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Abstract 

 

Renewable sources of chemical energy, such as plant biomass, are needed for synthesizing 

future liquid transportation fuels. However, the structural complexity and heterogeneity of 

plant biomass can result in low rates of carbohydrate-to-fuel conversion and often requires 

costly pre-processing techniques. As a result, plant materials that are abundant, cheap to 

produce, are socially responsible and have an easily amendable composition are required. 

Two agro-industrial biomasses derived from Agave and Vitis vinifera (grape) marc are 

studied here to determine their chemical compositions, their efficiency of conversion to 

fermentable sugars and to estimate subsequent ethanol yields.  

  



 
x 

 

Project Summary 

 

The first step in examining a source of plant biomass as a potential raw material for 

bioethanol production is to characterize its composition. In paper I, the compositions of 

two Agave species (A. americana and A. tequilana) are described. Whole leaf tissue, juice 

(stem and leaf) and fibrous bagasse were characterised. Of the dry mass of whole Agave 

leaves, 85−95% consisted of soluble carbohydrates, insoluble carbohydrates, lignin, 

acetate, proteins and minerals. Agave leaf biomass was particularly attractive as a 

lignocellulosic raw material for ethanol production, because it had a significantly lower 

lignin content (< 13% w/w) relative to other common biofuel feedstocks at >17% w/w [1]. 

On a fresh weight basis the majority of the Agave leaf mass was attributed to moisture 

(85%) and at harvest the leaves may be crushed to separate juice from the fibrous bagasse. 

Juice from the leaves and stem was rich in fermentable sugars (fructose, glucose and 

sucrose) and soluble fructans. Different processing methods were trialled to hydrolyse the 

fructans, resulting in a final concentration of 41−48 g/L of hexose monosaccharides 

available in the leaf juice. The fiber fraction was cellulose-rich (up to 50% dry w/w) and 

could be further processed using pre-treatments to increase availability of the 

monosaccharides.  

Characterization of wine industry waste (grape marc) is described in paper II. Marc 

derived from two varieties of grape, Cabernet Sauvignon and Sauvignon Blanc, were 

compared. On a dry weight basis the composition of the grape marc was predominantly 

carbohydrate (34−50%) and lignin (26−41%). A higher abundance of soluble carbohydrate 

(glucose and fructose) was detected in marc from Sauvignon Blanc than in Cabernet 

Sauvignon residues. The carbohydrates identified in Cabernet Sauvignon were 

predominantly present as insoluble structural polymers of cell wall origin. The distribution 

and structure of component polysaccharides and their derivatives were investigated using 



 
xi 

 

transmission electron microscopy (TEM) coupled with immunocytochemistry, high 

performance liquid chromatography (HPLC) and matrix-assisted laser 

desorption/ionization time-of flight mass spectrometry (MALDI-TOF-MS).  

The chemical composition of plant biomass influences the processing methods, 

such as physical or chemical pre-treatments and/or enzymatic saccharification, needed to 

prepare the biomass for conversion to ethanol. In paper I it was concluded that separation 

of Agave biomass into different fractions (whole leaf, stem, juice and/or bagasse) at the 

time of harvest is better suited to efficient processing outcomes but that expensive pre-

treatments were not practical for this biomass as a whole. However, after the moisture had 

been removed from Agave leaves a cellulose-rich (32−45 % mol) fibrous fraction 

remained. The accessibility of this raw material to enzymatic hydrolysis was investigated 

using a crude cellulase preparation. The rate of saccharification and overall yield of 

glucose (38−40%) liberated in the hydrolysate after a 48 h treatment was similar for both 

A. americana and A. tequilana leaf tissue. The grape marc described in Paper II was rich in 

the polymer lignin, which is intertwined with cellulose and non-cellulosic polysaccharides 

in a biocomposite that is resistant to conversion and necessitates pre-treatment to allow 

enzyme penetration. A dilute acid pre-treatment resulted in an approximate 10% increase 

in the amount of liberated glucose after enzymatic saccharification, presumably due to the 

hydrolysis of non-cellulosic polysaccharides (NCPs). However, no significant change in 

glucose release was observed from thermally treated marc compared to non-treated 

samples.  

The yield of ethanol produced from Agave juice is described in Paper III. This 

research determines the impact of processing methods, ranging from none to autoclaving, 

and the use of different fermenting microorganisms on ethanol yields. To date, available 

information is mostly related to the fermentation of juice extracted from cooked Agave 

stems, which is reflective of the processes used in the tequila industry [2-5]. The data from 
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the present study challenged standard practices used for the fermentation of Agave juice 

such as sterilizing the juice and/or spiking the juice with sugars and nutrients prior to 

fermentation to provide an optimal environment for selected fermenting organisms (paper 

III). In addition, the potential of using Agave leaves in no-input fermentations, such that no 

acid or enzymatic hydrolysis, supplementation of nutrients or standardization of sugar 

content occurred, was investigated. The experimental data indicated that leaf juice derived 

from Agave does not benefit from a sterilization step, because the ethanol yields achieved 

were not significantly different to those from raw juice fermentations. The productivity of 

the fermentations was more strongly influenced by the selection of the microorganism. 

However, ethanol yields were reduced if fermentation was reliant solely on endogenous 

microorganisms. It was found that Agave leaf juice could be converted to ethanol at an 

efficiency of 78% using non-Saccharomyces yeast strains, and this would equate to a yield 

of 1881 L/ha/yr ethanol. This research also demonstrated that sugar to ethanol conversion 

efficiency could be further increased when leaf and stem juice is blended and fermented 

using a yeast directly isolated from Agave, namely Kluyveromyces marxianus. 

Overall the work presented in this thesis describes the processing of two agro-

industrial residues from a raw material through to fermentation products (ethanol, organic 

acids and glycerol). The characterization of the biomass was instrumental in informing the 

types of downstream processing, fermentation methods and microorganisms that might be 

used. The amounts of extracted carbohydrate and conversion efficiencies achieved under 

different processing scenarios were extrapolated to predict ethanol yields obtained if they 

were to be produced on a large-scale. This enabled comparisons with other commonly 

studied biomass feedstocks. The methodology and data generated from this study may be 

informative when investigating the practicality of using agro-industrial residues such as 

Agave and grape marc for commercial biofuel and/or biochemical production. 
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