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Abstract

This study represents a regional review of the Toro and Imburu Formation aquifers in the fold
belt and foreland regions of the Papuan Basin, Papua New Guinea (PNG). This study extends
previous Toro aquifer studies in the Papuan Basin (Eisenberg 1993; Eisenberg et al., 1994;
Kotaka 1996). A comprehensive data set was assembled containing all currently available well
formation fluid pressure, salinity and temperature data. These data were used to calculate
hydraulic potential (Hw) values, which were subsequently used to generate a regional
potentiometric map for the Toro Sandstone reservoir and semi-regional maps for the Digimu,

Hedinia and lagifu Sandstone reservoirs of the Imburu Formation.

The Toro potentiometric surface map generated in this study is consistent with an extensive
hydrodynamic Toro aquifer system existing in the Papuan Basin Fold Belt. The Toro aquifer likely
flows northwest to southeast parallel to the fold belt, from the Lavani Valley Toro outcrop (likely
recharge region) in the Highlands, through to the Kutubu Complex, potentially via Hides,
(possibly Angore) and the Mananda/South East Mananda Fields. The evidence for Toro aquifer
hydrodynamic flow is strongest through the Kutubu Complex of fields, with water flow, entering
via Agogo and exiting the fold belt, at the southern end of the Usano Field into the foreland of
the basin. However, it should be noted that gas water contacts (GWCs) for Hides and Angore
Fields are not yet available. These have been estimated in this study from Hides and Angore gas
pressure gradient intersections with water pressure gradients identified from nearby wells (Lavani-
1 and Egele-1). Therefore it is not currently possible to unequivocally identify a connected Toro
aquifer system between Lavani Valley, (possibly Angore) and Hides. Nevertheless, the Lavani
Valley-Hides-Mananda/South East Mananda system (LV-H-M/SEM) represents the most likely
flow path for a Toro hydrodynamic aquifer model in the fold belt. Evidence for hydrodynamic
Toro aquifer flow was identified in the opposite direction, in a southeast to northwest direction,
in the South East Hedinia Field. Significant compartmentalisation of the Toro reservoir was
identified in several Hinterland Fields and anticline structures (Egele, Angore, Moran, and Paua
Fields along with the Kutubu and Makas Anticlines) and in the southeast region of the central

fold belt (Gobe/South East Gobe Fields).

Likely Toro aquifer flow exit points from fold belt into foreland were identified at the southern
end of Usano at lorogabaui-1 and at southern end of South East Mananada Field at Libano-1
involving the Bosavi Lineament. Possible northwest to southeast Toro aquifer flow was
identified in the foreland region of the basin from the Stanley Field in the northwest to the sea in
the southeast. The Komewu and Darai Fault systems appear to operate as barriers to northeast to

southwest Toro aquifer flow in the foreland.
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Considerably less data were obtained in this study for the Digimu, Hedinia, Iagifu Sandstone
reservoir aquifers compared to the Toro reservoir unit. However, key findings include; (1) for the
Digimu Sandstone, hydrostatic and compartmentalised aquifer behaviour in the Agogo,
Hedinia/Iagifu and Moran Fields, (2) for the Hedinia Sandstone, hydrodynamic aquifer behavior
in the Hedinia/Iagifu and South East Hedinia Fields and (3) for the Iagifu Sandstone,
hydrodynamic aquifer behavior in the Hedinia/Iagifu Fields, a significant Hw step between the
Agogo and Hedinia/Iagifu Fields (not seen with any of the other resetvoir sandstones) and a
compartmentalised aquifer in the Gobe/South East Gobe Fields (where it acts as the main

hydrocarbon reservoir).

The updated regional data and potentiometric maps generated in this study will assist sub-
regional and field scale modelling of the Toro and Imburu Formation aquifers, future
hydrodynamic trapping studies and provide increased confidence for hydrocarbon reserve

determination in the Papuan Basin Fields.
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Chapter 1: Introduction

1.1 Study Rationale/Significance

The fold belt and foreland of the Papuan Basin in Papua New Guinea (PNG) contain
appreciable oil and gas reserves (Bradey et al., 2008; Berryman and Braisted, 2010; Ahmed et al.,
2012) (Figures 1.1 and 1.2). The significant topographical relief of the Papuan Fold Belt (up to
3500m) and the high levels of rainfall experienced by the tegion (up to 8m/year) suggest that
regional flow of water is likely to have an impact on the distribution and management of the
hydrocarbons within the important reservoirs of the fold belt and foreland of the Papuan Basin

(Cockroft et al., 1987).

There is presently evidence for a hydrodynamic aquifer system operating in the Kutubu Complex
of fields (Agogo, Hedinia/Iagifu and Usano) in the central fold belt region (Figures 1.2 and 2.1b),
resulting in a tilted oil-water contact (OWC) (Eisenberg, 1993; Eisenberg et al., 1994). However,
there is still a limited understanding of the wider regional controls on water movement and the
impact on hydrocarbon distribution within the important reservoirs in many of the fields in the

Papuan Basin.

Aquifer continuity is significantly influenced by faulting and compartmentalisation of the reservoir
units in the Papuan Fold Belt (Hennig et al., 2002; Williams and Lund, 20006, Bradey et al., 2008).
However, because of the difficulty in obtaining good quality seismic data in the fold belt terrain,
(as a result of a blanket of thick overlying refractory karsified limestone and steeply dipping
structures), the level of compartmentalisation is highly uncertain (Eisenberg et al., 1994; Bradey et

al., 2008).

The limited understanding of potentially more widespread hydrodynamic aquifer behaviour and
poortly imaged faulting, makes it difficult to accurately assess hydrocarbon reserves, ie:
compartmentalised with different hydrocarbon water contacts, or a tilted contact across the field.
The position of the OWC or gas-water contact (GWC) in a field is one of the most important

factors in determining reserves (Dennis et al., 2000; Cockroft et al., 1987).

This project aimed to provide up-to-date regional information about the behaviour of the
aquifers in the important Toro Sandstone and Imburu Formation (Digimu, Hedinia and Iagifu
Sandstone) reservoirs in the Papuan Basin. This will potentially enable the identification of
additional hydrodynamically trapped hydrocarbon reserves in the Papuan Fold Belt and facilitate
improved resource assessment in the basin. This is particularly important at present as PNG

continues to develop its hydrocarbon resources and experiences renewed exploration efforts.
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Figure 1.1: PNG Papuan Basin Oil and Gas Fields
Major fields include: Kutubu (~2.0 Tcf gas/300MMbbl oil), Hides (8.0 Tcf gas) and Elk-
Antelope (8.0 Tef gas /160MMbbl oil) (modified from PNG CMP, 2012).
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Figure 1.2: PNG Papuan Basin Location Map
Major gas and oil fields are labelled (gas fields - pink. Oil fields - green). Permit areas held by different

companies (colour coded) also shown. (Santos, 2013)
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1.2 Study Scope/Limitations

Previous aquifer studies have been carried out in the Papuan Basin, which include work by
Eisenberg (1993), Eisenberg et al., (1994) and Kotaka (1996). This study represents an update of
the regional analysis done by Kotaka (1996) and re-examination of some of the observations
reported by Eisenberg (1993) and Eisenberg et al., (1994). It was beyond the scope and time
frame of this project to model the data obtained at field-scale level in the same way as that

presented by Eisenberg (1993).

The first stage of this study comprised the assembly of a newly updated comprehensive regional
Papuan Basin data set containing the available well formation pressure, salinity and temperature
data for the Toro and Imburu Formations. The second stage used these data to generate
hydraulic potential (Hw) values, which have been used to constrain and generate preliminary
potentiometric surface maps for the Toro and Imburu Formations (see Section 4.5). Previous
studies have generated Hw values using a single assumed water pressure gradient value (0.435
psi/ft) for the fold belt and foreland regions of the Papuan Basin (Eisenbetg, 1993; Eisenberg et
al., 1994; Kotaka 1996). This study compared Hw values generated by three methods; (1) the
original method using the assumed water pressure gradient value, (2) an approach using
calculated water pressure gradients from each well/compartment, and (3) a method, also using
the assumed water pressure gradient value, but in conjunction with salinity and temperature data,

to further refine Hw values generated.

The primary focus of this study was to generate a regional potentiometric surface map for the
Toro Sandstone reservoir, as it is the most important reservoir in the existing fields of the fold
belt of the Papuan Basin (Bradey et al., 2008). However, limitations on the achievable detail of
the Toro potentiometric map existed, as only a modest number of reliable Toro water pressure
data points were available for the fold belt region, and very few data points were available for the
foreland region. Even fewer data points were available for the Imburu Formation reservoir units
(Digimu, Hedinia and Iagifu Sandstones). Therefore, these represented secondary objectives for

this study, as it was only possible to generate coarse, semi-regional maps for these reservoir units.

Other limitations on the extent of potentiometric surface mapping possible for this study existed
and included; (1) the lack of ctitical data points to identify gas/oil-watet contacts in the Toro
reservoir in several fields (eg. proposed wells in the Hides and Angore Fields are still to be drilled
to obtain these data). (2) Limitations on the structural control of reservoir compartmentalisation
for the aquifers in the fold belt, as a consequence of relatively poor seismic data. (ie. identifying
the presence or absence of faults, the level of fault displacement and whether the fault is sealing

or leaking. (3) A relatively coarse outcrop geology map of the Papuan Basin made it difficult to
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unambiguously identify, for instance, Toro Sandstone outcrop, (ie. possible recharge areas for the
aquifer other than the main areas previously identified at the Muller Anticline and Lavani Valley)

(D’Addario et al., 1976; Hill et al., 1993).

It was outside the scope of this study to incorporate porosity and permeability data for the
sandstone reservoirs and to identify and assess other lithological controls on aquifer behaviour.
However, they likely play an important role in influencing aquifer behaviour within and between
the fields in the Papuan Basin. In addition it was beyond the time frame available for this project
to examine in detail formation water chemistry data. Such data would have been extremely
helpful as a natural tracer for investigating aquifer behaviour across the fields, potential cross-
compartmental connections and recharge regions (Glynn and Plummer, 2005; Underschultz et

al., 2005; Abdou et al., 2011).

However, not withstanding these limitations, it is envisioned that the pressure-depth plot analysis
and potentiometric maps generated in this study will provide additional information on aquifer
behaviour in the Papuan Basin, particularly the Toro reservoir in the fold belt, and will permit
updated aquifer flow models to be generated for some of the important fields in the Papuan

Basin Fold Belt.

1.3 Study Aims

This study aimed to:
(1) Generate a comprehensive data set of up-to-date fluid pressure, salinity and temperature data,
that will allow Hw values to be generated for all of the wells in the Papuan Basin for the Toro

and Imburu Formation reservoits.

(2) Generate up-to-date potentiometric surface maps within the fold belt and foreland regions of
the Papuan Basin for the key reservoir intervals, the Toro Sandstone and the Imburu Formation
(Digimu, Hedinia and Iagifu Sandstone units), by integrating the Hw data, regional topography,
regional surface geology and major structural features recognized in the region that may serve as

barriers to aquifer connectivity.

(3) Propose a qualitative Toro aquifer model incorporating key aspects of Toro reservoir

hydrodynamic flow patterns identified from the potentiometric surface maps.
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2.1 Basin Setting

The Papuan Basin is a member of a group of basins extending along the north-northwest margin
of Australia, which make up the Westralian Superbasin (Bradshaw, 1993) (Figure 2.1a). The basin
is located on the island of New Guinea within the Southern Highlands and Western Provinces of
PNG, extending northwest just into West Papua and southeast offshore into the Gulf of Papua
(Figures 1.1, 2.1a, 2.1b). The basin has been subdivided into western and eastern basin sections
(Home et al., 1990; McConachie et al., 2000; Buchanan and Warburton, 1996; Ahmed et al.,
2012) (Figures 1.1, 2.1b). This study has concentrated on the western section of the Papuan Basin
within PNG, excluding the extended contiguous part of the basin in West Papua, which has
alternatively been called the Akimeugah Basin (McConachie et al., 2000; Hill et al., 2004) (Figure
2.1a). The areal extent of the Toro Sandstone reservoir, which is the primary focus of this study,

roughly defines the extent of the western section of the Papuan Basin (see section 2.4).

The western section of the Papuan Basin includes the Papuan Fold Belt region and the
heterogeneous low-lying foreland region (Figure 2.1b). The Papuan Fold Belt, a northwest-
southeast trending mountain range up to 3500m elevation, has been generated by oblique
convetgence, since the Late Miocene/Pliocene, of the Australian Plate, with the Pacific Plate and
intervening microplates (Hill, 1991; Eisenberg, 1993; Hill et al., 2008; Craig and Warvakai, 2009)
(Figure 2.2a). The foreland region represents the relatively undeformed and still developing
foreland basin that includes the Fly Platform, Darai Plateau (Hulse and Harris, 2000), Omati and
Turama Troughs, and Fly/Strickland Depocentre (Figure 2.1b).

The fold belt and foreland regions of the Papuan Basin combine with the Central Orogenic Belt
(metamorphic and granitic basement), and a zone of sutured oceanic crust and island arcs (that
New Guinea collided with eatlier in the Eocene) to make up the four main tectonic provinces of
PNG (Hill, 1991; Van Ufford and Cloos, 2005; Hill et al., 2008; Craig and Warvakai, 2009)
(Figure 2.2b).
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Image shows relationship of Australian plate (with New Guinea and Australia) to the Pacific and smaller

Philippines and Caroline Plates to the north (Santos, 2008).
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New Guinea map showing simplified tectonic belts and the principal tectonic features. Four main tectonic
provinces; Fly platform, Papuan Basin Fold Belt, Central Orogenic Belt/Mobile Belt and zone of sutured
oceanic crust and accreted Island arcs (AB Amanab Block; AR Adelbert Ranges; BB Bintuni Basin; BG
Bena Bena — Goroka Terrane; B-T Bewani-Torricelli Mountains; CM Cyclops Mountains; COB Central
Ophiolite Belt; DF Derewo Fault; FR Finisterre Ranges; G Gauttier Terrane; GM Grasberg Mine; HG
Huon Gulf; HP Huon Peninsula; In Indenburg Inlier; K Kubor Range; La Landslip Ranges; LF Lagaip
Fault; MB Meervlakte Basin; Po Porgera Intrusive Complex and mine; RB Ramu Basin; SB Sepik Basin;
SG Strickland Gorge; ST Sepik Terrane; Wa Wandaman Peninsula; WT Weyland Terrane) (Hill et al.,

2008).
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2.2 Tectonic-Stratigraphic Evolution

A schematic tectonic model for the evolution of the Papuan Basin and subsequent development
of the fold belt and foreland regions is shown in Figure 2.3 (Hill et al., 2004). The Papuan Basin
contains Mesozoic post-tift/continental shelf marine sequences and Cenozoic foreland basin
sequences deposited on Paleozoic and Triassic granitic and metamorphic basement of the

continental crust of the Australian Plate (Hill, 1991; Eisenberg, 1993).

The basin initially developed by rifting of the Australian continental margin in Triassic to Early
Jurassic times in response to the break-up of Gondwana (Craig and Warvakai, 2009; Ahmed et
al., 2012). Progressive sediment deposition from the Early Jurassic (syn-rift) through to the Early
Cretaceous (post-rift/continental shelf) has then generated the soutce, reservoir, and sealing
facies of the main petroleum system operating in the Papuan Basin (Hill et al., 2000) (Figures 2.4,
2.52). The Toro and Imburu Formation Sandstones represent the main reservoir units in this
petroleum system (Hill et al., 2000) (Figures 2.5a-b). The Mesozoic rift succession of sediments
within the Papuan Basin are correlatable to that seen in other basins on the northwestern
Australian continental margin as part of the larger Westralian Superbasin (Ahmed et al., 2012).
During the Mesozoic, post-tift/ continental shelf margins developed after the progressive
breakup of Eastern Gondwana along the northern and then down the western flank of the

Australian Plate margin (Struckmeyer et al., 1990; Home et al., 1990).

Within the Jurassic sediment sequence in the Papuan Basin, the most likely source rocks are the
early-rift Magobu Formation coal measures and the later syn-rift fine marine shelf clastic
sediments, such as the Lower Jurassic marine shales of the Barikewa and Koi-lang Formations
(deposited during inundation of the continent margin) as well as the Middle Jurassic marine

shales of the Imburu Formation (Hill et al., 2000; Hill et al., 2008; Ahmed et al., 2012).

