should be adjusted to take errors into account. For 

example, if the measurement error is 3 mm, then the distance of 33 mm will legitimately 

be a duplicate of any distance between 30 mm and 36 mm. Size of errors depends on the 

quality of images measured, ability to locate points between which measurements are 

taken and the accuracy of measuring instruments.  These factors may differ from case to 

case and need to be discussed when presenting results of a particular case. A study 

conducted by Cummaudo and colleagues (2013) it was found that anthropometric 

landmarks and thus the distances between them are less reliable when taken from 2D 

photographs. This was also the case in a study conducted by Farkas (1994). 

Interobserver errors of measurements taken directly on the participants by well-trained 

measurers that we used in this paper were small and can be ignored for purposes of 

demonstration of the general principle of the proposed method.  Were the method used 

in a particular case, errors of point location and measurements would have to be assed 

and taken into account when searching for possible duplicates.  
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 In a court of law, the main question to be answered is, ‘what are the 

chances that two sources share the same trace’. In DNA analysis, the evidential weight 

of a match between crime stain profile (trace) and a suspect (source) is quantified by the 

‘match probability’ (Jobling and Gill, 2004). In many cases the match probability is 

much smaller than the probability of presence of one individual in a population which 

the trace originated from, with the match probability going into the inverse of millions. 

Table 2 shows the metric trait version of a match probability represented by ‘p’, the 

probability of finding a match of the trace to more than one individual (source). In our 

sample, a combination of four metric traits already gives a probability lower than that 

found by Goldstein, Harmon and Lesk (1970), 10-8, while a combination of eight traits 

lowers the probability to 10-14, this is comparable with DNA (Jobling and Gill 2004). A 

fragment of the DNA molecule contains four different nucleotides that can occur in 

different combinations. The longer the fragment, the lower the probability that another 

fragment with the same pattern of nucleotides can be found. Like DNA the more 

information extracted from the trace, the lower the probability of finding a duplicate.  

The current paper uses facial analysis as an example to support the theory 

of singularity, however, this theory in no way is limited to facial analysis. The concept 

of singularity and the method presented can be applied to all fields of forensic sciences 

which aim to match a trace to a source. Many biological examples have been presented 

in this paper, however. the concept can also be applied to matching a trace with a source 

left by an object, for example, the study of ballistics (Springer 1995), gunshot residues 

(Gibelli et al., 2010) tool marks (Cassidy 1980) tire prints (McDonald 1993) cut marks 

and tool marks (Reichs 1998) glass fragments (Rodriguez et al. 2008) and any other 

pattern matching of everyday objects (Jayaprakash 2013). 
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Conclusion 
 

This paper introduces the concept of singularity to forensic identification. 

Within the specified population of the ANSUR database, no two individual faces 

matched one another on combinations of 5-8 metric traits. Probabilities of finding a 

duplicate of a face characterised by 8 traits exceeded inverse of the total population of 

the Earth making metric identification of faces as reliable as that of DNA. The same 

concept can be applied to identification based on measurements of human bodies or any 

traces of any objects. 

 

References 
 

Belhumeur, PN, Hespanha, JP, Kriegman, DJ 1997, ‘Eigenfaces vs. Fisherfaces: 

Recognition using class specific linear projection’, Pattern Analysis and 

Machine Intelligence, vol.19, no.7, pp. 711-720. 

Bouchrika, I, Goffredo, M, Carter, J, Nixon, M 2011, ‘On using gait in forensic 

biometrics’, Journal of Forensic Sciences, vol. 56, no.4, pp.882-889. 

Burton, A, Wilson, S, Cowan, M, Bruce, V 1999, ‘Face Recognition in Poor-Quality 

Video: Evidence from Security Surveillance’, Psychological Science, 

vol.10, pp. 243-248. 

Cassidy, FH 1980, ‘Examination of tool marks from sequentially manufactured tongue-

and-groove pliers’, Journal of Forensic Sciences, vol. 25, no.4, pp. 796-

809.  

Cattaneo, C, Obertová, Z, Ratnayake, M, Marasciuolo, L, Tutkuviene, J, Poppa, P, 

Gibelli, D, Gabriel, P, Ritz-Timme, S 2012, ‘Can facial proportions taken from 

83 
 



 

images be of use for ageing in case of suspected child pornography? A pilot 

study’, International Journal of Legal Medicine, vol. 126, pp 139-144.  

Cavalli-Sforza, LL, Bodmer, WF 1971, The genetics of human population. W.H. 

Freeman and Company, San Francisco.  

Chen, S, Mau, S, Harandi, M, Sanderson, C, Bigdeli, A, Lovell, B 2010, ‘Face 

recognition from still images to video sequences; A local-feature-based 

framework’, Journal on Image and Video Processing, vol. 2011, pp. 1-14. 

Cole, S 2009, ‘Forensics without uniqueness, conclusions without individualization: the 

new epistemology of forensic identification’, Law, Probability and Risk, 

vol. 8, pp. 233-255. 

Crane, A 1999, ‘Does the amount of handwriting on a cheque constitute a ‘reasonable 

amount of sample’?, Canadian Society Forensic Science Journal, vol.32, 

no. 1, pp. 39-45.  

Cummaudo, M, Guerzoni, M, Marasciuolo, L, Gibelli, D, Cigada, A, Obertová, Z, 

Ratnayake, M, Poppa, P, Gabriel, P, Ritz-Timme, S, Cattaneo, C 2013, 

‘Pitfalls at the root of facial assessment on photographs: a quantitative 

study of accuracy in positioning of facial landmarks’, International Journal 

of legal Medicine, vol. 127, pp.699-706.  

Edmond, G 2008, ‘Specialised knowledge, the exclusionary discretions and reliability: 

Reassessing incriminating expert opinion evidence’, University of New South 

Wales Law Journal, vol.31, no. 1, pp. 1-55. 

Edmond, G, Biber, K, Kemp, R, Porter, G 2009, ‘Law's looking glass: expert 

identification evidence derived from photographic and video images’, Current 

Issues in Criminal Justice, vol. 20, no. 3,  pp. 337-376.  
84 

 



 

Edmond, G 2010, ‘Impartiality, efficiency or reliability? A critical response to expert 

evidence law and procedure in Australia’, Australian Journal of Forensic 

Science, vol. 42, no. 2, pp. 83-99. 

Farkas, LG 1994, Anthropometry of the Head and Face. Raven Press, New York.  

Gibelli, D, Brandone, A, Andreola, S, Porta, D, Giudici, E, Grande M, Cattaneo, C 

2010, ‘Macroscopic, microscopic and chemical assessment of gunshot 

lesions on decomposed pig skin’, Journal of Forensic Science, vol. 55, 

no.4, pp.1092-1097. 

Gordon, CC, Bradtmiller, B, Churchill, T, Clauser, CE, McConville, JT, Tebbetts, IO,  

Walker, RA 1988, ‘Anthropometric Survey of US Army Personnel: Methods 

and Summary Statistics’, Technical Report NATICK/TR-89/044, United States 

Army Natick Research, Development and Engineering Center, Natick, 

Massachusetts. 

Goldstein, AJ, Harmon, LD, Lesk, AB 1971, ‘Identification of human faces’, 

Proceedings of the IEEE, vol.59, no. 5, pp.748-760. 

Henneberg, M 2007, ‘Facial mapping, body mapping and the duties of an expert 

witness’, 

http://www.lawlink.nsw.gov.au/lawlink/pdo/ll_pdo.nsf/pages/PDO_facialm

apping. 

Henneberg, M 2008, ‘Expert witness in a courtroom: The Australian experience’ In: 

Oxenham, M (eds): Forensic approaches to death disaster and abuse. 

Australian Academic Press, Queensland. pp. 307-319. 

85 
 

http://www.lawlink.nsw.gov.au/lawlink/pdo/ll_pdo.nsf/pages/PDO_facialmapping
http://www.lawlink.nsw.gov.au/lawlink/pdo/ll_pdo.nsf/pages/PDO_facialmapping


 

Henneberg, M 2010, ‘The Illusive concept of human variation: Thirty years of teaching 

biological anthropology on four continents’ In Štrkalj G (ed.) Teaching human 

variation. Nova Science, New York, pp. 33-43. 

Jafri, R, Arabnia, H 2009, ‘A survey of face recognition techniques’, Journal of 

Information Processing Systems. vol. 5, no. 2, pp.41-68.  

Jain, AK, Hong, L, Pankanti, S, Bolle, R 1997, ‘An identity authentication system using 

fingerprints’. Proceedings of the IEEE, vol. 85, pp.1365-1388. 

Jain, AK, Prabhakar, S, Pankanti, S 2002, ‘On the similarity of identical twin 

fingerprints’, Pattern recognition, vol. 35, 2653-2663. 

Jayaprakash, PT 2013, ‘Practical relevance of pattern uniqueness in forensic science’, 

Forensic Science International, vol.231. pp. 1-16.  

Jeffreys, AJ, Wilson, V, Thein, SL 1985, ‘Individual ‘specific’ fingerprints of humans 

DNA’,  Nature, vol. 316, pp. 76-79. 

Jobling, MA, Gill, P 2004, ‘Encoded evidence: DNA in forensic analysis’, Nature 

Reviews Genetics, vol.5, no.10, pp. 739-751.   

Klare, B, Jain, AK 2010, ‘On a taxonomy of facial features’ Biometrics: Theory 

Applications and Systems (BTAS), 2010 Fourth IEEE International Conference 

on (pp. 1-8). IEEE. 

Kleinberg, K, Vanezis, P, Burton, AM 2007, ‘Failure of anthropometry as a facial 

identification technique using high quality photographs’, Journal of Forensic 

Science. vol. 52, no. 4, pp. 779-783.  

86 
 



 

Mahaja, A, Bartra, A, Khurana, B, Kaur, J 2012, ‘Role of bitemark analysis in 

identification of a person’, Global Journal of Medicine and Public Health. 

vol. 1, no. 1, pp. 56-59.  

McDonald, P 1993,Tire imprinting evidence, CRC Press, Florida.  

Meijerman, L, Sholl, S, De Conti, F, Giacon, M, Van Der Lugt, C, Drusini, A, Vanezis, 

P, Maat, G 2004,‘Exploratory study on classification and individualisation 

of earprints’, Forensic Science International, vol. 140, no. 1, pp.91-99. 

Mishra, G, Ranganathan, K, Saraswathi, T 2009, ‘Study of lip prints’, Journal of 

Forensic Dental Sciences, vol. 1, pp.28.  

Oatess, RT 2000, ‘Elbow print identification’, Journal of Forensic Identification. 

vol.50, pp.132-137. 

Page, M, Taylor, J, Blenkin, M 2011, ‘Uniqueness in the forensic identification 

sciences-fact or fiction?’, Forensic Science International. vol.206, pp. 12-

18.  

Reichs, KJ 1998, ‘Postmortem dismemberment: recovery, analysis and 

interpretation’, Forensic Osteology: Advances in the identification of 

human remains, pp. 353-388. 

Ritz-Timme, S, Gabriel, P, Tutkuviene, J, Poppa, P, Obertová, Z, Gibelli, D, De 

Angelis, D, Ratnayake, M, Rizgeliene, R, Barkus, A, Cattaneo, C 2011, 

‘Metric and morphological assessment of facial features: A study of three 

European populations’, Forensic Science International, vol. 207, pp.239e1-

239e8.  

87 
 



 

Rodriguez-Celis, EM, Gornushkin, IB, Heitmann, UM, Almirall, JR, Smith, BW, 

Winefordner, JD, Omenetto, N 2008, ‘Laser induced breakdown 

spectroscopy as a tool for discrimination of glass for forensic application’, 

Analytical and Bioanalytical Chemistry, vol. 391, pp. 1961-1968.  

Rosing, F 2006, Identification von Personen auf Bildern. Verlag C.H Beck, München. 

Scoleri, T, Lucas, T, Henneberg, M 2014, ‘Effect of garments on photoanthropometry 

of body parts: Application of stature estimation’, Forensic Science 

International. vol. 237, pp. 1-12. 

Scoleri, T, Henneberg, M 2012, ‘View-independent prediction of body dimensions in 

crowded environments’, In International Conference on Digital Image 

Computing Techniques and Applications (2012: Fremantle) DICTA. 

Shi, K, Samal, A, Marx, D 2006, ‘How effective are landmarks and their geometry for 

face recognition?’, Computer Vision and Image Understand, vol. 102, pp.117-

133.  

Spaun, NA 2007, ‘Forensic biometrics from images and video at the Federal Bureau of 

investigation’, In Biometrics: Theory Applications and Systems (BTAS),pp. 1-3. 

Spaun, N 2009, ‘Facial comparisons by subject matter experts: Their role in biometrics 

and their training’, in International Conference on Advances in Biometrics, pp. 

161-168. 

Turk, M, Pentland, A 1991, ‘Eigenfaces for recognition’, Cognitive Neuroscience, 

vol.3, pp.72-86. 

Springer, E 1995, ‘Toolmark examinations – A review of its development in the 

literature’, Journal of Forensic Sciences, vol. 40, no. 6, pp. 964-968.  

88 
 



 

Statement of Authorship Manuscript 3: 

89 
 



 

90 
 



 

3. Comparing the face to the body, which is better for 
identification? 
 

Teghan Lucasa* and Maciej Henneberga 

 

 

a Biological and Comparative Anatomy Research Unit, Medical School, University of 
Adelaide, Adelaide 5005, Australia.  

 

 

 

Submitted to International Journal of Legal medicine on the 4th of October 2014, 
accepted on 28th January 2015. Published on 10th February 2015. 

 

 

 

 

 

 

 

 

 

*Corresponding author.  

Teghan Lucas  

Medical School North Building, Frome Road, The University of Adelaide, South 

Australia 5005, Phone: +61 8 8313 6324. Email address: teghan.lucas@adelaide.edu.au  

 

 
91 

 

mailto:teghan.lucas@adelaide.edu.au


 

Context 
 

When anthropometry was first introduced into forensic investigations, 

measurements of the head/face and body were used. However, over time, research has 

narrowed down to identify individuals only from facial measurements. Studies claim 

that the face is used as humans have evolved to identify others from the face (Barrett 

2008), It is not covered by clothing and is the most recognised part of an individual as 

we look at the face during communications (Henneberg 2007). Surveillance images are 

becoming a more popular means of identification; thus criminals are covering their 

faces to avoid identification. Much research has concentrated on taking measurements 

from the images, therefore the issues surrounding ‘recognition’ as opposed to 

‘identification’ are irrelevant. Therefore, the usefulness of body measurements for 

identification purposes needs further investigation.  

The aims of this study were to establish whether or not measurements of the 

body were just as, if not, more useful than the measurements of the face. The same 

method of ‘duplication’ that was presented in Manuscript 2 ‘Are human faces unique? 

A metric approach to finding single individuals without duplicates in large samples’ 

was used to investigate these aims.  

As mentioned previously, much research has been focused on identification 

from the face (Bachi et al. 2014; Best-Rowden et al. 2014; Mukane, Hundiwale and 

Dere 2014; Jain, Klare and park 2012; Chen et al. 2010) the literature is constantly 

expanding. The usefulness of images of the human body for identification has been 

much less explored. To our knowledge, no other study investigated the usefulness of 

body measurements alone in isolating an individual from a large population. 

Furthermore, no study has calculated the probabilities of finding two or more 
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individuals with the same set of body measurements, an issue which is extremely useful 

in court proceedings, similar to DNA (Jobling and Gill 2004) and fingerprint (Jain, 

Prabhakar and Pankanti 2002; Pankanti, Prabhaker and Jain 2002) studies. Current 

research showed that the body was better than the face for identification and was 

comparable with DNA and fingerprint studies.  

This manuscript builds on the theory of the previous manuscript ‘Are human 

faces unique? A metric approach to finding single individuals without duplicates in 

large samples’ by establishing which part of the human body proves more useful for 

identification from measurements.  

Some difficulties were involved with the presentation of findings. As manuscript 2 was 

being reviewed when this paper was being written, we could not use the term 

‘singularity’ as it had not yet been published and presenting the term would have been 

too many ideas for one paper. This was resolved by presenting the inverse of 

‘singularity’ which was individual cases, this avoided any reference to an unpublished 

paper and proved successful in portraying the results.  
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Abstract 
 

As early as the 19th century, measurements of the face and body were used for 

forensic identification. It was believed that no two individuals had the exact same 

measurements. However, this was overtaken by fingerprint analysis because it was 

considered more reliable in court proceedings as the probabilities of finding matching 

individuals could be calculated. With the standardisation of photographs, identification 

primarily occurs from the face. With the ability to take measurements from 

photographs, why not use the body? The ANSUR database contains anthropometric 

measurements of 3982 individuals. Eight facial and eight body measurements were 

compared to investigate whether or not there is enough information on the body to use 

for identification. Measurements were compared by adding one measurement to the 

other(s) in a stepwise approach until there were no duplicate cases where two or more 

individuals share the same combination of measurements. Results consistently show 

that less body measurements are needed to find no duplicates when compared to the 

face. The larger the range of each of the measurements, the less chance there is of 

finding a duplicate. With the combination of eight body measurements it is possible to 

achieve a probability of finding a duplicate to the order of 10-20 or 1 in a quintillion. 

These results are comparable with fingerprint analysis. The body is more variable than 

the face and should be used in identification. An advantage to using the body is that 

larger dimensions are easier to locate on images and not affected by facial expression. 

 

Key words: Physical anthropometry, forensics, duplication, ANSUR 
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Introduction 
 

Humans have evolved to recognise faces (Barrett 2008). The face is used for 

recognition because it is not covered by clothing, it contains a large number of features, 

and it is the part of a person that we look at when communicating with them 

(Henneberg 2007). Thus, it is no mystery why the face is used in the forensic sciences 

for identification.  

In the19th century Alphonse Bertillion (1886;1890), a French police officer 

created an identification system using anthropometric measurements of the face and 

body. Anthropometric measurements were recorded each time an individual was 

arrested and each time the results were compared to the previous measurements to 

establish if it was the same person, if the measurements taken matched previous 

measurements then they were considered to be the same individual and an identification 

was made. Thus it was assumed that no other individual had the exact same 

combination of measurements. Bertillion’s methods could only be used on repeat 

offenders as images of a person committing a crime were not available. Bertillion’s 

method was soon replaced by fingerprint analyses as criminals left their fingerprints at 

the crime scene which could then be compared to the suspect, thus no repeat in criminal 

activity was necessary for identification. Another advantage of fingerprint analyses is 

that the probability of finding two individuals with matching fingerprints was 

quantified, this allowed statements to be made in court proceedings pertaining to the 

reliability of using fingerprints as evidence (Jain, Prabhakar and Pankati 2002; Pankati, 

Prabhakar and Jain 2002). Bertillion also introduced the standardised photograph of a 

criminal’s face (mugshot). From this, the standardisation of facial photographs for 

identification has been incorporated into everyday life on passports, student ID cards 

and drivers licenses to name just a few. The face is a key area of study in the forensic 
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sciences, the literature is constantly expanding (Bagchi et al. 2014; Best-Rowden et al. 

2014; Mukane, Hundiwale and Dere 2014). Automated recognition systems are being 

developed to accurately identify and isolate someone by the face (Best-Rowden et al. 

2014; Jain, Klare and Park 2012), thus reinforcing the belief that the face is the best part 

of the body to use for identification.  

In forensic identification, one of the key questions is what are the chances that 

another person has the same features, could there be a duplicate of this individual? 

Ideally, this question would be answered by observing characteristics of every 

individual on the Earth at any one given time. Let’s face it, the entire population of the 

Earth cannot be observed. Therefore, the question of finding a possible duplicate is most 

commonly answered using statistical probabilities based on research conducted on 

sample sizes smaller than the Earth’s population. Fingerprint analysis is one of the 

better known areas that use probabilities to support forensic evidence (Jain, Prabhakar 

and Pankanti 2002; Pankanti, Prabhakar and Jain 2002). Often the probability of finding 

two individuals with identical fingerprints exceeds what the population of the Earth can 

provide ie. 1010. In forensics, it is desirable to use characteristics objectively measurable 

for which probabilities can be calculated.  The lower the probability of finding matching 

characteristics the more reliable for identification the characteristics are considered to 

be. The basic principle behind these forensic techniques is the more information is 

available about an individual, the less chance there is of finding another individual 

matching. For example, if facial characteristics are considered quite a few people with a 

combination of blue eyes, Darwin’s tubercle, detached earlobe and thick lips can be 

found. However, the chance of finding an individual with all of the above characteristics 

plus thirty more traits is extremely low, if not impossible. Thus the key to successful 

identification methods lies in the combination of largely independent characters.  
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With the proliferating use of Closed Circuit Television (CCTV) it is no longer 

true that criminals do not leave their anatomical characteristics behind. Image based 

identification has become increasingly popular, despite the fact that the images they 

produce are of poor quality (Chen et al. 2010).  Expert witnesses in biological 

anthropology have been using descriptive methods as early as the 1900s in an attempt to 

identify individuals (Knussman 1983, 1988; Rosing 2006, 2013). Descriptive methods 

have been criticised on the basis that they are unreliable (Edmond 2008, 2010; Edmond 

et al, 2009) and images are open to interpretation by the person analysing them (Biber 

2009). In an attempt to make facial identification and recognition more reliable, 

research is concentrating on methods which take metric measurements from images 

(Scoleri and Henneberg 2012; Scoleri, Lucas and Henneberg 2014). However, it is 

important to note that these methods are still being developed and are often dependent 

on optimal lighting, pose and high image quality (Zhao et al. 2003). Facial features are 

hard to detect on low quality images as often fine details cannot be seen (Chen et al. 

2010) or they are purposely covered to prevent identification (Henneberg 2007).  

It seems as though some of Bertillion’s message was lost, he originally took 

anthropometric measurements of the body, so why do we use only the face for 

identification, why not the body?  

As mentioned earlier, the face is primarily used for identification as it is not 

covered by clothing. This is hardly the case when committing a crime as many criminals 

cover their face to avoid identification (Henneberg 2007). The argument of not using the 

body for identification because of clothing, implies that clothing somehow obscures 

body characteristics such as shape. It has been suggested that the colour (Frith and  

Gleeson 2004) size (Fan, Yu and Hunter 2004) and pattern (Meekins 2006) of clothing 

can alter an individual’s perception of body shape. However, Lucas, Kumaratilake and 
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Henneberg (2014) investigated these claims and found that description of an 

individual’s body shape was little influenced by different types of clothing.  A possible 

reason for this is that gravity acts on clothing in such a way that it hangs off the body, 

showing the overall shape (Henneberg 2007). Many of the measurements of the body 

can still be obtained from clothed individuals since many anthropometric points can be 

located on the outline/silhouette of an individual. This is different from facial 

characteristics many of which are located in the middle of the face and thus poorly 

visible on pictures where only silhouette can be seen. Although the body is covered by 

clothing, any movement changing position of the jointed body parts can only increase 

the chances of seeing the outline of an individual. Larsen et al. (2008) found that 

anatomical points could be located better when the joints were not extended.  

