Variation in chain-length of leaf wax n-alkanes in plants and soils across Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology.

Siân Howard
November 2014

THE UNIVERSITY of ADELAIDE

VARIATION IN CHAIN-LENGTH OF LEAF WAX N-ALKANES IN PLANTS AND SOILS ACROSS AUSTRALIA

RUNNING TITLE

ACL of n-alkanes in plants and soils

Abstract

Long chain n-alkanes are produced as part of leaf epicuticular wax and are ideal biomarkers for palaeoclimatology and palaeoecology due to their persistence in soils and sediments. Sedimentary records often show shifts in average chain-lengths (ACL) of n-alkanes, both across geologic time and modern-day climate gradients and this shift may be climate driven.

Australia spans a broad range of different climate conditions providing an ideal study area for investigating the relationship of ACL to climate. The Terrestrial Ecosystem Research Network (TERN) has developed a network of biodiversity monitoring plots (AusPlots and TREND) at which plant and soil samples are collected and made available to the research community. By analysing n-alkane ACL present in plants and soils collected from these sites and comparing with each site's respective climatic conditions, this study examines whether ACL of leaf wax n-alkanes varies systematically in modern plants and soils in relation to climate over a $\mathrm{N}-\mathrm{S}$ transect of Australia.

Specifically, this study examines whether:
(1) ACL in plants correlates with different climate variables.
(2) ACL measured in soil represents a weighted average of the ACL of the dominant plant species at each site.
(3) ACL signature in the soils correlates to different climate variables.

This study finds no relationship between the different climate variables to ACL of modern Further, the weighted average of the dominant plant species ACL from each site
analysed is a poor predictor of the actual ACL present in the soils. In contrast to ACL from plants, the ACL from the soils shows a strong relationship with temperature and aridity measures. Soils may correlate better with climate because they integrate a longterm average of highly variable ACL values from all contributing organisms. This study supports climate as a driver of ACL in sediments across space and time.

KEYWORDS

VARIATION, N-ALKANE, SOILS, PLANTS, CLIMATE, PALAEOCLIMATE, AUSTRALIA, ACL, BIOMARKERS
TABLE OF CONTENTS
Variation in chain-length of leaf wax n-alkanes in plants and soils across Australia i
Running Title i
Abstract i
Keywords ii
List of Figures 2
List of Tables 3
Introduction 1
Climate and ecological setting 6
Methods 7
Selection of samples 7
Climate data 9
Preparation of plant samples 12
Preparation of soil samples 12
Short column chromatography and GCMS analysis 13
Calculations 14
Results 16
Discussion 27
Plant ACL response to climate 27
Predicted soil ACL versus actual soil ACL 29
Soil ACL response to climate 31
Conclusions 34
Acknowledgments 35
References 35
Appendix A: Extended Methodology 39
Appendix B: Additional Data 67

LIST OF FIGURES

Figure 1: Structural diagram of an $n \mathrm{C}_{31}$ straight chain n-alkane, n-Hentriacontane $\left(\mathrm{C}_{31} \mathrm{H}_{64}\right)$, a common n-alkane found in the cuticular waxes of most higher plant species.

Figure 2: (a) Mean annual precipitation (MAP) versus mean annual temperature (MAT), (b) MAP versus moisture index (MI), and (c) MI versus MAT of selected sites 8
Figure 3: Location maps of selected Ausplots sites (black pins) provided by TERN, across Australia including the TREND sites located in the southern half of South Australia. (A) Shows where the selected sites sit with respect to mean annual rainfall and (B) shows where the selected sites sit with respect to the mean annual temperature. Climate data based on a standard 30-year climatology (1961-1990) and reproduced with permission from Bureau of Meteorology (© Commonwealth of Australia). 10
Figure 4: Two chromatograms of the GC results for two soils. NTAGFU0040, at the top, shows a high CPI=6.07 and NTAFIN0022 at the bottom has a CPI=1.1.
NTAFIN0022 has a normal distribution of chain lengths and does not show a clear odd-over-even predominance of chain lengths as would be expected for a higher plant n alkane source.
Figure 5: Plots of plant ACL against MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), radiation (e), driest month precipitation (f) and maximum month vapour pressure deficit (g). From this data there appears to be no direct relationship between ACL and the above climate variables.
Figure 6: Predicted Soil ACL calculated from the weighted average of the top three dominant plant species at each site versus the actual ACL of the soils. The dashed line represents the $1: 1$ line. Most data points fall below this 1:1 line, showing that actual ACL is lower than predicted ACL. The slope of the trendline is much lower than $1 \ldots . .20$ Figure 7: Plots demonstrating the relationship between actual soil ACL and MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), highest period radiation (e), driest month precipitation (f) and vapour pressure deficit (g). Maps of the location of sites (black dots) with respect to the various climate variables reproduced with permission from CSIRO (Williams et al. 2012) and the Fenner School of Environment and Society at ANU. Regression lines are displayed for significant ($\mathrm{p}<0.05$) relationships. 24
Figure 8: Plot of actual soil ACL (CPI> 1.5) with respect to latitude............................ 24
Figure 9: Plot showing the relationship between latitude and MAT. 25
Figure 10: Plots of soil CPI against MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), radiation (e), driest month precipitation (f) and maximum month vapour pressure deficit (g). From this data there appears to be no direct relationship between CPI and the above climate variables.

LIST OF TABLES

Table 1: Description of climate variables (Williams et al. 2012, Prentice et al. 2014)... 9 Table 2: Table showing the different sites with respect to their bioregion, along with the mean annual precipitation (MAP), mean annual temperature (MAT), annual moisture index (MI), lowest quarter MI, aridity index, radiation, highest month precipitation and vapour pressure deficit for each site.
Table 3: ACL for plant and soil samples. The total plant cover (\%) is the sum of the top 3 dominant plants \% cover. Soil samples used for further analysis were determined based on their carbon preference index (CPI>1.5). The predicted soil ACL is a weighted average of the ACL of the top three dominant plants for each site, based on percentage cover. See Equation (3). There is no predicted soil ACL for NTADAC0001 because percentage cover data was not available for this site17
Table 4: Results of least squares regression analysis for the plant ACL 18
Table 5: Results of least squares regression analysis for the actual soil ACL for all soils.Rows in bold indicate variables with statistical significance ($\mathrm{p}<0.05$)21
Table 6: Results of least squares regression analysis for the actual soil ACL for soils with a CPI>1.5. Rows in bold indicate variables with statistical significance ($\mathrm{p}<0.05$). 21
Table 7: Results of least squares regression analysis for the soil CPI for all soils 27
Table 8: r^{2} values for different climate variables and the ACL found in soils and sediments from other work compared with the findings of this study 33

INTRODUCTION

Human induced climate change due to increased CO_{2} emissions from burning of fossil fuels and land use change is of great societal concern, with present day concentrations nearly 100ppm higher than they have been for the last 800,000 years (IPCC 2013, Masson-Delmotte et al. 2013). However, similar CO_{2} induced greenhouse warming has occurred previously in the Earth's geologic history. For example, the Paleocene-Eocene Thermal Maximum (PETM) was a period of extreme and rapid warming driven by an increase in atmospheric CO_{2} (Smith et al. 2007, McInerney and Wing 2011). Reconstructing these analogous past climates is important for understanding how climate functions and what sort of environmental and socio-economic impacts we can expect as a result of climate change in to the future (Berger et al. 2012). There is therefore a need to develop new tools that can be used for reconstructing past terrestrial climates.

A number of proxies are available for reconstructing past climates, including chemical analyses of continuous lake and marine sedimentary records, ice cores and speleothems. Recent workers have proposed that certain plant biomarkers such as long chain n alkanes may provide an effective proxy for climatic variability as they are sensitive to ambient climate conditions (Eglinton and Eglinton 2008, Bai et al. 2009, Castañeda and Schouten 2011) and are persistent in the sedimentary record on geologic timescales (Gagosian and Peltzer 1986). Long chain n-alkanes are non-polar, unbranched, straight chained hydrocarbon molecules that form a component of plant leaf waxes found on the leaf cuticle (Diefendorf et al. 2011). Each carbon atom contained within an n-alkane
forms four single bonds (Olah et al. 2011) resulting in the general saturated formula of $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$ (Jones 2000) and take on a form as given in Figure 1.

Figure 1: Structural diagram of an $n \mathrm{C}_{31}$ straight chain \boldsymbol{n}-alkane, \boldsymbol{n}-Hentriacontane $\left(\mathrm{C}_{31} \mathrm{H}_{64}\right)$, a common n-alkane found in the cuticular waxes of most higher plant species.

The different n-alkane chain lengths demonstrate different physical properties, with longer chain lengths having greater hydrophobicity and higher melting point $\left(1-3^{\circ} \mathrm{C}\right.$ for each carbon unit) than shorter chain lengths (Gibbs 2002, Rommerskirchen et al. 2003). Plants use these compounds to regulate their water balance by preventing water loss through the surface of their leaves (Eglinton and Hamilton 1967, Dodd and Poveda 2003). They also form a photoprotective layer, limiting leaf tissue damage from UV radiation (Shepherd and Griffiths 2006, Koch et al. 2009), as well as helping to resist fungal infection and herbivory (Banthorpe 2006).
n-Alkanes are ideal for palaeoclimate reconstruction due to their continuous accumulation and relative persistence in soil and sediment records (Smith et al. 2007, Diefendorf et al. 2011), where they accumulate as a result of wind ablation and leaf fall (Rommerskirchen et al. 2006, Shepherd and Griffiths 2006, Zech et al. 2013). The decomposition of these molecules requires the presence of specific co-metabolising compounds and decomposer enzymes along with optimal soil properties, such as pH ,
which may explain their persistence in sedimentary environments (Schmidt et al. 2011). While high quantities of n-alkanes are present in modern day soils, they have also been extracted from Cretaceous-Paleogene boundary sediments (Yamamoto et al. 2010) as well as Eocene (Smith et al. 2007), Miocene (Huang et al. 2001) and Holocene sediments (Schwark et al. 2002). n-Alkanes present in the sedimentary record are useful for reconstructing past climates because they are representative of the effects of climate on the organisms that contribute them.

The chain length of n-alkanes differs between different groups of organisms. Generally, short chained, even-numbered n-alkanes $\left(n \mathrm{C}_{12}-n \mathrm{C}_{22}\right)$ found in sediments are associated with bacteria, whereas odd-numbered, short-chained n-alkanes, particularly $n \mathrm{C}_{17}$, are produced by algae or photosynthetic bacteria (Sachse et al. 2004). Medium chained, odd-numbered n-alkanes $\left(n \mathrm{C}_{21}-n \mathrm{C}_{25}\right)$ are associated with aquatic plants, and longer chained, odd-numbered n-alkanes $\left(n \mathrm{C}_{25}-n \mathrm{C}_{31}\right)$ are representative of leaf waxes from terrestrial plants (Sachse et al. 2004). Plants produce greater quantities of odd than even chain lengths due to synthesis by sequential elongation or condensation of a C_{2} primer, where even-numbered fatty acid chains become decarboxylated to produce odd chain length alkanes (Khan and Kolattukudy 1974, Shepherd and Griffiths 2006). Higher plants produce different chain lengths of n-alkanes, ranging from $n \mathrm{C}_{21}$ to $n \mathrm{C}_{35}$ (Sachse et al. 2004, Pu et al. 2011) and their distribution is best represented by the average chain length (ACL) parameter (Rommerskirchen et al. 2003). It is calculated using the below equation:

$$
\begin{equation*}
A C L=\frac{\left(25 n C_{25}+27 n C_{27}+29 n C_{29}+31 n C_{31}+33 n C_{33}+35 n C_{35}\right)}{\left(n C_{25}+n C_{27}+n C_{29}+n C_{31}+n C_{33}+n C_{35}\right)} \text { (Diefendorf et al. 2011), } \tag{1}
\end{equation*}
$$

Where $n \mathrm{C}_{\mathrm{x}}$ is the total chromatographic peak area of each n-alkane with x carbon atoms.

ACL was initially considered to provide information on plant type, such as woody species versus graminoids and this was the main way in which variation in ACL in the sedimentary record was interpreted (Brincat et al. 2000, Smith et al. 2007). Recent workers have investigated whether the ACL of plant n-alkanes is determined by plant functional type and have demonstrated no differentiation between woody species and graminoids, although Sphagnum mosses are distinct (Schefuß et al. 2003, Bush and McInerney 2013). A proposed alternative explanation for variation in ACL is that climate is an influencing factor (Bush and McInerney 2013, Tipple and Pagani 2013).

A number of different observations have been made in regards to the relationships between modern day climate and ACL. Light intensity and temperature affect leaf wax composition (Shepherd and Griffiths 2006), including ACL, as does aridity and humidity (Tipple and Pagani 2013). Studies have shown that ACL demonstrates a spatial variance with climate, with longer chain lengths $\left(n \mathrm{C}_{34}-n \mathrm{C}_{37}\right)$ being found in sediments from warmer and more arid regions than in those from cooler and more humid climate conditions (Dodd and Poveda 2003, Leider et al. 2013). Plants may increase n-alkane production in dry conditions to reduce their water loss (Hoffmann et al. 2013). The sensitivity of n-alkane ACL to changes in these parameters may thus provide a robust record of climate variability through time, in particular changes in temperature and aridity.

Similar systematic shifts in ACL distribution of n-alkanes have also been recorded in the past where they couple with other proxies supporting climatic perturbations. For
example, the PETM was a period of extreme warming that demonstrated an increase in ACL from 28.6 to 30.1 in the Bighorn Basin, Wyoming (Smith et al. 2007). Similarly, Lake Baikal sediments indicate a shift from longer chain lengths $\left(n \mathrm{C}_{31}\right)$ in the last glacial maximum, to shorter chain lengths $\left(n \mathrm{C}_{27}\right)$ in Holocene aged sediments (Brincat et al. 2000). Further developing our understanding of how ACL is influenced by climate variations in modern systems allows us to better characterise extreme climate perturbations in the geologic record.

Australia supports a broad range of climate conditions and thus provides an ideal study area in which to examine the relationship of ACL with climate. The Terrestrial Ecosystem Research Network (TERN) has developed a network of biodiversity monitoring plots (AusPlots) at which plant and soil samples are collected and made available to the research community (White et al 2012). By analysing the ACL of n alkanes present in both the dominant plants and the soils collected from these sites and comparing with each site's respective climatic conditions, this study tests whether ACL of leaf wax n-alkanes varies systematically in modern plants and soils under a range of climate conditions over a N-S transect of Australia. The climate variables examined are mean annual precipitation (MAP), mean annual temperature (MAT), annual moisture index (MI), lowest quarter mean MI, radiation, driest month precipitation and maximum month vapour pressure deficit, in order to test the response of n-alkane ACL response. A relationship between ACL and latitude is also considered.

Specifically, this study examines:
(1) Whether n-alkane ACL in plants correlates with each climate variable.
(2) Whether the n-alkane ACL measured in soil represents a weighted average of the ACL of the dominant plant species at each site.
(3) Whether the n-alkane ACL signature in the soils shows a relationship with each climate variable.

We show that although n-alkane ACL is highly variable in plants, n-alkane ACL in soils covaries with temperature and aridity and is suitable as a proxy for recording climate change in the sedimentary record.

Climate and ecological setting

Australia's climate varies widely and encompasses tropical monsoonal in the north, to dry arid in the centre, and wet temperate conditions in the south. The Interim Biogeographic Regionalisation for Australia (IBRA), who work in conjunction with the Department of Sustainability, Environment, Water, Population and Communities, identifies 89 distinct bioregions across Australia, based on their climate, geology, landform, native vegetation and species information (Department of Sustainability Environment Water Population and Communities 2012). This study examines plants and soils from the Gulf Fall and Uplands, Darwin Coastal, Burt Plain and Finke bioregions in the Northern Territory and the Flinders Lofty Block, Kanmantoo and Stony Plains bioregions in South Australia.

METHODS

Selection of samples

Plant and soil samples from 20 AusPlots and TREND sites were all obtained from the Terrestrial Ecosystem Research Network (TERN), a national organisation that are involved in the collection, storage and use of ecosystem data for sharing with universities and government agencies for research purposes (White et al. 2012). Detailed descriptions of TERN's sampling procedures are provided in Appendix A to this study and in their survey protocols manual (White et al. 2012). Selection of AusPlots sites and TREND plots for subsampling was determined by plotting the MAT, MAP and MI data provided by TERN for each site, against one another to determine the broadest spread of this data, as per Figure 2. Subsequent subsampling of each plot was based on selection of the top three dominant plant species from each plot, where available. The information regarding percentage cover of each plant species was obtained from the Soils to Satellites website produced by TERN. Sample number five of the available nine soil samples was taken from each plot, for a total of 59 plant samples and 20 soil samples.

Figure 2: (a) Mean annual precipitation (MAP) versus mean annual temperature (MAT), (b) MAP versus moisture index (MI), and (c) MI versus MAT of selected sites.

Climate data

TERN provided climate data including mean annual temperature (MAT), mean annual precipitation (MAP) and annual moisture index (MI) data as per Table 1. Figure 3 shows the relationship between the selected sites and their position with respect to MAP and MAT data, obtained with permission from the Bureau of Meteorology. Further ANUCLIM climate data, including lowest quarter mean MI, highest period radiation and month maximum vapour pressure deficit (VPD) was obtained from the Atlas of Living Australia website, with kind permission from CSIRO (Williams et al. 2012) and the Fenner School of Environment and Society who worked together to produce the ANUCLIM data. The driest month precipitation data was obtained from the Atlas of Living Australia website and was produced and made freely available for academic use by WorldClim. Table 1 describes each of the climate variables and Table 2 provides all data for each climate variable.

Table 9: Description of climate variables (Williams et al. 2012, Prentice et al. 2014).

Climate Variable	Description
MAP	Mean annual precipitation (mm/yr)
MAT	Mean annual temperature $\left({ }^{\circ} \mathrm{C}\right)$
Lnnual MI	An annual average moisture index. Moisture index is a measure of relative soil moisture available to plants, calculated from precipitation and evaporation and in conjunction with soil type. Dimensionless values from 0.0-1.0.
Radiation - highest period	The lowest yearly quarter MI. Dimensionless values from 0.0-1.0. Rainfall is associated with cloud cover which reduces radiation (MJ/m $2 /$ day)
Precipitation - driest month	Amount of lowest month of rainfall (mm)
VPD - month maximum	Month of maximum vapour pressure deficit. Vapour pressure deficit is the difference between the amount of moisture in the air and how much moisture the air can hold when it is saturated (dew
point). The dew point increases with temperature. This variable	
affects the ability of plants to transpire and with increased VPD,	
transpiration also increases (KPa).	

Figure 3: Location maps of selected Ausplots sites (black pins) provided by TERN, across Australia including the TREND sites located in the southern half of South Australia. (A) Shows where the selected sites sit with respect to mean annual rainfall and (B) shows where the selected sites sit with respect to the mean annual temperature. Climate data based on a standard 30 -year climatology (1961-1990) and reproduced with permission from Bureau of Meteorology (© Commonwealth of Australia).

Table 10: Table showing the different sites with respect to their bioregion, along with the mean annual precipitation (MAP), mean annual temperature (MAT), annual moisture index (MI), lowest quarter MI, aridity index, radiation, highest month precipitation and vapour pressure deficit for each site.