The regressive fluvio-deltaic to marginal marine Lower Cretaceous Toro sandstone represents
the major reservoir. The Upper Jurassic to Lower Cretaceous Digimu, Hedinia and lagifu
Sandstone members of the Imburu Formation also represent important reservoir units. During
the Late Jurassic to Early Cretaceous, regional subsidence allowed deposition of the lagifu,
Hedinia, Digimu and Toro reservoir sands in shallow marine, shoreline to estuarine
environments in a continental shelf margin setting, with continued deposition of Imburu
Formation shale further offshore to the east and northeast of the palaco-shoreline (Figures 2.6a-
b) (Hennig et al., 2002; Bradey et al., 2008). These sediments were primarily sourced from the

Australian craton from the southwest (Bradey et al., 2008).

Increasing marine transgression in the Early Cretaceous led again to the deposition of fine clastic

sediments, muds and silts. These have formed the shales of the 1000m thick Ieru Formation,
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which acts as the regional seal over much of the basin (Craig and Warvakai, 2009; Ahmed et al,,
2012; Eisenberg, 1993) (Figure 2.5a). The leru Shale may also act as a possible source rock (Hill
et al., 2008).

New Guinea was then uplifted during the Late Cretaceous to Paleocene, as a result of rifting in
the Coral Sea to the southeast (Hill, 1991). This resulted in erosion and removal of Upper
Cretaceous sediments in the fold belt and Fly Platform area of the basin and removal of Upper
Jurassic to Upper Cretaceous sediments in the eastern part of the basin (Struckmeyer, 1990).
Restricted deposition in the northern part of the basin occurred during the Paleocene, however
mote extensive deposition did not resume until late Eocene/Eatly Oligocene flooding, which
allowed widespread formation of shallow marine carbonates, which have formed the Darai
Limestone (Figure 2.5a). The Darai Limestone is a thick (1000-1500m) and regionally extensive
limestone unit covering significant areas of the foreland and fold belt regions, and where exposed
at the surface, is heavily karstified (Eisenberg, 1993; Hill et al., 2008). It also provides a major

reservoir interval in the eastern part of the Papuan Basin (Struckmeyer, 1990).

Carbonate deposition was eventually halted by onset of compression in the Late Miocene, with
the conversion of the Papuan Basin from a continental shelf margin to a foreland basin setting
caused by the collision of the Australian continental lithosphere with the Pacific Plate, and the
resulting influx of Orubadi Formation sediment from the growing fold belt (Hill et al., 2008).
These Orubadi Formation sediments, deposited up to a thickness of 500m over the Darai
Limestone, include inter-bedded terrestrial sandstones and siltstones of the Era Beds, as well as
marine shales and volcaniclastics sediments (Berryman and Braistead, 2010) (Figure 2.5a).
Quaternary alluvium, and volcanics associated with the active volcanoes in the region sit

unconformably above the Era Beds of the Orubadi Formation (Eisenberg, 1993).
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Figure 2.3: Schematic Tectonic Model for the Evolution of the New Guinea Fold Belt

(a) Jurassic-Cretaceous rifting and sedimentation along the northern margin of the Australian Plate. Imburu
Formation and Toro reservoir sandstones were deposited on the shelf, with source rocks in the basin
facies. (b) Late Cretaceous-Paleocene uplift and denudation of the area adjacent to rifting in the Coral Sea.
(c) Early Miocene arc-continent collision generated a low-lying fold belt throughout New Guinea
beginning in the late Miocene. (d) In the Pliocene-Pleistocene, the fold belt first built up in West Papua as
the mobile belt and accreted terranes collided with the Australian Plate. The resulting mountains have
generated an adjacent foreland basin. However, because of slightly oblique convergence, in PNG, the fold
belt is lower lying and has not yet built up to the same heights as that in West Papua as it has not yet
impinged on the Australian Craton to the same extent. In the Papuan Basin there has been minor inversion
of basement faults, but a well-developed foreland basin is still being generated (modified from Hill et al.,
2004).
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Figure 2.4

Schematic diagram depicting Papuan Basin petroleum systems (Santos, 2008).
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Figure 2.5a: Lithostratigraphic Chart of Papuan Basin
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2.5b)
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Figure 2.5b: Lithostratigraphic Chart of Papuan Basin

Expanded section of lithostratigraphic chart shown in Figure 2.5a marked by asterisk. Represents a more

detailed/modified lithostratigraphic chart section showing important reservoirs of fold belt and foreland

regions of Papuan Basin (Santos, 2013). Note there has been an update with this Santos stratigraphic

designation of reservoir sand units compared to the eatlier stratigraphic column shown in Figure 2.5a.
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Figure 2.6a: Palaeo-Geography of Papuan Basin Region During Iagifu Sandstone
Deposition

Top panel - Late Jurassic depositional environment off the northern margin of the Australian Craton,
shown relative to current Australian continent and PNG landform structures. Bottom panel - Depicts
palaco-geographical model of lagifu Sandstone deposition, showing location of shoreline during late
Jurassic (located in southeastern portion of fold belt in Papuan Basin) relative to current PNG landform
structure. Light brown - coastal plain, dark yellow - estuarine/shoreface, light yellow - inner shelf, and blue

- deeper water/continental slope. (Struckmeyer, 1990; Santos, 2008)
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palaco-geographical model of Toro Sandstone deposition, showing location of shoreline during early
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(Struckmeyer, 1990; Santos, 2008)
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2.3 Structural Setting

On-going arc-continent collision of the Australian Plate with the Pacific Plate, commencing in
the Late Miocene to Pliocene, has caused the inversion of the Papuan Basin sedimentary deposits
(Mesozoic post-tift/continental shelf margin marine sequences and Cenozoic foreland basin
sequences) and has resulted in the development of the Papuan Fold Belt (Hill, 1991; Hill et al.,
2004). Southwest verging fault propagation folds and northwest to southeast trending thrust

faults, evident at the surface, characterise the Papuan Fold Belt (Hill, 1991) (Figure 2.7).

The fault-propagation folds generated along the leading edge of the Papuan Fold Belt form the
major anticlinal trapping structures involving the Early Cretaceous Toro and Upper Jurassic
Imburu Formation reservoir sandstones (Hill, 1991; Eisenberg, et al., 1994; Craig and Warvakai,
2009). Other potential trapping structures within the Papuan Fold Belt involve ramp anticlines,
duplexes and sub-thrust anticlinal structures that are related to reactivated extensional structures
that began as rollover anticlines present in the footwall (Hill, 1991; Buchanan and Warburton,

1996; Cole et al., 2000).

The surface geology and topography give an indication of the structure in the fold belt at depth.
However, due the common occurrence of complex thrust detachments within the Ieru
Formation shale layers, the depth structure at reservoir level is often offset from the surface
geology (Hill et al., 2004). A series of cross sections along the fold belt (two of which also include

foreland Papuan Basin regions) are shown in Figures 2.8 and 2.9a-e.

Sinuous anticlines characterise the southeastern portion of the fold belt in the Gobe and South
East Gobe Fields up through the central fold belt to the Kutubu Complex of fields (Agogo-
Hedinia/Iagifu-Usano) (see Figures 2.7 and 2.8). Whereas, in the northwest mote extensive and
broader anticlinal structures incorporating basement-involved faults predominate. The sinuous
nature of the anticlines in the southeast of the fold belt, suggest the presence of en-echelon faults
running along the fold belt, which may affect reservoir continuity. The en-echelon faulting in the
fold belt is indicative of strike-slip tectonic stresses in operation, consistent with the oblique

convergence generating the fold belt.

Cross cutting lineaments have been mapped from surface topography, acromagnetic data,
satellite imagery, and alignment of extrusive volcanics (Hill, 1991; Hill et al., 2000; Hill et al.,
2008). These faults are not definitively identified at the surface, and are inferred due to
significant changes in structural styles, topographic variations, and basement uplift. These
features are most likely related to pre-existing basement faults (Figure 2.7). The most prominent
of these features is the Bosavi Lineament, which appears to separate the Agogo and South East

Mananda Fields and significantly fault the Moran Field (Figure 2.10). This northeast trending
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transfer zone marks an abrupt change in fold style, with the basement-involved anticlines, such as
the Muller Anticline to the northwest and shallower sinuous anticlines to the southeast (Hill et
al., 2000; Hill et al., 2008). Cross cutting faults have also been observed to define the limits and
separate Usano and Gobe Fields, and potentially provide barriers to the regional Toro and
Imburu Formation aquifers or open aquifer flow to the foreland (Hill et al., 2000). There are also
major shear zones/ faults generated during previous tectonic extension and wrenching of the

region that cut across the fold belt (Hill et al., 2000; Buick et al., 2009).

An important tectonic element controlling the fold belt development is the regional shelf edge
(Hill et al., 2000). This is interpreted to be underlain by a crustal scale extensional fault that
controlled the position of the shelf margin and hence the transition between Mesozoic and

Tertiary basin depositional sequences (Figure 2.9a).

It is believed that the basement structures have influenced the deformation during compression
by reactivation of normal faults, and varying levels of thrusting against different ramp geometries,
for instance generating the thin-skinned deformation in the southeast of the fold belt compared
to deeper deformation structures in the northwest (Buchanan and Warburton 1996; Hill et al.,
2000; Hill et al., 2008). In addition, oblique convergence has caused the northwest of the fold
belt in PNG to undergo considerably more deformation than the southeast, producing a
developing foreland basin that is absent in the southeast of the basin (Figure 2.3) (Hill et al.,

2004).

Within the foreland region of the Papuan Basin there are several major normal fault systems,
which trend northwest to southeast and define the boundaries of several of the features in the
foreland (Darai Plateau, Omati and Turama Troughs, Fly Platform and the Fly/Strickland
Depocentre to the northwest) (Figure 2.1b). These include the Komewu and Darai Fault zones
that have been generated from eatlier extensional events that were involved in initiation of the
Papuan Basin in the late Ttiassic/Eatly Jurassic (Figure 2.1b). These fault systems have
undergone reactivation to varying extents within the foreland with the compression of the fold

belt to the northeast (McConachie et al., 2000).

In most cases, seismic data is of poor quality throughout the fold belt, and has not been used as
the sole basis for mapping. Field mapping has been achieved by utilising a variety of data and
methods [ie. combination of surface geology, synthetic aperture radar (SAR), topography,
acromagnetic data, strontium isotope data, palynology, dipmeter data, and 2D balanced cross
sections (Cole et al., 2000)]. However, seismic data has improved sufficiently in the last 10 years
with advances in both acquisition and processing to begin to delineate hanging wall structures in

the fold belt and prove a useful guide to final structural interpretation (Cole et al., 2000; Hill et
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al., 2004; Bradey et al., 2008; Goffey et al., 2010). Backlimb and near crestal positions of
structures in the fold belt are now adequately imaged, but steeply dipping to near vertical
forelimb and footwall geometries are still proving difficult to image (Kveton et al., 1998;
Johnstone and Emmett, 2000). Because of a lack of good quality seismic data, reservoir pressure
data becomes very important for indicating the presence or lack of reservoir continuity. When
combined with surface geology and subsurface well control, particularly dipmeter data, pressure

data provide important information for working out the complex fold and thrust belt structures

(Eisenberg, 1993).

Figure 2.7: Papuan Basin Structural Elements Interpreted from Surface Image Data
Satellite image of Papuan Basin showing central fold belt region and adjacent northeast region of foreland.
Note the presence of sinuous anticlines south of the Bosavi Lineament in southeast region of fold belt.
While, in the northwest of the fold belt, north of the Bosavi Lineament extensive and broader anticline
structures are present (Buick et al., 2009).
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Figure 2.10: Faulting in the Moran Field

Panel 1 - Moran faults at surface determined by Sr isotope mapping data. Panel 2 - Moran Field seismic
strike line, showing basement faulting (Bosavi Lineament) influencing the faulting and structure of
overlying Toro reservoir (Hill et al., 2008).
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2.4 Key Reservoir Units

The properties and distributions of the Toro Sandstone and Imburu Formation (Digimu, Hedinia
and Iagifu Sandstone units) in the Papuan Basin are described in this section. The main reservoir
interval in the Papuan Basin Fold Belt is the Lower Cretaceous Toro Sandstone, which has
excellent lateral continuity (and is typically ~100m thick gross interval) along the length of the
fold belt. This is because the reservoir sands were deposited in an extensive shoreline aligned
roughly parallel to the present day fold belt. The Toro Sandstone was predominantly deposited in
a near-shore high-energy environment with reworking by waves (Varney and Brayshaw, 1993;
Madu, 1996; Hirst and Price, 1996). Toro reservoir distribution and thickness are shown in
Figure 2.11. A regional gamma-ray log correlation of the Toro Sandstone is shown in Figure 2.12
across the Agogo-Hedinia/Iagifu Fields, which demonstrates good lateral continuity (Bradey et

al., 2008).

Toro reservoir quality is laterally consistent along the fold belt (palaco-shoreline) northwest to
southeast but displays reduced quality moving west to southwest from the main palaco-shoreline
depositional setting. This is seen in the example where even though the Toro gross reservoir
interval maintains a stratigraphic thickness ~100m, it shows a trend of decteasing net/gross from
70% at Mananda in the southeast to Hides (44-62%) to 21% at Juha in the west (Johnstone and

Emmett, 2000).

The Toro Sandstone is divided into three coarsening up units, A, B and C, that are separated by
thin silty layers (Eisenberg et al., 1994) in the Hedini/Iagifu Fields. The basal unit, Toro C, is
made up of lower shore face silty sandstones, which are inter-bedded with clean sands deposited
in high-energy near shore to estuarine depositional environments. However, in the Hides Field,
Toro C is interpreted to be of entirely estuarine depositional origin. The overlying Toro B is a
transgressive, predominantly shale prone interval, often further divided into Upper and Lower
Toro B. The Lower Toro B consists of offshore mudstone with locally integrated middle to
lower shore face sandstones. The Upper Toro B is predominantly shale. The Toro A is generally
the best quality of the Toro sands. This unit comprises clean progradational sandstone with
upward coarsening profiles typical of a shoreline dominated depositional system (Varney and

Brayshaw, 1993; Madu, 1996; and Hirst and Price, 1996).

The Toro A, B, and C units have been found to behave as separate reservoirs in the region
between the Hedinia and Iagifu Anticlines in the Kutubu Complex (Eisenberg, 1993). However,
pressure data suggests the reservoirs act as a single unit in some fields where they are mapped

(eg. at Hides Field - Johnstone and Emmett, 2000). This interconnectivity has been interpreted to

24



Chapter 2: Regional Geology

be due to conductive intra-field faulting, abutting different sand packages across a fault. It is
unlikely that in many wells (eg. Hides Field) there is vertical communication through the

intervening marine shale units without faulting (Langston, 2013).

Toto porosity in the Kutubu Complex of fields (Agogo-Hednia/Iagifu-Usano) is between 12-
15% and permeability ranges up to 2 darcies, but in general is several hundred millidarcies
(Daniels, 1993). In the Hides Field, Toro porosity is slightly reduced over all (7-10%) with
permeabilities of up to 800 millidarcies (Johnstone and Emmett, 2000). The majority of the Toro
at Juha and Angore Fields has 5-6% porosity at under 10 millidarcies permeability but with some

intervals up to 9% porosity and 200 millidarcies permeability (Starcher, 2013).

The Digimu Sandstone member of the Upper Jurassic Imburu Formation is a 25m thick marine
sandstone very similar to the Toro Sandstone (Eisenberg et al., 1994). It has a similar depositional
setting to the Toro Sandstone, however was less extensive. Facies variations occur within this unit
from offshore to shoreface, so reservoir quality and thickness vary (Madu, 1996). The Digimu
Sandstone reservoir unit is important in the Moran Field where it hosts the majority of the

hydrocarbons. Digimu reservoir distribution and thickness are shown in Figure 2.13.

The Hedinia Sandstone is the least important reservoir of the four reservoirs, as the unit does not
contain significant volumes of hydrocarbon in the existing fields. It has a similar shoreface
depositional setting to the Toro and Digimu Sandstones. Like the Toro, the Hedinia Sandstone
also consists of three sandstone units separated by shalier layers (Madu, 1996). Hedinia reservoir
distribution and thickness are shown in Figure 2.14. It varies in thickness up to 40m, but averages

~20m thickness along the fold belt region between Mananda and Gobe (Madu, 1996).

