The resistivity and permeability of fractured rocks

A dissertation presented by Alison Louise Kirkby

In fulfilment of the requirements for the degree of **Doctor of Philosophy** in the subject of Geophysics

Submitted to the Department of Earth Sciences, School of Physical Sciences, Faculty of Sciences

Adelaide, August 2016

Australian Government Geoscience Australia

CONTENTS

\mathbf{Li}	st of	Tables	ix
\mathbf{Li}	st of	Figures	xi
A	ostra	ct x	ix
\mathbf{St}	atem	ent of Originality x	xi
A	cknov	vledgements xx	iii
1	Intr	oduction	1
	1.1	Contextual Statement	1
	1.2	Background	2
		1.2.1 Geophysical methods applied to permeability exploration	2
		1.2.2 The magnetotelluric method	3
		1.2.3 Anisotropy vs heterogeneity in MT data interpretation	4
		1.2.4 The resistivity and permeability of fractured rocks	5
	1.3	Objectives	7
2	-	pping fractures using 1D anisotropic modelling of magnetotelluric : a case study from the Otway Basin, Victoria, Australia	9
		Summary	12
	2.1	Introduction	12
	2.2	The Magnetotelluric Method	13

	2.3	The O	tway Basin	14
		2.3.1	Regional structure and stress field	14
		2.3.2	Lithology and reservoir properties of the Crayfish Group	16
	2.4	Data		16
		2.4.1	Magnetotelluric data	16
		2.4.2	Resistivity Logs	17
	2.5	Magne	etotelluric data distortion removal	17
	2.6	Uncon	strained 1D anisotropic inversions	20
		2.6.1	Method	20
		2.6.2	Results	22
	2.7	Constr	rained 1D anisotropic inversions	25
		2.7.1	Anisotropy within the Crayfish Group	25
		2.7.2	Anisotropy within basement	26
		2.7.3	Comparison with well data	26
		2.7.4	Map representation of inversion results	29
	2.8	Discus	sion	31
		2.8.1	Evidence for anisotropy	31
		2.8.2	Fractures, permeability and the current stress field	33
	2.9	Conclu	asion	34
3			ivity structure of the Penola Trough, Otway Basin from	_
	mag	-		87
			v	39
	3.1			39
	3.2	The O	v	41
		3.2.1	Tectonics and structure	41
		3.2.2	Penola Trough stratigraphy	42
	3.3	The m	agnetotelluric method	43
		3.3.1	Resistivity anisotropy and heterogeneity in the upper crust	43
	3.4	Data		44

		3.4.1	Magnetotelluric data	44
		3.4.2	Resistivity logs	47
		3.4.3	Seismic reflection data	47
	3.5	1D an	isotropic inversions	49
	3.6	3D inv	versions	50
	3.7	Discus	sion	53
		3.7.1	Differences in the MT data and inversion results between Penola and Koroit	54
		3.7.2	Magnetotellurics: a tool for subsurface mapping in sedimentary basins	55
	3.8	Conclu	usions	56
4		01	permeability and electrical resistivity in fractures using ran- for network models	57
		Summ	ary	59
	4.1	Introd	uction	59
	4.2	Backg	round	61
		4.2.1	Resistor networks	61
		4.2.2	Hydraulic and electrical resistance	62
		4.2.3	Electrical and hydraulic resistance in fractures	62
		4.2.4	Fracture surface topography	64
		4.2.5	Fault offset	66
		4.2.6	Fault spacing	67
	4.3	Metho	d	67
		4.3.1	Fault surface creation	67
		4.3.2	Modified local cubic law	69
		4.3.3	Geometry correction for electrical resistance	70
		4.3.4	Resistance value	70
		4.3.5	Modelling approach	71
		4.3.6	Input parameters	72
	4.4	Result	S	72