SITE	Bioregion	$\begin{array}{r} \mathbf{M A P} \\ (\mathbf{m m} / \mathbf{y r}) \\ \hline \end{array}$	$\begin{gathered} \text { MAT } \\ \left({ }^{\circ} \mathbf{C}\right) \\ \hline \end{gathered}$	$\begin{array}{r} \text { MI (annual) } \\ \text { (dimensionless) } \\ \hline \end{array}$	$\begin{array}{r} \text { MI - lowest } \\ \text { quarter mean } \\ \text { (dimensionless) } \\ \hline \end{array}$	Aridity index month max (dimensionless)	Radiation highest period ($\mathrm{MJ} / \mathrm{m}^{2} /$ day)	Precipitation driest month (mm)	Vapour Pressure Deficit - month max (KPa)	Presence of Cryptogams
NTAGFU0001	Gulf fall and uplands	468.81	25.73	0.26	0.01	0.45	27.9	1	2.27	Y
NTAGFU0008	Gulf fall and uplands	494.62	25.47	0.28	0.02	0.48	27.8	1	2.24	Y
NTAGFU0010	Gulf fall and uplands	673.05	25.92	0.39	0.01	0.76	27.5	1	2.02	Y
NTAGFU0017	Gulf fall and uplands	800.91	25.71	0.47	0.02	0.98	27.3	1	1.84	Y
NTAGFU0031	Gulf fall and uplands	988.65	27.14	0.57	0.01	1.35	26.2	1	1.85	Y
NTAGFU0040	Gulf fall and uplands	923.53	27.44	0.52	0.01	1.23	26.1	0	2.11	Y
NTABRT0004	Burt plain	341.05	22.74	0.20	0.04	0.20	29	7	2.30	Y
NTAFIN0019	Finke	278.92	21.97	0.17	0.04	0.13	29.4	10	2.39	Y
NTAFIN0022	Finke	251.51	21.85	0.15	0.04	0.13	29.5	9	2.34	Y
SATFLB0005	Flinders lofty block	306.95	17.85	0.22	0.07	0.54	28.9	18	1.50	Y
SATFLB0008	Flinders lofty block	446.71	15.92	0.35	0.07	0.82	28.9	22	1.33	Y
SATFLB0010	Flinders lofty block	402.76	17.59	0.31	0.06	0.68	28.6	19	1.29	Y
SATFLB0012	Flinders lofty block	722.62	15.35	0.65	0.11	3.05	27.4	21	0.97	N
SATFLB0014	Flinders lofty block	533.39	14.14	0.46	0.10	1.68	27.7	22	1.02	Y
SATFLB0015	Flinders lofty block	933.83	14.03	0.87	0.16	3.85	27	26	0.76	Y
SATKAN0001	Kanmantoo	753.76	14.55	0.71	0.13	2.87	27.1	23	0.45	Y
SATKAN0002	Kanmantoo	823.48	14.44	0.77	0.14	2.97	27.2	27	0.65	N
SAASTP0001	Stony plains	209.25	22.21	0.13	0.05	0.11	29.7	5	2.42	Y
SAASTP0004	Stony plains	194.65	22.60	0.12	0.04	0.10	29.7	3	2.48	N
NTADAC0001	Darwin Coastal	1642.88	26.53	0.96	0.02	2.41	24.2	2	1.21	N/A

Preparation of plant samples

Plant samples were ground with a mortar and pestle in liquid nitrogen and stored in ashed scintillation vials ready for lipid extraction. The lipids were extracted from the plant samples was using a 9:1 optima grade DCM:MeOH eluent. Ground sample was used for extraction with weights ranging from $5.8-52.3 \mathrm{mg}$; with 51 of the 59 plant samples $\geq 50 \mathrm{mg}$. Approximately 5 mL of eluent was added to the ground samples and was then sonicated in a Soniclean 250TD for 15 minutes. The resulting total lipid extract (TLE) was then pipetted off and filtered through ashed glass fibre filter paper. This process was repeated two times, for a total of three extractions. For the final extraction, the ground plant sample was also tipped in to the filter paper and rinsed with 9:1 DCM:MeOH. The TLE solvent was evaporated in a stream of $5.0 \mathrm{~N}_{2}$ using a FlexiVap and transferred to 4 ml vials with optima grade DCM and refrigerated in readiness for short column chromatography.

Preparation of soil samples

Soil samples were sieved with 1000 and $250 \mu \mathrm{~m}$ sieves to remove any obvious plant matter, such as leaves, bark and roots, and to remove any pebbles or other lithified material. Samples were then stored in labelled falcon tubes. The lipid extraction of the $<250 \mu \mathrm{~m}$ soil fraction was conducted using a Thermo Scientific Dionex ASE 350 using a 9:1 optima grade DCM:MeOH solvent solution. TLE solvent was evaporated in a stream of $5.0 \mathrm{~N}_{2}$ using a FlexiVap and transferred to 4 ml vials with optima grade DCM and refrigerated in readiness for short column chromatography.

Short column chromatography and GCMS analysis

The polar and non-polar fractions of both the plant and the soil TLEs were separated by eluting them with, firstly, 4 ml optima grade hexane to collect the non-polar, aliphatic hydrocarbon fraction, followed by 4ml 1:1 DCM:MeOH eluent to collect the polar fraction, through a silica gel glass short column. A Pasteur pipette was plugged with a small amount of glass wool was ashed and then filled with a slurry of activated silica gel and optima grade hexane (Bastow et al. 2007). The non-polar eluate was then quantitatively transferred to 2 ml vials and dried on the FlexiVap and resuspended in $100 \mu \mathrm{~L}$ of optima grade hexane Gas chromatograph mass spectrometry (GCMS) analysis was conducted using either a HP5973 MS coupled to a HP6890 GC (MS operated in scanning mode from 45 to 500Da), or by a Perkin Elmer Clarus 500 GCMS. Both machines had the following specifications: The capillary was an SGE CPSil-5MS, 60m (length) $\times 0.25 \mathrm{~mm}$ (internal diameter) $\times 0.25$ udf (phase thickness). The carrier gas was helium with a $1 \mathrm{ml} / \mathrm{min}$ constant flow. The injection temperature was $300^{\circ} \mathrm{C}$, with a temperature program set to $50^{\circ} \mathrm{C}$ and held for 1 minute, then ramped at $8^{\circ} \mathrm{C} / \mathrm{min}$ to $340^{\circ} \mathrm{C}$ and held for 7.75 mins. Injection was set to $1 \mu 1$ in either split mode, with a $50: 1$ split for higher concentration samples, or pulsed splitless for low sample concentrations. The majority of samples were run on the HP5973 MS coupled to a HP6890 GC, and four samples that had previously been run on the Perkin Elmer Clarus 500 GCMS were re-run on the HP5973 MS coupled to a HP6890 GC to ensure there was no difference in the results between the two machines. Chromatograms and peak areas were integrated using Chemstation for the HP5973 MS coupled to a HP6890 GC, and Turbomass for the Perkin Elmer Clarus 500 GCMS.

Calculations

From the GCMS data, relative abundances of n-alkane chain lengths were characterised by calculating average chain length (ACL). See equation (1). Soil sample data used for regression analysis was selected based on the carbon preference index (CPI) for each sample, calculated using the below equation:

$$
\begin{equation*}
C P I=\frac{\left[\sum_{\text {odd }}\left(C_{21-33}\right)+\sum_{\text {odd }}\left(C_{23-35}\right)\right]}{\left(2 \sum_{\text {even }} C_{22-34}\right)}(\text { Bush and McInerney 2013) } \tag{2}
\end{equation*}
$$

Where $\Sigma_{\text {odd }} C_{x-y}$ is the sum of the peak area for n-alkanes with an odd carbon chain length inclusive of that range and $\Sigma_{\text {even }} C_{x-y}$ is the sum of the peak area for n-alkanes with an even number of carbon chain lengths inclusive of that range. Values where CPI>1.5 were considered to represent an n-alkane source of primarily plant origin (Bush and McInerney 2013). Soils that had a $\mathrm{CPI}<1.5$ were analysed separately and in comparison to soils that had a CPI <1.5 because the source of the low CPI is unknown. Figure 4 shows examples of GC results for soils with a CPI<1.5 and >1.5. ACL for both the plants and soils and CPI of the soils were plotted against the different climate variables and least squares regression analysis was conducted using Excel.

Figure 4: Two chromatograms of the GC results for two soils. NTAGFU0040, at the top, shows a high CPI=6.07 and NTAFIN0022 at the bottom has a CPI=1.1. NTAFIN0022 has a normal distribution of chain lengths and does not show a clear odd-over-even predominance of chain lengths as would be expected for a higher plant \boldsymbol{n}-alkane source.

Predicted soil ACL was calculated from an average of the ACL of the plant samples for each site, weighted by their percentage cover (\% cover).

$$
\begin{equation*}
\text { Predicted Soil ACL }=\frac{\left[\left(A C L_{\text {Dom } 1} \times \%_{\text {Dom } 1}\right)+\left(A C L_{\text {Dom } 2} \times \%_{\text {Dom } 2}\right)+\left(A C L_{D o m 3} \times \%_{\text {Dom } 3}\right)\right]}{\left(\%_{\text {Dom } 1}+\%_{\text {Dom } 2}+\%_{\text {Dom } 3}\right)} \tag{3}
\end{equation*}
$$

Where $\mathrm{ACL}_{\text {Domx }}$ is the ACL for the dominant plants species and $\%_{\text {Domx }}$ is the percentage cover of that dominant species. The calculated results were used to compare ACL with
the different climate variables and latitude. More detailed methods can be found in

Appendix B.

RESULTS

Plant samples show a clear odd-over-even carbon number preference, ranging from 1.5 -238.3 , and tend to have highest concentrations of chain lengths ranging $\mathrm{C}_{27}-\mathrm{C}_{33}$, with the most dominant chain length being C_{31}. These results are consistent with those chain lengths of a terrestrial higher plant origin for n-alkanes (Zhang et al. 2006). The average chain lengths for all plants ranges from 26.6 to 33.3, whereas the predicted soil ACL values range from 26.8 to 31.9 and the actual soil ACL values range from 27.7 to 31.1 (CPI of >1.5). (Table 3).

Table 11: ACL for plant and soil samples. The total plant cover (\%) is the sum of the top 3 dominant plants \% cover. Soil samples used for further analysis were determined based on their carbon preference index (CPI>1.5). The predicted soil ACL is a weighted average of the ACL of the top three dominant plants for each site, based on percentage cover. See Equation (3). There is no predicted soil ACL for NTADAC0001 because percentage cover data was not available for this site.

SITE	Dominant Plant Species 1	\% Cover	ACL	Dominant Plant Species 2	\% Cover	ACL	Dominant Plant Species 3	\% Cover	ACL	Total Plant Cover (\%)	$\begin{aligned} & \text { Soil } \\ & \text { CPI } \\ & \hline \end{aligned}$	Predicted Soil ACL	Actual Soil ACL
NTAGFU0001	Aristida pruinosa	17.4	30.9	Enneapogon polyphyllus	13.3	31.7	Eucalyptus pruinosa	13.2	27.9	43.9	2.60	30.2	30.3
NTAGFU0008	Triodia pungens	45.4	30.7	Aristida contorta	19.5	32.0	Fimbristylis dochotoma	14.4	33.3	79.3	3.33	31.5	29.2
NTAGFU0010	Triodia pungens	62.7	29.9	Eucalyptus leucophloia	36.4	30.4	N/A	N/A	N/A	99.1	7.87	30.0	29.8
NTAGFU0017	Melaleuca viridiflora	34.5	28.0	Chrysopogon fallax	10.4	30.0	Schizachyrium fragile	7.7	31.2	52.6	5.19	28.9	30.3
NTAGFU0031	Melaleuca viridiflora	30.5	29.1	Schizachyrium pachyarthron	28.3	30.8	Petalostigma banksii	9.2	28.9	68	0.86	29.8	28.2
NTAGFU0040	Acacia dimidiata	26.8	31.5	Heteropogon contorus	15.9	30.8	Eucalyptus tectifica	9.7	28.3	52.4	6.07	30.7	28.8
NTABRT0004	Acacia aptaneura	56.8	32.0	Aristida holathera	24.4	32.1	Triodia schinzii	7.4	30.6	88.6	5.08	31.9	31.1
NTAFIN0019	Cenchrus ciliaris	68.6	29.4	Acacia estrophiolata	19.2	30.1	Enchylaena tomentosa	2.4	26.8	90.2	2.67	29.5	29.8
NTAFIN0022	Eremophila freelingii	50.5	33.1	Enneapogon polyphyllus	15	32.2	Aristida contorta	7.7	31.7	73.2	1.11	32.7	27.9
SATFLB0005	Dodonaea viscosa subsp. angustissima	21.9	29.8	Eucalyptus flindersii	18.8	26.6	Chrysocephalum semipapposum	13.2	30.6	53.9	2.32	28.9	28.5
SATFLB0008	Triodia scariosa	47.6	30.3	Cassinia laevis	23.7	30.8	Casuarina pauper	12.6	31.4	83.9	2.00	30.6	28.4
SATFLB0010	Eucalyptus odorata	67	26.7	Rhagodia paradoxa	10.1	27.9	Enchylaena tomentosa var. tomentosa	6.1	26.8	83.2	2.00	26.8	28.4
SATFLB0012	Allocasuarina muelleriana subsp. Muelleriana	42.1	31.1	Hibbertia crinita	15.5	27.9	Eucalyptus fasciculosa	12.6	27.5	70.2	1.44	29.8	28.1
SATFLB0014	Eucalyptus odorata	33	28.4	Xanthorrhoea quadrangulata	18.5	27.9	Allocasuarina verticillata	14	30.9	65.5	1.58	28.8	28.3
SATFLB0015	Eucalyptus obliqua	61.2	27.1	Lepidosperma semiteres	8.5	31.4	Hibbertia crinita	6.6	28.3	76.3	2.69	27.7	27.7
SATKAN0001	Eucalyptus baxteri	42.9	29.0	Lepidosperma semiteres	11.3	31.0	Pultenaea involucrata	10.3	32.0	64.5	6.21	29.8	28.7
SATKAN0002	Eucalyptus obliqua	55.2	27.3	Lepidosperma semiteres	9.2	31.7	Hakea rostrata	8.2	30.4	72.6	3.07	28.2	28.0
SAASTP0001	Maireana aphylla	34.6	26.9	Eragrostis setifolia	12.8	30.9	Acacia aneura var. tenuis	8.5	31.7	55.9	1.28	28.6	27.7
SAASTP0004	Malvastrum americanum var. americanum	25.6	29.6	Rutidosis helichrysoides subsp. Helichrysoides	18.5	31.6	Sida fubulifera	11.7	28.1	55.8	1.26	29.9	28.0
NTADAC0001	Eucalyptus tetrodonta	N/A	28.8	Eucalyptus miniata	N/A	28.4	Sorghum plumosum	N/A	31.4	N/A	1.31	N/A	28.0

Figure 5 shows all plant ACL data plotted against each of the climate variables. Plant ACL does not show a significant relationship to MAP, MAT, annual MI, Radiation, Driest Month Precipitation or Vapour Pressure Deficit (p<0.05). This is the case regardless of whether the plant is the top 1 , top 2 or top 3 dominant species present at that site. Table 4 shows the p-values and r^{2} for each climate variable versus ACL and shows that all of the relationships with the climate variables are not significant ($\mathrm{p}>0.05$). To further explore any relationships between chain length and climate, ratios between $\mathrm{C}_{27} / \mathrm{C}_{31}$ and $\mathrm{C}_{29} / \mathrm{C}_{31}$ for each plant species were both plotted against the different climate variables yet still no clear relationship was apparent. Eucalyptus genus ACL values were analysed separately, however there appeared to be no relationship between ACL and the different climate variables for this genus. Data for the $\mathrm{C}_{27} / \mathrm{C}_{31}$ and $\mathrm{C}_{29} / \mathrm{C}_{31}$ ratio results and the Eucalyptus genus results can be found in Appendix B to this document.

Table 12: Results of least squares regression analysis for the plant ACL

Climate Variable	\mathbf{r}^{2}	P-value
MAP	0.01	0.48
MAT	0.04	0.13
Annual MI	0.02	0.25
Lowest quarter mean MI	0.03	0.20
Radiation - highest period	0.01	0.54
Precipitation - driest month	0.05	0.10
VPD - month max	0.06	0.07

Figure 5: Plots of plant ACL against MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), radiation (e), driest month precipitation (f) and maximum month vapour pressure deficit (g). From this data there appears to be no direct relationship between ACL and the above climate variables.

The total cover $\%$ of the top three dominant species at each site range from 43.9% to 99.1%, with 18 out of the 19 sites with a total $\%$ cover being represented by $>50 \%$ of cover from these three top dominant plants. Predicted soil ACL values calculated from the top three dominant plants ranges from 26.8 to 31.9. The difference between predicted soil ACL and actual soil ACL range from 0.0006 - 2.22. Least squares analysis for the actual soil ACL versus the predicted soil ACL produced a P-value that is not significant (p>0.05). Figure 6 shows the relationship between the predicted soil ACL and the actual soil ACL, with most predicted soil ACL results lower than the actual soil ACL results. All available soil results are included, including those samples with a $\mathrm{CPI}<1.5$, in order to capture whether or not the dominant n-alkane contributors are the plants.

Figure 6: Predicted Soil ACL calculated from the weighted average of the top three dominant plant species at each site versus the actual ACL of the soils. The dashed line represents the $1: 1$ line. Most data points fall below this $1: 1$ line, showing that actual ACL is lower than predicted ACL. The slope of the trendline is much lower than 1.

Least squares regression analysis on the soil ACL data is presented in Tables $\mathbf{5}$ and $\mathbf{6}$. These show that where all soils are analysed (Table 5), the p-value is not significant ($\mathrm{p}>0.05$) for all climate variables, except for the lowest quarter mean MI. However, for the soils with a CPI>1.5 (Table 6) all climate variables except for MAP and radiation highest period, have significant p -values ($\mathrm{p}<0.05$).

Table 13: Results of least squares regression analysis for the actual soil ACL for all soils. Rows in bold indicate variables with statistical significance ($\mathbf{p}<0.05$).

Climate Variable	$\mathbf{r}^{\mathbf{2}}$	P-value	Equation
MAP	0.03	0.43	
MAT	0.19	0.06	
Annual MI	0.12	0.14	
Lowest quarter mean MI	$\mathbf{0 . 2 2}$	$\mathbf{0 . 0 4}$	$\mathbf{y}=\mathbf{- 9 . 8 7 x}+\mathbf{2 9 . 3 3}$
Radiation - highest period	0.01	0.62	
Precipitation - driest month	0.18	0.06	
VPD - month max	0.18	0.06	

Table 14: Results of least squares regression analysis for the actual soil ACL for soils with a
CPI>1.5. Rows in bold indicate variables with statistical significance ($\mathbf{p}<0.05$).

Climate Variable	\mathbf{r}^{2}	P-value	Equation
MAP	0.12	0.23	
MAT	$\mathbf{0 . 5 6}$	$\mathbf{0 . 0 0 2}$	$\mathbf{y}=\mathbf{0 . 1 4 x}+\mathbf{2 6 . 1 7}$
Annual MI	$\mathbf{0 . 3 7}$	$\mathbf{0 . 0 2 1}$	$\mathbf{y}=-\mathbf{2 . 7 7}+\mathbf{3 0 . 2 8}$
Lowest quarter mean MI	$\mathbf{0 . 5 4}$	$\mathbf{0 . 0 0 3}$	$\mathbf{y}=-\mathbf{1 4 . 4 2 x}+\mathbf{3 0 . 0 1}$
Radiation - highest period	0.08	0.33	
Precipitation - driest month	$\mathbf{0 . 6 0}$	$\mathbf{0 . 0 0 1}$	$\mathbf{y}=-\mathbf{0 . 0 7 x}+\mathbf{3 0 . 0 4}$
VPD - month max	$\mathbf{0 . 6 3}$	$\mathbf{0 . 0 0 1}$	$\mathbf{y}=\mathbf{1 . 1 9 x}+\mathbf{2 7 . 2 2}$

Figure 7 shows both the soils with a CPI >1.5 and the soils with a $\mathrm{CPI}<1.5$. Maps obtained from the Atlas of Living Australia website show the locations of the sites with respect to the different climate variables. When looking at the samples with a CPI>1.5, the samples that have a significant p -value $(\mathrm{p}<0.05)$ have been plotted with their regression line. As MAT and monthly maximum VPD increase, so does ACL. In
contrast, as annual mean MI, lowest quarter mean MI and driest month precipitation increase, ACL decreases.

Figure 7: Plots demonstrating the relationship between actual soil ACL and MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), highest period radiation (e), driest month precipitation (f) and vapour pressure deficit (g). Maps of the location of sites (black dots) with respect to the various climate variables reproduced with permission from CSIRO (Williams et al. 2012) and the Fenner School of Environment and Society at ANU. Regression lines are displayed for significant ($\mathbf{p < 0 . 0 5) ~ r e l a t i o n s h i p s . ~}$

A plot of actual soil ACL and latitude (Figure 8) shows that ACL increases towards the equator. Least squares regression analysis shows that the $\mathrm{r}^{2}=0.55$ and the p -value $=0.003$ for this relationship. A comparison of latitude with MAT has an $\mathrm{r}^{2}=0.959$ and a p-value $=6.23 \times 10^{-14}$ as shown in Figure 9.

Figure 8: Plot of actual soil ACL (CPI>1.5) with respect to latitude.

Figure 9: Plot showing the relationship between latitude and MAT.

Figure 10 shows all soil CPI data plotted against each of the climate variables. Soil CPI does not show a significant relationship to MAP, MAT, annual MI, Radiation, Driest Month Precipitation or Vapour Pressure Deficit (p<0.05). Table 7 shows the p-values and r^{2} for each climate variable versus CPI and shows that all of the relationships with the climate variables are not significant ($\mathrm{p}>0.05$).

Figure 10: Plots of soil CPI against MAT (a), MAP (b), annual MI (c), lowest quarter mean MI (d), radiation (e), driest month precipitation (f) and maximum month vapour pressure deficit (g). From this data there appears to be no direct relationship between CPI and the above climate variables.

Monthly maximum Vapour Pressure Deficit (KPa)

Table 15: Results of least squares regression analysis for the soil CPI for all soils

Climate Variable	\mathbf{r}^{2}	P-value
MAP	0.02	0.60
MAT	0.04	0.39
Annual MI	0.01	0.69
Lowest quarter mean MI	0.01	0.64
Radiation - highest period	0.04	0.43
Precipitation - driest month	0.03	0.46
VPD - month max	0.00	0.99

DISCUSSION

Plant ACL response to climate

This study examines whether variation in n-alkane ACL distributions in different plants is dependent on different climate variables. It tests whether annual averages, as well as periods of extreme conditions drive the n-alkane distribution in plants. It is expected that plants are more likely to need to protect themselves from climatic extremes than moderate climate conditions. These relationships are expected because of the role that leaf epicuticular waxes play in protecting the plant against water loss and limiting damage against UV radiation. In particular, work by Shepherd and Griffiths (2006) shows that light intensity and temperature affect leaf epicuticular wax composition. Other work has also found evidence that ACL in plants is affected by temperature, humidity and VPD (Tipple and Pagani 2013). Results from this study show that plant ACL has no relationship with any of the climate variables tested.