The Iagifu Sandstone forms the main reservoir for the Gobe Field where hydrocarbons are
actually absent from the Toro and Digimu units. Iagifu reservoir distribution and thickness are
shown in Figure 2.15. The lagifu Sandstone is more laterally variable than the other three
sandstones (suggesting a delta front depositional system - see Figure 2.6), with four main areas or
lobes of lagifu Sandstone deposition mapped in the fold belt region (Iagifu, South East Hedinia -
Ta-1X, Gobe and South East Gobe lobes) (Madu et al., 1996). [lagifu thickness at Iagifu lobe
~10m, South East Hedinia - Ta-1X lobe up to 90m, Gobe lobe average thickness ~100m and
South East Gobe lobe average thickness ~50m (Madu, 1996)]. There are significant shaley
sections laterally between the four lobes of thickest Iagifu Sandstone deposition. This suggests
significant potential for lithological compartmentalisation of the lagifu reservoir. In general the
porosity in these four reservoir units ranges from ~5 to 15%, and permeability is typically in the

range of 1 millidarcy up to ~1 darcy (Buick et al., 2009).

25



Chapter 2: Regional Geology

— 1 N 7
. sijam 31y Uado Jaylo pue Sijam 2661 150d LI §OOZ Patepdn - 2
.ﬁ L 4 XM PIOI0DS 2661 WOJ Uoedos! pues ssoib: sonos - - N - | SYILINOTA '
) SNy . B, SN sa
L 0|0 ~ G 7 5
° b, ﬁ :
= & - i - £
) 1, {AuwiopuoounAlens) aseg Aq
/ — I# uol308s 010] JO UoIedUN} . 7 — o

@ | I F.d W 3 i uorysodap uou Aj@yI|

peaysaIo|\ pue ejejy ul Buissiw
uoijo8s ueluIbueleA pue ueiselllag

J

<

Z €—

/,.

ajluelb uelwlad
Buiddejuo oo

1199p|0} UsdYLIoU Ul
suoljesjeuad |jam ou

uol}09s painseaw YOIy} |
douoinQ olio|
- T —

<
’r
/

010] UBY} IBOMIUOAN/BUBIY 8] O} jese
Ajoy1| 810w synelsy je pues [

Sel

ozl
oL
00L
06
08
0L
09
0S
or
0g
0z
oL
0

DSI ANVS SSO¥O[OHOL

> -..

in

bution and Thickness in the Papuan Bas

istri

Toro Sandstone Di

Figure 2.11

(Santos, 2008)

26



Chapter 2: Regional Geology

PPL 219

Agogo 3X IDT 10 lng-lg-sx lagifu 7X Hed;a 1X
[ ] L ]
T5T] m E@ 3m  [BTocs GR im0l  am E@ 285m ﬁ@
£ > = = =
TORO A h3 ! L] ToROA \
TORO BU L | z é—?b— TORO BKLJ E: Toro
-~ Toro g | | | e o ——r = TORO 8 = %,.E_ Sandstone
| Tor0e | ] 5= . T0R0.C (sh )
100- BASE 7 o 100 100 100- B‘y__.‘wc 100, —
—— — 150 150 150 é Digimu
[ . 3 DG 2 Incised
3 ;- My alley Fill)
200 =2 200 Z0 2z NG P
250- 250 250 250- st IS 250 T T
Ll
— -5y 4 b Hedinia
T [ MRS Sandstone
o 300 _E soo] | %: sl % | v . ‘E_ (Delta Front)
3
O
T
- é € Lol | =L = NE-: i tagifu
A a
] { 9o (séh?sgme”
— = » a Fron!
B, s 5
400 Yg |40 "tﬁ 400 400/ y 400
A
Uy g ; o6
450- 450 450 asof T H 1 \’G@‘ 450
AGIFy N
- [ ] —— I
{ L P #
500- 500 500 — 500- 500
SE gy al
sas ) s31 St s31 s31
- [ ppL219 PPL 223

Figure 2.12: Gamma-ray Log Correlation of Toro and Imburu Formation Sandstones

Across the Kutubu Complex Fields

Top panel — Gamma-ray log correlation of Toro and Imburu Formation sandstones. Bottom panel - map

of Kutubu Complex. Purple line represents orientation of correlated top panel. Pink - gas. Green - oil
(Bradey et al., 2008)
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Figure 2.13:

Digimu Sandstone Distribution and Thickness in the Papuan Basin

Distribution and thickness of Digimu Sandstone shown in light purple shading and purple contour lines

(contour range 0-30m and contour interval 10m). Digimu Sandstone distribution centred over Agogo Field
in Papuan Fold Belt. (Hirst and Price, 1990)
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Figure 2.14: Hedinia Sandstone Distribution and Thickness in the Papuan Basin

Hedinia Sandstone shown in yellow and pink shading (contour range 0-20m and contour interval 10m)
(Santos, 2008)
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Figure 2.15: Iagifu Sandstone Distribution and Thickness in the Papuan Basin

lagifu Sandstone distribution shown in yellow and pink shading and green contour lines (10m contour
interval). (Santos, 2008)
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Chapter 3: Hydrogeology/Hydrodynamics
3.1 General Introduction

Hydrodynamic flow is defined as the lateral movement of water through an aquifer, whereas in a
hydrostatic environment, there is no horizontal component to the movement of the water
(Dahlberg, 1995). Hydrodynamic flow of formation water is caused by lateral variations in
pressure (potentiometric gradients) within a basin aquifer. Hydrodynamic flow can cause the

OWCs and GWCs in a reservoir to be tilted (Dennis et al., 2000; Dahlberg, 1995) (Figure 3.1).

In a hydrodynamic environment, fluid movement occurs in response to differences in potential
energy, with flow from regions of high to low energy (Dahlberg, 1995). Hydrodynamic flow
direction can be identified using a potentiometric surface map that plots hydraulic potential (Hw)
values for formation water at different points in a reservoir formation (see sections 4.4 and 4.5

for descriptions of Hw and potentiometric surface maps) (Figure 3.2).

Many examples of hydrodynamic flow have been described, and in most cases, are in basins
where the flow of formation water is basin-ward driven by meteoric water recharge from
neighbouring highland regions (eg. Persian Gulf oil fields - Zagros Fold Belt, and Rocky
Mountain foreland basins of North America). The significant topographical relief and high
rainfall in the Papuan Fold Belt favours such a basin-ward hydrodynamic mechanism (Cockroft
et al., 1987). However, there are examples where the flow of formation water is outwards from
the basin, because of dewatering, away from the over-pressured basin centre (eg. regions in the
North Sea and Gulf of Mexico) (Dennis et al., 2000). Common effects of hydrodynamic flow
include tilted OWCs, flushed structural or stratigraphic traps, and structurally offset hydrocarbon

accumulations, as well as pools with no apparent trap (Cockroft et al., 1987).

Changes in OWC depth across reservoirs can be caused by factors other than hydrodynamic
aquifer flow such as structural or stratigraphic barriers to flow within the reservoir (Muggeridge
& Mahmode, 2012). Different OWCs and GWCs can be associated with reservoir
compartmentalisation, which can occur in reservoirs that have undergone faulting. Significant

faulting is characteristic of fold and thrust belts (Goffey et al., 2010).

It is often difficult to unambiguously identify whether compartmentalisation or a hydrodynamic
aquifer is causing the different OWCs particularly if the lateral pressure gradients causing aquifer
flow have changed in the recent geological past (Muggeridge & Mahmode, 2012). A characteristic
of compartmentalisation is assumed to be different oil pressures in different parts of the
reservoir, but this can also be evidence that the system has yet to reach equilibrium (Dennis et al.,

2000). The existence of a lateral pressure gradient in the aquifer and no such gradient in the oil
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leg is commonly assumed to indicate of a hydrodynamic aquifer behavior and good lateral
communication. However, it is equally possible that pressures may have equilibrated through a
low permeability baffle over geological time scales but would not equilibrate through such a
baffle on production time scales (Dennis et al., 2000). Areal variations in reservoir permeability
may also result in significant variations in tilt across a field (Muggeridge & Mahmode, 2012). It
should be noted that hydrodynamic flow is extremely slow compared to production time scale
watet flow. Such flows are in the order of cm/year flow rates and potentially take several
hundred thousand years to reach tilted equilibrium once flow starts or return to horizontal once

flow stops (Dennis et al., 2000; Muggeridge & Mahmode, 2012).

The difficulty of differentiating hydrodynamic flow from compartmentalisation is shown when
looking at various examples of potentiometric surface maps and trying to correctly interpret
whether or not hydrodynamic flow or compartmentalisation is responsible for the observed
potentiometric pattern (Figure 3.2). This situation is present in the Papuan Fold Belt where
significant faulting has likely compartmentalised the reservoirs, but there is also good evidence

for hydrodynamic aquifer behavior in several connected fields of the fold belt.
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Figure 3.1: The Effect of Hydrodynamic Aquifer Behaviour on Oil and Gas Accumulations

In the hydrodynamic case the aquifer pressutes vary across the field, whereas the oil and gas pressures
remain constant. The oil-water contact (OWC) and gas-water contact (GWC) become tilted as a result. The
GWC is less tilted than the OWC, due to the greater buoyancy of the gas. The gas-oil contact (GOC)
remains flat because there is no movement of the underlying oil leg - the field is in hydrodynamic

equilibrium. If the field was divided into static pressure cells, the oil pressures would also tend to differ

between the wells (Dennis et al., 2000).
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Figure 3.2: Examples of Subsurface Flow Patterns from Potentiometric Surface Mapping

(1) Cross section illustrating hydraulic potential (Hw) elevations and potentiometric surface based on
four wells. Surface is horizontal so no flow inferred (hydrostatic situation).

(2) Cross section showing varying hydraulic potential elevations associated with four wells.
Potentiometric surface slopes to the west, thus east to west water flow is inferred.

(3) Cross section reflecting a local low on the potentiometric surface. Converging water flow pattern
is inferred. Water has to flow vertically either to formation above or formation below.

(4) Cross section illustrating local potentiometric high from which diverging water flow pattern is
inferred.

(5) Cross section demonstrating a local potentiometric high from which diverging water flow pattern
might be incorrectly inferred. Represents stratigraphically compartmentalised scenario but equally
could be fault compartmentalised.

(6) Cross section illustrating a potentiometric step, reflecting water flow restriction due to a reduced
permeability zone. Could also be due to fault disruption of the reservoir such that a restricted

section of the reservoir is now in contact/juxtaposed across the fault.

Note - Hw = hydraulic potential, Z = depth of pressure measurement. (Dahlberg, 1995)
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3.2 Papuan Basin Review

This section reviews the three previously published hydrogeology studies in the Papuan Basin
(Eisenberg 1993, Eisenberg et al. 1994, Kotaka 1996) that form the framework for this study and

which this study secks to update and extend.

The Eisenberg (1993) and Eisenberg et al. (1994) papers identify and describe a hydrodynamic
aquifer operating in the Toro reservoir in the Hedinia/Iagifu Fields of the Kutubu Complex
(Figure 3.3). Eisenberg et al. (1994) have also proposed a more regional Toro aquifer system
operating in the Papuan Fold Belt (Figure 3.4). Kotaka (1996) provides a more extensive regional
study of formation fluid pressure and salinity for several of the aquifer units in the fold belt and

foreland regions of the Papuan Basin (Figure 3.5).

Eisenberg (1993) has explained a trend of decteasing Hw values through the Hedinia/Iagifu
Fields of the Kutubu Complex, from northwest to southeast, as generated by a hydrodynamic
aquifer. This hydrodynamic behaviour has led to a dramatic change in the oil distribution in the
Toro reservoir in the Kutubu Complex, with northwest to southeast water flow having swept the
northwest side free of oil and produced a tilted OWC across the rest of the reservoir in these
fields. The model then has water flowing into the Usano Field and exiting the fold belt at the

southern end of the Usano Field into the foreland (Figures 3.3 and 3.4)

Neither Eisenberg (1993) nor Eisenberg et al. (1994) actually suggest a mechanism to explain
how the formation water is exiting the fold belt at Usano. However, Grainge (1993) suggested
that the under-pressured Toro reservoir is due to water exiting from the fold belt at Usano via
hanging wall Toro juxtaposed against permeable Darai Limestone in the footwall of the field-
bounding fault. This scenario is certainly more likely in the southeast of the fold belt where
greater thin-skinned faulting of Toro is evident compared to the northwest of the fold belt that
has thicker-skinned/basement-involved structures. However, this scenario is not unequivocally
supported by the available cross sections through the southern region of the Usano Field (Figure
3.6). Kotaka (1996) also does not propose an exit mechanism from the fold belt at Usano, but
point out that meteoric/fresh water is flowing into the foreland close to Iorogabaiu-1.
Torogabaiu-1 is immediately west in the foreland from the proposed exit point at Usano.
Another possibility is that water exits via cross cutting faulting in the fold belt that permits
connection with the Toro reservoir in the foreland of the basin and eventual discharge into the
sea, rather than transfer to the Darai across the main frontal thrust of the fold belt as suggested

by Grainge (1993).

Eisenberg et al. (1994) propose an extension to the hydrodynamic system they identified in

Hedina/Iagifu-Usano Fields. They describe a mote regional hydrodynamic Toro aquifet system
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connecting fields northwest of Hedinia (Figure 3.5). However, evidence for this is not as
convincing as that for the Kutubu Complex hydrodynamic system, as there are large distances
between Hw data points and a general paucity of data to support this model. Eisenberg et al.
(1994) have proposed regional northwest to southeast flow in the Toro Sandstone reservoir
along approximately 115km of fold belt. From a potential recharge point at the Lavani Valley
Toro outcrop, they postulate connection and continuous flow through highland fields including;
Egele anticline, Angore, Hides, Mananda/South East Mananda, flowing into Agogo and then the
Hedinia/Iagifu Fields, with discharge from the fold belt at Usano into the foreland. Eisenbetg et
al. (1994) postulate that the Juha Field could also be connected to this hydrodynamic Toro

system.

A regional pressure-depth plot indicates that Egele, Angore, Hides, Mananda/South East
Mananda could be in pressure communication and fed with meteoric water from Lavani Valley.
There is a gradual and consistent decrease in Hw down through these fields into South East
Mananda, consistent with a hydrodynamic system. However, there is a large discontinuity in this
system with a large hydraulic potential drop across the structural junction, between the South
East Mananda and Agogo Anticlines. It was suggested that this large drop in hydraulic potential
and restriction in water flow could be caused by faulting and creation of a permeability barrier at

this point in the Toro aquifer.

Kotaka (1996) also advocates the Eisenberg et al. (1994) hydrodynamic regional Toro aquifer
model and has provided additional formation water pressure data and salinity data across the fold
belt and foreland regions for Toro and several other reservoir units (Figure 3.6). Kotaka (1996)
reports that the Toro aquifer generally becomes more saline and lower pressured towards the
foreland, with significant step-changes in hydraulic potential between some regions perhaps due

to recent tectonics causing faulting and subsequent baffles.

More recently Williams & Lund (2006) have put forward an alternative model for the non-uniform
oil column seen in the Hedinia/Iagifu Fields that involves a fault-generated compartmentalisation
mechanism rather than a hydrodynamic aquifer (Figures 3.7a-b). This model will have a significant
impact on the recoverable gas and oil volumes and the field development planning (Muggeridge &
Mahmode, 2012). The evidence for hydrodynamic flow is the regular systematic decrease of Hw
across the Hedinia/Tagifu Fields, with water legs plotting on parallel but offset/stepped gradients in
relation to each other. It is unlikely that fault compartmentalisation could produce such a
geographically regular variation. The simplest explanation is that the Toro aquifer is flowing. In
addition, the Toro gas and oil legs in Hedinia/Iagifu are part of one continuous teservoit (with
single original gas and single original oil pressure gradients), which extends across both anticlines,

which also argues against a fault compartmentalisation model.
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Figure 3.3: Hydrodynamic Toro Aquifer in the Kutubu Complex (Hedinia/Iagifu Fields)
Top panel - Hedinia/Iagifu area showing selected wells and top Toro structure contours (meters relative to
sea level). Bottom panel depicts a perspective view across main section of Hedinia/Iagifu Fields. Toro

structure, well penetrations and inferred flow paths are schematic (Eisenberg et al., 1994).
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Figure 3.5: Kotaka (1996) Papuan Basin Formation Water Analysis
Panel 1 - Formation water groups and their characteristics. Panel 2 - Areal distribution of formation water
groups. Panel 3 - Potential flow between formation water groups estimated from decrease in hydraulic

potential and increase in salinity — wells lined up north to south going left to right across panel (Kotaka,

1996).
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Figure 3.6: Cross Section Through Usano Field

(Buick et al., 2009).
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Fields. (Williams and Lund, 20006)
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Models of Predicted Faults

Panel 3 — Post-seismic fault model. Panel 4 - Most recent proposed fault model for Hedinia/Iagifu Fields.
(Williams and Lund, 2006)
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4.1 Data Set Construction

A regional well pressure data set was generated in Microsoft Excel for a total of 433 wells
currently listed in the Santos database for the Papuan Basin. Two pre-existing well pressure data
sets containing overlapping subsets of data from specific fields were combined and utilised to
commence assembling the larger regional data set necessary for this study. Where there were
discrepancies discovered, the data obtained from these two pre-existing data sets were checked
against the original well completion reports (WCRs). Data for the remaining wells assessed in this
study were obtained from WCRs available at the time of the project. All new and verified data
were used to construct a final data matrix consisting of 6500 entries across 85 column identifiers

(see section 4.4 for detailed data set analysis).