The fact that we primarily recognise individuals based on facial features would 

suggest that we are rather exceptional at it, we are not. Although humans have an 

exceptional ability to recognise familiar faces (even in low quality images), we are no 

good at recognising unfamiliar faces (Hancock, Bruce and Burton 2000; Henderson, 

Bruce and Burton 2001). This is rather concerning considering the forensic sciences and 

other fields rely on the recognition of unfamiliar faces in order to make an 

identification.  Recognition rates are also affected by facial expression, something 

which can be easily changed many times throughout the day. Our natural inability to 

recognise unfamiliar faces paired with the difficulties associated with facial expression 

is one of the reasons why descriptive methods are criticised. If we are shifting from 

descriptive to metric methods it is no longer relevant which part of an individual we 

primarily use for recognition, in short, metrics can be applied anywhere.  

There has been little research conducted on identifying individuals based on 

body measurements. Most of the studies which mention the body are doing so in 
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reference to gait analysis (Bouchrika et al. 2011; Larsen, Simon andLynnerup 2008). 

Some studies have proved successful in taking measurements of the body from images 

(Scoleri and Henneberg 2012; BenAbdelaker and Davis 2006; BenAbdelaker and 

Yacoob 2008). Others have reconstructed one measurement (ie. height) from another 

(ie. upper limb length) (Scoleri, Lucas and Henneberg 2014). However, these studies do 

not use multiple body measurements nor discuss the body’s usefulness in identification. 

Currently, body measurements are considered a secondary source of information, 

meaning they are not to be used on their own for identification but can be used with 

more ‘useful’ sources such as facial recognition, fingerprints and DNA (Jain, Dass and 

Nandakumar 2004). The reason for this is because body characteristics are a priori 

considered to contain inadequate information to isolate an individual from a population 

ie. Identify them.  

Therefore, this study aims to establish whether or not body measurements can be 

just as, if not more useful than face measurements.   

 

Materials 
 

Sample 
 

The U.S Army Anthropometric Survery (ANSUR) was conducted in 1988. 

Although the sample was obtained over 20 years ago, the data are still valid for this 

study as they characterise normally varying large samples of modern humans. The 

sample consists of 1774 men and 2208 women aged 17-51 years. The ANSUR database 

contains information about the ancestry of all participants, ANSUR refers to these 

groups as ‘ethnic groups’, 66.1% of the men and 51.6% of women are White; 25.8% of 

men and 41.8% of women are Black while only 3.8% of men and 2.6% of women are 
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Hispanic. The rest of the sample is divided over other groups consisting of Asians, 

Pacific Islanders, Native Americans etc. Details of this study are described in (ANSUR 

1988). For all analyses, males and females are combined to increase the sample size. 

This is justified as only about 25% of morphological variation occurs between sexes 

(Henneberg 1990; 2010). It is reported that upwards of 95% of the variation of a trait 

occurs within populations instead of between them (Cavalli-Sforza and Bodmer 1971). 

Therefore this study did not separate participants by the ‘ethnic groups’ reported by 

ANSUR.  All measurements are reported to the nearest millimetre. All measurements 

included in this study are considered accurate. Every care was taken to ensure human 

rights by the ANSUR measurement team, including; debriefing participants on 

procedures, confidentiality and obtaining written consent.  

 

Anthropometric measurements 
 

A team of 22 individuals were responsible for taking the anthropometric 

measurements. Each measurer was trained for four weeks before taking any 

measurements of the subjects in this study. Measurers were assigned specific 

dimensions, they were taught by trained anthropometrists how to locate the landmarks 

and measure each dimension. The reported reliability coefficients for anthropometric 

dimensions (how much of the variation between participants in the measured sample is 

free from measurement error) range from 90.3% to 99.8% for all measurements 

(Gordon et al. 2013).  

 

The following body measurements were used (Fig.1): Calf circumference – The 

maximum horizontal circumference on the right calf. Chest circumference – The 

maximum circumference of the chest at the fullest part of the breast. Forearm 
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circumference - The circumference at the elbow crease of the forearm. Hip breadth – 

The horizontal distance between the lateral buttock landmarks on the sides of the hips. 

Iliocristale height – The vertical distance between the floor and the iliocristale landmark 

on the right side of the pelvis. Radiale – stylion length - The distance between the 

radiale landmark on the right elbow and the stylion landmark on the right wrist. Stature 

– The vertical distance from the floor to the top of the head (vertex). Waist 

circumference – The horizontal circumference of the waist at the level of the centre of 

the navel (omphalion). These measurements were chosen from the ANSUR database at 

random.  

The following face/head measurements were used (Figure 1): Bitragion 

submandibular arc – The surface distance between the right and left tragion across the 

submandibular landmark at the juncture of the jaw and the neck. Bizygomatic breadth – 

The maximum horizontal breadth of the face between the zygomatic arches. Ear length 

– The length of the right ear from its highest to lowest points on a line parallel to the 

long axis of the ear. Ear protrusion – The horizontal distance between the mastoid 

process and the outside edge of the right ear at its most lateral point (ear point). Head 

breadth – The maximum horizontal breadth of the head above the ears. Head 

circumference – the maximum circumference of the head above the supraorbital ridges 

and ears. Head Length – the distance from the glabella landmark between the brow 

ridges to opisthocranion. Interpupillary distance – the distance between the centres of 

the right and left pupils. These measurements were chosen as they are not influenced by 

facial expression. 
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Figure 1:  Anterior view of the entire body showing: (a) bitragion submandibular arc 

(b) bizygomatic breadth (c) Ear length (d) Ear protrusion (e) Head breadth (f) head 

circumference (g) head length (h) interpupillary distance (i) calf circumference (j) 

iliocristale height (k) hip breadth (l) radiale-stylion length (m) waist circumference (n) 

forearm circumference  (o) chest circumference (p) stature 
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Method 
 

Performance of anthropometric measurements of the head/face in finding no 

duplicate individuals in the sample is compared to those taken from the body. Each set 

of measurements (head/face and body) is searched for combinations of duplicate 

measurements among individuals. A duplicate measurement is any measurement of an 

individual’s trait ie. stature which matches numerically  that of another individual(s). In 

this paper, we used measurements in millimetres to demonstrate how duplicates can be 

found. We realise that anthropometric dimensions of same individuals can vary to some 

extent due to a number of factors. If those errors are known, the numerical values can be 

modified. 

The number of individuals who are not duplicates of each other indicates how 

well a combination of measurements can individualise a person. In this analysis traits 

are added to others in a stepwise approach until no duplicates are found and the number 

of individual cases reaches that of the sample size (N=3982). For example, in the 

sample of 3982 individuals, for the first measurement analysed bitragion submandibular 

arc the number of individuals without duplicates was 112, when head circumference 

was added the number of individuals without duplicates increased to 2,477, when head 

length was added the number of individuals without duplicates increased to 3,808 .  

This was continued by adding head breadth and bizygomatic breadth until no duplicates 

were found and all individuals were considered as individual cases.  The list of traits 

was changed throughout the analyses to establish if the order of traits had any effect.  

 As long as the traits are not perfectly correlated with each other (r <1.00) the 

addition of each trait adds more information and reduces the number of duplicates. The 

addition of traits to previous traits continues in both sets of measurements until no 

duplicates are found and all cases are individual. The least number of traits combined 
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needed to have the entire sample of all individual cases ie. no duplicates is most 

favourable for identification purposes.  

In order to determine the probability of finding two matching individuals based 

on face/head and body characteristics the following calculations were made. The 

number of units (range) is calculated for all measurements of the face/head and the 

body, the range is the difference between the minimum and maximum size of the trait 

expressed in the units of measurement (Table 1). Due to the intercorrelation of traits, the 

possible number of independent combinations is limited. Using a stepwise approach, the 

adjusted multiple regression R squared values were calculated for each set of traits (face 

and body). The R squared value was subtracted from 1 to determine the portion of the 

trait’s variance which is not correlated with others. This allowed traits to be combined 

randomly. The number of combinations of traits which are free of intercorrelations is 1-

R2 multiplied by the number of possible units. Reciprocal of the number of 

combinations tells us the likelihood that another individual shares the exact same 

measurements of the two combined traits. For example. If two traits are used, the first 

trait with a range of 614 mm and the second with a range of 570 mm the number of 

possible combinations of units for those two traits would be 614 x 570 = 349980 units 

were they not correlated. If the coefficient of determination (R²) of these two traits is 

0.284 then 1-R2 would be 0.716. The number of combinations becomes 0.716* 349980 

= 250586 (=k). Then the probability (p) of finding duplicates based on these traits is p= 

1/k = 1/250586 = 0.000004 or 1 out of a quarter million. This is repeated in a stepwise 

approach until no traits are left. IBM SPSS statistics 20 was used for all statistical 

analyses. Microsoft Excel was used for graph generation.  
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Results 
 

Table 1 shows the head/face traits used and their ranges in millimetres. Table 2 

shows the body traits used and their ranges in millimetres. The order of both lists is 

alphabetical and will change throughout analyses as indicated.                    

 

Table 1: List of traits on the face and their range (mm) for the sample of 3982 
individuals 

 

 

 

 

 

 

 

Table 2:   List of traits on the body and their range (mm) for the sample of 3982 

individuals. 

 

 

 

 

 

The order of traits has been changed from alphabetical to smallest to largest 

based on the range of the traits (Table 1). The order of traits has been changed to 

establish any differences that the range of each trait may have on the results when 

smaller ranged traits are used first. Figure 2 shows the percentage of individual cases for 

Facial Measurements 
Trait  Range (mm) 
Bitragion submandibular arc 138 
Bizygomatic Breadth 44 
Ear Length  35 
Ear Protrusion 27 
Head Breadth  47 
Head Circumference  127 
Head Length  62 
Interpupillary Distance 26 

Body Measurements 
Trait Range (mm) 
Calf Circumference 185 
Chest Circumference 570 
Forearm circumference  162 
Hip Breadth  150 
Iliocristale Height 502 
Radiale-Stylion Length  168 
Stature 614 
Waist circumference 554 
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the face and the body. The number of individual body cases increases by 71.3% when 

the second body trait (forearm circumference) is added to the first (hip breadth), this is 

the largest increase shown. It takes 5 body traits as opposed to 7 facial traits to find all 

persons to be individual cases (no duplicates) in the sample.  

 

 

 

 

 

 

 

 

Figure 2: The percentage of individual cases for the face and the body (N=3982) when 

the list of traits is ordered smallest to largest based on their range.  

 

The order of traits for the body has been changed to largest to smallest based on 

the range (Table 2). Figure 3 shows the percentage and number of individual cases with 

no duplicates for the body and the face. In both the face and the body there is only a 

small increase in the number of individual cases when only one trait (stature or 

bitragion submandibular arc) is analysed. Once the second body trait (chest 

circumference) is added an increase of 86.2% of individual cases is observed. Only 

three traits for the body are needed until the entire sample (N=3982) consists of 
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individual cases (no duplicates) ; whereas five facial traits are needed to find no 

duplicates within the sample. When using faces, there is also less of an increase in the 

number of individual cases per added trait when compared to the body.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The percentage of individual cases for the face and the body (N=3982) when 
the traits are ordered largest to smallest. 

 

Figure 4 shows the probability of finding another individual which matches one 

within the ANSUR sample when 1 to 8 traits are used. The more traits used, the less 

chance there is of finding an exact duplicate. The order of the traits used is largest to 

smallest. The best result is seen with the traits of the body, it is 10-20 or 1 in a quintillion. 

The face produced probabilities of 10-14 which are close to 1 in a trillion.
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Figure 4: The number of combinations (1/p) for the body and the face.
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Discussion 
 

The forensic identification relies on the combination of traits, the more 

information is included, the less chance there is of finding an exact duplicate of an 

individual. This is well accepted in relation to the face. Using metric traits of the body is 

even better. The larger the number of traits and their respective range, the faster the 

number of individual cases increases and thus the less traits are needed to find no 

duplicates. This is shown consistently throughout the analyses. Even when body traits 

which have the smallest range are compared to facial traits with the largest range, they 

still produce better results. Therefore, body traits should always be chosen before the 

face. This has particular importance for forensic cases, especially those which use low 

quality CCTV images as often smaller details such as those in the face are not visible. 

This also increases the objectivity of analyses because both, investigators and the court 

are not influenced by the well-established preconceptions concerning faces. 

Facial expression influences the measurement and perception of traits (Wang, 

Tan and Jain 2003) therefore in this study facial traits little influenced by facial 

expression were chosen. Body measurements were chosen at random and still produced 

better results when compared to the ideal conditions for the face (traits not affected by 

expression).  

The probability of finding another individual with the exact same eight body 

characteristics is 1 in a quintillion (Figure 4). This result equals or exceeds some 

fingerprint studies (Pankati, Prabhakar and Jain 2002). The fingerprint studies which 

show better results include more characters, therefore if more body characters were 

added to the list then the results will be comparable with, if not exceed the best 

fingerprint study. The results of this study are also comparable with results from DNA 

studies, the longer the fragment of DNA the more information can be extracted and 
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therefore the lower the probability of finding another individual with the same sequence 

(Jobling and Gill 2004). This study demonstrates the basic principles of forensics 

sciences ie. the more information analysed, the less chance there is of finding two 

individuals who share the exact same traits.  

This study has wider implications which can add to the knowledge of human 

variation. Choosing not to separate the participants by ‘ethnic’ groups or sex produced 

results that show each individual varies so much that they can be distinguished from all 

others just on their anthropometric measurements.  In cases where evidence is given 

regarding ‘ethnic’ groups or sex, this is considered descriptive and can often by 

misinterpreted if the images are of low quality. In forensic anthropology, ‘race’ or 

‘ethnicity’ is often assigned based on anthropometric measurements (Farkas, Katic and  

Forrest 2005; Zhuang et al. 2010), this study validates claims that more variation occurs 

within populations rather than between them.  

One of the arguments for not using body measurements for identification is that 

they lack permanence which is essential when comparing people over a long time 

period (BenAbdelaker and Yacoob 2008) which is sometimes the case for forensics. If 

body measurements which use vertical and horizontal distances between skeletal points 

(not circumferences) are used then these anthropometric measurements are permanent 

since an adult skeleton does not grow and identification of stable skeletal points is little 

influenced by overlying soft tissues. With extremely advanced age there may be some 

reduction of skeletal dimensions, but senile people are rarely subjects of forensic 

identifications. Therefore, these measurements would be permanent through time and 

body measurements can be used as accurately as fingerprints.  

This paper is just an example of what can be achieved with a small number of 

metric traits of the body, it is in no way a guideline for which body traits should be 
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used. Any body traits can be used and it is hypothesised that different traits will produce 

similar results. In identification from 2D images, circumferences cannot accurately be 

measured, therefore when using this method only lengths and widths of visible body 

parts should be measured. Each case is different and the number of measureable 

characteristics will change, this study provides an example of what can be achieved with 

a number of measurements and a large sample. However, circumferences are useful to 

demonstrate the amount of human variability in a large sample and may be useful for 

forensic identification with the incorporation of 3D whole body scanners. 

To further demonstrate the usefulness of body measurements, a secondary 

sample of 1262 Australian women measured in 2002 (Henneberg and Veitch 2003; 

2005) was searched for duplicates. Only 3 body traits (height, suprasternal height and 

dactylion height) were needed to find no duplicates. The method proposed in this paper 

can be applied to any sample. Humans are variable through time and geographic space. 

Therefore specific forensic cases may require databases specific for their circumstances.  

This may make construction of anthropometric databases specific for particular 

population at a particular time a worthwhile exercise. 
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Context 
 

Errors in anthropometry occur despite efforts to reduce them as much as 

possible (Stomfai et al. 2011; Perini et al. 2005; Ulijaszek and Kerr 1999). Errors cannot 

be avoided. One of the most widely used calculation for the measurement of error in 

anthropometry is the technical error of measurement (TEM) (Stomfai et al. 2011; Perini 

et al. 2005; Ulijaszek and Kerr 1999).  Currently, the commonly used approach is to 

calculate errors and simply report them alongside the ‘reported values’. This introduces 

an ambiguity to the  reported values. In large surveys, simply reporting errors is not 

practical for comparisons of participants or objects.  

The aims of this study were to introduce a new method, which eliminates the 

ambiguity of analytical results based on measurements taken with random errors by 

replacing metric units of measurement with units of TEM. The advantages of using 

units of TEM were explored by applying the method to three different fields, which 

employ anthropometry. They are; forensic investigations, clothing industry and 

biological variation. Common statistical methods within these fields were used and the 

results are expressed in metric units and units of TEM for comparisons. The purpose of 

this paper is to provide a method that allows measurement errors in large samples to be 

easily incorporated into the analyses.  

This manuscript shows the effectiveness of using units of TEM in three different 

fields that use anthropometry. This was done to demonstrate the versatility of the 

method and strengthen the findings.  During the review of the previous two 

manuscripts, a common question asked was ‘what are the error rates?’ At the time, it 

was sufficient to simply report the error rates. However, the authors wished to show the 

effectiveness of the method of ‘duplication’ by using units of TEM and comparing it to 

standard units (as used previously). This strengthened the ‘duplication’ method by 
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showing that even when errors are taken into consideration, an individual can still be 

isolated from a population based on measurements. The method presented in this 

manuscript eliminates any questions regarding error rates associated with 

anthropometric measurement studies, more specifically, the previous two manuscripts.  

This manuscript covers anthropometry as a whole, authors chose to use more 

than one example to show the versatility of the method, beyond forensic investigations.  
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Abstract 
 

Anthropometry is a tool used in many fields. Anthropometrists make every 

effort to ensure that measurement errors are minimal, however, they cannot be 

eliminated entirely. Currently, measurement errors are simply provided alongside 

reported values. Measurement errors should be included into analyses of anthropometric 

data. This study proposes a method which incorporates measurement errors into 

reported values, replacing metric units with ‘units of technical error of measurement 

(TEM)’ for applications in forensics, industrial anthropometry and studies of biological 

variation. 

The army anthropometry survey (ANSUR) contains 132 individual anthropometric 

dimensions of 3982 men and women. The concept of duplication and an Euclidean 

distance calculation were applied to the ANSUR for forensic–style identification 

analyses. A principal components analysis was applied to ANSUR as an example of a 

study of biological variation. The National Size and Shape Survey of Australia contains 

65 anthropometric measurements of 1265 women. This sample was used to show how a 

woman’s body measurements could be ‘matched’ to clothing sizes from the garment 

industry. Euclidean distances show that the same person cannot be matched (>0) on 

measurements in millimetres but can in units of TEM (=0). Only 81 women can fit into 

any standard clothing size when matched using centimetres, with units of TEM, 1944 

women fit. PCA shows little difference between using millimetres and units of TEM. 

The proposed method can be applied to all fields that use anthropometry. Units of TEM 

are proposed to be a more reliable unit of measurement for comparisons. 

 

Key words: Physical anthropometry, Technical error of measurement, ANSUR 
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Introduction 
 

Anthropometry refers to the measurement of the human body, in size, 

proportions and composition (Ulijaszek and Kerr 1999). Anthropometry is a 

standardised method which uses standardised instruments and techniques to take 

measurements of various parts of the body as accurately as possible. The information 

gathered from anthropometric surveys can be used across a wide range of fields 

including but not limited to: forensics, the garment industry, ergonomics, sports 

medicine, biological variation, health studies, and population studies. 

Despite wide uses of anthropometry and the standardisation of the techniques, 

measurement errors still occur (Stomfai et al. 2011; Perini et al. 2005; Ulijaszek and 

Kerr 1999). Standardisation of the placement of anthropometric points, measuring 

equipment and of methods of taking measurements practically eliminated systematic 

errors. However, random overmeasuring or undermeasuring cannot be avoided since 

both the measurer and the subject are biological and thus variable in numerous ways. 

Acknowledging random errors is the only way to assure good quality data. Technical 

error of measurement (TEM) is the commonly used measure of precision within 

anthropometry (Mueller and Martorell 1988). The following formula can be used to 

calculate the TEM: 

 

 

Where D is the difference between two measurements of the same dimension of 

the same individual taken on two occasions and N is the number of individuals so 

measured (Stomfai et al. 2011; Perini et al. 2005; Ulijaszek and Kerr 1999).  
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There are also other measures of error used such like: observer error, standard 

error of measurement (SEM),   absolute difference and mean absolute difference 

(MAD) (Gordon et al. 2010).  

The TEM has been deemed the most appropriate measure of error for this study 

because it assumes that errors occur from random events, as opposed to systematic error 

and bias, which other statistics such as the SEM measure. In large anthropometric 

surveys, much care is taken to reduce bias and systematic error as much as possible.  All 

people taking measurements are highly trained in how to locate anthropometric points 

and measure between them. Standardised anthropometric equipment is also used which 

is designed to avoid any bias. Bias does not change the units of measurement, it changes 

the size.  

Random variation of measurements of the same person may result from actual 

variation in body dimensions (eg diurnal variation in waist circumference), differences 

in measuring techniques used by different measurers and errors made by the same 

measurer on different occasions. TEM is a measure of variation of individual 

observations around actual values as they were at the moment of measurement. It may 

include intraobserver variability that is the difference in measurements taken of and by 

the same individual at different times and interobserver variability that refers to the 

difference in two or more measurements taken by more than one observer. TEM has an 

interpretation similar to that of a standard deviation.  For example, if a measurement 

value was recorded as 140 mm with a TEM of 1.23 mm then the range of ±1.23 mm 

includes 68% of individuals whose actual measurement is 140 mm. Their recorded 

measurements will fall into the range from 138.77 mm to 141.23 mm. Due to its 

statistical nature, a TEM which has been calculated from a large study can be applied to 

an individual case.  
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Anthropometrists have concentrated their efforts on acknowledging 

measurement errors and reporting them alongside the ‘actual’ measurements (Perini et 

al. 2005) but they do not incorporate them into analyses of anthropometric data. This 

begs the question ‘Is simply acknowledging that an error exists and reporting it 

enough?’ 