There may be a number of reasons why the ACL of plants shows no relationship to the climate variables tested, for example, the timing of initial production of n-alkanes in plants. Recent work has identified that there is limited variation in n-alkane chain length distribution across a growing season in trees sampled near Chicago, US (Bush and McInerney 2013). Similarly, Gülz and Müller (1992) also showed that n-alkane concentrations remain fairly constant over a two year period for Quercus robur leaves growing at the University of

Cologne in Germany. Tipple et al. (2013) found that n-alkane ACL increased during the leafflush interval in Populus angustifolia, but once the leaf was fully expanded n-alkane distributions did not vary for the remainder of the growing season. This indicates that any climatic parameters that affect ACL in terrestrial plants must mainly do so during the leafflush interval. Timing of this event in plants may vary from species to species. Production of n-alkanes at different times of the year may result in variation in ACL between plants, because of the different timings of the leaf flush interval, as a response to the climate conditions at that moment in time. This may help to explain why the ACL of the plants does not covary with any of the climate variables tested. Plants represent a snapshot in time, which show both seasonal and year-to-year variation in growth. The different sites were each sampled on different days across 2011 and 2012, which means that any seasonal influences on the n-alkane production of the plants have not been controlled for.

Leaf life-span may also affect the n-alkane production in plants. Sachse et al. (2006) have suggested that deciduous trees that have a long vegetation period that are subject to high incoming radiation protect their leaves by producing longer chained n-alkanes. Diefendorf et al. (2011) further identify that evergreen angiosperm and gymnosperm species have a higher abundance of n-alkanes than their deciduous counterparts, indicating that a longer leaf life span is potentially exposed to greater extremes and needs to protect against that. As well as this, Sachse et al. (2009) observed variation in n-alkane concentrations in Acer pseudoplatanus as a result of wind and water ablation, resulting in the constant production of n-alkanes over the life of the leaf in this particular species in response to damaging conditions. Different types of plants have different leaf life times. This study examines many different species, with few species replicated and these results indicate that between species
variation is high. This may explain why there is no relationship between the ACL of the different species and the climate variables.

In addition, different plant species or genera may respond differently to one another in response to different climate variables. Hoffmann et al. (2013) found that measuring Acacia and Eucalyptus genera along a hydrological gradient across the Northern Territory exhibited an opposite trend in ACL to one another. While they were not able to identify specifically why this occurred, they suggested that perhaps different plant species or genera exhibit different responses in ACL because of variation in leaf functional traits or because of evolutionary differences. However, results from this study do not show a relationship within Eucalyptus genus between ACL and the climate variables, indicating that within genera trends are not always consistent.

Recent work regarding a study of South African flora, however, found that there was no statistically significant relationship between n-alkane distribution as it related to mean or extreme climate conditions, specifically MAT and maximum temperature of the warmest month (Carr et al. 2014). Similarly, results from this study show that neither extreme nor average conditions have a greater influence on the ACL of the plants. It is possible that the relationships between plant ACL and climate in Australia are very similar to that observed in South Africa, due to the comparable arid and hot climate conditions experienced in both.

Predicted soil ACL versus actual soil ACL

This study also sets out to examine whether the ACL measured in soil represents a weighted average of the ACL of the dominant plants species. Results from this study show that the predicted soil ACL is not a reliable indicator for actual soil ACL. The calculation method
used to predict the ACL for each site was based on the percentage of cover of the top three dominant plant species. The range of total percentage cover that the top three dominant plant species represented, however, was variable, from 43.9 to 99.1%. Furthermore, percentage cover does not necessarily equal biomass. In many ecosystems, percentage cover may not be representative of percentage biomass as a tree contains more biomass than a grass covering the same area. Moreover, it is possible that this selection method may not have captured the dominant n-alkane producers at each site. Different plant functional types, such as trees and graminoids, as well as different plant species each produce different concentrations of n alkanes per kg of biomass. Research has identified that deciduous angiosperms produce 200 times more n-alkanes than deciduous gymnosperms (Diefendorf et al. 2011, Bush and McInerney 2013). Sachse et al. (2006) also identified that deciduous angiosperm trees are major contributors compared with conifers and mosses. Plant cover may be a poor predictor of the source of n-alkanes found in soils. Different species and different plant functional types are all represented in this study and results indicate that relying on the top plant cover alone is insufficient information for predicting the actual ACL of the soil.

The soils represent a temporal average of all of the different contributing organisms and so it is necessary to consider other contributors as well as plants. Different organisms all produce different concentrations of n-alkanes, as well as different chain lengths, which in turn affects the ACL of the soil. Generally, short-chained n-alkanes with even numbers are associated with bacteria and odd numbers are associated with algae or photosynthetic bacteria. n Alkanes with medium, odd numbered chain lengths are associated with aquatic plants, whereas longer odd numbered chain lengths are representative of leaf waxes from land plants (Sachse et al. 2004). A particular group of organisms that has not been accounted for in this analysis are the cryptogams. Cryptogams form soil crusts, are common in arid regions, and
consist of a number of different species including lichens, bryophytes, algae, cyanobacteria, fungi and bacteria. These organisms have been observed and recorded by TERN for each of the sites and recorded on the Soils to Satellites website. Most of the selected sites have observed cryptogam substrate cover which is expected in Australia where an arid climate predominates. It is possible that the presence of the cryptogams has an effect on the ACL of the soils. Little data exists for ACL of lichens, however Sachse et al. (2006) found that analysis of a small number of samples of the genus of moss-like lichens, Cladonia spp, in northern Finland and southern Italy yielded varying CPI between $0.9-5.0$ and average chain lengths between 22.6 - 26.4. Huang et al. (2012) found that lichen species analysed in the Hubei province in China showed a CPI ranging between 3.5-8.2 and slightly longer average chain lengths ranging from $27.2-28.8$. Results from this study show that it is important to consider all contributing species and not just those species which are dominant in terms of cover. High values of ACL in sediments may indicate a higher percentage of vascular plants contributing n-alkanes, as compared to non-vascular contributors such as lichens and, likewise, a low ACL may indicate an n-alkane source other than higher plants. The weighted average of the top three dominant plant species alone is not reliable for predicting ACL in soil.

Soil ACL response to climate

Although ACL in plants does not show a relationship with climate, the ACL signature in the soils does show a relationship with a number of the different climate variables. Soils with a CPI <1.5 were excluded from this analysis because a low CPI indicates a low odd-over-even carbon number and the source of the n-alkanes cannot be clearly identified. It is possible that this low CPI is due to petroleum contamination (Hughen et al. 2004, Douglas et al. 2012), which can conflate results. However, the soils with a CPI>1.5 are likely to indicate an n -
alkane source of lichens and higher plants that are locally derived and subject to the local climate conditions. There has been some research investigating the CPI of n-alkanes and its relationship to humidity, precipitation and temperature in sediments in south-eastern China to the northern margin of the Loess Plateau (Luo et al. 2012). Luo et al. (2012) found that high CPI values were associated with aridity and that a decrease in CPI was potentially caused by enhanced biodegradation in more humid climates. In this study, however, there was no statistically significant relationship between soil CPI and climate. This study has utilised CPI primarily as an indicator for determining the potential source of the contributing n-alkanes.

Soils with a CPI >1.5 show a statistically significant relationship exists between ACL and MAT, annual MI, lowest quarter mean MI, driest month precipitation and maximum month VPD, but do not show a strong relationship with radiation or MAP. Both maximum month VPD and driest month of precipitation show a strong relationship with ACL, with ACL increasing with greater aridity. Similarly a decrease in MI, both annually and the lowest quarter mean, correlate with an increase in ACL in soils. Andersson et al. (2011) also demonstrated that the n-alkane ACL of a peat bog in the north-east European Russian Arctic also demonstrated a positive correlation with drier conditions. Our results suggest that aridity is a significant driver of $A C L$ in soils.

In addition, ACL in soils increases as VPD increases. Warmer air results in a higher VPD, which in turn results in increased transpiration in the leaf. This indicates that VPD is an indicator of temperature also and it may be that temperature is the main driver of increased ACL found in the soils with increasing VPD. Similarly, MAT shows a strong relationship to the ACL of soils with a CPI>1.5, with ACL increasing as MAT increases. A strong relationship between ACL in soils and temperature was also found by Bush et al. (In Review)
from their measurements from soils across the mid-continental US which also showed an increase in ACL with MAT. Our results show that temperature is also a significant driver of ACL in soils.

The strong relationship between latitude and ACL appears to be strongly related to MAT. Similar to the findings here, Tipple and Pagani (2013) also found that ACL is inversely related to latitude, also with strong correlations between ACL and MAT. While it is also expected that radiation also varies along a latitudinal gradient, this study shows that radiation appears to show no relationship with latitude. However, this may be because the radiation measured in this instance accounts for cloud cover, as well as longitude and latitude.

The findings from this study are similar to the findings from other work (Table 8), with comparable r^{2} values for latitude, temperature and VPD as they relate to ACL in soils and sediments. Although this study used different metrics for aridity than other studies, the climate variables annual MI, lowest quarter mean MI and driest month of precipitation each reflect available water, and each show an increase in ACL with drier conditions as Carr (2014) also showed.

Table 16: \mathbf{r}^{2} values for different climate variables and the ACL found in soils and sediments from other work compared with the findings of this study.

Climate variable	Other workers	This study
Latitude	$\mathrm{r}^{2}=0.69$	
	Terrestrial and marine sediments from Italy (Leider et al. 2013)	$\mathrm{r}^{2}=0.55$
	$\mathrm{r}^{2}=0.65$	
MAT	Soils from the east coast of the US (Tipple and Pagani 2013)	$\mathrm{r}^{2}=0.56$
Annual MI		$\mathrm{r}^{2}=0.37$
Lowest quarter mean MI		$\mathrm{r}^{2}=0.54$
Precipitation - driest month		$\mathrm{r}^{2}=0.54$
	$\mathrm{r}^{2}=0.45$	
VPD	Soils from the east coast of the US (Tipple and Pagani 2013)	$\mathrm{r}^{2}=0.63$
	$\mathrm{r}^{2}=0.35$	
Aridity	Soils from South Africa (Carr et al. 2014)	

Significant relationships exist between climate and ACL in the soils but not in the plants because the soil integrates the highly variable ACL of all contributing organisms over time. As well as accounting for different organism inputs, plant waxes can also be transported long distances by air or water so the ACL found in sediments integrates not only the local sources, but also regional inputs (Leider et al. 2013). Similar to our results, Sachse et al. (2006) found that n-alkane ACL distribution was less variable in sediments than in plant biomass, with their research investigating n-alkanes in lake sediments in Finland and Italy. Carr et al. (2014) also found that the soil represented an average of all of the plant variation in their study of leaf wax n-alkane distributions in sedimenta from South Africa. Bush and McInerney (In Review) also showed that the soils represent a pooled and averaged chain length distribution. This study demonstrates that n-alkane ACL in soils covaries with temperature and aridity and is thus suitable as a proxy for recording climate change in the sedimentary record.

CONCLUSIONS

This study demonstrates the strong correlation between both mean and extreme climate conditions relating to temperature and aridity and the ACL of soils across Australia. In particular, the mean conditions of interest are MAT and annual MI and the extreme conditions include lowest quarter mean MI, driest month of precipitation and the maximum month VPD. Interestingly, there is also a strong relationship between the ACL in the soils and latitude, and further investigation reveals that this relationship is driven by temperature rather than radiation. The soils show a much stronger relationship with the climate variables than the plants do and this is likely to be because the soils represent a temporal integration of all n-alkane contributing organisms. The plants, on the other hand, are subject to different rates and timing of growth and are more susceptible to climate variations on a much smaller
timescale. This timescale does not necessarily represent the overall climate conditions, and the production of n-alkanes in the plants may instead be more closely related to seasonal variation. Overall, these results show that aridity and temperature are significant drivers of ACL found in soils. Coupled with their persistence in the sedimentary record, these results confirm that n-alkane ACL in soils is suitable as a proxy for recording climate variation in the sedimentary record.

ACKNOWLEDGMENTS

I would like to thank TERN for making this project possible by supplying samples, data, advice and support. Thanks are also given to my supervisor, Cesca McInerney for her ongoing support, encouragement and enthusiasm for this study. I would also like to thank Kristine Nielson and Tony Hall for their assistance with various lab methods, along with Katie Howard for her logistical advice and support. Special thanks to Stefan Caddy-Retalic and Robert Klaebe also for their valuable reviews and comments.

REFERENCES

Andersson R. A., Kuhry P., Meyers P., Zebühr Y., Crill P. \& Mörth M. 2011. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic, Organic Geochemistry. 42, 10651075.

Bai Y., Fang X., Nie J., Wang Y. \& Wu F. 2009. A preliminary reconstruction of the paleoecological and paleoclimatic history of the Chinese Loess Plateau from the application of biomarkers, Palaeogeography, Palaeoclimatology, Palaeoecology. 271, 161-169.
Banthorpe D. V. 2006 Natural Occurrence, Biochemistry and Toxicology. Alkanes and Cycloalkanes (1992). pp. 895-926. John Wiley \& Sons, Ltd,
Bastow T. P., van Aarssen B. G. K. \& LANG D. 2007. Rapid small-scale separation of saturate, aromatic and polar components in petroleum, Organic Geochemistry. 38, 1235-1250.
Berger A., Mesinger F. \& Sijacki D. 2012 Climate Change: Inferences from Paleoclimate and Regional Aspects. Springer, Heidelberg, Germany.
Brincat D., Yamada K., Ishiwatari R., Uemura H. \& Naraoka H. 2000. Molecularisotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments, Organic Geochemistry. 31, 287-294.

Bush R. T. \& MCInerney F. A. 2013. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy, Geochimica et Cosmochimica Acta. 117, 161-179.
Bush R. T. \& McInerney F. A. In Review. The effect of temperature and C4 abundances on n-alkanes chain-length distributions across the central USA, Organic Geochemistry.
Carr A. S., Boom A., Grimes H. L., Chase B. M., Meadows M. E. \& Harris A. 2014. Leaf wax n-alkane distributions in arid zone South African flora: Environmental controls, chemotaxonomy and palaeoecological implications, Organic Geochemistry. 67, 7284.

Castañeda I. S. \& Schouten S. 2011. A review of molecular organic proxies for examining modern and ancient lacustrine environments, Quaternary Science Reviews. 30, 28512891.

Department of Sustainability Environment Water Population and Communities 2012. Australia's bioregions (IBRA) http://www.environment.gov.au/topics/land/national-reserve-system/science-maps-and-data/australias-bioregions-ibra. (retrieved 17 October 2014).
Diefendorf A. F., Freeman K. H., Wing S. L. \& Graham H. V. 2011. Production of n-alkyl lipids in living plants and implications for the geologic past, Geochimica et Cosmochimica Acta. 75, 7472-7485.
Dodd R. S. \& Poveda M. M. 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis, Biochemical Systematics and Ecology. 31, 1257-1270.
Douglas P. M. J., Pagani M., Brenner M., Hodell D. A. \& Curtis J. H. 2012. Aridity and vegetation composition are important determinants of leaf-wax $\delta \mathrm{D}$ values in southeastern Mexico and Central America, Geochimica et Cosmochimica Acta. 97, 24-45.
Eglinton G. \& Hamilton R. J. 1967. Leaf Epicuticular Waxes, Science. 156, 1322-1335.
Eglinton T. I. \& Eglinton G. 2008. Molecular proxies for paleoclimatology, Earth and Planetary Science Letters. 275, 1-16.
Gagosian R. B. \& Peltzer E. T. 1986. The importance of atmospheric input of terrestrial organic material to deep sea sediments, Organic Geochemistry. 10, 661-669.
GibBS A. G. 2002. Lipid melting and cuticular permeability: new insights into an old problem, Journal of Insect Physiology. 48, 391-400.
Gulz P. \& Muller E. 1992. Seasonal Variation in the Composition of Epicuticular Waxes of Quercus robur Leaves, Verlag der Zeitschrift fur Naturforschung. 47, 800-806.
Hoffmann B., Kahmen A., Cernusak L. A., Arndt S. K. \& Sachse D. 2013. Abundance and distribution of leaf wax n-alkanes in leaves of Acacia and Eucalyptus trees along a strong humidity gradient in northern Australia, Organic Geochemistry. 62, 62-67.
Huang X., Xue J. \& Guo S. 2012. Long chain n-alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records, Frontiers of Earth Science. 6, 95-100.
Huang Y., Street-Perrott F. A., Metcalfe S. E., Brenner M., Moreland M. \& Freeman K. H. 2001. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance, Science. 293, 1647-1651.
Hughen K. A., Eglinton T. I., Xu L. \& Makou M. 2004. Abrupt Tropical Vegetation Response to Rapid ClimateChanges, Science. 304, 1955-1959.
IPCC, 2013: Summary for Policymakers, In: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M, Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.
(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Jones W. D. 2000. Conquering the Carbon-Hydrogen Bond, Science. 287, p. 1942.
Khan A. A. \& Kolattukudy P. E. 1974. Decarboxylation of long chain fatty acids to alkanes by cell free preparations of pea leaves (Pisum sativum), Biochemical and Biophysical Research Communications. 61, 1379-1386.
Koch K., Dommisse A., Niemietz A., Barthlott W. \& Wandelt K. 2009. Nanostructure of epicuticular plant waxes: Self-assembly of wax tubules, Surface Science. 603, 1961-1968.
Leider A., Hinrichs K.-U., Schefuß E. \& Versteegh G. J. M. 2013. Distribution and stable isotopes of plant wax derived n-alkanes in lacustrine, fluvial and marine surface sediments along an Eastern Italian transect and their potential to reconstruct the hydrological cycle, Geochimica et Cosmochimica Acta. 117, 16-32.
Luo P., Peng P., LÜ H., Zheng Z. \& Wang X. 2012. Latitudinal variations of CPI values of long-chain n-alkanes in surface soils: Evidence for CPI as a proxy of aridity, Science China Earth Sciences. 55, 1134-1146.
Masson-Delmotte V., Schultz M., Abe-Ouchi A., Beer A., Ganopolski J. F., Rouco G., Jansen E., Lambeck K., Luterbacher J., Naish T., Osborn T., Otto-Bliesner B., Quinn T., Ramesh R., Rojas M., Shao X. \& Timmermann A., 2013: Information from Paleoclimate Archives. In: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D, Plattner, G.-K., Tignor, M, Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
McInerney F. A. \& Wing S. L. 2011. The paleocene-eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future, Annual Review of Earth and Planetary Sciences. 39, 489-516.
Olah G. A., Prakash G. K. S., Wade K., Molnár Á. \& Williams R. E. 2011 Introduction: General Aspects. Hypercarbon Chemistry. pp. 1-35. John Wiley \& Sons, Inc., Second ed.
Prentice I. C., Dong N., Gleason S. M., Maire V. \& Wright I. J. 2014. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology, Ecology Letters. 17, 82-91.
Pu Y., Zhang H., Wang Y., Lei G., Nace T. \& Zhang S. 2011. Climatic and environmental implications from n-alkanes in glacially eroded lake sediments in Tibetan Plateau: An example from Ximen Co, Chinese Science Bulletin. 56, 1503-1510.
Rommerskirchen F., Eglinton G., Dupont L., Güntner U., Wenzel C. \& Rull kötter J. 2003. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific $\delta 13 \mathrm{C}$ land plant biomarker and pollen records, Geochemistry, Geophysics, Geosystems. 4, p. 1101 .

Rommerskirchen F., Plader A., Eglinton G., Chikaraishi Y. \& Rullkötter J. 2006. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes, Organic Geochemistry. 37, 1303-1332.
Sachse D., Radke J. \& Gleixner G. 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability, Geochimica et Cosmochimica Acta. 68, 4877-4889.

