
Deep Learning Based RGB-D
Vision Tasks

Yuanzhouhan Cao

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY
The University of Adelaide

February 2018





Declaration

I certify that this work contains no material which has been accepted for the award
of any other degree or diploma in my name, in any university or other tertiary insti-
tution and, to the best of my knowledge and belief, contains no material previously
published or written by another person, except where due reference has been made
in the text. In addition, I certify that no part of this work will, in the future, be used
in a submission in my name, for any other degree or diploma in any university or
other tertiary institution without the prior approval of the University of Adelaide
and where applicable, any partner institution responsible for the joint-award of this
degree.

I give consent to this copy of my thesis, when deposited in the University Library,
being made available for loan and photocopying, subject to the provisions of the
Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on
the web, via the University’s digital research repository, the Library Search and also
through web search engines, unless permission has been granted by the University
to restrict access for a period of time.

I acknowledge the support I have received for my research through the provision
of an Australian Government Research Training Program Scholarship.

iii





Acknowledgments

First of all, I would like to extend my utmost gratitude to my principal supervi-
sor, Prof. Chunhua Shen, for his in-depth guidance on my research. During the
course of my Ph.D. study, he has provided me countless insightful discussions and
suggestions. His intelligence, enthusiasm and dedication to cutting-edge research
encourages me a lot. I would have never been able to finish this thesis without his
supervision. It has been an honor to be one of his students. He has developed me
into a research scientist. I am sure that the experience of working with him would
have a positive impact on my future academic career.

It has also been fantastic to work with a number of generous and supportive
collaborators. I would like to thank my co-supervisor Dr. Lingqiao Liu for all his
expertise, assistance and patience. He has always been available whenever I need
help. I would also like to thank Dr. Guosheng Lin who taught me about structured
learning.

I thank my supportive friends and colleagues at the University of Adelaide. I
would like to thank Yao Li, Ruizhi Qiao, Qichang Hu, Bohan Zhuang and Hui Li.
They have made my experience as a Ph.D. candidate enjoyable. I would like to give
special thanks to Tong Shen, who kindly assisted me with the MXNet implementa-
tions of my algorithms.

Last but not at least, I would like to express my greatest appreciation to my
parents, for all their love and support.

v





Publications

This thesis is based on the content of the following peer-reviewed journal publica-
tions:

• Yuanzhouhan Cao, Chunhua Shen, Heng Tao Shen; “Exploiting Depth From
Single Monocular Images for Object Detection and Semantic Segmentation",
IEEE Transactions on Image Processing (TIP), 2016, DOI: 10.1109/TIP.2016.2621673.
(presented in Chapter 3).

• Yuanzhouhan Cao, Zifeng Wu, Chunhua Shen; “Estimating Depth from Monoc-
ular Images as Classification Using Deep Fully Convolutional Residual Net-
works", IEEE Transactions on Circuits and Systems for Video Technology (TCSVT),
2017, DOI: 10.1109/TCSVT.2017.2740321. (presented in Chapter 4).

• Yuanzhouhan Cao, Tianqi Zhao, Ke Xian, Chunhua Shen, Zifeng Wu, Zhiguo
Cao; “Monocular Depth Estimation with Augmented Ordinal Depth Relation-
ships", IEEE Transactions on Image Processing (TIP). (in peer review, presented
in Chapter 5).

In addition, I have co-authored the following journal publication:

• Peng Wang∗, Yuanzhouhan Cao∗, Chunhua Shen, Lingqiao Liu, Heng Tao Shen;
“Temporal Pyramid Pooling Based Convolutional Neural Network for Action
Recognition", IEEE Transactions on Circuits and Systems for Video Technology
(TCSVT), 2016, DOI: 10.1109/TCSVT.2016.2576761. (∗ indicates equal contribu-
tion).

vii



viii



Abstract

Depth is an important source of information in computer vision. However, depth is
usually discarded in most vision tasks. In this thesis, we study the tasks of estimating
depth from single monocular images, and incorporating depth for object detection
and semantic segmentation. Recently, a significant number of breakthroughs have
been introduced to the vision community by deep convolutional neural networks
(CNNs). All of our algorithms in this thesis are built upon deep CNNs.

The first part of this thesis addresses the task of incorporating depth for object
detection and semantic segmentation. The aim is to improve the performance of
vision tasks that are only based on RGB data. Two approaches for object detection
and two approaches for semantic segmentation are presented. These approaches
are based on existing depth estimation, object detection and semantic segmentation
algorithms.

The second part of this thesis addresses the task of depth estimation. Depth
estimation is often formulated as a regression task due to the continuous property
of depths. Deep CNNs for depth estimation are trained by iteratively minimizing
regression errors between predicted and ground-truth depths. A drawback of re-
gression is that it predicts depths without confidence. In this thesis, we propose to
formulate depth estimation as a classification task which naturally predicts depths
with confidence. The confidence can be used during training and post-processing.
We also propose to exploit ordinal depth relationships from stereo videos to improve
the performance of metric depth estimation. By doing so we propose a Relative
Depth in Stereo (RDIS) dataset that is densely annotated with relative depths.
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Chapter 1

Introduction

The goal of computer vision is to enable machines to perceive the real world based
on captured vision information as we human beings do. Most existing computer
vision tasks are based on RGB only. We are living in a three-dimensional world. The
captured RGB images are two-dimensional mappings of the three-dimensional world
with depth information inevitably discarded. Undoubtedly, the performance of com-
puter vision tasks such as object detection, semantic segmentation, scene understand-
ing, etc., can be improved with successful incorporation of depth information. To this
end, the acquisition of depth information from color images and the incorporation
of depth information are fundamental and challenging research topics.

The acquisition of depth information is at the heart of many RGB-D vision tasks.
The most straightforward way is to capture depths by commercial depth sensors
such as the Microsoft Kinect and the Velodyne LiDAR. However, such depth sensors
are not widely applied in vision community. Most training datasets are still RGB
only. The captured depth maps are also limited in the diversity of scenes due to
the limitation of depth sensors. For example, the Microsoft Kinect can not capture
depths over 10 meters, and the Velodyne LiDAR laser scanner can be easily affected
by strong sunlight.

Another option is to exploit depths from RGB images. Depth estimation is a
notoriously ill-posed problem because one captured image scene may correspond
to numerous real world scenarios. Prior works estimate depths from stereo images.
These works manage to match key points of stereo images and estimate a disparity
map. Given the parameters of stereo cameras, the depths can be obtained through
simple geometry. With the monocular case arises in practice, most recent works fo-
cus on estimating depth from a single image. Previous works of monocular depth
estimation are based on geometric assumptions. For example, the box models are
applied to infer the spatial layout of a room Hedau et al. [2010]; Gupta et al. [2010b].
These methods are limited to geometric assumptions and can not be applied for gen-
eral scenes. Other efforts explore non-parametric models Karsch et al. [2014] which
consist of candidate images retrieval, scene alignment and then depth inference using
smoothness constraints.

In recent years, the vision community has witnessed a series of breakthroughs in-
troduced by the deep convolutional neural networks (CNNs) Krizhevsky et al. [2012].
Many monocular depth estimation algorithms employ deep CNNs and achieve out-
standing performance. These algorithms train deep CNNs on large-scale annotated

1



2 Introduction

datasets in an end-to-end fashion. Depth estimation is normally formulated as a
regression task due to the continuous property of depths.

The acquisition of depth information is only one component of RGB-D vision
tasks. The other component is the incorporation of acquired depths. One approach
manages to recover the real 3D structures of objects in 3D point clouds. Earlier efforts
focus on designing feature descriptors in 3D point clouds. These feature descriptors
are hand-crafted for specific tasks. Recently some works apply 3D convolutional neu-
ral networks on voxelized shapes. However, volumetric representation is constrained
by its resolution due to data sparsity and computation cost of 3D convolution. An-
other approach is to treat depths as one-channel images and aggregate to RGB im-
ages to formulate 2.5D data. Compared with the operations in 3D point clouds, this
approach is easier to implement.

1.1 Problem formulation

In this thesis, we are interested in exploiting depth from single monocular images,
and incorporating depth with RGB data for object detection and semantic segmenta-
tion. All of the tasks are based on deep convolutional neural networks (CNNs).

1.1.1 Depth estimation from single monocular images

Depth estimation is a dense prediction problem, the aim is to predict the depth value
of each pixel in a given image. Due to the limitation of computational capacity,
previous methods predict depths in terms of over-segmented superpixels. This is
based on the assumption that scenes with semantically similar appearances should
have similar depth distributions. The predicted depth maps usually contain strong
inconsistencies. Benefiting from the recent success of deep CNNs, recent methods are
able to directly predict the depth of each pixel. These methods directly regress on
the depth due to the continuous property of depth. However, different points have
different distributions of possible depth values. Depth estimation at some locations
is easy while others are not. Typical regression models only output the mean values
of possible depth values without the variances, (i.e., the confidence of a prediction
is missing). In order to obtain the confidence of a depth prediction, we propose to
formulate depth estimation as a classification task. The obtained confidence can be
applied during both training and post-processing.

The keys to the success of deep CNNs are improved computational capacity and
large-scale training datasets. Deep CNNs for monocular depth estimation are trained
on a significant number of images densely labelled with metric depths. The acqui-
sition of ground-truth metric depths requires depth sensors. Moreover, the ground-
truth metric depths are limited in the size as well as the diversity of scenes. Another
source of depth acquisition is the vast stereo videos. However in practice, the ac-
quisition of metric depths from stereo videos is sometimes impracticable due to the
absence of camera parameters. We proposed to acquire large amount of relative
depths from stereo videos using stereo matching, and we show that the performance
of monocular metric depth estimation can be improved by augmenting our collected
relative depths.
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1.1.2 Depth incorporation for object detection and semantic segmentation

Object detection and semantic segmentation are two important tasks in computer
vision. The aim of object detection is to locate target objects in an image. Pre-
vious works on object detection exploit robust hand-crafted features such as SIFT
Lowe [2004] and HOG Dalal and Triggs [2005]; Felzenszwalb et al. [2010] and gener-
ate image representations through Bag-of-Visual-Words (BoVW) Csurka et al. [2004];
Lazebnik et al. [2006]; Zhang et al. [2007] or Fisher Vector (FV) Perronnin et al. [2010];
Simonyan et al. [2013] encoding shcemes. Then discriminative models such as sup-
port vector machines (SVMs) Yu and Joachims [2009]; Joachims [1999] are learned as
detectors. Recently, object detection benefits largely from deep convolutional neural
networks. The R-CNN model proposed by Girshick et al. [2014] is one of the success-
ful deep learning based object detectors. It first learns deep features of each region
proposal, then trains a set of class-specific linear SVMs for object detection. In the
later work of Fast R-CNN, Girshick [2015] proposed an end-to-end training scheme
for deep learning based object detection. Compared with the R-CNN model, the Fast
R-CNN model embeds a regions of interest (RoI) pooling layer that maps an RoI into
a fixed-size feature map. And the linear SVMs are replaced with a classification loss
at the end of the network. Based on the R-CNN and Fast R-CNN models, Ren et al.
[2015a] proposed a Faster R-CNN model. It introduces a region proposal network
(RPN) that shares full-image convolutional features with the detection network, thus
enabling nearly cost-free region proposals.

The aim of semantic segmentation is to assign a unique label (or category) to
every single pixel in the image. It is also a dense prediction problem. Traditional
methods exploit contextual information. For example, the early work “TAS" Heitz
and Koller [2008] models different types of spatial context between Things and Stuff
using a generative probabilistic graphical model. The recent successful semantic seg-
mentation methods are based on deep CNNs. Specifically, the fully convolutional
neural networks (FCNNs) Long et al. [2015] have become a popular choice for se-
mantic segmentation due to their their effective feature generation and end-to-end
training. FCNNs have also been applied to other dense prediction tasks such as
depth estimation, image restoration and image super-resolution.

The aforementioned algorithms for object detection and semantic segmentation
are based on RGB only. We proposed to improve the performance of existing suc-
cessful algorithms by incorporating exploited depths.

1.2 Main contributions

The main contributions of this thesis include a set of deep learning algorithms for
RGB-D vision tasks (i.e., RGB-D object detection, RGB-D semantic segmentation and
monocular depth estimation). All of our algorithms are based on state-of-the-art
deep convolutional neural networks. More specifically, the main contributions are
listed as follows.

• Two RGB-D object detection algorithms based on the recent success of monocu-
lar depth estimation and object detection. Specifically, we first employ the deep
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convolutional neural field (DCNF) model Liu et al. [2015b] to acquire the depth
map from an RGB image. Then we learn the depth and RGB features from
the depth map and RGB image respectively. We combine the depth and RGB
features for object detection. Our object detection algorithms are based upon
the R-CNN Girshick et al. [2014] and Fast R-CNN Girshick [2015] models.