This paper aims to introduce a new method which eliminates the ambiguity of 

analytical results based on measurements taken with random errors by replacing metric 

units of measurement with the units of TEM, a method which can be applied to all fields 

which use anthropometry. The advantages of using units of TEM will be explored by 

applying them to three examples of fields which use anthropometry: forensics, clothing 

industry and biological variation. The purpose of this paper is to provide a method that 

allows measurement errors in large samples to be easily incorporated into analyses. It is 

not the aim of this paper to report TEMs for various anthropometric surveys.  

 

Materials 
 

Two different anthropometric datasets were used to illustrate the versatility of 

the theoretical method proposed in this study. The first dataset used was an 

anthropometric study of U.S military personnel (ANSUR). ANSUR  was used to show 

how TEMs can be used in craniometric comparisons and comparisons of human faces. 

The second dataset used was the National Size and Shape Survey of Australia, it was 

used to illustrate applications in the garment industry. Their descriptions are as follows: 

ANSUR: 

In 1988, 1774 men and 2208 women aged between 17 and 51 years were 

measured as part of a large anthropometric survey of U.S military personnel (ANSUR). 
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This study describes in detail the ancestry of all participants. However, considering only 

5% of human variation occurs between populations (Cavalli-Sforza and Bodmer 1971), 

the sample was not divided by ancestry in each of the examples that used this database. 

The following head measurements were used:  Bitragion submandibular arc – The 

surface distance between the right and left tragion across the submandibular landmark at 

the juncture of the jaw and the neck. Bizygomatic breadth – The maximum horizontal 

breadth of the face between the zygomatic arches. Ear breadth – The maximum breadth 

of the right ear perpendicular to its long axis.  Ear length – The length of the right ear 

from its highest to lowest points on a line parallel to the long axis of the ear. Ear 

protrusion – The horizontal distance between the mastoid process and the outside edge 

of the right ear at its most lateral point (ear point). Head breadth – The maximum 

horizontal breadth of the head above the ears. Head circumference – the maximum 

circumference of the head above the supraorbital ridges and ears. Head Length – the 

distance from the glabella landmark between the brow ridges to opisthocranion. 

Interpupillary distance – the distance between the centres of the right and left pupils. 

These particular head measurements were chosen as the TEMs were reported. Although 

head/face measurements show less variability and errors when compared to 

measurements of the body (Lucas and Henneberg 2015a) the principle of this study 

remains the same. Authors chose to use head and face measurements to show the 

versatility of the method between different parts of the body and between fields. Head 

and face measurements were chosen to illustrate the application of this method to 

craniometric studies. Further details of the measurements of these distances are 

described the ANSUR manual (ANSUR, 1988).  

TEMs were provided by a validation study applied to the ANSUR database 

(Gordon et al. 2010). The TEMs reported were interobserver, where 10 participants 

were measured twice in a day by different measurers. Although intraobserver variability 
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is not reported separately, it is included in the interobserver measurement automatically 

as subjects are being measured multiple times. Therefore for use in the current paper, all 

TEMs will not be separated into inter and intra observer but will be regarded as one. 

TEMs were calculated separately for males and females and this was included in all 

analyses. The TEMs for males and females separately are reported in Table 1.  

 

Table 1: The reported TEMs for both males and females used for the ANSUR database 

(ANSUR 1988, Gordon et al. 2010).  

 

 

 

 

 

National size and shape survey of Australia: 
 

The National Size and Shape Survey of Australia was conducted in 2002. A total 

of 54 measurements were taken of 1265 women aged 18-70+years (Henneberg and 

Veitch 2003; 2005). Women were recruited during craft fairs in major capital cities 

around Australia and represent a wide range of variation. For the purposes of this paper, 

the following three measurements were used:  Bust circumference - The horizontal 

circumference of the fullest part of the bust. Hip circumference – The maximum 

horizontal circumference of the lower trunk. Waist circumference - The minimum 

horizontal circumference of the trunk between the lower ribs and the iliac crest. The 

three measurements were chosen because they are commonly used in the garment 

industry to define “sizes” of female clothes. (eg bodices, blouses, jackets).   

Dimension TEM males TEM females 
Bitragion submandibular arc 2.27 2.34 
Bizygomatic breadth 0.90 0.87 
Ear breadth 0.80 1.22 
Ear length 0.86 0.91 
Ear protrusion 0.82 0.94 
Head breadth  0.85 0.84 
Head circumference 2.43 1.35 
Head length 0.98 0.87 
Interpupillary distance 0.50 0.68 
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TEMs for this study were calculated from a set of measurements of 16 people, 

measured by 9 anthropometrists who took part in the survey. These were graduate 

students of human biology who before engaging in anthropometric surveys measured 

each other and some volunteers repeatedly. Since the National Size and Shape Survey of 

Australia was collecting data during craft fairs in capital cities across the country, 

settings of anthropometric stations were less rigorous than in the ANSUR survey, 

participants measured were allowed to wear an assortment of garments rather than 

standardised clothing, they were of widely differing ages and the range of variation of 

body shapes has not been limited in any way. The pre-survey re-measurements by 

members of the team were organised to mimic realistic conditions under which the 

survey was run. For consistency with the ANSUR database, the TEMs calculated were 

interobserver. The ANSUR team reported TEMs separately for each sex, because each 

ANSUR measurer was responsible for measuring only participants of the same sex ie. 

females measured females. This could have had some influence on the TEMs. The 

TEMs used for the National Size and Shape Survey of Australia were not separated by 

sex as the team who measured individuals consisted of both males and females and they 

measured individuals of both sexes since a small sample of males were also measured 

during the survey.  The TEMs used in all analyses using the database of the National 

Size and Shape Survey of Australia are reported in table 2.  

 

Table 2: The TEMs (mm) used for the National Size and Shape Survey of Australia. 

Dimension TEM 
Bust circumference 46.75 
Waist circumference 56.98 
Hip circumference 26.95 
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Method 
 

Units of TEM: 
 

Instead of reporting the actual value of measurement in standard units with 

technical error specified as +/-, the actual dimension measured can be reported in units 

of TEM because any accuracy greater than TEM may be a random result not reflecting 

actual size. In order to convert the reported value, the 95% confidence range of this 

value is calculated as 1.96 times TEM, which in practice means dividing the measured 

value by two times TEM. Since the actual measurement cannot be made with precision 

greater than TEM, the result of the division, for simplicity’s sake can be rounded to full 

integers of TEM. For example: If the reported value of ear length for an individual is 64 

mm and the TEM of ear length is 0.86 mm for that study, then 64/(2*0.86)=37.209, it is 

then rounded to 37 units of TEM. This is sufficiently precise for analysing since TEMs 

are estimates based on relatively small samples. 

We analyze anthropometric variables expressed in millimetres and in the units of 

TEM for differences they can produce in results of individual-to-individual comparisons 

using principal components analysis, Euclidean distances, and the exact matches on 

combinations of anthropometric diameters (search for duplicates, Lucas and Henneberg 

2015a,b). We also apply TEM units for matching exact body dimensions of individuals 

with “garment size” dimensions specified as single values of chest, waist and hip 

circumferences on standard clothing size roll. 

For individual-to-individual or individual-to-a standard (“size”) matches we use 

the following approach that produces a categorical answer: ‘match’ (value of 0) or ‘no 

match’ (value different from 0). The value ‘0’ represents no actual difference between 
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the two variables being measured, whether they be individual-individual or individual-

to-a standard.  

Lets characterize an individual a by a combination of k body dimensions and try 

to match this individual with another one b characterized by the set of k same 

dimensions d1 , d2 … dk. We assume that the two individuals differ in their 

measurements of those dimensions as recorded in millimetres. We calculate a value m 

expressing the match of the dimensions of these two individuals where INT is the 

nearest integer. 

 

IBM SPSS Statistics v 22 and Microsoft Excel are used for all statistical analyses.  

 

Results 
 

Example 1- Forensics: 

In forensics, it is important to compare individuals for identification by 

matching their head or body dimensions. In such instances it is important to know how 

many characteristics are needed to confidently distinguish a given individual from all 

other individuals so that a wrong person is not identified. When comparing two images, 

or an image of a person with the living person, it is extremely important to know if they 

are a match and if so, are measurement errors the reason for the match. If an individual 

matches another while each measurement was taken with an error and they actually are 
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not the same person, then this would be a devastating outcome. Not only for the accused 

but also for the person who conducted the analysis.  

For the purposes of this example (Figure 1), males and females from the 

ANSUR database were mixed to make the sample larger. Sex is irrelevant in this case 

because distributions of male and female dimensions overlap and the goal of this 

analysis is to know if there are any two or more individuals who match one another on 

head/face measurements and if there is a difference in the number of matches between 

using millimetres and units of TEM. To answer this question, the concept of duplication 

as described in (Lucas and Henneberg 2015a) is used. Basically, a match is defined as 

any two measurements of the same characteristics eg. stature which are numerically 

identical. If two or more individuals match one another on all characteristics used for 

comparisons then they are considered duplicates. It is trivial to say that many people can 

be matched on head length only. When more measurements are added to a comparison, 

the probability of finding a matching individual decreases. To find how many 

measurements need to be used to find each individual to be different, characteristics will 

be added to the analysis in a stepwise approach until there are no duplicate matches and 

all individuals can be distinguished from each other. The list of head/face measurements 

(Table 3) was ordered largest to smallest in range as this produces the best results 

(Lucas and Henneberg 2015a). 
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Table 3: List of head/face dimensions from the ANSUR database and their range in mm 

and units of TEM for the sample of 3982 individuals.  

Dimension Range (mm) Range (units of TEM) 
Bitragion submandibular arc 138 32 
Bizygomatic breadth 44 23 
Ear breadth 24 21 
Ear length 35 22 
Ear protrusion 27 17 
Head breadth  47 27 
Head circumference 127 120 
Head length 62 33 
Interpupillary distance 26 40 
 

 

Figure 1: Percentage and number of duplicate cases of head/face measurements for 

males and females (N=3982) for millimetres and units of TEM. 

Figure 1 shows the percentage and number of duplicate cases for males and 

females in both millimetres and units of TEM. In both millimetres and units of TEM, 

every time a characteristic is added, the number of duplicates decreases. However, it can 
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be seen that the number of duplicates decreases slower when units of TEM are used, 

this is because the values are smaller and therefore there is a higher probability of 

having duplicates as there are less options for each measurement to fall into. It takes 5 

measurements of the head/face to have no duplicates in the sample when millimetres are 

used. It takes more than 9 measurements of the head/face to find no duplicates in the 

sample when units of TEM are used.  The case of the one remaining duplicate was 

investigated and it is two separate females, who are very similar on head/face 

measurements.  

A Euclidean distance is commonly used calculation to compare two individuals 

to establish the level of similarity. The basic rule of the Euclidean distance is if two 

individuals are compared on any number of measurements and there are no differences 

between the values being compared then the distance will be zero, anything above zero 

indicates that two individuals compared are not the same person. The larger the value, 

the more differences there are between the two individuals. For the purposes of the 

example (Table 4), 20 males were chosen at random from the ANSUR database to 

illustrate the difference between using millimetres and units of TEM in an Euclidean 

distance matrix. Only one sex was chosen to show the similarities and differences, 

Males were chosen as they are more likely to commit crimes (Australian Bureau of 

Statistics 2013). In this instance we used a calculation of the average Euclidean distance 

that allows numerical comparisons of similarities among individuals who were 

characterised by somewhat varying number of dimensions since in practice it happens 

that a particular dimension of a particular individual cannot be measured (eg. on an 

image partly obscured by an object between the lens and the person). Thus the distance 

E is:   
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Table 4: Euclidean distances between male subjects (N=22) for measurements of the head in both mm (bottom) and units of TEM (top).  
 

Subject 
Number 17371 17710 9313 20899 11473 6194 10027 20969 18516 3575 16826 23804 2594 22929 10101 7739 1068 21749 17561 19995 21 22

17371 0 18 202 13 6 2 7 29 168 13 45 43 9 24 105 10 34 6 10 29 21 16
17710 143 0 33 18 17 19 7 7 24 14 113 6 45 17 289 18 5 23 11 8 66 63

9313 173 192 0 23 192 77 146 13 11 18 1617 8 720 31 2316 45 20 69 205 214 1313 1108
20899 49 258 238 0 9 13 17 23 37 16 220 23 91 8 489 8 27 18 9 30 127 111
11473 18 167 265 35 0 7 10 33 165 18 25 44 6 15 89 8 35 7 9 23 9 11

6194 22 104 98 75 56 0 4 13 69 5 143 18 28 19 272 13 16 7 9 33 92 68
10027 102 15 179 224 129 67 0 17 117 13 56 27 14 25 141 10 13 8 9 22 33 28
20969 163 37 94 288 223 98 41 0 8 8 416 3 153 15 722 18 6 5 16 30 298 249
18516 307 122 90 445 400 204 141 39 0 23 1325 9 595 32 1957 55 15 47 149 154 1057 899

3575 36 119 56 90 90 15 98 91 167 0 338 8 106 13 585 12 17 4 14 32 236 190
16826 66 192 399 113 32 111 146 283 497 173 0 561 3 335 3 52 414 151 51 61 4 7
23804 141 82 35 234 211 73 83 24 50 52 293 0 207 13 915 21 9 7 31 40 424 352

2594 35 124 309 94 21 72 93 198 389 113 17 215 0 108 9 20 156 18 4 25 6 8
22929 53 232 140 31 69 58 205 208 321 49 159 143 125 0 586 19 25 5 11 27 240 200
10101 100 160 449 198 71 153 122 263 476 214 26 314 24 240 0 185 723 260 105 120 4 8

7739 38 147 258 46 28 55 121 203 379 89 66 202 32 86 102 0 22 38 20 42 19 17
1068 259 52 158 404 313 169 56 27 50 180 365 71 282 332 331 297 0 11 24 30 302 252

21749 45 97 62 109 89 15 71 65 141 12 155 39 106 55 188 100 138 0 2 13 109 83
17561 31 79 141 91 50 20 55 83 202 36 82 78 45 61 104 52 163 19 0 17 36 31
19995 150 24 192 289 180 124 35 51 121 128 202 85 144 240 163 207 65 94 91 0 51 55

21 53 288 377 69 33 109 227 349 554 153 31 323 50 109 88 74 472 155 100 292 0 0
22 61 309 409 74 40 125 247 382 598 170 37 356 57 130 95 77 508 183 123 320 3 0  

Note: The individuals who share the most similarity are boldfaced. The individuals who are matched with themselves are shaded. The individual who 

has been measured twice (‘21’ and ‘22’) is outlined. 
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Table 4 shows the Euclidean distances between 20 male subjects from the 

ANSUR database chosen at random and a male individual who was measured twice. A 

male individual was measured once by each of the two authors and is included in the 

sample (‘21’ and ‘22’), making the total sample 22 males. The nine head measurements 

reported in the ANSUR sample were used except in the case of the male who was not 

from ANSUR, interpupillary distance was excluded as the measurement could not be 

accurately compared without a pupillometer. Head measurements were used as an 

example, as that is the part of the body that is often used in forensic cases of 

identification from images. The Euclidean distances between individuals have been 

calculated for millimetres (bottom of the matrix) and units of TEM (top of the matrix). 

The male who was measured twice is number 21 and 22. There is a distance of 3 

between this individual and himself when measured in millimetres. This is clearly 

different from zero so that 21 should be considered as a different person from 22, at 

least initially. Further investigation will be required to establish their identity. When 

measured in units of TEM the difference is zero. A clear answer.  In all other cases, no 

two males have a zero result to be considered the same. This should be so because we 

chose different individuals from the ANSUR database and our previous analyses 

indicated that when 8 or more measurements of the head and face are used in 

millimetres or units of TEM, there are no duplicate males (Figure 1). 

 

Example 2 - Clothing industry: 
 

A mentioned above, it is the goal of the clothing industry to design products 

which fit a large number of people. Clothing comes in standard sizes which are aimed to 

fit most people satisfactorily. With online shopping being a new concept in today’s 

society, many women do not get the opportunity to try on clothing. Clothing is often 
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ordered from overseas where the sizing standards are different. Each woman simply 

wants to know, ‘will I fit into this garment or not?’ and ‘how much of a difference am I 

willing to accept?’. To answer these questions the ‘match’ or ‘no match’ categories 

were calculated for each of the 1265 women in the National Size and Shape Survey of 

Australia. This dataset was used as it was originally designed for the clothing industry 

and thus had the measurements needed to use clothing as an example. It was also used  

to construct a sizing system following the old common practice of dividing the sample 

into groups based on one measurement, in this case the bust circumference, categorised 

into groups differing by a set amount and then calculating averages of other dimensions 

for each group. In this case we used 50 mm steps for bust circumference. Examples 

from the standard size roll are presented in Table 5. 

 

Table 5: Examples from the standard size roll used in matching analyses for bust, waist 

and hip circumference.  

 

Average dimensions of the women in the National Size and Shape Survey of Australia 

are published in (Henneberg and Veitch 2003, 2005, Henneberg and Ulijaszek 2010).  

 

 

 

Standard size Bust circumference 
(mm) 

Waist circumference 
 (mm) 

Hip circumference 
(mm) 

Size 10 800 670 920 
Size 16 950 820 1050 
Size 18  1000 870 1090 
Size 26 1200 1080 1260 
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Table 6: The number of women whose body measurements match each standard sized 

garment when measured in centimetres and units of TEM. 

 

Table 6 shows the number of women whose body dimensions match each Australian 

standard clothing size when the measurements are taken in centimetres and units of 

TEM. It can be seen that very few women match the standard clothing size in 

centimetres, though we allowed for a one centimetre read-out error. However, more 

than the number of women measured (N=1265) matched the standard clothing sizes in 

units of TEM. This shows that some women may fit into more than one standard size of 

clothing if errors are accounted for (Table 6). 

 

 Table 7: An example of a woman who does not match a standard clothing size in 

millimetres but does match in units of TEM.   

Note: matches as represented by the value ‘0’ are boldfaced. Other values are a sum of 

differences from the standard.  

 

Standard size Number of women who 
match (cm) 

Number of women who match 
(units of TEM) 

10 2 216 
12 9 317 
14 20 354 
16 21 343 
18 9 266 
20 9 206 
22 9 134 
24 1 71 
26 1 37 

Total 81 1944 

Clothing size  10 12 14 16 18 20 22 24 26 
Difference in mm 14 7 1 4 12 18 24 31 40 
Difference in units of 
TEM 

1 0 0 2 3 5 7 9 13 
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Table 7 is an example of a particular woman who does not match a standard 

clothing size in millimetres. The same woman matches a number of different standard 

clothing sizes (12 and 14) when measured in units of TEM. The further away from a 

‘match’ the woman is, the larger the difference (value). In this example, she can fit into 

a size 12 and 14 but if one other standard size had to be chosen, she would fit better in a 

size 10 than she would into a size 16. This is because the difference between her body 

measurements (when errors are accepted) and the standard size 10 is less than the size 

16.  

 

Example 3- Biological variation: 
 

In biological anthropology, a principal components analysis is used to illustrate 

similarities and differences between skulls of different time periods based on their 

craniometric characters. An attempt is sometimes made at discerning groups of skulls 

plotting close together to assign them to a taxonomic group (eg Bookstein et al. 

1999;White et al. 2003). Such attempts often do not produce clear results because 

human variation is continuous and substantial overlaps between skulls from different 

populations occur. Although the ANSUR database only contains measurements from 

living modern humans, the nine head dimensions mentioned above can still be used as 

an example to show similarities or differences between individuals characterised by 

craniometric dimensions recorded in millimetres and units of TEM. In this case only the 

males were used as an example, to avoid any differences that are caused by sexual 

dimorphism.  
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Figure 2: Principal components analysis for male head measurements in millimetres 

and units of TEM.  
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Figure 2 is an example of a principal components analysis conducted on 

measurements of the head.  As mentioned previously, there was no separation of the 

data into ancestral groups. As could be expected, these results show no separate groups 

of male modern humans (Cavalli-Sforza and Bodmer1971) ie. there is no separation of 

groups which can be attributed specific ancestry. These results show continuous 

variation in both millimetres and units of TEM. For the purposes of this paper it is 

irrelevant whether some separation into ancestry groups occurred or not. What is 

important is the fact that millimetres and TEMs give the same result. Lack of clear 

subdivision into groups is a biological fact of human variation (Cavalli-Sforza and 

Bodmer 1971). The fact that there are no substantial differences shows that using units 

of TEM instead of millimetres will not compromise the data by showing false 

similarities or differences between individuals.  

 

Discussion 
 

In the case of the duplicate females from the ANSUR database, it was found that 

these are in fact two separate females. The reason that they are considered ‘duplicates’ 

of one another is that they have very similar measurements, however, not identical in 

millimetres, only in units of TEM. The reason why they are the same in units of TEM is 

because the TEM has a range of millimetres. In a practical situation, in order to 

distinguish between the two women adding more measurements should prove 

successful. If this were a case where only selected measurements could be taken from 

an image due to distortion or other factors which influence visibility of characters then 

using descriptives as well as metrics to distinguish between the two women would be 

practical. Finding two females who match one another in units of TEM illustrates the 

proposed method perfectly. Simply finding less matches when the measurements are 
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expressed in millimetres is not sufficient in a practical setting as errors are not 

considered. Two sets of measurements of the same person may differ by some 

millimetres due to random errors. Considering this difference as real could lead to 

devastating consequences. Using units of TEM eliminates any doubt that may be caused 

by simply reporting the errors alongside the reported measurements.  

This method has particular practical use for automatic search through large 

samples for duplicates. If comparing two or three individuals, simply reporting the 

range of errors may be sufficient as it can be established whether or not the 

measurements are within error ranges by simply observing the values. However in large 

surveys, this is not practical. 

The principal components analysis (Figure 2) showed no substantial differences 

between using millimetres and units of TEM. By simply converting millimetres to units 

of TEM all of the dimensions of individuals are comparable in a similar way though 

their numerical values differ. The small differences between millimetres and units of 

TEM that can be seen are due to the difference in numbers of units in each dimension 

that depends on both, the size of the dimension and its TEM.  

The level of accepted error may change for each application. In other words, the 

calculation does not always have to use 95% confidence range. It may include larger 

error ranges. This would be most applicable to the ergonomics industry, which like the 

clothing industry, designs furniture or workspaces to fit a great number of individuals. 

However, the difference lies in the number of products for the same number of 

individuals. For example there may only be one design of a particular chair, this chair 

would fit the same number of people that nine different standard clothing sizes would fit 

because it is not designed to fit perfectly and it may be adjustable.  
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The proposed method is a general method which can be applied to all fields which use 

statistical analysis of any measurements taken with an error. The actual value of a 

measurement is not the number of standard SI units, but the number of TEM units 

included in the measurement. This paper shows some possible uses and advantages of 

using units of TEM as opposed to using millimetres and simply reporting TEMs. 
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Context 
 

Much of the research that investigated identification from images was conducted 

by experts in computer analysis (BenAbdelaker and  Davis 2006; BenAbdelaker and 

Yacoob 2008; Scoleri and  Henneberg 2012; Scoleri, Lucas and  Henneberg 2014), not 

biological anthropologists or those with an extensive knowledge of the human body. 

