
Search for nonstandard neutrino interactions with IceCube DeepCore

M. G. Aartsen,2 M. Ackermann,52 J. Adams,16 J. A. Aguilar,12 M. Ahlers,20 M. Ahrens,44 I. Al Samarai,25 D. Altmann,24

K. Andeen,33 T. Anderson,49 I. Ansseau,12 G. Anton,24 C. Argüelles,14 J. Auffenberg,1 S. Axani,14 H. Bagherpour,16

X. Bai,41 J. P. Barron,23 S. W. Barwick,27 V. Baum,32 R. Bay,8 J. J. Beatty,18,19 J. Becker Tjus,11 K.-H. Becker,51 S. BenZvi,43

D. Berley,17 E. Bernardini,52 D. Z. Besson,28 G. Binder,9,8 D. Bindig,51 E. Blaufuss,17 S. Blot,52 C. Bohm,44 M. Börner,21

F. Bos,11 D. Bose,46 S. Böser,32 O. Botner,50 E. Bourbeau,20 J. Bourbeau,31 F. Bradascio,52 J. Braun,31 L. Brayeur,13

M. Brenzke,1 H.-P. Bretz,52 S. Bron,25 J. Brostean-Kaiser,52 A. Burgman,50 T. Carver,25 J. Casey,31 M. Casier,13 E. Cheung,17

D. Chirkin,31 A. Christov,25 K. Clark,29 L. Classen,36 S. Coenders,35 G. H. Collin,14 J. M. Conrad,14 D. F. Cowen,49,48
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As atmospheric neutrinos propagate through the Earth, vacuumlike oscillations are modified by
Standard Model neutral- and charged-current interactions with electrons. Theories beyond the Standard
Model introduce heavy, TeV-scale bosons that can produce nonstandard neutrino interactions. These
additional interactions may modify the Standard Model matter effect producing a measurable deviation
from the prediction for atmospheric neutrino oscillations. The result described in this paper constrains
nonstandard interaction parameters, building upon a previous analysis of atmospheric muon-neutrino
disappearance with three years of IceCube DeepCore data. The best fit for the muon to tau flavor changing
term is ϵμτ ¼ −0.0005, with a 90% C.L. allowed range of −0.0067 < ϵμτ < 0.0081. This result is more
restrictive than recent limits from other experiments for ϵμτ. Furthermore, our result is complementary to a
recent constraint on ϵμτ using another publicly available IceCube high-energy event selection. Together,
they constitute the world’s best limits on nonstandard interactions in the μ − τ sector.

DOI: 10.1103/PhysRevD.97.072009

I. INTRODUCTION

Neutrino flavor change has been observed and confirmed
by a plethora of experiments involving solar, atmospheric,
reactor, and accelerator-made neutrinos; see [1–3] and
references therein. This phenomenon, also known as neu-
trino oscillations due to its periodic behavior, implies that at
least two of the Standard Model (SM) neutrinos have a
nonzero mass, making this the first established deviation
from the SM. The massive three-neutrino model has been
very successful in explaining the neutrino datawith twomass
differences, known as the solar squared-mass difference
(Δm2

21 ≈ 7.5 × 10−5 eV2) and the atmospheric squared-
mass difference (jΔm2

23j ≈ 2.5 × 10−3 eV2) [1,2]. This infor-
mation, along with the fact that experiments pursuing direct
neutrino mass measurements have yielded only upper limits
[3], leads to the conclusion that neutrinos have masses that
are at least 6 orders of magnitude smaller than those of the
charged leptons. Whether these small masses are generated
also by the Higgs mechanism, implying the existence of
noninteracting right-handed states, or by a different yet-
unknown mechanism remains an open question.
Many extensions to the SM that incorporate small

neutrino masses have been put forward. A subset that
addresses small neutrino masses and, at the same time,
unifies the electroweak and strong forces is called “Grand
Unified Theories” (GUTs). Some of these GUT models
predict the existence of heavy TeV-scale bosons [4].