• Two RGB-D semantic segmentation algorithms. Similar to our RGB-D object
detection algorithms, we first acquire the depth map from an RGB image with
the DCNF model. The first algorithm exploits the depth feature from the depth
map and combine it with the RGB feature for semantic segmentation. The
depth and RGB information are fused at a later stage. The second algorithm
uses the depth map for an additional loss calculation. The depth and RGB
information are fused at an earlier stage.

• An algorithm for estimating depth from monocular images as classification.
Most existing algorithms formulate depth estimation as a regression task due to
the continuous property of depths. We formulate depth estimation as a classifi-
cation task. Specifically, we first discretize the continuous ground-truth depths
into several bins and label the bins according to their depth ranges. Then we
solve the depth estimation problem as classification by training a fully convo-
lutional deep residual network. Compared with estimating the exact depth of
a single point, it is easier to estimate its depth range. More importantly, by
performing depth classification instead of regression, we can easily obtain the
confidence of a depth prediction in the form of probability distribution.

• A monocular depth estimation algorithm that employs ordinal depth relation-
ships. We propose to improve the performance of metric depth estimation with
relative depths collected from stereo videos using existing stereo matching al-
gorithm. By doing so we introduce a new “Relative Depth in Stereo" (RDIS)
dataset that densely labelled with relative depths. We first pretrain a deep
residual network on our RDIS dataset. Then we finetune the network on RGB-
D datasets labelled with metric ground-truth depths. We test our proposed
method on both indoor and outdoor benchmark RGB-D datasets and achieve
state-of-the-art performance.

1.3 Thesis overview

The rest of the thesis is organized as follows.
In Chapter 2, we first introduce some background information on convolutional

neural networks (CNNs). Then we introduce some typical RGB-D vision tasks in-
cluding the depth estimation, 2D-to-3D conversion and 3D vision.

In Chapter 3, we elaborate our proposed RGB-D object detection and semantic
segmentation algorithms. In particular, we first apply the DCNF model to estimate
depths from RGB images. We then derive two approaches for object detection and
two approaches for semantic segmentation based on the estimated depths.

In Chapter 4, we elaborate our depth estimation by classification. We discretize
the continuous depths into several bins and formulate depth estimation as a classi-
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fication task. The classification naturally predicts depths with confidence. We apply
the confidence of a depth prediction during training and post-processing.

In Chapter 5, we elaborate our monocular depth estimation algorithm which em-
ploys ordinal depth relationships. We first introduce how to extract relative depths
from stereo videos to formulate our Relative Depth in Stereo (RDIS) dataset. Then we
introduce how to improve the performance metric depth estimation with our RDIS
dataset.

In Chapter 6, we conclude this thesis and list a few future directions.
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Chapter 2

Literature Review

2.1 Convolutional neural networks

2.1.1 Introduction

The concept of neural networks (NNs) is built upon the back-propagation (BP) method
proposed by Rumelhart et al. Rumelhart et al. [1986]. Three years after the BP
method was proposed, LeCun et al. LeCun et al. [1989] proposed the earliest form
of neural networks and applied to the task of handwritten zip code recognition. He
showed that stochastic gradient descent via backpropagation was effective for train-
ing NNs. A conventional NN is a non-linear function that maps real-valued data to
real-valued labels. It takes a single vector as input and each element of the vector
forms one neuron in the input layer. These input data are then propagated to all
neurons in the succeeding layer. Each hidden layer consists of a set of neurons and
each neuron in the hidden layer connects to all neurons in the previous layer. The
output of a neuron is generated by a weighted summation of the inputs from the
previous layer followed by an activation function. The last fully-connected layer in a
NN is referred to the output layer.

In 1998, LeCun et al. extended their work and proposed the first convolutional
neural network (CNN): the LeNet-5 model for document recognition Lecun et al.
[1998]. Compared to the conventional NNs, CNNs propose to implement the princi-
ple of weight sharing which remarkably reduces the number of parameters and thus
increase the generalization capacity. Moreover, CNNs employ the pooling techniques
to improve the robustness of CNN features to small translations and distortions in
the input image.

CNNs saw heavy use in the 1990s, but then fell out of fashion with the rise of
the support vector machines (SVMs) Yu and Joachims [2009]; Suykens and Vande-
walle [1999]; Joachims [1999]. One important reason is that the training of CNNs is
very time consuming. Some works are proposed to improve the training efficiency.
Hinton et al. Hinton and Salakhutdinov [2006] proposed to reduce the dimension-
ality of data by training a multilayer neural network with a small central layer to
reconstruct high-dimensional input vectors. In 2012, the interest in CNNs has been
rekindled by Krizhevsky et al. Krizhevsky et al. [2012] thanks to the GPU paral-
lel computing. They showed substantially higher image classification accuracy on
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Deng et al. [2009];
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Russakovsky et al. [2015]. Their success resulted from training a large CNN on 1.2
million labelled images, together with a few twists on LeCun’s LeNet-5 model. The
study of CNNs and deep learning algorithms remains popular till today.

2.1.2 Basic building blocks

In this section, we briefly introduce some basic building blocks in CNNs including
convolutional layer, pooling layer, batch normalization layer, fully-connected layer,
ReLU layer and loss function.

• Convolutional layer. The convolutional layer is the essential building block of
CNNs. Each convolutional layer consists of different numbers of muti-dimensional
trainable filters that compute the convolution of the input volume. The number
of filters matches the depth of input volume. In traditional image processing
algorithms, the convolution filter works as a template that operates on an image
and outputs a new image to manifest a certain type of feature. The traditional
convolution filters are designed for different tasks. In CNNs, the weights of
convolutional layers are learned from large labelled datasets and thus can be
used for various tasks. During the forward pass of CNNs, each filter is con-
volved with local regions in a single input map at different spatial locations
with a fixed stride and outputs a feature map. The size of the local region
is determined by the height and width of the filter. The feature maps gener-
ated by all filters are concatenated in the channel dimension, which become
the output of this convolutional layer and also serve as the input volume of the
next layer. The CNNs are composed of different numbers of connected convo-
lutional layers. Convolutional layers at different places can recognize different
levels of features. The convolution operation in CNNs has two prominent prop-
erties: local connectivity and parameter sharing, which significantly reduce the
number of parameters. Specifically, local connectivity refers to the fact that the
convolution is applied to local regions rather than the entire input volume. And
parameter sharing means that all the neurons on the same feature map share
the convolution filter weights.

• Pooling layer. Pooling is one of the simplest operations in CNNs. It is a form of
non-linearly down-sampling that operates on local regions in the input volume
with a fixed stride. The values within the local region are aggregated into
a single value. The most commonly applied poolings are max pooling and
average pooling. The max pooling outputs the max value within the local
region, while the average pooling outputs the average value. There are no
weights to be learned in pooling layers. By performing the pooling operation,
the size of feature maps is down-scaled and thus the computation of CNNs is
reduced. More importantly, the pooling layer provides a form of translation
invariance.

• Batch normalization layer. One of the difficulties of training CNNs is that the
distribution of each layer’s input changes during training, as the parameters of
the previous layers change. This slows down the training by requiring lower
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learning rates and careful parameter initialization, and makes it notoriously
hard to train models with saturating nonlinearities. The batch normalization
layer Ioffe and Szegedy [2015] can alleviate this by performing normalization
that fixes the means and variances of layer inputs for each training mini-batch.
Batch normalization also has a beneficial effect on the gradient flow through
the network, by reducing the dependence of gradients on the scale of the pa-
rameters or of their initial values. This allows us to use much higher learning
rates without the risk of divergence. Furthermore, batch normalization reg-
ularizes the model and reduces the need for dropout Srivastava et al. [2014].
Finally, batch normalization makes it possible to use saturating nonlinearities
by preventing the network from getting stuck in the saturated modes.

• Fully-connected layer. Fully-connected layers in CNNs are the same as those in
conventional NNs, in which neurons have full connections to all activations in
the previous layer. The activations in a fully-connected layer can be computed
by a matrix multiplication followed by a bias offset. Specifically, Y = XWT + b
where X is the input data of the fully-connected layer and WT and b are the
weights that need to be learned.

• ReLU layer. The rectified linear unit (ReLU) layer applies the non-saturating ac-
tivation function f (x) = max(0, x) to the input feature maps. It aims to increase
the nonlinearity of the feature representation. Compared to other activation
functions, the ReLU addresses the gradient exploding or vanishing problem
during the training phase. Thus, it accelerates the CNN training phase without
degrading the performance.

• Loss function. The final layers of CNNs are loss functions. The loss functions
calculate different types of deviations between the the predicted values and the
ground-truth labels. These deviations are backpropagated through the CNNs
during training to update the network weights. Different loss functions are
designed for different tasks. For classification tasks such as object detection
and semantic segmentation, the softmax and sigmoid cross-entropy are two
commonly applied loss functions. Softmax loss is used for predicting a single
class of K mutually exclusive classes. Sigmoid cross-entropy loss is used for
predicting K independent probability values in [0, 1]. For regression tasks such
as depth estimation, the L2 loss is commonly used. It calculates the squared
mean difference between the predicted and ground-truth values.

2.1.3 Famous CNN architectures

In this section, we briefly introduce some renowned CNN architectures that are
widely applied in the past years including AlexNet, VGGNet, ResNet and DenseNet.

• AlexNet. The ground-breaking AlexNet proposed by Krizhevsky et al. Krizhevsky
et al. [2012] is the start of recent fast development of deep learning. It is the
first CNN model that applies the ReLU and dropout layers. More importantly,
it used a very efficient GPU implementation for the convolution operation. It
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has 60 million parameters and 650,000 neurons, consists of five convolutional
layers, some of which are followed by max-pooling layers, and three fully-
connected layers with a final 1000-way softmax. The AlexNet is the winner of
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) Deng et al.
[2009]; Russakovsky et al. [2015] in 2012, which significantly outperformed the
second runner-up.

• VGGNet. The VGGNet proposed by Simonyan et al. Simonyan and Zisserman
[2014] obtained excellent performance in the ILSVRC 2014. Compared to the
AlexNet, the VGGNet employs a relatively small (3× 3) convolutional filters.
The depth of the VGGNet can be increased up to 19 by stacking a sequence of
these small filters. It shows the importance of the depths of CNNs for achieving
better performance in many recognition and detection tasks.

• ResNet. Stacking more layers to CNN architectures does not necessarily im-
prove performance as the training can become very difficult due to the problem
of vanishing gradients. The residual network (ResNet) proposed by He et al.
He et al. [2016a] manages to learn the residual mapping of a few stacked layers
to avoid the vanishing gradients problem. Instead of directly learning the un-
derlying mapping of a few stacked layers, the deep residual network learns the
residual mapping. Then the original mapping can be realized by feedforward
neural networks with “shortcut connections”. Shortcut connections are those
skipping one or more layers. With the residual learning scheme the ResNet can
be increased up to 152 layers.

• DenseNet. The DenseNet proposed by Huang et al. Huang et al. [2017] con-
nects all layers (with matching feature-map sizes) directly with each other. To
preserve the feed-forward nature, each layer obtains additional inputs from all
preceding layers and passes on its own feature maps to all subsequent lay-
ers. Compared to traditional CNNs, DenseNets have several compelling ad-
vantages: they alleviate the vanishing gradients problem, strengthen feature
propagation, encourage feature reuse, and substantially reduce the number of
parameters.

2.2 RGB-D vision tasks

Most existing computer vision tasks are mainly based on RGB data. The acquisition
of RGB data is a mapping from real three dimensional world to two dimensional
space with depth data inevitably discarded. The acquisition of depth data is one of
fundamental tasks in computer vision field, and the performance of most vision tasks
can be improved with incorporated depth information. In this section, we introduce
some typical RGB-D vision tasks including depth estimation, 2D-to-3D conversion
and 3D vision.
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2.2.1 Depth estimation

Depth estimation is the fundamental topic of this thesis. Typical methods for depth
estimation can be divided into two categories: single image depth estimation which
is referred to as monocular depth estimation, and stereo image depth estimation
which is referred to as binocular depth estimation.

• Monocular depth estimation. Depth estimation from single monocular images is
an ill-posed problem as one captured image scene may corresponds to numer-
ous real world scenarios. Earlier efforts on this task mainly exploit geometric
assumptions such as box models to infer the spatial layout of a room Hedau
et al. [2010]; Gupta et al. [2010b] or outdoor scenes Gupta et al. [2010a]. These
models come with innate restrictions, which are limited to model only partic-
ular scene structures and therefore are not applicable for general scene depth
estimations. Other methods formulate depth estimation as a markov random
field (MRF) or conditional random field (CRF) learning methods. The depth
estimation problem then is formulated as a maximum a posteriori (MAP) in-
ference problem. For example, Saxena et al. Saxena et al. [2005] used a dis-
criminatively trained MRF that incorporates multiscale local and global image
features, and modeled depths at individual points and the relation between
depths at different points. Liu et al. Liu et al. [2010] first performed semantic
segmentation and applied the semantic labels as geometric constrains in CRFs.