Formation pressure data were obtained from a variety of different types of down-hole pressure
testing equipment including data from drill stem tests (DSTs), and data from wire-line pressure
testers such as the Schlumberger repeat formation tester (RFT), Schlumberger modular
formation dynamic tester (MD'T/MFT), Halliburton reservoir desctiption tool (RDT) and

selective formation tester (SFT).

Entire sets of raw pressure data generated in the down-hole pressure tests were assembled into
the data set. Pressure test data were screened using test operator comments and mobility values
associated with the tests, which give an indication of the seal and pressure build up for each test.
Poor quality and ambiguous data values were then omitted and only the most reliable pressure
test data used to generate the pressure gradients, which were used to identify fluids present in the

reservoir intervals and generate hydraulic potential (Hw) values for potentiometric surface

mapping.

DSTs provide reasonable pressure data ideally based on initial shut in pressure (ISIP) (Dahlberg
(1995). RFTs, and the similar wire-line tools from other companies, are able to obtain formation
pressure measurements at numerous intervals up and down the hole in a single run (Eisenberg,
1993). Pressure tests in the Papuan Basin wells have been predominantly made using the
Schlumberger RFT tool. The RFT uses two gauges for pressure measurement, the strain gauge
and Hewlett Packard quartz gauge. Absolute pressure (psia) measurements from the Hewlett

Packard quartz gauge were used in this study, as they are more accurate.

Salinity data were obtained from the Kotaka (1996) regional Papuan Basin study along with

formation water reports covering Moran, Kutubu Complex and Gobe Fields (Chevron, 2000; Oil
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Search, 2003). These data were integrated into the data set and, where discrepancies were
identified, checked with the original WCRs. Additional salinity data was obtained from WCRs
available at the time of the project. Where no formation water salinity values were measured,
salinity values were calculated from formation water resistivity (Rw) values recorded in the
WCRs. Rw calculated according to the relationship: Rwres = Rwsrp [(Tstp + 6.77)/(Tres +
6.77)] (deg F) (Dahlberg, 1995). The Rwrgs value was then converted to a NaCl concentration
(ppm) using a resistivity of equivalent NaCl solutions chart. Temperature data for the formation

interval being pressure tested were obtained from the WCRs.

4.2 Pressure-Depth Plots

Pressure-depth (P-D) plots were generated in Microsoft Excel and Tibco Spotfire. The P-D plots
permitted generation of pressure gradients and identification of the fluid type within the
reservoir, as the pressure gradient slope is directly related to the specific gravity of the fluid, and
thus fluid type in the formation interval being tested. Specific gravity (SG) of a fluid is the density

of the fluid compared to density of fresh water (Dahlberg, 1995).

Pressure (psia) was plotted against depth of reservoir interval [in total vertical depth meters
subsea (TVDmSS)]. Pressure gradients were calculated by regression analysis of the data sets on
the plots. Slopes of pressure gradient lines on the P-D plots were then converted from m/psi to

psi/ft for presentation of the pressure gradient data in the tables for this study.

Pressure gradients were calculated for each reservoir interval in each well and fluids present in
the reservoir formations identified. See Figure A.1 (in Appendix) for examples of Toro
Formation P-D plots generated to calculate fluid pressure gradients used in this study. Fluid type

was also confirmed from WCRs.

Examples of SG and corresponding hydrostatic pressure gradient values for various formation
fluids were based on those outlined by Dahlberg (1995). Brine (SG range: 1.07-1.15) which
cotresponds to 0.46-0.50 psi/ft pressute gradient range, salty water (SG range: 1.02-1.06) which
cotresponds to 0.44-0.45 psi/ft pressure gradient range, fresh water (SG 1.0) which cortesponds
to a 0.433 pressure gradient, oil (SG range: 0.6-0.85) which cortesponds to 0.25-0.37 psi/ft
ptessute gradient range, condensate (SG range: 0.45-0.6) which cotresponds to 0.17-0.25 psi/ft
ptessute gradient range and gas (SG range: 0.12-0.47) which cotresponds to 0.05-0.2 psi/ft.

pressure gradient range.
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The intersection of gradients of different fluid types can be used to define a fluid contact [gas-oil
(GOCQ), oil-water (OWC) and gas-water GWC)] (Cockroft et al. 1987; Dahlberg, 1995) (Figure
4.1). The relative position on a P-D plot of a pressure gradient for an individual well formation
interval with respect to other well pressure gradients gives an indication of reservoir continuity
both between wells and within a reservoir section (Cockroft et al. 1987; Eisenberg, 1993) (Figure
4.2). Changes (decrease or increase) in the water pressure gradient can indicate hydrodynamic

flow either up-dip or down-dip respectively (Cockroft et al., 1987) (Figure 4.3).

4.3 Hydraulic Potential Calculations

Hydraulic potential (Hw) is a simple indication of the potential energy of an aquifer at a given
point, and is generally expressed as an elevation relative to a standard reference surface, generally
sea level (Esienberg, 1993). Hw values were calculated using three methods in this study: (1)
using a generic 0.435 psi/ft water pressure gradient value, (2) calculated using individual watet
pressute gradients values, (3) calculated using the 0.435 psi/ft water pressutre gradient but also
using input from formation fluid salinity and temperature values. Eisenberg (1993), Eisenberg et
al. (1994) and Kotaka (1996) used a generalised water pressure gradient of 0.435 psi/ft for the
entire basin when calculating Hw values. Dahlberg (1995) recommended this approach, as

predominantly fresh water is present in the reservoir intervals being tested.

Hw values were generated from the pressure and depth data and the calculated pressure gradients
using the equation: Hw = z + P/AP (Dahlbetg, 1995). [Whete, Hw = hydraulic potential, z=
depth of the pressure expressed as an elevation relative to sea level, P is the formation pressure,
and AP is the pressure gradient in the water leg]. The pressure value used in each case was the
uppermost reliable pressure measurement for each reservoir interval. The exception to this
practice was where lowest known gas (LKG) values were calculated. In these cases the lowermost

reliable pressure measurement for the reservoir interval was utilized.

In the first method the water pressure gradient used was the constant 0.435 psi/ft. In the second
method, individual water gradients have been calculated and substituted in each case for the
0.435 psi/ft watet pressute gradient value in the equation above. This method was assessed to
test whether there was significant vatiation in water densities/gradients within the basin
reservoirs that may have been overlooked in the Eisenberg (1993), Eisenberg et al. (1994) and

Kotaka (1996) studies, which may produce different results to the first method applied.
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Figure 4.1: Determination of Fluid Contact Points

Where the calculated oil and water pressure gradients intersect is the oil water contact (OWC). This
method is dependent on the accuracy of the pressure measurements (Cockroft et al., 1987).
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Figure 4.2: Use of P-D Plot Pressure Gradients to Indicate Reservoir Continuity

In this example reservoir B is fully connected, whereas 3A would appear not to be connected to 1A and
2A. Likewise 1C does not appear to be connected to 2C and 3C (Cockroft et al., 1987).
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EFFECT OF HYDRODYNAMIC FLOW ON A PRESSURE-DEPTH PLOT OF WATER PHASE

( AFTER SCHOWALTER, 1979 )
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Figure 4.3: Effect of Hydrodynamic Flow on a Water Pressure Gradient on a P-D Plot
If hydrodynamic flow is occurring the pressure gradient will differ from hydrostatic (Cockroft et al., 1987).

In the third method undertaken, salinity and temperature values were used along with the
constant water pressure gradient of 0.435 psi/ft, to calculate reservoir watet pressure gradients
for the formation interval fluid being tested (Langston, 2013; McCain, 1990). Salinity and
temperature of the formation fluid have a strong bearing on fluid density and have not been
taken into account in the first two methods (Cockroft et al. 1987). For the third method, water
pressure gradients for standard (srp) and reservoir (res) conditions were calculated by inputting
values for P = pressure (psia), T = temperature (deg F) and B = % weight salt in brine (eg.

Salinity of 10,000 ppm = 1%) into the following formulas:

(1) Brine density (st0) = 62.368 + 0.4386 x B + 0.001601 x B2 (Ib/ft)

(22) dVwp = -(3.589x107 + 1.953x10°xT)xP - (2.253x1010 + 1.728x10-13xT)xP?
(2b) dVwt =-0.01 + 1.334x104xT + 5.507x10-7xT?2

(3) Brine FVE = (1 + dVwp) x (1 + dVwt)

(4) Brine density (res) = brine density (srp) /Brine FVF (Ib/ft3)

(5) Whete SG = brine density/62.368

(6) Water pressure gradient (srp) = specific gravity (SG) x 0.435 (psi/ft)

Thetefore brine density (res)/62.368 = SG undet reservoir conditions and multiplying by 0.435

generates the water pressure gradient under reservoir conditions. Water pressure gradient (res)

values have been used in this study to generate Hw values.
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4.4 Data Set Analysis

A Total of 433 wells in the Papuan Basin were examined in this study (Table A.1). The well
locations are shown on a set of 11 maps (1 master map, 6 sub-regional maps and 4 field-scale

maps) (Maps A.1 - A.11) (see tables and maps in Appendix).

On assembly of the data set it was found that 151 wells had pressure data for the Toro and
Imburu Formation reservoir units. From this total of 151 wells, 136 wells recorded data for Toro,
37 wells for Digimu, 21 wells for Hedinia and 33 wells for Iagifu Sandstone reservoir units. There
were 155 Toro fluid pressure sample points (46 gas, 31 oil and 78 water), 39 Digimu fluid
pressure sample points (5 gas, 17 oil and 17 water), 22 Hedinia fluid pressure sample points (2

gas, 5 oil and 15 water) and 45 lagifu fluid sample points (7 gas, 1 oil and 25 water) (Table A.1).

Pressure data were not available from the remaining 282 wells in the Santos database for a variety
of reasons: Group 1 - 102 wells with WCR unavailable, Group 2 - 95 wells with no or poor
down-hole pressure test data, Group 3 - 58 wells outside Toro palaco-deposition range and

Group 4 - 27 wells where the Toro interval was expected but not intersected.

However, within the group of 102 wells with unavailable WCRs, there are 17 wells that are either
actually still being planned, currently being drilled, or have been drilled too recently for
WCR/pressure data to have been released for these wells. Within the group of 95 wells with no
or poor pressure data, 21 of these wells actually have had pressure tests done and data exists but

was unavailable at the time if this study.

It should be noted that 219 wells (178 fold belt and 41 foreland) have been drilled in the Papuan
Basin since the Kotaka (1996) regional study (ie. actually post 1994 wells - see Table A.1 for
listing) and could potentially add to the interpretation of regional aquifer dynamics. However, of
these 219 wells, only 56 have provided new pressure information for the four reservoir intervals
(60 Toro, 11 Digimu, 7 Hedinia and 15 lagifu Formation sample values). Furthermore, of the 60
Toro fluid pressure values (12 gas, 12 oil and 36 water), 20 of these (10 water) are from post-
production partially depleted wells and have been excluded from the analysis so as to derive an
accurate potentiometric map. The Moran Field has been developed since the Kotaka (1996)
study, with 40 wells having been drilled since 1994. However, from these 40 wells it has only
been possible to obtain 11 Toro (7 water and 4 oil) and 11 Digimu (4 water, and 7 oil) pressure

values for analysis in this study.
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4.4.1 Toro Data Set Analysis

A total of 78 wells with reliable Toro water data were identified, comprising 60 wells from the
fold belt and 18 from the foreland region of the basin (Table A.2). Wells were also identified as
either pre-production wells (66) or post-production wells (12), so as to be able to help
differentiate localised field depletion, which could then be taken into account when modelling
Toro aquifer water flow. Post-production wells were excluded from potentiometric surface
mapping for this study. Gas and oil Toro reservoir well data have also been assembled in Tables
A.3 and A.4 respectively. Lowest known gas (LKG) and lowest known oil (LKO) values were

used to help constrain preliminary potentiometric surface maps.

Underschultz et al. (2005) suggest that initially with the potentiometric surface mapping, only
data from zones of formation water are used to characterize the hydraulic head distribution, but
these can then be supplemented by pre-production hydrocarbon pressure data extrapolated to
known free-water-level elevations. For this study an additional 7 wells have had an extrapolated
gas-water contact (EGWC) value calculated by extending the gas pressure gradient to the
intersection point with a relevant nearby water pressure gradient. These data were considered
important to aid construction of the regional Toro potentiometric surface map where direct
water pressure data were lacking [Hides-4, Angore-1, Tarim-1, Pnyang-1X, Elevala-1, Puk Puk-1
and Langia-1 - See Figure A.2 (in Appendix) and Table A.3]. Toro Hw data have been calculated

according to the three methods detailed in section 4.3 and are listed in Tables A.2 - A.4.

A set of wells east and northeast of the central fold belt region (Andabare-1, Bakari-1, Nembi-1,
Pangia-1, -1A, -1B, Trapia-1, Tumuli-1, 1ST, Wara-1), along with Karius-1 near the Hides field,
and Baia-1 and Cecilia-1 near the Juha Field, failed to intersect Toro as expected and instead
encountered Darai Formation thrust-repeats in the footwall. These wells would have been very
useful (in conjunction with Korka-1 north of Angore Field - data not released yet) in better

defining the Toro aquifer (and the palaco shoreface/toro lateral extent) (see Map A.3).

4.4.2 Digimu, Hedinia and Iagifu Data Set Analysis
Formation fluid pressure data and Hw values for Digimu, Hedinia and lagifu reservoir units are

listed in Tables A.5 - A.7, Tables A.8 - A.10 and Tables A.11 - A.13 respectively.

4.4.3 Hw Calculation Method Comparison
Three methods were used to calculate Hw data sets in this study (see section 4.3). Comparison of

the Toro Hw data (see Table A.2) showed that there was a very good correspondence between
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Hw data generated by methods 1 and 3. However, there were some significant variations seen
between method 2 data and the values generated by methods 1 and 3. These differences
corresponded to instances (predominantly in the fold belt) of anomalously high or low water
pressure gradient values in method 2 data. This may be indicative of an accurate pressure
gradient measurement that legitimately varies from those measurements around it, but could also
be because of inaccuracies in the pressure measurement and the quality and number of pressure
test values used to generate the pressure gradient. Method 2 utilises calculated individual water
pressure gradients for each well, whereas methods 1 and 3 share a common use of the constant
0.435 psi/ft watet pressute gradient value (method 3 also uses salinity and temperature data).
Similar patterns of correspondence between the Hw data sets generated by the three methods

were seen for Digimu, Hedinia and Iagifu reservoirs (Tables A.5, A.8 and A.11).

In general for most of the data generated by method 2 there was a good correspondence between
method 1 and 2 data values. This can be seen visually by comparing Hw-well plots of the method
1 and 2 data (Figures 4.4 and 4.5). These results suggest that for a relatively fresh water aquifer
system a generalised regional water gradient value can be used with reasonable confidence
(Eisenberg et al. 1994). Therefore because of the similarity between the Hw values generated by
the three methods, regional Toro (and Digimu, Hedina and lagifu) potentiometric surface maps
were generated using only the Hw set of values produced by method 1 with the generic Papuan

Basin constant 0.435 psi/ft water pressure gradient.

50



Hw (0.435) (ft) vs. WELL

16000

14000

12000

10000

8000

Huw (0.435) (ft)

2000

Angore-1

AGOGO

ADT-3A.
ANGOR..

*

4

ARAMI..
BOSAV-1
DOUGL...

Egele-1

FORELAND

GOBE-1X
GOBE-
GOBE-4X

GOBE-6X

HEDINI....
HEDINI

Hides-4

IAGIFU-...

IAGIFU-..

HEDINIA/IAGIFU

IAMAR. .

IDTA0...

IDT-15

IDTAB (...
IDT-235 .

