
Feature-Based Diversity Optimization
for Problem Instance Classification

Wanru Gao1, Samadhi Nallaperuma2, and Frank Neumann1(B)

1 School of Computer Science, The University of Adelaide, Adelaide, Australia
frank@cs.adelaide.edu.au

2 Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. Understanding the behaviour of heuristic search methods is
a challenge. This even holds for simple local search methods such as
2-OPT for the Traveling Salesperson problem. In this paper, we present
a general framework that is able to construct a diverse set of instances
that are hard or easy for a given search heuristic. Such a diverse set is
obtained by using an evolutionary algorithm for constructing hard or
easy instances that are diverse with respect to different features of the
underlying problem. Examining the constructed instance sets, we show
that many combinations of two or three features give a good classification
of the TSP instances in terms of whether they are hard to be solved by
2-OPT.

1 Introduction

Heuristic search methods such as local search, simulated annealing, evolutionary
algorithms and ant colony optimization have been shown to be very successful for
various combinatorial optimization problems. Although they usually don’t come
with performance guarantees on their runtime and/or approximation behaviour,
they often perform very well in several situations. Understanding the conditions
under which optimization algorithms perform well is essential for automatic algo-
rithm selection, configuration and effective algorithm design. In both the artifi-
cial intelligence (AI) [1–4] and operational research communities [5,6], this topic
has become a major point of interest.

The feature-based analysis of heuristic search algorithms has become an
important part in understanding such type of algorithms [7,8]. This approach
characterizes algorithms and their performance for a given problem based on fea-
tures of problem instances. Thereby, it provides an important tool for bridging
the gap between pure experimental investigations and mathematical methods
for analysing the performance of search algorithms [9–11]. Current methods for
the feature-based analysis are based on constructing hard and easy instances for
an investigated search heuristic and a given optimization problem by evolving
instances using an evolutionary algorithm [7,12,13]. This evolutionary algorithm
constructs problem instances where the examined algorithm either shows a bad
(good) approximation behaviour and/or requires a large (small) computational
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effort to come up with good or optimal solutions. Although the evolutionary
algorithm for constructing such instances is usually run several times to obtain
a large set of hard (easy) instances, the question arises whether the results in
terms of features of the instances obtained give a good characterization of prob-
lem difficulty.

In the paper, we propose a new approach of constructing hard and easy
instances. Following some recent work on using evolutionary algorithms for gen-
erating diverse sets of instances that are all of high quality [14,15], we introduce
an evolutionary algorithm which maximizes diversity of the obtained instances
in terms of a given set of features. Our approach allows to generate a set of
instances that is guaranteed to be diverse with respect to the problem features
at hand. Carrying out this process for several combinations of features of the
considered problem and algorithm gives a much better classification of instances
according to their difficulty of being solved by the considered algorithm.

To show the benefit of our approach compared to previous methods, we con-
sider the classical 2-OPT algorithm for the TSP. Previous feature-based analyses
have already considered hard and easy instances in terms of approximation ratio
and analyzed the features of such hard (easy) instances obtained by an evo-
lutionary algorithm. The experimental results of our new approach show that
diversity optimization of the features results in an improved coverage of the fea-
ture space over classical instance generation methods. In particular, the results
show that for some combinations of two features it is possible to classify hard
and easy instances into two clusters with a wider coverage of the feature space
compared to the classical methods. Moreover, the three-feature combinations
further improve the classification of hard and easy instances for most of the
feature combinations. Furthermore, a classification model is built using these
diverse instances that can classify TSP instances based on hardness for 2-OPT.

The remainder of this paper is organized as follows. Firstly, we introduce
the Euclidean TSP and the background on feature based analysis. Afterwards,
we state our diversity optimization approach for evolving instances according to
feature values and report on the impact of diversity optimization in terms of
the range of feature values. As feature values can be very diverse both for easy
and hard instances, we consider the combinations of several features for instance
classification afterwards. We then build a classification model that can classify
instances based on hardness and finally finish with some conclusions.

2 Background

We consider the classical NP-hard Euclidean Traveling Salesperson problem
(TSP) as the example problem for evolving hard and easy instances which have
a diverse set of features. Our methodology can be applied to any optimization
problem, but using the TSP in our study has the advantage that it has already
been investigated extensively from different perspectives including the area of
feature-based analysis.