The aforementioned algorithms are based on simple models. They are easy to
train but the performances are also limited. In recent years, depth estimation
has benefited largely from the CNNs. Eigen et al. Eigen et al. [2014] are the
first that apply deep CNNs to depth estimation. They addressesed this task by
employing two deep network stacks: one that makes a coarse global prediction
based on the entire image, and another that refines this prediction locally. In
their later work of Eigen and Fergus [2015], they proposed to estimate depth,
surface normal and semantic label in a single multiscale CNN architecture.
Some recent works combine the the deep CNNs with CRFs for depth estima-
tion. Liu et al. Liu et al. [2015b] proposed a deep convolutional neural field
(DCNF) model which learned the unary and pairwise potentials of continuous
CRFs in a unified deep network. Similarly, Li et al. Li et al. [2015a] and Wang
et al. Wang et al. [2015] also combined the CNNs with CRFs, and formulated
depth estimation in a two-layer hierarchical CRF to enforce synergy between
global and local predictions.

• Binocular depth estimation. Binocular depth estimation manages to estimate
depth from images captured by stereo cameras. Stereo cameras consists of a
left camera and right camera mounted with a fixed distance B as illustrated in
Fig. 2.1. The two views captured by stereo cameras are shifted with a distance
d which is known as disparity. In traditional binocular depth estimation meth-
ods, given the left and right views, a disparity map is first computed by stereo
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Figure 2.1: Illustration of binocular depth estimation. The objects are captured by two
cameras mounted with a fixed distance. Binocular depth estimation first estimate a
disparity map from the two views, then given the camera parameters, the depths can

be calculated by geometry relations.

matching algorithms, then the depth Z can be computed with

Z =
B f

B− d
. (2.1)

Recently the performance of binocular depth estimation has been improved by
CNNs. These methods use one view of the stereo pair as input and manage
to reconstruct the other view and update network parameters by an image re-
construction loss. To name a few, Garg et al. Garg and Reid [2016] proposed
to reconstruct the other view by Taylor approximation. Clément et al. Godard
et al. [2017] embedded a spatial transform layer Jaderberg et al. [2015] in the
network and applied the bilinear interpolation to reconstruct the other view.
Since the labelled metric depths are absent during training, the performance
of binocular depth estimation is not as good as monocular depth estimation.
Moreover, in order to calculate depths from disparity maps, the camera param-
eter such as focus length is required.

2.2.2 2D-to-3D conversion

3D movies are getting popular in the past decade and the demand for 3D movies is
still increasing. Moreover, in 2016, the virtual reality (VR) market has been ignited
by modern vision techniques and shows great potential. The research for acquiring
3D content has becoming a hot topic. 3D videos are stored in stereoscopic format.
For each frame, the format includes two views of the same scene, one of which is
exposed to the viewer’s left eye and the other to the viewer’s right eye, thus giving
the viewer the experience of watching the scene in three dimensions.

There are two approaches of producing 3D movies. The first is to shoot natively
using stereo cameras. This type of approach costs too much to produce and may
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cause special effects such as forced perspective. Forced perspective is an optical
illusion technique that makes objects appear larger or smaller than they really are. It
breaks down when viewed from another angle, which prevents stereo filming. The
second approach is to shoot in 2D and convert to 3D, which is referred to as 2D-to-
3D conversion. Traditional 2D-to-3D conversion methods contain two stages. Firstly,
manually create a depth map for each 2D image Harman [2000]. Secondly, apply
standard depth image based rendering (DIBR) algorithms Fehn [2004]; Nguyen et al.
[2009] that combine the 2D image with the depth map to generate a stereo image
pair. The first stage is processed by experienced workers from movie production
companies, so this type of 2D-to-3D conversion methods is expensive and requires
intensive human effort.

Recent research focus on automatic 2D-to-3D conversion. These works manage to
learn disparity maps from 2D images in a supervised manner Zhang et al. [2011]. To
name a few, Konrad et al. Konrad et al. [2013] developed two types of methods. The
first is based on learning a point mapping from local image/video attributes, such as
color, spatial position and, in the case of video, motion at each pixel, to scene-depth
at that pixel using a regression type idea. The second method is based on globally
estimating the entire depth map of a query image directly from a repository of 3D
images (RGB-D pairs or stereo pairs) using a nearest-neighbor regression type idea.
Appia et al. Appia and Batur [2014a] created a scene model for each image based
on certain low-level features like texture, gradient and pixel location and estimated
a pseudo depth map. In order to overcome imperfections and generate an enhanced
depth map for improved viewing experience, certain high-level image features are
also exploited.

The task of 2D-to-3D conversion is similar to binocular depth estimation in the
sense that the disparity map needs to be calculated to generate a second view. How-
ever, 2D-to-3D conversion is different in two significant ways. Firstly, the disparity
map does not need to be highly accurate in terms of metric measure, only need to
be accurate to formulate a 3D view. Secondly, the calculation of disparity map is a
middle stage and is not necessary. Most recent works embedded the depth rendering
in CNNs and update the weights in an end-to-end way. Xie et al. Xie et al. [2016] pro-
posed Deep3D, a fully automatic 2D-to-3D conversion algorithm. Specifically, they
proposed a deep neural network that takes as input the left view, internally estimates
a soft (probabilistic) disparity map, and then renders a novel right view. The internal
disparity-like map produced by the network is computed only in service of creating
a good right view. Similarly, Bae et al. Sung-Ho et al. [2017] proposed a fully convo-
lutional depth rendering network which generates probabilistic disparity maps and
renders a new view by multiplying the disparity maps with output color images. It
takes various-sized images as input and outputs correspondingly-sized images.

2.2.3 3D Vision

The aforementioned tasks treat depths as one-channel images and simply aggregate
to the RGB data. These tasks are known as 2.5D vision tasks. 3D vision tasks manage
information in real 3D space, i.e., 3D point clouds. The 3D point clouds is a set
of points in a three-dimensional coordinate system Eckart et al. [2016]; Elbaz et al.
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[2017]; Ameesh et al. [2006]. These points are located on the external surfaces of
visible objects. They are intended to represent 3D spatial information such as shape,
surface, contour, etc., of the real world. Typical 3D vision tasks include 3D object
detection, 3D pose estimation and 3D reconstruction.

• 3D object detection. Earlier efforts on 3D object detection focus on exploiting ge-
ometric descriptors such as spin images Johnson and Hebert [1999], geometry
histograms Frome et al. [2004], signatures of histograms Tombari et al. [2010],
feature histograms Rusu et al. [2008] and cloud of oriented gradients Ren and
Sudderth [2016]. These descriptors are combined with trainable models such
as support vector machines Song and Xiao [2014] for object detection. Since
they are manually designed for specific applications or 3D data types, it is of-
ten difficult for them to generalize to new data modalities. In recent years,
the hand-crafted feature representations has been improved by deep CNNs
that can learn powerful 3D and color features from the data. Wu et al. [2015]
proposed 3D ShapeNets to represent a geometric 3D shape as a probabilistic
distribution of binary variables on a 3D voxel grid. They applied convolutional
deep belief network to learn the complex joint distribution of all 3D voxels in
a data-driven manner. Gupta et al. [2015] proposed to represent objects in an
RGB-D scene with corresponding 3D models. Zeng et al. [2017] presented a
data-driven model named 3DMatch that learns a local volumetric patch de-
scriptor for establishing correspondences between partial 3D data. Song and
Xiao [2016] introduced Deep Sliding Shapes, a complete 3D formulation that
takes a 3D volumetric scene from a RGB-D image as input and outputs 3D
object bounding boxes. They proposed the first 3D region proposal network
(RPN) that takes a 3D volumetric scene as input and outputs 3D object propos-
als, and the first joint object recognition network (ORN) to extract geometric
features in 3D and color features in 2D.

• 3D pose estimation. 3D pose estimation is a comprehensive task which contains
object pose estimation Michel et al. [2016]; Brachmann et al. [2016]; Krull et al.
[2015], human pose estimation Zhou et al. [2016]; Chu et al. [2017], hand pose
estimation Ge et al. [2016]; Sinha et al. [2016], gaze estimation Funes-Mora and
Odobez [2016], etc.. 3D pose estimation benefits largely from the deep CNNs.
To name a few, for 3D human pose estimation, Pavlakos et al. [2017] proposed
a fine discretization of the 3D space around the subject and train a CNN to pre-
dict per voxel likelihoods for each joint. They also employed a coarse-to-fine
prediction scheme to improve upon initial estimates. Moreno-Noguer [2017]
proposed a standard two-step pipeline for 3D human pose estimation. They
first detected the 2D position of body joints by training a CNN-based detec-
tor, and then used these observations to infer the 3D pose. Chu et al. [2017]
proposed to incorporate CNNs with a multi-context attention mechanism into
an end-to-end framework for human pose estimation. The conditional random
field (CRF) is also utilized to model the correlations among neighboring regions
in the attention map. As for hand pose estimation, Wan et al. [2017] proposed
a dual generative model that captures the latent spaces of hand poses and cor-
responding depth images for estimating 3D hand pose. The variational auto
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encoder (VAE) and the generative adversarial network (GAN) are applied to
model the generation process of hand poses and depth maps respectively. Ge
et al. [2017] proposed a 3D CNN based hand pose estimation approach that
can capture the 3D spatial structure of the input and accurately regress full 3D
hand pose in a single pass.

• 3D reconstruction. 3D reconstruction is the process of capturing the shape of
objects in the real world. It is an important research topic in both computer vi-
sion and computer graphics. Generally, the 3D reconstruction methods can be
divided into two categories: multi-view 3D reconstruction and single-view 3D
reconstruction. The goal of multi-view 3D reconstruction is to infer geometrical
structure of a scene captured by a collection of images. To name a few, Kolev
et al. [2012] proposed a probabilistic model that computes the most probable
surface that gives rise to the given observations. Qian et al. [2017] proposed a
stereo-based 3D reconstruction approach for dynamic fluid surfaces. They also
proposed a global optimization based approach that can recover both depths
and normals of all 3D points simultaneously. The single-view 3D reconstruc-
tion is considered more difficult than multi-view 3D reconstruction due to the
limited information. Most existing methods manage to exploit additional in-
formation. Toeppe et al. [2013] exploited the relative volume constraints for
3D reconstruction. The key idea is to formulate a variational reconstruction ap-
proach with shape priors in the form of relative depth profiles or volume ratios.
Kong et al. [2017] used the locally corresponding CAD models for dense 3D re-
construction. They first employed an orthogonal matching method to rapidly
choose the most corresponding CAD model, then employed a graph embed-
ding based on local dense correspondence to allow for sparse linear combina-
tions of CAD models.
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Chapter 3

Exploiting Depth for Object
Detection and Semantic
Segmentation

3.1 Introduction

Since the formulation of color images are two-dimensional projections of the three-
dimensional world with depth information inevitably discarded, depth information
and color information are complementary in restoring the real three-dimensional
scenes. It is not difficult to conjecture that the performance of vision tasks such as
object detection and semantic segmentation is likely to be improved if we can take
advantage of the depth information.

Depth has been proven to be a very informative cue for image interpretation in
a significant amount of work Gupta et al. [2014]; Song and Xiao [2014]; Bo et al.
[2011]. In order to exploit depth information, most of these algorithms require depth
data captured by depth sensors, as well as camera parameters, to relate point clouds
to pixels. However, despite recent development of a range of depth sensors, most
computer vision datasets such as the ImageNet and the PASCAL VOC are still RGB
only. Moreover, images within these datasets are captured by different cameras with
no camera parameters available, rendering it unclear how to generate accurate point
clouds.

In this chapter, we take advantage of deep convolutional neural networks (CNN)
based depth estimation methods and show that the performance of object detection
and semantic segmentation can be improved by incorporating an explicit depth es-
timation process. This may appear to be somewhat counter-intuitive, because the
depth values estimated by CNN models are correlated to RGB images. The valuable
depth information is acquired by depth sensors and lies in the RGB-D training data
on which the depth estimation model is trained.

We here propose two methods to exploit depth information from color images for
object detection and semantic segmentation. The two methods make use of estimated
depth in different forms. The first method manages to learn deep depth features from
the estimated depth. The learned depth features are combined with RGB features for
both object detection and semantic segmentation. The depth information and color

17
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information are fused at a later stage. For semantic segmentation, the estimated
depth is used to compute an additional task loss. During training, the two losses
jointly update the layers in an unified network in an end-to-end style. Thus, the
depth information and color information are fused at an earlier stage.

