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tion. The amino acid positions selected correspond with those iden-

tified by Zakon et al. as being critical to the inactivation of the Na+

gene. The line at 0.1218 represents the average probability of belong-

ing to the convergent class over all sites in the alignment. Sites at

which nucleotide substitutions lead to functionally important amino

acid replacements have a high probability of belonging to the conver-

gent class. For example, at amino acid site 647 an otherwise conserved

proline (codon CCN) is replaced by a valine (GTN) in the Pintailed

Knifefish and a cysteine (TGY) in the Electric Eel. Substitutions at

codon position 1 and 2 are necessary for both of these amino acid

replacements and we find these sites have a high probability of be-
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Abstract

The accuracy and reliability of phylogenetic inference is compromised by the adop-

tion of models of sequence evolution that don’t adequately reflect the dynamic na-

ture of evolution by natural selection. Heterotachy refers to variation in the rate of

evolution of a particular site across lineages on a tree. We carry out simulations,

showing that phylogenetic inference using popular methods and models is unreliable

when the data evolved under the influence of heterotachy. We carry out a theoretical

analysis of these methods and models, concluding that their failure was inevitable

given the nature of the data.

To remedy this we introduce the General Heterogeneous evolution On a Single

Topology (GHOST) model. We implement the GHOST model under a maximum-

likelihood (ML) framework in the phylogenetic inference program IQ-TREE. We

perform extensive simulation studies, showing that the GHOST model can success-

fully recover the tree topology, branch lengths and substitution model parameters

from heterotachously-evolved sequences. We apply our model to a real dataset and

identify a subtle phylogenetic signal linked to the convergent evolution of the electric

organ in two geographically distinct lineages of electric fish. Furthermore, we use

the model to successfully identify specific sites in the alignment that are pivotal to

the effective function of the electric organ.

The GHOST model and its implementation in IQ-TREE provide the most flexi-

ble mixture model currently available for performing phylogenetic inference in a ML

framework. This increased flexibility better equips the GHOST model to represent

the process of evolution by natural selection. We show that the GHOST model is
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able to highlight subtleties in evolutionary relationships that coarser models can-

not. We foresee the GHOST model having potential uses in a variety of applications:

helping to resolve disputed topologies; focusing the efforts of biologists by identifying

alignment sites of functional importance; bringing to light evidence of convergent

evolution; and investigating the coevolution that occurs between disease and im-

mune cells, or hosts and parasites. As computing resources continue to grow and

phylogenetic algorithms are revised and improved, the GHOST model will be appli-

cable to ever larger MSAs, ultimately assisting in illuminating the history of life on

earth.
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