SAChSE D., RADKE J. \& GLEIXNER G. 2006. δ D values of individual n-alkanes from terrestrial plants along a climatic gradient - Implications for the sedimentary biomarker record, Organic Geochemistry. 37, 469-483.
Sachse D., Kahmen A. \& Gleixner G. 2009. Significant seasonal variation in the hydrogen isotopic composition of leaf-wax lipids for two deciduous tree ecosystems (Fagus sylvativa and Acer pseudoplatanus), Organic Geochemistry. 40, 732-742.
Schefub E., Ratmeyer V., Stuut J.-B. W., Jansen J. H. F. \& Sinninghe Damsté J. S. 2003. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic, Geochimica et Cosmochimica Acta. 67, 1757-1767.
Schmidt M. W. I., Torn M. S., Abiven S., Dittmar T., Guggenberger G., Janssens I. A., Kleber M., Kögel-Knabner I., Lehmann J., Manning D. A. C., Nannipieri P., Rasse D. P., Weiner S. \& Trumbore S. E. 2011. Persistence of soil organic matter as an ecosystem property, Nature. 478, 49-56.
Schwark L., Zink K. \& Lechterbeck J. 2002. Reconstruction of postglacial to early Holocene vegetation history in terrestrial Central Europe via cuticular lipid biomarkers and pollen records from lake sediments, Geology. 30, 463-466.
Shepherd T. \& Griffiths D. W. 2006. The effects of stress on plant cuticular waxes, New Phytologist. 171, 469-499.
Smith F. A., Wing S. L. \& Freeman K. H. 2007. Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: The role of plant community change, Earth and Planetary Science Letters. 262, 50-65.
Tipple B. J., Berke M. A., Doman C. E., Khachaturyan S. \& Ehleringer J. R. 2013. Leaf-wax n-alkanes record the plant-water environment at leaf flush, Proceedings of the National Academy of Sciences. 110, 2659-2664.
Tipple B. J. \& PAGANI M. 2013. Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios, Geochimica et Cosmochimica Acta. 111, 64-77.
White A., Sparrow B., Leitch E., Foulkes J., Flitton R., Lowe A. \& Caddy-Retalic S. 2012 AusPlots Rangelands Survey Protocols Manual. Terrestrial Ecosystem Research Network. pp. 84. University of Adelaide: University of Adelaide Press.
Williams K. J., Belbin L., Austin M. P., Stein J. L. \& Ferrier S. 2012. Which environmental variables should I use in my biodiversity model?, International Journal of Geographical Information Science. 26, 2009-2047.
Yamamoto S., Hasegawa T., Tada R., Goto K., Rojas-Consuegra R., Díaz-Otero C., García-Delgado D. E., Yamamoto S., Sakuma H. \& Matsui T. 2010. Environmental and vegetational changes recorded in sedimentary leaf wax n-alkanes across the Cretaceous-Paleogene boundary at Loma Capiro, Central Cuba, Palaeogeography, Palaeoclimatology, Palaeoecology. 295, 31-41.
Zech M., Krause T., MesZner S. \& Faust D. 2013. Incorrect when uncorrected: Reconstructing vegetation history using n-alkane biomarkers in loess-paleosol sequences - A case study from the Saxonian loess region, Germany, Quaternary International. 296, 108-116.
Zhang Z., Zhao M., Eglinton G., Lu H. \& Huang C.-Y. 2006. Leaf wax lipids as paleovegetational and paleoenvironmental proxies for the Chinese Loess Plateau over the last 170 kyr, Quaternary Science Reviews. 25, 575-594.

APPENDIX A: EXTENDED METHODOLOGY

AusPlots and TREND

Samples were taken from AusPlots and TREND plots provided by the services of the Terrestrial Ecosystem Research Network (TERN). The TERN plot selection process can be found in their AusPlots Rangelands Survey Protocols Manual (White et al. 2012). The process consists of four stages, with the first three stages being desktop exercises:

1. Bioregional stratification

Hierarchical cluster analysis of Australia's different bioregions, to create groups of similar bioregions.
2. Selecting representative bioregions to sample

The main goal is to sample at least one bioregion in each group.
3. Stratifying areas of sampling interest within bioregions

Hierarchical analysis to a greater resolution to that of Stage 1, based on scientific and environmental information, historic information, logistic considerations and political considerations.
4. Choosing plot locations in the field based on areas of interest

Precise sites are chosen based on a consistent and constant mix of vegetation, slope, relief and soil, with plots being 1 hectare in size and having a N/S, E/W orientation.
Once plots had been selected, field work planned and the plot layout positioned, field workers then conducted and number of different methods at each plot. These include a plot description, photo panoramas, collection of vascular plant samples, collection of point intercept data, determination of basal area of trees and shrubs, determination of plant structural summary, leaf area index and soil descriptions and soil metagenomic sampling. For the purposes of this project, the plant samples and soil metagenomics samples were those required for subsampling. Plant samples were collected by trimming off plant material with secateurs and placing in a labelled paper bag and then barcoded. At the end of each day, plants samples were then placed in a plant press to assist with preservation and identification. Once brought back from the trip all plant samples were sent to a local herbarium for identification. Once identification was complete, plant samples were then transferred to synthetic tea bags and stored with silica granules in an airtight plastic lunch box.
At each plot, 9 soil sampling locations were identified, with cores to 30 cm deep being taken. As well as this, surface soil is also sampled for soil metagenomics. This involved scraping aside any loose plant material and animal waste and taking a soil sample with a small clean trowel to 3 cm depth. This soil was then placed in a calico bag and barcoded. Each calico bag was then placed in a larger snaplock bag with silica granules for storage.

Site and Sample Selection

Sites for subsampling were initially selected based on the immediate availability of plant and soil samples. To further narrow down which sites were to be selected, Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) for each site were plotted against one another in Excel to help select sites that provide a broad spread of these two variables. Information, including MAT and MAP, for each site was provided in spreadsheet format directly from TERN.
Once the sites had been narrowed down to 19 through the above process, the top three dominant plant species was selected from each site. This process was made simple by the Soils to Satellite website, found at http://soils2sat.ala.org.au:8080/ala-soils2sat/, provided by TERN. By selecting the Study Location>Point Intercept>Herbarium Determination, amongst
other things, a simple pie chart is presented that provides the percentage cover of all plant species present at that site, allowing selection of the top three dominant species.
Soil sample selection was a little more arbitrary than the plant sampling, with "Sample 5" being selected for each site. Initially it was assumed that Sample 5 represented the central sample of a total of 9 having been taken at each site; however this may or may not be the case for each site.

Metadata for Atlas of Living Australia Website (for both maps and data)

Precipitation - annual mean

Description: Mean annual rainfall (mm)
Short Name: rainm
Metadata
contact CSIRO Ecosystem Sciences
organization:
Organisation
role:
Metadata date: 2010-07
Reference
date:
Resource

- Licence level: 1
constraints:
- Licence info:

Licence notes:
Permission required to re-distribute derivative works. Please contact Dr.
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: Climate \Rightarrow Precipitation
Units: mm
Data language: eng
Scope:
Notes:
Keywords: rain
More \quad http://spatial.ala.org.au/geonetwork/srv/en/metadata.show?uuid=64c0fb3finformation: b9c9-4ff1-bbaa-df7cba45e1b7
View in spatial portal :

Temperature - annual mean (Bio01)

Description: Temperature - annual mean (Bio01)
Short Name: bioclim_bio1
Metadata contact organization:

CSIRO Ecosystem Sciences
Organisation
role:
Metadata date: 2010-08

Reference date: 2008-02
$\begin{array}{lll}\text { Resource } & \text { - } & \text { Licence level: } 1 \\ \text { constraints: } & \text { - } & \text { Licence info: }\end{array}$
Permission to re-distribute ANUCLIM outputs should be obtained from
Licence notes: Prof. Michael Hutchinson http://fennerschool.anu.edu.au/publications/software/
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: \quad Climate \Rightarrow Temperature
Units: degrees C
Data language: eng
Scope:
Notes: \quad Data derived using ANUCLIM v6 (beta) with the new set of climate surfaces (centred on 1990), by Dr. Kristen Williams.
Keywords:
More
information:
http://fennerschool.anu.edu.au/publications/software/
View in spatial portal :

Click to view this layer

Moisture Index - annual mean (Bio28)

Description: Moisture Index - annual mean (Bio28)
Short Name: bioclim_bio28
Metadata contact organization:

CSIRO Ecosystem Sciences
Organisation
role:
Metadata date: 2010-08
Reference date: 2008-02
Resource

- Licence level: 1
constraints:
- Licence info:

Permission to re-distribute ANUCLIM outputs should be obtained from
Licence notes: Prof. Michael Hutchinson http://fennerschool.anu.edu.au/publications/software/
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: \quad Substrate \Rightarrow Moisture
Units: Dimensionless
Data language: eng
Scope:
Notes: \quad Data derived using ANUCLIM v6 (beta) with the new set of climate surfaces (centred on 1990), by Dr. Kristen Williams.
Keywords: soil, water, saturation
More http://fennerschool.anu.edu.au/publications/software/
information:
View in spatial portal :

Click to view this layer

Moisture Index - lowest quarter mean (Bio33)
Description: Moisture Index - lowest quarter mean (Bio33)
Short Name: bioclim_bio33
Metadata contact
organization:
CSIRO Ecosystem Sciences
Organisation
role:
Metadata date: 2010-08
Reference date: 2008-02
Resource

- Licence level: 1
constraints:
- Licence info:

Permission to re-distribute ANUCLIM outputs should be obtained from
Licence notes: Prof. Michael Hutchinson http://fennerschool.anu.edu.au/publications/software/
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: \quad Substrate \Rightarrow Moisture
Units: Dimensionless
Data language: eng
Scope:
Notes: Data derived using ANUCLIM v6 (beta) with the new set of climate surfaces (centred on 1990), by Dr. Kristen Williams.
Keywords: soil, water, saturation
More
information: http://fennerschool.anu.edu.au/publications/software/
View in spatial
portal :

Click to view this layer

Aridity index - month max

Description: Maximum month aridity index
Short Name: arid_max
Metadata
contact CSIRO Ecosystem Sciences
organization:
Organisation
role:
Metadata 2010-07
date:
Reference
date:

Resource constraints:	- Licence level: 1 - Licence info:
Licence notes: ${ }_{\text {K }}$	Permission required to re-distribute derivative works. Please contact Dr. Kristen Williams - kristen.williams@ csiro.au
Type: En	Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: C	Climate \Rightarrow Precipitation
Units: di	dimensionless
Data language:	eng
Scope:	
$\begin{array}{ll} & \\ \text { Notes: } & \text { Th } \\ & \text { su } \\ & \text { gi } \\ & \text { M }\end{array}$	The monthly ratio of precipitation to potential evaporation (pan, free-water surface). A numerical indicator of the degree of dryness of the climate at a given location. Adapted from the index proposed by UNEP (1992; cited in Middleton and Thomas (1997)).
Keywords: ev	evaporation, rain, precipitation, temperature
$\begin{array}{ll}\text { More } & \underline{\mathrm{ht}} \\ \text { information: } \\ \mathrm{fc}\end{array}$	http://spatial.ala.org.au/geonetwork/srv/en/metadata.show?uuid=057e11df-fc1c-4d20-ad54-19dc0345e969
View in spatial portal :	Click to view this layer
Radiation - highest period (Bio21)	
Description:	Radiation - highest period (Bio21)
Short Name:	bioclim_bio21
Metadata contact organization:	CSIRO Ecosystem Sciences
Organisation role:	
Metadata date:	2010-08
Reference date:	2008-02
Resource constraints:	- Licence level: 1 - Licence info:
Licence notes:	Permission to re-distribute ANUCLIM outputs should be obtained from Prof. Michael Hutchinson - http://fennerschool.anu.edu.au/publications/software/
Type:	Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification:	Climate \Rightarrow Solar radiation
Units:	MJ/m2/day
Data language:	eng
Scope:	
Notes:	Data derived using ANUCLIM v6 (beta) with the new set of climate surfaces (centred on 1990), by Dr. Kristen Williams.
Keywords:	solar, sun

More information:	http://fennerschool.anu.edu.au/publications/software/
View in spatial portal :	$\underline{\text { Click to view this layer }}$

WorldClim: Precipitation - driest month

Description: Precipitation of Driest Month
Short Name: worldclim_bio_14
Metadata
contact WorldClim
organization:
Organisation
role:
Metadata date: 2010-07
Reference date:
Resource

- Licence level: 2
constraints:
- Licence info: http://www.worldclim.org/current

Licence notes:
This dataset is freely available for academic and other non-commercial use. Redistribution, or commercial use, is not allowed without prior permission.
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: Climate \Rightarrow Precipitation
Units: mm
Data language: eng
Scope:
(From http://www.worldclim.org/methods) - For a complete description, see: Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. The data layers were generated through interpolation of average monthly climate data from weather stations on a 30 arc-second resolution grid (often referred to as 1 km 2 resolution). Variables included are monthly total precipitation, and monthly mean, minimum and maximum temperature, and 19 derived Notes: bioclimatic variables. The WorldClim interpolated climate layers were made using: * Major climate databases compiled by the Global Historical Climatology Network (GHCN), the FAO, the WMO, the International Center for Tropical Agriculture (CIAT), R-HYdronet, and a number of additional minor databases for Australia, New Zealand, the Nordic European Countries, Ecuador, Peru, Bolivia, among others. * The SRTM elevation database (aggregeated to 30 arc-seconds, 1 km) * The ANUSPLIN software. ANUSPLIN is a program for interpolating noisy multi-variate data using thin plate smoothing splines. We used latitude, longitude, and elevation as independent variables.
Keywords: rain, bio14
More
information:
https://gist.github.com/tucotuco/1152668

View in spatial portal :

Click to view this layer

Vapour pressure deficit - month max

Description: Maximum month vapour pressure deficit (KPa)
Short Name: vpd2max
Metadata
contact
CSIRO Ecosystem Sciences
organization:
Organisation
role:
Metadata date: 2010-07
Reference
date:
Resource

- Licence level: 1
constraints:
- Licence info:

Licence notes:
Permission required to re-distribute derivative works. Please contact Dr.
Kristen Williams - kristen.williams@csiro.au
Type: \quad Environmental (gridded) 0.01 degree ($\sim 1 \mathrm{~km}$)
Classification: Climate \Rightarrow Humidity
Units: $\quad \mathrm{KPa}$
Data language: eng
Scope:
Notes:
Keywords: temperature, moisture
More http://spatial.ala.org.au/geonetwork/srv/en/metadata.show?uuid=b0da1579-
information: 7cc6-4fff-8d56-d2bf1fae3d74
View in spatial portal :

Click to view this layer

Email from Dr Kristen William granting permission for use of climate data

From: Kristen.Williams@csiro.au [mailto:Kristen.Williams@csiro.au]
Sent: Saturday, 11 October 2014 8:06 PM
To: Sian Howard
Subject: RE: Use of maps made available on Atlas of Living Australia Hi Sian,
Thank you for your enquiry.
I can help you with:

- Temperature: MINT and MAXT
- Precipitation: RAIN
- Radiation: RADN
- Aridity Index: ARID
- Vapour pressure deficit: VPD

For the moisture index, I can provide water deficit (P-E): ADEF.
postfix on naming: $\mathrm{I}=\min , \mathrm{X}-\max ; \mathrm{M}=$ mean annual; $\mathrm{A}=$ annual total
1960 series includes VPD
1990 series includes RH (relative humidity)
All of above are custom derivatives of monthly variables generated using ANUCLIM software.

See XML metadata for details.
Will send data via cloudstor with license and acknowledgement/attribution requirements.
Use of this data in reports and publications requires citation of my paper describing the data collection: Williams et al. 2012 in the International Journal of GIS (attached).

This data is provided for your personal research use only.
You'll need help from someone with GIS skills to assist with mapping.

> regards,
> Kristen

Kristen J Williams, PhD, GISP-AP
Senior Research Scientist - Ecological Geographer
Group Leader Biodiversity Assessment and Conservation
Biodiversity, Ecosystem Knowledge and Services Research Program
CSIRO Land \& Water National Research Flagship
http://www.csiro.au/Organisation-Structure/Flagships.aspx
Phone: +61 262464213 Mobile: +61 418743988
kristen.williams@csiro.au | www.csiro.au | http://www.csiro.au/people/Kristen.Williams.html
http://www.researcherid.com/rid/B-9941-2008 | http://orcid.org/0000-0002-7324-5880
Address: GPO Box 1700, Canberra, ACT 2601
Location: Black Mountain Laboratories, Clunies Ross Road, Acton
Email from BOM granting permission for use of climate data
From: climatedata@bom.gov.au [mailto:climatedata@bom.gov.au]
Sent: Friday, 1 August 2014 11:47 AM
To: Sian Howard
Subject: Bureau of Meteorology Climate Data: Ticket\# E7WG664726-Use of maps for Honours thesis [SEC=UNCLASSIFIED]

Australian Government
Bureau of Meteorology
In reply please quote: E7WG664726
Dear Sian,

Thank you for your enquiry. You can use the maps and data on our website as you wish - you just need to acknowledge the Bureau of Meteorology as the source.

Feedback

We are constantly working to improve our service and appreciate your feedback. If you would like to contribute, please complete our 2 minute survey at http://www.bom.gov.au/climate/surveys/customer feedback.shtml.

Regards,

Melanie Harris
Climate Data Services
Bureau of Meteorology

Contact details:
Monday to Friday: 10am - 12noon \& 2pm - 4pm
Head office: 0396694082

To avoid interstate call charges please use the appropriate number below:
NSW: 0292961627
NT: 0889203921
QLD: 0732398727
SA: 0883662746
TAS: 0362212027
VIC: 0396694082
WA: 0892632228
http://www.bom.gov.au/climate/data-services/
Copyright and Disclaimer: Information about the Bureau of Meteorology's copyright and disclaimer policies are available on our website http://www.bom.gov.au

Sample Collection and Weighing

Plant samples were weighed using a Sartorius Analytical Microbalance. To clean tweezers, used to handle the plant samples, they are rinsed with solvents from Teflon squeeze bottles in the following order: three rinses with methanol, three rinses with dichloromethane, and three rinses of hexane, in order to remove any hydrocarbons present. All solvents are of Optima grade. Tweezers are cleaned before handling each sample. Nitrile gloves are also worn. A clean sheet of aluminium foil is placed on the bench, shiny surface facing down, and used as the surface for working from. This sheet of foil was replaced between handling of each sample, in the event that it came in to contact with any plant sample, to avoid cross contamination. A small clean beaker was placed on to the scales and a new, labelled and open plastic falcon tube rested inside it. These were tared on the scales. Using the tweezers, each "tea bag" containing the plant samples was opened and between 0.1-0.2g of plant sample grasped with the tweezers and weighed on the Sartorius Analytical Microbalance, making sure to avoid the sample came in to contact with anything except for the inside of the uncontaminated falcon tube. For larger samples, solvent rinsed scissors (see above process for solvent rinsing tweezers) were used to cut the plant sample into smaller pieces before being weighed. Once each sample had been weighed, the falcon tube was removed from the scales, capped, and the caps then labelled. The capped falcon tubes were then stored in a test tube rack until grinding occurred.

Soil samples were collected from storage at the TERN warehouse. The sample bag labelled " 5 " was subsampled from each site. Wearing nitrile gloves, a new clean and opened falcon tube was used to scoop out one tubeful of soil. A fresh pair of nitrile gloves was used for each soil sample taken. Once soil had been scooped out of the sample bag, the falcon tube was immediately capped, the outside wiped with Kimwipes to remove any residual material, labelled and then stored in a test tube rack until total lipid extraction occurred.

Sample Grinding and Sieving

Plant samples were ground into finer material in order to maximise the amount of lipids that could be extracted from them. These were ground using a ceramic mortar and pestle. Each sample was ground in a clean mortar and pestle, that had been washed with a 1:50 solution of decon 90 :water, followed by rinsing with tap water three times, and then rinsed with RO water three times, dried and then thoroughly solvent rinsed with Optima grade solvents from Teflon squeeze bottles in the following order: three rinses with methanol, three rinses with dichloromethane and then three rinses with hexane. Liquid Nitrogen was used to help grind the samples, and was collected in a thermal flask, following the regulation Safe Operating Procedures of wearing protective eyewear, labcoat and insulated gloves. Each plant sample was removed from its falcon tube, either by pouring directly in to the mortar, or by using clean, solvent rinsed tweezers, and then placed into the mortar. The mortar was then approximately $1 / 3$ filled with liquid nitrogen, to speed up the crushing and grinding process by freezing the sample and making it more brittle. Using the pestle and attempting to avoid spillage, the plant was pulverised and ground until fine. Once all the liquid nitrogen had evaporated, the ground plant sample was then carefully scraped in to an ashed scintillation vial with a clean and solvent rinsed steel scoopula. The scintillation vials were then capped and labelled. In the event that the plant material was not entirely dry at this point, the scintillation vial was loosely covered with alfoil instead of being capped, and left in the fume cupboard so that the sample could dry out, in order to avoid and mould or fungal growth from occurring. Each sample was ground with a clean and solvent rinsed mortar and pestle and transferred with clean and solvent rinsed tweezers and scoopulas. Labelled scintillation vials were stored until sample was to undergo total lipid extraction.

Soil samples need to be sieved prior to total lipid extraction to remove any visible plant detritus including leaves, bark and root material, and to also remove any small pebbles. The soil sample was placed in an ashed aluminium sample boat and gently pressed with a solvent rinsed scoopula or tweezers to break up any clods. Two sieves, 530 micron and 1000 micron, were scrubbed with a 1:50 decon 90 :water mixture, rinsed three times with tap water, rinsed three times with RO water, sonicated in acetone for 15 minutes, followed by triple rinsing with Optima grade solvents from Teflon squeeze bottles in the following order: three times with Methanol, three times with dichloromethane and then three times with hexane. The sieves were stacked on top of a solvent rinsed catcher bowl, with the 1000 micron sieve on the top, and the soil sample poured onto the top sieve and gently shaken through. The sieved material collected in the catcher bowl was poured into a new, labelled falcon tube in readiness for total lipid extraction in an ASE, and the residual material placed into the original falcon tube and labelled with the site location and lab user initials.