Depth estimation from single monocular images is the first step of our proposed
methods. Recently, CNNs have been applied to depth estimation and shown great
success. For example, Eigen et al. Eigen et al. [2014] proposed to estimate depth
using multi-scale CNNs. It directly regresses on the depth using CNN with two
components: one estimates the global structure of the scene while the other one
refines the structure using local information. Here, we follow the most recent work
of Liu et al. Liu et al. [2015b] which trains a deep convolutional neural fields (DCNF)
model for depth estimation. It jointly learns the unary and pairwise potentials of
conditional random fields (CRF) in a single CNN framework, and achieved state-of-
the-art performance.

To summarize, we highlight the main contributions of this chapter as follows.

1. For the tasks of object detection and semantic segmentation, we propose to
incorporate estimated depth information with RGB data and improve the per-
formance.

2. We propose two methods of exploiting depth from single monocular images
for object detection and semantic segmentation.

3. We show that it is possible to improve the performance of object detection and
semantic segmentation by exploiting relevant data which do not share the same
set of labels.

The rest of the chapter is organized as follows. In section 3.2, we briefly review
some related work. In section 3.3, we introduce the DCNF model which we use
for depth estimation. In section 3.4 and section 3.5, we describe our RGB-D object
detection and semantic segmentation frameworks respectively. Section 3.6 shows the
experimental results and section 3.7 concludes this chapter.

3.2 Background

Our work is inspired by the recent progresses of depth estimation, vision with RGB-
D data, object detection and semantic segmentation. In this section, we briefly review
some most related work.

3.2.1 Depth estimation

Depth estimation from a single RGB image is the first step of our method. As part
of the 3D structure understanding, traditional depth estimation methods are mainly
based on geometric models. For example, the works in Hedau et al. [2010]; Gupta
et al. [2010b]; Schwing and Urtasun [2012] rely on box-shaped models and fit the
box edges to those observed in the image. These methods rely heavily on geometric
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assumptions and fail to provide a detailed 3D description of the scene. Other meth-
ods attempt to exploit additional information. In particular, the authors of Russell
and Torralba [2009] estimate depth through user annotations. The works of Liu et al.
[2010]; Ladicky et al. [2014] make use of semantic class labels. Given the fact that
the extra source of information is not always available, most of recent works formu-
late depth estimation as a Markov Random Fields (MRF) Saxena et al. [2005, 2009,
2007] or Conditional Random Fields (CRF) Liu et al. [2014] learning problem. These
methods learn the parameters of MRF/CRF from a training set of monocular images
and their ground-truth depth maps in a supervised fashion. The depth estimation
problem is then formulated as maximum a posteriori (MAP) inference within the
CRF model.

Most of the aforementioned algorithms use hand-crafted features such as texton,
GIST, SIFT, PHOG, etc. With the fast development of DCNN recently, some works
attempt to solve the depth estimation problem in a deep network and have achieved
very impressive performance Eigen et al. [2014]; Liu et al. [2015b]; Li et al. [2015b]. In
this article, we follow the deep conditional neural fields (DCNF) model introduced
in Liu et al. [2015b] for depth estimation.

3.2.2 Incorporating depth

These methods can be roughly divided into two categories. The first one attempts
to recover the real 3D shape of the scenes and explores 3D feature descriptors. To
name a few, Song et al. Song and Xiao [2014] extended the deformable part based
model (DPM) from 2D to 3D by proposing four point-cloud based shape features:
point density feature, 3D shape feature, 3D normal feature and Truncated Signed
Distance Function (TSDF) feature. Bo et al. Bo et al. [2011] developed a set of kernel
features on depth images that model the size, 3D shape, and depth edges for object
recognition. In Pepik et al. [2012], 3D information of object parts is treated as con-
strains for object detection. Sun et al. Sun et al. [2010] also estimate 3D shape of
objects to improve object detection accuracy. Other algorithms make use of the con-
text information such as inter-object relations or object-background relations Gould
et al. [2008]; Stefan et al. [2010]; Lin et al. [2013]. These methods are able to pro-
vide a multi-view understanding of objects but also need large amounts of 3D shape
training data.

The second category encodes the depth map as a 2D image and combines with the
RGB image to formulate the 2.5D data. For example, Gupta et al. Gupta et al. [2014]
proposed a depth map embedding scheme that encodes the height above ground,
angle with gravity and horizontal disparity (HHA) as an additional input to RGB
for object detection and semantic segmentation. Janoch et al. Janoch et al. [2011]
extracted HOG features from depth images and trained a DPM model on these
depth features for object detection. Schwarz et al. Schwarz et al. [2015] proposed
an object-centered colorization scheme which is tailored for object recognition and
pose estimation. All these methods require direct measurements of depths.
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3.2.3 Object detection

Object detection has been an active research topic for decades. Conventional algo-
rithms exploit hand-crafted feature descriptors such as SIFT Lowe [2004], HOG Dalal
and Triggs [2005]; Felzenszwalb et al. [2010], and generate mid-level image repre-
sentations through Bag-of-Visual-Words (BoVW) Csurka et al. [2004]; Lazebnik et al.
[2006]; Sivic and Zisserman [2003]; Zhang et al. [2007] or Fisher Vector (FV) Perronnin
et al. [2010]; Simonyan et al. [2013] encoding schemes. In recent years, CNN based
methods have been demonstrated to outperform all hand-crafted features based al-
gorithms. In Girshick et al. [2014], Girshick et al. combined regional proposals with
CNN features and have achieved outstanding detection results. In their sequel work
Girshick [2015], the authors proposed an region of interest (RoI) pooling layer and
further improved the processing speed. In Zhang et al. [2015], Zhang et al. improved
the CNN based object detection with Bayesian optimization and structured predic-
tion. In Ouyang et al. [2015], Ouyang et al. proposed a deformable CNN for object
detection. It effectively integrates feature representation learning, part deformable
learning, context modeling, model averaging and bounding box location refinement
into the detection system.

3.2.4 Semantic segmentation

Convolutional neural networks have also shown great potential in semantic segmen-
tation Farabet et al. [2013]; Ning et al. [2005]; Pinheiro and Collobert [2014]. Recently,
Long et al. Long et al. [2015] proposed a fully convolutional network (FCN) for
semantic segmentation. It is the first work to train FCN end-to-end for pixelwise
prediction. Many recent works combined DCNNs and CRFs for semantic segmen-
tation and have achieved state-of-the-art performance. Schwing et al. Schwing and
Urtasun [2015] jointly learned the dense CRFs and CNNs. The pairwise potential
functions only enforce smoothness and are not CNN-based. Lin et al. Lin et al. [2016]
jointly trained FCNs and CRFs and learned CNN-based general pairwise potential
functions.

Unlike the aforementioned methods which are purely based on RGB informa-
tion, our methods make use of depth information to improve objected detection and
semantic segmentation performance.

3.3 Depth estimation model

We use the DCNF model introduced by Liu et al. Liu et al. [2015b] for depth es-
timation. It jointly learns the unary term and pairwise term of continuous CRF in
an unified network. In this section, we first introduce continuous CRF model, then
we introduce the DNCF model with fully convolutional networks and superpixel
pooling.
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3.3.1 Continuous CRF

Similar to Liu et al. [2010]; Saxena et al. [2009]; Liu et al. [2014], the images are repre-
sented as sets of small homogeneous regions (superpixels). The depth estimation is
based on the assumption that pixels within a same superpixel have the same depth
values. Each superpixel is represented by the depth value of its centroid. Let x be an
image and y = [y1, ..., yn]> ∈ Rn be a vector of depth values for all the superpixels,
the conditional probability distribution of the data can be modelled as the following
density function:

Pr(y|x) = 1
Z(x)

exp(−E(y, x)), (3.1)

where E is the energy function and Z is the partition function:

Z(x) =
∫

y
exp{−E(y, x)}dy. (3.2)

Since the depth value y is continuous, it is possible to calculate the partition function
exactly. The depth value of a new image could be predicted through the following
MAP inference:

y∗ = argmax
y

Pr(y|x). (3.3)

The energy function is formulated as a typical combination of unary potentials U
and pairwise potentials V over the nodes (superpixels) N and edges S of the image
x:

E(y, x) = ∑
p∈N

U(yp, x) + ∑
(p,q)∈S

V(yp, yq, x). (3.4)

3.3.1.1 Unary potential function

The unary term U regresses the depth value from a single superpixel. It is formulated
by the following least square loss:

U(yp, x; θ) = (yp − zp(θ))
2, ∀p = 1, . . . , n; (3.5)

where zp is the regressed depth value of superpixel p parametrized by parameters θ.

3.3.1.2 Pairwise potential function

The pairwise term V encourages neighbouring superpixels with similar appearances
to have similar depth values. It is constructed by 3 types of similarities: color, color
histogram and texture disparity in terms of local binary patterns (LBP), which are
represented as follows:

S(k)pq = exp{−γ‖s(k)p − s(k)q ‖}, k = 1, 2, 3; (3.6)

where s(k)p and s(k)q are the observation values of superpixel p and q from color, color
histogram and LBP respectively. ‖ · ‖ denotes the `2 norm of a vector and γ is a
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Figure 3.1: Overview of DCNF model. It is composed of a unary part and a pairwise
part. The output of the unary part and the pairwise part are fed to the CRF structured

loss layer, which minimizes the negative log-likelihood.

constant.
The similarity observation values are fed into a fully-connected layer:

Rpq = β>[S(1)pq , . . . , S(k)pq ]
> =

K

∑
k=1

βkS(k)pq , (3.7)

where β = [β1, . . . , βk]
> are trainable parameters. Finally, the pairwise potential

function is formulated as:

V(yp, yq, x; β) =
1
2

Rpq(yp − yq)
2. (3.8)

3.3.2 Deep convolution neural field model

The DCNF network is composed of a unary part, a pairwise part and a CRF loss
layer, as is illustrated in Fig. 3.1. During training, an input image is first over-
segmented into n superpixels. Then the entire image is fed into the unary part
and outputs an n-dimensional vector containing regressed depth values of the n
superpixels. Specifically, the unary part is composed of a fully convolution part and
a superpixel pooling part. After fully convolution, an input image is convolved into
a set of convolutional feature maps. The superpixel pooling takes the convolutional
feature maps as the input and outputs n superpixel feature vectors. The n superpixel
feature vectors are then fed into 3 fully-connected layers to produce the unary output.

The pairwise part takes similarity vectors (each with 3 components) of all neigh-
bouring superpixel pairs as input and feeds each of them into a fully-connected layer
(parameters are shared among different pairs), then outputs a vector containing all
the 1-dimensional similarities for each of the neighbouring superpixel pairs. The
continuous CRF loss layer takes the outputs from the unary and the pairwise terms
to minimize the negative log-likelihood.
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3.4 RGB-D object detection

We now describe how we exploit depth information from RGB images for object de-
tection. Specifically, we build our models upon the R-CNN Girshick et al. [2014] and
Fast R-CNN Girshick [2015] detection models and propose to learn depth features
for each object proposal. We use the extracted depth features as extra information
for object detection.

3.4.1 System overview

We design our RGB-D detection system based on two observations. Firstly, pix-
els within a single object have similar depth values. Secondly, the camera and the
depth sensor have the same viewing angles in generating RGB-D datasets such as
the NYUD2 and Make3D. As a result, an object in a depth image exhibits the same
2D shapes with its RGB counterpart, only with RGB values replaced by depth values
(similar to intensity). Depth images can aggregate inter-object variations and elimi-
nate intra-object variations. This is important for scene understanding, e.g., a chair
appears in a painting or TV monitor should not be detected.

An overall structure of our RGB-D detection system is illustrated in Fig. 3.2. As
we can see from the figure, it comprises 3 parts: depth estimation and encoding,
RGB and depth feature extraction and object detection. During testing, we first esti-
mate depth values of the input RGB image using the DCNF model trained on RGB-D
dataset. With the estimated depth, we encode the estimated depth values into a 3-
channel image. Similar to R-CNN and Fast R-CNN, we also follow the “recognition
using regions" paradigm and generate object proposals on RGB images. We extract
RGB and depth features of each object proposal through two separate streams. The
RGB features capture intra-object information such as color and texture while the
depth features aggregate 2D shapes of objects. Finally, we concatenate the two fea-
tures for object detection.

3.4.2 RGB-D R-CNN object detector

The training of the R-CNN detector is a multi-stage pipeline. It first fine-tunes a
CNN network pre-trained on a large classification dataset such as ImageNet. Then
SVMs are trained on features extracted from the fine-tuned network in the first stage.
These SVMs act as detectors.