Therefore, the effectiveness of the use of facial and body measurements as a biometric 

tool has not been explored in reference to identification from images. This was 

addressed by the findings described in manuscripts 2 and 3. We have shown that 

knowledge of anatomy and anthropometry reduces errors associated with taking 

measurements from images (manuscript 1). 

The techniques proposed by computer analysis experts include complex 

formulae which are tedious and time consuming to the operator. These techniques have 

an error rate of 5% (Scoleri, Lucas and Henneberg 2014), which is unacceptable for 

identifications in a court of law.  

The aims of this research were to use a mathematical approach known as the 

‘anharmonic ratio’, which eliminates effects of image distortions to isolate individuals 

from the sample (n = 20). This method was chosen as it has been previously applied to 

images of inanimate objects with success; it is quick and does not require computer 

analytical techniques. Therefore, persons with extensive knowledge of the human body 

(who may not necessarily have computer analysis knowledge) can use it and eliminate 

any errors caused by lack of anatomical knowledge of computer operators that have 

been outlined in manuscript 1.  
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Results showed that proportions derived from use of the anharmonic ratio were 

not sufficient to correctly identify individuals as error rates multiply with the use of 

body ratios.  

In previous literature, the anharmonic ratio was successful in identifying objects. 

However, previous studies, which used ratios of the face could not identify the 

individuals, this was consistent with these findings. This paper was built on previous 

studies by using ratios of the body, as well as the face measurements as described in 

manuscript 3, which outlined the usefulness of body measurements for the identification 

of individuals. However, results show that there is little difference between the use of 

the face and body measurements when ratios are applied.  

The findings of this study outline the need for further multidisciplinary research 

between image/computer analysis experts and biological anthropologists.  
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Abstract 
 

Ratios have been applied to humans to identify individuals from images. These 

attempts have been proven unsuccessful, as camera angle, height and distortions of the 

image affected the results. The anharmonic ratio is a ratio of ratios, it has proved 

successful in the identification of objects from images, as it is not affected by any 

distortions. The anharmonic ratio was applied to the human body and face to identify 

individuals from their images. Twenty South Australian males aged 16 – 65 years faces 

and bodies were measured using standard anthropometric techniques. Participants were 

photographed in high quality images and recorded by standard surveillance camera (low 

quality images). Ten ratios were calculated from manual measurements and from all 

images. An Euclidean distance showed ratios incorrectly identified individuals 64.3% of 

the time between images of different quality. Variation of ratios between individuals is 

low so that standard deviations of ratios are of the magnitude similar to technical errors 

of measurements, Therefore participants cannot be isolated based on ratios. Ratios are 

an unreliable method for identification.  

 

Keywords: Forensic science, anharmonic ratio, TEM, identification, anthropometry, 

images.  
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Introduction 
 

Criminal activities are increasingly being recorded in closed circuit television 

systems (CCTV). Scientists with expertise in biological anthropology or computer 

image analysis are often called upon to identify the individuals from the images. Image 

identification involves comparing anatomical features seen on the image, of the person 

who committed the crime (person of interest) to the person who is suspected of 

committing the crime (suspect). Often, the images that are available for the analysis are 

of different quality (i.e high or low, particularly in relation to clarity), as they are 

commonly taken at different times and by different cameras It is not uncommon to have 

both high and low quality images in one case.  

In order to accept a testimony of identification in a court of law, it should adhere 

to the Daubert Criteria (Ireland and Beaumont 2015; Crumbley and Cheng 2014; Grivas 

and Komar 2008). The Daubert criteria aim to make testimonies of expert witnesses as 

reliable as possible by ensuring that they are peer reviewed, repeatedly tested, have a 

known error rate and are based on sufficient facts or data.  

As a result of the Daubert Criteria, the interval scale of measurement is 

considered to be superior to the categorical scales (Edmond et al. 2009), which are 

currently used by expert biological anthropologists.  Interval scales of measurements 

could be expressed in any units that are directly measured, for example, nose width is 

68 mm if a millimetre is used as the interval. Categorical scales of measurement, use 

adjectives to describe anatomical variations, for example, the nose is wide.  

In the past, the evidence/opinion presented by an expert witness for the 

identification of an individual from images by using categorical classifications has been 

criticised as unreliable (Edmond 2008; Edmond et al. 2009) and the assessment of 
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images in categorical scales is open to interpretation (Biber 2009).  Therefore, research 

has been focused on the application of interval scale measurements to images for the 

identification of individuals (BenAbdelaker and Davis 2006; BenAbdelaker and Yacoob 

2008; Scoleri and Henneberg 2012; Scoleri, Lucas and Henneberg 2014). It has the 

advantage of reproducibility and the ability to calculate error rates (Scoleri et al. 2014). 

Disadvantages of the methods that use interval scale measurements are that they require 

complex analytical formulae (BenAbdelaker and Davis 2006; BenAbdelaker and 

Yacoob 2008; Scoleri and Henneberg 2012; Scoleri, Lucas and Henneberg 2014) and 

the processes are tedious, thus time consuming.  Taking reliable interval scale 

measurements from 2D images is difficult because of perspective (angular distortion) 

and possible rectilinear and curvilinear distortions that could result from the quality of 

the video equipment’s used (Chen et al. 2010).  Another source of error is introduced 

from the pixelation of digital images, which particularly results from the enlargement of 

small images (eg. enlargement of the image of a face to obtain the details). The lowest 

error rates that are scientifically accepted with these methods lie at 5% (Scoleri et al. 

2014). However, 5% of stature is approximately 80mm, which is unacceptable in a 

court of law as it broadens the suspect pool significantly. Therefore, an error rate of 5% 

does not allow accurate comparisons between images.  

To avoid complexities of correcting for angular and rectilinear distortions, 

various authors have used facial proportions measured on photographs taken in standard 

position in an attempt to identify known individuals from images (Kleinberg and Siebert 

2012; Kleinberg, Vanezis and Burton 2007; Moreton and Morley 2011). Kleinberg and 

Siebert (2012) investigated the use of ratios in facial identifications. It was found that 

their techniques were not able to sufficiently isolate an individual from the sample. 

Kelinberg, Vanezis and Burton (2007) reported similar results, showing that individuals 

could only be correctly identified approximately 22%-25% of the time at best, even 
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under the most optimal conditions. In each of these cases the images were of a high 

quality, which does not represent real life forensic conditions.  Moreton and Morley 

(2011) studied the effects of image quality as well as angle of the camera, distance and 

lighting. They found that proportionality indices changed significantly with camera 

angles, distance, resolution and the lighting conditions. The conclusions of these studies 

were similar (Kleinberg and Siebert 2012; Kleinberg, Vanezis and Burton 2007; 

Moreton and Morley 2011). and indicated that proportions of facial measurements are 

not adequate for the identification of an individual from a sample. However, the 

proportions used were single proportions eg. taken as a percentage ratio of one trait to 

another, therefore these proportions are often subject to effects caused by image 

conditions, as reported. The anharmonic ratio is an improvement of the traditional 

proportional measurement used in previous investigations (Kleinberg and Siebert 2012; 

Kleinberg, Vanezis and Burton 2007; Moreton and Morley 2011). The anharmonic ratio 

is a ratio of ratios, thus it is not affected by any effects that camera angle, and some 

other photographic distortions may have on the identification process 

The current paper aims to isolate individuals using the anharmonic (cross) ratios 

of the body and the face from images of different quality. The body and the face will be 

used as both are extremely variable and can be used for the identification of an 

individual Lucas and Henneberg (2015a). For the anharmonic ratio to be successful as 

an identification technique, it must isolate an individual from the sample, i.e. should not 

allow to find any duplicates (Lucas and Henneberg 2015a,b) based on the ratios. A 

secondary aim of the paper is to provide error rates for the measurements taken between 

anthropometric points placed on images of different quality.   
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Materials and methods 
 

Principles of the method: 
 

The anharmonic (cross) ratio is a ratio of ratios. It has been previously applied to 

photographs for identification purposes (Fryer 2000). The ratio remains a constant for a 

particular object through projective projection i.e. remains the same irrespective of the 

angle and the height of the camera or the size of a photograph. Therefore, the 

anharmonic ratio is ideal for comparisons of proportions between images. Although it is 

an ideal method for the identification of objects from photographs, and adheres well 

with the Daubert criteria, anharmonic ratio has not been applied to the human body. The 

method relies on identifying four collinear points (A,B,C,D). The anharmonic ratio of 

distances between those four points, is defined as:                                                        

ℜ (A,B;C,D) = AC
BC

AD
BD
�  

An example is shown in Figure 1. Points of nasion, subnasale, stomion and 

gnathion are collinear as are vertex, nasion, subnasale and stomion. The example 

illustrates how the same points can be used in different ratios as long as they remain 

collinear.  
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Figure 1: Example of four collinear points of the face and head. The example illustrates 

how the same points can be used for different ratios. The collinear points of the face and 

head, vertex (v) nasion (n), subnasale (sn), stomion (sto) and gnathion (gn).   

 

If points are not already collinear, they can be realigned to become collinear 

with other points. A point may be moved horizontally or vertically in the same plane to 

align with other points, as long as the distance between the two points does not change 

due to the realignment.   Figure 2 shows the upper body of an individual with four 

points marked along the horizontal line marked a, the two points marked ‘z and y’ can 

be realigned with the two points marked along the line ‘a’ by moving them straight 

down.   

When applying these principles to the human body, only points whose 

anatomical position is fixed can be used. Distances should not be measured between 

points whose anatomical relationship can be altered by altering position of the body. 
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Figure 2: realignment of pre-existing points along a vertical axis to become collinear 

with points along a horizontal line.  

The number of ratios that can be applied to the human body can exceed the 

number of fixed anatomical points. The reason for this being, that a particular point may 

be used in more than one ratio. In two different ratios , a fixed anthropometric point 

such as symphysion is used as either B or C (Table 1)  If a point is labelled as A for one 

ratio, it does not necessarily have to be point A in another (eg nasion in ratios 2 and 3 

Table 1).  

Application of the method: 
 

Twenty males between the ages of 16 and 65 years were recruited from South 

Australia. Like in the other studies (Kleinberg and Siebert 2012; Kleinberg, Vanezis and 

Burton 2007; Moreton and Morley 2011) males were chosen as they are the most likely 

sex to commit crimes that are caught on video surveillance systems (ABS 2013). 

Three experience anatomists were asked to locate anthropometric points on the 

participants bodies and measure the distances between them. A set of standardised 
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anthropometric measurements as defined by Martin and Saller (1957) were manually 

taken from each of the males using GPM anthropometer, sliding and spreading calipers 

(Table 1). Males were measured wearing shorts only. All measurements/landmarks were 

chosen as they are visible anteriorly (Figure 3).  
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Table 1: Anthropometric measurements/landmarks and their associated definitions 
taken manually of each of the male participants.  

Measurement Landmarks Definition 
Stature b-v The distance between the floor (b) and the highest point on 

the top of the skull when the head is held in Frankfurt 
horizontal (v). 

Tragion height b-t The distance between the floor (b) and the superior point on 
the tragus of the ear (t). 

Acromiale height b-a The distance between the floor (b) and the acromiale (a), 
the point at the superior and lateral borders of the acromion 
process. 

Suprasternale height b-sst The distance between the floor (b) and the suprasternale 
(sst), the lowest point in the suprasternal notch in the 
midsagittal plane 

Iliocristale height b-ic The distance between the floor (b) and the iliocristale (ic), 
the highest and the most lateral palpable point of the iliac 
crest of the pelvis 

Trochanterion height b-tro The distance between the floor (b) and the trochanterion 
(tro), the superior point of the greater trochanter of the 
femur 

Symphyseal height b-sy The distance between the floor (b) and the symphysion (sy), 
the point on the superior margin of the pubic symphysis in 
the midsagittal plane 

Tibiale height b-ti The distance between the floor (b) and the tibiale laterale 
(ti), the superior point on the lateral condyle of the tibia. 

Bi-acromial width a-a The distance between the left and right acromiale 
landmarks. 

Bi-iliocristal width ic-ic The distance between the right and left iliocristale 
landmarks. 

Bizygomatic width  zy-zy The maximum horizontal breadth between the zygomatic 
arches. 

Metopion- nasion 
length 

m-n The distance between the metopion (m), the intersection 
between median sagittal plane and horizontal line between 
left and right frontal eminences and nasion (n) the point 
where the midsagittal plane crosses the junction between 
the frontal and nasal bones, the deepest root of the nose. 

Metopion-subnasale 
length 

m-sn The distance between the metopion (m), the intersection 
between median sagittal plane and horizontal line between 
left and right frontal eminences and subnasale (sn) the point 
where the nasal septum meets the philtrum. 

Metopion-stomion 
length 

m-sto The distance between the metopion (m), the intersection 
between median sagittal plane and horizontal line between 
left and right frontal eminences and stomion (sto) the 
midpoint of the occlusal line between the lips.  

Metopion-gnathion 
length 

m-gn The distance between the metopion (m), the intersection 
between median sagittal plane and horizontal line between 
left and right frontal eminences and gnathion (gn) the most 
inferior point on the body of the mandible in the midsagittal 
plane 
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Figure 3: Anterior view of the entire body showing: (v) vertex, (m) metopion, (n) 

nasion, (zy) zygion (left and right), (t) tragion (left and right), (sn) subnasale, (sto) 

stomion, (gn) gnathion, (a) acromiale (left and right), (sst) suprasternale, (ic) iliocristale 

(left and right), (sy) symphysion, (tro) trochanterion (left and right), (ti) tibiale laterale, 

(b) base. Please note the point for zygion is slightly misplaced due to the point for 

tragion.  
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Participants were then photographed using a Panasonic Lumix DMC camera in 

the anatomical position wearing shorts only. The distance between the camera and the 

participant was 6m. The camera has a resolution of 12 megapixels with a 1.5x crop 

factor compared to a 35mm camera. The lens was a 14mm-45mm 3.5 zoom lens which 

is equivalent to a 28-90mm lens on a standard 35mm camera. All images were taken at 

35mm, equivalent to 70mm on a standard 35mm camera. These photographs of 

participants are considered to be of a high quality as all details of the face and body are 

easily visible, while distortions are minimised. Therefore all photographs of this quality 

are referred to as ‘high quality’ in this paper.  

Participants were then videoed using an Axis 216MFD (CCTV) at the 

University of Adelaide Medical School, foyer corridor of 8 m in length, 2 m in width 

and 3 m in height.  The camera records video with a resolution of 1280x1024 pixels at a 

rate of 5 frames per second. The focal length is between 2.8mm and4.0mm. The 

mounting height of the camera is between 2.7m and 3.0metres off the ground. This is 

consistent with standard CCTV surveillance systems. Participants were pictured 

wearing a pair of trousers and a shirt. Participants wore every day clothing to represent 

real life forensic scenarios. Clothing is shown to have little effect on assessment of body 

shape (Lucas, Kumaratilake and Henneberg 2014). Participants were asked to walk the 

length of the corridor and pause on a marker line placed on the floor about 5 m away 

and facing towards the camera. This position is comparable with the position the 

participants were in, in the high quality photographs. These photographs of participants 

are considered to be of a low quality as details of the face and body are not clearly 

visible. Therefore, all photographs of this quality are referred to as ‘low quality’ in this 

paper. For a comparison of high and low quality images used in analysis refer to figure 

4.  
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Figure 4: A comparison of high and low quality images. Note: the participants face has 

been blocked out for confidentiality reasons.  

 

All previously defined landmarks were marked on both the high and low quality 

images of the participants. The images were printed on photographic paper and 

landmarks were marked manually together with distances between landmarks. A total of 

10 anharmonic ratios were calculated for the body and face of each participant using the 

landmarks (Table 2). 
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Table 2. The ratios and corresponding landmarks applied to each of the participants 

(n=20). 

 

In order to apply the same ratios used in photographic analyses to the manual 

measurements, the distances between landmarks were calculated by subtracting one 

measurement from another, i.e. the distance AC for ratio 1 (table 2) is the distance 

between acromiale and tibiale. This was not measured directly. The distance, tibiale to 

base was subtracted from the distance acromiale, in order to obtain the distance 

acromiale to tibiale.  This allowed an accurate comparison to be made between each of 

the three settings; manual measurements, and the measurements from the high and the 

low quality photographs.  

In all three situations, measurements were repeated separately by another 

anthropometrist. This allowed calculations of errors to be made. The technical error of 

measurement (TEM) was used, as it is the most commonly used measure of error in 

anthropometry (Mueller and Martorell 1988). The interobserver errors were calculated 

between the two measurers. Calculation of the interobserver errors automatically 

included the intra-observer errors, as the 2 people who took the measurements did not 

do so at the same time (Gordon et al. 2010). The formula for TEM is as follows:  

 

 A B C D 
Ratio 1 Acromiale Trochanterion Tibiale Base 
Ratio 2 Metopion Nasion Subnasale Stomion 
Ratio 3 Nasion Subnasale Stomion Gnation 
Ratio 4 Acromiale Symphysion Tibiale Base 
Ratio 5 Vertex Suprasternale Symphysion Base 
Ratio 6 Tragion Suprasternale Symphysion Base 
Ratio 7 Vertex Tragion Suprasternale Base 
Ratio 8 Acromiale(L) Iliocristale(L) Iliocristale (R) Acromiale (R) 
Ratio 9 Iliocristale (L) Zygomatic (L) Zygomatic (R) Iliocristale (R) 
Ratio 10 Acromiale (L) Zygomatic (L) Zygomatic (R) Acromiale (R) 

164 
 



 

TEM =  ���D2� /2N 

Where D is the difference between two measurements of the same dimension of 

the same individual taken on two occasions and N is the number of individuals so 

measured (Stomfai et al. 2011; Perini e tal. 2005; Ulijaszek and Kerr 1999). 

Comparisons of participants with themselves and others, were done using a 

modified Euclidean distance. In cases of all comparisons, differences between the two 

measurements of the same person, for all traits (either ratios or single dimensions) were 

divided by 2*TEM. Only integers of results of divisions were reported, thus any 

differences less than 2*TEM became zeros. This allowed the reporting of differences 

exceeding 95% confidence range of errors. 

SPSS statistics and Microsoft Excel were used for all statistical analysis.  

 

Results 
 

Table 3 shows the means, standard deviations, coefficients of variation (CV) of 

the TEM and CV for individual dimensions, which were then used to calculate the 

ratios. There was a good range of variation within the sample with the largest standard 

deviation being for stature, which was 62.48 mm. The smallest TEM was for stature, it 

was 0.33% , which was 5.85mm. The greatest accuracy of measurements was 99.67%. 

The largest TEM was for the distance between the trochanterion to tibiale landmarks; it 

was 48.48mm or 11.08%. The largest CV TEM was 12% , which is for the distance 

between the subnasale and stomion landmarks. With the greatest TEM, the accuracy 

rate was still >88% for the most ideal conditions. This is comparable with other 

anthropometric studies21.  
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Table 3: Means, SD, TEM, CV TEM and CV for individual dimensions for manual measurements.  

 
 Mean SD TEM CV 

TEM 
CV  Mean SD TEM CV 

TEM 
CV 

Ratio 1      Ratio 6      
a-ti 936.2 50.3 23.0 2.46 5.4 t-sy 709.4 49.6 17.6 2.5 7.0 
tro-ti 437.5 45.0 48.5 11.08 10.3 sst-sy 527.6 44.1 22.8 4.2 8.4 
tro-b 940.4 45.3 33.6 3.57 4.8 sst-b 1441.2 55.8 14.5 1.0 3.9 
a-b 1439.0 61.8 6.1 0.42 4.3 t-b 1623.0 62.3 6.7 0.3 3.9 
Ratio 2      Ratio 7      
m-sn 92.7 6.2 4.2 4.54 6.7 v-sst 315.5 19.3 17.3 5.5 5.9 
n-sn 53.2 3.8 3.4 6.36 7.2 t-sst 181.7 18.9 15.5 8.4 10.3 
n-sto 73.9 5.3 3.9 5.25 7.3 t-b 1623.0 62.3 6.7 0.5 3.8 
m-sto 113.6 8.1 4.4 3.86 7.2 v-b 1756.7 62.5 5.8 0.2 3.6 
Ratio 3      Ratio 8      
n-sto 73.9 5.3 3.9 5.25 7.3 a-ic (LHS) 363.6 30.6 9.8 2.7 8.3 
sn-sto 20.7 3.4 2.5 12.00 16.5 ic-ic 314.5 37.6 12.3 3.8 12.0 
sn-gn 65.3 4.6 3.1 4.77 7.1 a-ic (RHS) 363.6 30.6 9.8 2.7 8.3 
n-gn 118.5 5.3 2.9 2.47 4.5 a-a 412.3 27.4 12.8 3.0 6.5 
Ratio 4      Ratio 9      
a-ti 936.2 50.3 22.9 2.46 5.4 ic-zy (LHS) 227.5 20.2 5.8 2.6 8.8 
sy-ti 410.6 36.5 33.8 8.24 8.9 zy-zy 141.2 5.3 2.5 1.8 3.6 
sy-b 913.4 43.0 21.2 2.32 4.6 ic-zy (RHS)  227.5 20.2 5.8 2.6 8.8 
a-b 1439.0 61.8 6.1 0.42 4.3 ic-ic 314.5 37.6 12.3 3.8 12.0 
Ratio 5      Ratio 10      
v-sy 843.1 51.2 20.5 2.43 6.1 a-zy (LHS) 276.7 15.4 7.0 2.5 5.6 
sst-sy 527.6 44.2 22.8 4.31 8.4 zy-zy 141.2 5.3 2.5 1.8 3.6 
sst-b 1441.2 55.8 14.5 1.02 3.9 a-zy (RHS) 276.7 15.4 7.0 2.6 5.6 
v-b 1756.7 62.5 5.8 0.33 3.6 a-a 412.3 27.4 12.8 3.0 6.5 
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Table 4 shows descriptive statistics of all ten ratios for all participants (n=20). 

The ratios have been calculated from the manual measurements, high quality photos and 

the low quality photos. The averages for each of the ratios were very similar between 

conditions, the largest difference was 0.53 for ratio 3, which was a difference of 30.7%, 

between the manual measurements and low quality photographs. Overall, the means did 

not differ significantly between ratios and conditions.  