The input of the problem is given by a set V = {v1, . . . , vn} of n cities
in the Euclidean plane and Euclidean distances d : V × V → R≥0 between
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Algorithm 1. (μ + λ)-EAD

1 Initialize the population P with μ TSP instances of approximation ratio at least
αh.

2 Let C ⊆ P where |C| = λ.
3 For each I ∈ C, produce an offspring I ′ of I by mutation. If αA(I ′) � αh, add I ′

to P .
4 While |P | > μ, remove an individual I = arg minJ∈P d(J, P ) uniformly at

random.
5 Repeat step 2 to 4 until termination criterion is reached.

the cities. The goal is to find a Hamiltonian cycle whose sum of distances is
minimal. A candidate solution for the TSP is often represented by a permutation
π = (π1, . . . , πn) of the n cities and the goal is to find a permutation π∗ which
minimizes the tour length given by c(π) = d(πn, π1) +

∑n−1
i=1 d(πi, πi+1).

For our investigations cities are always in the normalized plane [0, 1]2, i. e.
each city has an x- and y-coordinate in the interval [0, 1]. In following, a TSP
instance always consists of a set of n points in [0, 1]2 and the Euclidean distances
between them.

Local search heuristics have been shown to be very successful when dealing
with the TSP and the most prominent local search operator is the 2-OPT opera-
tor [16]. The resulting local search algorithm starts with a random permutation
of the cities and repeatedly checks whether removing two edges and reconnect-
ing the two resulting paths by two other edges leads to a shorter tour. If no
improvement can be found by carrying out any 2-OPT operation, the tour is
called locally optimal and the algorithm terminates.

The key factor in the area of feature-based analysis is to identify the prob-
lem features and their contribution to the problem hardness for a particular
algorithm and problem combination. This can be achieved through investigating
hard and easy instances of the problem. Using an evolutionary algorithm, it is
possible to evolve sets of hard and easy instances by maximizing or minimizing
the fitness (tour length in the case of the TSP) of each instance [5–8]. However,
none of these approaches have considered the diversity of the instances explic-
itly. Within this study we expect to improve the evolutionary algorithm based
instance generation approach by introducing diversity optimization.

The structural features are dependent on the underlying problem. In [7],
there are 47 features in 8 groups used to provide an understanding of algorithm
performance for the TSP. The different feature classes established are distance
features, mode features, cluster features, centroid features, MST features, angle
features and convex hull features. The feature values are regarded as indicators
which allow to predict the performance of a given algorithm on a given instance.

3 Feature-Based Diversity Optimization

In this section, we introduce our approach of evolving a diverse set of easy or
hard instances which are diverse with respect to important problem features.
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As in previous studies, we measure hardness of a given instance by the ratio of
the solution quality obtained by the considered algorithm and the value of an
optimal solution.

The approximation ratio of an algorithm A for a given instance I is defined
as

αA(I) = A(I)/OPT (I)

where A(I) is value of the solution produced by algorithm A for the given
instance I, and OPT (I) is value of an optimal solution for instance I. Within
this study, A(I) is the tour length obtained by 2-OPT for a given TSP instance
I and OPT (I) is the optimal tour length which we obtain in our experiments
by using the exact TSP solver Concorde [17].

We propose to use an evolutionary algorithm to construct sets of instances
of the TSP that are quantified as either easy or hard in terms of approximation
and are diverse with respect to underlying features of the produced problem
instances. Our evolutionary algorithm (shown in Algorithm1) evolves instances
which are diverse with respect to given features and meet given approximation
ratio thresholds.

The algorithm is initialized with a population P consisting of μ TSP instances
which have an approximation ratio at least αh in the case of generating a diverse
set of hard instances. In the case of easy instances, we start with a population
where all instances have an approximation ratio of at most αe and only instances
of approximation ratio at most αe can be accepted for the next iteration. In each
iteration, λ ≤ μ offspring are produced by selecting λ parents and applying muta-
tion to the selected individuals. Offsprings that don’t meet the approximation
threshold are rejected immediately.

The new parent population is formed by reducing the set consisting of parents
and offsprings satisfying the approximation threshold until a set of μ solutions
is achieved. This is done by removing instances one by one based on their con-
tribution to the diversity according to the considered feature.