3.4.2.1 Depth encoding and feature learning

The output of the DCNF model is a single-channel depth map. In order to extract
features from the estimated depth map, we log-normalize these depth values to the
range of [0, 255] and duplicate into three channels. Here we do not apply any geomet-
ric contour cues. This is mainly because the calculation of geometric cues (normals,
normal gradients, depth gradients, etc.) requires point clouds as well as accurate
depth values. Since we use estimated depth values, outliers could affect the accuracy
of geometric cues. Moreover, we do not access camera parameters for most of the
color images which makes it impractical to recover the point clouds.



24 Exploiting Depth for Object Detection and Semantic Segmentation

RGB feature 
extraction 

Depth feature   
extraction 

DCNF 
Model Detection 

RGB-D Data 

Estimated Depth 

RGB Image 

Regional 
Depth Feature 

Regional 
RGB Feature 

Figure 3.2: An overview of our RGB-D detection system. A DCNF model is first
learned from RGB-D datasets. The input RGB image and its estimated depth image
are fed into two feature extraction networks. The RGB feature and depth features of

each object proposal are concatenated for object detection.
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feature for object detection.
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The CNN pre-trained on a large classification dataset can be used as a generic
extractor of mid-level features Oquab et al. [2014]. Since RGB and depth images
also share similar structures, we fine-tune a CNN pretrained on RGB images using
depth images for depth feature learning. The structure of our regional depth feature
learning network is illustrated in Fig. 3.3. It consists of 5 convolutional layers and 3
fully-connected layers interlaced with ReLU and max pooling layers. The last layer
of the network is a classification layer with N + 1 channels, where N is the number of
classes and the extra one for background. We initialize the parameters of our network
with AlexNet Krizhevsky et al. [2012]. During fine-tuning, each object proposal is
resized to 224× 224× 3 and then fed into the network. For each class, we use object
proposals that have > 50% intersection over union with the ground-truth boxes as
positive training samples and the rest as negative training samples. During testing,
we use the output of the fully-connected layers as depth feature.

3.4.2.2 Detector learning

The learnt depth features are 4096-dimensional feature vectors. We fine-tune another
network using RGB images for RGB feature learning. The depth and RGB feature
learning networks have the same structure but do not share parameters. For each
of the object proposals, we concatenate the depth feature and RGB feature, which
results in a 8192-dimensional feature vector. Since the RGB and depth images have
the same scales and the two feature learning networks have the same structures, we
do not normalize the features after concatenation.

After feature concatenation we train multiple one-vs.-all binary SVMs as object
detectors. Training is done using liblinear Fan et al. [2008] with hyper-parameters
C = 0.001, B = 10, w1 = 2 where C is the SVM trade-off parameter. B is bias term
and w1 is the cost factor on hinge loss for positive examples. We use the same
SVM hyper-parameters as in Girshick et al. [2014] and find that the final detection
performance is not sensitive to these parameters. Following Girshick et al. [2014],
the positive examples are from the ground truth boxes for the target class and the
negative examples are defined as regions having < 30% intersection over union with
the ground truth boxes. During training, we adopt standard hard negative mining.
Hard negative mining converges quickly and in practice detection accuracy stops
increasing after only a single pass over all images.

3.4.3 RGB-D Fast R-CNN object detector

As mentioned above, the training of our RGB-D R-CNN detector is a multi-stage
pipeline. For the SVM training, both depth and RGB features are extracted from
each object proposal in each image. As a result, training of R-CNN detector is expen-
sive. The Fast R-CNN detector alleviated these disadvantages. It is based on fully
convolutional networks which take as inputs arbitrarily sized images, and output
convolutional spatial maps. Hence we propose the second RGB-D detection network
based on Fast R-CNN.
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The parameters are transferred from VGG16.

3.4.3.1 Architecture

We show the architecture of our RGB-D Fast R-CNN network in Fig. 3.4. During
training, the network takes as the input the entire RGB and depth images and a set
of object proposals to produce two convolutional feature maps, one for RGB and one
for depth. Then for each object proposal a region of interest (RoI) pooling layer ex-
tracts a fixed-length feature vector from the feature map. The RGB and depth feature
vectors of each RoI are concatenated and fed into a sequence of fully connected layers
that finally branch into two output layers: one that produces softmax probability es-
timates over N + 1 classes (extra one for background) and the other one that outputs
four real-valued numbers for each of the N object classes. The detailed structure of
the fully convolutional blocks is illustrated in Fig. 3.5. We initialize our network with
the VGG-16 net Simonyan and Zisserman [2014]. Before the feature concatenation,
The RGB and depth streams in our RGB-D Fast R-CNN networks have the same
structure but do not share parameters.
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3.4.3.2 RoI Pooling and multi-task loss

An RoI is a rectangular window on a convolutional feature map. Each RoI is defined
by a four-tuple (r, c, h, w) that specifies its top-left corner (r, c) and its height and
width (h, w). The RoI pooling layer uses max pooling to convert the features inside
any valid region of interest into a small feature map with a fixed spatial extent of
H ×W, where H and W are layer hyper-parameters that are independent of any
particular RoI.

During training, each RoI is labelled with a ground-truth class u and a ground-
truth bounding-box regression target v. We use a multi-task loss L on each labelled
RoI for joint training for classification and bounding box regression:

L(p, u, tu, v) = Lcls(p, u) + λ[u ≥ 1]Lloc(tu, v), (3.9)

where Lcls(p, u) = − log pu is log loss for true class u. [u ≥ 1] evaluates to 1 when
u ≥ 1 and 0 otherwise. Lloc is defined over a tuple of true bounding-box regression
targets for class u, v = (vx, vy, vw, vh), and a predicted tuple tu = (tu

x , tu
y , tu

w, tu
h), again

for class u. For bounding-box regression, the loss is:

Lloc(tu, v) = ∑
i∈{x,y,w,h}

smoothL1(t
u
i − vi), (3.10)

in which

smoothL1(x) =

{
0.5x2 if|x| < 1;
|x| − 0.5 otherwise.

(3.11)

3.5 RGB-D semantic segmentation

In this section, we describe how we exploit depth for semantic segmentation. We
first elaborate our RGB-D semantic segmentation with feature concatenation. Then
we show the RGB-D semantic segmentation method which utilizes multi-task joint
training.

3.5.1 RGB-D semantic segmentation by feature concatenation

Similar to our RGB-D detection methods, we extract RGB and depth features from
RGB and depth images respectively and concatenate the features for semantic seg-
mentation. Specifically, we follow the fully convolutional networks Long et al. [2015]
which can take as inputs arbitrarily sized images. We show the network architecture
in Fig. 3.6. After depth estimation, the RGB and estimated depth images are fed into
two separate fully convolutional processing streams and output two convolutional
feature maps. The two feature maps are concatenated and fed into 5 convolutional
layers with channels 512, 512, 256, 128 and N + 1 respectively where N is the num-
ber of classes and added 1 for background. Finally, a softmax layer is added during
training to backpropagate the classification loss. We initialize our RGB-D segmen-
tation network with the VGG-16 net Simonyan and Zisserman [2014] and the last 5
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Figure 3.6: Network structure of our RGB-D segmentation with feature concatena-
tion. The network takes the entire RGB and depth images as input and outputs
two feature maps. We concatenate the RGB and depth feature maps and calculate

softmax log-loss after several convolutional layers.

convolution layers are added. Before feature map concatenation, the RGB and depth
processing streams have the same network structure but do not share parameters.

3.5.2 RGB-D semantic segmentation by multi-task training

The aforementioned method for RGB-D semantic segmentation has two separate net-
works for RGB and depth feature extraction. The two networks do not share param-
eters and thus are inefficient to train. Inspired by the Fast R-CNN detector which
applies a multi-task training scheme, we propose another RGB-D semantic segmen-
tation method. Since an RGB image has two labels after depth estimation: one se-
mantic label and one depth label, we apply a multi-task loss which can jointly update
a unified network in an end-to-end style.
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Figure 3.7: An overview of our RGB-D segmentation by multi-task training. During
training, an entire RGB image is fed into the network and two loss functions are
computed at the end of the network: softmax log-loss and regression loss. The two
losses jointly update the network parameters in an end-to-end style. The detail of

fully convolutional blocks is illustrated in Fig. 3.5.
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3.5.2.1 Network architecture

The architecture of our multi-task RGB-D segmentation network is illustrated in Fig.
3.7. As we can see from the figure, the network can be broadly divided into 3 parts.
The first part takes as input the entire RGB image and outputs convolutional feature
maps. We initialize this part with the layers up to “fc6" in the VGG-16 net. During
backpropagation, the semantic and depth loss share parameters here.

The second part has two sibling processing streams: one for color information
and one for depth information. The color information processing stream contains
5 convolutional layers with channels 512, 512, 256, 128 and N + 1 respectively. The
depth information processing stream also contains 5 convolutional layers. The only
difference is that the last convolutional layer only has 1 channel due to different loss
functions. The outputs of the second part are two feature maps of N + 1 channels
and 1 channel respectively. The multi-task loss part takes these two feature maps
as input and calculates two losses: semantic label prediction loss and depth value
regression loss. The two processing streams in the second part backpropagate the
two losses through the entire network.

3.5.2.2 Multi-task loss

The last part of our segmentation network calculates a multi-task loss: softmax log-
loss for semantic label prediction, and least squared loss for depth regression. The
two losses jointly update a unified network in an end-to-end style.

Let M be the output feature map of color information processing stream in second
part of our segmentation network. We first upscale M to be the same size of original
input image using nearest neighbour interpolation. Assuming that size of original
input image is h×w, and d is the number of channels of the output feature map. The
softmax log-loss computes

Lcolor = −∑
i,j
(Mijc − log

d

∑
k=1

eMijk), (3.12)

where i ∈ [1, h], j ∈ [1, w], k ∈ [1, d] and c is the ground-truth label.
The estimated depth values are used to compute the depth regression loss. Let

F be the output feature map of depth processing stream in the second part of our
segmentation network. Similar to the softmax log-loss, we upscale F to be the same
size of original input image h× w. The least squared loss computes:

Ldepth = ∑
i,j
(Fij − zij)

2, (3.13)

where i ∈ [1, h], j ∈ [1, w] and z is the estimated depth values by DCNF model.
Notably, different from DCNF model training, here we do not compute the least
squared loss based on superpixels.

During backpropagation, the two separate losses are combined:

L = Lcolor + λLdepth, (3.14)
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where λ is a hyper-parameter to control the balance between depth information and
color information in network updation.

3.6 Experiments

In this section, we show the performance improvement of object detection and se-
mantic segmentation obtained by estimated depth. Our experiments are organized
in two parts: RGB-D object detection and RGB-D semantic segmentation. We test the
RGB-D object detection on 4 datasets: NYUD2 Silberman et al. [2012], B3DO Janoch
et al. [2011], PASCAL VOC 2007 and 2012 and report the mean average precision
(mAP). We test our RGB-D semantic segmentation on the VOC2012 dataset. The
performance is measured by the intersection-over-union (IoU) score.

For depth prediction of indoor datasets such as the NYUD2 and B3DO, we train
the DCNF model on the NYUD2 dataset. For the VOC2007 and VOC2012 datasets
which contain both indoor and outdoor scenes, we train the DCNF model on images
from both the NYUD2 and Make3D Saxena et al. [2007] datasets. The depths of
the NYUD2 and B3DO are captured by the Microsoft Kinect, and the depths of the
Make3D are captured by laser scanner.

3.6.1 RGB-D object detection

In this section we show the results of our RGB-D object detection. We first show
the results of our RGB-D R-CNN object detector, then we show the results of our
RGB-D Fast R-CNN object detector. Finally we analyse some key components in our
experiments.

3.6.1.1 RGB-D R-CNN detection results

We first show the test results on the NYUD2 dataset, which we also use to train
the DCNF model. The NYUD2 dataset has 1449 RGB-D image pairs captured by
a Microsoft Kinect. We use the same object proposals in Gupta et al. [2014]. The
RGB feature learning network is also from Gupta et al. [2014] which is fine-tuned on
additional synthetic images. We use the training set to fine-tune our depth feature
learning network. The detection results are shown in Table 3.1. Detectors’ hyper-
parameters are determined on the training and validation data set. We choose the
output of different layers (denoted as pool5, fc6, fc7 which is same with AlexNet) as
depth or RGB features. As we can see from the table, with the depth information
being added, the best mAP is 25.2%, which is 5.5% higher than the result in Gupta
et al. [2014].