In the ideal condition, ie. ratios calculated from manual measurements, the 

TEMs were equal to or only slightly below the standard deviation (SD). The greatest 

difference between a TEM and a standard deviation for manual measurements was 0.03. 

Therefore, it can be seen that even in the most ideal conditions, measurement errors 

were responsible for majority of the variation of a ratio. In both high and low quality 

images, the TEM was equal to or larger than the standard deviation.  

The CV TEMs shows the percentage of error for each ratio. There was a gradual 

increase in error between all three conditions eg. Manual measurements had the lowest 

error and low quality images had the highest error. This is to be expected. The largest 

consistent errors in all three conditions were seen in ratios 2 and 3 (Table 4).  

Considering that the manual measurements have comparable TEMs, SD, means 

and CV with other studies (Gordon et al. 2013) (table 3), manual measurements or their 

derived ratios will not be discussed further. 
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Table 4: Means, SD, CV, R values, TEM and CV TEM for all ratios under all three conditions. 

 

 Manual Measurements High quality photos Low quality photos 
 Landmarks Mean SD CV - 

ratio 
TEM CV - 

TEM 
Mean SD CV -

ratio 
TEM CV - 

TEM 
Mean SD CV- 

ratio 
TEM CV - 

TEM 
Ratio 1 a,tro,ti,b 1.40 0.07 5.05 0.08 5.86 1.36 0.11 7.82 0.11 7.82 1.33 0.19 14.54 0.21 15.81 
Ratio 2 m,n,sn,sto 1.14 0.03 2.79 0.03 2.40 1.17 0.09 8.01 0.10 8.01 1.22 0.18 14.58 0.16 12.88 
Ratio 3 n,sn,sto,gn 1.99 0.19 9.65 0.16 7.93 1.88 0.33 17.61 0.31 17.61 1.46 0.28 19.06 0.27 18.30 
Ratio 4 a,sy,ti,b 1.45 0.07 5.16 0.07 4.66 1.44 0.09 6.26 0.09 6.26 1.30 0.11 8.48 0.10 7.30 
Ratio 5 v,sst,sy,b 1.31 0.04 2.72 0.03 2.06 1.27 0.04 3.27 0.04 3.27 1.24 0.03 3.16 0.04 3.25 
Ratio 6 t,sst,sy,b 1.20 0.03 2.24 0.02 2.24 1.17 0.04 3.07 0.03 3.07 1.16 0.07 6.67 0.08 7.02 
Ratio 7 v,t,sst,b 1.61 0.09 5.28 0.07 5.28 1.71 0.24 13.88 0.23 13.88 1.58 0.16 10.49 0.15 9.51 
Ratio 8 a,ic,ic,a 1.02 0.02 1.58 0.01 1.58 1.01 0.02 1.87 0.01 1.87 1.16 0.21 18.26 0.18 16.00 
Ratio 9 ic,zy,zy,ic 1.16 0.05 3.91 0.02 3.91 1.16 0.06 5.13 0.04 5.13 1.17 0.17 15.10 0.13 10.23 
Ratio 10 a,zy,zy,a 1.32 0.03 2.52 0.02 2.52 1.27 0.09 7.27 0.10 7.27 1.33 0.15 11.25 0.14 10.83 
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An Euclidean distance was used to establish whether an individual could be 

correctly identified from the ratios calculated using low quality and high quality images, 

when the errors were taken into account. In an ideal situation, only the image of the 

participant that is compared with another image of the same participant should have no 

difference, i.e. 0, between measurements, after the TEMs were considered. Anything 

above a zero difference is concluded not to be a match for that person. Table 5 shows 

that individuals are being falsely identified as others, for example Participant 1(P1) and 

Participant 2 (P2) have a value of zero; this indicates that when errors are considered, 

there is no difference between them. At the same time, individuals who are themselves 

i.e. P1 and P1 are considered different, because there is a substantial difference between 

them in measurements from high quality and low quality images, which exceeds 

measurement errors. Participants were incorrectly identified 64.25% of the time.  

Unlike a traditional Euclidean distance matrix, which is symmetrical, this one 

compares two different variables (i.e. high quality and low quality images), therefore  a 

high quality image compared with a low quality image is above the diagonal, while 

below the diagonal is a low quality image compared with a high quality image. These 

variables were compared to establish whether the same person could be correctly 

identified from ratios when errors are considered and shown in images of different 

quality, as seen in real life forensic cases. This example shows that ratios do not have 

enough discriminatory power to differentiate between the correct and incorrect matches. 

This is further illustrated by the results seen in Table 4, which shows little difference 

between the average ratios for all face and body measurements 

 

 

 

 
169 

 



 

Table 5: A Euclidean distance between all males (n=20) of all ten ratios taken from high and low quality images by the same person. A measure 

of whether the ratios of each individual exceeds two times the TEM for that particular ratio.  

Note: A ‘0’ indicates a match, anything greater than or equal to 1 indicates a non match.

 
        

High quality 
          Subject 

number P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 
 P1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
 P2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
 P3 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 2 1 0 0 1 
 P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
 P5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
 P 6 0 0 1 0 1 1 1 1 1 0 1 1 1 0 1 2 1 1 1 1 

L
ow

 q
ua

lit
y P7 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

P8 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 
P9 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 0 
P10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 
P11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 
P12 1 0 0 0 1 0 0 0 1 1 1 1 0 0 1 2 1 1 1 1 
P13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
P14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 
P15 0 0 0 0 1 1 1 1 2 1 3 1 1 1 0 2 1 1 1 1 
P16 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 
P17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
P18 0 1 0 0 1 0 0 0 0 1 1 0 1 1 1 1 1 0 0 1 

 P19 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 
 P20 1 1 1 1 1 1 1 1 2 2 2 2 1 1 2 2 2 2 2 1 
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Individual dimensions were analysed, as the ratios did not have the power to 

discriminate between individuals (tables 4 and 5).The differences between measurements of 

the same individual taken by two people was analysed to examine whether it exceeds the 

TEM.  Also, the measurements of each individual were compared with other individuals 

taking TEMs into account. High quality images were chosen for this exercise, as they 

represent the most optimal conditions for taking measurements from images. Table 6 shows 

that the number of traits (out of 40) differed by more than two times the TEM for each 

participant compared with themselves and all others, when the measurements were made 

from high quality photographs by two researchers. In reality, if an individual is compared 

with himself, there should be no differences which exceed the TEM, however, the findings 

presented in Table 6 contradicted this. The lowest difference between any participant and 

themselves was 2, i.e. 2 out of 40 traits differed by more than 2 times the TEM for that 

particular trait. This is not enough to make an identification of an individual. In some cases, 

the differences between a participant and themselves exceeded the differences between that 

particular participant and someone else, for example, P3 compared with P6, indicated  that 

participant 3 and 6 are more likely to be identified as the same person than participant 3 is 

with himself. Results show that 34 out of the 40 traits did not exceed the acceptable error 

range. This was an accuracy of 85% once the errors were considered.  

Even under optimal conditions, results show that measurements taken from images are not 

reliable, the question is, what traits can be reliably measured, if there are any?  

Table 7 shows the number of times that a particular trait measured from high and low 

quality photographs differed by more than two times the TEM in the same individual. The 

trait with the largest number of differences was nasion-stomion length with 11 out of 20 

differences, i.e. a difference of 55%. The trait with the lowest number of differences was the 

acromiale-zygomatic on the right side with 3 out of 20 differences, i.e. a difference of 15%. 
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Both high and low quality images had approximately the same total number of differences 

across all traits, high quality images had 119 differences, while low quality had 123 

differences. Overall, results show that taking any measurement from any quality image is 

unreliable.
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Table 6: The number of traits (out of 40) that differ by more than 2 times TEM for each participant compared with themselves and all others as 

measured from high quality photographs. This shows a comparison between participants as measured by TL (rows) and JK (columns). 

Subject 
number P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 

P1 7 36 29 37 32 29 32 30 33 32 29 28 34 35 35 27 33 28 27 31 
P2 34 7 19 7 12 13 14 18 5 18 20 25 16 9 12 16 1 21 25 10 
P3 32 19 3 17 6 5 4 6 11 9 11 11 7 15 8 4 12 8 20 3 
P4 32 20 8 17 1 10 3 14 18 10 12 19 4 8 10 10 13 10 23 2 
P5 33 22 9 18 3 13 6 13 16 13 7 17 3 9 10 6 14 10 24 2 
P6 29 22 1 22 6 4 5 8 14 11 16 17 6 19 6 9 17 9 23 10 
P7 30 28 4 26 12 9 3 3 24 6 14 12 12 23 15 7 22 10 18 17 
P8 29 26 7 25 11 12 5 8 21 10 14 11 13 18 17 4 22 10 19 12 
P9 37 15 18 14 15 14 17 18 6 19 20 23 15 11 13 15 5 19 27 11 
P10 33 22 10 20 8 5 5 4 13 5 15 12 14 13 11 11 13 17 20 9 
P11 33 24 12 20 14 16 4 11 19 11 3 14 8 18 16 6 19 7 18 12 
P12 33 26 17 24 20 17 13 11 23 10 16 6 20 24 22 16 21 20 15 20 
P13 33 24 14 19 3 17 8 15 20 14 11 15 2 13 9 10 19 7 26 13 
P14 35 21 18 18 9 12 14 18 16 17 23 21 18 8 15 22 14 21 27 9 
P15 36 23 8 19 3 11 8 15 19 11 9 21 6 7 8 12 13 12 26 8 
P16 32 23 9 21 6 10 1 6 19 5 10 13 9 16 11 5 15 11 18 10 
P17 37 18 20 18 13 18 17 18 13 15 17 21 18 13 20 18 2 21 20 13 
P18 32 22 8 20 8 12 1 9 19 11 4 11 5 16 13 4 16 9 18 9 
P19 30 26 22 26 23 20 21 20 26 16 23 19 22 26 25 26 24 27 9 24 
P20 36 21 11 17 2 12 12 14 18 14 9 17 10 6 13 15 13 12 20 4 
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Table 7: The number of times a dimension differed by more than two times TEM in an 

image of the same individual measured twice on high and low quality images. 

 

Discussion  
 

Previous studies which used ratios in an attempt to identify individuals 

(Kleinberg and Siebert 2012; Kleinberg, Vanezis and Burton 2007; Moreton and 

Morley 2011) have used only the face based on an empirically unsubstantiated belief 

that the face is the most variable part of the human body and thus is ideal for 

identification.  Lucas and Henneberg (2015a) found that the body was in fact more 

variable than the face and is superior for identification purposes. Therefore, this paper 

investigated the use of ratios on the body and the face. The largest consistent errors 

between all three conditions were for the ratios that take measurements of the face 

 High quality 
( out of 20) 

Low quality 
(out of 20) 

 High quality 
(out of 20) 

Low quality 
(out of 20) 

Ratio 1   Ratio 6   
a-ti 2 3 t-sy 3 3 
tro-ti 4 5 sst-sy 2 4 
tro-b 5 4 sst-b 4 3 
a-b 2 4 t-b 3 4 
Ratio 2   Ratio 7   
m-sn 3 2 v-sst 4 2 
n-sn 3 4 t-sst 3 3 
n-sto 7 4 t-b 3 4 
m-sto 2 5 v-b 2 2 
Ratio 3   Ratio 8   
n-sto 1 3 a-ic (L) 2 2 
sn-sto 4 1 ic-ic 4 2 
sn-gn 3 4 a-ic (R) 3 1 
n-gn 4 2 a-a 3 2 
Ratio 4   Ratio 9   
a-ti 2 3 ic-zy (L) 1 4 
sy-ti 4 1 zy-zy 4 3 
sy-b 4 4 ic-zy (R)  1 4 
a-b 3 3 ic-ic 4 3 
Ratio 5   Ratio 10   
v-sy 2 4 a-zy (L) 3 4 
sst-sy 2 4 zy-zy 4 3 
sst-b 4 3 a-zy (R) 1 2 
v-b 2 2 a-a 2 3 
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(ratios 2 and 3). In both ratios, there was a difference of approximately 10% between 

manual measurements and low quality images. Details of the face are small and cannot 

be clearly seen in low quality images (Chen et al. 2010). Thus, the errors are higher as 

placement of anthropometric points accurately is difficult. On images, the head is one of 

the smallest parts of the body; therefore any inaccuracy in the placement of one point is 

reflected in the placement of all others as the relative distance between facial points is 

small.  The smaller the distance, greater will be the chance of misplacing an 

anthropometric landmark. An example of this can be seen in Table 3, where the highest 

TEM is for the distance between the trochanterion and tibiale landmarks, which was 

48.8mm, but the largest percentage of error was found when measuring the distance 

between the subnasale and stomion, which was only 2.5 mm.  

 

Moreton and Morely (2011) state that proportions should only be used ‘to test 

for elimination’. The example presented in table 5 compares individuals with each other 

and themselves, and the individuals could not be excluded based on ratios.  This is an 

important finding, as it illustrates the ineffectiveness of the proportions for any step in 

the identification of an individual.  This is consistent with the findings reported by 

Moreton and Morely (2011). This was also tested on single dimensions and results were 

similar (table 6). 

 

Porter and Doran (2000) have claimed that only horizontal proportions should be 

used, as the proportions in the vertical plane undergo image distortion. Although, this 

was tested on facial proportions, the same should hold true for the body proportions. 

Moreton and Morley (2011) showed that all proportions vertical or horizontal were 

affected by image distortions. However, the use of the anharmonic ratio in the current 

study, should remove any effects of angular and rectilinear image distortions.  Even 
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though, there was no image distortion, findings of the current study indicated that all 

anharmonic ratios whether taken from the face, body, horizontally or vertically using 

high or low quality pictures, there was an error range (Table 4) that deems their use 

unreliable for forensic purposes.  

 

The anharmonic ratio uses a combination of four measurements. Each of those 

measurements is taken with an error, even in cases where the error is small i.e. within 

the accepted error range, as seen in the manual measurements (Table 3), the error of the 

ratio is approximately the same as the standard deviation. When measurements with an 

error are combined, their errors are also combined. Thus, any variation in the ratio is 

due to errors and not actual human biological variation. This could result in someone 

being identified as someone else (Table 5). In real forensic cases, this outcome would be 

disastrous. This makes ratios an unacceptable tool for the identification of individuals 

from images.   

Conclusion 
 

The error rates of dimensions measured from images increase as the quality of 

the images decreases. Due to the high error rates, ratios are not considered as a reliable 

method for the identification of individuals. This paper shows the error rates for ratios 

and single dimension measurements taken from high and low quality images, in both 

cases the errors exceed those of manual measurements. Therefore, taking measurements 

from images generate high error rates and make them unreliable in the identification of 

an individual, particularly in the court of law. Furthermore, they do not meet the 

Daubert Criteria.  
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Discussion 
 

The manuscripts in this thesis all have a common theme, establishing the 

usefulness and reliability of taking measurements of the human body to be used for 

image identification.  

It was established that interval scale measurements of the human body could be 

taken from images (manuscript 1). Body dimensions can be measured directly, or, be 

predicted based on others (authors used upper limb length to predict stature). Prediction 

of dimensions has particular significance in real life forensic cases when the entire body 

cannot be seen on an image. The reliability of these measurements was discussed using 

bias and technical error of measurements. Measurement errors were calculated between 

individuals of different experience levels in locating anthropometric points on the 

human body. A 95% accuracy was reported when estimating stature based on upper 

limb measurements. Although the accuracy rate is impressive and accepted 

scientifically, in reality, it would not be sufficient for identification from images. An 

inaccuracy of 5% when applied to the average stature can be calculated at 

approximately 80mm. If these errors are taken into account and considered, the suspect 

pool would be widened significantly (manuscript 4). Reported error rates are not 

optimal for real life forensic cases. Even if more measurements are used in an attempt to 

isolate an individual (as suggested in manuscript 4), if all measurements are taken with 

the same error the probabilities associated with achieving singularity would be minimal.   

Whilst testing the accuracy of taking measurements from images (manuscript 1) 

it was suggested that knowledge of the human body and training in locating 

anthropometric points, improves results. This finding is further substantiated with the 

results presented in manuscript 5 which show minimal measurement errors between 

three trained anatomists. Although the methods in these two manuscripts are different, 
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the finding remains the same. This finding illustrates the need for biological 

anthropologists to continue their role in forensic identification from images.  

Different types of clothing were used to investigate their effect on the placement 

of anthropometric points (manuscript 1). It was found that the black shirt had the lowest 

error, the paper suggested that this was because of gravity acting in a way that allows 

the acromiale to easily be observed. However it has also been suggested that assessors 

were inaccurate with garments other than the black shirt because they were using the 

seam of the sleeve to indicate the position of acromiale. The seam is not visible in the 

black shirt which produced more accurate results. This point warrants discussion, as the 

leather jacket was a single dark colour like the black shirt it is unlikely that assessors 

were using other cues in their location of points. However this is an aspect of that study 

which could benefit from further research which studies outside cues in identifying 

anthropometric points. The results of this paper found that thicker garments produced 

higher inaccuracies. However, with repetition these errors were minimised which 

further supports the role of experienced anatomists in identification from images. The 

findings from manuscript 1 directly impacted the method in manuscript 5. Participants 

were imaged using CCTV surveillance while clothed, as it was found that clothing had 

little impact when persons with anatomical knowledge were placing points on the body.  

This thesis answered the question, ‘how useful is anthropometry of the entire human 

body in the identification of individuals’. Only the use of craniometry in the 

identification of individuals has been previously studied (Schimmler, Helmer and 

Rieger 1993). In a study by Schimmler and colleagues (1993) a complex method was 

used to analyse the individuality of craniometric measurements. The authors concluded 

that each individual had their own set of craniometric measurements which did not 

match those of any other in the study. However ,this study only used a sample of  95 
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skulls. The study by Schimmler and colleagues (1993) presented a very complex 

method to analyse individuality. The overall goal of anyone researching forensic 

methods should be to present a method which can easily be understood and thus used in 

court proceedings. A study by Goldstein (1971) used categories to describe the 

individuality of the human face, this study only used a sample of 256 faces. Much like 

the study by Schimmler (1993), Goldstein did not take into consideration correlations 

between traits and used a small sample. Manuscript 2 presented a simple method which 

can be applied to large databases of human measurements. The Interval scale of 

measurement was chosen because it is deemed more reliable in court proceedings. 

No study which has assessed the usefulness of anthropometry in isolating an individual 

from a sample has used a combination of face and body measurements, nor compared 

the two. A recent literature review was conducted by Gibelli et al. (2016) which show 

that the only anthropometric dimension used in image analysis is base to vertex 

(height). Measurements of the body have not previously been used in isolation studies. 

Manuscript 3 assessed which measurements are better for identification (the face or the 

body), it ultimately concluded that the body is better at isolating an individual.  

Although neither manuscript 2 or 3 o used measurements taken from images, it is a 

significant finding for image identification. It can assist future researchers by 

identifying the parts of a human with the highest identification rate which can then be 

tested using image identification technologies. Although both manuscripts 2 and 3 were 

successful in achieving singularity using eight or less measurements, the smallest 

amount of measurements needed is preferable. Manuscript 1 presented a number of 

images where the full body was not visible, this is a true representation of the types of 

images captured using CCTV. The theoretical findings of manuscripts 2 and 3 are 

extremely useful as not all parts of the human body can be seen on an image and thus 
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measured. Therefore priority of measurements should be ranked from largest to 

smallest.  

The overall findings of the first four manuscripts are that the human body is an 

extremely useful tool for identification; however its usefulness as a biometric tool 

depends on the accuracy of technology which can measure distances from images. 

These technologies are still being developed and are not sufficient for real life forensic 

identification. Therefore the authors attempted to bypass the errors associated with 

technology by introducing a simple mathematical ration to assess the human body. 

Manuscript 5 failed to produce a reliable method which can be used to identify 

individuals from images, even when using the face and body. Even though all of the 

assessors in manuscript 5 were trained anatomists which produced smaller errors, the 

method of applying ratios could not achieve singularity. This is because ratios of body 

dimensions (proportions) vary less than sizes of bodies, while errors of individual 

measurements become compounded when ratios are calculated. Thus less variation and 

bigger errors produce less opportunity for discrimination.  

In summary, it can be suggested that there needs to be a further collaboration between 

biological anthropologists and computer analysis experts. Knowledge of the human 

body and its usefulness as a biometric tool has helped to develop the methods for image 

identification. However more work needs to be done to minimise the errors produced by 

measurement technologies.  
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Appendix 1 : Reprint of ‘Effect of garments on 
photoanthropometry of body parts: Application of stature 
estimation’. 
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1. Introduction

The use of closed circuit television videos (CCTV) in crime
control and prevention has rapidly grown in the present security
context. As a counteraction, criminals often disguise their faces to
preclude identification. When a person lies within close proximity
of a camera, their facial features can be acquired with high fidelity.
Reliable identification is then achievable, for instance, by finding
the smallest distance between the outline of anatomical landmarks
on the target face and the corresponding outline of 3-D faces in a
gallery [1]. This assumes that the target face is only partially
masked and, depending on the viewing geometry and visible facial
components, different anatomical points must be identified every
time. Furthermanual intervention is required to register (orientate
and scale) the outline of the target face to that of each 3-D face. This
task is extremely labour intensive and time consuming the larger
the database is.

For the majority of surveillance systems though, the quality of
the recorded imagery remains poor. The cost associated with
better optical and digital components is often considered too high

so many institutions opt for quantity rather than quality [2].
Recorded CCTV images thus display optical distortions, object blur,
wrong colours and have low resolution which makes fine details
invisible [3,4]. To circumvent these issues, attempts have been
made using anthropometry to identify individuals based on larger
and more easily observable aspects, such as body shape [5,6]. The
use of anthropometric measurements have been included in the
description and identification of individuals from photographs as
early as the 19th century [7,8] and today they are combined with
image analytical techniques [9–13].

When looking at body shape, the choice of garment has been
reported to alter the perception of the human body [14]. In
particular, the colour of clothing is noted to have an effect on body
appearance. In a survey of male subjects [15], it is reported that
black is chosen when trying to minimise body size, and light
colours, such as white, are worn to maximise body shape
definition. The optical illusions presented by patterns such as
horizontal stripes are considered to have a contradictory effect by
either making the body appear wider and shorter [16] or slimmer
and taller [17]. The size of clothing can also affect an individual’s
perception of body shape, presenting the wearer as larger or
smaller than normal depending on the fit of clothing to their actual
body parts [18]. Latest research using LIDAR technology [19] has
demonstrated that gender classification can be achieved with an
accuracy of 70–80% for subjects wearing three clothing styles
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(summer, fall, winter). Another recent study [20] has reached
similar conclusions, that clothed individuals seen in CCTV images
can only be matched above random expectation for a general body
shape. These two lines of research have proved independently that
the acquisition of body descriptors from images is largely deceived
by clothing whether it is obtained from automatic machine
learning or based on human perception. Although this statement is
intuitive, the challenge is to acquire those descriptors with highest
precision from a range of scenarios and body postures.