Siân Howard

Siân Howard
ACL of n-alkanes in plants and soils

Figure 1. Photos of sieved soil samples.
Total Lipid Extraction (TLE)

1. Sonication

Because it is relatively easy to extract lipids from plant samples, sonication in a Soniclean 250 TD using solvents is sufficient for conducting a total lipid extraction. Using a sonication bath filled with RO water, dried and ground plant samples are added to an ashed test tube and covered with a 9:1 DCM:MeOH solution (approximately 5 ml). Each test tube is covered with ashed alfoil and sonicated in the sonication bath for 15 minutes. During the sonication process, a clean set of ashed test tubes is arranged in a test tube rack, one per sample. An ashed glass funnel is placed in each one and using solvent rinsed tweezers, an ashed glass fibre filter is folded in half then half again, and opened up into a cone and placed in the funnel. Each funnel is covered with ashed alfoil until ready to use. Once sonication is complete, samples were left to stand to allow most sediment to settle. The sonicated sample is then decanted through the filter in the funnel. An ashed pipette can be used to assist with this. After transfer is complete, add a further amount of 9:1 solvent solution to cover the sample (approximately 5 ml) and sonicate for 15 minutes. Decant this extract into the funnel. Repeat this process for a total of 3 extractions. The filtered extract is then dried down under N_{2} in the FlexiVap until almost dry. The TLE is then quantitatively transferred using an ashed pipette and rinsing and transferring three times with DCM to ashed 4ml vials for refrigerated storage until ready for polar and nonpolar fraction separation.

2. ASE

A Thermo Scientific Dionex Acceleration Solvent Extraction (ASE) 350 is used for total lipid extracts from soils. This process is suitable for soils because it uses heat and pressure in the extraction, and is therefore a quicker and more thorough means of extracting these compounds from soils than sonication.

The 22 ml cell components, including PEEK seals and frits are cleaned with 1:50 decon 90 :water solution and then rinsed three times with tap water, followed by three rinses with RO water. Components are then placed in a 2 L ashed beaker and covered with Histologic grade acetone. The beaker is the placed in to a sonicating bath and the components are sonicated for 15 minutes. This acetone is then replaced with Methanol, and the cells are again sonicated for 15 minutes. After the second sonication, the cell components are then left to soak in the methanol for a further 15 minutes. Each solvent can be reused a maximum of 6 times. Using clean, solvent rinsed tweezers, the components are removed from the beaker and placed on to ashed alfoil to dry. Using only solvent rinsed tweezers to handle them, two 27 mm ashed glass fibre filters are inserted in the bottom end of the cell and the cell body was then screwed on to this.

Using the correct sized solvent rinsed funnel for the cells, between 4.5-26g of the $<250 \mu \mathrm{~m}$ soil sample was added to each 22 ml cell and topped up to fill line with diatomaceous earth. Another 27 mm ashed glass fibre filter paper was placed on top of the cell body, and the top cell end was screwed on. The cells were then labelled and placed in their respective slots on the ASE. Collection vials (60 ml) that had been topped with alfoil and then ashed are capped with solvent rinsed caps and septa were labelled and placed in their respective slots on the ASE.

One of the ASE reservoirs contains Optima Grade DCM, and a second reservoir contains Optima Grade MeOH. A ratio of 9:1 DCM: MeOH is to be used for the extraction. The ASE sequence is set to preheat for 12 minutes up to $100^{\circ} \mathrm{C}$ and held at that temperature for 5 minutes, with this heating process repeated three times. The cell is then
rinsed with 5 ml of solvent solution a total of three times. The rinse volume was set to 60%, with a purge time of 120 seconds.
The total lipid extract is then dried down under N_{2} in the FlexiVap until almost dry. The TLE is then quantitatively transferred using an ashed pipette and rinsing and transferring three times with DCM to ashed 4 ml vials for refrigerated storage until ready for polar and non-polar fraction separation.

Polar and non-Polar Lipid Fraction Separation using short column chromatography

Separating the non-polar and polar fractions of the total lipid extract (TLE) is necessary for subsequent GC-MS analysis. The silica gel used in the chromatography columns is slightly polar, and the initial pass of a non-polar solvent allows the non-polar fraction to be removed and collected, while the polar fraction remains bonded to the silica gel. Following this with the addition of a solvent with greater polarity than that of the silica gel allows the polar fraction to then be removed and collected. Long-tipped pipettes were stuffed with a small amount of glass wool at their base, before their narrow tip, and then ashed. One of these glass wool pipettes was set up on a retort stand, and 4 ml vial set up underneath it. A slurry of oven dried silica gel and hexane was combined in a small beaker and using a short-tipped, ashed pipette, the slurry was transferred to the glass wool pipette to produce a chromatography column. The silica gel was allowed to settle in the glass wool pipette until it reached the level of the indent near the top. Hexane was continually added to ensure that the top level of the silica gel was not exposed to air. Underneath the chromatography column, and new ashed 4 ml vial labelled as Fraction 1 (F1) was set up underneath. The total lipid extract (TLE), which had been completely dried down, was diluted with a couple of drops of hexane, and transferred to the top of the chromatography column using a new ashed pipette. 4 ml of hexane was used to continue rinsing the vial that originally held the TLE, and this 4 ml was continually added to the top of the chromatography column and captured in the 4 ml vial beneath. After the last of the 4 ml of hexane was used, a new 4 ml collection vial, labelled Fraction 2 (F2) was set up underneath and 4 ml of 1:1 DCM:MeOH solution was then used to rinse the original TLE vial and was then transferred to the top of the chromatography column. Once the chromatography column ceased dripping the polar fraction in to the 4 ml collection vial, the two collection vials (F1 and F2) were then capped and stored in the fridge.

Prior to GC-MS being conducted, the F1 samples were dried down under nitrogen using a Flexivap. These samples then had a small amount of Optima grade hexane ($7-8$ drops), the hexane was rinsed down the sides of the vial using an ashed pipette and was transferred to a bottom spring insert in a 2 ml vial. This quantitative transfer was repeated another two times, for a total of three rinses and transfers. Once the samples were transferred to the insert in the 2 ml vial, they were dried down under nitrogen using a Flexivap. Once the samples were dried down fully, $50 \mu 1$ of Optima grade hexane was added using a $50 \mu 1$ syringe that had been fully cleaned and rinsed with hexane prior to use. Samples were then labelled with their sample number and F1, and stored in the fridge in preparation for GC-MS analysis.

Figure 2: Silica gel chromatography column.
GC-MS
Instrument: HP5973 MS coupled to a HP6890 GC (MS operated in scanning mode from 45 to 500 Da)
Capillary: SGE CPSil-5MS, 60 m (length) x 0.25 mm (internal diameter) x 0.25 udf (phase thickness)
Carrier Gas: Helium at $1 \mathrm{ml} / \mathrm{min}$ constant flow
Temperature program: $50^{\circ} \mathrm{C}$ held for 1 min ramped at $8^{\circ} \mathrm{C} / \mathrm{min}$ to $340^{\circ} \mathrm{C}$ held for 7.75 mins Injection: $1 \mu 1$ in either split mode with a $50: 1$ split or pulsed splitless depending on sample concentration.
Injection temperature: $300^{\circ} \mathrm{C}$
Software: Chemstation
Using Chemstation software:
A quant package was set up that enabled automatic quantitation of peak areas in each samples' chromatogram. For each run of samples, they were opened and the quant package set to run by hitting Method>Load Method>[name of quant package method]. Then select Quantitate>Calculate. Mass 57 was selected. QUANT files were saved for each sample and opened up in Excel in order to copy the "NAME", "TIME" and "PEAK AREA" columns into a new spreadsheet, in order to calculate ACL for each soil sample.

Instrument: Perkin Elmer Clarus 500 GCMS
Capillary: SGE CPSil-5MS, 60 m (length) x 0.25 mm (internal diameter) x 0.25 udf (phase thickness)
Carrier Gas: Helium at $1 \mathrm{ml} / \mathrm{min}$ constant flow

Temperature program: $50^{\circ} \mathrm{C}$ held for 1 min ramped at $8^{\circ} \mathrm{C} / \mathrm{min}$ to $340^{\circ} \mathrm{C}$ held for 7.75 mins Injection: $1 \mu \mathrm{l}$ in either split mode with a $50: 1$ split or splitless depending on sample concentration.
Injection temperature: $300^{\circ} \mathrm{C}$
Software: Turbomass

Using Turbomass software:
Open up chromatogram for the standard in order to determine which peak is associated with which n-alkane chain length for the sample, and then pick out Mass 57. Add chromatogram for sample and pick out Mass 57. Hit Edit>Integrated Peaks. Then Edit>Peak List Write. Create a file, name as the sample name>Open>Append All>Exit. The .pdb files created were opened in Excel and the "NAME", "FOUND RT" and "AREA" columns were copied and pasted into a new Excel spreadsheet, in order to calculate ACL for each soil sample.

Standard: an in-house hydrocarbon standard with even n-alkanes from C_{14} to C_{32} without C_{28}.

Statistical Analysis

Regression analysis of the soil samples GC data was conducted using the Data Analysis Addon in Excel. The ACL of the soil samples was given as the Input Y Range, with MAP, MAT and MI separately given as the Input X Range.

Figure 3. Mean annual precipitation (MAP) versus mean annual temperature (MAT) of selected sites. This allows for comparison of similar MAP with differing MAT as well as comparison of differing MAP with similar MAT.

Table 1: Data regarding the growth form, genetic voucher, percentage cover and amounts weighed out for analysis for each plant sample (cont'd on next two pages).

Site	Bioregion	Dominant Spp 1	Growth form	Genetic Voucher No	Amount Subsampled from teabag (g)	Amount subsampled for sonication (mg)	\% cover
NTAGFU0001	Gulf fall and uplands	Aristida pruinosa	Tree Mallee	NTA 001524	0.101	46.8	17.4
NTAGFU0008	Gulf fall and uplands	Triodia pungens	Hummock grass	NTA 002012	0.187	50.8	45.4
NTAGFU0010	Gulf fall and uplands	Triodia pungens	Hummock grass	NTA 002136	0.147	52	62.7
NTAGFU0017	Gulf fall and uplands	Melaleuca viridiflora	Shrub	NTA 002634	0.172	50.4	34.5
NTAGFU0031	Gulf fall and uplands	Melaleuca viridiflora	Shrub	NTA 003622	0.182	50.5	30.5
NTAGFU0040	Gulf fall and uplands	Acacia dimidiata	Shrub	NTA 004200	0.117	50.4	26.8
NTABRT0004	Burt plain	Acacia aptaneura	Shrub	NTA 001301	0.19	50.5	56.8
NTAFIN0019	Finke	Cenchrus ciliaris	Tussock Grass	NTA 000754	0.066	34.8	68.6
NTAFIN0022	Finke	Eremophila freelingii	Shrub	NTA 000964	0.125	51.3	50.5
SATFLB0005	Flinders lofty block	Dodonaea viscosa subsp. angustissima	Shrub	SAT 000316	0.113	50.5	21.9
SATFLB0008	Flinders lofty block	Triodia scariosa	Hummock grass	SAT 000424	0.149	50.4	47.6
SATFLB0010	Flinders lofty block	Eucalyptus odorata	Tree/Palm	SAT 000535	0.152	51.1	67
SATFLB0012	Flinders lofty block	Allocasuarina muelleriana subsp. Muelleriana	Shrub	SAT 000649	0.178	52	42.1
SATFLB0014	Flinders lofty block	Eucalyptus odorata	Tree Mallee	SAT 000746	0.172	51	33
SATFLB0015	Flinders lofty block	Eucalyptus obliqua	Tree/Palm	SAT 000816	0.12	51.4	61.2
SATKAN0001	Kanmantoo	Eucalyptus baxteri	Tree/Palm	SAT 000122	0.136	50.4	42.9
SATKAN0002	Kanmantoo	Eucalyptus obliqua	Tree/Palm	SAT 000191	0.139	50.3	55.2
SAASTP0001	Stony plains	Maireana aphylla	Chenopod	SAA 000250	0.189	50.4	34.6
SAASTP0004	Stony plains	Malvastrum americanum var. americanum	Forb	SAA 000019	0.062	36.2	25.6
NTADAC0001	Darwin Coastal	Eucalyptus tetrodonta		NTA 006020	0.169	52.3	

Site	Bioregion	Dominant Spp 2	Growth form	Genetic Voucher No	Amount Subsampled from teabag (g)	Amount subsampled for sonication (mg)	\% Cover
NTAGFU0001	Gulf fall and uplands	Enneapogon polyphyllus	Tussock Grass	NTA 001525	0.124	50	13.3
NTAGFU0008	Gulf fall and uplands	Aristida contorta	Tussock Grass	NTA 002011	0.135	50	19.5
NTAGFU0010	Gulf fall and uplands	Eucalyptus leucophloia	Tree Mallee	NTA 002140	0.188	50.6	36.4
NTAGFU0017	Gulf fall and uplands	Chrysopogon fallax	Tussock Grass	NTA 002610	0.166	50.6	10.4
NTAGFU0031	Gulf fall and uplands	Schizachyrium pachyarthron	Tussock Grass	NTA 003588	0.063	23.5	28.3
NTAGFU0040	Gulf fall and uplands	Heteropogon contorus	Tussock Grass	NTA 003995	0.091	22.8	15.9
NTABRT0004	Burt plain	Aristida holathera	Tussock Grass	NTA 001318	0.17	51	24.4
NTAFIN0019	Finke	Acacia estrophiolata	Tree/Palm	NTA 000784	0.123	50	19.2
NTAFIN0022	Finke	Enneapogon polyphyllus	Tussock Grass	NTA 000962	0.118	51.6	15
SATFLB0005	Flinders lofty block	Eucalyptus flindersii	Tree Mallee	SAT 000286	0.196	52	18.8
SATFLB0008	Flinders lofty block	Cassinia laevis	Shrub	SAT 000419	0.105	50.2	23.7
SATFLB0010	Flinders lofty block	Rhagodia paradoxa	Chenopod	SAT 000552	0.13	51.3	10.1
SATFLB0012	Flinders lofty block	Hibbertia crinita	Shrub	SAT 000657	0.112	51.2	15.5
SATFLB0014	Flinders lofty block	Xanthorrhoea quadrangulata	Shrub	SAT 000791	0.208	51.6	18.5
SATFLB0015	Flinders lofty block	Lepidosperma semiteres	Sedge	SAT 000860	0.123	51.4	8.5
SATKANOOO1	Kanmantoo	Lepidosperma semiteres	Sedge	SAT 000167	0.218	50.5	11.3
SATKANOOO2	Kanmantoo	Lepidosperma semiteres	Sedge	SAT 000218	0.16	50.1	9.2
SAASTP0001	Stony plains	Eragrostis setifolia	Tussock Grass	SAA 000294	0.136	50.6	12.8
SAASTP0004	Stony plains	Rutidosis helichrysoides subsp. Helichrysoides	Forb	SAA 000016	0.017	5.8	18.5
NTADAC0001	Darwin Coastal	Eucalyptus miniata		NTA 006042	0.144	51.1	

Site	Bioregion	Dominant Spp 3	Growth form	Genetic Voucher No	Amount Subsampled from teabag (g)	Amount subsampled for sonication (mg)	\% Cover
NTAGFU0001	Gulf fall and uplands	Eucalyptus pruinosa	Tree Mallee	NTA 001531	0.139	50.2	13.2
NTAGFU0008	Gulf fall and uplands	Fimbristylis dochotoma	Sedge	NTA 002018	0.118	51	14.4
NTAGFU0010	Gulf fall and uplands	N/A	N/A	N/A	N/A	N/A	N/A
NTAGFU0017	Gulf fall and uplands	Schizachyrium fragile	Tussock Grass	NTA 002681	0.124	50.3	7.7
NTAGFU0031	Gulf fall and uplands	Petalostigma banksii	Shrub	NTA 003613	0.147	50.2	9.2
NTAGFU0040	Gulf fall and uplands	Eucalyptus tectifica	Tree/Palm	NTA 003965	0.137	49.9	9.7
NTABRT0004	Burt plain	Triodia schinzii	Hummock Grass	NTA 001317	0.17	52.6	7.4
NTAFIN0019	Finke	Enchylaena tomentosa	Tussock Grass	NTA 000761	0.014	8	2.4
NTAFIN0022	Finke	Aristida contorta	Tussock Grass	NTA 000960	0.106	50.6	7.7
SATFLB0005	Flinders lofty block	Chrysocephalum semipapposum	Forb	SAT 000287	0.09	50.1	13.2
SATFLB0008	Flinders lofty block	Casuarina pauper	Shrub	SAT 000401	0.165	50.4	12.6
SATFLB0010	Flinders lofty block	Enchylaena tomentosa var. tomentosa	Chenopod	SAT 000550	0.11	50.8	6.1
SATFLB0012	Flinders lofty block	Eucalyptus fasciculosa	Tree Mallee	SAT 000630	0.15	50.6	12.6
SATFLB0014	Flinders lofty block	Allocasuarina verticillata	Shrub	SAT 000775	0.123	50.5	14
SATFLB0015	Flinders lofty block	Hibbertia crinita	Shrub	SAT 000866	0.112	51.5	6.6
SATKAN0001	Kanmantoo	Pultenaea involucrata	Shrub	SAT 000124	0.181	50.9	10.3
SATKAN0002	Kanmantoo	Hakea rostrata	Shrub	SAT 000207	0.187	51	8.2
SAASTP0001	Stony plains	Acacia aneura var. tenuis	Shrub	SAA 000338	0.186	51.4	8.5
SAASTP0004	Stony plains	Sida fubulifera	Forb	SAA 000022	0.049	29.8	11.7
NTADAC0001	Darwin Coastal	Sorghum plumosum		NTA 005954	0.118	49.9	

Sample displays some fungal growth in scintillation vial after grinding
Data not on S2S - no information available about \% cover or growth form
available

Table 2: Amount of soil weighed out for extraction of lipids in the ASE 350

Site	Bioregion	Amount subsampled for ASE (g)
NTAGFU0001	Gulf fall and uplands	13.222
NTAGFU0008	Gulf fall and uplands	18.709
NTAGFU0010	Gulf fall and uplands	8.257
NTAGFU0017	Gulf fall and uplands	16.513
NTAGFU0031	Gulf fall and uplands	14.521
NTAGFU0040	Gulf fall and uplands	8.625
NTABRT0004	Burt plain	19.371
NTAFIN0019	Finke	16.781
NTAFIN0022	Finke	26.635
SATFLB0005	Flinders lofty block	15.934
SATFLB0008	Flinders lofty block	18.487
SATFLB0010	Flinders lofty block	12.185
SATFLB0012	Flinders lofty block	15.854
SATFLB0014	Flinders lofty block	12.559
SATFLB0015	Flinders lofty block	4.475
SATKAN0001	Kanmantoo	5.891
SATKAN0002	Kanmantoo	6.818
SAASTP0001	Stony plains	11.365
SAASTP0004	Stony plains	21.287
NTADAC0001	Darwin Coastal	9.976

APPENDIX B: ADDITIONAL DATA

Appendix B - Additional Data

Figure 1: Below figures - chromatograms for GCMS results for soils and plants

Abundance

bundance

Abundance
N

Abundance

Time-->
Abundance

ACL of n-alkanes in plants and soils
\qquad
$\begin{array}{ll}105 & 0 \\ 10 & 0 \\ 100 & 0\end{array}$
9500
90000
500
30000
5000
0000
5000
0000
5000
$\begin{array}{llll}5 & 0 & 0 & 0 \\ 5 & 0 & 0\end{array}$
40000
5000
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$
5000
5000
10000
500

A'tion indance

Tim e
A bud
ndance

TIC: NTA0004S.D\data.ms

Tim e-->

A bundance

Abundance

ACL of n-alkanes in plants and soils

Abundance

Abundance

ACL of n-alkanes in plants and soils

Abundance

Abundance

TIC: NTA 3622 .D \data.ms

ACL of n-alkanes in plants and soils

Abundance

Abundance

TC: SAAOO2 X.D 2 .