The core of our algorithm is the selection among individuals meeting the
threshold values for the approximation quality according to feature values. Let
I1, . . . , Ik be the elements of P and f(Ii) be their features values. Furthermore,
assume that f(Ii) ∈ [0, R], i.e. feature values are non-negative and bounded
above by R.

We assume that f(I1) ≤ f(I2) ≤ . . . ≤ f(Ik) holds. The diversity contribu-
tion of an instance I to a population of instances P is defined as

d(I, P ) = c(I, P ),

where c(I, P ) is a contribution based on other individuals in the population
Let Ii be an individual for which f(Ii) �= f(I1) and f(Ii) �= f(Ik). We set

c(Ii, P ) = (f(Ii) − f(Ii−1)) · (f(Ii+1) − f(Ii)),

which assigns the diversity contribution of an individual based on the next
smaller and next larger feature values. If f(Ii) = f(I1) or f(Ii) = f(Ik), we
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set c(Ii, P ) = R2 if there is no other individual I �= Ii in P with f(I) = f(Ii)
and c(Ii, P ) = 0 otherwise. This implies an individual Ii with feature value
equal to any other instances in the population gains c(Ii, P ) = 0. Furthermore,
an individual with the unique smallest and largest feature value always stays in
the population when working with μ ≥ 2.

In [7], 47 features of TSP instances for characterizing easy and hard
TSP instances have been studied. We consider 7 features coming from differ-
ent feature classes which have shown to be well suited for classification and
prediction. These features are: angle mean, centroid mean distance to centroid,
chull area, cluster 10pct mean distance to centroid, mst depth mean, nnds mean
and mst dists mean.

We refer the reader to [7] for a detailed explanation for each feature. We carry
out our diversity optimization approach for these features and use the evolution-
ary algorithm to evolve for each feature a diverse population of instances that
meets the approximation criteria for hard/easy instances given by the approxi-
mation ratio thresholds.

All programs in our experiments are written in R and run in R environ-
ment [18]. We use the functions in tspmeta package to compute the feature
values [7].

The setting of the evolutionary algorithm for diversity optimization used
in our experiments is as follows. We use μ = 30 and λ = 5 for the parent and
offspring population size, respectively. The 2-OPT algorithm is executed on each
instance I five times with different initial solutions and we set A(I) to the average
tour length obtained. The examined instance sizes n are 25, 50 and 100, which are
denoted by the number of cities in one instance. Based on previous investigations
in [7] and initial experimental investigations, we set αe = 1 for instances of size
25 and 50, and αe = 1.03 for instances of size 100. Evolving hard instances, we
use αh = 1.15, 1.18, 1.2 for instances of size n = 25, 50, 100, respectively. The
mutation operator picks in each step one city for the given parent uniformly at
random and changes its x- and y-coordinator by choosing an offset according to
the Normal-distribution with standard deviation σ. Coordinates that are out of
the interval are reset to the value of the parent. Based on initial experiments
we use two mutation operators with different values of σ. We use σ = 0.025
with probability 0.9 and σ = 0.05 with probability 0.1 in a mutation step.
The evolutionary algorithm terminates after 10, 000 generations which allows to
obtain a good diversity for the considered features. For each n = 25, 50, 100 and
each of the 7 features, a set of easy and hard instances are generated, which
results in 42 independent runs of the (μ+λ)-EAD.

4 Range of Feature Values

We first evaluate our diversity optimization approach in terms of the diversity
that is obtained with respect to a single feature. Focusing on a single feature
in each run provides the insight of the possible range of a certain feature value
for hard or easy instances. The previous study [7], suggests that there are some
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Fig. 1. (left) The boxplots for centroid mean distance to centroid feature values of a
population consisting of 100 different hard or easy TSP instances of different number of
cities without or with diversity mechnism. (right) The boxplots for cluster 10 % distance
distance to centroid feature values of a population consisting of 100 different hard or
easy TSP instances of different number of cities without or with diversity mechnism.
Easy and hard instances from conventional approach and diversity optimization are
indicated by e(a), h(a) and e(b), h(b) respectively.

differences in the possible range of feature values for easy and hard instances.
We study the effect of the diversity optimization on the range of features by
comparing the instances generated by diversity optimization to the instances
generated by the conventional approach in [7]. Evolving hard instances based
on the conventional evolutionary algorithm, the obtained instances have mean
approximation ratios of 1.12 for n = 25, 1.16 for n = 50, and 1.18 for n = 100.
For easy instances, the mean approximation ratios are 1 for n = 25, 50 and 1.03
for n = 100.