We then use the same DCNF model to estimate depths of the B3DO dataset. The
B3DO dataset is a relatively smaller RGB-D dataset than the NYUD2. It consists of
849 RGB-D image pairs captured by the Microsoft Kinect. The scene types of the
B3DO dataset are mainly domestic and office which are very similar to the NYUD2.
We generate around 2000 object proposals using selective search Uijlings et al. [2013]
in each image. All the detectors are trained on the training set and tested on the
validation set. We follow the detection baseline in Janoch et al. [2011] and report
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Table 3.1: Detection results on the NYUD2 dataset. The first three columns are de-
tection results of RGB features only. Columns 4-6 are detection results of depth fea-
tures only. Columns 7-10 are detection results of combined RGB and depth features.
The last two columns are detection results using features extracted from ground-
truth depth. “pool5", “fc6", and “fc7" denote different layers for feature extraction,

“scratch" denotes the depth feature learning network is trained from scratch.
RGB

(pool5)
RGB Gupta et al. [2014]

(fc6)
RGB
(fc7)

Depth
(pool5)

Depth
(fc6)

Depth
(fc7)

bathtub 16.2 5.5 18.3 0.7 3.9 4.6
bed 38.4 52.6 40.7 35.9 40.1 39.3

bookshelf 22.8 19.5 27.4 4.4 4.1 2.0
box 0.8 1.0 0.8 0.1 0.1 0.1

chair 23.3 24.6 27.1 11.7 14.6 13.9
counter 27.8 20.3 34.2 15.4 19.9 20.0

desk 5.2 6.7 8.8 3.2 4.3 3.4
door 13.3 14.1 15.0 1.7 1.9 1.9

dresser 10.3 16.2 17.0 4.3 7.0 7.3
garbage bin 15.0 17.8 16.4 2.6 4.3 4.1

lamp 24.0 12.0 25.9 10.2 10.2 10.3
monitor 28.8 32.6 37.4 5.3 7.6 6.8

nightstand 11.8 18.1 12.4 0.9 0.9 1.1
pillow 13.0 10.7 14.5 3.7 5.5 7.0
sink 21.2 6.8 25.7 3.6 7.6 9.4
sofa 29.0 21.6 28.6 11.5 13.9 12.3
table 9.7 10.0 11.2 7.8 10.3 9.6

television 23.9 31.6 26.0 4.4 3.9 4.3
toilet 40.0 52.0 44.8 29.5 27.6 26.9
mAP 19.7 19.7 22.7 8.3 9.9 9.7

RGB-D
(pool5)

RGB-D
(fc6)

RGB-D
(fc7)

RGB-D
(fc6,scratch) GT Depth RGB-GTD

(fc6)

bathtub 15.4 19.3 19.8 18.5 23.9 39.1
bed 51.4 52.5 49.1 45.6 58.8 65.4

bookshelf 26.0 30.5 29.0 28.1 27.7 34.2
box 0.8 0.7 0.8 0.6 0.4 0.8

chair 25.3 28.8 28.6 28.2 31.7 39.6
counter 32.4 36.2 37.2 34.9 34.5 45.2

desk 8.6 11.2 10.4 8.2 3.8 11.8
door 13.5 14.1 15.4 15.5 3.6 18.3

dresser 16.1 25.0 20.1 17.1 14.0 25.4
garbage bin 17.8 20.9 17.6 16.5 13.2 28.3

lamp 22.3 27.4 27.8 26.9 27.1 34.1
monitor 31.5 36.5 38.4 37.1 7.0 38.4

nightstand 14.0 10.8 13.2 12.2 23.3 31.4
pillow 16.3 18.3 17.5 16.8 15.2 27.1
sink 20.0 26.1 26.3 28.1 20.0 36.2
sofa 30.6 31.8 29.3 27.7 28.7 38.2
table 14.5 15.0 14.4 11.7 21.1 21.4

television 27.6 29.3 28.4 29.5 7.8 26.4
toilet 42.8 44.8 44.2 40.2 42.2 48.2
mAP 22.5 25.2 24.6 23.3 21.3 32.1
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the test results on 8 objects. But different from Janoch et al. [2011] which uses 6
different splits for evaluation and reported the averaged AP values, we only use the
first split (with 306 images in the training set and 237 images in the validation set).
We directly use the AlexNet without fine-tuning to extract RGB features. The results
are illustrated in Table 3.2, from which we can see that the added depth features
improve the detection mAP by 2.0%.

Table 3.2: Detection results of our RGB-D R-CNN detector on the B3DO dataset. The
first row shows the results of RGB features only; the second row shows the results
of estimated depth features only; the third row shows the results of combined RGB

features and depth features.

RGB Estimated Depth RGB-D (Estimated)

chair 37.0 35.9 43.3
monitor 79.0 59.9 78.6

cup 33.0 21.8 33.8
bottle 19.5 6.1 20.2
bowl 29.6 14.7 34.3

keyboard 56.5 15.2 57.0
mouse 26.9 9.0 24.2
phone 37.9 8.4 44.0
mAP 39.9 21.4 41.9

In order to further show the the effectiveness of our deeply learned depth fea-
tures, we test object detection on the PASCAL VOC 2007 and 2012 datasets which
have no measured depths. We use the same regional proposals in Girshick et al.
[2014] which are generated by selective search. We first report the results on 6 indoor
objects in the VOC2012 dataset in Table 3.3. We select all the images containing these
6 objects and use the training set (1508 indoor images) to train the depth feature
learning network and detector, and use the validation set (1523 indoor images) for
testing. We directly use the AlexNet without finetuning for RGB feature extraction
and use the output of the “fc6" layer as feature vectors. As we can see from Table 3.3,
our learned depth features improve the detection mAP by 3.6%.

Table 3.3: Detection results of our RGB-D R-CNN detector on indoor objects of the
VOC2012 dataset. The first row shows the results of RGB features only, the second
row shows the results of estimated depth features only, the third row shows the

results of combining RGB features and depth features.

bottle chair table plant sofa tv mAP

RGB 20.0 16.4 23.2 21.6 24.8 55.1 26.9
Estimated Depth 11.4 11.0 16.0 4.7 20.2 32.7 16.0

RGB-D (Estimated) 21.5 20.8 29.6 24.1 31.7 55.1 30.5

Table 3.4 shows the detection results on the VOC2007 dataset. Since we use all
images in the VOC2007 dataset, we train the DCNF model using a combination of
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Figure 3.8: Some detection examples. The red boxes are instances detected by the
RGB detector, and the yellow boxes are instances obtained by our RGB-D detector.

the NYUD2 and Make3D datasets. We first directly use AlexNet without fine-tuning
for the RGB feature extraction. As we can see from the first 3 rows, the additional
depth features improve the mAP by 3.2%. We then use fine-tuned AlexNet for the
RGB feature extraction and report the results in the last two rows. As we can see,
even though the RGB fine-tuning increases correlativity between color and depth
information, the additional depth features still improve the detection mAP by 0.9%.
Similar to the experiment on the VOC2012 dataset, we use the output of the “fc6"
layer as the RGB and depth features. Some examples of our RGB-D detection are
shown in Fig. 3.8.

3.6.1.2 RGB-D Fast R-CNN detection results

We test our RGB-D Fast R-CNN detection on the VOC2007 dataset and show the
results on Table 3.5. We use the object proposals generated by the region proposal
network (RPN) network in Ren et al. [2015b]. Similar to Ren et al. [2015b], we use
2000 RPN proposals in each image to train and test on 300 RPN proposals in each
image. In order to fit the GPU memory, we use single-scale training s = 300 pixels
and cap the longest image side at 500 pixels (600 and 1000 respectively in Girshick
[2015]). We also use a mini-batch size of 1 and only sample 32 RoIs from one image.
The experiments in Girshick [2015] use a mini-batch size of 2 and sample 128 RoIs
from 2 images. As we can see from Table 3.5, that our RGB-D detection mAP outper-
forms RGB only detection mAP by 1.0%. Notably, our RGB only detection results is
lower than Ren et al. [2015b]. This is mainly because we shrink the input image size
and especially the mini-batch size as the RoIs in one image are correlated.

Additionally, we can also learn a region proposal network (RPN) network with
our estimated depth incorporated. Specifically, we can apply a two steam structure
with RGB and depth images as two separate inputs. After two processing streams
that do not share parameters, the RGB and depth feature maps are concatenated
to generate object proposals. With the estimated depth being incorporated in RPN
network learning, our RGB-D detection can also be applied on the latest Faster-
RCNN.
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Table 3.4: Detection results on the VOC 2007 dataset of our RGB-D R-CNN detector.
The first column shows the results of RGB features only, the second column shows
the results of depth features only, the third column shows the results of combined
RGB and depth features. The first three columns are results of RGB features directly
extracted from AlexNet and the last two columns are the results of RGB features

extracted from fine-tuned AlexNet.
RGB

Girshick et al. [2014] Depth RGB-D RGB Girshick et al. [2014]
(finetune)

RGB-D
(finetune)

aero 59.3 39.1 61.2 63.5 67.7
bike 61.8 33.7 63.4 66.0 66.4
bird 43.1 21.2 44.4 47.9 47.8
boat 34.0 15.6 35.9 37.7 36.0

bottle 25.1 10.9 28.2 29.9 31.9
bus 53.1 36.1 55.6 62.5 61.5
car 60.6 43.2 63.7 70.2 70.6
cat 52.8 30.7 56.5 60.2 59.0

chair 21.7 12.0 26.9 32.0 32.6
cow 47.8 21.3 49.5 57.9 52.3
table 42.7 27.7 47.1 47.0 51.4
dog 47.8 14.6 49.7 53.5 55.9

horse 52.5 29.5 56.2 60.1 61.1
mbike 58.5 28.4 59.9 64.2 63.8
person 44.6 29.1 46.3 52.2 52.8
plant 25.6 10.3 28.3 31.3 32.6
sheep 48.3 13.0 50.4 55.0 57.7
sofa 34.0 25.4 46.8 50.0 50.5
train 53.1 31.9 55.4 57.7 58.1

tv 58.0 30.4 62.7 63.0 64.8
mAP 46.2 25.2 49.4 53.1 54.0

3.6.1.3 Ceiling performance

Since we use estimated depth for depth feature extraction, we need to find out
whether there is any space for further improvement of detection by improving depth
estimation accuracy. We test our RGB-D R-CNN object detection using ground-truth
depth on the NYUD2 dataset and show the results in the last two columns in Table
3.1. As we can see from Table 3.1, the detection mAP of ground-truth depth only
is 21.3%, which is even better than the RGB only mAP. The mAP by ground truth
RGB-D outperforms the mAP by estimated RGB-D by 6.9%. From this experiment we
can see that depth estimation is a key component of our RGB-D detection methods,
the detection performance can be further improved by improving depth estimation
accuracy.

3.6.1.4 Network initialization

In the aforementioned RGB-D R-CNN experiments, we initialize our depth feature
learning network with AlexNet and fine-tune it using depth images based on the
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Table 3.5: Detection results on the VOC 2007 dataset of our RGB-D Fast R-CNN
detector. The first row shows the results of RGB features only; the second row shows
the results of depth features only, and the last two rows show the result of RGB-D

features.

RGB Depth RGB-D
(fc6)

RGB-D
(fc7)

aero 65.3 47.8 60.9 65.3
bike 74.3 46.7 76.7 75.8
bird 60.3 26.8 60.7 59.6
boat 48.7 27.7 46.8 48.3

bottle 36.2 14.3 35.5 36.8
bus 74.0 54.7 73.6 74.3
car 75.7 56.6 76.4 75.8
cat 77.9 49.5 79.4 78.7

chair 40.5 21.5 41.5 41.4
cow 66.1 27.2 69.8 70.5
table 54.6 40.7 57.3 57.5
dog 73.8 35.1 75.5 75.9

horse 77.7 53.7 78.2 79.1
mbike 73.1 45.2 68.7 68.8
person 67.5 47.8 70.6 71.7
plant 35.4 14.7 34.4 33.5
sheep 57.6 17.5 60.6 58.6
sofa 62.7 45.3 64.8 63.4
train 74.3 51.2 76.1 76.6

tv 57.1 38.8 62.6 59.7
mAP 62.6 38.1 63.5 63.6

similarities among RGB and depth images. We also duplicate depth map to 3 chan-
nels to fit the input of the pre-trained AlexNet. In order to show the effectiveness of
this step, we train a depth feature learning network from scratch on a larger RGB-D
dataset and test object detection on the NYUD2 dataset. Specifically, we use SUN-
RGBD Song et al. [2015] which contains a total number of 10335 images. Since we
report detection results on the NYUD2 dataset, we use all the images exclude the 654
NYUD2 test images. We use selective search to generate around 2000 object proposals
in each image. We show the results in Table 3.1 denoted as RGB-D (fc6,scratch). As
we can see, AlexNet initialization works better than training depth learning network
from scratch. This experiment confirms that there are certain similarities between
RGB and depth images and we can take advantage of networks pre-trained on RGB
datasets to exploit depth information.

In addition, we also replace the depth features with RGB features learned from
another network. Specifically, we initialize another RGB feature learning network
with Place-AlexNet Zhou et al. [2014] which is trained on the Place dataset with
2.5 million images. We fine-tune this network also with RGB images to extract new
RGB features (output of fc6). Then the two streams in are RGB features. We test
detection with the two RGB features and get an mAP of 21.9%. This experiment
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further confirms that the information exploited from depth images is useful for RGB
only tasks.