		4.4.1	Base case	72
		4.4.2	Matrix and fluid properties	75
		4.4.3	Fault offset	77
		4.4.4	Fault spacing	79
	4.5	Discus	sion	81
	4.6	Conclu	asion	84
5	The	resist	ivity and permeability of 3D fracture networks	87
		Summ	ary	89
	5.1	Introd	uction	89
	5.2	Backg	round	91
		5.2.1	Resistor networks	91
		5.2.2	Hydraulic and electric resistance in fractures	91
		5.2.3	Scaling in fault networks	92
		5.2.4	Fracture aperture	93
	5.3	Metho	d	95
		5.3.1	Fault network generation	95
		5.3.2	Aperture assignment	95
		5.3.3	Local resistance	97
		5.3.4	Input parameters	98
	5.4	Result	s	99
		5.4.1	Densely populated fracture networks	99
		5.4.2	Sparse fracture networks	103
	5.5	Discus	sion	104
	5.6	Conclu	sions	106
6	Sun	nmary	and Conclusion	109
	6.1	Detect	ing fractured rocks with MT	109
	6.2	The re	esistivity and permeability of fractures	110
	6.3	Challe	nges and future directions	112

6.4	Concluding remarks	113
Appen	dix A Supporting Information for Chapter 2	117
A.1	Station locations	117
A.2	Koroit MT data and responses	120
Appendix B Supporting Information for Chapter 3 13		
Appen	dix B Supporting Information for Chapter 3	133
	dix B Supporting Information for Chapter 3 Station locations	
B.1		133

LIST OF TABLES

4.1	Mismatch frequency cutoff values measured in rock samples	65
A.1	Station locations in the Koroit MT survey.	118
A.2	Station locations in the Koroit MT survey (continued)	119
B.1	Locations of stations in Penola Trough MT survey.	134
B.2	Locations of stations in Penola Trough MT survey (continued)	135

LIST OF FIGURES

- 2.4 Resistivity and phase vs. period for two stations. (a) Station 206, where the Z_{xy} and Z_{yx} resistivities are different by less than our chosen threshold of 35 %. (b) Station 306 where the uncorrected Z_{xy} and Z_{yx} resistivities are different by more than 50 %. The Z_{xy} resistivity from Station 306 is closer to the median resistivity of the Z_{xy} and Z_{yx} components at Station 206 over the 1D part of the tensor, and therefore the Z_{yx} resistivity at Station 306 has been shifted to match the Z_{xy} component. Locations of Stations 206 and 306 are shown in Figure 2.1.
- 2.7 Diagram showing the minimum and maximum resistivity, anisotropy ratio and anisotropy strike from unconstrained 1D anisotropic inversions (Section 2.6) along two profiles. For comparison, the following stratigraphic horizons are shown as horizontal lines: top Dilwyn Formation (cyan), top Eumeralla Formation (yellow), top Crayfish Group (blue), and top Basement (red). Profile locations shown in Figure 2.1. Stratigraphic horizon interpretations from Hot Rock Ltd. (2009).

19

24

26

2.10	Diagram showing the minimum and maximum resistivity, anisotropy ratio and anisotropy strike from the second group of constrained 1D anisotropic inversions (Section 2.7.2; anisotropy within Basement) along two profiles. The following stratigraphic horizons are shown as hori- zontal lines: top Dilwyn Formation (cyan), top Eumeralla Formation (yellow), top Crayfish Group (blue), and top Basement (red). Profile lo- cations shown in Figure 2.1. Stratigraphic horizon interpretations from Hot Rock Ltd. (2009)	28
2.11	Diagram comparing deep resistivity logs (light grey) with minimum (black) and maximum (dark grey) resistivities obtained from the first set of constrained inversions (Section 2.7.1). Four stratigraphic horizons are also shown: top Dilwyn Formation (cyan), top Eumeralla Formation (yellow), top Crayfish Group (blue), and top Basement (red)	29
2.12	(a) Results of constrained inversions described in Section 2.7.1 displayed as a map. Colours represent depth of maximum anisotropy within the sedimentary sequence gridded using linear interpolation, bars represent the magnitude of anisotropy, ρ_{max}/ρ_{min} . Interpreted depth of (b) top Crayfish Group and (c) top Basement after Hot Rock Ltd. (2009). The Tyrendarra North Fault is shown in grey. Wells (black stars) are T1 = Taralea 1, F1 = Findra 1, KW1 = Koroit West 1, B1 = Banganna 1, K1 = Killara 1, W5 = Warrong 5	30
2.13	East-northeast oriented pseudosection showing phase tensor ellipses and real induction vectors plotted using the Parkinson convention (Parkin- son, 1959). Ellipses are coloured by the minimum phase, Φ_{min} . Profile location shown in Figure 2.1.	32
3.1	Map showing key locations for this study. Main map: Haselgrove– Balnaves 3D seismic survey (light grey), MT station locations (dark grey triangles) with stations discussed in the paper labelled, wells (black stars); Hu1 = Hungerford 1, L1 = Laira 1, LR1 = Limestone Ridge 1, B1 = Balnaves 1, R1 = Redman 1, K1-4 = Katnook 1-4, LG1-3 = Lad- broke Grove 1-3, P1 = Pyrus 1, J1 = Jolly 1, W1-2 = Wynn 1-2, H1 = Haselgrove 1, H2 = Haselgrove 2, HS1 = Haselgrove South 1, HS2 = Haselgrove South 2. Inset: The location of the Koroit and Penola surveys, Otway Basin (pink) including the offshore portion (grey with pink overlay). Black arrows indicate maximum horizontal stress	41
3.2	Otway Basin stratigraphy in the Penola Trough showing the strati- graphic units discussed in this paper and their ages, modified after Boult (2002)	42