Our criterion for person identification relies on estimating the
body height or stature. When the entire body is visible, image
metrology techniques and virtual scene superimposition can be
used tomeasure stature directly from the top of the head to the feet
[21–23]. In urban scenes though, pedestrians are often partially
occluded in a way that prevents application of such techniques. In
other circumstances, only a single image of the person is available
rather than a video so stature cannot be derived from gait analysis.
Recent research has thus looked at reconstructing the total body
height from body parts measurements [13,24]. Clothing style then
affects the accuracy to which this may be done. The work in this
paper quantifies the effects of garments on photoanthropometry of
body parts by first measuring the upper limb length of a person,
predicting their stature by linear regression from this length and
finally assessing errors from the obtained stature.

In all error functions, part of the error is induced by either the
human intervention, when manually locating anthropometric
points, or by automatic body part detectors and classifiers. This
paper focuses on assessing the human error in the process. Initial
laboratory experiments have been conducted on nine male
participants wearing no shirt, a black shirt, a horizontally striped
shirt and a padded leather jacket. Each of these garments is
specifically chosen to evaluate how garment colour, pattern and
type alter an assessor’s perception on body landmark location.
Subsequent experiments estimate the errors for eighteen unin-
formed male subjects observed in an uncontrolled (airport)
environment. Three assessors have examined the videos and
marked points to measure the upper limb length of each subject.
The assessors come with varying knowledge in anatomy and
computer vision which provides valuable feedback on the spread
of errors.

The main contribution of this research is to quantify the
variations in placing critical body landmarkswhen these points are
covered by different garment styles (Section 3). Seven error
measures are described to estimate those variations and their
statistical significance. The second contribution is the overall
framework (Section 2) which includes robust image analytical
techniques. In particular, closed-form formulae are proposed for
computing the maximum likelihood estimate of the upper limb
length (Section 2.2). This framework is advantageous especially for
its application to uncontrolled scenes, independence from subject
posture and flexibility of integrating other body part measure-
ments as necessary. Contrary to many identification techniques
based on facial recognition, the proposedmethod can be applied to
low resolution images and offers limited user interaction (only a
few clicks are necessary). This comes as a result of the particular
choice of anthropometric landmarks which are distinguishable
under arbitrary perspective camera views and suppress the need
for intensive imagemanipulation or alignment. The achievement is
that, for stature estimation, average accuracy (or recognition rate)
is in excess of 96% for the worst assessor when compared to truth.

2. Stature estimation

For some years now, researchers in computer vision have tried
to find appropriatemarkers for soft biometry retrieval from videos.
Most notable is the work on estimating a person’s stature. When

the scene is accessible for surveying, a virtual model can be created
and superimposed onto the original imagery [21]. As for face
recognition, human stature can accurately be measured when
subjects walk in the vicinity of the camera. In general though,
alternative methods are needed in cases where the environment is
more challenging (e.g. outdoors), surveying is not possible (e.g.
hazardous trafficking area) or subjects are remote from the camera
and not standing in perfectly upright position. Besides, whether
the person appears in a single frame or is seen in motion through a
video sequence, great difficulties arise in precisely extracting the
top of the head (vertex) and heel position on the ground [24–28]. In
all undertakings, the process is image-driven, relying on some
variant of silhouette extraction to define the head and feet
locations. This resulted in different authors having different
definitions for how these points should be retrieved from images.
Recent research [24] has settled some of these questions, however,
when measuring several partial body dimensions to obtain
complete stature, the location of body part markers remains
debatable.

In contrast, the scheme we propose is evolved from a well-
defined anatomical model of body landmarks extensively tested in
anthropological research. The uncertainty in extracting the land-
marks from images becomes of prime importance before carrying
out anymeasurement. This is examined in our experiments as well
as its effect on a person’s stature estimation. Forensic scientists and
anthropologists routinely perform measurements of long bones to
reconstruct total body height from regression equations that relate
those body parts to the human stature [29,30]. Such reconstruc-
tions have been widely successful and achieve about 95% accuracy
on body height prediction [31]. Statistically, the upper limb length
relates significantly to the human stature and is commonly
observable andmeasurable in CCTV videos. Besides, its length does
not undergo any diurnal change unlike stature. It is indeed a well-
recognised phenomenon that stature begins to decrease immedi-
ately after rising in the morning and further loss continues
throughout the day up to a maximum of 28.1 mm [32]. A person

[(Fig._1)TD$FIG]

Fig. 1. Upper limb model. The user-marked points are shown in red and computed

ML points in green.
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should be measured preferably in the afternoon to reduce the
variation in stature as loss of height occurs most rapidly in the
morning [32,33]. Since this constraint is not realisable in general
surveillance context, the upper limb length presents a good
alternative to infer stature.

2.1. Upper limb model

The upper limb length of a subject is measured as

u ¼ sgn ðha � hdÞ � ðha � hdÞ;

where sgn (x) stands for the signum function of a real number x, ha
is the height from a ground point to the acromiale (the shoulder
point) and hd is the height from the same ground point to the
dactylion (the tip of themiddle finger). These heights are obtained
from an image by asking a user to place three markers
corresponding to the acromiale, dactylion and a point on the
ground. The use of the signum function enables to mark the
acromiale and dactylion in any order of preference. One
assumption here is that these two points are situated at the
same depth in the scene and therefore define an upright vertical
segment to the ground. Their depth is estimated as the distance
from the third point placed on the ground and a world origin.1

Once the acromiale and dactylion points are set, their correspond-
ingMaximum Likelihood (ML) location is computed such that the
ML points are aligned with the vertical scene direction, see Fig. 1.
Details of the alignment procedure are deferred to the next
section.

To assist the user in choosing the ground point, a guide line is
drawn through the ML points. The ground marker can then be set
along the line where the heels of the subject are touching the floor.
A short procedure is also applied to ensure that this point lies on
the guide line perfectly. With the three collinear points, heights ha
and hd are orthogonal to the ground and can be calculated as
described in Section 2.3.

2.2. Maximum Likelihood estimation of limb endpoints

Image perspective, subject posture and user interaction mean
that the upper limb segment will rarely stand in the vertical scene
direction required to measure its length. This limitation is
addressed by computing new endpoints which are aligned with
the vertical vanishing point, vz, obtained during calibration.

Suppose that the input markers are given by two points x = [x1,
x2]

T and x0 = [x01, x02]
T with associated 2 � 2 isotropic Cartesian

covariancematricesLx andLx0 defining perturbation around x and
x0 by circles of radius r and r0, respectively. The Maximum
Likelihood estimates x and x0 of input markers x and x0 can be
determined by minimising the squared Mahalanobis distance

d2Mahal ¼ ðx� xÞTL�1
x ðx� xÞ þ ðx0 � x0ÞTL�1

x0 ðx0 � x0Þ

subject to the alignment constraint vTz l ¼ 0; with l ¼ ½xT ;1�
T
�

½x0T ;1�
T
. This is a constrained optimisation problem which can be

solved in closed-form using the Lagrange multiplier method.

For vz ¼ ½v1; v2; v3�T and z ¼ ½r; r0;xT ;x0T ; vTz �
T
; it can be shown that

l ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½jðzÞ�2

q

jðzÞ
�v1v�1

3 ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ½jðzÞ�2

q
Þ � v2v�1

3 jðzÞ

2
664

3
775;

where the real-valued rational function j : R9 7!R has the form

jðzÞ ¼ 2
r0d1d2 þ rd01d

0
2

r0ðd21 � d22Þ þ rðd012� d022Þ

with di ¼ xi � viv�1
3 ; d0i ¼ x0i � viv�1

3 ; i ¼ 1;2: The previous for-
mulae hold as long as the vertical vanishing point is not ideal
(v3 6¼0).

In our implementation, anisotropic Cartesian covariances L̃x

and L̃x0 are first calculated [34] and then employed to yield

r ¼ jdetðL̃xÞj1=4 r0 ¼ jdetðL̃x0 Þj1=4:

Writing l ¼ ½lx; ly; lw�T , the ML estimates of x and x0 are given by the
Cartesian coordinates

x ¼
x1l

2
y � x2lxly � lxlw

l2x þ l2y
;
x2l

2
x � x1lxly � lylw

l2x þ l2y

" #T
;

x0 ¼
x01l

2
y � x02lxly � lxlw

l2x þ l2y
;
x02l

2
x � x01lxly � lylw

l2x þ l2y

" #T
:

These points are taken as the true locations of the upper limb
endpoints. The above derivation differs from its original form in
[22] in that critical entities are readily programmable as given here
with some of them explicitly calculated in Cartesian rather than
projective coordinates to prevent potential errors.

2.3. Upper limb length

Without loss of generality, suppose we wish to determine the
actual height ha from the ground point G to the acromiale A. Let g
and a denote their corresponding image points, with a the ML
estimate of the user-defined acromiale. Assuming a perspective
projection camera model, these relationships may be written as

l1½aT ;1�
T ¼ P ½AT ;1�T ;l2½gT ;1�

T ¼ P ½GT ;1�T ;
n

where P encodes the projection matrix and the li’s some
perspective scale factors. The above system of equations can be
expressed in matrix form as MA = b . This follows from using the
assumption that A and G are at the same depth, so one may write
A = [A1, A2, ha]

T andG = [A1, A2, 0]
T which provides four equations in

three unknowns. The least-squares solution bA ¼ ½MTM��1MTb
gives ha as the third component of bA.

Height hd can be calculated in a similar manner. The upper limb
length ensues from the formula given in Section 2.1.

2.4. Anthropometric stature prediction

Anthropometric data were collected from 109 adult males
resident in Australia. These included upper limb length and body
height measured in accordance with the Martin’s Technique [35]
and in compliance with the International Standards Organisation
(ISO 7250). Two linear regression techniques, namely the
Ordinary Least-Squares (OLS) and Reduced Major Axis2 (RMA),
can be applied to these data to predict stature from upper limb
length.

1 The world origin is chosen on the ground during camera calibration. 2 RMA is also known as the Total Least-Squares method.
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If u and s denote the upper limb length and stature respectively,
both expressed in millimetres (mm), then

OLS : s ¼ 1:4052uþ 678:74;
RMA : s ¼ 1:7435uþ 413:94:

The variances associatedwith the OLS and RMA stature predictions
are 48.5 and 50.6 mm, respectively.

3. Experiments

Clothingeffects arefirst examinedunder controlled conditions ina
laboratory (Sections 3.1–3.3). Various qualitative measures are
calculated to evaluate the errors in landmark placement and
differences between assessors. Visual influence of garment styles is
deduced from those errors. Section 3.4 reports the results when our
technique is applied to uninformed subjects in an unconstrained
(airport) scene. In all laboratory tests, only theOLS regressor is used to
predict stature from upper limb length. The RMA method is
temporarily discarded because RMA statures are linearly related to
OLS ones and therefore would reveal similar trends. RMA is used in
Section 3.4 on every-day life surveillance imagery taken in an airport.

3.1. Laboratory experiments overview

3.1.1. Laboratory set-up

Nine adult male participants have been recruited within South
Australia. Each of them is made to wear a pair of surgical pants,
shoe coverings, a cap and a face mask to eliminate identifying
features. This strategy also intends to focus the assessors’ attention
on the upper body with no other distractions. Participants are
recorded using a CCTV camera (axis p3304 with a resolution of
1280 � 800 pixels) in the Bioskills laboratory of theMedical School
at The University of Adelaide. The camera is fixed to the ceiling at a
height of 2.5 m from the floor. Still photographs are extracted from
the videos and calibrated using the technique in [36]. Each
participant is standing approximately 8 m from the camera shown
in either an anterior or posterior view. They are imaged four times
wearing no shirt, a black shirt, a horizontally striped shirt and a

padded leather jacket (n = 36 photographs). Fig. 2 shows the
garments on a participant. In order to reduce the influence of
diurnal variation on stature, the men have been measured and
recorded in the afternoon. This provided an estimate of their ‘‘true’’
stature. The quotationmarks are used because although every care
has been taken to minimise the errors in true statures, it was
reported that some may still exist [37].

Several challenges became apparent when analysing the
images. Despite instructing the participants on the correct pose
to hold, they are often slouching or leaning to one side, their upper
limb is slightly bent and not straightened out, their hands are
curled up and not fully opened, their feet are not together but
separated (Fig. 3). These various postures do not adhere to the
correct anatomicalmodel and therefore introduce errors. However,
they offer realistic conditions as would be encountered in real-life
CCTV images, which is important.

3.1.2. Assessors

Three assessors have viewed each of the photographs and
marked the three points as described in Section 2.1. Their level of
experience in anatomy can be ranked as expert, trained and novice.
The ‘‘expert’’ has over forty years of experience studying and
measuring the human body and is employed as a Professor of
Anatomical Sciences, teaching students as well as conducting
research in the field. The person who is referred to as ‘‘trained’’ is
educated in the field of Biological Anthropology and has three
years of experience in measuring and studying the human body.
The ‘‘novice’’ assessor, although expert in computer vision gait
analysis, has limited experience in defining a person’s anatomical
features. The broad range of expertise is valuable for observing the
variations of errors.

In the experiments, assessors only have a single attempt at
marking points for each participant. This guarantees integrity in
revealing the effects of garments on landmark placement. It also
means that error values can improve if an assessor could mark
points repeatedly. Assessor 2 was chosen to complete the task
twice in order to calculate the intra-observer error. The landmark
positioning took just over an hour for each assessor to go through
the 36 images; assessor 2 was given a two-hour break in between

[(Fig._2)TD$FIG]

Fig. 2. Anterior views of the same male in four different types of wear. (a) Shirtless; (b) black shirt; (c) striped shirt; (d) padded jacket.

[(Fig._3)TD$FIG]

Fig. 3. Sample images of feet position for different participants. (a) Correct anatomical position; (b–d) incorrect pose.
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repeats in order to reduce the effects of fatigue andmemory on the
task.

3.2. Error analyses for three uncertain markers

The Technical Error of Measurement (TEM) is a suitable quality
measure to assess the difference between stature measurements
[37]. Several such TEMs are described in the following sections. In
addition, the bias between assessors’ measurements and the
significance of variances between TEM values are examined. In
total, seven tests are presented to understand how errors fluctuate
under the influence of landmark positioning and garment style.

3.2.1. Comparison to truth

The first TEM evaluates the discrepancy between all predicted
statures and their ‘‘truth’’ values. It is given by the formula

TEMtruth ¼ 1

2n

Xn

i¼1

ðsi � siÞ2
 !1=2

;

where n is the total number of test images, si and si stand for the
true and predicted statures, respectively. The assessors produced
TEMs as shown in Table 1.

In our model, the total error on stature prediction stems from a
combination of the errors in placing the anthropometric points,
calibrating the camera and the OLS regressor. Given that the
variance for OLS is estimated at 48.5 mm, these errors are within
that threshold and thus very encouraging. Considering the worst
score and comparing to the average participant’s height of
1758 mm yields an accuracy in excess of 97%. For the best TEM
score, the accuracy reaches over 98%.

3.2.2. Inter-observer error

An inter-TEM is used to measure the extent to which
predictions from assessors differ from one another:

TEMinter ¼
1

nðk� 1Þ
Xn

i¼1

Xk

j¼1

s2i; j �
ð
Pk

j¼1 si; jÞ
2

k

2
4

3
5

0
@

1
A

1=2

;

where si,j is the i-th predicted stature obtained by the j-th assessor
and k refers to the total number of assessors (here k = 3). Table 2
shows the values obtained for different selections of assessors.

More experienced anatomists (assessors 1–2) have a lower TEM
than less experienced anatomists (assessors 2–3). So, these results
confirm the assessor’s experience in anatomy.

3.2.3. Intra-observer error

Assessor 2 has performed the point marking twice for all nine
participants. This allows the intra-TEM to be measured as

TEMintra ¼
1

2n

Xn

i¼1

ðs1i � s2i Þ
2

 !1=2

;

where s1i and s2i are the predicted statures obtained in the first and
second round of marking, respectively. The intra-TEM may be
interpreted as an indicator of the measurements’ reliability. As
measurements are repeated, some variations are initially expected
until a point where the error is reduced to a small value and
progress can no longer occur. When the intra-TEM stagnates, one
can be confident about the predicted statures. For assessor 2, the
TEMintra is found to be equal to 35.1 mm. This value suggests that
possible improvement of the landmark positioning can be made.

3.2.4. Assessor’s bias

The bias between two assessors placing markers can be
quantified as

biasa�b ¼ 1

n

Xn

i¼1

ðsai � sbi Þ;

where sai and sbi are the i-th predicted statures obtained from
assessor a and b, respectively. The variables a and b take distinct
values in the range 1,. . .,k. Results are summarised in Table 3.
Again, the more experienced anatomists (pair 1–2) recorded much
smaller bias than less experienced ones (pair 1–3). Looking at pair
1–2, the positive value for the bias means that on average the first
assessor predicted taller statures than the second one. A similar
reasoning can be deduced regarding the other two pairs.

3.2.5. Effects of garments

TEMtruth provides an error measure which is too generic and
does not reveal the effect of a particular garment on the assessors’
ability to mark the required points. The analysis in this section
addresses this limitation. First, the inter-TEM is calculated by
including the measurements that only relate to a specific clothing
style: (a) all participants are shirtless, (b) with a black shirt, (c) a
striped shirt or (d) a padded jacket (n = 9). Table 4 presents the
results. Overall, the TEM for shirtless participants turn out to be the
largest due to the roundness of the shoulder and thus the increased
ambiguity to mark the acromiale. Lowest TEM is achieved for
participants wearing a black shirt as it defines the silhouette better
around the shoulders. When looking at the various garment types,
those with stripes or padded produce higher inaccuracies, which is
to be expected.

Table 1
Errors (mm) between predicted statures and truth.

Assessor 1 Assessor 2 Assessor 3

TEMtruth 30.0 39.2 44.3

Table 2
Inter-TEM (mm) for selections of assessors.

Assessors

1–2 1–3 2–3 1–2–3

TEMinter 23.5 26.5 27.4 25.9

Table 3
Bias (mm) between different pairs of assessors.

Assessors

1–2 1–3 2–3

Bias þ0.1 þ22.2 þ22.1

Table 4
Inter-TEM (mm) for (a) shirtless participants; (b) with black shirt; (c) with striped

shirt; (d) with padded jacket.

Assessors

1–2 1–3 2–3 1–2–3

(a) 30.0 28.3 37.7 32.3

(b) 16.6 26.0 10.0 18.7

(c) 22.5 21.3 25.8 23.3

(d) 22.8 29.8 28.7 27.3
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In a second series of tests, the bias is examined by comparing
the shirtless case to the clothed ones. The formula in Section 3.2.4
is used with sai taken as the stature measurement obtained for a
shirtless participant and sbi as the measurement for the corre-
sponding participant wearing either the black shirt, the striped
shirt or the padded jacket for all assessors (n = 27). Results are
given in Table 5.

As can be seen, the difference inmarking anthropometric points
is significantly smaller when shirtless participants are compared to
those wearing a black shirt. The striped shirt and padded jacket
increase the difficulty in identifying points which yields larger
errors in both cases. The consistently positive bias across all three
categories indicates that the estimated statures are taller on
average for shirtless participants and thus may suggest a tendency
to place markers more incorrectly in this situation. This would
agree with the results in Table 4 where the inter-TEMs (almost)
always show greater variation in the shirtless case than in the other
three cases.

3.2.6. Snedecor’s F-test
Technical errors of measurements are essentially variances of

one measurement around another measurement. Their random
errors are thus a result of the measurement-to-measurement
differences and sample sizes. This means that the difference
between two TEMvalues can be tested for statistical significance in
the same way the difference of two variances is. The Snedecor’s F-
test is an appropriate tool to use. This test is based on the ratio of
two variances in general populations to assess significance because
the distribution of errors of ratios of larger to smaller variances
depends on the combination of their degrees of freedom that are
determined by sample sizes minus one. The F-test is given by

F ¼ v1
v2

;

where v1 is the larger variance, v2 the smaller variance. Both v1 and
v2 are estimates of population variances derived from sample
values in the following way:

v1 ¼ v01 � N
N � 1

; v2 ¼ v02 � N
N � 1

with v01 and v02 the sample variances and N the number of
observations. TEMs are square roots of sample variances, hence
after squaring TEM values, multiplying them by N and dividing the
result by N � 1, we obtain equivalents of variances appropriate to
form ratios for the F-test. Note that with large numbers of
observations, theN/(N � 1) term approaches 1 and thus direct ratio
of squared TEMs is an approximation of the F-test value.

For the TEMs discussed in Sections 3.2.1, 3.2.2 and 3.2.5, with
the number of observations N = 9, most squared TEM ratios do not

exceed appropriate cut-off F-test values for the 0.05 significance of
differences. In Table 4, the TEMs in rows (a)–(b) for assessors 1–2
and 2–3 are the two instances where the F-tests are statistically
different. This is because locating landmarks ismuch easier when a
person wears a black shirt than no shirt, as explained in
Section 3.2.5.

3.3. Error analyses for a single marker

Among the three markers to place, only one of them is truly
covered by clothing: the acromiale. In this section, we investigate
the errors and effects of garments on this particular landmark.
Since all three markers are recorded per assessor for all
photographed subjects, we conducted a first series of tests
whereby the dactylion and ground points are always taken as
those from the expert assessor. This means that the location of the
acromiale remains as chosen by the individual assessor. The error
measures presented in Section 3.2 are labelled with a superscript
exp tomark this distinction.We have also recalculated all the errors
when the dactylion and ground points originate from the novice

assessor. These are labelled with a superscript nov. The two data
manipulation strategies are employed to examine how the errors
fluctuate for radically different expertise levels and whether it
reveals any pattern.

3.3.1. Comparison to truth

Table 6 summarises the results for TEMtruth. The values in
brackets indicate the relative difference with the results in Table 1
when all three markers are chosen by each assessor.

Since Assessor 1 is the person with expert anatomical
knowledge, his score for TEMexp

truth remains unchanged from
Table 1 (identical data). A considerable improvement can be
noted for the novice anatomist (Assessor 3) who progresses to a
comparable level to that of the expert assessor. The TEM for the
trained anatomist decreased minimally. This overall trend is to be
expected since Assessor 1 has a better selection of points (smallest
error to truth in Table 1).

