Albitization and REE-U-enrichment in IOCG systems:

Insights from Moonta-Wallaroo,

Yorke Peninsula, South Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Alkiviadis Kontonikas-Charos

November 2013
ALBITIZATION AND REE-U: MOONTA-WALLAROO

ABSTRACT

Iron Oxide Copper Gold (IOCG) deposits are the products of crustal-scale metasomatic alteration, generally considered to be associated with the emplacement of large felsic intrusions. These systems are typified by zoned, broad alteration haloes comprising the products of an early, barren albitization event, and late, ore-hosting potassic/calcic (skarn) alteration associated with mineralization. Yttrium and rare earth elements (REY), and also uranium, are prominent components of most IOCG systems. The REY-signatures of feldspars and accessory apatite, Fe-(Ti)-oxides and other minerals are geochemical tracers of alteration stages within a magmatic-hydrothermal system.

This study sets out to identify links between magmatism and initiation of hydrothermal activity, and to test the hypothesis that albitization is a pre-requisite stage for REE-U enrichment in magmatically-derived IOCG systems. The compositions and trace element concentrations in key minerals have been analysed using scanning electron microscopy, electron probe microanalysis and laser-ablation inductively-coupled plasma mass spectrometry in a varied range of magmatic to metasedimentary lithologies from the Moonta-Wallaroo region, an area in which broad regional-scale alkali alteration is recognised.

Results confirm a strong link between albitization and REE-U-enrichment. The process of albitization is seen to consume, redistribute and lock-in REY, LILE and HFSE via complex fluid-rock reactions dependent on the pre-existing mineral assemblages and fluid characteristics, providing a holistic model for IOCG-driven alkali metasomatism.

The trace element signatures recorded by K-feldspar reflect a transition from magmatic to hydrothermal stages within an evolving IOCG system.

Although further constraints on these signatures are required, they could prove invaluable in mineral exploration as they suggest a quantifiable distinction between alteration associated with mineralization, and regional background. This hypothesis requires testing elsewhere in the Olympic Province and in analogous terranes.

KEYWORDS

Albitization, REE-U enrichment, IOCG, Feldspar, Trace elements, Moonta-Wallaroo
TABLE OF CONTENTS

Abstract .. 2

List of Figures and Tables .. 4

Introduction .. 5

Geological Background ... 7
 IOCG mineralization and the Olympic Province ... 7
 Geology of the Moonta-Wallaroo region ... 8

Approach and methodology ... 10

Petrography ... 11

 Main rock types: primary and alteration features .. 13
 Altered Magmatic Rocks ... 13
 Intensively Altered Rocks of Magmatic Origin ... 15
 Metamorphic rocks .. 17

 Accessory and REE-minerals ... 22
 Key albitization textures ... 30

Trace element concentrations and their distribution in feldspar and accessory minerals:
 LA-ICP-MS data .. 32

 Trace element distribution: REY trends .. 33
 Potassium feldspar .. 33
 Magmatic signatures .. 33
 Hydrothermal signatures ... 34
 Hydrothermal albite ... 35
 Time-resolved depth spectra .. 37
 Accessory minerals .. 42

 Other trace elements within feldspars .. 43

 Element mapping .. 51

Discussion ... 53

 Mineral chemistry and trace element incorporation .. 53
 REY distributions .. 55
 Alkali-metasomatism ... 60
 Sodic alteration: albitization .. 60
 Potassic alteration .. 64

Implications for IOCG genesis and exploration models ... 64
LIST OF FIGURES AND TABLES

Figure 1: Geological map showing location of Moonta-Wallaroo study area and sampled drill holes.
Figure 2: Back-scatter electron images showing petrographic aspects of magmatic rocks
Figure 3: Back-scatter electron images showing petrographic aspects of metamorphic and sedimentary rocks
Figure 4: Back-scatter electron images showing accessory and REE-minerals
Figure 5: Back-scatter electron images showing key albitisation textures
Figure 6: Chondrite normalised REY trends for feldspars
Figure 7: Chondrite normalised REY trends for accessory minerals and calcite
Figure 8: Plots of other trace elements in feldspars
Figure 9: LA-ICP-MS element maps for potassium feldspar in Arthurton granitoid
Figure 10: LA-ICP-MS element maps for albite and potassium feldspar in biotite schist
Figure 11: REY anomalies and trends for feldspars
Figure 12: REY anomalies and trends for apatite
Figure 13: Schematic diagram showing development of albitisation

Table 1: Summary of sample mineralogy and stratigraphy
Table 2a: Electron probe microanalyses of albite
Table 2b: Electron probe microanalyses of K-feldspar
Table 3: Electron probe microanalyses of epidote and actinolite
Table 4: Electron probe microanalyses of apatite
Table 5: Electron probe microanalyses of zircon
Table 6: Electron probe microanalyses of rutile and titanite
Table 7: Electron probe microanalyses of synchysite and bastnäsite
Table 8a: Summary of LA-ICP-MS data for K-feldspar: REE, Pb, Th and U
Table 8b: Summary of LA-ICP-MS data for K-feldspar: other elements
Table 9a: Summary of LA-ICP-MS data for albite: REE, Pb, Th and U
Table 9b: Summary of LA-ICP-MS data for albite: other elements
Table 10a: Summary of LA-ICP-MS data for apatite: REE, Pb, Th and U
Table 10b: Summary of LA-ICP-MS data for apatite: other elements
Table 11: Summary of LA-ICP-MS data for zircon
Table 12: Summary of LA-ICP-MS data for rutile, titanite and calcite