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Abstract

Breast cancer is considered to be one of the major contemporary problems affecting the lives

of thousands of women worldwide. One of the most effective tools in the fight against this

disease is early detection based on the manual analysis of X-ray mammograms. This manual

process of interpretation of mammograms involves the detection of breast lesions (e.g., masses),

the segmentation of lesions boundaries and the classification of lesions based on their shape,

appearance and texture features. This manual analysis of breast lesions from mammograms

presents large interpretation variability amongst radiologists. This variability can be reduced

with the aid of computer aided diagnosis (CAD) systems that can act as a second reader in the

analysis of breast lesions. However, for a CAD system to be useful in a clinical setting, it must

effectively classify lesions as benign or malignant.

Detection, segmentation and classification of breast lesions are the main three steps involved

in fully automated CAD systems that can work in the analysis of mammograms. Building a

CAD system is difficult because mammograms are marred by low signal to noise ratio for the

visualisation of breast lesions. In addition, breast lesions present a large variation in terms

of shape, size and appearance. A large number of methods have been applied for building

automated CAD systems for both types of lesions, namely mass and micro-calcification, but in

this work we focus only on the analysis of masses. The major drawback of current approaches

is that they generate a large number of false positives and miss a fair amount of true positive

regions during the mass detection stage. Furthermore, mass segmentation is generally based

on active contour models and graph-based approaches that rarely capture the large shape and

appearance variations of breast masses. Finally, mass classification is generally implemented

using sub-optimal hand-crafted features and machine learning classifiers such as support vector

machines (SVM), linear discriminant analysis (LDA), artificial neural net (ANN), etc. One

major limitation of the majority of existing CAD systems is that most of them require manual

intervention to obtain mass candidates for segmentation and classification.

This thesis presents a new approach based on recently developed deep learning models to de-

velop a fully automated CAD system for automated detection, segmentation and classification

of masses from mammograms. Our proposed solution to the mass detection problem consists

of three stages: 1) mass candidate generation using multi-scale deep learning and Gaussian

mixture models, 2) false positive reduction with a cascade of deep learning and random forests

classifiers, 3) candidate refinement with a local search algorithm based on Bayesian optimi-

sation. Our proposed mas segmentation methods are based on two kinds of structured output

learning methods, namely: 1) structured support vector machine for parameter estimation and
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graph cut for inferring the segmentation labels, and 2) truncated fitting for parameter learning

and tree re-weighted belief propagation for inference. The resulting segmentation is then re-

fined using an active contour model. Our proposed mass classification deep learning method

is modelled with a two-step training procedure, where the first step is based on a pre-training

stage that estimates a large set of hand-crafted features, which is followed by a fine-tuning step

that learns a classifier (that classifies masses into benign and malignant). Finally, we integrate

our mass detection, mass segmentation and mass classification methods into a fully automated

CAD system for the analysis of masses in mammograms. We validate our methodology on two

publicly available datasets (INbreast and DDSM-BCRP) using different performance measures

such as average Dice index for segmentation, free receiver operating curve (FROC) and aver-

age precision curve for detection, receiver operating curve (ROC), area under curve (AUC) and

accuracy for classification. The experiments show that our methodology for detection, segmen-

tation and classification of breast masses achieves competitive results with respect to the current

state-of-the-art techniques in terms of all performance measures mentioned above.
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