IDT-9 {1
E

’ %‘0‘;&“’{ R

IDT-9 872

IWT-1 {1

*
“0 et o o

Kutubu-1X, -2

L o4

Lavani-1

*

MORAN

MANANDA

Juha-5X Menga-1

L 4 ®
FORELAND

KANAU-1
KIMU-1
KOKO-1
KOROB..
KUTUB..
MANAN
MORA...
MORA,.
MORA,
MORA. ..
NW GO

LIBANO ...

Figure 4.4: Hydraulic Potential (Hw - 0.435) - Well Plot

Hw data generated using constant 0.435 psi/ft water pressure gradient (Hw calculation method 1). Hw

data listed in Table A.2.
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Figure 4.5: Hydraulic Potential (Hw - Calc) - Well Plot

Hw data generated using individually calculated water pressure gradients

data listed in Table A.2.

Paua-1

Muller-1 SE MANADA

*»

SE GOBE

PAIA-1X
RENBO ...
SE GO...
SE HE
SE MA..
STANL...
UBUNT

Paua-1
L 4
ORAN
SE MANADA
Muller-1 L2
¢ *
SE GOBE
0~
@, 3
“ ® o ’w
= : ©
< e
8388%2z=z2:3
% TR 38 03

Marking:
W Marking

Marker by
(Row Number)
Colorby

Field
WAGOGO

M ANGORE
[1GOBE
[CIHEDINIA
WHIDES

W AGIFU
[JUHA

[T MANANDA
[CIMORAN

[ PNYANG

[l SE GOBE
[[] SE HEDINIA
[7] SE MANANDA
W STANLEY
W USANO

[H (Empty)

@ All values

Marking:
W Marking

Marker by
(Row Number)
Colorby

Field
WAGOGO

W ANGORE
[GOBE
[[JHEDINIA
[MHIDES
WIAGIFU
[EJUHA
[CIMANANDA
[CIMORAN
[EIPNYANG
[ SE GOBE
[T] SE HEDINIA
[7] SE MANANDA
W STANLEY
WUsSANO
(Empty)

@ All values

USANO

(USAN...

(Hw calculation method 2). Hw

51



4.5 Potentiometric Surface Map Construction

A potentiometric sutface is a calculated surface that reflects variation in fluid/hydraulic potential
(Hw) within an aquifer. The elevation of the surface at any point on it reflects the height to
which a column of water would rise above a reference datum (have used sea level in this study) if
not confined (Dalhberg, 1995). In instances where the Hw is calculated at an elevation above
topography, the given well can be termed artesian. Where Hw is calculated at an elevation in the
subsurface, the well can be termed sub-artesian. Water flow in a confined aquifer moves from
high to low potentiometric values, perpendicular to potentiometric surface contours. Contours
that are widely spaced indicate relatively better permeability, whilst those closely spaced represent

areas of poorer permeability, which could also be a baffle or barrier to flow (Dahlberg, 1995).

An extra level of complexity is added to the potentiometric map when faults are added to the
system. When a fault has a lower permeability than the aquifer it crosscuts, the flow direction will
tend to be parallel to the plane of the fault (Hw contours will plot perpendicular to the fault
suggesting it is sealing) (Figure 4.6). Whereas, Hw contours forming a closed high or low against
a fault, can indicate that formation water is either flowing from the fault zone into the aquifer or
flowing from the aquifer into the fault zone respectively. These scenarios suggest the fault is
acting as a conduit for formation water flowing between vertically separated aquifers
(Underschultz et al., 2005) (Figure 4.6). Where Hw contours are parallel or sub-parallel to the
fault plane this suggests flow is able to cross the fault and it is not sealing, although the fault may

be providing a baffle/restriction to flow, depending on the spacing of the contours.

Petrosys mapping software was used to construct potentiometric surface maps for the Toro,
Digimu, Hedinia and Iagifu Sandstone reservoirs. Hw values were plotted onto the maps with
combined layers including; regional faults, formation depth, surface topography and geology
outcrop layers for key surfaces to create regional Papuan Basin potentiometric surface maps for

each reservoir.
A regional fault set, PNG satellite image and topographic maps for the Papuan Basin were

provided by Santos. A 1:250000 scale surface geology map for PNG was used to locate Toro and
Imburu Formation outcropping in the fold belt region of the basin (D’Addario et al., 1976).
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Chapter 5: Results and Interpretations

Chapter 5: Results and Interpretations

5.1 Regional Toro Pressure-Depth Analysis and Potentiometric Surface Maps

A regional Toro reservoir pressure-depth (P-D) plot was generated to help identify Toro aquifer
connectivity versus discrete aquifer cells based on differences in water pressure gradients (Figure
5.1). Foreland and fold belt pressure regimes are clearly obvious from this plot. Within the fold
belt there atre four trends that stand out. There are the Kutubu Complex (Agogo-Hedinia/Tagifu-
Usano), Gobe/South East Gobe, highlands (Muller-1, Lavani-1, Egele-1, Hides, Mananda/South
East Mananda), and the hinterland region with highly pressurised compartments (Angore-1,
Moran Field, Paua and Kutubu Anticlines). Those fields or wells that lie on similar pressure

gradient trends may be connected in terms of a Toro aquifer system.

Regional Toro potentiometric surface maps were generated with Toro Hw data listed in Tables
A.2 (Hw values from Toro pre-production wells) and A.3 (EGWC Hw values). Initially, a pair of
preliminary Toro potentiometric surface maps were generated; map 1 was unconstrained by
faults and map 2 was fault constrained. (Figures 5.2 and 5.3). These maps were both generated
using a 20km diameter-limiting circle, extending from each well Hw value for mapping. They
give a good representation of well distribution and regions where the map may be highly

speculative versus those areas where there is increased confidence.

A third regional Toro potentiometric surface map was then generated, using a zero edge Toro
polygon, as this represents the best estimate of actual areal extent of Toro aquifer, and the
regional fault set to constrain the mapping (Figure 5.4a). Three overlapping map panes were
assembled to visualise the potentiometric surface map in detail across the entire fold belt (Figures
5.4b-d). A fourth map pane was generated to visualise the foreland region, changing the colour

contour scale to accentuate differences across the foreland sections of the basin (Figure 5.4¢).

5.1.1 Fold belt

There is a trend of northwest to southeast decreasing Hw values from Lavani-1 to the southern
boundary of South East Mananda Field (Figure 5.4c). This trend suggests the possibility of Toro
aquifer water flow from Lavani-1 in the Lavani Valley, to Hides, to Mananda/South East
Mananda (LV-H-M/SEM). Hw data also suggests southeast to northwest flow possible from
Lavani Valley to Muller-1. Lavani Valley Toro outcrop represents the potentiometric high for the

region and the likely recharge location for the Toro aquifer. Alternatively Muller-1 and Lavani-1
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Figure 5.1: Regional Toro Aquifer Water Pressure Gradient Plot

P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)]. Pressute

gradient trends highlighted - Foreland and Foldebelt [including: Kutubu Complex (Agogo-Hedinia/Tagifu-
Usano), Gobe/SE Gobe, Highlands (Lavani-1, Muller-1, Egele-1 and Hides-1), Hinterland (Angore-1,

Moran wells, Kutubu-1X, -2 and Paua-1)]. The Toro water wells that have been plotted are listed in Tables
A.2 and A.3 (66 pre-production Toro water wells, along with Hides-4 and Angore-1 extrapolated gas water

contact values).
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Figure 5.2: Regional Toro Potentiometric Map 1

Map generated using 20km diameter-limiting circle extending from each well Hw value.

Oil and gas field outlines shown in green and pink respectively. Lake Kutubu outline shown in blue east of
Kutubu Complex. Toro outcrop (yellow) and Imburu Formation outcrop (orange) are shown in the
northwest of the fold belt (see Map A.2 to orientate Muller Anticline and Lavani Valley areas).
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Figure 5.3: Regional Toro Potentiometric Map 2

Map generated using 20km diameter-limiting circle extending from each well Hw value, but also using
regional fault set to constrain mapping. Begin to see northwest to southeast thrust fault control of Toro
aquifer and compartmentalisation of aquifer in the hinterland. Oil and gas field outlines shown in green
and pink respectively. Lake Kutubu outline shown in blue east of Kutubu Complex. Toro outcrop (yellow)
and Imburu Formation outcrop (orange) are shown in the northwest of the fold belt (see Map A.2 to
orientate Muller Anticline and Lavani Valley areas).
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Figure 5.4a: Regional Toro Potentiometric Map 3

Fault constrained, top Toro formation structure map- and zero edge Toro polygon-limited. Considerable

lateral extension/modelling of the Toro potentiometric surface produced in this map compared to maps 1
and 2. Oil and gas field outlines shown in green and pink respectively. Toro outcrop (yellow) and Imburu
Formation outcrop (orange) are shown in the northwest of the fold belt (see Map A.2 to orientate Muller

Anticline and Lavani Valley areas).
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Figure 5.4b-d: Fold Belt Region of the Regional Toro Potentiometric Map 3

Assembled as three overlapping map panes to cover the fold belt region in sufficient detail for analysis. In
each figure an inset shows the area covered compated to the master map (Figure 5.4a).

All wells contributing Hw values to the potentiometric surface are labelled with Hw value (m)

Oil and gas fields labeled and outlines shown in green and pink respectively. Toro outcrop (yellow) and

Imburu Formation outcrop (orange) are labeled and shown in the northwest of the fold belt.
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Figure 5.4e
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Figure 5.4e: Foreland Region of the Regional Toro Potentiometric Map 3
Colour scale adjusted to highlight lower Hw values in foreland and smaller differences in Hw between
wells. All wells contributing Hw values to the potentiometric surface are labelled with Hw value (m). Gas

field outlines shown in pink.
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may not be connected and represent separate compartments. Likewise, Lavani Valley, Hides,
Mananda/South East Mananda may also be separate compartments. Egele-1 may be connected
to LV-H-M/SEM system but it is separated by northwest-southeast trending thrust faults that are
sealing in other places in fold belt. It is likely that Angore, Moran and Paua Fields as well as the
Kutubu Anticline are separate compartments as they too are all in the thrust sheet to the east of

LV-H-M/SEM system (see Maps A.2 - A.3 and Figure 5.4c).

There is a significant Hw step between the South East Mananda and Agogo Fields in the central
region of the fold belt (Figures 5.4c-d). Hw values then consistently decrease again from Agogo
into Hedinia/Tagifu and finally through to Usano in a northwest to southeast direction (Figutes

5.4.c-d).

Hw values in the South East Hedinia Field decrease consistently from the southeast to northwest
to Usano This trend is consistent with Toro aquifer flow in the South East Hedinia Field exiting
from the fold belt at the southern end of Usano (Figure 5.4d and see section 5.3.5 for more
detailed results and analysis). Hw values wete relatively invatiant across the Gobe/South East
Gobe Fields in the south of the central fold belt region, but were slightly higher than the values
seen for the Kutubu Complex and the South East Hedinia Field. These data suggest a higher

pressured hydrostatic Toro reservoir compartment is present in these fields.

5.1.2 Foreland

Several overall Hw trends are obvious in the foreland region of the basin (Figure 5.4¢). There
appears to be a general flow trend from the northwest to the southeast of the basin towards the
sea. The Stanley Field in the northwest represents a potentiometric high for the foreland with
consistently decreasing Hw values moving southeast from Stanley. In addition the fold belt flank
regions adjacent to the Kutubu Complex and as far southeast as the Gobe/South East Gobe
Fields have slightly higher Hw values than the areas southwest and more distal to the fold belt in
the foreland. These data suggest flow from the potentiometric highs to the lows, northwest to
southeast, in the foreland from the Stanley field (and likely the fold belt to the northwest of the
Stanley Field). These data also suggest water flow from the fold belt into the foreland from
adjacent the Kutubu Complex region and perhaps other regions along the fold belt, such as from
Libano-1 west of the South East Mananda Field. The Komewu Fault appears to be acting as a
barrier to Toro aquifer flow moving southwest, as there is a noticeable Hw step across the

Komewu Fault (Figure 5.4¢).
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5.2 Regional Digimu, Hedinia and Iagifu Pressure-Depth Analysis and
Potentiometric Surface Maps

P-D plots for the Digimu, Hedinia and lagifu reservoir units are shown in Figures 5.5, 5.6 and
5.7 respectively. There were much less data available for all three of these reservoir units
compared to the Toro reservoir, however like the Toro reservoir there were clear foreland versus

fold belt pressure gradient trends for all three reservoir units.

Potentiometric maps for the Digimu, Hedinia and Iagifu reservoir units are shown in Figures 5.8,
5.9 and 5.10 respectively. As with the Toro potentiometric surface maps, only pre-production
Hw data were used for the mapping (Hw data utilised in mapping is listed in Tables A.5, A.8 and
A.11). Much less data were available for all three of these reservoirs compared to the Toro

reservoir, consequently these maps are more restricted than the Toro potentiometric maps.

5.3 Sub-Regional/Field Scale Toro, Digimu, Hedinia and Iagifu Aquifer Analysis

5.3.1 Highlands/Hintetland

A Toro P-D plot was generated to help identify Toro aquifer connectivity versus discrete aquifer
cells based on differences in watet pressute gradients in the highlands/hinterland regions of the
fold belt (Figure 5.11). There are cleatly a set of wells with very similar pressure gradients
(Lavani-1, Mullet-1, Egele-1, Mananda/South East Mananda wells (Mananda-3X, 4X and SE
Mananda-1X, -2X) as well as the extrapolated gas water contact (EGWC) values generated for
Hides-4 and Angore-1. These slightly offset pressure gradients can suggest connectivity and
water flow but can also mean these fields and the faulted anticline structures that contain them
actually form separate aquifer compartments. It is worth noting that the Hides-1, -2, -3, -4 gas
pressure data all plot on a single pressure gradient, suggesting well pressure connectivity across
the Hides Anticline (see Figure A.2). Actual GWC(s) will need to be determined from planned
wells in the Hides Field before it is possible to really begin to look at whether there is a
hydrodynamic Toro aquifer operating through Hides potentially linking Lavani Valley Toro
outcrop and Mananda/South East Mananda Fields.
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Figure 5.5: Regional Digimu Aquifer Water Pressure Gradient Plot
P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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Figure 5.7: Regional Iagifu Aquifer Water Pressure Gradient Plot

P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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Figure 5.8: Regional Digimu Potentiometric Map

Figure 5.8

All wells contributing Hw values to the potentiometric surface are labelled with Hw value (m). Oil and gas

fields labeled and outlines shown in green and pink respectively. Lake Kutubu labeled and outline shown in

blue east of Kutubu Complex
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Figure 5.9: Regional Hedinia Potentiometric Map

All wells contributing Hw values to the potentiometric surface are labelled with Hw value (m). Oil and gas
fields labeled and outlines shown in green and pink respectively. Lake Kutubu labeled and outline shown in
blue east of Kutubu Complex
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Figure 5.10: Regional Iagifu Potentiometric Map

All wells contributing Hw values to the potentiometric surface are labelled with Hw value (m). Oil and gas
fields labeled and outlines shown in green and pink respectively. Lake Kutubu labeled and outline shown in
blue east of Kutubu Complex
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5.3.2 Mananda/South East Mananda

There were only four wells available to analyse the Toro aquifer trend across the Mananda and
South East Mananda Fields. Pressure gradients (Figure 5.12) and Hw values (Figure 5.4c) were
consistent with a hydrodynamic aquifer operating, flowing northwest to southeast with an Hw
step (likely fault generated) between Mananda and South East Mananda. However, because of
the limited number of Hw data points available, these data could also be interpreted as indicating
a compartmentalised system between Mananda and South East Mananda. There were only oil
pressure data for South East Mananda-1X, and 2X wells (no oil pressure data for Mananda) so it
was not possible to investigate whether there is a single oil leg across Mananda Anticline, which
would provide evidence for connectivity between the fields and potentially a hydrodynamic Toro
aquifer. So with the limited data available, it is not possible to differentiate between either

potential water flow between the fields or compartmentalisation in this instance.

5.3.3 Moran

The Moran Field has been developed since the Kotaka (1996) study (see section 4.4). Oil and gas
have been produced from Toro and Digimu Sandstone reservoirs in the Moran Field since 1998
(Buick et al., 2009). The field is structurally complex, with an abundance of faulting, which
appears to compartmentalise the field (see Figure 2.10). A significant amount of the faulting is

likely a result of the Bosavi Lineament cross cutting through the field.