Searches for direct evidence of these particles have been
performed by experiments at the Large Hadron Collider. To
date, no evidence has been observed [5,6]. In this paper, we
address these predictions through a complementary search
in the neutrino sector, seeking evidence for new flavor-
changing neutrino interactions produced by TeV-scale
bosons [7–12].
Nonstandard interactions (NSIs) will introduce modifi-

cations of the SM potential, which is relevant for matter
effects in neutrino flavor oscillations. The effect of the NSI
is expected to grow with distance travelled through matter
and becomes more relevant as the neutrino energy
increases. As a result, the flux of atmospheric neutrinos
detected by the IceCube Neutrino Observatory at the South
Pole is ideal for such a study [9,13]. In the analysis
presented here, we use the data set from [14] obtained
with IceCube DeepCore with three years of runtime, which
contains multi-GeV atmospheric neutrinos that traverse
large fractions of the Earth before reaching the IceCube
detector. Because the neutrino production is predominantly
from pion and kaon decays, the neutrino flux has well-
understood initial flavor ratios [15,16].
Current bounds on NSI are reported in [17–19], and

current reviews are given in [20–23]. In fact, independent
studies of high-energy atmospheric neutrinos using public
IceCube data [24] as well as studies with public Super-
Kamiokande data [25] have already been performed,
obtaining strong constraints on NSI parameters. Regarding
the latter, the Super-Kamiokande Collaboration has also
performed an analysis on NSI parameters [26]. The IceCube
studies have so far only used high-energypublic data sets, but
no low-energy sets. This motivates the presented search,
wherewe focus on theNSI parameter ϵμτ, whichmodifies the
νμ → ντ flavor transition.
The rest of this paper is structured as follows. In Sec. II,

we review neutrino oscillations in matter. In Sec. III, we
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describe the NSI theory used in this work. Then, in Sec. IV,
we describe the IceCube experiment, and in Sec. V we
discuss the main systematics of this analysis. Section VI
contains the main results of this paper, and in Sec. VII, we
conclude.

II. MATTER EFFECTS IN
NEUTRINO OSCILLATIONS

Neutrinos are produced in flavor eigenstates but travel as
mass eigenstates, meaning that a certain flavor of neutrino
produced at the source may later interact as a different
flavor [27,28]. At its simplest, when neutrinos travel
through vacuum, the oscillation length is given by Losc ¼
2.5 km ðE=GeVÞðΔm2=eV2Þ−1 [3].
Since neutrinos interact via neutral- and charged-current

weak interactions, neutrino oscillations are modified as
matter is traversed. In particular, the propagating
neutrino—which is a mixture of electron, muon, and tau
flavors—will experience a flavor-dependent matter poten-
tial. The relevant potential difference is produced by
charged-current coherent forward scattering from electrons
in the Earth. We will refer to this as “matter effect,” and it is
closely related to the Mikheyev-Smirnov-Wolfenstein
(MSW) effect [29,30] observed in solar neutrino experi-
ments [31–34]. Indications of matter effects [35,36] in
Earth-based oscillation experiments can be extracted from
global fits to long-baseline and atmospheric neutrino
data sets [37].

III. NONSTANDARD NEUTRINO INTERACTIONS

Nonstandard neutrino interactions can be modeled as an
additional term in the neutrino Hamiltonian, similar to the
conventional matter potential term. The latter effect is
included in the neutrino Hamiltonian as a single potential,
VCC, which modifies the flavor transition probabilities. The
potential VCC is proportional to the Fermi coupling constant
Gf and the density of electrons ne, i.e., VCC ¼ ffiffiffi

2
p

Gfne.
Adding interactions with nonstandard bosons to the

Hamiltonian takes a similar form, but with additional
components. To consider all possible flavor-violating
interactions, a term ϵαβ (α; β ¼ e, μ, τ) scales all possible
flavor-violating and conserving contributions. For definite-
ness, in this analysis, we consider nonstandard interactions
between neutrinos and down quarks (other assumptions,
such as for up quarks, can be approximated by rescaling our
results). For this reason, a factor of nd ¼ 3ne (to account for
the fact that down-quarks are approximately 3 times as
abundant as electrons in the Earth) was used instead of ne
as in the case of the SMmatter effect. The total Hamiltonian
is then

H3ν ¼
1

2Eν
UM2U† þ VCCdiagð1; 0; 0Þ þ VCC

nd
ne

ϵ; ð1Þ

where Eν is the neutrino energy, U is the neutral lepton
mixing matrix (also known as the Pontecorvo-Maki-
Nakagawa-Sakata matrix [27,28]), M2 is a diagonal matrix
containing the square-mass differences, and