3.6.2 RGB-D semantic segmentation

In this section, we first show the results of our RGB-D segmentation by feature con-
catenation, then we show the result of our RGB-D segmentation by multi-task train-
ing. All the segmentation results are reported on the validation of the VOC2012
dataset which contains 1449 images. The standard segmentation training set of
VOC2012 has 1464 images. Following the conventional setting in Hariharan et al.
[2014], we also report the segmentation results using the 10582 training images aug-
mented in Hariharan et al. [2011].

Table 3.6: Segmentation results of our RGB-D segmentation by feature concatenation
on the VOC2012 dataset. We use the standard 1464 images for training and test on
the validation set. The first row shows the results using RGB features only, and the

last 3 row shows the results with additional depth features.

RGB RGB-D (pool5) RGB-D (fc6) RGB-D (fc7)

aero 52.3 57.7 61.8 61.5
bike 23.2 15.5 25.7 24.0
bird 41.8 50.5 58.5 57.1
boat 34.5 38.8 47.5 44.8

bottle 36.9 41.6 49.7 47.9
bus 60.4 60.8 67.3 66.9
car 56.3 58.1 65.7 66.1
cat 53.4 59.1 65.1 63.9

chair 11.9 13.9 15.6 16.0
cow 14.4 33.6 42.5 43.1
table 32.5 29.9 36.5 36.8
dog 44.5 48.7 55.9 54.8

horse 33.4 33.3 44.9 44.0
mbike 50.3 52.0 58.1 56.7
person 63.1 65.0 67.0 66.8
plant 23.4 27.9 34.2 33.0
sheep 41.4 45.4 54.0 54.3
sofa 14.7 26.4 31.2 29.7
train 48.2 52.6 60.8 60.2

tv 45.0 43.3 48.5 47.6
mean 41.4 44.8 51.4 50.6

3.6.2.1 RGB-D segmentation by feature concatenation

We first train our RGB-D segmentation network using the standard 1464 images and
show the results in Table 3.6. Similar to our RGB-D detection experiments, we also
concatenate the RGB and depth features at different places (denoted as pool5, fc6,fc7
which is same with VGG16 net) and report the results. As we can see from the
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Table 3.7: Segmentation results on VOC2012 dataset. We use the augmented data
for training and test on validation set. The first row shows the results using RGB
images only The second row shows the result of our RGB-D segmentation by multi-
task training. The last 2 rows show the results of our RGB-D segmentation by feature

concatenation.

RGB RGB-D
(multi-task) RGB-D(fc6) RGB-D(fc7)

aero 69.2 69.5 70.9 69.4
bike 31.0 30.2 29.9 29.9
bird 64.5 68.4 68.5 68.3
boat 48.6 53.3 54.9 55.7

bottle 49.9 54.1 55.8 53.5
bus 73.2 72.8 75.0 73.2
car 68.3 70.3 72.0 71.4
cat 72.2 72.2 72.6 72.4

chair 24.2 22.4 21.2 22.6
cow 50.9 54.6 53.5 53.1
table 34.2 36.5 37.5 37.0
dog 61.2 63.5 63.4 63.9

horse 52.9 55.9 56.2 55.3
mbike 64.4 63.7 63.4 63.7
person 72.0 71.5 72.6 71.7
plant 41.7 40.7 43.7 42.7
sheep 59.1 60.2 61.6 61.6
sofa 27.5 31.5 32.6 33.2
train 67.9 69.7 71.2 70.4

tv 57.7 59.5 60.0 57.7
mean 56.2 57.6 58.4 57.9

table, all the results with depth features outperform the RGB only result. And the
maximum mean IoU score improvement is 10% when we choose the output of fc6
layer to be the depth feature.

Next we train our RGB-D segmentation network using augmented images and
report the result in Table 3.7. From the table we can see that the maximum mean
intersection over union (IoU) score improvement is 2.2%, which is much less com-
paring to the improvement by standard training data. This is caused by the high
correlativity between the estimated depth maps and the RGB images. When the RGB
training images are sufficient, there is less additional information the depth maps
can provide.

3.6.2.2 RGB-D segmentation by multi-task training

In our RGB-D segmentation network by feature concatenation, the separate feature
extraction networks minimize the correlativity between the estimated depths and
the RGB images. While in our RGB-D segmentation network by multi-task training,
since the depth and color information share parameters, it is a question how much
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the estimated depth can help in updating the network.
During back-propagation, there are two factors controlling the extent of the par-

ticipation of depth information in updating the network parameters. The first one is
a trade-off hyper-parameter λ multiplied by the lease squared loss. When λ is 0, the
depth information contributes nothing to the parameter updating. The second one is
the number of convolution layers n in the depth information processing stream. Fig.
3.7 shows an example of n = 5. We also test n = 2 and n = 3. When n = 2, the depth
information processing stream contains 2 convolution layers with 128 and 1 chan-
nels respectively. When n = 3, the depth information processing stream contains
5 convolution layers with channels 256, 128 and 1 respectively. This factor controls
the number of common layers that shared by color and depth information in the
network.

We first use the standard 1464 images for training and report the test results in
Table 3.8. As we can see from the table, the maximum improvement introduced by
depth information is 9%. We also notice that smaller participation of depth informa-
tion in updating network parameters (larger value of n and smaller value of λ) lead
to better performance. This is because the smaller participation of depth information,
the less correlativity between the depths and RGB images.

Combining losses is often hard to tease apart from adjusting the learning rate or
other regularizations, since adding a loss effectively changes the gradient size. In
the aforementioned experiments, we initialize the learning rate (lr) to be 10−7 and
decrease by a factor of 0.4 every 5 epochs. The weight decay (wd) is set to 0.0005.
In order to make sure the performance improvement is introduced by the exploited
depth information, we also test on 5 other different learning rate and weight decay
schemes: (a) wd = 0.001, initial lr = 10−7 and decrease 0.4 every 5 epochs, (b)
wd = 0.0001, initial lr = 10−7 and decrease 0.4 every 5 epochs,(c) wd = 0.0005,
initial lr = 10−7 and decrease 0.1 every 5 epochs, (d) wd = 0.0005, initial lr = 10−7

and decrease 0.4 every 7 epochs, (e) wd = 0.0005, initial lr = 10−8 and decrease 0.4
every 5 epochs. We get the mean IoU score of 50.2%, 50.3%, 50.4%, 50.1% and 48.8%
respectively. These results confirm that the performance improvement is introduced
by exploited depth information.

Table 3.8: The VOC2012 segmentation IoU scores of our method on the validation set
using the standard training set for training. The coefficient λ is a trade-off multiplied
by the depth error in the back-propagation. n is the number of fully-connected layers

in the depth processing stream.

λ = 0 λ = 0.1 λ = 1 λ = 10 λ = 50

n = 2 41.4 50.2 49.9 49.1 46.8

n = 3 - 50.0 50.2 49.4 49.8

n = 5 - 50.0 50.4 49.9 48.3

Next we we show the results using augmented training images in Table 3.7. We
set λ = 10 and n = 3. As we can see, the mean IoU score is only improved by
1.4% when incorporating depth information. Similar to the result of our RGB-D
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segmentation by feature concatenation, the improvement is much less when data
augmentation is applied due to the limited additional information provided by the
estimated depth.

3.7 Conclusion

We have combined the task of depth estimation with object detection and semantic
segmentation and proposed two ways of exploiting depth information from esti-
mated depth to improve the performance of object detection and semantic segmen-
tation. Experiment results show the effectiveness of our proposed methods.

We have attempted to answer the question of whether separately estimating
depths from RGB images and incorporating them as a cue for detection and seg-
mentation improves performance, and shown that it does. This holds despite the
fact that the depth estimation process only has access to the same test data as the
main (detection or segmentation) algorithm. This is particularly interesting because
it shows that it is possible to improve performance by exploiting related data which
does not share the same set of labels.
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Chapter 4

Estimating Depth as Classification
Using Deep Fully Convolutional
Residual Networks

4.1 Introduction

Depth estimation is one of the most fundamental tasks in computer vision. Many
other computer vision tasks such as object detection, semantic segmentation, scene
understanding, can benefit considerably from accurate estimation of depth informa-
tion. Most existing methods Eigen and Fergus [2015]; Li et al. [2015a]; Wang et al.
[2015]; Liu et al. [2015b] formulate depth estimation as a structured regression task
due to the fact of depth values being continuous. These regression models for depth
estimation are trained by iteratively minimizing the L2 norm between the predicted
depths and the ground-truth depths, and aim to output depths as close to the actual
depths as possible during evaluation. However, it is difficult to regress the depth
value of input data to be exactly the ground-truth value. For human beings, we may
find it difficult to tell the exact distance of a specific point in a natural scene, but we
can easily give a rough distance range of that point. Motivated by this, we formulate
depth estimation as a pixel-wise classification task by discretizing the continuous
depth values into several discrete bins. Instead of training a model to predict the
depth value of a point, we train a model to predict the depth range. We show that
this simple re-formulation scheme performs surprisingly well.

Another important reason for us to choose classification over regression for depth
estimation is that it naturally predicts a confidence in the form of probability distri-
bution over the output space. Different points have different distributions of pos-
sible depth values. The depth estimation of some points are easy while others are
not. Typical regression models only output the mean values of possible depth val-
ues without the variances, (i.e., the confidence of a prediction is missing). Some
efforts have been made to obtain this confidence such as the constrained structured
regression Pathak et al. [2016], or the Monte-Carlo dropout Kendall et al. [2015]; Gal
and Ghahramani [2016]. Compared to these methods which either require specific
constraints or multiple forward passes during evaluation, our proposed approach is
simple to implement.

The obtained probability distribution can be an important cue during both train-

41
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Figure 4.1: An overview of our depth estimation model. It takes as input an image
and output dense score maps. Fully-connected CRFs are then applied to obtain the

final depth estimation.

ing and post-processing. Although we formulate depth estimation as a classification
task by discretization, the depth labels are different from the labels of typical classi-
fication tasks such as semantic segmentation. During training, the predicted depth
labels that are close to ground-truth and with high confidence can also be used to
update model parameters. This is achieved by an information gain loss. As for
the post-processing, we apply the fully-connected conditional random fields (CRF)
Krähenbühl and Koltun [2011] which have been frequently applied in semantic seg-
mentation Lin et al. [2016]; Chen et al. [2015a]. With the fully connected CRFs, pixel
depth estimation with low confidence can be improved by other pixels that are con-
nected to it.

Traditional depth estimation methods enforce geometric assumptions and rely
on hand-crafted features such as SIFT, PHOG, GIST, texton, etc. Recently, computer
vision has witnessed a series of breakthrough results introduced by deep convolu-
tional neural networks (CNN) Krizhevsky et al. [2012]; Simonyan and Zisserman
[2014]. The success of deep networks can be partially attributed to the rich features
captured by the stacked layers. Recent evidence has shown that depth estimation
benefits largely from increased number of layers Eigen et al. [2014]; Eigen and Fer-
gus [2015]; Liu et al. [2015b]. However, stacking more layers does not necessarily
improve performance as the training can become very difficult due to the problem of
vanishing gradients. In this work, we apply the the deep residual learning framework
proposed by He et al. He et al. [2016a]. It manages to learn the residual mapping of
a few stacked layers to avoid the vanishing gradients problem.

An overview of our proposed depth estimation model is illustrated in Fig. 4.1.
It takes as input an arbitrarily sized image and outputs a dense score map. Fully
connected CRFs are then applied to obtain the final depth estimation. The remaining
content of this chapter is organized as follows. Section 4.2 reviews some relevant
work. Then we present the proposed method in Section 4.3. Experiment results are
presented in Section 4.4. Finally, Section 4.5 concludes the chapter.
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4.2 Background

Previous depth estimation methods are mainly based on geometric models. For ex-
ample, the works of Hedau et al. [2010]; Gupta et al. [2010b]; Schwing and Urtasun
[2012] rely on box-shaped models and try to fit the box edges to those observed
in an image. These methods are limited to only model particular scene structures
and therefore are not applicable for general-scene depth estimations. More recently,
non-parametric methods Karsch et al. [2014] are explored. These methods consist
of candidate images retrieval, scene alignment and then depth inference using opti-
mizations with smoothness constraints. These methods are based on the assumption
that scenes with semantically similar appearances should have similar depth distri-
butions when densely aligned.