Figure 1 (left) presents the variation of the mean distance of the distances
between points and the centroid feature (centroid mean distance to centroid) for
hard and easy instances of the three considered sizes 25, 50 and 100. Each set
consists of 100 instances generated by independent runs [7]. As shown in Fig. 1
(left) the hard instances have higher feature values than for easy instances for
all instance sizes. For example, for instance size 100 and for the hard instances
the median value (indicated by the red line) is 0.4157 while its only 0.0.4032 for
the easy instances. The respective range of the feature value is 0.0577 for the
hard instances and 0.0645 for the easy instances. For the instances generated by
diversity optimization (easy and hard instances are indicated by e(b) and h(b)
respectively), there is a difference in the median feature values for the hard and
easy instances similar to the instances generated by the conventional approach.
Additionally, the range of the feature values for both the hard and easy instances
has significantly increased. For example, for the instance size 100, the median
value for easy instances is 0.4028 and the range is 0.2382. For the hard instances
of the same size, the median is 0.04157 while the range is 0.1917 (see Fig. 1
(left)).

Similarly, Fig. 1 (right) presents the variation of cluster 10% distance to cen-
troid (cluster 10pct distance to centroid) feature for the hard and easy instances
generated by the conventional approach (indicated by (e(a) and h(a)) and for
the hard and easy instances generated by diversity optimization (indicated by
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(e(b) and h(b))). The general observations from these box plots are quite similar
to the observations from the mst dist mean shown in Fig. 1 (left).

The above results suggest that the diversity optimization approach has
resulted in a significant increase in the coverage over the feature space. Hav-
ing the threshold for approximation ratios (αe and αh) our method guarantees
the hardness of the instances. These approximation thresholds are more extreme
than the mean approximation values obtained by the conventional method. Being
able to discover all these instances spread in the whole feature space, our app-
roach provides a strong basis for more effective feature based prediction.

As a result of the increased ranges and the similar gap in median feature val-
ues for hard and easy instances compared to the conventional instances, there is a
strong overlap in the ranges of the features for easy and hard instances generated
by the diversity optimization. This is observed in the results for mst dist mean
and cluster 10pct distance to centroid shown in Fig. 1. Similar pattern holds for
the other features as well. This prevents a good classification of problem instances
based on single feature value.

5 Classification Based on Multiple Features

As a single feature is not capable in clearly classifying the hard/easy instances,
combinations of two or three different features are examined in the following. Our
analysis mainly focuses on combinations of the 7 previously introduced features.

According to the observation and discussion in [7], the two features dis-
tance max and angle mean can be considered together to provide an accurate
classification of the hard and easy instances. Whereas after increasing the diver-
sity over the seven different feature values and a wider coverage of the 2D space is
achieved, the separation of easy and hard instances is not so obvious, as shown
in Fig. 2. There are large overlapping areas lying between the two groups of
instances. As the number of cities in an instance increases, the overlapping area
becomes larger. It is hard to do classification based on this. Therefore the idea
of combining three different feature is put forward.

Support vector machines (SVMs) are well-known supervised learning models
in machine learning which can be used for classification, regression and outliers

Fig. 2. 2D Plots of feature combinations which provide a separation between easy
and hard instances. The blue dots and orange dots represent hard and easy instances
respectively. (Color figure online)
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detection [19]. In order to quantify the separation between instances of different
hardness based on the feature values, SVM models are constructed for each
combination of features.

Let ACCn be the training accuracy of a feature combination in separating
the hard and easy instances of size n. We define ACCn as the ratio of number
of instances which are correctly classified by the model to the total number
of instances in the dataset. All classification experiments are done in R with
library{e1071} [20].

The training data of the SVM models are the population of 420 instances
generated as in Sect. 3 and the training accuracy is regarded as a quantified
measurement of the separation between hard and easy instances. The feature
combinations used for classification are the 21 two-feature combinations and 35
three-feature combinations discussed in Sect. 5.