ϵ ¼

0

B

@

ϵee ϵeμ ϵeτ

ϵ�eμ ϵμμ ϵμτ

ϵ�eτ ϵ�μτ ϵττ

1

C

A

; ð2Þ

the NSI strength matrix. Accordingly, the addition of the
NSI terms amounts to introducing six additional effective
parameters if one accounts for Hermiticity, unitarity con-
straints, and the possibility of making the Hamiltonian
traceless without loss of generality; see [38]. However, for
experiments like Super-Kamiokande and IceCube, the
terms that correspond to νμ or ντ interactions will dominate.
This is because the atmospheric neutrino flux in the GeV
energy range is dominated by νμ, which primarily transform
into ντ as they travel through the Earth [39,40].
SMmatter effects and NSI can be distinguished using the

energy and arrival direction distributions of observed
flavor-violating transitions. The neutrino flavor oscillations
due to the well-established mass differences have been
observed from atmospheric neutrinos predominately at
energies initially below 10 GeV [41] and recently up to
56 GeV [14]. The observation of atmospheric neutrino
oscillations at two different energy ranges but at the same
ratio of baseline to energy (L=E) tests the massive three
neutrino paradigm and highlights the complementarity of
neutrino experiments at different energy ranges. In contrast,
the signal predicted for the dominant muon-neutrino to tau-
neutrino NSI, parametrized by the coupling ϵμτ, has a
smaller magnitude but can be seen over a larger range of
energies, as shown in Fig. 1. Therefore, the optimal method
for searching for an NSI signal due to ϵμτ is to use a large
range of neutrino energies, where one expects a combined
effect of the NSI and oscillations in the low-energy region
and an exclusively NSI signal in the high-energy region. In
particular, we note that IceCube’s range extends to higher
energies than that of previous studies, thus giving us greater
sensitivity.
A study by Super-Kamiokande [26], using a two-

neutrino approximation, focused on the NSI parameters
ϵ0 ¼ ϵττ − ϵμμ and ϵμτ. Prior to works using IceCube data,
this resulted in the world’s best limit with jϵμτj < 0.011 at
90% C.L. As in the Super-Kamiokande study, we choose to
only consider the dominant NSI terms by setting the ϵee,
ϵeμ, and ϵeτ matrix elements to zero, and the Hermiticity of
ϵ is also assumed. Thus, the NSI sector reduces to a two by
two matrix, so the CP-violating phase can be rephased; i.e.,
we assume ϵμτ to be real. As can be seen in [21], the
neutrino mass ordering is degenerate with the sign of ϵμτ,
and the muon neutrino survival probability is symmetric
under sign change of ϵ0. Given that ϵ0 is highly correlated
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with ϵμτ in this analysis, we set ϵ0 to zero, i.e., ϵττ ¼ ϵμμ.
Also, for definiteness, we assume normal ordering. These
assumptions restrict the interpretation of our results
[21,26,42,43], as can be seen by simplifying the oscillation
expression assuming two-flavor maximal mixing. In this
case. the oscillation amplitude is [26]

sin22θeff ¼
ð1� 2ημτÞ2

ð1� 2ημτÞ2 þ ðη0Þ2 ; ð3Þ

where η is proportional to ϵ with proportionality constants
that depend on the matter density and GF. As expected,
when ϵ0 becomes large enough, the quantum-Zeno effect
[44] applies, and the flavor transitions are suppressed. For
large values, this suppresses the well-established standard
atmospheric neutrino oscillation, providing constraints on

ϵ0. On the other hand, null ϵ0 provides the strongest
constraints on ϵμτ, which is the scenario we report in this
work.

IV. THE ICECUBE DETECTOR

IceCube is a 1 km3 neutrino detector [45–47]
embedded in the ice at the South Pole; see Fig. 2. The
detector consists of 86 strings, each with 60 10-inch
photomultiplier tubes enclosed in glass spheres, called
digital optical modules (DOMs). Of those strings, 78 are
separated by a distance of approximately 125 m, with
DOMs on each string separated by 17 m. An additional
infill extension, DeepCore [48], consists of 8 strings
separated by about 75 m, with DOMs on each string
separated by 7 m. Secondary particles produced when
neutrinos interact in the ice, induce Cherenkov radiation,
which is then detected by the DOMs. Muons produce
distinctively long tracks. This topology can be recon-
structed to determine the angle of the muon with a
resolution of 12° at 10 GeV, improving to 6° at
40 GeV [14]. The energy of the muon can be measured
from its track length, while the energy of the hadronic
shower produced in the neutrino interaction can be
estimated from the total amount of light in the detector.
Thus, the muon energy, estimated from the track length,
added to the reconstructed shower energy is a proxy for
the neutrino energy. The closely spaced DOMs of the
DeepCore extension allow measuring the neutrino energy
down to neutrino energies of about 5 GeV, with a median
resolution of 30% at 8 GeV, which improves to 20% at
20 GeV [14]. This analysis makes use of neutrinos that
reach the detector from below the Earth’s horizon. This
serves two purposes: first it greatly diminishes atmos-
pheric muon contamination and, second, it allows for
large matter effects.