Toro and Digimu reservoir pressure gradient data (Figures 5.1 and 5.5) and Hw data (Figures
5.4c and 5.8) suggest significant compartmentalisation has occurred in the Moran Field. There
appears to be no consistent trend in Hw values across the field and the water and oil pressure
gradients are all offset in relation to each other (data not shown). All the Moran Field
compartments are highly pressured, putting them in the same pressure regime in the fold belt as
the Angore and Paua Fields and Kutubu Anticline, all of which are located in the thrust sheet

east of the highlands region (Lavani Valley, Hides, Mananda/South East Mananda).

5.3.4 Kutubu Complex

The P-D plot of the Toro reservoir water, oil and gas pressure gradients shows that the water
gradients were offset across the Agogo-Hedinia/Iagifu-Usano Fields, while thete were single oil
and gas gradients for each field (Figure 5.13). This is good evidence for a hydrodynamic aquifer
operating in the Toro reservoir. There are sufficient data points to establish a convincing

consistent decreasing trend of Hw values northwest to southeast through the fields (Figure 5.14).
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Figure 5.11: Highlands/Hinterland Toro Aquifer Water Pressure Gradient Plot
P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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Figure 5.12: Mananda/South East Mananda Toro Aquifer Water Pressure Gradient Plot
P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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In the Digimu reservoir, however, there does not appear to be a hydrodynamic aquifer operating
in the Hedinia/Iagifu Fields (Figure 5.15). There appear to be sepatate Hw compartments for the
main block and 3X/8X block of the Kutubu Complex. Each of these blocks displays a relatively
invariant set of Hw values across the block. In addition the Digimu reservoir would appear to be
compartmentalised in the Agogo Field (Figure 5.16). This is supported by the identification of
multiple water and oil gradients in the Digimu reservoir in Agogo. Note this is very different to

Toro reservoir behavior in Agogo, which has single oil and single gas gradients (Figure 5.13).

Hw data for the Hedinia and Iagifu reservoirs in the Kutubu Complex were limited but suggest
for both reservoirs a northwest to southeast trend of decreasing Hw values within the
Hedinia/Iagifu Fields. A significant Hw step was detected between Agogo and Hedinia/Tagifu
Fields for the lagifu reservoir (see Figure 5.10). This step is reflected in the shift of position of
the Agogo Iagifu resetvoir values on the P-D plot away from the Hedinia/Iagifu pressure regime

they are been associated with for the Toro and Digimu reservoirs (see Figure 5.7).

5.3.5 South East Hedinia

Eisenberg et al. (1994) and Kotaka (1996) describe hydrodynamic aquifer behavior in the Toro
reservoir in the South East Hedinia Field. Hw Data obtained in this study was consistent with a
hydrodynamic aquifer operating (see section 5.1), but it should be noted that this interpretation
was based on only three data points (Figure 5.17). Flow is in a southeast to northwest direction
through South East Hedinia Field, in the opposite direction to the Toro reservoir aquifer flow
from the Kutubu Complex. [Note - Hw value for North West Gobe-1, which is southeast of
South East Hedinia Field, is also consistent with a flow direction from southeast to northwest
and could extend the lateral extent of the hydrodynamic Toro reservoir in South East Hedinia a
further 20 km southeast in the fold belt (Figure 5.4d)]. Water flow is potentially exiting the South
East Hedinia structure and fold belt out into foreland flank via the same route water exits Usano
from the Kutubu Complex to the north. Water flow in the South East Hedinia Field appears to
be flowing down-dip as water pressure gradients are decreased compared to a hydrostatic
situation (see Figure 4.3). [Ta-1X: -1350 TVDmSS; Hw 144m; pressure gradient (psi/ft); 0.428.
SE Hedinia-3X: -1200 TVDmSS; Hw 136m; pressure gradient (psi/ft); 0.430. SE Hedinia-4X: -
970 TVDmSS; Hw 122m; pressute gradient (psi/ft); 0.427.]

A similar southeast to northwest trend of decreasing Hw values is seen for the Hedinia reservoir

in the South East Hedinia Field (Figure 5.9). Insufficient Hw data exist for the Iagifu reservoir in

the South East Hedinia Field to analyse aquifer behavior.
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5.3.6 Gobe/South East Gobe

The Toro tresetvoir is over-pressured compared to the Iagifu resetvoir in the Gobe/South East
Gobe Fields. The Toro reservoir appears to be behaving as a single hydrostatic connected
compartment actoss the Gobe/South East Gobe Fields (Figute 5.18 and Table A.2). No oil or
gas is present in the Toro reservoir in the Gobe/South East Gobe Fields. Whereas, oil and gas
are present in the under-pressured lagifu reservoir (Figure 5.19). There are multiple gas, oil and
watet pressure gradients present in the Gobe/South East Gobe Fields, which suggest that the

ITagifu reservoir is compartmentalised.

KUTUBU COMPLEX TORO

-800 w

Hedinia/lagifu (MBT)
1000 gas gradient
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Usano
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Figure 5.13: Kutubu Complex - Toro Reservoir P-D Plot

Single oil and gas gradients for the Main Block Toro (MBT) resetvoir in the Hedinia/Iagifu Fields, but
multiple water pressure gradients. Likewise, single oil and gas gradients for the Agogo and Usano Fields,
but multiple water pressure gradients. Only pre-production well data used to generate P-D plot.

Note IDT-9 located in Iagifu 3X/8X block, which represents a separate compartment from the MBT of
the Kutubu Complex (Hedinia/Tagifu Fields). Gas, oil and water pressure values displayed in red, green
and blue respectively. P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea
(TVDmSS)].
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Figure 5.14: Potentiometric Sutface Map for the Kutubu Complex — Toro Reservoir
Hw values (see Table A.2) plotted on Kutubu Complex map (red numbers) demonstrating consistent

decrease in value in a northwest to southeast direction across Agogo-Hedinia/Iagifu-Usano Fields.

Potential direction/path of water flow shown by red arrow (base map diagram modified from Eisenbetg,

1993).
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Figure 5.15: Potentiometric Surface Map for the Kutubu Complex - Digimu Reservoir

Digimu Hw values (see Table A.5) plotted on Kutubu Complex map (red numbers). Hw values generated

by extrapolated OWC values displayed as black numbers with E suffix (base map diagram modified from

Eisenberg, 1993).
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Figure 5.16: Agogo Field - Digimu Reservoir P-D Plot
Multiple gas, oil and water pressure gradients for the Digimu reservoir in the Agogo field. Gas, oil and
water pressure values displayed in red, green and blue respectively. P-D plot [x-axis: Pressure (psia) vs y-

axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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Figure 5.17: South East Hedinia Field - Toro Reservoir P-D Plot
Offset water pressure gradients for the Toro reservoir in the South East Hedinia Field. P-D plot [x-axis:
Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS

75



Chapter 5: Results and Interpretations

-500

-600

-700

-800

-900

-1000

GOBE/SE GOBE TORO
| | eog . Gobe-4X
%
o %
Gobe-2X
u
®n,_  Gobe-6X
_ Gobe-2XST1
Gobe-8XST3 A4 4 |
\t
SE Gobe-2X
Gobe-5XST -,
SE Gobe-1X
oy Gobe-3X
n
Gobe-1
*e
¢ *

-1100

1750

1850

1950

2050

Pressure, wgo

2250

2350

2450

Figure 5.18: Gobe/South East Gobe Field - Toro Reservoir P-D Plot
P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].
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Figure 5.19: Gobe/South East Gobe Field - Iagifu Reservoir P-D Plot

P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)]. Gas, oil

and water values displayed in red, green and blue respectively.
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Chapter 6: Final Discussion and Conclusions

6.1 Regional Toro Aquifer

Toro aquifer flow in the fold belt and foreland, while related, demonstrate different trends. As

such, they are discussed separately below.

6.1.1 Fold Belt

The Toro potentiometric surface maps generated in this study are consistent with an extensive
hydrodynamic Toro aquifer system existing in the Papuan Basin Fold Belt. The Toro aquifer
likely flows northwest to southeast parallel to the fold belt, from the Lavani Valley Toro outcrop
(likely recharge region) in the Highlands, through to the Kutubu Complex, potentially via Hides,
(possibly Angore) and the Mananda/South East Mananda Fields (Figutes 5.4b-5.4d). The
evidence for Toro aquifer hydrodynamic flow is strongest through the Kutubu Complex of
fields, with water flow, entering via Agogo and exiting the fold belt, at the southern end of the
Usano Field into the foreland of the basin (figures 5.4c-e and 5.14). However, it should be noted
that GWCs for Hides and Angore Fields are not yet available. These have been estimated in this
study from Hides and Angore gas pressure gradient intersections with water pressure gradients
identified from nearby wells (Lavani-1 and Egele-1). Therefore it is not currently possible to
unequivocally identify a connected Toro aquifer system between Lavani Valley, (possibly Angore)
and Hides. Nevertheless, the Lavani Valley-Hides-Mananda/South East Mananda system (LV-H-
M/SEM) represents the most likely flow path for a Toro hydrodynamic aquifer model in the fold
belt (Figure 6.1).

It is important to note that water flow out from the fold belt into the flank and foreland regions
could be occurring elsewhere along the fold belt but a lack of wells to provide Hw values does
not allow this possibility to be tested (Figures 5.4b-¢). For instance, a structural cross section of
the Mananda Anticline shows juxtaposition of the Toro Sandstone with the Darai Formation
across the main thrust front, which could be a conduit for water flow out of the Toro reservoir in
the fold belt into the foreland (Figure 6.2). Additional cross sections from other fields along the
fold belt show juxtaposition with the Ieru Formation. Therefore, it is less likely in these regions
for water to flow and discharge across the fault front through the regional seal into the foreland
[see Figures 2.9¢ (5) and (6) and Figure 6.3]. Kotaka (1996) has suggested that fresh water is
flowing into the foreland close to Libano-1 and Iorogabaiu-1 (Figure 5.4c). Iorogabaiu-1 is
immediately west in the foreland from the proposed exit point at Usano. Libano-1 is immediately
west of the junction between Agogo and South East Mananda Fields, which suggests another

potential exit point for Toro water flow from the fold belt.
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Lavani Valley

Figure 6.1: Regional Toro Hydrodynamic Aquifer Model

Possible water flow path in Toro Aquifer displayed in dark blue. A potential recharge region for the Toro
aquifer exists at Lavani Valley where Toro outcrop is located. Flow path consists of northwest to southeast
flow parallel to major folds and thrusts in fold belt through Lavani Valley-Hides-Mananda/South East
Mananda-Kutubu Complex. Toro aquifer flow may also occur in a southeast to northwest direction
through the South East Hedinia Field. Both Toro aquifer flow paths may exit the fold belt at the southern
end of Usano Field. Faulting associated with the Bosavi Lineament cross cutting the fold belt may be the
cause of the large hydraulic (Hw) step/baffle observed between South East Mananda and Agogo Fields.
En-echelon faults that potentially allow connection between Juha and either Mananda and/or Agogo are
shown (base map modified from Berryman and Braisted, 2010).
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Figure 6.2: Cross section through Mananda Anticline
(Cole et al., 2000)
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Figure 6.3: Cross section through South East Hedinia Anticline
(Santos, 2008)
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In addition to the system desctibed above for the Lavani Valley-Hides-Mananda/SE Mananda-
Kutubu Complex (LV-H-M/SEM-KC) there is reasonable evidence for anothet region of Toro
hydrodynamic aquifer, which also appears to exit the fold belt at the southern end of Usano. This
system involves southeast to northwest water flow within the South East Hedinia Field (note -
opposite direction of water flow to the LV-H-M/SEM-KC system) (Figutes 5.4c-d and 6.1). It is
unclear what recharge area may be driving this flow as there is no nearby Toro outcrop.
Alternatively, South East Hedina may represent a recently opened compartment that is now

draining into the foreland.

Within the fold belt, there is little evidence for substantial flow and interconnectivity between
aquifer cells perpendicular to the fold belt structural grain (ie in a northeast-southwest direction).
The northwest-southeast trending fold belt thrust faults appear to behave predominantly as
sealing faults. They are perpendicular to the current stress field operating in region and more
likely to be squeezed shut. Cross cutting faults running northeast-southwest through the fold
belt, are potentially more likely to be non-sealing as they are parallel to the compressive stress
field and are more likely to be forced open. This general trend is seen in other fold and thrust
belt regions, for instance, the Rocky Mountains, where thrusts typically act as hydraulic barriers
separating the aquifer between thrust sheets (Underschultz et al., 2005). This separation is
characterised by large differences in Hw and often water chemistry between the thrust sheets.
However, there can be significant vertical hydraulic communication with discharge and recharge
of the aquifer seen, particularly at lateral ramps and locations where there are steeply dipping
high-angle structures cross cutting the main structural grain. The Bosavi Lineament may
represent such a feature in the Papuan Fold Belt, providing a discharge point at South East
Mananda from the fold belt, via Libano-1, into the foreland. It may also be a baffle to northwest-

southeast water flow into Agogo (see below).

Within the Papuan Fold Belt there is evidence for several isolated, highly pressured, Toro aquifer
compartments (eg Kutubu and Paua Anticlines, as well as the Angore and Moran Fields) (see
Figures 5.4c-d and 6.1). The presence of these isolated highly pressured compartments is also
characteristic of other fold and thrust belt systems (Hennig et al. 2002; Underschulz et al. 2005).
These compartments are high-pressure relics of deeper sections of the fold belt uplifted to higher
elevations, as compression of the fold belt takes place. Eventually erosion exposes the reservoir,
allowing aquifer recharge to occur, which appears to be what has occurred at Lavani Valley and

further to the northwest in the case of the Muller Anticline.

The Muller Anticline northwest of Lavani Valley likely serves as another significant recharge area

for the regional Toro aquifer system. The Juha Field, located southwest of the main thrust front
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on the flank of the fold belt (see Figures 5.4b-c), has a lower pressure regime and Hw compared
to the LV-H-M/SEM system. The Pnyang Field, located notrthwest of Juha and also on the flank
southwest of the main thrust front of the fold belt (see Figure 5.4b) has a lower pressure regime
and Hw compared to Juha and appears to be another separate system. Both the Juha and Pnyang
Fields may be fed from the Muller Anticline, but via separate, more convoluted, Toro aquifer
paths than the LV-H-M/SEM system. Altetnatively the Juha and Pnyang Fields may be fed from
additional Toro outcrop regions further northwest in the fold belt but southwest of the main
thrust front of the fold belt in West Papua. A possible Hw baffle point exists northwest of Juha
similar to the Hw baffle between South East Mananda and Agogo (Figures 5.4b-c). This baffle
northwest of Juha may represent the point at which water flows from the Muller Anticline into
the Juha Field dropping the Hw across this barrier from highland values down to the reduced
Hw values seen at Juha. But realistically there are just not enough well Hw data values to be able

to identify aquifer flow paths with any degree of confidence in these areas.

6.1.2 Foreland

Flow in the Toro reservoir in the foreland is even more difficult to constrain, as there is much
less change in Hw and there are fewer Hw data points to model the Toro aquifer behaviour.
There appears to be a general flow direction northwest to southeast in the foreland to the sea
(Figure 5.4e and see section 5.1.2 for additional interpretation of foreland Toro aquifer
behaviour). The Komewu Fault potentially provides a barrier to the foreland flow in the Toro
aquifer system. Salinity data (Table A.2) is consistent with the flow direction determined from the
Hw data. Lower salinity/fresh formation watet samples were found in the fold belt, moderate
salinity waters in the flank regions of the fold belt and increasing saline waters further out into
the foreland towards the sea. The salinity data suggest that there is not a strong aquifer operating
in the foreland as the saline formation waters originally present have not been completely

displaced by the fresh meteoric waters likely entering the fold belt in the highlands.

6.2 Regional /Sub-Regional Digimu, Hedinia and Iagifu Aquifers

Like the Toro reservoir, the Hedinia and lagifu reservoirs show clear foreland and fold belt
pressure regime trends (Figures 5.1, 5.5-7). The Digimu reservoir has restricted distribution and is
confined to the fold belt and perhaps the flank of the fold belt (see Figure 2.13). Within the fold
belt all three reservoirs exhibit central fold belt pressure regime trends as well as highland and

hinterland compartmentalisation pressure regime trends.