3.3	Magnetotelluric data from the Penola Trough shown as phase tensor ellipses and all components of resistivity, phase and tipper as a function of period for four example stations. Phase tensor ellipses shown with real induction vectors (plotted using the Parkinson convention) at a period of 12 s, coloured by the minimum phase Φ_{min} . High voltage power lines shown as a yellow and black line. The Z_{YX} phase angles in the examples have had 180° added to put them in the same quadrant as the Z_{XY} phases. Responses from the 1D anisotropic inversion results shown in black. Station locations shown in Figure 3.1.	45
3.4	Magnetotelluric data from the Koroit region of the Otway Basin shown as phase tensor ellipses and induction vectors (plotted using the Parkin- son convention) at a period of 12 s, coloured by the minimum phase Φ_{min} , and all components of resistivity, phase and tipper as a function of period for two example stations.	46
3.5	Resistivity logs for representative wells in the Penola Trough and 1D anisotropic inversion models from the nearest station to each well. Where wells are close together (< 1 km; e.g. Katnook 1–4) one or two representative wells from that region are shown. Resistivity logs shown in grey, minimum and maximum resistivity from the inversions shown in black as solid and dotted lines. Horizontal bars represent the top of various stratigraphic units with the colours indicated in Figure 3.2.	46
3.6	Interpretation of the HaselgroveBalnaves 3D seismic survey for five strati- graphic horizons in the Penola Trough. Top and bottom left: interpre- tation along two profiles, bottom right: the top Crayfish Group horizon as a map showing the profile locations. The colours of each interpreted horizon corresponds to the colours indicated in Figure 3.2	48
3.7	Example 1D inversion models from the Penola region selected along a northeast – southwest profile (station locations shown in Figure 3.1). Top row: minimum and maximum resistivity, with stratigraphic horizons indicated in the colours given in Figure 3.2. Bottom row: resistivity anisotropy factor (maximum/minimum resistivity) and the strike angle of the minimum resistivity	49
3.8	Results of 3D inversion of the Penola MT dataset along two profiles, with locations indicated on a depth slice at 2.44 km. Profile B–B' here is parallel to, but 1 km east of B–B' in Figure 3.6 to allow the stations in the northeast corner of the model to be shown. Stratigraphic horizon interpretations indicated as black lines; the basement horizon is taken from Jensen-Schmidt et al. (2002); all other horizons have been interpreted from the HaselgroveBalnaves survey (Figure 3.6). Stations shown on the cross sections indicated as white triangles; stations shown on both the cross sections and in Figure 3.7 indicated as grey triangles. Resistivity logs from wells within 2 km of the profiles are shown where available on the same colour scale as the resistivity models	52