FIG. 1. Muon neutrino (top) and antineutrino (bottom) survival
probability at zenith angle cos θ ¼ −1, corresponding to verti-
cally up going neutrinos that traverse the entire diameter of the
Earth, for global best-fit oscillations (solid) and ϵμτ ¼ 0.01 NSI,
close to the current Super-Kamiokande limits (dashed)[26].
NSI effects are visible in the full neutrino energy range of
10–1000 GeV.

FIG. 2. Detector geometry: green circles represent IceCube
strings and red ones DeepCore strings.
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V. ICECUBE SENSITIVITY TO NONSTANDARD
INTERACTIONS AND SYSTEMATIC

UNCERTAINTIES

A. Sensitivity and data set

IceCube has measured neutrino oscillation parameters by
searching for a deficit of neutrinos traveling through Earth
and interacting in the detector. In IceCube, the νμ disappear-
ance probability peaks at ∼25 GeV for straight up going
events, but the oscillation signal is measurable up to about
100 GeV, as shown in Fig. 1. In 2014, IceCube published the
result of fitting 5174 events from three years of data taken
with the complete IceCube detector, obtaining three-neutrino
oscillation parameters to a precision comparable with that
from dedicated neutrino oscillation experiments [14]. The
event selection is based on up going events that interact
within DeepCore and follows the procedure in [14]. A high
quality of the reconstruction is imposed by requiring that the
registered photons are largely unscattered. The atmospheric
muon background is rejected efficiently by using the
surrounding detector as veto for incoming down-going
muons. In addition to the analysis [14], we have improved
the background rejection by limiting the amount of charge
deposition in the top part of the detector. This sample has
approximately 70% purity of νμ CC interactions, the rest
being dominated by CC interactions of other flavors and NC
of all flavors with an additional approximately 4% atmos-
pheric muon contamination.
This study uses a three-neutrino formalism of the

neutrino survival probabilities to calculate limits on the
ϵμτ parameter. We use the publicly available nuSQuIDS
neutrino survival probability package [49,50], which has a
robust implementation of NSI and uses a detailed Earth
density profile [51]. Simulated events are weighted with the
Honda et al. atmospheric neutrino model [15], then are
binned in an 8 × 8 matrix in reconstructed energy, from 6.3
to 56.2 GeV, and zenith angle, from cos θrecoz ¼ −1 to

cos θrecoz ¼ 0. To determine the expected sensitivity for
values of ϵμτ in the range of the Super-Kamiokande limit,
the total number of events expected with and without NSI
effects were calculated as shown in Fig. 3.
This figure shows that the NSI effect increases with

increasing jcos θj as a larger amount of matter is traversed;
this is also the zenith region where standard oscillations
manifest themselves so that interference with them is
possible.

B. Systematic uncertainties

Systematic uncertainties that we have included as nui-
sance parameters in the fit are

Oscillation parameters: Simultaneously fit for the stan-
dard oscillation parameters sin2ðθ23Þ and Δm2

31 as
nuisance parameters.

Ice column scattering coefficient: Scattering of light in
the ice that formed within the hole after the DOMs
were inserted [52]. This ice contains bubbles that are
not found in the bulk ice of the detector. The latter is
well studied using flashers and well modeled. The
additional bubbles increase the scattering of light,
affecting the effective angular efficiency of our
DOMs; see [52] for details.

Optical efficiency: The uncertainty in the photon re-
sponse of the optical modules due to many effects,
including photocathode response and obscured re-
gions due to cabling.

Overall normalization (N): Parameter that scales the
event rate expectation freely. This systematic absorbs
overall normalization uncertainties due to absolute
DOM efficienciy and total cosmic ray flux.

Relative νe to νμ normalization (Ne=μ): Relative nor-
malization of the electron neutrinos to atmospheric
muon neutrinos.