A significant point of difference for the Digimu reservoir, compared to the Toro reservoir, is its

apparent hydrostatic and compartmentalised nature in both the Agogo Field and the
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Hedinia/Iagifu Fields (see section 5.3.4 for mote detailed intetpretation). Conversely, the
available Hw data for both the Hedina and Iagifu reservoirs (Figures 5.9 and 5.10) suggest
northwest to southeast hydrodynamic flow could be occurting through the Hedinia/Iagifu
Fields. An exit point for flow from the fold belt for both reservoirs appears to be present at
Usano out into the foreland flank via Iorogabaiu-1X. The Iagifu reservoir also has a significant
drop in Hw between the Agogo and Hedinia/Tagifu Fields that was not seen with the Toro (ot
Digimu) reservoirs. This may represent a barrier caused by fault juxtaposition of lagifu Sandstone
units with shalier intervals of the Imburu Formation, affecting only the lagifu reservoir aquifer
connectivity but not Toro (or Digimu). Finally, Hw data suggests that for the Hedinia reservoir,
southeast to northwest water flow is occurring through the South East Hedinia Field. There were
insufficient data available to accurately interpret the Hedinia and Iagifu aquifer behaviours in the
foreland of the Papuan Basin. However, the limited data suggest similar Hw trends to that seen
for the Toro aquifer, with slightly higher Hw values occurring on the flank of the fold belt with

decreasing Hw values out into the foreland (see Figures 5.9 and 5.10).

The location(s) of potential recharge areas for the Digimu, Hedinia and Iagifu reservoirs are
uncertain. Imburu Formation outcrop is present in the Muller Anticline region. But Digimu and
Hedinia Sandstones have limited distributions, which do not extend to the Muller Anticline (see
Figures 2.13 and 2.14). Iagifu Sandstone is present in the Muller Anticline region (see Figure
2.15). Imburu Formation extends throughout the fold belt, but this can represent shales and
mudstones that make up the bulk of the Imburu Formation. So if there is a lack of outcropping
Digimu, Hedinia and Iagifu Sandstones, there is a reduced possibility of meteoric water feeding a
hydrodynamic aquifer in each case, unless one or more of the these reservoirs has fault juxta-
positioned communication with the Toro reservoir in the fold belt. However, it was beyond the
scope of this study to begin to identify these possible fault connections between the Toro and

the Digimu, Hedinia and Iagifu reservoirs.

6.3 Sub-Regional/Field Scale Toro Aquifer

6.3.1 Highlands/Hintetland

The very closely aligned water gradients and progressively decreasing Hw values between the
Lavani Valley, Egele Anticline, Hides, Angore, and Mananda/South East Mananda Fields (see
Figures 5.4b-d and Figure 5.11), suggest the existence of a hydrodynamic Toro aquifer connected
in some configuration between these regions. However, the amount of data that is being used to
establish this connected hydrodynamic aquifer system is insufficient to unequivocally prove its
existence. The observed trend of progressively decreasing values may be occurring just by chance

and what actually may be present is just a faulted/compartmentalised set of aquifer cells with
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little or no communication. For instance it would seem more likely that Angore Field and Egele
Anticline represent separate aquifer cells, as they are in the parallel thrust/fold system directly
northeast of the fold belt section containing Lavani Valley, Hides and Mananda/South East
Mananda Fields (see Figures 5.4c and 6.1, and Maps A.2 - A.3). The variable Hw values for the
Toro and Digimu reservoirs (see Tables A.2 and A.5) and pressure regimes (see Figures 5.1 and
5.5) within the Moran Field in the hinterland suggest a complex compartmentalised system likely
operates in this field, independent of the other fields. Separate highly pressured aquifer
compartments in the Paua and Kutubu Anticlines suggest they represent closed systems, as it is
uncertain where a suitably high Hw recharge area could be operating for these structures. These
structures also exist in the parallel thrust/fold system directly northeast of the fold belt section

containing the Hides and Mananda Fields (see Figures 5.4c and 6.1, and Maps A.2 - A.3).

6.3.2 Mananda/South East Mananda and Kutubu Complex

Eisenberg (1993) and Eisenberg et al. (1994) provide good evidence for a hydrodynamic Toro
aquifer system operating in the Kutubu Complex (Agogo-Hedinia/Iagifu-Usano) Fields. Data
generated in this study were also consistent with a hydrodynamic Toro aquifer operating in the
Kutubu Complex, with a common gas gradient, common oil gradient, but variable water
gradients, along with Hw values consistently decreasing northwest to southeast through this
group of fields (Figures 5.13 and 5.14). In this case, there are sufficient data for the decreasing
Hw trend through the Kutubu Complex to be treated with more confidence. Connection of this
likely hydrodynamic system with the structures to the northwest (Lavani Valley-Hides-
Mananda/South East Mananda) has been proposed to occur between the South East Mananda
and Agogo Fields. However, a large step in Hw exists between South East Mananda and Agogo.
This may represent a long existing barrier in the Toro aquifer system between these two fields, or
is possibly the result of recent tectonic activity, which may have reactivated faults and disrupted
connectivity of the aquifer between South East Mananda-Agogo (Eisenberg, 1993; Eisenberg ct
al., 1994; McPhail, 2013).

A major structural feature, the Bosavi Lineament (see Figures 2.1b, 2.7 and 6.1), incorporating
basement-involved faulting and affecting Toro reservoir continuity in the Moran Field (see
Figures 2.10), cross cuts the fold belt between South East Mananda and Agogo. This feature may
be affecting the connectivity between South East Mananda and Agogo by causing a fault
generated restriction/battier to Toro Aquifer flow. Alternatively (or in addition to the faulting),
the differential palaco deposition of Toro and Iagifu Formation sandstones in the region between
the South East Mananda and Agogo Fields may have generated a lithological barrier to aquifer
flow (Varney and Bradshaw, 1993; Hirst and Price, 1996). Palaco delta depocentres at either end
of the Kutubu Complex (Figure 2.6b) have been postulated to exist (Varney and Bradshaw, 1993;
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Hirst and Price, 1996). These potentially could have resulted in shaley intervals being deposited
in areas surrounding lobes of the delta, rather than clean wave reworked sands of the shoreline,

which may considerably reduce the permeability of the reservoir and reduce aquifer flow.

The connection to South East Mananda, as part of a more regional hydrodynamic system is by
no means unequivocal, with no data points across the junction between the two fields to more
closely examine the potential linkage (similarly large steps in Hw in other areas of the fold belt
have been used to justify compartmentalisation/isolation of aquifer cells). Several plausible
alternative scenarios for this connection actually exist, none of which are excluded by the data

obtained and are discussed below.

The Toro aquifet, seen to be operating from Agogo through the Hedinia/Iagifu Fields, into
Usano, may be being fed from Toro aquifer flow from Juha, southwest of the main thrust front
of the fold belt in the flank region. Hw in the Juha Field is closer to that seen in the Kutubu
Complex than the highlands Hw operating in the Mananda/South East Mananda Fields.
However, there are a lack of wells to test this proposal (Nomad-1 and Cecilia-1 did not intersect
Toro) and there is currently no evidence for flow northwest to southeast through the Juha Field
to supportt this pathway (see Map A.2) In addition Juha has poorer porosity and permeability
compared to other central fold belt fields, so it is less likely to be an efficient conduit for water
flow. However, large-scale en-echelon faults are present between the Juha Field and the Mananda

Anticline and Agogo Field, potentially creating flow paths for aquifer connection (Figure 6.1).

Alternatively, the source of regional flow into the Kutubu Complex of fields could be the result
of flow from other nearby higher pressured compartments. For example the highly over-
pressured Kutubu-1X well suggests pressure is available to drive water flow from this
compartment (Kutubu Anticline) into the Kutubu Complex (Eisenberg et al., 1994) (Figure 6.1).
However, a connection mechanism must be modelled between the Kutubu Anticline and the

Hedina/Iagifu Fields, perpendicular to fold belt.

It is also possible that the Agogo-Hedinia/Tagifu system is just draining without any involvement
from othet nearby compartmentalised systems, particulatly as the Hedinia/Tagifu Toto resetvoir
is under-pressured and is likely draining via Usano. Eisenberg et al. (1994) comment on the weak
nature of the Toro hydrodynamic aquifer and the lack of aquifer support in the Toro reservoir in
the Hedinia/Iagifu Fields. An alternative reason for lack of aquifer suppott is siderite
cementation at the OWC documented in several wells, potentially providing a seal between the
oil and water legs. The Hedinia/Tagifu Fields also do not respond to watet injection, which

suggests compartmentalisation is in operation rather than a hydrodynamic aquifer (Williams and
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Lund, 2006). However, modelling shows that if there is an open system draining at Usano then,
even with continual injection of water into the system, pressure support will not occur

(Eisenberg et al., 1994).

Eisenberg et al. (1994) report the biodegradation of the oil from South East Mananda. However,
no such biodegradation of oil is seen in Agogo-Hedinia/Iagifu. The biodegradation suggests
recent meteoric flow, which has been fed from Lavani Valley down as far as South East
Mananda, but has not yet reached Agogo across the proposed Hw baffle. An alternative way to
explain the biodegradation differentiation is that the water in the Agogo-Hedinia/Iagifu system is
sourced from elsewhere and there is no connection to South East Mananda. The formation water
in Agogo-Hedinia/Iagifu is fresh (would expect to be saline as sediments from marine source),
but there is aqueous inclusion analysis evidence (Krieger et al., 1996; Lisk et al., 1993) that shows
that pre-Pleistocene invasion of the Toro reservoir in the basin with meteoric water occurred

before fold belt generation.

So, in conclusion, there are a number of alternatives that could be feeding the Kutubu Complex
hydrodynamic aquifer. Perhaps a targeted water chemistry study could help identify the source of
the water entering the Kutubu Complex and better constrain the Toro aquifer in this region of

the central fold belt (Glynn and Plummer, 2005; Sundaram et al., 2009: Abdou et al., 2011).

6.3.3 Hydrodynamic Trapping

It was beyond the scope of this study, but once detailed potentiometric contours are mapped,
regions of potential for hydrodynamic trapping of hydrocarbons can begin to be identified
(Dahlberg, 1995; Cockcroft et al. 1987 describe extensive methodology to identify such
regions/structures). For instance, if a hydrodynamic aquifer is operating in the Hides Field it will
have an effect on the GWC, but the tilt will be much less than if it was an OWC [according to
the equation described by Dennis et al. (2000) 4 x less tilt with gas compared to oil]. This could
still cause a significant change in distribution and potentially the volume of gas in a large field
such as Hides. It has been noted that if there is a strong down-dip flow this will significantly
increase sealing/trapping capacity of the teservoir unit, allowing more gas to be trapped than
would otherwise be expected (Cockroft et al., 1987). Many examples of this phenomenon have
been reported in, for example, the Central and Eastern Alberta gas and oil fields (Cockroft et al.,
1987). It is also possible for up-dip flow to increase hydrocarbon trapping, but in this case, it
needs to be against a fault or lithological barrier. When the planned wells are drilled in the Hides
Anticline, the necessary GWC values will become available to do this analysis. It may also be
worth looking at Mananda/South East Mananda and South East Hedinia to see if hydrodynamic

trapping is in play in these fields. Another region of interest in the fold belt is intersected by
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Arakubi-1, which has a negative Hw value (located slightly east of the Iagifu Field at the southern
end of the Kutubu Complex - see Map A.9). This region could represent a stagnation zone
(Person et al., 2012; Cockroft et al., 1987). Stagnation zones can occur where there are two
opposing flows meeting at a low Hw point. In this case flow from the Kutubu Complex in one
direction and flow from South East Hedinia in the other. However, Arakubi-1 is a post-
production well, so could just be sampling a depleted reservoir compartment at this location.
Although, it is significantly more depleted than any of the other wells in close proximity in the
Kutubu Complex, and as such may still represent a good place to look for hydrodynamic

trapping of hydrocarbons.

6.4 Conclusions

The main accomplishment of this study has been the assembly/generation of a comprehensive
up to date well formation fluid pressure, temperature and salinity data set for the Papuan Basin.
This study has further extended the previous regional Toro aquifer studies (Eisenberg, 1993;
Eisenberg et al., 1994; Kotaka, 1996) with up to date potentiometric maps for the Toro, Digimu,
Hedinia and Iagifu Sandstone reservoirs in the Papuan Basin. However, there is now a need to
generate potentiometric surface elevation maps for Toro, Digimu, Hedinia and Iagifu in
combination with superimposed top Toro, Digimu, Hedinia and Iagifu formation maps
respectively, to enable determination of potential hydrodynamic trapping locations in the fold

belt and foreland regions of the basin for each of these reservoir units.

This study has clearly identified limitations to the discrimination of hydrodynamic versus
compartmentalised aquifer systems in the fold belt and foreland regions. The principal limitations
being, insufficient well data (outside of the Kutubu Complex) and relatively poor delineation of
faults and stratigraphic barriers to aquifer flow. However, it is envisaged that formation water
chemistry analyses could be used to determine connectivity of reservoirs in the fold belt in order
to help identify hydrodynamic versus compartmentalised systems and better characterize aquifer

behavior in the Toro, Digimu, Hedinia and lagifu Sandstone reservoirs.

86



References

Abdou, M., Carnegie, A., Mathews, S.G., McCarthy, K., O’Keefe, M., Raghuraman, B., Wei, W. and Xian,
C. 2011. Finding Value in Formation Water. Schlumberger Oilfield Review. 23(1), 24-35.

Ahmed, M., Volk, H., Allan, T. and Holland, D. 2012. Origin of oils in the Eastern Papuan Basin. Papua
New Guinea. Organic Geochemistry. 53, 137-152.

Berryman, A.J. and Braisted, D.M. 2010. Development of the Gas Rsource Assessment for the Papua New
Guinea PNG LNG Project. Society of Petroleum Engineers, SPE Asia Pacific Oil & Gas Conference,
Brisbane, Australia. SPE135816.

Bradey, K., Hill, K., Lund, D., Williams, N., Kivior, T. and Wilson, N. 2008. Kutubu oil field, Papua New
Guinea - a 350 MMbb] fold belt classic. PESA Eastern Australasian Basins Symposium III. 239-245.

Bradshaw, M. 1993. Australian Petroleum Systems. PESA Journal. July, 43-53.

Buchanan, P.G. and Warburton, J. 1996. The Influence of Pre-existing Basin Architecture in the
Development of the Papuan Fold and Thrust Belt: Implications for Petroleum Prospectivity. Petroleum
Exploration and Development in Papua New Guinea, Proceedings of the Third PNG Petroleum
Convention, Port Moresby. 89-109.

Buick, G., McPhail, A., Ryan, L., Bainbrigge, P., Burgoyne, M., Lammerink, W, Little, A. and Theophilos,
A. 2009. Santos PNG LNG Project Pre-Initial Determination Technical Report (unpublished).

Chevron 2000. Water analysis report (unpublished).

Cockroft, P.J, Edwards, G.A., Phoa, R.S.K. and Reid, H.W. 1987. Applications of Pressure Analysis and
Hydrodynamics to Petroleum Exploration in Indonesia. Proceedings Indonesian petroleum Association
16t Annual Convention. IPA87-22/07.

Cole, J.P., Parish, M. and Schmidt, D. 2000. Sub-Thrust Plays in the Papuan Fold Belt: The Next
Generation of Exploration Targets. Petroleum Exploration and Development in Papua New Guinea,
Proceedings of the Fourth PNG Petroleum Convention, Port Moresby. 87-99.

Craig, M.S and Warvakai, K. 2009. Structure of an active foreland fold and thrust belt, Papua New Guinea.
Australian Journal of Earth Sciences. 56, 719-738.

D’Addario, G. W., Dow, D.D. and Swoboda, R. (compilers) 1976, Geology of PNG, 1:250000 scale map.
Bureau of Mineral Resources, Canberra. [PNG Geology Map - Geology of Papua New Guinea, 1972,
Bureau of Mineral Resources, Geology and Geophysics, Department of National Development].

Dahlberg, E.C. 1995. Applied hydrodynamics in petroleum exploration. New York: Springer-Verlag. 295p.
Daniels, M.C. 1993. Formation Presure Measurements and their use in Oil Exploration in the Kutubu
project, papua New Guinea. Petroleum Exploration and Development in Papua New Guinea, Proceedings
of the Second PNG Petroleum Convention, Port Moresby. 579-588.

Dennis, H., Baillie, ., Holt, T. and Wessel-Berg, D. 2000. Hydrodynamic activity and tilted oil water

contacts in the North Sea: Improving the Exploration Process by Learning from the Past. Norwegian
Petroleum Society Special Publication 9, 171-185, Amsterdam: Elsevier Science.

87



Eisenberg, L.I. 1993. Hydrodynamic Character of the Toro Sandstone, lagifu-Hedinia Area, Southern
Highlands, Papua New Guinea. Petroleum Exploration and Development in Papua New Guinea,
Proceedings of the Second PNG Petroleum Convention, Port Motesby. 447-458.