3.9 Model responses to the 3D inversion model shown in Figure 3.8. Resistivity and phase responses shown in black over the input data; real and imaginary tipper responses shown in black and grey (the input data are shown in Figure 3.3). No tipper responses shown for Station 110R as tipper data was excluded from the inversion for this station due to its proximity to the power lines. Station locations shown in Figure 3.1. . . 53

4.1	Fractal dimension as a function of scaling factor as defined by Equa-	
	tion 4.12 for measured samples	65

- 4.3 Diagram showing key features of the model setup used for modeling fluid flow and current through fractures. Parameters used for calculating the effective hydraulic and electric aperture are shown, including the midpoints of each flat plate (white stars) and aperture at these points b_p , the center points of the edges of the plates (black dots), the aperture at these points (b_n) , and the local relative angle between the plates, θ . The two surfaces shown have dimensions of 100 × 100 mm, and were created using a fractal dimension of 2.4 and an elevation scale factor of 1.9×10^{-3} . The surfaces have an offset of 1 mm between them.
- 68

66

73

4.5	Fluid and current flow along a fracture with no horizontal offset but with two different separation values. (a) aperture distribution, (b) elec- trical current and (c) fluid flow for a fracture in which the fault surfaces have been separated by -0.006 mm. This fracture is at its percolation threshold. (d) aperture distribution, (e) electrical current and (f) fluid flow for a fracture with a separation of 0.000 mm. This fracture is above its percolation threshold	74
4.6	Changes in M and permeability as a fracture is opened for rough frac- tures with no offset. (a) Permeability as a function of M and (b) per- meability and M as a function of arithmetic mean fracture aperture for matrix permeability values of 10^{-14} m ² , 10^{-16} m ² , and 10^{-18} m ² . (c) Per- meability as a function of M and (d) permeability and M as a function of arithmetic mean fracture aperture for m equal to 10, 100, 1000, and 10000. Stars indicate the percolation threshold, and triangles indicate the leveling off point, as described in the text.	75
4.7	Percolation threshold location M_{PT} as a function of matrix to fluid resis- tivity ratio for fractures with no offset, contained within a matrix with a permeability of 10^{-18} m ² , with <i>m</i> ranging from 3 to 3×10^4 . The percola- tion threshold is indicated by a grey line, with the error bars indicating the standard deviation. The leveling off point is indicated by the dotted black line. The stars and triangles correspond to the percolation thresh- olds and leveling off points in the examples shown in Figure 4.6c and d. The dashed line and corresponding equation is a line of best fit for the points with a matrix to fluid resistivity ratio greater than or equal to 100.	76
4.8	Changes in M and permeability as a fracture is opened, for faults with offsets of 0.0, 0.5, 2.5, and 10.0 mm. The matrix permeability is 10^{-18} m ² and m is equal to 10^4 . Dashed lines show the permeability and resistivity of a flat plate model with equivalent mean aperture, and stars and triangles indicate the median percolation threshold and leveling off point respectively. (a) Permeability and matrix to fracture resistivity as a function of arithmetic mean aperture. (b) Permeability as a function of matrix to fracture resistivity ratio.	78
4.9	Changes in M_{PT} (solid lines) as a function of matrix to fracture resistiv- ity ratio for faults with offsets of 0.0, 0.5, 2.5, and 10 mm with matrix permeability equal to 10^{-18} m ² . Error bars indicate the standard error, and dotted lines indicate the leveling off point	78
4.10	The ratio M_{PT} (solid lines) and leveling off point (dotted lines) as a function of m for faults with offsets of 0.0 mm (black), 0.5 mm (blue), 2.5 mm (green), and 10 mm (cyan). Matrix permeability is equal to 10^{-18} m ² , fault spacing is fixed at 10 mm. The permeability values at the percolation threshold and leveling off point are labelled. Error bars indicate standard error.	80