Abundance

Abundance

Siân Howard
ACL of n-alkanes in plants and soils

Siân Howard
ACL of n-alkanes in plants and soils

Siân Howard
ACL of n-alkanes in plants and soils

ACL of n-alkanes in plants and soils

Siân Howard
ACL of n-alkanes in plants and soils

Siân Howard
ACL of n-alkanes in plants and soils

NTA 2012 F1 00:28:13 30-JUL-2014

Abundance

TIC: NTA0960.D \data.ms

ACL of n-alkanes in plants and soils

Abumodance

Time-->
Abundance

TIC:SAT0207 D \data m

Abundance

Time
A
budanc

Abundance

ACL of n-alkanes in plants and soils

Abundance

Time-->
Abundance

A bundance

TIC: SAAOOT6.D data.m

Abundance

Abundance

ACL of n-alkanes in plants and soils

Abundance

Abundance

$\begin{array}{ll}\text { Timend } \\ \text { A } & \text { endance }\end{array}$

Abundance

Following Tables: Chain length peak areas for each sample (both plants and soils) obtained from GC results with calculations for CPI, ACL, C27/C31 and C29/33

ste	Bioregion	Dominant Spp 1	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
NTAGFU0010	Gulf fall and uplands	Triodia pungens	Hummock grass	NTA002136	
		NAME	found RT	AREA	
		${ }^{\text {c16 }}$	${ }^{17.603}$	441.49	
		${ }^{17}$	19.035	${ }^{31.026}$	
		${ }^{1} 18$	20.395	4760.39	
		c20	22.911	5553.133	
		c21	24.082	523.02	
		${ }^{\text {c22 }}$	25.29	4107.61	
		${ }^{2} 2$	26.293	4335.735	
		c24	27.326	3327.128	
		${ }^{2} 2$	28.315	9994.427	
		c26	29.882	2922.196	
		${ }^{2} 27$	30.198	60883.355	
		c28	${ }^{31.093}$	6104.42	
		${ }^{29}$	31.951	187612.844	
		c30	32.88	6811.742	
		C31	33.594	12030.938	
		C32	34.365	1625.671	
		C33	35.129	75941.594	
			Acl	29.8993669	Average
			${ }^{\text {c27 } 27} \mathbf{C 3 1}$	${ }^{0.502599996}$	29.62205
			${ }_{\text {c29/[33 }}^{\text {cpl }}$		30.15258

Dominant Spp 2	Growth form	$\begin{aligned} & \text { Genetic Voucher } \\ & \text { No } \end{aligned}$	
Eucalypus leucophloia	Tree Mallee	NTA002140	
NAME	TME	A ABEA	
c10	8.465	619	
${ }^{\text {c11 }}$	9.606	879	
C12	11.219	197	
C13	${ }^{13.009}$	456	
C14	14.69	13210	
C15	16.287	9739	
${ }^{\text {c16 }}$	17.794	20557	
${ }^{\text {c17 }}$	19.234	8997	
${ }^{\text {c18 }}$	20.585	2987	
c19	21.878	3427	
c20	23.114	2982	
C21	24.292	7822	
c22	25.428	30277	
c23	26.506	1988	
c24	27.538	38924	
C25	28.527	6376	
C26	29.49	3239	
${ }^{2} 27$	30.417	52380	
c28	31.302	20027	
C29	32.16	500833	
C30	32.988	53383	
C31	33.799	135732	
C32	34.574	3625	
${ }^{\text {c33 }}$	35.318	91997	
C34	36.061	1117	
C35	36.752	18251	
	ACL	30.3587545	Average
	${ }_{\substack{\text { c27) } \\ \text { c29 } \\ \text { c3i }}}$	-0.038590127	30.85137
	$\xrightarrow{\text { c29/c33 }}$		29.62073

Stie	Bioregion	Sominant Spp 1	Growt form	Genetic Voucher No	
NTAGFU0017	Guif fall and uplands	Melaleuca viridiflora	Shrub	NTA002634	
		NAME	TMME	Peak area	
		c10	${ }^{8.483}$	${ }^{1199}$	
		${ }^{\text {c11 }}$	9.661	294	
		C12	11.247	474	
		C13	12.99	1239	
		${ }^{\text {c14 }}$	14.687	${ }^{1212}$	
		C15	16.268	333	
		C16	17.796	2680	
		C17	19.226	6632	
		C18	20.582	5788	
		c19	21.88	6588	
		C20	23.11	${ }^{34286}$	
		${ }^{\text {c21 }}$	24.288	23283	
		${ }^{\text {c22 }}$	25.419	71383	
		${ }^{2} 2$	26.503	52515	
		c24	27.54	73056	
		${ }^{\text {c25 }}$	28.529	77816	
		c26 c27	29.487 30.414		
		${ }^{288}$	${ }^{31.304}$	528078 8027	
		c29	32.163	22356	
		C30	32.985	1839	
		C31	33.791	107959	
		${ }^{\text {c32 }}$	34.618	810	
		${ }^{\text {c33 }}$	35.32	3887	
		C34	36.058		
		$\underline{C 35}$	36.754	23661	
			ACI	27.96220902	
				退.878870682	${ }^{27.6804}$ 29.6143
			cpl	3.188978131	

minant spp 2	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
Chrrsopogon fallax	Tussock Gras	NTA026	
NAME	TME	Peak AREA	
C10	8.462	${ }^{831}$	
C11	9.645	262	
C12	11.226	6823	
C13	12.985	2627	
C14	14.687	50926	
C15	16.278	42275	
C16	17.791	118359	
C17	19.221	23127	
C18	20.582	114216	
c19	21.886	7981	
C20	23.111	81614	
c21	24.294	15426	
C22	25.414	66308	
C23	26.498	37141	
C24	27.529	67254	
C25	28.529	111757	
C26	29.488	10728	
C27	30.409	28856	
C28	31.299	29281	
C29	32.163	1366131	
C30	32.985	293784	
C31	33.796	1668989	
C32	34.571	33311	
C33	35.32	28231	
C34	36.048	302	
C35	36.754	6989	
	${ }_{\text {all }}$	30.01957606	Average
	${ }^{\text {c27 } 27} \mathbf{C 3 1}$	${ }^{0.172892691}$	30.41037
		${ }_{4}^{4.842928378969}$	29.68468

Dominant Spp 3	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$		soil			
Schizachyrium fragile	Tussock Grass	NTA 02281		NTAGFV0017	Gulf fall and uplands		
NAME	TME	Ptak area		Name	TIME	AK AREA	
${ }^{\text {c10 }}$	0			c20	21.804	${ }^{8792}$	
${ }^{1} 11$	0	0		C21	22.982	9554	
${ }^{\text {c12 }}$	0	0		c22	24.171	1278	
C13	0	0		${ }^{2} 23$	25.186	695	
C14	0	0		${ }^{\text {c24 }}$	26.218	4435	
C15	0	0		C25	27.212	583	
${ }^{\text {c16 }}$	0			c26	28.171	1179	
C17	20.357	106		${ }^{2} 27$	29.087	7171	
C18	21.802	1191		${ }^{\text {c28 }}$	29.977	1720	
C19	0	0		c29	30.835	8824	
c20	24.503	1517		${ }^{\text {c30 }}$	${ }^{31.673}$	1295	
c21	0			${ }^{\text {c31 }}$	32.469	3101	
${ }^{\text {c22 }}$	26.954	1184		C32	${ }^{33.244}$	1084	
${ }^{\text {c23 }}$	28.095	1232		C33	${ }^{34.003}$	7437	
c24	29.194	1088		C34	34.746	184	
C25	30.241	1073		C35	35.448	7488	
C26	31.252	439			ACL	30.263	Average
${ }^{2} 27$	32.236	1438			c27/c31	0.547	
c28	33.179	916			c29/c33	1.186	30.82941
c29	34.069	2593			CP1	5.190849914	
C30	34.948	1166					
C31	35.791	15380					
C32	36.613	529					
${ }^{\text {c33 }}$	${ }^{37.393}$	9232					
${ }^{\text {c34 }}$							
C35	39.11	192					
	${ }_{\text {ACl }}$	31.2776232	Average				
	c.a7/c31	0.0.09498049					
	CP1	5.99866216					

site	Bioregion	ominant Spp 1	Growth form	Genetic Voucher No	
NTAGFVOO31	Gulf fall and uplands	Mealeuca viridifiora	Shrub	NTA003622	
		NAME	Founo.pT	AREA	
		${ }^{\text {c14 }}$	14.512	8289.107	
		c15	16.105	7458.247	
		${ }^{\text {c16 }}$	17.61	26645.686	
		c17	19.035	4135.528	
		c18	20.388	21085.092	
		c19	21.682	278.873	
		c20	22.904	8810.646	
		c21	24.082	565.309	
		c22	25.209	5023.824	
		${ }^{\text {c23 }}$	26.286	2061.55	
		c24	27.326	5705.74	
		${ }^{2} 25$	28.322	6092.261	
		${ }^{2} 26$	29.282	6800.876	
		c27	30.198	92419.172	
		c28	31.093	11432.354	
		c29	31.958	74488.58	
		${ }^{\text {c30 }}$	32.787	7730.771	
		${ }^{\text {c31 }}$	33.587	11672.352	
		c32 C33	34.372 35.129	${ }_{421515.048}$	
			$\frac{35.129}{\text { ACL }}$	${ }_{2}^{49.123886132}$	erage
			c27/[31	0.79174571	29.23246
			C29/[33	17.670933	29.21425
			${ }^{\text {PP1 }}$	7.774625688	

Dominant Spp 2	Growth form	Genetic Voucher No	
Schizachrium pachyrathron	Tussock Grass	NTA003588	
NAME	TIME	Peak area	
${ }^{\text {c10 }}$	8.453	676	
C11	9.631	216	
${ }^{1} 12$	11.223	1770	
${ }^{1} 13$	13.08	500	
C14	14.688	10030	
C15	16.291	9085	
c16	17.793	36206	
${ }^{\text {c17 }}$	19.233	11006	
C18	20.589	60295	
c19	21.887	4828	
C20	23.112	49690	
c21	24.29	10720	
C22	25.421	38911	
C23	26.51	28746	
${ }^{\text {c22 }}$	27.542	35010	
c25	28.531	29591	
c26	29.489	2619	
C27	30.411	26441	
C28	31.306	15746	
C29	32.164	24880	
C30	32.986	7523	
C31	33.798	31709	
C32	34.636	973	
C33	35.327	48024	
C34	36.049	2049	
C35	36.766	46701	
	ACL	30.76120341	
	${ }^{\text {c27 } 2731}$	${ }^{0.833864203}$	29.1819
	${ }_{\text {c29/c33 }}^{\text {col }}$	0.0509745127	31.6994
		1.72326269	

site	Bioregion	Dominant Spp 1	Growth form	Genetic Voucher No	
NTAGFU0040	Gulf fall and uplands	Acacia dimididata	Shrub	NTA 004200	
		NAME	Founo RT	AREA	
		${ }^{\text {c12 }}$	${ }^{11.058}$	97.519	
		c14	14.512	10593.617	
		${ }^{\text {c15 }}$	16.997	4189.289	
		${ }^{\text {c16 }}$	17.603	13398.804	
		${ }^{\text {c17 }}$	19.028	1003.426	
		${ }^{\text {c18 }}$	20.381	7687.274	
		c20	22.904	2305.004	
		C22	25.299	1014.159	
		${ }^{\text {c24 }}$	27.326	898.318	
		${ }^{2} 25$	28.315	${ }_{9513.63}$	
		${ }^{\text {c26 }}$	29.275	1677.128	
		c27	30.198	13986.568	
		c29	31.951	17221.111	
		${ }^{\text {c30 }}$	${ }^{32.773}$	1609.915	
		${ }^{\text {c31 }}$	${ }^{33.587}$	195069.422	
		${ }^{3} 32$	${ }^{34.358}$	29118.58	
		${ }^{\text {c33 }}$	35.129	172842.672	
		C34	35.863	384.887	
			ACL	31.88885251 A	
			${ }^{\text {c27] }} 2$	0.071700464	30.73239
			${ }_{\text {c29/33 }}$	0.100791725	32.6375

eminant Spp 2	Growth form	$\begin{aligned} & \text { Genetic Voucher } \\ & \text { No } \end{aligned}$	
Heteropgog contorus	Tussock Grass	NTA 03995	
NAME	TIME	Peak area	
c10	8.456	809	
${ }^{\text {c11 }}$	9.618	477	
C12	11.226	1205	
C13	13.006	2654	
C14	14.692	7294	
C15	16.294	1793	
C16	17.791	9783	
${ }^{\text {c17 }}$	19.262	571	
${ }^{\text {c18 }}$	20.581	16276	
c19	21.885	2731	
C20	23.15	23707	
C21	24.293	9146	
C22	25.419	20880	
C23	26.498	18237	
C24	27.539	21291	
C25	28.534	20169	
C26	29.487	21663	
C27	30.408	33870	
c28	31.299	23837	
C29	32.162	5729	
C30	32.99	20564	
C31	${ }^{33.791}$	25885	
${ }^{\text {c32 }}$	${ }^{34.628}$	848	
${ }^{\text {c33 }}$	35.319	7296	
${ }^{3} 34$	${ }^{36.042}$	1638	
$\underline{C 3}$	36.759	33086	
	ACL	30.8038135	
	${ }_{\text {c27 }}^{\text {c2/ } 231}$		30.53238
	CP1	4.338361035	

Dominant Spp 3	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$	
Eucalypus tectifica	Treeppalm	NTA003965	
NAME	TIME	Ptak area	
${ }^{\text {c10 }}$	8.825	452	
${ }^{11}$	10.076	222	
${ }^{\text {c12 }}$	11.793	113	
${ }^{1} 13$	13.694	49	
C14	15.516	48	
${ }^{\text {c15 }}$	17.212	111	
${ }^{\text {c16 }}$	18.851	99	
${ }^{\text {C17 }}$	20.359	562	
C18	21.866	333	
c19	${ }^{23.196}$	347	
c20	24.5	2630	
c21	25.756	1398	
${ }^{\text {c22 }}$	26.95	2351	
${ }^{\text {c23 }}$	28.097	2811	
${ }^{\text {c24 }}$	29.259	404	
C25	30.254	3953	
${ }^{\text {c22 }}$	${ }^{31.348}$		
${ }^{\text {c27 }}$	${ }^{32.2388}$	1996	
C28	33.175	2968	
c29	${ }^{34.075}$	26519	
C30	${ }^{34.955}$	1390	
${ }^{\text {C31 }}$	${ }^{35.787}$	3548	
C32	${ }^{36.683}$	200	
${ }^{\text {c33 }}$	37.395	882	
C34 C35	${ }^{38,227}$	113	
C35	${ }^{39.091}$	557	
	ACl	28.25332527	verage
	${ }_{\substack{\text { c27 } \\ \text { c2/ } / 31 \\ \text { c3i }}}$	[5.51296505	27.61057
	cl	7.519188667	

NTAGFVOO40	Gulffall and uplands		
NAME	TME	Ptak AREA	
${ }^{20}$	${ }^{21.813}$	5205	
c21	22.98	${ }^{3473}$	
${ }^{2} 2$	24.106	2592	
c23	25.189	3586	
c24	26.221	2059	
${ }^{\text {c25 }}$	27.21	6652	
${ }^{26}$	28.168	1395	
${ }^{2} 7$	29.99	15059	
${ }^{28}$	29.98	1824	
c29	30.838	22981	
c30	31.66	1629	
${ }^{\text {c31 }}$	${ }^{32.472}$	7598	
${ }^{\text {c32 }}$	${ }^{33.231}$	632	
${ }^{\text {c33 }}$	34.001	4122	
c34	34.723	288	
$\underline{45}$	35.43	3058	
	ACL	28.887	Average
	C27/c31	${ }^{1.982}$	28.3414
	c29/c33	5.575	29.6835

Dominant Spp 2	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$	
Arisitida holathera	Tussock Grass	NTA 001318	
NAME	TMME	Peak afea	
${ }^{\text {c10 }}$	8.459	${ }^{1134}$	
${ }^{11}$	9.626	1218	
${ }^{\text {c12 }}$	${ }^{11.218}$	1193	
${ }^{\text {c13 }}$	${ }^{12.992}$	4969	
C14	14.684	47997	
C15	16.286	28571	
C16	17.788	5974	
${ }^{\text {c17 }}$	19.223	9466	
${ }^{\text {c18 }}$	20.584	39884	
${ }^{\text {c19 }}$	${ }^{21.877}$	1044	
C20	${ }^{23.113}$	26861	
c21	24.296	9067	
${ }^{\text {c22 }}$	25.427	25432	
${ }^{\text {c23 }}$	26.5	99747	
${ }^{\text {c24 }}$	27.531	29107	
${ }^{\text {c25 }}$	${ }_{\text {cke }}^{28.531}$	-73507	
${ }^{2} 28$	29.495	24386	
${ }^{2} 27$	${ }^{30.416}$	10911	
C28	31.301	24867	
c29	32.16	350802	
C30	${ }^{32.992}$	58911	
${ }^{\text {C31 }}$	${ }^{33.798}$	2786083	
C32	34.568	114054	
C33	${ }^{35,332}$	3177061	
C35	${ }^{36.055}$	44970	
	36.761	905869	
	ACl	32.13456099	
	${ }_{\substack{\text { c27] } \\ \text { c29 } \\ \text { c3i }}}$	${ }^{0.03391287888}$	30.84
	c29/33	0.110417143	32.6025

Dominant spe 3	Growt form	Genetic Voucher No	
Triodia schinzii	Hummock Grass	NTA 001317	
NAME	TIME	Peak area	
c20	21.808	2018	
${ }^{21}$	22.98	671	
c22	24.106	2117	
${ }^{2} 23$	25.184	2988	
c24	26.216	2096	
c25	27.211	5346	
${ }^{2} 26$	${ }^{28.163}$	2151	
${ }^{2} 27$	29.99	1099	
${ }^{\text {c28 }}$	29.975	1759	
${ }^{\text {c29 }}$	${ }^{30.833}$	2359	
c30	31.655	680	
${ }^{\text {c31 }}$	${ }^{32,467}$	1928	
${ }^{\text {c32 }}$	${ }^{33.237}$		
${ }^{\text {c33 }}$	33.996	35478	
${ }_{\text {c. }}^{\text {c.34 }}$	35.435	478	
	Act	30.57224089	
		${ }^{0.2623306622}$	${ }^{30.16874}$
			31.4025

Site	Bioregion	Dominant Spp 1	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
NTAFINOO19	Finke	Cenchrus ciliaris	Tussock Grass	NTA 00754	
		NAME	TME	Peak AREA	
		c10	${ }^{8.462}$	${ }_{831}$	
		${ }^{C 11}$	9.619	871	
		C12	11.221	8372	
		${ }^{1} 13$	13.001	4124	
		${ }^{\text {c14 }}$	14.687	46390	
		${ }^{1} 15$	16.278	28870	
		${ }^{\text {c16 }}$	17.791	8719	
		${ }^{\text {c17 }}$	19.226	25679	
		${ }^{C 18}$	20.587	100796	
		C19	21.875	8705	
		c20	23.116	73160	
		c21 c22	24.294 25.419	- $\begin{gathered}17462 \\ 5689\end{gathered}$	
		${ }^{2} 2$	26.503	45775	
		${ }^{\text {c24 }}$	27.54	61564	
		${ }^{\text {c22 }}$	28.529	71834	
		${ }^{\text {c22 }}$	29.487	73490	
		${ }^{\text {c27 }}$	30.409	138875	
		c28 c29	31.299 32.157	80855 595789	
		${ }^{\text {c30 }}$	32.99	122674	
		C31	33.801	422551	
		${ }^{\text {c32 }}$	34.566	127665	
		${ }_{\text {c }} \mathrm{C33}$	35.325	2349530	
		c34 C35	36.042 36.75	13509 45869	
			Act	29.4278593	
			${ }_{\text {cren }}^{\text {c27/c31 }}$	$\underset{\substack{0.032817895 \\ 0.2535795}}{1}$	${ }^{30.8729} \mathbf{3 2 9 8 7}$
			${ }_{\text {cpl }}$	${ }_{13.88069976}^{0.23795}$	

nimant spp 2	Growth form	$\begin{aligned} & \text { cenetic Voucher No } \\ & \hline \end{aligned}$	
Acacia estrophiolata	Tree/palm	NTA 000784	
NAME	TME	Peak area	
c20	${ }^{21.802}$	${ }^{1161}$	
${ }^{21}$	22.985		
${ }^{\text {c22 }}$	24.095	852	
${ }^{\text {c23 }}$	${ }^{25.179}$	634	
${ }^{\text {c22 }}$	${ }^{26,205}$	878	
${ }^{2} 25$	27.205	7866	
${ }^{2} 26$	28.163	8576	
${ }^{\text {c27 }}$	${ }^{29.995}$	${ }^{330778}$	
${ }^{\text {c28 }}$	29.975	31603	
${ }^{\text {c29 }}$	${ }^{30.849}$	${ }^{637049}$	
${ }_{\text {c }}$	31.666	70294	
${ }^{\text {c31 }}$	$\begin{array}{r}32.599 \\ 33222 \\ \hline\end{array}$	(644877	
${ }_{\text {c }}^{\text {c32 }}$	${ }^{33.242}$	54584	
${ }_{\text {c33 }}^{\text {c33 }}$	${ }^{33} 3.96$	54912	
C35	35.451	1716	
	ACL	30.058835	
	${ }_{\substack{\text { c27 } 27 / 231 \\ \text { c29 }}}$	(0.201998887	${ }^{30.33029} 9$
		16.0505525	

Dominant Spp 3	Growth form	Genetic Voucher No	
Enchylaena tomentosa	Tussock Grass	NTA000761	
NAME	TMME	Peak area	
${ }^{2} 2$	21.785	364482	
c21	22.874	4443	
c22	24.089	27476	
${ }^{2} 23$	25.052	1962	
${ }^{2} 22$	26.199	10696	
C25	27.188		
${ }^{\text {c22 }}$	28.152	135009	
${ }^{\text {c27 }}$	29.183	3582	
C28	29.958	32150	
C29	30.822	8078	
c30	31.665	7835	
${ }^{\text {C31 }}$	32.45	16704	
${ }_{\text {c }}$	33.225	2997	
${ }^{\text {c33 }}$	33.968	3927	
C34	35.79	2973	
C35	35.806	1356	
	${ }^{\text {ACL }}$	26.76677616	
	${ }_{\text {col }}^{\text {c27/c31 }}$	${ }^{0.214439655}$	30.2937
		${ }_{0}^{0.50697375}$	29.1842