Eisenberg, L.I., Langston, M.V. and Fitzmorris R.E.1994. Reservoir Management in a Hydrodynamic
Environment, lagifu-Hedinia Area, Southern Highlands, Papua New Guinea. Society of Petroleum
Engineers, SPE Asia Pacific Oil & Gas Conference, Melbourne, Australia. SPE28750.

Glynn, P.D. and Plummer, L.N. 2005. Geochemistry and the understanding of ground-water systems.
Hydrogeology Journal. 13, 263-287.

Goffey, G.P., Craig, J., Needham, T. and Scott, R. 2010. Fold and thrust belts: overlooked provinces or
justifiably avoided? Geological Society, London, Special Publications, 348, 1-6.

Grainge, A. 1993. Recent developments in prospect mapping in the hides/Karius area of the Papuan Fold
Belt. Petroleum Exploration and Development in Papua New Guinea, Proceedings of the Second PNG
Petroleum Convention, Port Moresby. 527-537.

Hennig, A., Yassir, N., Addis, M.A. and Warrington, A. 2002. Pore-Pressure Estimation in an Active
Thrust Region and Its Impact on Exploration and Drilling. In Huffman, A.R. and Bowers, G.L eds.,
Pressure regimes in sedimentary basins and their prediction. The American Association of Petroleum
Geologists (AAPG) Memoit. 76, 89-105.

Hill, K. C. 1991. Structute of the Papuan Fold Belt, Papua New Guinea. The American Association of
Petroleum Geologists (AAPG) Bulletin. 75, 857-872.

Hill, K.C, Forewood, J., Rodda, C., Smyth, C. and Whitmore, G. 1993. Structural Styles and Hydrocarbon
prospectivity around the Northern Muller Anticline, PNG. Petroleum Exploration and Development in
Papua New Guinea, Proceedings of the Second PNG Petroleum Convention, Port Moresby. 325-334.

Hill, K.C., Norvick, M.S., Keetly, ].T. and Adams, A. 2000. Structural and Stratigraphic Shelf-Edge
Hydrocarbon Plays in the Papuan Fold Belt. Petroleum Exploration and Development in Papua New
Guinea, Proceedings of the Fourth PNG Petroleum Convention, Port Moresby. 67-84.

Hill, K. C., Keetley, J.T., Kendrick, R.D. and Sutriyono, E. 2004. Structure and hydrocarbon potential of
the New Guinea Fold Belt, in McClay, K.R. ed., Thrust tectonics and hydrocarbon systems: AAPG
Memoir 82, 494-514.

Hill, K.C., Bradey, K., Iwanec, J., Wilson, N. and Lucas, K. 2008. Structural Exploration in the Papua New
Guinea Fold Belt. PESA Third Eastern Australasian Basins Symposium, Sydney. 225-238.

Hirst, J.P. and Price, C.A. 1996. Sequence stratigraphy and sandstone geometry of the Toro and Imburu
formations, within the Papuan fold belt and foreland. Petroleum Exploration and Development in Papua
New Guinea, Proceedings of the Third PNG Petroleum Convention, Port Moresby. 279-299.

Home, P.C, Dalton, D.G. and Brannan, J. 1990. Geological Evolution of the Western Papuan Basin.
Petroleum Exploration and Development in Papua New Guinea, Proceedings of the First PNG Petroleum
Convention, Port Moresby. 107-117.

Hulse, J.C. and Harris, G.I. 2000. The Darai Plateau Play: Foreland Basin Potential. Petroleum Exploration

and Development in Papua New Guinea, Proceedings of the Fourth PNG Petroleum Convention, Port
Moresby. 169-185.

88



Johnstone, D.C. and Emmett, ].K. 2000. Petroleum Geology of the Hides Gas Field, Southern Highlands,
Papua New Guinea. Petroleum Exploration and Development in Papua New Guinea, Proceedings of the
Fourth PNG Petroleum Convention, Port Moresby. 319-335.

Kotaka, T. 1996. Formation water systems in the Papuan Basin, Papua New Guinea. Petroleum
Exploration and Development in Papua New Guinea, Proceedings of the Third PNG Petroleum
Convention, Port Moresby. 391-405.

Krieger, F.W., Eadington, P.J. and Eisenberg, L.I. 1996. Rw, reserves and timing of oil charge in the
Papuan Fold Belt. Petroleum Exploration and Development in Papua New Guinea, Proceedings of the
Third PNG Petroleum Convention, Port Moresby. 407-416.

Kveton, K., Garcia, H., Lee, D. and Quam, S. 1998. Iterative structural modelling and 2D seismic imaging
in the Papua New Guinea Highlands. SEG Expanded abstract.

Langston, S. 2013. Personal communication. Santos.

Lisk, M., Hamilton, J., Eadington, P. and Kotaka, T. 1993. Hydrocarbon and pore water migration history
in relation to diagenesis in the Toro and Iaifu sandstones, SE Gobe-2. Petroleum Exploration and
Development in Papua New Guinea, Proceedings of the Second PNG Petroleum Convention, Port
Moresby. 477-488.

Madu, S. 1996. Correlation sections of the late Jurassic to early Cretaceous succession in the Papuan Fold
Belt, Papuan Basin: sequence stratigraphic framework concepts and implications for exploration and
exploitation. Petroleum Exploration and Development in Papua New Guinea, Proceedings of the Third
PNG Petroleum Convention, Port Moresby. 259-277.

McCain, W. D. 1990. The Properties of Petroleum Fluids, second edition - PennWell Publishing
Company, Tulsa, Oklamhoma.

McConachie, B., Lanzilli, E., Kendrick, D. and Burge, C. 2000. Extensions of the Papuan Basin Foreland
Geology into Eastern Irian Jaya (West Papua) and the New Guiea Fold Belt in Papua New Guinea.
Petroleum Exploration and Development in Papua New Guinea, Proceedings of the Fourth PNG
Petroleum Convention, Port Moresby. 219-237.

McPhail, A. 2013. Personal communication. Santos.

Muggeridge, A. and Mahmode, H. 2012. Hydrodynamic aquifer or reservoir compartmentalization? The
American Association of Petroleum Geologists (AAPG) Bulletin 96, 315-336.

Oil Search 2003. Water analysis report (unpublished).
Person, M., Butler, D., Gable, C.W., Villamil, T. Wavrek, D. and Schelling, D. 2012.Hydrodynamic
stagnation zones: A new play concept for the Llanos Basin, Colombia. The American Association of

Petroleum Geologists (AAPG) Bulletin 96, 23-41.

PNG CMP 2012. PNG Chamber of Mines ands Petroleum Report: Petroleum in PNG.
http://pngchamberminpet.com.pg/petroleum-in-png/

Powley, D.E. 1990. Pressures and Hydrogeology in Petroleum Basins. Earth Science Reviews. 29, 215-226.

Santos 2008. PNG Group Santos. PNG Regional Overview (unpublished).

89



Santos 2013. PNG Group Santos. Papuan Basin Overview (unpublished).
Starcher, M. 2013. Personal communication. Santos.

Struckmeyer, H.I.M., Yeung, M. and Bradshaw, M.T. 1990. Mesozoic Palacogeography of the northern
margin of the Australian plate and its implications for hydrocarbon exploration. Petroleum Exploration
and Development in Papua New Guinea, Proceedings of the First PNG Petroleum Convention, Port
Moresby. 137-152.

Sundaram, B., Feitz, A.]., de Caritat, P., Plazinska, A., Brodie, R.S., Coram, J. and Tim Ransley, T. 2009.
Groundwater Sampling and Analysis - A Field Guide. Geoscience Australia. Record 2009/27 68901.

Underschultz, J. R., C. J. Otto, and R. Bartlett, 2005, Formation fluids in faulted aquifers: Examples from
the foothills of Western Canada and the North West Shelf of Australia, in P. Boult and J. Kaldi, eds.,
Evaluating fault and cap rock seals: AAPG Hedberg Series, no. 2, 247-260.

Van Ufford, A.Q and Cloos, M. 2005. Cenozoic Tectonics of New Guinea. The American Association of
Petroleum Geologists (AAPG) Bulletin, 89, 119-140.

Varney, T.D and Brayshaw, A.C. 1993. A Revised Sequence Stratigraphic and Depositional Model for the
Toro and Imburu Formations, with implications for Reservoir Distribution and Prediction. Petroleum
Exploration and Development in Papua New Guinea, Proceedings of the Second PNG Petroleum
Convention, Port Moresby. 139-154.

Williams, N. and Lund, D. 2006. Kutubu: A Rethink. Society of Petroleum Engineers, SPE Asia Pacific Oil
& Gas Conference and Exhibition held in Adelaide, Australia. SPE101123.

90



91

ients

vesz 005z . 00vZ veEz 00EZ 00€7 08ZZ 09Z¢ OvZz 0zZZ 00z 08T 091 Oviz 0ZIZ  001T 00SZ 08vC 09vZ OvpZ OZVT 0OVZ O08EC 09ET OVEZ OZEC O0OEZ
00L 00ST-
0581~ -
06¥T-

ozt
oogt- ove 090«. 081~
‘/o/o/ — 09z 0= ’066/ vt

0s21- 08z V'SLT +X88TL0-=A N 09vT-
298660 = 4 er/ola 008 osv1-

659°PT 1 X9TT2'0- = A T o0L1- SSIhidasy ozg 73 ovvT-
T £ TVEL +XLEOLO-= A /0.
~ ov8 < ogvT-
[
0591+ 098 v/’; ozyT-
088 - oTvT-
0091- 006 3 00v1-
J91eM OYOL VI-19MIVYEY J931eM OYOL XT-H3ITINN Ja1em OYOL XS-N4I9VI
oL0t 0902 0so0z ovoz og0z o020z otz 000z 00€Z 08ZZ 0927 OvZZ 0ZZZ 00ZZ 081Z 091Z OYIZ OZTZ 00TZ 0082 0scT ooz 0592 009z 0ssz 005z
00TT- oovT- 0081-
08T~

mmoﬂ .
/ 09€T- /0/ 0SLT:
090T-

OvET- — . 00LT-

Y ovoT- 0zET- /4/0/ LLTT+%5780°T-
266660= 1 SR 00T osor-

. - =
VoL ReTe v 00 78660 = ;4 / 0821 86660 =4
LS 000T- PPEOT +X£950'T-= A el SS6ET 1+ XBT2LI0- = o0t
086" ovzr- ossT-
096- ozzi-
o00zt- 00ST-
523 0¥OL X9-N4IOVI 110 0¥OL 71a1 J33em-110 O¥OL (Vr-1aN) TASK-1aN
00EZ 0677 08Tz 0LZZ 097z 0SZT Ovzz O0€eZ 0ZZz 0Tz 0022 0067 0s87 0087 0scT [0 059z ovsz  oz8T 008z 08/ 09z  OvZ  0ZLZ  00LT
00sT- ozt ozLT-
0-=4 0ST- /{0} 0L9T-
LOTET+XT669°0-= oz9t-
SP266'0= 3
oovT- 0291
/%« +X8SSTE- = A
Pt e oseT- 032 0291~ oLst-
g 8L'TY7 +¥9189'0- = A / £E6L6°0 =
Bman e 5686 +X6926°0-= A ozsT-
00€T- - N
e 9 05T
6E860/= ¥ ————
i T-=4 - oLyT-
TE0L6 +X920°T osz1- T'E589 + XB6ET'E-= A
ozst- ozvt-
00z1-
10-se8 - -
131eM-|10 OO €-1d1 121eM-se8 OYOL TLS VE-LQY I 0Y¥0L (XP-0909V) T-1aV

Examples of P-D Plots Used to Generate Toro Fluid Pressure Grad

Appendix

identify the fluids present in the reservoir formations being tested. Intersection points between fluid

Data used for the calculations/plotting are part of the regional data set assembled for this study - data not
shown. Pressure gradients were calculated by regression analysis of the data sets on the plots and used to

P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth meters sub sea (TVDmSS)].

gradients represent fluid contact points.

Figure A.1
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Figure A.2: Extrapolated Gas Water Contacts (EGWCs) for Selected Toro Wells

EGW(Cs for Hides-4, Angore-1, Tarim-1, Pnyang-1X, Elevala-1, Puk Puk-1 and Langia-1 were calculated
by determining intersection point between calculated gas pressute gradient for the well and nearby
calculated water pressure gradient. P-D plot [x-axis: Pressure (psia) vs y-axis: Depth (total vertical depth
meters sub sea (TVDmSS)]. Data used for the calculations/plotting are patt of the regional data set
assembled for this study - data not shown.
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Tables A.1- A.13: Papuan Basin Well Data Sets

Table A.1 - Total Papuan Basin wells examined in this study

Wells arranged in alphabetical order within fold belt and foreland sections. Listing of wells then within
fields, followed by those wells not assigned to a field. Fluid(s) present in each reservoir interval are listed
under Toro, Digimu, Hedinia and Iagifu reservoir headings (G = gas, O = oil and W = water). Those wells
excluded from the study and the reason why are also listed. (1) No well completion report (WCR) available.
(2) No/poor pressure test. (3) Outside palaco-deposition distribution for Toro. (4) Toro expected - but not
intersected.

Tables A.2 - A.13: Contain well pressure and hydraulic potential (Hw) data for the Toro, Digimu, Hedinia

and lagifu reservoirs.

Table A.2 - Toro Wells (Watet)

Lists Toro wells that have water pressure data. Wells arranged in alphabetical order within fold belt and
foreland sections. Listing of wells then within fields, followed by those wells not assigned to a field.
Pressure (psia) and depth (TVDmSS) values are listed. Hw data calculated by 3 methods: Method 1 - Hw
(0.435), Method 2 - Hw (calc) and Method 3 - Hw (ST). See section 4.3 for detailed description of Hw
calculation methods. Pressure gradients calculated for methods 2 and 3 are listed in the column preceding
the relevant Hw column. Hydrocarbon-water contacts (HC-WCs) are identified. Pre- and post-production
wells are identified. Salinity and temperature data are listed where obtained/calculated.

Table A.3 — Toro Wells (Gas)

Lists Toro wells that have gas pressure data. Similar arrangement, column headers and data listed as for
Table A.2. Additional information though has been included; Extrapolated gas water contact (EGWC)

values for several wells have been calculated (see Figure A.2) and these are listed along with the derived
Hw (0.435) values. Lowest known gas (LKG) points identified.

Table A.4 - Toro Wells (Oil)

Lists Toro wells that have oil pressure data. Similar arrangement, column headers and data listed as for
Table A.2

Table A.5 - Digimu Wells (Water)

Table A.6 - Digimu Wells (Gas)

Table A.7 - Digimu Wells (Oil)

Table A.8 - Hedinia Wells (Water)

Table A.9 - Hedinia Wells (Gas)

Table A.10 - Hedinia Wells (O1il)

Table A.11 - Tagifu Wells (Water)

Table A.12 - Tagifu Wells (Gas)

Table A.13 - Tagifu Wells (Oil)
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Maps A.1 - A.11: Regional Papuan Basin Map Set Displaying Well Locations

Map A.1: Regional Papuan Basin master map. Satellite image layer overlain on Papuan Basin map to enable
visualisation of fold belt and foreland features. Toro (yellow) and Imburu Formation (orange) are shown in
shaded areas in the northwest of the fold belt. Map is shown for otientation purposes for the sub-regional
maps and to show the well distribution in the basin. Map details: Scale 1:1000000. AGD66/AMG zone 54.
Transverse Mercator. Australian National Spheroid spheroid (Santos, 2013).

Maps A.2 - A.7: Represent 6 sub-regional Papuan Basin maps covering entire map region shown in Map
A.1. In each Map an inset shows the area covered compared to the master map. These maps allow all of
the wells outside of the Moran, Agogo, Hedinia/Iagifu. Gobe/South East Gobe Fields to be identified
(Santos, 2013).

Maps A.8 - A.11: Represent 4 additional sub-regional/field scale maps covering regions unable to be
adequately displayed in the sub-regional scale maps above. In each Map an inset shows the area covered
compared to the master map.

Map A.8: Moran, Mananda/South East Mananda and Agogo Fields (Santos, 2013)

Map A.9: Agogo, Hedinia/Iagifu and Usano Fields (Oil Search, 2013)

Map A.10: Hedinia/Tagifu Fields (additional wells not listed on Map A.9) (Williams and Lund, 2006)

Map A.11: Gobe/South East Gobe Fields (Oil Search, 2013)
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