- 4.11 Changes in M as a fracture is opened for fractures spaced varying widths apart within a rock matrix with a permeability of 10^{-18} m². Dashed lines show the permeability and resistivity of a flat plate model with equivalent mean aperture. (a) Permeability as a function of M for fractures with no offset spaced 1 mm, 10 mm and 100 mm apart, with m fixed to 10^4 . (b) Percolation threshold location (solid line), and leveling off point (dotted line), as a function of matrix to fluid resistivity ratio for fractures with no offset, for faults spaced 1 mm, 10 mm and 100 mm apart, with error bars indicating standard deviation. 81
- 4.12 The development of the transport properties of a rough fracture embedded in a low permeability and electrical conductivity matrix as a function of the incremental separation of the fracture surfaces.
- 5.1Key features of the model setup used for modeling fluid flow and current through fracture networks. An example fracture network is shown, generated with a equal to 2.5 and α equal to 3. Two intersecting fractures from the network shown in detail, from the fracture surfaces for each fracture, to the aperture, corrected aperture, and finally, the resistance. All aperture values in this diagram represent y direction resistances, i.e., into the page. The vertical fracture has a local aperture that exceeds one cell width, and so the fracture has been extended into the adjacent cells.
- 5.2The evolution of permeability and resistivity (black dotted, dashed and solid lines for x, y and z directions respectively) in a dense fracture network with the density constant α equal to 30, as the fractures within that network are opened. (a) permeability and (b) resistivity ratio M in three directions as a function of arithmetic mean aperture. The mean and standard deviation contact area for all models shown in grey. (c) permeability as a function of M. The resistivity and permeability of the fracture network in Figure 5.4 shown in red. 100
- 5.3Anisotropy in permeability and resistivity as a function of arithmetic mean aperture for an α value of 30. Anisotropy shown as the maximum factor, i.e. xy anisotropy is the maximum of x/y and y/x resistivity or permeability. (a) permeability anisotropy and (b) resistivity anisotropy. 101
- Fluid flow and current passing through a fracture network as the frac-5.4tures are progressively opened. The network was built using an α value of 30. (a) flow rate and (b) current for a fault separation of -0.16 mm, (c) flow rate and (d) current for a fault separation of -0.038 mm, (e) flow rate and (f) current for a fault separation of -0.021 mm, (g) flow rate and (h) current for a fault separation of 0.009 mm. The resistivity and permeability of this network shown in Figure 5.2. 102

82

96

103	The evolution of resistivity and permeability (black dotted, dashed and solid lines for x, y and z directions respectively) in a dense fracture network with the density constant α equal to 3, as the fractures within that network are opened. (a) permeability and (b) resistivity ratio M in three directions as a function of arithmetic mean aperture. The mean and standard deviation contact area for all models shown in grey. (c) permeability as a function of M .	5.5
104	Anisotropy in permeability and resistivity as a function of arithmetic mean aperture for an α value of 3. Anisotropy shown as the absolute factor, i.e. xy anisotropy is the maximum of x/y and y/x . (a) permeability anisotropy and (b) resistivity anisotropy.	5.6
104	The evolution of resistivity and permeability (black dotted, dashed and solid lines for x, y and z directions respectively) in a dense fracture network with the density constant α equal to 0.3, as the fractures within that network are opened. (a) permeability and (b) resistivity ratio M in three directions as a function of arithmetic mean aperture. The mean and standard deviation contact area for all models shown in grey. (c) permeability as a function of M .	5.7
117	Locations of MT stations in the Koroit MT survey (Chapter 2). Station labels displayed as numbers only for clarity.	A.1
120	Koroit data and resistivity and phase responses to the 1D anisotropic inversion models in Chapter 2. Resistivity and phase responses shown in black over the input data; real and imaginary tipper data shown in green and grey.	A.2
121	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.3
122	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.4
123	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.5
124	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.6
125	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.7
126	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.8
127	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	A.9

A.10	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	128
A.11	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	129
A.12	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	130
A.13	Koroit resistivity and phase data and responses to the 3D inversion model in Chapter 2 (continued)	131
B.1	Locations of the MT stations in the Penola MT survey (Chapter 3) \therefore	133
B.2	Penola data and resistivity and phase responses to the 3D inversion model in Chapter 3. Resistivity and phase responses shown in black over the input data; real and imaginary tipper data shown in green and grey.	136
B.3	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	137
B.4	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	138
B.5	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	139
B.6	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	140
B.7	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	141
B.8	Penola resistivity and phase data and responses to the 3D inversion model in Chapter 3 (continued)	142