The linear classifier is the first model tried in classifying the dataset. Since
the dataset is not linearly separable, taken the trade-off between maximizing the
margin and minimizing the number of misclassified data points into consider-
ation, the soft-margin SVM is used for classification. From experiment results,
most of the accuracies of different feature combinations lie in the range of 0.6
to 0.7, which implies the high possibility that the linear models are not suitable
for separating the hard and easy instances based on most of the feature combi-
nations. Therefore we move to applying kernel functions for non-linear mapping
of the feature combination. The Radial Basis Function (RBF) kernel is one of
the well-known kernel functions used in SVM classification.

There are two parameters needed when applying RBF kernel, which are
C(cost) and γ. The parameter setting for RBF is crucial, since increasing C and
γ leads to accurate separation of the training data but at the same time causes

Table 1. The accuracy of SVM with RBF kernel separating the hard and easy instances
in different two-feature space.

Feature 1 Feature 2 ACC25 ACC50 ACC100
angle mean centroid mean distance to centroid 0.8476 0.8071 0.8071

angle mean chull area 0.7857 0.7810 0.7929

angle mean cluster 10pct mean distance to centroid 0.7810 0.7786 0.8000

angle mean mst depth mean 0.7524 0.7381 0.8000

angle mean nnds mean 0.8167 0.8833 0.8452

angle mean mst dists mean 0.8119 0.8024 0.8405

centroid mean distance to centroid chull area 0.8619 0.7667 0.8381

centroid mean distance to centroid cluster 10pct mean distance to centroid 0.8524 0.8357 0.7548

centroid mean distance to centroid mst depth mean 0.8381 0.7643 0.8095

centroid mean distance to centroid nnds mean 0.8786 0.9524 0.8476

centroid mean distance to centroid mst dists mean 0.8905 0.8571 0.8762

chull area cluster 10pct mean distance to centroid 0.8000 0.7881 0.8548

chull area mst depth mean 0.7429 0.7429 0.7571

chull area nnds mean 0.8071 0.8905 0.8452

chull area mst dists mean 0.8619 0.8643 0.9024

cluster 10pct mean distance to centroid mst depth mean 0.7619 0.7714 0.7929

cluster 10pct mean distance to centroid nnds mean 0.8190 0.8833 0.8643

cluster 10pct mean distance to centroid mst dists mean 0.8095 0.8095 0.8738

mst depth mean nnds mean 0.7786 0.8595 0.8405

mst depth mean mst dists mean 0.8095 0.8214 0.8810

nnds mean mst dists mean 0.8500 0.9143 0.9024
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over-fitting. The SVMs here are generated for quantifying the separation rate
between hard and easy instances rather than classifying other instances. After
some initial trials, (C, γ) is set to (100, 2) in all the tests to avoid over-fitting.
This parameter setting may not be the best for the certain feature combination
in SVM classifying, but it helps us to gain some understanding of the separation
of hard and easy instances generated from previous experiments based on the
same condition.

Tables 1 and 2 show the accuracy of different two-feature or three-feature
combination in hard and easy instances separation. With RBF kernel, SVM
with certain parameter setting can generate a model separating the dataset with
average accuracy of 0.8170, 0.8244 and 0.8346 in 2D feature space for instance
size 25, 50 and 100 respectively. Whereas with three features, SVM with the
same parameter setting provides a separation with average accuracy of 0.9503,
0.9584 and 0.9422 for instance size 25, 50 and 100 respectively.

From the results, it can be concluded that there are better separations
between hard and easy instances in the 3D feature space.

6 Conclusions

With this paper, we have introduced a new methodology of evolving easy/hard
instances which are diverse with respect to feature sets of the optimization prob-
lem at hand. Using our diversity optimization approach we have shown that the
easy and hard instances obtained by our approach covers a much wider range in
the feature space than previous methods. The diversity optimization approach
provides instances which are diverse with respect to the investigated features.
The proposed population diversity measurements provide good evaluation of the
diverse over single or multiple feature values. Our experimental investigations
for 2-OPT and TSP have shown that our large set of diverse instances can be
classified quite well into easy and hard instances when considering a suitable
combination of multiple features which provide some guidance for predication as
the next step. In particular, the SVM classification model built with the diverse
instances that can classify TSP instances based on problem hardness provides
a strong basis for future performance prediction models that lead to automatic
algorithm selection and configuration. Building such models would require fur-
ther experimentation to determine the minimal set of strong features that can
predict performance accurately.
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