In the second row, the fixed dactylion and ground points come
from Assessor 3 so his score is unchanged from Table 1. The
increase in value for the results of the other assessors is
understandable given that Assessor 3 has the largest discrepancy
to truth when all three markers are specified.

Looking globally at the results, the relative difference between
assessors 1 and 3 is negligible for both TEMexp

truth and TEMnov
truth. This

suggests that they have consistently placed the acromiale around
the same location. The difference in landmark placement is more
noticeable for assessor 2 who has a larger residual error in both
tests.

3.3.2. Inter-observer error

Table 7 shows the new inter-TEM values. The numbers in
brackets indicate the differencewith the results in Table 2when all
three markers are chosen freely by each assessor.

All errors have decreased and turned out about the same
magnitude. The smaller variations between assessors are a direct
consequence of fixing two of the three markers. Assessors 1–3
produced the smallest inter-TEM valueswhereas the largest values
are observable when statures from assessor 2 are compared to

Table 5
Bias (mm) between different garment types. The abbreviation ‘SL’ stands for

‘Shirtless’.

SL-black SL-striped SL-padded

Bias þ14.5 þ36.4 þ37.8

Table 6
TEMtruth (mm)when the dactylion and ground points are those from the expert and

novice assessors.

Assessor 1 Assessor 2 Assessor 3

TEMexp
truth 30.0 (þ0.0) 38.7 (�0.5) 32.9 (�11.4)

TEMnov
truth 44.1 (þ14.1) 48.9 (þ9.7) 44.3 (þ0.0)

Table 7
Inter-TEM (mm) for selections of assessors.

Assessors

1–2 1–3 2–3 1–2–3

TEMexp
inter 18.6 (�4.9) 12.2 (�14.3) 17.5 (�9.9) 16.3 (�9.6)

TEMnov
inter 18.7 (�4.8) 12.6 (�13.9) 17.1 (�10.3) 16.4 (�9.5)
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those of assessors 1 and 3. Since the only source of uncertainty
arises from the location of the acromiale, these results confirm that
assessors 1 and 3 placed similar landmarks, and that assessor 2was
visually more affected by the clothing styles.

3.3.3. Assessors’ bias

The bias is now calculated for the new data, refer to Table 8. All
errors are small and about the same magnitude. Statures from
assessor 3 are shorter than those of assessor 1 (positive bias) but
taller than those of assessor 2 (negative bias) with similar amount
of variation in each case. From column 1, assessor 2 yielded
shortest statures. This agrees with prior findings that this assessor
has tangibly different point locations than the other assessors.

Assuming equal difficulty in marking the acromiale and
dactylion, one may deduce from the bias values in Tables 3 and
8 that a large part of the error stems from the location of the ground
point. Assessor 2 must have placed this point much better than
assessor 3 because all relevant errors in Section 3.2 are larger for
assessor 3 andwe have identified in this section that his placement
of the acromiale is comparable to the expert anatomist.

3.3.4. Effects of garments

Following the analysis in Section 3.2.5, we consider the inter-
TEMs for statures that only relate to a particular type of clothing.
Results are summarised in Tables 9 and 10.

Performing a row-wise comparison between the two tables, we
see that all errors have about the same order of magnitude and
have decreased compared to their corresponding values in Table 4.
In relation to clothing effects, the decrease is more significant for
striped shirt and padded jacket which demonstrates that these
garments present a greater challenge for someone to placemarkers
correctly. This corroborates the conclusion in Section 3.2.5.

Other experiments focus specifically on the errors between
different clothing styles. Looking at Table 11, the effect of a

particular garment is clearly visible since most often the bias is
positive with large magnitude. The trends are shown more
prominently here compared to Table 5 because the uncertainty
is assessed precisely in the marker covered by clothing. Note that
the bias in column 1, row 2, is small and negative. This peculiarity
is a consequence of using the ground points from assessor 3, which
we know from previous experiments are not well placed. This
result may be ignored.

3.3.5. Snedecor’s F-test
F-tests have been performed in a similar fashion to those in

Section 3.2.6. Looking at Tables 2 and 7, the TEMs for the assessors’
pair 1-3 exhibit statistically significant differences at the 95%
confidence level. This result is a formal confirmation that the
provision of better ground points has improved the stature
estimates of assessor 3 and thus reduced the inter-TEM with
assessor 1 noticeably.

Other statistically significant differences can be found in both
Tables 9 and 10 between rows (a)–(b) and (a)–(c) for assessors’ pair
1–2, between rows (b)–(d) for pair 1–3 in Table 9 and rows (b)–(c)
for pair 1–3 in Table 10. Since acromiale is the only variable point,
the F-tests prove that assessors 1–2 have consistently placed that
point when participants wear shirts (low inter-TEMs in rows (b),
(c)) compared to no shirt (row (a)). For assessors 1–3, the F-tests
reveal that they had similar pointmarking for participants wearing
a striped shirt and a padded jacket (rows (c), (d)) compared to
when they wear a black shirt (row (b)).

3.4. Real-life surveillance images

Our model is now applied to an airport surveillance video
released for the Performance Evaluation of Tracking and Surveil-
lance 2007 workshop [38]. We have examined 4500 images (of
resolution 720 � 576 pixels) of a particular video clip. Over 95% of
passengers and bypassers are found to be missing lower limbs due
to luggages and other people obstructing. To have benchmark
statures for comparison, we have considered the same 30 men as
those in [13], however several challenges appeared immediately:

1. Some bypassers wear clothes of colour similar to the scene
background. This especially precludes the marking of the
acromiale;

2. Many waiting passengers stand with their arms crossed over
their chest or behind their back, their upper limb is partially
occluded, their hands are closed or hidden;

3. Image resolution is too poor to clearly distinguish body parts of
pedestrians far in the scene. Markers would need to be placed
with sub-pixel accuracy, which is not straightforward to do.

In these situations, the point placement is not trustworthy or
possible, so the men are discarded. Such situations are illustrated
in Fig. 4. This brings the number of test subjects down to 18. Two of
these subjects are viewed facing the camera, one from the back and
fifteen others under various side-way postures. The latter postures
aremost difficult to deal with, evenwhen the complete upper limb
is visible (Fig. 5). It is indeed easier to locate the acromiale when
both shoulders are observable as in our laboratory experiments
where participants are in anterior or posterior view. Among the

Table 9
TEMexp

inter (mm) for (a) shirtless participants; (b) with black shirt; (c) with striped

shirt; (d) with padded jacket.

Assessors

1–2 1–3 2–3 1–2–3

(a) 26.6 14.2 16.2 19.8

(b) 13.4 15.8 13.3 14.2

(c) 13.0 8.7 18.5 14.0

(d) 17.9 8.3 21.0 16.7

Table 8
Bias (mm) between different pairs of assessors.

Assessors

1–2 1–3 2–3

Biasexp þ3.8 þ2.0 �1.8

Biasnov þ4.0 þ1.8 �2.2

Table 10
TEMnov

inter (mm) for (a) shirtless participants; (b) with black shirt; (c) with striped

shirt; (d) with padded jacket.

Assessors

1–2 1–3 2–3 1–2–3

(a) 27.0 14.2 16.0 19.9

(b) 14.1 16.5 13.6 14.8

(c) 12.2 8.7 17.3 13.2

(d) 17.9 9.1 20.9 16.7

Table 11
Bias (mm) between different garment types. The abbreviation ‘SL’ stands for

‘Shirtless’.

SL-black SL-striped SL-padded

Biasexp þ33.4 þ45.1 þ34.7

Biasnov �5.3 þ31.8 þ38.0
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test subjects, four passengers have garments of colour similar to
the background and two others walk with their arms bent pushing
trolleys. We kept these six candidates to see how the assessors and
ourmodel would copewith extreme situations. Figs. 5 and 6 depict
some workable examples and other more challenging cases in our
test set.

In order to carefully examine the effects of garments, the 18
selected men are separated into six categories of equal size. In this
context, garment style but also subject posture must be taken into
account, the latter being a novel addition compared to the
laboratory experiments. People for whom the upper limb is
reasonably visible are considered as having an adequate posture;
otherwise, they are labelled as having inadequate posture. The
categories are:

(a) Easy-shirt: people are wearing a shirt and stand with adequate
posture;

(b) Easy-jumper: people are wearing a jumper and stand with
adequate posture;

(c) Easy-jacket: people are wearing a padded jacket or thick coat
and stand with adequate posture;

(d) Hard-shirt: people are wearing a shirt and stand with
inadequate posture;

(e) Hard-jumper: people are wearing a jumper and stand with
inadequate posture;

(f) Hard-jacket: people are wearing a padded jacket or thick coat
and stand with inadequate posture;

3.4.1. Experimental arrangements

In the test images, all 18 passengers have partially occluded legs
and feet, so no ground point is markable. The authors in [13] have
kindly provided the camera calibration, a list of subjects, their
predicted statures from head heights, top and base head point

[(Fig._4)TD$FIG]

Fig. 4. Examples of subjects discarded from our experiments.

[(Fig._5)TD$FIG]

Fig. 5. Subjects with visible upper limb.
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locations and their projections onto a reference plane. Our
experimental set-up could thus replicate their exact conditions.
We shownext how the ground point entering the calculation of the
upper limb length is obtained from this starting information.

Theworld coordinate system is set such that the X–Y plane is on
the ground and the positive Z-axis represents the upward vertical
scene direction. Let ow be the image of the world origin, t the head
top point and t̃ its projection onto a reference plane perpendicular
to the ground plane (Fig. 7). Furthermore, let vx, vy, vz denote the
vanishing points in the X-, Y-, Z-directions, respectively. Viewing
the 3-D world as a collection of three orthogonal pencils of parallel
planes [22], it can be shown that the projection of t̃ onto the ground
plane, which is aligned with t and vz, is the homogeneous point

g ¼ ð½tT ;1�T � vzÞ � ðvx �mÞ

with m ¼ ð½oT
w;1�

T � vyÞ � ð½t̃T ;1�
T
� vzÞ: Point g is then projected

orthogonally onto the guide line formed by the (ML) acromiale and

dactylion points (Fig. 7). This technique yields a valid ground point
for upper limb measurement. Only two points are now required,
the acromiale and the dactylion. As in the laboratory experiments,
assessors have marked each point in a single action. This is a major
improvement overmethodswhich require extensive repeats of the
point placement and need to operate at sub-pixel level [13].

3.4.2. Test results

The same three assessors as those in Section 3.1 have placed
markers to obtain the upper limb lengths for all subjects. These
lengths are subsequently used to infer statures through OLS and
RMA regressions (Section 2.4). The final statures are taken as the
average values of the two predictions to match the approach in
[13] and compare estimates. Figs. 8 and 9(a) show the results for all
three assessors along with the predicted statures from [13].

Onemay consider the statures from [13] as ‘‘truth’’ and obtain a
technical error of measurement using the assessors’s body heights
and the formula given in Section 3.2.1. As can be seen from
Table 12, assessor 3 produced the lowest score. This surprising

[(Fig._7)TD$FIG]

Fig. 7. Construct for upper limb length measurement with point t̃ (magenta) on the

reference plane (green), t (cyan) on the head vertex, g (yellow) on the ground and its

projection (red) onto the guide line.
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Fig. 8. Stature estimates for 18 passengers. Benchmark statures originate from [13].

[(Fig._6)TD$FIG]

Fig. 6. Challenging situations for point marking.

T. Scoleri et al. / Forensic Science International 237 (2014) 148.e1–148.e12 148.e9



result may be explained by the fact that assessor 3 gained
familiarity with the subjects as a consequence of spending a
significant amount of time setting up the experimental images.We
also believe that the laboratory experiments have been beneficial
for training. His landmarks are therefore better placed, in
particular for subjects standing with their upper limb at an angle
from their body (e.g. when pushing a trolley). The other two
assessors performed equally to each other, although with larger
errors than assessor 3.

The assessors’ inter-TEM and bias have been tested as per
Sections 3.2.2 and 3.2.4, refer to Table 13. Given that assessors 2
and 3 have obtained better scores for TEMtruth, their inter-TEM and
bias values are lower than those of other combinations of
assessors. The negative bias values suggest that assessor 1 has
obtained shorter statures on average compared to the other
assessors.

3.4.3. Re-test results

A re-test session was organised to calculate the intra-observer
TEM and observe the variations of other errors. So, the three
assessors have repeated the point marking a second time for all
subjects. Results are shown in Tables 14 and 15 with an
accompanying graph in Fig. 9(b).

Compared to TEMs in Table 12, the new values show
improvement in landmark localisation and therefore stature
estimation. Two of the assessors have scored TEMs equivalent to
those in the laboratory experiments, which is encouraging. The
average stature from [13] is 1775 mm. Considering the worst error
(assessor 1), this still gives an accuracy of about 97%. Looking at the
intra-TEMs reveals that assessors have either becomemore precise
in their marking or changed their approach (indicated by the large
values). This is supported by the variations of predicted statures in
the graphs of Fig. 9. These intra-TEMs also suggest that assessors
have a margin of progress.

According to Table 14, assessors 2 and 3 have close stature
estimates (from TEMtruth), which implies that their landmark

positionsmay be similar. In turn, thismeans they should produce a
lower inter-TEMand bias compared to other pairs of assessors. This
is indeed confirmed in Table 15. Results of assessor 1 are about as
far apart from each of the other two assessors. The negative bias
confirms that assessor 1 generally produces shorter statures as can
be seen in Fig. 9(b). Overall, the two graphs of Fig. 9 show that
assessors’ predicted statures after re-test are less spread out, which
is expected as they repeat the experiments.

3.4.4. Effects of garments

In the previous sections, TEMtruth gives some global value with
no distinction about the garment type. Using the statures obtained
from the re-test experiments, we follow the same analytical
process as in Section 3.2.5. The distribution of TEMtruth per garment
style and posture is summarised in Table 16. ‘‘Truth’’ is again taken
as the predicted statures in [13]. The results for assessor 1 show
that the error values are generally increasing with the complexity
in garment style and subject posture. An inconsistency exists in
row (d) where the error is abnormally large. This is rationalised by
the fact that two of the three subjects in this category are pushing a
trolley which creates an ambiguous situation, see Fig. 6(a). The
dactylion can be marked near the hand on the trolley or
approximately half way down the thigh (according to the upper
limb model of Fig. 1). Assessor 1 decided on the former approach.
The resulting upper limb lengths turn out much shorter than their

[(Fig._9)TD$FIG]
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(b) Re-test results
Fig. 9. Stature estimates shown on a macro scale. Benchmark statures originate from [13].

Table 12
Errors (mm) between predicted statures and [13].

Assessor 1 Assessor 2 Assessor 3

TEMtruth 60.8 61.2 45.3

Table 13
Inter-TEM and bias (mm) for selections of assessors.

Assessors

1–2 1–3 2–3 1–2–3

TEMinter 34.9 40.3 32.3 36.0

Bias �24.3 �30.8 �6.5

Table 14
Quantification of errors (mm) after re-test.

Assessor 1 Assessor 2 Assessor 3

TEMtruth 53.5 40.9 36.5

TEMintra 41.0 48.3 34.1
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actual lengths due to the bent elbow, hence the large TEM value.
Assessors 2 and 3 opted for the latter approach. They have obtained
greater lengths and consequently lower errors for this category and
in row (e). Our current model would benefit from a multiple-part
regression for resolving the ambiguity. Although this is not the
intended focus of the present work, future extensions to
accommodate the issue are possible and discussed in Section 4.

Aside from these results, we also observe increasing error
values (or very similar values) in other categories of assessors 2
and 3. Drawing special attention to row (e) of assessor 3, the error
turned out very small. Investigation revealed that some of the
images here are those that were used for developing themodel. So,
assessor 3 subconsciously gained familiarity with the subjects.
Some level of progress is also expected from the first round of
marking. This result is very powerful in that it indicates the extent
to which the error may be decreased.

Table 17 presents the inter-TEMs for measurements which
relate to specific garment types and subject postures. Most
variations (largest errors) occur in the three hard-cases categories
(rows d–f), especially in row (d) for the pairs 1–2 and 1–3. This is
expected since assessor 1 has placed the landmarks most
differently from the other two assessors for subjects in these
classes. The inter-TEM for the pair 2–3 in row (d) is understandably
smaller since these assessors have followed the same marking
strategy. Performing Snedecor F-tests with N = 18 between rows
(a)–(d), (a)–(e) and (a)–(f) of pairs 1–2 and 1–3 confirm that there
are statistically significant differences at the 0.05 significance level.

Overall, although results have improved from the first
experiments, substantial differences are present. Indeed, even
when considering the best results (for assessors 2–3), squared
inter-TEM ratios exceed cut-off F-test values. This proves that there
still exists significant variations in the measurements and
therefore all errors should be reducible further. This analysis
agrees with the conclusion from examining the intra-TEMs
(Table 14).

The bias between garments (which includes subject posture) is
calculated by selecting statures from the first category (easy-shirt)
and comparing to other categories for all assessors, see Table 18.
Clearly, the effects on stature estimation become increasingly
important as the garment style gets thicker and the subject posture
is more complicated. The inconsistency for the pair (a)–(d) simply
reflects the incorrect measurements of assessor 1 as seen in row
(d), column 1 of Table 16.

4. Discussion

The experiments have shown that, despite landmark position-
ing errors, the accuracy of height estimates from real-life CCTV
images can be commensurate with, if not surpass, the expected
95% accuracy of height reconstruction from direct measurement of
skeletal remains. This has been a long challenge. The use of the
upper limb length compared to the head height [13] has decreased
user interaction to a single action or two instead of extensive
repeats to guarantee equivalent accuracy. This claim is supported
by the results of assessors coming from a range of backgrounds in
anatomy and computer vision. Variations between assessors
suggest that some training in photoanthropometry is beneficial
to reduce marking errors—Practice makes perfect.

We infer from the results that at present the weakest
component in our procedure lies in the regression model, not
the human factor. Large international databases of body measure-
ments exist through the Civilian American and European Surface
Anthropometry Resource (CAESAR) project [39]. We intend to use
these anthropomeasures to construct improved regression equa-
tions. This would include multiple regressions from various body
dimensions to refine our current upper limbmodel and combine it
with other ones such as [13] to allow for a more complete
characterisation of human beings.

This research has permitted us to learn about the extent of
errors involved in precise body part measurement from real-life
surveillance imagery. The lessons may now be applied to enhance
body-part acquisition from an automated detector or tracker. In
addition, this knowledge could help in improving the recognition
rate when matching subjects in uncontrolled scenes to ideal
CAESAR data [19].

5. Conclusion

This paper has examined the effects of various types of
garments on human stature estimation from images. To this
end, we have developed a procedure whereby the upper limb
length is firstmeasured from the image and then stature is inferred
by linear regression from it. Three assessors have experimentally
marked upper limb points of subjects in both laboratory and real-
life surveillance videos. In both scenarios, thicker garments and
those with stripes produce higher inaccuracies in stature predic-
tion, which is to be expected. Seven error measures are used to
study the variations between obtained statures. The most valuable
outcome is that errors are within the expected variance of the
stature regressor. Thus, body heights from imaged upper limbs can

Table 15
Inter-TEM and bias (mm) after re-test.

Assessors

1–2 1–3 2–3 1–2–3

TEMinter 46.4 47.1 28.1 41.5

Bias �35.9 �39.8 �3.9

Table 16
TEMtruth (mm) per assessor based on the garment style and subject posture.

Categories (a) to (f) are described at the start of Section 3.4.

Assessor 1 Assessor 2 Assessor 3

(a) 27.3 13.1 8.5

(b) 37.0 39.5 43.5

(c) 44.6 52.3 41.2

(d) 74.3 23.4 16.5

(e) 63.7 33.5 6.5

(f) 58.8 62.5 63.2

Table 17
Inter-TEM (mm) for groups of assessors based on the garment style and subject

posture.

Assessors

1–2 1–3 2–3 1–2–3

(a) 30.5 24.4 12.5 23.7

(b) 24.9 26.6 23.5 25.1

(c) 31.9 29.5 12.7 26.1

(d) 68.9 80.7 19.8 62.3

(e) 58.4 66.7 33.3 54.7

(f) 47.2 12.2 48.7 39.8

Table 18
Bias (mm) between different garment style and subject posture.

(a)–(b) (a)–(c) (a)–(d) (a)–(e) (a)–(f)

Bias þ13.2 þ32.1 þ70.3 þ45.2 �40.7
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be inferred with confidence that is no worse than the accuracy of
reconstructed body parts in routine skeletal forensic work.

References

[1] M. Yoshino, K. Noguchi, M. Atsuchi, S. Kubota, K. Imaizumi, C. David, L. Thomas,
J.G. Clement, Individual identification of disguised faces by morphometrical
matching, Forensic Sci. Int. 127 (2002) 97–103.

[2] A. Burton, S. Wilson, M. Cowan, V. Bruce, Face recognition in poor-quality video:
evidence from security surveillance, Psychol. Sci. 10 (1999) 243–248.

[3] S. Chen, M.H.S. Mau, C. Sanderson, A. Bigdeli, B. Lovell, Face recognition from still
images to video sequences: a local-feature-based framework, Int. J. Image Video
Process. (2011) 1–14.

[4] P. Kovesi, Video surveillance: legally blind? in: Proceedings of International
Conference on Digital Image Computing Techniques and Applications, 2009,
pp. 204–211.

[5] M. Henneberg, Facial mapping, bodymapping and the duties of an expert witness,
2007, http://www.lawlink.nsw.gov.au/lawlink/pdo/ll_pdo.nsf/pages/PDO_facial-
mapping.

[6] M. Henneberg, Expert witness in a courtroom: the Australian experience, in: M.
Oxenham (Ed.), Forensic Approaches to Death Disaster and Abuse, Australian
Academic Press, Queensland, 2008.

[7] A. Bertillon, Identification anthropométrique. Méthode nouvelle de détermina-
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Are human faces unique? A metric approach to finding single
individuals without duplicates in large samples
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Biological and Comparative Anatomy Research Unit, Medical School, University of Adelaide, Adelaide 5005, Australia

1. Introduction

In the forensic sciences the process of identification relies upon
a finding that a trace left at the crime scene (or other location
relevant to the investigation) and the suspected source, often an
object or a person, correspond to each other in essential
characteristics. In brief, they match. In order to make a match
between a trace and a source that allows conclusion of identifica-
tion, the probability of finding a duplicate trace or a duplicate
source must be negligible. If this probability equals zero the match
is unique [1]. However, it can be argued that unless the whole
world is included in searches for duplicates, the probability cannot
be firmly established as zero [2]. This makes the term ‘‘unique’’
debatable. In real situations populations of traces and of sources
are not infinite, thus probabilities of finding a duplicate can only
approach zero. In those cases, when the probability of finding a
duplicate is less than what the population size predicts, the actual

match between the trace and the source is a single occurrence
[1]. We propose to call this match a ‘‘singularity’’. In everyday terms
it could be called a ‘‘unique correspondence of trace and source
essential characteristics’’, but the ambiguity of the term ‘‘unique-
ness’’ remains a problem. We define singularity as the correspon-
dence between essential characteristics of the trace and the source
that in a given population has a probability of occurrence less than
that predicted from random combination of characteristics of the
trace and the source. This probability predicts that no duplicate of
the trace or of the source can be found in the given population.