ABSTRACT

The resistivity and permeability of fractures and faults by Alison Kirkby

Fracture permeability is necessary for the development of many unconventional energy resources, as they are often hosted in rocks with low primary permeability. The magnetotelluric (MT) method has previously imaged temporal resistivity changes associated with injection of conductive fluids into the subsurface. This thesis examines MT responses over two areas of the Otway Basin, Australia, to determine what characteristics of natural fractures can be imaged using MT. In addition, the resistivity and permeability of synthetic fractures and 3D fracture networks are modelled, to draw a link between the resistivity values that are measured and the permeability.

One dimensional anisotropic MT inversions in the Koroit region, Victoria, central onshore Otway Basin, delineate strong resistivity anisotropy at 2-3 km depth with a north-northwest strike. The anisotropy strike is consistent with that of known fracture networks in the Koroit region, and the groundwater at this depth is known to be saline. Thus, the resistivity anisotropy is interpreted as fluid-filled fractures and faults, reducing the resistivity in the north-northwest direction. In contrast, anisotropic inversions in the Penola Trough, western Otway Basin, reveal only minor anisotropy that is inconsistent with known fractures from coincident well image log and seismic data. Thus, an isotropic interpretation is consistent with the data here. Likewise, higher resistivities and lower permeabilities have been measured in wells in Penola, compared to Koroit.

The resistivity and permeability of synthetic fractures filled with an electrically conductive fluid change non-linearly as the fractures are incrementally opened. A percolation threshold can be defined, below which the permeability and resistivity are close to the rock matrix values. At the percolation threshold, the permeability increases by three orders of magnitude or more over an aperture change of < 0.1 mm. The resistivity change depends on the ratio of the rock to fluid resistivity but is generally less than the permeability change, and occurs over a wider aperture range. Similar characteristics are observed in 3D fracture networks except that in networks, percolation is controlled by both the fault network density and fault connectivity. Many sparse networks will not percolate no matter how open the faults are. When the fault density is sufficiently high, a percolation threshold can be defined in terms of the mean fault aperture. At the percolation threshold, a change in mean aperture of 0.02 mm changes the permeability by four orders of magnitude and resistivity by a factor of four. The percolation threshold does not necessarily occur at the same aperture for different flow directions, so fault networks near their percolation threshold commonly show anisotropy in both resistivity and permeability.

Therefore, not only are the MT responses in the Koroit region of the Otway Basin consistent with the presence of resistivity anisotropy due to pervasive open fractures and faults, but realistic fault networks can produce such anisotropic resistivities and permeabilities, with the amount of anisotropy highly sensitive not only to the density of faults in an area but also the degree of openness in the fractures themselves.

Thesis Supervisors: Graham Heinson, Simon Holford, Derrick Hasterok

STATEMENT OF ORIGINALITY

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisors, Graham Heinson, Simon Holford and Derrick Hasterok, for helping me develop such an exciting and relevant project. Thanks also for giving me the freedom to develop my ideas but providing guidance and advice as necessary, and for your continued enthusiasm for this work throughout the project.

Thanks to all my fellow geophysics PhD students and postdocs for making the time spent working here so enjoyable. I've really enjoyed working with you all and having you there to discuss ideas and provide advice when needed. Thanks to Sebastian Schnaidt in particular for sharing this fantastic thesis template.

I'd also like to thank all my family and friends, near and far, for your support. In particular, thank you Tim, for your support, understanding and patience throughout the PhD. Thanks also to Kate, for our many helpful discussions on geophysics (and everything else), whilst running, and potentially more frequent; discussions on running whilst doing geophysics.

Finally, thanks to Hot Rock Ltd (in particular, Mark Elliott and Peter Barnett) for providing the Koroit MT data and supporting information for Chapter 2 and for giving me the freedom to publish and present it, and the Australian Geophysical Observing System (AGOS) for funding to collect the MT data in Chapter 3.

This project was carried out with the assistance of a scholarship from Geoscience Australia, as well as resources from the National Computational Infrastructure, which is supported by the Australian Government.