Ste	Bioregion	Sominant Spp 1	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$	
NTAFINOO22	Finke	Eremophila freelingii	Shrub	NTA000964	
		NAME	FOUNO RT	AREA	
		c29	${ }^{31.973}$	10959.372	
		c30	32.809	2067.108	
		c31	${ }^{3} 3.616$	134997.719	
		C32	34.394	7167.898	
		${ }^{\text {c33 }}$	35.165	1130147.625	
		c34	35.892	97422.758	
		C35	36.605	196731.594	
			ACL	33.55476348	Average
			c29/c33	0.00969722	32.96158
			CP1	8.027133937	

Dominant spp 2	Growth form	Genetic Voucher No	
Enneapogon polyphylus	Tussock Grass	NAA00962	
NAME	tiME	Peak area	
c10	8.454	826	
c11	9.627	959	
C12	11.229	5573	
${ }^{\text {c13 }}$	13.004	1349	
C14	14.689	14430	
C15	16.286	10036	
c16	17.794	22991	
C17	19.218	5325	
C18	20.59	44141	
c19	21.888	4582	
c20	23.119	37356	
c21	24.297	22804	
C22	25.427	34056	
${ }^{2} 23$	26.506	74393	
c24	27.537	31732	
c25	28.537	89773	
C26	29.995	26315	
C27	30.417	117873	
C28	31.307	27137	
c29	32.165	280538	
C30	32.998	59941	
C31	33.809	4068718	
C32	34.579	109882	
C33	35.338	5211515	
C34	36.055	38207	
C35	36.767	1016099	
	ACl	32.1976339	
	c27//31	0.053830412	
	cP1	32.16195878	

Oominan Spp 3	Growth form	$\begin{aligned} & \text { Genetic Voucher } \\ & \text { No } \end{aligned}$		soil			
Arisidida contorta	Tussock Grass	NTA 000960		NTAFINO22	Finke		
NAME	TME	Pfakara		NAME	TME	EAK AREA	
${ }^{10}$	0			c10	${ }^{8.483}$	376	
${ }^{11}$	0			${ }^{11}$	9.614	788	
${ }^{\text {c12 }}$	0	0		C12	11.21	14004	
C13		\bigcirc		${ }^{\text {c13 }}$	12.99	63012	
Cl_{14}	15.5	${ }^{1146}$		C14	14.687	69181	
C15	17.212	${ }^{1316}$		C15	16.283	37135	
c16	18.825	3320		c16	17.791	4069	
C17	20.364	675		c17	19.226	8292	
C18	21.804	3278		c18	20.587	22219	
c19	23.186	213		c19	21.88	1992	
c20	24.495	2421		c20	23.116	39308	
c21	25.752	832		c21	24.294	54996	
C22	26.95	2034		c22	25.425	207184	
C23	28.097	${ }^{2331}$		c23	26.503	67672	
c24	29.196	1890		c24	27.54	1553380	
c25	30.249	287		C25	28.54	364234	
C26	31.264	1872		c26	29.503	473688	
C27	32.233	5500		C27	30.424	508354	
c28	33.17	2861		c28	31.309	3852169	
C29	34.081	12307		c29	32.168	303447	
c30	34.95	4102		c30	32.995	1900639	
C31	35.798	209798		C31	33.796	140805	
C32	36.605	3971		C32	34.571	853181	
${ }^{\text {c33 }}$	37.4	117241		${ }^{\text {c33 }}$	${ }^{35.325}$	644386	
c34	38.222	902		C34	36.053	284950	
C35	39.112	1825		C35	36.759	559019	
	${ }_{\text {act }}$	${ }^{31.66568882}$	verage		ACl	27.88794923	
	${ }_{c}^{\text {c27 } 27 /[33}$	${ }^{0.026219693} 0$	${ }^{30.89782} 3$		${ }_{c}^{\text {c27) } 21 / 31}$		${ }^{29.870064}$
	cP1	20.39459505			cpl	1.105192068	

Stie	Bioregion	Dominant Spp 1	Growth form	Genetic Voucher No	
Sartiboos	Finders lofty block	Dodonneea viscosas subsp.ars	Shrub	${ }_{\text {SAT } 000316}$	
		NAME	Founo.RT	AREA	
		${ }^{14}$	14.526	${ }^{344.533}$	
		C15	16.112	285.478	
		${ }^{16}$	17.624	1158.885	
		c27	30.22	2762.435	
		c28	31.122	614.363	
		c29	31.98	141293.922	
		c30	32.809	3397.923	
		c31	33.616	10943.781	
		C33	35.158	244.056	
			Act	29.84665918	Average
			${ }^{\text {c27 }} 1231$	${ }^{0.025242982}$	30.901515
			${ }_{\text {c29/[33 }}^{\text {cp1 }}$	578.905792	29.006
			${ }^{\text {cP1 }}$	63.23938866	

Dominant Spp 2	Growth form	$\begin{aligned} & \text { Genetic Voucher } \\ & \text { No } \end{aligned}$	
Eucalyptus flindersii	Tree Mallee	SAT000286	
Name	TME	Peak AREA	
${ }^{10}$	8.467	420	
c11	9.651	315	
c12	11.232	567	
C13	12.986	424	
C14	14.698	311	
C15	16.289	283	
C16	17.823	369	
C17	19.258	629	
C18	20.582	16333	
c19	21.875	3435	
C20	23.116	${ }^{32413}$	
c21	24.294	12486	
c22	25.425	4945	
C23	26.504	10546	
C24	27.54	268200	
C25	28.535	90993	
C26	29.993	499406	
C27	30.42	179995	
C28	31.305	114210	
c29	32.163	285938	
C30	33.01	7861	
C31	33.802	13975	
C32	34.608	582	
c33	35.325	2190	
C34	36.048	673	
C35	36.755	9518	
	Acl	26.63502128	
		128.8010733 130.552968	27.03082
	cpl	3.513621636	

nant Spp 3	Growh form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$		Soil			
Chrrsoceephalum semipape Forb		SAT 00287		SAAFEB0005	Flinders lofty lock		
Name	TME	PEAK AREA		NAME	TIME PEAK AREA		
${ }^{\text {c10 }}$	0			c20	21.807	5309	
${ }^{11}$	0			${ }^{21}$	22.985	7999	
${ }^{12}$	0			${ }^{\text {c22 }}$	24.106	12086	
C13	0	0		${ }^{\text {c23 }}$	25.184	38788	
C14	15.499	2615		${ }^{2} 2$	26.215	6615	
C15	17.205	2382		c25	27.215	18959	
c16	18.818	4309		c_{2}	28.168	139367	
${ }^{17}$	20.357	603		c27	29.09	21334	
c18	21.813	2161		c28	29.974	97570	
${ }^{1} 19$	23.184	203		c29	30.838	184920	
c20	24.498	1590		${ }^{\text {c30 }}$	31.66	51355	
c21	25.75	634		${ }^{\text {c31 }}$	32.467	216314	
C22	26.949	1145		${ }^{\text {c32 }}$	33.241	21328	
C23	28.1	1427		${ }^{\text {c33 }}$	33.995	5938	
C24	29.195	1189		${ }^{\text {c34 }}$	34.718	3725	
c25	30.247	3672		c35	35.43	16181	
c26	31.257	1590			ACl	28.54388554	
C27	32.236	2976			C27/c31	0.976977912	
c28	33.174	9778			c29/c33	3.11370926	29.97236
C29	34.095	124975			${ }^{\text {cPI }}$	2.320718001	
c30	34.948	93881					
C31	35.833	363645					
C32	36.608	42122					
${ }^{\text {c33 }}$	37.404	214231					
${ }^{\text {c34 }}$	38.221	335					
C35	39.105	15636					
	${ }_{\text {ACL }}$	${ }^{30.58256357}$	${ }^{\text {Average }}$ 309622				
		0.008185435 5.83670197	${ }^{30.956534}$				
	${ }^{\text {cPI }}$	33.1507745					

ACL of n-alkanes in plants and soils

site	Bioregion	Dominant Spp 1	Growth form	Genetic Voucher No	
Safteoolo	Finders lofy block	Eucalyputs odorata	Tree/Palm	SAT 000535	
		NamE	founo.gT	AREA	
		${ }^{16}$	17.61	10003.089	
		${ }^{1} 17$	19.043	3046.466	
		${ }^{18}$	20.395	29162.174	
		c19	21.682	517.617	
		c20	22.919	18172.85	
		c21	24.889	2451.81	
		c22	25.217	15343.378	
		${ }^{\text {c23 }}$	26.293	14915.36	
		c24	27.326	46022891	
		c25	28.322	102848.398	
		${ }^{26}$	29.253	112901.305	
		${ }^{2} 2$	30.205	24785.609	
		c28	31.078	26031.719	
		c29	31.951	${ }^{30360.369}$	
		c30	32.78	1026.928	
		c31	33.58	3206.943	
			Act	26.5610771	Average
			c27/[31	77.8875005	27.05109
			c29/[33		29
			${ }^{\text {PP1 }}$	${ }_{1} .988879452$	

ste	Bioregion	Dominant spp 1	Growth form	Genetic Voucher No	
${ }_{\text {SaAFEB0012 }}$	Filindes Sofy lock	Allocasuarina mueleriana	Shrub	SAT Ooosta	
		NAME	TIME	Peakarea	
		${ }^{2} 2$	21.806	${ }^{6472}$	
		c21	22.974	930	
		${ }^{\text {c22 }}$	24.105	${ }^{4336}$	
		c23	25.183	2665	
		c24	26.29	${ }^{3888}$	
		c25	27.29	${ }^{4871}$	
		c26	28.168	3^{3121}	
		${ }^{2} 27$	29.089	1224	
		c28	29.979	3083	
		c29	30.832	139072	
		c30	31.66	31651	
		${ }^{\text {c31 }}$	32.508	2029176	
		C32	${ }^{33.241}$	56559	
		${ }^{\text {c33 }}$	34	351808	
		C34	34.728	143	
		C35	35.429	2546	
			ACL	31.14045215	Average
			C27/c31	0.006122682	30.9756
			C29/c33	0.395306531	31.86675
			CP1	24.72730103	

Dominant Spp 3	Growh form	Genetic Voucher No		Soll			
Eucalyptus fasciculosa	emalle	Sat 000630		Saftibour	Flinders lofty block		
NaME	TIME	Peak area		NAME	TME	EAK AREA	
${ }^{10}$	8.459	900		c20	21.81	2031	
${ }^{1} 11$	9.611	794		c21	22.983	11236	
${ }^{1} 12$	11.223	652		${ }^{\text {c22 }}$	24.103	28169	
${ }^{1} 13$	12.993	339		c23	25.182	3932	
C14	14.705	420		${ }^{\text {c24 }}$	26.218	34027	
${ }^{1} 15$	16.281	208		c25	27.208	43840	
${ }^{16}$	17.815	173		${ }^{2} 26$	28.166	38284	
${ }^{1} 17$	19.254	444		c27	29.087	36753	
C18	20.579	7582		c28	29.977	2250	
c19	21.87	1067		c29	30.831	27158	
c20	23.113	16371		c30	${ }^{31.658}$	9412	
c21	24.296	4870		${ }^{\text {c31 }}$	32.464	3699	
c22	25.416	1989		${ }^{\text {c32 }}$	33.239	373	
${ }^{2} 23$	26.495	14542		${ }^{\text {c33 }}$	33.998	6132	
c24	27.537	25140		C34	34.721	734	
C25	28.537	39722		C35	35.412	1661	
c26	29.495	1474			ACl	28.07977423	Averge
${ }^{2} 27$	30.411	6163			C27/c31	0.993351172	29.0067
${ }^{2} 28$	31.306	9936			c29/33	4.42889756	29.7368
c29	32.155	11046			cP1	1.437130015	
C30	33.003	796					
C31	33.793	7152					
C32	34.594	526					
C33	35.322	466					
C34	36.044	460					
C35	36.77	11549					
	${ }_{\text {ACL }}$	27.50993966					
	${ }_{c}^{\text {c27 } 27 /[33}$	8.62038596 23.7388266	[29.16192				
	cP1	1.997041999					

site	Bioregion	Dominant Spp 1	Growth form	Genetic Voucher No	
SarFbe0014	Flinders lofty block	Eucalyptus odorata	Tree Mallee	SAT 000776	
		NAME	Founo. RT	AREA	
		${ }^{16}$	17.617	735.08	
		${ }^{17}$	19.035	497.925	
		c18	20.395	13539.137	
		c19	21.682	${ }^{93.445}$	
		c20	22.911	973.062	
		c21	24.09	301.117	
		c22	25.209	8253.909	
		${ }^{2} 2$	26.293	9996.23	
		${ }^{\text {c22 }}$	27.326	20096.285	
		c25	28.32	39957.383	
		c26	29.275	14191.534	
		${ }^{\text {c27 }}$	30.191	27456.541	
		c28	31.093	1121.091	
		c29	31.951	5995.064	
		c30	32.78	252.312	
		${ }^{\text {c31 }}$	33.594	7707.731	
		C32	34.372	545.024	
		c33	35.129	33019.504	
			${ }_{\text {acl }}$	28.41033439	erage
			C27/[31	3.562207996	27.87677
			c29/[33	0.17883663	32.39318
			${ }^{\text {PP1 }}$	2.775361703	

Dominant Spp 2	Growt form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
Kanthor hoeea quadrangulata	Shrub	SAT 000791	
NAME	${ }_{\text {TME }}$	Ptak AREA	
${ }^{1} 10$	8.472	918	
c11	9.634	222	
${ }^{\text {c12 }}$	11.231	485	
${ }^{\text {c13 }}$	12.98	778	
${ }^{\text {c14 }}$	14.707	406	
C15	16.294	229	
c16	17.838	274	
c17	19.257	427	
c18	20.597	3542	
c19	21.885	468	
c20	23.11	19167	
c21	24.288	5206	
C22	25.424	22250	
c23	26.508	18163	
c24	27.539	28597	
C25	28.534	58835	
c26	29.492	37415	
C27	30.414	97943	
c28	31.309	21619	
c29	32.162	46907	
c30	32.995	4390	
C31	33.791	33093	
C32	34.618	869	
c33	35.319	2951	
C34	36.052	479	
C35	36.759	9724	
	ACl	27.8758818	
	C27/c31	2.959628925	28.0102
	${ }_{\text {c292 }}^{\text {c }}$ CP1	${ }^{15.89528973} 2$	29.23675

Stie	Bioregion	Dominant spp 1	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$	
SAAFLB0015	Finders lofty block	Eucalytus oblicua	Tree/palm	SAT 00816	
		NamE	TMME	Peakarea	
		${ }^{\text {c10 }}$	8.467	450	
		${ }^{11}$	9.624	1027	
		C12	11.215	28188	
		C13	12.995	11060	
		Cl^{14}	14.687	153012	
		C15	16.283	82567	
		${ }^{\text {c16 }}$	17.791	161749	
		c17	19.22	27370	
		C18	20.587	124591	
		${ }^{\text {c19 }}$	21.88	7696	
		c20	23.11	78591	
		${ }^{\text {c21 }}$	24.294	16111	
		C22	25.419	61948	
		${ }^{\text {c23 }}$	26.503	67014	
		${ }^{\text {c24 }}$	27.54	74205	
		C25	28.534	88371	
		${ }^{2} 26$	29.487	100433	
		C27	30.424	4430991	
		${ }^{2} 28$	31.304	137263	
		c29	32.168	1107100	
		${ }^{\text {c30 }}$	32.984	${ }^{9531}$	
		${ }^{\text {C31 }}$	33.796	30970	
		${ }^{\text {c32 }}$	34.618	630	
		${ }^{\text {c33 }}$	35.314	8878	
		C34	36.063	1287	
		C35	36.764	16958	
			ACL	27.11742235	
				143.073659 124.75093	(20.03182
			cpl	16.98600949	

Dominant Spp 2	Growth form	Genetic Voucher No SAT 000860			Growth form	$\begin{gathered} \begin{array}{c} \text { Genetic Voucher } \\ \text { No } \end{array} \\ \hline \text { SAT } 000866 \end{gathered}$		soil			
Lepidosperma semiteres	Sedge				Shrub				Finders lofyylock		
NAME	TME	Peakarea		NAME	TIME	Peak area		NAME	TIME	PeAa AREA	
${ }^{\text {c10 }}$	8.463	460		c20	21.805	3003		c20	21.813	5940	
${ }^{11}$	9.599	1187		c21	22.988	2570		c21	22.986	35028	
C12	11.227	135		C22	24.108	2773		c_{2}	24.111	73878	
C13	12.986	624		c23	25.182	9295		c23	25.195	150538	
${ }^{1} 14$	14.693	2946		c24	26.218	2934		${ }^{\text {c } 24}$	${ }^{26.227}$	170542	
C15	16.285	3415		C25	27.213	${ }^{11958}$		${ }^{2} 25$	27.227	206709	
c16	17.798	999		c26	28.166	- 2964		${ }^{2} 26$	28.174	11779	
C17	19.3	1282		C27	29.998	- 17766		$\mathrm{C}_{2} 2$	29.111	37738	
C18	20.583	2625		C28	29.977	11479		c28	29.98	6997	
${ }^{19}$	21.881	2983		c29	30.857	- 33729		c29	30.86	418056	
c20	23.117	22323		c30	31.668	1279		${ }^{\text {c30 }}$	${ }^{31.666}$	2014	
c21	24.29	587		C31	32.464	6396		${ }^{\text {c31 }}$	32.472	53210	
C22	25.426	20783		C32	0	0		${ }^{\text {c32 }}$	${ }^{33.247}$	6323	
c23	26.994	13373		C33	33.988	101		${ }^{\text {c33 }}$	33.996	12290	
c24	27.536	17981		C34		0		${ }^{\text {c }} 3$	34.729	1778	
c25	28.536	19991		C35	35.412	353		C35	35.431	4520	
c26	29.994	15914			Act	28.2730245	Average		ACL	27.9524885	Average
C27	30.41	42859			C27/c31	27.77689181	27.139		C27/c31	7.0926147	
c28	31.3	16611			c29/c33	3336.920792	29.0012		c29/c33	34.01594793	29.11423
C29	32.164	114433				125.3156237				2.688643185	
c30	32.986	11791									
C31	33.797	44781									
C32	34.624	460									
${ }^{\text {c33 }}$	${ }_{35} 3.36$	197379									
C34	36.059	942									
C35	36.761	12934									
	${ }_{\text {Act }}$	${ }^{31.41196481}$	Average								
		${ }_{0}^{0.095821125}$	31.532033								
	${ }^{\text {PPI }}$	10.887994									

Ste	Bioregion	nant Spp 1	Growt form	Genetic Voucher No	
Satanoooz	Kanmantoo	Eucalyptus obliqua	Tree/palm	SAT 000191	
		NAME	founo RT	AREA	
		${ }^{\text {c16 }}$	17.61	1515.702	
		${ }^{\text {c18 }}$	20.395	6484.721	
		c20	22.919	6201.095	
		c22	25.217	4159.367	
		c23	26.293	3248.991	
		c24	27.297	705.974	
		${ }^{\text {c24 }}$	27.326	6489.75	
		${ }^{2} 25$	28.322	74610.914	
		c26	29.26	25091.488	
		${ }^{\text {c27 }}$	30.205	377055.563	
		c28	${ }^{31.085}$	16187.38	
		c29	31.958	146942.688	
		c30	32.78	868.014	
		C31	33.594	950.179	
			ACL	27.247223	Average
			c27/[31	396.825823	27.01005
			C29/C33		29
			cp	$14.75026{ }^{\text {a }}$	

Dominant Spp 2	Growth form	Genetic Voucher No	
Lepidosperma semiteres	Sedge	SAT000218	
NAME	TME	Peak area	
${ }^{10}$	8.475	594	
${ }^{\text {c11 }}$	9.611	1427	
${ }^{1} 12$	11.228	622	
C13	12.993	697	
C14	14.684	1509	
C15	16.281	1742	
${ }^{\text {c16 }}$	17.794	5006	
${ }^{\text {c17 }}$	19.27	741	
C18	20.589	16587	
c19	21.883	3377	
c20	23.113	18572	
${ }^{\text {c21 }}$	24.291	6345	
${ }^{\text {c22 }}$	25.417	15990	
${ }^{2} 2$	26.495	9406	
c24	27.537	13593	
${ }^{\text {c22 }}$	28.532	10913	
${ }^{2} 26$	29.49	11863	
${ }^{\text {c27 }}$	30.411	12805	
c28	31.296	7664	
C29	32.16	5866	
C30	32.997	9416	
C31	33.793	426614	
C32	34.605	812	
C33	35.322	237749	
C34	36.05	1627	
C35	36.757	92392	
	ACl	31.72818969	
		0.030015424	
	${ }_{\text {cpl }}$	13.21275322	