The term ‘‘singular’’ as defined here is free from the ambiguity
of the word ‘‘unique’’ and thus may be more appropriate to use in
forensic statements and court proceedings. Unlike statements
saying that a particular individual is unique, the statement that the
individual is singular in a defined population is easily testable both
empirically and in court proceedings.

The lower the probability of finding a duplicate trace the more
reliable the evidence is considered. Some widely recognised claims
of unique traces left by humans are: DNA [3], fingerprints [4,5], bite
marks [6]. The lesser known traces of this kind include: elbow
prints [7], ear prints [8], lip prints [9] and behavioural character-
istics such as gait [10] and handwriting [11]. Uniqueness of these
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A B S T R A C T

In the forensic sciences it is inferred that human individuals are unique and thus can be reliably

identified. The concept of individual uniqueness is claimed to be unprovable because another individual

of same characteristics may exist if population size were infinite. It is proposed to replace ‘‘unique’’ with

‘‘singular’’ defined as a situation when only one individual in a specific population has a particular set of

characteristics. The likelihood that in a population there will be no duplicate individual with exactly the

same set of characteristics can be calculated from datasets of relevant characteristics.

To explore singularity, the ANSUR database which contains anthropometric measurements of

3982 individuals was used. Eight facial metric traits were used to search for duplicates. With the addition

of each trait, the chances of finding a duplicate were reduced until singularity was achieved. Singularity

was consistently achieved at a combination of the maximum of seven traits. The larger the traits in

dimension, the faster singularity was achieved. By exploring how singularity is achieved in subsamples

of 200, 500, etc. it has been determined that about one trait needs to be added when the size of the target

population increases by 1000 individuals. With the combination of four facial dimensions, it is possible

to achieve a probability of finding a duplicate of the order of 10�7, while, the combination of 8 traits

reduces probability to the order of 10�14, that is less than one in a trillion.
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traces is claimed on the principle that only one individual would be
a source of such trace. This is to be criticised because, theoretically,
another individual could be born with the same essential
characteristics if we wait long enough. In practice, what is
considered uniqueness of such traces is actually a singularity since
populations from which those traces emanate are limited by time
and space and thus are of a finite size.

The word ‘traces’ can refer to light rays producing changes on
photographic film or on light sensitive digital photograph chips,
that is to images. In recent years photographic traces have become
increasingly popular as forensic evidence. In cases of morphologi-
cal analyses, an expert witness specialising in the field of biological
anthropology is often called upon to provide evidence of a match or
mismatch between an image of an individual (a trace) and a
suspect (a source) based on anatomical similarities of morpholog-
ical traits. The current method for analysing image based traces is
to use categorical scales of morphological traits [12–14]. For
example, body height may be described as short, medium or tall.
This method has been highly criticised on the grounds that it is not
accurate and reliable [15–17]. Attempts have been made to
address criticisms by attempting to take measurements from
images, however, this research is still in progress [18,19].

Over the last few decades, facial recognition systems have been
increasingly researched due to the proliferating use of images for
identification. Some studies explain that the face is used as humans
are good at recognising facial features [20,21], others say that
obtaining images of the face is cheap and non-invasive
[22]. According to Jafri and Arabnia [22] facial recognition is used
for two primary tasks, verification (one to one matching) and
identification (one to many matching).

There are a number of different scenarios where face
recognition can be used including: passports, drivers licences,
security, surveillance, etc. Some factors that make identification
from images difficult include: illumination, facial expression, pose,
distortions and pixelation [23]. Therefore research has concentrat-
ed on eliminating the confounding effects from images when
making an identification.

There are two ways to analyse facial traits, descriptives and
metrics. The use of descriptive traits involves adjectives such as
‘wide’ and ‘curved’ to categorise facial features such as the nose.
Metric traits most commonly involve measuring the distances
between specific points on the face. Theoretically, any descriptive
trait, such as, for instance, face shape, can be converted to a metric
one by taking measurements of its constituent properties such
like the width, the height, the curvature, angles between its parts,
etc. As mentioned earlier, descriptives are not considered as a
reliable method of evaluation, especially in court proceedings
[15–17]. Therefore, many facial recognition systems and methods
have concentrated on moving towards metrics [24] or a
combination of metrics and descriptives [25,26]. Facial recogni-
tion methods which use metrics alone or metrics and descriptives
report high accuracy rates (>95%) [27,45]. However, each method
of finding a match between a photograph and a person is tested on
a small sample of subjects i.e. less than one hundred. Many
photographs are used and a large number of measurements taken,
but the number of people appearing on these photographs is
limited. Small sample size automatically assures that no duplicate
matches are found within the sample. These studies are based on
the assumption that a face is unique, but very few justify this
assumption quantitatively. In those studies that mention
‘uniqueness’ of the face, the term is not referenced nor defined.
Therefore it seems that many people believe that the face is
adequate to be used as a biometric tool, without it being
sufficiently studied, especially when using metrics. A number
of papers have identified the lack of knowledge in this area
[28,29,25].

The aim of this study is to investigate whether or not two or
more faces within a specified population have the same
combination of several measurements. A secondary aim is to
calculate the probability of not finding more than one face with
same measurements (a duplicate) using a defined number of
measurements in order to find the minimum number of facial
dimensions needed to achieve singularity. We are not aiming here
to investigate the accuracy with which measurements can be taken
of various images and how such accuracy may influence findings of
singularity. We only aim to introduce the principle of finding
singularity that can be applied to any traces or sources, while the
precision of its application requires a separate discussion of
measuring techniques that may differ from case to case.

2. Materials and method

The U.S. Army Anthropometric Survey (ANSUR) database is a
result of an anthropometric survey conducted in 1988 of U.S.
military personnel. The dataset contains 132 manually measured
dimensions of the human body and head. The sample consisted of
1774 men and 2208 women aged 17–51 years. This dataset was
chosen as it is a sample of anthropometric measurements covering
a range of variation of facial features. Even though the survey was
conducted in 1988, it is still valid for the purposes of this study
because the human face has not varied statistically within that
time. Details of this study are described in ANSUR [30,44]. Initially
males and females were analysed separately to see if sex
influenced the numbers of metric traits needed to have no
duplicates. Males and females were then combined to increase
sample size and because sexual dimorphism accounts for only 25%
variation in major measurable characters [31]. No further
separation of the dataset (i.e. population of origin) was included
as upwards of 95% of variation occurs between two randomly
selected individuals rather than between individuals of different
populations [32].

A team of 22 individuals conducted all measurements on the
sample. The team was trained in anthropometry over a four week
period. During this time, each member of the team was allocated
specific measurements to learn and repeat continuously. These
dimensions were then measured on the 3982 participants during
data collection. By allocating specific measurements to each
measurer, the measuring team aimed to reduce measurement
errors. Measurement errors were calculated and reported along-
side the database. Measurement errors ranged between 2.2% and
2.4% which is very small. For the purposes of this paper,
measurement errors will not affect the results.

The following face/head measurements were used (Fig. 1):
Bitragion submandibular arc – The surface distance between the
right and left tragion across the submandibular landmark at the
juncture of the jaw and the neck was measured with a measuring
tape. Bizygomatic breadth – The maximum horizontal breadth of
the face between the zygomatic arches was measured with a
spreading caliper. Ear length – The length of the right ear is
measured with a sliding caliper from its highest to lowest points on
a line parallel to the long axis of the ear. Ear protrusion – The
horizontal distance between the mastoid process and the outside
edge of the right ear at its most lateral point (ear point) is measured
with a sliding caliper. Head breadth – The maximum horizontal
breadth of the head above the ears is measured with a spreading
caliper. Head circumference – a measuring tape is used to measure
the maximum circumference of the head above the supraorbital
ridges and ears. Head length – the distance from the glabella
landmark between the brow ridges to opisthocranion is measured
with a spreading caliper. Interpupillary distance – a pupillometer is
used to measure the distance between the centres of the right and
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left pupils. The dimensions are illustrated in Fig. 1. The dimensions
that are not influenced by facial expression were chosen.

Duplication is defined here as ‘a situation where another trace is

found matching a given trace’ since we have at our disposal only
measurements (traces) of participants in the survey. In real
forensic situations dimensions of a trace can be compared with
dimensions of the actual person – the source. Depending on the
number of traits measured on a trace and the accuracy with which
they are measured, the ease of finding a duplicate will vary. If only
a combination of two metric traits is used, it will be easier to find
duplicates than when more dimensions will be used to character-
ise traces. As long as dimensions are not perfectly correlated with
others (r < 1.00), adding a dimension should reduce the number of
possible duplicates. In a defined sample, when a larger number of
combinations of metric traits (traces) is used, a situation can be
reached where no duplicates will be found. In the case of
identification, a trace left behind by a particular individual can
be analysed and described by a number of metric traits. This trace
can be compared to the traces produced by the same measuring
methods of any number of possible suspects from a defined
population. If only one duplicate of the source is found in this
sample, an ‘identification’ can be made.

All anthropometric measurements in the ANSUR database are
reported to the nearest millimetre. IBM SPSS statistics 20 was used
to search for duplicate cases within the sample. To put it simply,
duplicates occur when exact values of all metric traits (traces)
selected for analysis are found in more than one person. Sorting of
cases was done stepwise, adding one dimension at a time to the
previous dimension(s) and noting how many duplicates are found
with the combination of that number of traits. This procedure was
continued, increasing the number of traits until no duplicate cases
were identified within the sample. For example, the first
measurement analysed was bitragion submandibular arc, the
number of duplicate cases identified in a sample of males was
1686. Then bizygomatic breadth was added as a second trait
reducing the number of duplicate cases to 908. The third trait
added was ear length, and then the number of duplicates fell down
to 122. This was continued by adding ear protrusion, and then head
breadth at which point no duplicates were found.

Polynomial regressions were used to study the shape of
relationships between numbers of traits considered and numbers
of duplicates. Those regressions allowed us to extrapolate results
beyond sample sizes available.

3. Results

The sample was divided by sex to determine how many traits
are needed to have no duplicate cases in each sex. The order of
traits chosen was alphabetical as found in the original ANSUR files.
Fig. 2 shows the percentage and number of duplicate cases for
males (N = 1774) and females (N = 2208). There is a rapid decline in
the number (and thus percentage) of duplicate cases with the
addition of each trait to the previous trait(s). In order to have no
duplicate cases in males only 5 traits are needed, whereas in
females, 6 traits are needed. Thus there is little difference between
the sexes in the number of traits required to reduce number of
duplicate cases to zero.

Due to there being little difference in the number of traits
needed to find no duplicates and thus achieve a singularity in
males and females separately, the sexes were combined for all
further analyses and the order of individuals was randomised.

The order of metric traits has been changed from alphabetical to
largest–smallest based on the mean of each trait measured
(Table 1). The order was changed to establish any differences in
the number of traits needed to achieve singularity when larger
metric traits were chosen first. There is a large decrease in
percentage of duplicate cases (59.4%) when the second trait
(bitragion submandibular arc) is added to the first trait (head
circumference). In contrast, when using alphabetical order, the
largest decrease between the first (bitragion submandibular arc)
and second (bizygomatic breadth) traits was found in males at only
43.8% (Fig. 2). It is important to note that the overall outcome of
needing 5–6 traits to achieve singularity remains the same when
the order of metric traits is changed. However, the rate of decrease
in duplicate cases when using metric traits in largest-to-smallest

Fig. 1. Anterior view of the head/face showing: (a) bitragion submandibular arc; (b)

bizygomatic breadth; (c) ear length; (d) ear protrusion; (e) head breadth; (f) head

circumference; (g) head length; (h) interpupillary distance.

Fig. 2. The percentage and number of duplicate cases for males and females. The

order of metric traits chosen is alphabetical.
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order is faster, especially with the combination of two traits
(Fig. 3).

The numbers of traits needed to achieve singularity was
determined for sample sizes beginning at 200 subjects then adding
300, followed by adding 500 repeatedly at 1000, 1500, etc. until all
subjects were included. This was conducted on the list of traits
ranging from largest to smallest and then from smallest to largest
as shown in Fig. 4. The average and maximum number of traits
needed to achieve singularity when the list is ordered largest to
smallest is 5. The average number of traits needed to achieve
singularity when the list is ordered smallest to largest is 6 with a
maximum of 7. A smaller number of traits is needed to achieve
singularity when the traits are larger in dimension since they have
a greater range of numerical values. However, the average number
of traits (5–6) needed to achieve singularity still remains
consistent, no matter in what order the traits are included into
calculation. The polynomial regression equation (Fig. 4) indicates
that approximately one more trait is needed for every 1000 people
added to the sample in order to reduce the number of duplicate
cases to zero. Polynomial regression was used to predict the
number of traits needed in a sample of specific size exceeding that
of the ANSUR database (Table 2). The number of possible
combinations for each set of metric traits was calculated using a
stepwise approach. The traits labelled 1–8 are seen here combined
into sets in the order largest to smallest based on their means
(Table 1). The number of units (range) is the number of possible
metric values (mm) for a given metric trait, i.e. the difference
between the minimum and the maximum size of the trait in full
millimetres.

Probabilities of sets of traits to occur together are difficult to
calculate because of the intercorrelation between them. If there is a

correlation between two traits then they cannot be viewed
independently of one another and their joint probability of
occurrence cannot be calculated by simple multiplication of
individual probabilities. This is the case with dimensions of the
human face. Adjusted R squared values (or correlation coefficients)
were calculated for each set in a stepwise approach by SPSS version
20. The R squared value was subtracted from one (1-R2) to
determine parts of traits that are not correlated and thus can be
combined randomly. The total number of units possible in each set
is a product of numbers of units in traits of the set reduced by their
intercorrelation. The number of combinations is calculated by
multiplying the 1-R2 value by the number of units in the first trait,
then number of units in the second trait, etc. The addition of each
new trait to a set increases the number of combinations as long as
the trait is not completely correlated with others, and thus
decreases the possibility of finding another individual with the
same set of traits.

4. Discussion

With the increased use of video surveillance systems for
identification, using the face as an example to illustrate the method
proposed in this paper seemed only fitting. Many people identify
individuals by the face as it is believed to be the most variable part
of the human body. The findings presented in this paper have a
direct application to facial analysis by providing the probabilities
of finding two individuals with the exact same facial metric
characteristics. As a general rule the combination of traits is the key
to reducing the number of duplicates within a specified population.
Depending on the exact variation of each trait, and its intercorre-
lation with other traits, the number of traits needed to find no
duplicates and thus achieve singularity varies. This number also
increases with the target population size. The larger the range of
each trait, the more possible combinations per set of traits and thus
the faster a result of singularity is achieved. More variable, i.e.
larger traits should always be chosen first, especially in sample
sizes lower than 500 individuals. In cases of applying this theory to
identification from images, the traits chosen depend on the quality
of the images, the angle of the cameras, whether or not the person
is covering their face and many more factors. Each case is different
and must be treated accordingly. However, the general guidelines
still apply and the theory remains the same. If, for whatever
reasons, singularity is not achieved with 8 traits, simply adding
more traits will increase the probability of achieving singularity by
decreasing the probabilities of finding duplicates.

Table 1
shows the metric traits used with their means for males and females combined, the

order of the list changes throughout analysis (as discussed) to establish any effect

the order of traits may have on the outcome.

Metric traits Mean

Bitragion submandibular arc 288.6

Bizygomatic breadth 135.4

Ear length 62.0

Ear protrusion 22.9

Head breadth 147.7

Head circumference 555.8

Head length 191.6

Interpupillary distance 63.4

Note: this list is in alphabetical order as presented in the ANSUR database. The order

of metric traits has been changed throughout the analyses as indicated.

Fig. 3. The percentage and number of duplicate cases for males and females. The

order of metric traits chosen from largest to smallest.

Fig. 4. The number of traits needed to have no duplicates, the list of traits is ordered

largest to smallest and smallest to largest.
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When comparing metric traits with traditional descriptive
traits (which use categorical scales) metric traits have a
significantly larger range of values since they include more
intervals (e.g. millimetres) than categorical scales. This fine
gradation decreases the chances of finding a duplicate. Goldstein
et al. [46] used descriptive traits with a maximum range of
5 categories per trait. Goldstein et al.’s study was able to isolate an
individual from a set of 256 photographs. Not to complicate their
analysis too much the authors assumed no correlation between
traits, however they realised that at least some of them are
correlated. Despite the simplicity of their method, Goldstein et al.
[46] showed that in order to isolate an individual from a predicted
population size of 107 it is sufficient to use 16 traits each with
5 categories. Although forensic sciences shift towards the use of
traditional metric analysis for comparisons of images, the use of
descriptives, however debated, is not without merit. Descriptive
traits can be quantified to increase reliability. In Goldstein et al.’s
case, only a limited number of categories per descriptive trait was
used, thus the limited range produced inferior results. However,
descriptive traits can have a significantly large range. For example,
a mole above an individual’s lip can be measured. Its height, width,
diameter and location compared to anatomical landmarks can be
calculated. Its colour can be measured metrically as a wavelength
of light reflected from its surface. It may have an uneven shape that
yields it to be measured in parts. Each case is different and each
descriptive trait can be measured in endless ways that apply to a
specific case. The same rules that apply to traditional metrics apply
to descriptives, the larger the range the less chance of finding two
individuals who match. However, in the case of descriptive traits,
knowing the population frequencies of the occurrence of the traits
would be useful in calculating probabilities.

In a study conducted by Kleinberg et al. [33], it was found that
proportions of 4 anthropometric measurements taken from
photographs were not sufficient to make significant positive
identification of 80 individuals. From this study it was deemed that
‘anthropometry failed as an identification technique’. It should be
discussed that in this study there were a limited number of
measurements being taken and each of these measurements was
on a very small area of the face. Two of the measurements included
in the four were essentially the same measurement, the distance
between the ectocanthions and the stomion on both the right and
left side of the face. The variability of the measurements is very
limited, therefore the ability to match an individual would have
been limited. This study is discussed to reinforce the importance of
variability and size of the traits chosen, the larger the size and
variability the higher the probability of achieving singularity.

Here we have considered correlation of traits and used only the
part of each trait which varies independently from other traits. By
using traits measured in interval scales and considering inter-
correlations among traits we are ensuring that the method is
presenting the biological variation between individuals as
accurately as possible. The accuracy with which traits are
measured will also affect the results. When measurement errors

are known, ranges of variation should be adjusted to take errors
into account. For example, if the measurement error is 3 mm, then
the distance of 33 mm will legitimately be a duplicate of any
distance between 30 mm and 36 mm. Size of errors depends on the
quality of images measured, ability to locate points between which
measurements are taken and the accuracy of measuring instru-
ments. These factors may differ from case to case and need to be
discussed when presenting results of a particular case. A study
conducted by Cummaudo et al. [34] it was found that anthropo-
metric landmarks and thus the distances between them are less
reliable when taken from 2D photographs. This was also the case in
a study conducted by Farkas [35]. Interobserver errors of
measurements taken directly on the participants by well-trained
measurers that we used in this paper were small and can be
ignored for purposes of demonstration of the general principle of
the proposed method. Were the method used in a particular case,
errors of point location and measurements would have to be assed
and taken into account when searching for possible duplicates.

In a court of law, the main question to be answered is, ‘what are
the chances that two sources share the same trace’. In DNA
analysis, the evidential weight of a match between crime stain
profile (trace) and a suspect (source) is quantified by the ‘match
probability’ [36]. In many cases the match probability is much
smaller than the probability of presence of one individual in a
population which the trace originated from, with the match
probability going into the inverse of millions. Table 2 shows the
metric trait version of a match probability represented by ‘p’, the
probability of finding a match of the trace to more than one
individual (source). In our sample, a combination of four metric
traits already gives a probability lower than that found by
Goldstein et al. [46], 10�8, while a combination of eight traits
lowers the probability to 10�14, this is comparable with DNA
[36]. A fragment of the DNA molecule contains four different
nucleotides that can occur in different combinations. The longer
the fragment, the lower the probability that another fragment with
the same pattern of nucleotides can be found. Like DNA the more
information extracted from the trace, the lower the probability of
finding a duplicate.

The current paper uses facial analysis as an example to support
the theory of singularity, however, this theory in no way is limited
to facial analysis. The concept of singularity and the method
presented can be applied to all fields of forensic sciences which aim
to match a trace to a source. Many biological examples have been
presented in this paper, however. the concept can also be applied
to matching a trace with a source left by an object, for example, the
study of ballistics [37], gunshot residues [38] tool marks [39] tire
prints [40] cut marks and tool marks [41] glass fragments [42] and
any other pattern matching of everyday objects [43].

5. Conclusions

This paper introduces the concept of singularity to forensic
identification. Within the specified population of the ANSUR

Table 2
The calculation of probability of finding another duplicate within the sample, using eight metric traits, their respective ranges and R2 values.

Traits Number

of units (range) in mm

R2 correlation

with preceding units

1-R2 Multiplication

of units

Number of

combinations (1/p)

p

1 127 127 127 0.01

1, 2 138 0.415 0.585 17,526 10,253 0.0001

1, 2, 3 62 0.780 0.220 1,086,612 239,055 0.000004

1, 2, 3, 4 47 0.638 0.362 51,070,764 18,487,617 0.00000005

1, 2, 3, 4, 5 44 0.736 0.264 2,247,113,616 593,237,995 0.000000002

1, 2, 3, 4, 5, 6 26 0.380 0.620 58,424,954,016 36,223,471,490 0.00000000003

1, 2, 3, 4, 5, 6, 7 35 0.336 0.664 2,044,873,390,560 1,357,795,931,332 0.0000000000007

1, 2, 3, 4, 5, 6, 7, 8 27 0.229 0.771 55,211,581,545,120 42,568,129,371,288 0.00000000000002
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database, no two individual faces matched one another on
combinations of 5–8 metric traits. Probabilities of finding a
duplicate of a face characterised by 8 traits exceeded inverse of the
total population of the Earth making metric identification of faces
as reliable as that of DNA. The same concept can be applied to
identification based on measurements of human bodies or any
traces of any objects.
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