Atmospheric muon fraction (Rμ): Normalization of
cosmic ray muons that pass the cuts. The distribution

FIG. 3. Expected pulls of predicted event numbers as a function of neutrino energy and zenith angle. The left (right) panel compares
ϵμτ ¼ −0.01 (ϵμτ ¼ 0.01) to the standard neutrino oscillation matter effects (SI) expectation.
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of this background was obtained using a data driven
method [14].

Spectral index (γ): The exponent describing the energy
dependence of the incoming cosmic ray spectrum.
This systematic in part accounts for uncertainties due
to hadronization processes [53].

For a more detailed discussion of these systematic effects,
see [54].

VI. RESULT

In order to constrain the NSI parameter ϵμτ, we employ
the same data set and event selection in this analysis as was
used in [14]. This analysis has the same energy, zenith
angle resolution, and systematic uncertainties as the analy-
ses in [14,54] with an additional fiducial volume cut,
resulting in a final sample of 4625 events [54]. To
determine the best-fit oscillation parameters, the simulated
data distributions are compared to the data bin-by-bin.

Minimizing the Poisson likelihood value of the data given
the Monte Carlo, modified by the nuisance parameters (as
described in [14,54]), determines the final best-fit param-
eters. The data and Monte Carlo at the best-fit point are in
good agreement after the fit, as shown in Fig. 4, with best-
fit nuisance parameters given in Table I. The 90% C.L.
limits are then calculated using the difference from the best-
fit likelihood, assuming Wilks’s theorem applies [55]. We
obtain a likelihood that would correspond to a
χ2=dof ¼ 53.82=55. To make the comparison to [24],
we also calculate the credibility regions by integrating
the profiled likelihood using a uniform prior on ϵμτ and
profiling over the nuisance parameters. This procedure is
found to be in good agreement with the result obtained
using Wilks’s theorem.
The resulting constraints on the NSI parameters are

shown in Fig. 5, with the best-fit values for the systematic
parameters shown in Table I. Priors on the atmospheric and

FIG. 4. Data (black points) and Monte Carlo (solid lines) comparisons for the best-fit nuisance parameters of this analysis, as a
function of the arrival direction, cosðθrecoz Þ, in the eight different energy bins. The orange color corresponds to the best-fit point
(ϵμτ ¼ −5 × 10−4) and the light green to ϵμτ ¼ 0.015. The error bars include statistical uncertainties only.
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detector nuisance parameters are the same as in [14].
Furthermore, Fig. 6 shows the correlation between the fit
parameters at the best fit of oscillation and nuisance
parameters. The mass-squared difference Δm2

31 exhibits
the strongest correlation with ϵμτ. This is to be expected
from existing correlations and degeneracies in the oscil-
lation probability [38]. Finally, the change in the oscillation
parameters compared to [14] has been demonstrated to be
caused by the additional cut on the fiducial volume.
For this analysis, the best fit is at ϵμτ ¼ −0.0005. The

90% C.L. range is −0.0067 < ϵμτ < 0.0081. This result is
consistent with the Super-Kamiokande limits for ϵμτ [26]
and represents an independent determination of the

parameter. To compare with this, in Fig. 5 we show the
results from [24] obtained using public IceCube high-
energy data. Fig. 1 shows that the signal for ϵμτ is largest in
the region above 100 GeV. A planned extension of this
study including a sample of events above 100 GeV would
significantly improve constraints on NSI parameters [13].

VII. CONCLUSIONS

The existence of physics beyond the standard model has
been suggested by the nonzero neutrino mass, in addition to
the existence of dark matter. Extensions of the standard
model that explain these observations could lead to a
modified strength of neutrino interactions in standard
matter. Experiments like IceCube have the potential to
constrain these nonstandard interactions with greater pre-
cision than previous experiments.
Our best fit of the NSI flavor-changing parameter

yields ϵμτ ¼ −0.0005, with a 90% C.L. range of
−0.0067 < ϵμτ < 0.0081. This result is comparable to,
and provides a slight improvement over, the Super-
Kamiokande limits for ϵμτ (jϵμτj < 0.011 at 90% C.L.).
A recent study [24] using IceCube public data obtained
constraints which are slightly better than the ones shown in
this paper. These constraints are also shown in Fig. 5 and
are complementary to our result as they are affected by
different systematics and make use of a different energy
regime.
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FIG. 6. Correlation matrix of the nuisance and physics param-
eters considered in this analysis calculated at the maximum
likelihood solution. The color scale shows the correlation
coefficient (ρ).
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