Dominant Spp 3	Growth form	Genetic Voucher No SAT		soil			
Hakea ostrata	Shrub	SAT 00207		Sarkanooor	Kanmantoo		
NAME	TME	Peakarea		NAME	TME	AK AREA	
${ }^{10}$				c20	21.807	${ }^{2812}$	
c11	10.053	99		c21	22.885	7617	
${ }^{1} 12$	0	0		c22	24.1	10797	
${ }^{\text {c13 }}$	0	0		${ }^{\text {c23 }}$	25.179	35353	
C14	15.508	351		${ }^{\text {c } 24}$	26.215	57568	
${ }^{1} 15$	17.215	${ }^{423}$		${ }^{2} 25$	27.21	16073	
${ }^{16}$	18.822	-2936		c26	28.168	135714	
C17	20.34	233		${ }^{\text {c27 }}$	29.095	${ }^{425394}$	
c18	21.806	2361		C28	29.974	108480	
${ }^{19}$	0	0		c29	30.844	44817	
c20	24.503	1489		${ }^{\text {c30 }}$	31.66	48957	
c21	25.749	184		${ }^{\text {c31 }}$	32.461	${ }_{84612}$	
c22	26.953	1232		${ }^{\text {c32 }}$	33.236	- 1849	
${ }^{\text {c23 }}$	28.099	1015		${ }^{\text {c33 }}$	33.995	20089	
${ }^{\text {c24 }}$	29.188	${ }^{1288}$		c34	34.728	4936	
c25	30.246	1814		c35	35.43	9941	
${ }^{2} 2$	31.256	1062			ACL	27.96988457	Average
${ }^{2} 7$	32.235	4890			C27/c31	5.226521061	27.66373
c28	33.167	2043			c29/c33	22.3095724	29.1716
c29	34.078	9742			cPl	3.07369167	
${ }^{\text {c30 }}$	34.947	8232					
${ }^{\text {c31 }}$	35.801	236536					
${ }^{\text {c32 }}$	36.607	1825					
C33	37.397	2688					
${ }^{\text {c34 }}$							
C35	39.104	1412					
	${ }_{\text {acl }}$	30.37851226					
	${ }_{c}^{\text {c27/c31 }} \mathrm{C} / 2 / 33$	${ }_{\substack{0.020673386 \\ 36.1168251}}$	${ }^{30.9180877}{ }^{\text {20, }}$				
	cP1	22.01205203					

Site	Bioregion	Dominant spp 1	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
SASSTP0001	Stonyplains	Maireana a ahylla	Chenopod	SAA 00250	
		NAME	TME	Peak area	
		${ }^{10}$	${ }^{8.483}$	1450	
		${ }^{1} 11$	9.619	1015	
		${ }^{1} 12$	11.221	1054	
		C13	13.001	1298	
		c14	14.703	562	
		${ }^{1} 15$	16.289	4265	
		C16	17.797	30181	
		C17	19.226	20335	
		c18	20.587	95505	
		c19	21.891	11707	
		c20	23.116	${ }^{84853}$	
		c21	24.289	25598	
		c22	25.425	68877	
		c23	26.509	129020	
		c24	27.54	104415	
		c25	28.54	107819	
		${ }^{226}$	29.993	139183	
		c27	30.419	357702	
		c28	31.304	126898	
		c29	32.168	425130	
		C30	32.99	45860	
		C31	33.796	203971	
		C32	34.644	849	
		C33	35.32	6702	
		C34	36.037	1560	
		C35	36.74	33440	
			${ }_{\text {ACL }}$	26.9191134	
				1.753690476 63.43330349	
			cpl	4.560441882	

ant Spp 2	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$		minant Spp 3	Growth form	Genetic Voucher No		soll			
Eragrostis setifolia	Tussock Grass	SAA 00294		Acacia anerra var. tenuis	Shrub	SAA000338		SAASTP0001	Stonylains		
NAME	TME	PEAK AREA		NAME	FOUNO RT	AREA		NAME	Founo.pt	AREA	
${ }^{\text {c10 }}$	${ }^{8.482}$	${ }^{658}$		${ }^{\text {c27 }}$	${ }^{30.213}$	37465.891		c20	21.8	10433	
${ }^{C 11}$	9.628	391		c28	31.107	2316.905		${ }^{\text {c21 }}$	22.987	14012	
C12	11.215	645		c29	31.965	67062.85		${ }^{\text {c22 }}$	24.107	23673	
C13	12.99	590		${ }^{\text {c30 }}$	32.802	3415.121		c23	25.186	5974	
C14	14.691	10037		${ }^{\text {c31 }}$	${ }^{33.616}$	47859.156		${ }^{\text {c24 }}$	26.222	7965	
C15	16.283	7762		${ }^{\text {c32 }}$	${ }^{34} 394$	33662.105		C25	27.217	121279	
c16	17.791	27935		${ }^{\text {c33 }}$	35.158	55875.188		${ }^{2} 26$	28.175	99897	
C17	19.22	8789		C34	35.885	1478.545		${ }^{\text {c27 }}$	29.992	93862	
C18	20.592	44911			Acl	31.2299569	Averge	c28	29.982	${ }^{63607}$	
C19	21.879	3458			C27/c31	0.088283546	30.7	c29	30.84	61038	
c20	23.115	37934			c29/[33	0.120021672	32.57136	${ }^{\text {c30 }}$	${ }^{31.667}$	32517	
C21	24.298	1096			cP1	27.97741929		${ }^{\text {c31 }}$	32.468	39882	
C22	25.424	30367						${ }^{\text {c32 }}$	${ }^{33.243}$	13651	
${ }^{2} 2$	26.502	20356						${ }^{\text {c33 }}$	34.002	15686	
c24	27.534	30810						${ }^{\text {c34 }}$	34.725	3822	
C25	28.534	${ }^{32264}$						c35	5.442	14986	
c26	29.487	25885							ACL	27.29881228	
${ }^{\text {c27 }}$	30.413	55108							C27/c31	2.35392884	28.1927
${ }^{\text {c28 }}$	31.303	17886							C29/c33	3.891240597	29.8179
C29	32.162	14996							CP1	1.281499146	
c30	32.989	34732									
C31	33.801	1803911									
${ }^{\text {C32 }}$	34.565	21651									
C33	35.324	17779									
${ }^{\text {c34 }}$	36.052	2531									
C35	36.759	55315									
	${ }_{\text {ACL }}$	${ }^{30.94142066} 0$									
	${ }_{c}^{\text {c27 }} \mathbf{C} /$ (c33	${ }^{0} 0.03539717901$	(en								
	${ }^{\text {PP1 }}$	13.856489									

site	Bioregion	Dominant $\operatorname{spp} 1$	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
SAASTP004	Stonyplains	Malvastum ame	va forb	SAA 000019	
		NAME	TIME	Peak area	
		${ }^{10}$	8.446	${ }^{384}$	
		${ }^{\text {c11 }}$	9.635	917	
		${ }^{1} 12$	11.216	11775	
		C13	12.996	2338	
		C14	14.692	46846	
		C15	16.284	27882	
		C16	17.792	62889	
		C17	19.226	23866	
		C18	20.588	93883	
		c19	21.881	10092	
		c20	23.121	8487	
		c21	24.299	20628	
		C22	25.425	6943	
		c23	26.504	62511	
		c24	27.54	73883	
		C25	28.535	178626	
		C26	29.498	77015	
		c27	30.42	512838	
		c28	31.31	117003	
		c29	32.168	1740982	
		c30	32.996	202182	
		C31	33.802	203281	
		${ }^{\text {c32 }}$	34.577	36098	
		${ }^{\text {c33 }}$	${ }^{35.325}$	9737	
		C34	36.037	604	
		C35	36.786	9884	
			$\frac{\mathrm{AcL}}{}$	29.60699881	
					(30.19394
			${ }_{\text {c }}$		

nt spp 2	Growth form	Genetic Voucher No	
Rutidosis helichrsoides subst Forb		SAA000016	
NAME	TME	Peak area	
c10	8.479	673	
C11	9.609	1741	
C12	11.217	3017	
C13	12.997	3652	
C14	14.688	35594	
C15	16.279	20433	
c16	17.798	46197	
C17	19.227	8432	
C18	20.583	40806	
C19	21.876	3891	
c20	23.112	3028	
C21	24.3	6430	
C22	25.415	22929	
c23	26.499	14050	
C24	27.541	2005	
c25	28.53	22813	
C26	29.494	19091	
C27	30.41	51425	
${ }^{2} 28$	31.3	1913	
c29	32.164	929720	
c30	32.996	7929	
C31	33.802	241903	
C32	34.567	14623	
c33	35.326	1238854	
C34	36.017	252058	
C35	36.761	663899	
	ACl	31.5566558	
	${ }^{\text {c27/c31 }}$	0.021257967	
	${ }_{\text {c29/c33 }}^{\text {crl }}$		31.28589

Dominant Spp 3	Growth form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$		soil			
Sida fubulifera	Forb	SAA 000022		SAASTP0004	Stonyplains		
NAME	TIME	Ptakarea		NAME	IME	Peak area	
${ }^{1} 10$	0			${ }^{\text {c20 }}$	${ }^{21.807}$	1124	
c11	0	0		${ }^{\text {c21 }}$	22.98	15045	
C12	0	0		${ }^{\text {c22 }}$	24.1	26360	
${ }^{\text {c13 }}$	0	0		c23	25.184	56157	
C14	0	0		${ }^{\text {c24 }}$	26.215	103310	
C15	0	-		c25	27.215	${ }^{206761}$	
c16	18.818	458		c26	28.168	221183	
c17	0	0		c27	29.089	23756	
${ }^{\text {c18 }}$	797	1498		C28	29.979	17884	
${ }^{\text {c19 }}$	0	0		c29	${ }^{30.833}$	148888	
c20	24.498	1381		${ }^{\text {c30 }}$	${ }^{31.665}$	80646	
c21	25.755	524		${ }^{\text {c31 }}$	${ }^{32.466}$	10876	
C22	26.954	1430		${ }^{\text {c32 }}$	33.241	35558	
c23	28.09	1763		${ }^{\text {c33 }}$	33.99	37119	
C24	29.252	511		${ }^{\text {c34 }}$	34.718	10367	
C25	30.252	3295		C35	35.43	32650	
c26	31.252	1988			ACl	28.04027619	
c27	32.236	10689			c27/[31	2.184331502	28.25616
c28	33.173	1185			C29/33	4.000323285	29.79995
${ }^{\text {c29 }}$	34.079	15287			cP1	1.262912909	
${ }^{\text {c30 }}$	${ }^{34.943}$	501					
C31	35.791	1548					
${ }^{C 32}$	0	\bigcirc					
${ }^{\text {c33 }}$	37.404	255					
C34							
C35	39.079	511					
	${ }_{\text {Acl }}$	${ }^{28.133259969}$	Average				
	${ }_{\text {c27/ } 2733}$	${ }_{5}^{6.99990901981}$	${ }^{27.0065063}$				
	CP1	6.026106594					

site	Bioregion	Oominant Spp 1	Growth form	Genetic Voucher No		Dominant Spp 2	Growt form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \end{gathered}$	
NTAAACOOOO1	Darwin Coastal	Eucalyptus tetrodonta		NTA 006020		Eucalypus miniata		NTA 006042	
		NAME	Founo RT AR	AREA		NAME	тME	Ptak AREA	
		c16	17.6	2659.282		c10	8.477	${ }^{571}$	
		${ }^{\text {c17 }}$	19.043	458.763		${ }^{\text {c11 }}$	9.603	1284	
		c18	20.388	4531.807		c12	11.226	247	
		c20	22.919	2763.422		${ }^{\text {c13 }}$	13.006	335	
		c22	25.217	1536.286		C14	14.713	166	
		c24	27.333	1964.098		C15	16.283	184	
		${ }^{2} 25$	28.322	203.287		${ }^{\text {c16 }}$	17.817	265	
		c26	29.275	4915.825		${ }^{\text {c17 }}$	19.273	599	
		${ }^{27}$	30.205	8447.58		c18	20.582	21021	
		c28	31.078	9375.743		c19	21.87	2504	
		c29	31.958	92122.781		c20	23.116	25755	
		c30	32.787	2983.688		${ }^{\text {c21 }}$	24.294	4858	
		${ }^{\text {c31 }}$	33.594	499.75		C22	25.414	1989	
		C32	34.38	299.635		C23	26.498	1672	
			Acl	28.83501286	Average	c24	27.534	25157	
			c27/c31	16.0036181	27.2342	c25	28.529	2756	
			c29/[33 -		29	c26	29.487	41353	
			${ }_{\text {CP1 }}$	4.806230188		c27	30.414	${ }_{6292}$	
						C28	31.288	${ }^{62516}$	
						c29	32.163	107823	
						c30	32.99	13129	
						C31	33.796	19531	
						${ }^{C 32}$	34.602	499	
						${ }^{\text {c33 }}$	35.33	1555	
						C34	36.063	654	
						C35	${ }_{\text {36 }} \times$ Act	759 28.3688196	
							${ }^{\text {c27/ }}$ /31	${ }^{3.223183657}$	27.9475
								${ }^{69.939559984347}$	

Dominant Spp 3	Growt form	$\begin{gathered} \text { Genetic Voucher } \\ \text { No } \\ \hline \end{gathered}$		soll			
Sorghum plumosum	NTA 05959			NTAAACOOO1	Darwin Coastal		
NAME	Peak area			NAME	TIME PEAK AREA		
c10	$0 \quad 0$			c20	21.806	8689	
C11	0			${ }^{\text {c21 }}$	22.979	${ }_{21196}$	
c12				${ }^{\text {c22 }}$	24.105	57536	
C13	0			${ }^{2} 2$	25.183	${ }^{131951}$	
C14	-			${ }^{2} 24$	26.225	215617	
C15	$0 \quad 0$			${ }^{2} 25$	27.22	41993	
C16	00			${ }^{2} 26$	28.1	${ }_{40883}$	
C17	0			${ }^{2} 27$	29.099	447884	
C18				c28	29.989	335212	
C19	$\begin{array}{rrr}0 & 0 \\ 24.496 & 154\end{array}$			c29	30.848	48357	
c20				${ }^{\text {c30 }}$	31.67	19831	
c21	$\begin{array}{ll}\text { 24.496 } & 1554 \\ 25.747 & 259\end{array}$			${ }^{\text {c31 }}$	32.471	162782	
C22				${ }^{\text {c32 }}$	33.246	${ }^{89721}$	
C23	22.962 28.093			${ }^{\text {c33 }}$	34	${ }^{62660}$	
${ }^{\text {c24 }}$	29.203 970			${ }^{\text {c34 }}$	34.727	26991	
C25	30.244 889			C35	35.439	57110	
C26	31.26 822				ACL	27.85999938	Averge
C27	$32.239 \quad 1035$				C27/C31	2.751434434	28.06626
${ }^{\text {c28 }}$	33.182 182				c29/c33	7.71736359	29.4585
C29	34.072 1126				cpl	1.31253271	
${ }^{\text {c30 }}$							
C31							
${ }^{\text {C32 }}$	$36.611 \quad 213$						
C33	${ }^{37.401} \quad 4411$						
	39.098						
		-0.251213922	${ }^{30.1965}$				
	${ }^{\text {cPI }}$	3.210699202					

MAP v 27/31 ratio

(a)

MAP v 29/31 ratio

(b)

MAT v 27/31 ratio

(c)

MAT v 29/33 ratio

(d)

MI v 27/31 ratio

(e)

MI v 29/33 ratio

(f)

MI - lowest quarter mean \mathbf{v} 27/31 ratio

(g)

MI - lowest quarter mean v 29/33 ratio

(h)

Aridity Index - month max v 27/31 ratio

(i)

Aridity Index - month max v 29/33 ratio

Radiation - highest period v 27/31 ratio

(k)

Radiation - highest period v 29/33 ratio

Precipitation driest month v 27/31 ratio

(m)

Precipitation driest month v 29/33 ratio

(n)

(o)

Figure 2: Plots (a)-(p) showing that there is no relationship between the plant $27 / 31$ and 29/33 chain length ratios to the different climate variables MAP, MAT, annual MI, lowest quarter mean MI, aridity index, radiation, driest month precipitation and vapour pressure deficit.

Eucalyptus genus MAP v ACL

(a)

Eucalyptus genus MAT v ACL

(b)

Eucalyptus genus Ann MI v ACL

(c)

Eucalyptus genus Low MI v ACL

(d)

(e)

Eucalyptus genus Low Precip v ACL

(f)

Eucalyptus genus VPD v ACL

(g)

Figure 2: Plots (a)-(p) showing that there is no relationship Eucalyptus genus ACL with the different climate variables MAP, MAT, annual MI, lowest quarter mean MI, aridity index, radiation, driest month precipitation and vapour pressure deficit.

Following Tables: Regression analyses for plants and soils
SUMMARY OUTPUT

MAP	-0.00048	0.000679	-0.70877	0.481355	-0.00184	0.000879	-0.00184	0.000879

Plant ACL v MAP

SUMMARY OUTPUT								
Regression Statistics								
Multiple F 0.198398								
R Square	0.039362							
Adjusted I	0.022508							
Standard I	1.784964							
Observati	59							
ANOVA								
	$d f$	SS	MS	F	gnificance F			
Regressio	1	7.441289	7.441289	2.335551	0.131981			
Residual	57	181.6074	3.186095					
Total	58	189.0487						
Coefficientsandard Err			t Stat	P-value	ower 95\%U	Jpper 95\%	wer 95.0\%	pper 95.0\%
Intercept	28.34801	1.03131	27.48737	1.41E-34	26.28285	30.41317	26.28285	30.41317
MAT	0.07356	0.048134	1.528251	0.131981	-0.02283	0.169947	-0.02283	0.169947

Plant ACL v MAT

Plant ACL v lowest quarter mean MI

Plant ACL v aridity index month max

Plant ACL v precipitation - driest month

Intercept	28.78363	0.630797	45.63058	$1.44 \mathrm{E}-46$	27.52048	30.04678	27.52048										
30.04678									VPD - mor	0.660739	0.352806	1.87281	0.066226	-0.04574	1.36722	-0.04574	1.36722
:---	:---	:---	:---	:---	:---	:---	:---	:---									

Plant ACL v vapour pressure deficit month max
SUMMARY OUTPUT

Predicted v Actual Soil ACL

All Soils ACL v Annual MI

All Soils ACL v radiation highest period

All Soils ACL v precipitation driest month

SUMMARY OUTPUT								
Regression Statistics								
Multiple F 0.430006								
R Square	0.184905							
Adjusted I	0.139622							
Standard I	0.918213							
Observati	20							
ANOVA								
	$d f$	SS	MS	$F \quad$ gnificance F	gnificance F			
Regressio	1	3.442712	3.442712	4.083328	0.058441			
Residual	18	15.17606	0.843114					
Total	19	18.61877						
Coefficientsandard Err			t Stat	P-value Lower 95\%Upper 95\%ower 95.0\%pper 95.0\%				
Intercept	27.69496	0.567463	48.80491	1.4E-20	26.50276	28.88715	26.50276	28.88715
VPD - mor	0.639868	0.316653	2.020725	0.058441	-0.02539	1.305131	-0.02539	1.305131

VPD - month max Residual Plot

All Soils ACL v vapour pressure deficit month max

SUMMARY	OUTPUT															
											MAP R	Residual	Plot			
Multiple F	0.343359															
R Square	0.117896												-			
Adjusted I) 0.044387												\checkmark			
Standard I	0.986836															
Observati	14										200	$\stackrel{400}{*}{ }^{600}$	00800	${ }^{1000}$		
ANOVA												MAP				
	df	SS	MS	F	gnificance F											
Regressio	1	1.561882	1.561882	1.603831	0.229392											
Residual	12	11.68614	0.973845													
Total	13	13.24802														
	Coefficientsa	ndard Err	t Stat	P-value	Lower 95\%U	pper 95\%	wer 95.0\%	pper 95.0\%								
Intercept	29.98308	0.745928	40.19567	3.63E-14	28.35784	31.60832	28.35784	31.60832								
MAP	-0.00151	0.001194	-1.26642	0.229392	-0.00411	0.001089	-0.00411	0.001089								

Soils CPI>1.5 v MAP

Soils CPI>1.5 v lowest quarter mean MI

Soils CPI>1.5 v aridity index month max

Soils CPI $>1.5 \mathrm{v}$ radiation highest period

SUMMARY OUTPUT								
Regression Statistics								
Multiple F 0.77697								
R Square	0.603683							
Adjusted I	0.570656							
Standard I	0.661464							
Observati	14							
ANOVA								
	$d f$	SS	MS	F	gnificance F			
Regressio	1	7.997601	7.997601	18.27878	0.001078			
Residual	12	5.250416	0.437535					
Total	13	13.24802						
Coefficientsandard Err			t Stat	P-value	ower 95\%U	Jpper 95\%	wer 95.0\%	pper 95.0%
Intercept	30.03506	0.281325	106.7628	3.05E-19	29.42211	30.64802	29.42211	30.64802
WorldClin	-0.07359	0.017212	-4.27537	0.001078	-0.11109	-0.03609	-0.11109	-0.03609

Soils CPI>1.5 v precipitation driest month

Soils CPI>1.5 v latitude