Other methods attempt to exploit additional information. To name a few, the au-
thors of Russell and Torralba [2009] estimated depths through user annotations. The
work of Liu et al. [2010] performed semantic label prediction before depth estima-
tion. The works of Ladicky et al. [2014]; Wang et al. [2015] have shown that jointly
perform depth estimation and semantic labelling can help each other. Given the fact
that the extra source of information is not always available, most of recent works
formulated depth estimation as a Markov Random Field (MRF) Saxena et al. [2005,
2009, 2007] or Conditional Random Field (CRF) Liu et al. [2014] learning problem.
These methods managed to learn the parameters of MRF/CRF in a supervised fash-
ion from a training set of monocular images and their corresponding ground-truth
depth images. The depth estimation problem then is formulated as a maximum a
posteriori (MAP) inference problem on the CRF model.

With the popularity of deep convolutional neural networks (CNN) since the work
of Krizhevsky et al. [2012], some works attempted to solve the depth estimation
problem using deep convolutional networks and achieved outstanding performance.
Eigen et al. Eigen and Fergus [2015] proposed a multi-scale architecture for predict-
ing depths, surface normals and semantic labels. The multi-scale architecture is able
to capture many image details without any superpixels or low-level segmentation.
Liu et al. Liu et al. [2015b] presented a deep convolutional neural field model for
depth estimation. It learned the unary and pairwise potentials of continuous CRF in
a unified deep network. The model is based on fully convolutional networks (FCN)
with a novel superpixel pooling method. Similarly, Li et al. Li et al. [2015a] and
Wang et al. Wang et al. [2015] also combined the CNNs with CRFs, they formulated
depth estimation in a two-layer hierarchical CRF to enforce synergy between global
and local predictions.

Anirban et al. Roy and Todorovic [2016] proposed a neural regression forest
(NRF) architecture which combines convolutional neural networks with random
forests for predicting depths in the continuous domain via regression. The NRF
processes a data sample with an ensemble of binary regression trees and the final
depth estimation is made by fusing the individual regression results. It allows for
parallelizable training of all shallow CNNs, and efficient enforcing of smoothness in
depth estimation results. Laina et al. Laina et al. [2016] applied the deep residual
networks for depth estimation. In order to improve the output resolution, they pre-
sented a novel way to efficiently learn feature map up-sampling within the network.
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They also presented a reverse Huber loss which is driven by the value distributions
commonly present in depth maps for the network optimization.

Experiment results in the aforementioned works reveal that depth estimation ben-
efits from: (a) an increased number of layers in deep networks; (b) obtaining fine-level
details. In this work, we take advantage of the successful deep residual networks He
et al. [2016a] and formulate depth estimation as a dense prediction task. We also
apply fully connected CRFs Krähenbühl and Koltun [2011] as post-processing. Al-
though Laina et al. Laina et al. [2016] also applied the deep residual network for
depth estimation, our method is different from Laina et al. [2016] in 3 distinct ways:
Firstly, we formulate depth estimation as a classification task, while Laina et al. [2016]
formulated depth estimation as a regression task. Secondly, we can obtain the confi-
dence of depth predictions which can be used during training and post-processing.
Lastly, in order to obtain high resolution predictions, Laina et al. [2016] applied an
up-sampling scheme while we simply use bilinear interpolation.

The aforementioned CNN based methods formulate depth estimation as a struc-
tured regression task due to the continuous property of depth values. However for
different pixels in a single monocular image, the possible depth values have different
distributions. Depth values of some pixels are easy to predict while others are not.
The output of continuous regression lacks this confidence. In Pathak et al. [2016],
Pathak et al. presented a novel structured regression framework for image decompo-
sition. It applied special constraints on the output space to capture the confidence of
predictions. In Kendall et al. [2015], Kendall et al. proposed a Bayesian neural net-
work for semantic segmentation. It applied the Monte-Carlo dropout during training
and obtained the confidence of predictions by multiple forward passes during evalu-
ation. In this work, we obtain the confidence by simply formulating depth estimation
as a classification task.

4.3 Proposed Method

In this section, we describe our depth estimation method in detail. We first introduce
the network architecture, followed by the introduction of our loss function. Finally,
we introduce the fully connected conditional random field (CRF) which is applied as
post-processing.

4.3.1 Network architecture

We formulate our depth estimation as a spatially dense prediction task. When ap-
plying CNNs to this type of task, the input image is inevitably down-sampled due
to the repeated combination of max-pooling and striding. In order to handle this,
we follow the fully convolutional network (FCN) which has been proven to be suc-
cessful in dense pixel labeling. It replaces the fully connected layers in conventional
CNN architectures with convolutional layers. By doing this, it makes the fully con-
volutional networks capable of taking input of arbitrarily sized images and output a
down-sampled prediction map. After applying a simple upsample such as bilinear
interpolation, the prediction map is of the same size of the input image.
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The depth of CNN architectures is of great importance. Much recent works reveal
that the VGG Simonyan and Zisserman [2014] network outperforms the shallower
AlexNet Krizhevsky et al. [2012]. However, simply stacking more layers to existing
CNN architectures does not necessarily improve performance due to the notorious
problem of vanishing gradients, which hampers convergence from the beginning
during training. The recent ResNet model solves this problem by adding skip con-
nections. We follow the recent success of deep residual network with up to 152 layers
He et al. [2016a], which is about 8× deeper than the VGG network but still having
fewer parameters to optimize.
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Figure 4.2: Two types of building blocks that can be used in our depth estimation
model. (a) building block with identity mapping. (b) building block with linear

projection.

Instead of directly learning the underlying mapping of a few stacked layers, the
deep residual network learns the residual mapping. Then the original mapping can
be realized by feedforward neural networks with “shortcut connections”. Shortcut
connections are those skipping one or more layers. In our model, we consider two
shortcut connections and the building blocks are shown in Fig. 4.2. The building
block illustrated in Fig. 4.2(a) is defined as:

y = F(x, {Wi}) + x, (4.1)

where x and y are the input and output matrices of stacked layers respectively. The
function F(x, {Wi}) is the residual mapping that need to be learned. Since the short-
cut connection is an element-wise addition, the dimensions of x and F need to be
same.
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Figure 4.3: Network architecture of our depth estimation model. The input image
is fed into a convolutional layer, a max pooling layer and 4 convolution blocks. We
consider network architectures with 101 and 152 layers. The value of [n1, n2, n3, n4]
is [2, 3, 22, 2] for the 101-layer network architecture and [2, 7, 35, 2] for the 152-layer
network architecture. The last 4 layers are 3 convolutional layers and a softmax
layer. The output map is downsampled by a factor of 8 and we preform bilinear

interpolation during prediction.

The building block illustrated in Fig. 4.2(b) is defined as:

y = F(x, {Wi}) + Wsx. (4.2)

Compared to the shortcut connection in Eq. (4.1), a linear projection Ws is applied to
match the dimensions of x and F.

The overall network architecture of our depth estimation model is illustrated in
Fig. 4.3. The input image is fed into a convolutional layer, a max pooling layer fol-
lowed by 4 convolution blocks. Each convolution block starts with a building block
with linear projection followed by different numbers of building blocks with iden-
tity mapping. In this article, we consider two deep residual network architectures
with 101 and 152 layers respectively. For the network architecture with 101 layers,
the number of building blocks with identity mapping in the four convolution blocks
(i.e., n1, n2, n3, n4 in Fig. 4.3) are 2, 3, 22 and 2 respectively. As for the network
architecture with 152 layers, the numbers are 2, 7, 35 and 2. The last four layers
are three convolutional layers with channels 1024,512 and N, and a softmax layer,
where N is the number of ground-truth labels. Batch normalization and ReLU layers
are performed between these convolutional layers. Downsampling is performed by
pooling or convolutional layers that have a stride of 2. These include the first 7× 7
convolutional layer, the first 3× 3 max pooling layer, and the first building block of
convolution block 2 in Fig. 4.3. As a result, the output prediction map is downsam-
pled by a factor of 8. During prediction, we perform a bilinear interpolation on this
map to make it the same size with the input image.
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4.3.2 Loss function

In this work, we use the pixel-wise multinomial logistic loss function as we formu-
late depth estimation as a classification task. We uniformly discretize the continuous
depth values into multiple bins in the log space. Each bin covers a range of depth
values and we label the bins according to the range (i.e., the label index of a pixel
indicates its distance). The depth labels however are different from the labels of typi-
cal classification tasks. For typical classification tasks such as semantic segmentation
and object detection, the predictions that are different from ground-truth labels are
considered wrong and contribute nothing in updating network parameters. As for
depth estimation, the predictions that are close to ground-truth depth labels can also
help in updating network parameters. This is achieved by an “information gain"
matrix in our loss function.

Specifically, our loss function is defined as:

L = − 1
N

N

∑
i=1

B

∑
D=1

H(D∗i , D) log(P(D|zi)) (4.3)

where D∗i ∈ [1, . . . , B] is the ground-truth depth label of pixel i and B is the total
number of discretization bins. P(D|zi) = ezi ,D/∑B

d=1 ezi,d is the probability of pixel i
labelled with D. zi,d is the output of the last convolutional layer in the network. The
“information gain" matrix H is a B× B symmetric matrix with elements H(p, q) =
exp[−α(p− q)2] and α is a constant. It encourages the predicted depth labels that are
closer to ground-truths have higher contributions in updating network parameters.

During prediction, we set the depth value of each pixel to be the center of its
corresponding bin. By formulating depth estimation as classification, we can get the
confidence of each prediction in the form of probability distribution. This confidence
can also be applied during post-processing via fully connected CRFs.

4.3.3 Fully connected conditional random fields

A deep convolutional network typically does not explicitly take the dependency
among local variables into consideration. It does so only implicitly through the field
of view. That is why the size of field of view is important in terms of the performance
of a CNN. In order to greatly refine the network output, we apply the fully connected
CRF proposed in Krähenbühl and Koltun [2011] as post-processing. It connects all
pairs of individual pixels in the image. Specifically, the energy function of a fully
connected CRF is the sum of unary potential U and pairwise potential V:

E(D) = ∑
i

U(Di) + ∑
i,j

V(Di, Dj), (4.4)

where D is the predicted depth labels of pixels and i, j are pixel indices. We use the
logistic loss of pixel defined in Eq. (4.3) as the unary potential, which is

U(Di) = L(Di) = − log(P(Di|zi)).
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The pairwise potential is defined as

∑
i,j

V(Di, Dj) = ∆(Di, Dj)
M

∑
s=1

ws · ks(fi, fj),

where ∆(Di, Dj) is a penalty term on the labelling. Since the label here indicates
depth, we enforce a relatively larger penalty for labellings that are far away from
ground-truth. For simplicity, we use the absolute difference between two label values
to be the penalty: ∆(Di, Dj) = |Di − Dj|. There is one pairwise term for each pair
of pixels in the image no matter how far they are from each other (i.e., the model’s
factor graph is fully connected).

Each ks is the Gaussian kernel depends on features (denoted as f) extracted for
pixel i and j and is weighted by parameter ws. Following Krähenbühl and Koltun
[2011], we adopt bilateral positions and color terms, specifically, the kernels are:

w1 exp(−
‖pi − pj‖2

2σ2
α

−
‖Ii − Ij‖2

2σ2
β

) + w2 exp(−
‖pi − pj‖2

2σ2
γ

). (4.5)

The first kernel is appearance kernel, which depends on both pixel positions (denoted
as p) and pixel color intensities (denoted as I). It is inspired by the observation
that nearby pixels with similar color are likely to be in the same depth range. The
degrees of nearness and similarity are controlled by hyper parameters σα and σβ. The
second kernel is smoothness kernel which removes small isolated regions, the scale
of smoothness is controlled by σγ.

4.4 Experiments

We evaluate our proposed depth estimation approach on 2 benchmark RGB-D datasets:
the indoor NYUD2 Silberman et al. [2012] dataset and the outdoor KITTI Geiger et al.
[2013] dataset. We organize our experiments into the following three parts:

(1) We show the effectiveness of our depth discretization scheme and compare
our discrete depth label classification with continuous depth value regression.

(2) We evaluate the contribution of different components in our proposed ap-
proach.

(3) We compare our proposed approach with state-of-the-art methods to show
that our approach performs better in both indoor and outdoor scenes. Several mea-
sures commonly used in prior works are applied for quantitative evaluations:

• root mean squared error (rms):
√

1
T ∑p(dgt − dp)2

• average relative error (rel): 1
T ∑p

|dgt−dp|
dgt

• average log10 error (log10): 1
T ∑p | log10 dgt − log10 dp|

• root mean squared log error (rmslog)
√

1
T ∑p(log dgt − log dp)2

• accuracy with threshold thr:
percentage (%) of dp s.t. max( dgt

dp
, dp

dgt
) = δ < thr where dgt and dp are the ground-

truth and predicted depths respectively of pixels, and T is the total number of pixels



§4.4 Experiments 49

in all the evaluated images.

4.4.1 Depth label classification vs. depth value regression

Discretizing continuous data would inevitably discard some information. In this
part, we first show that the discretization of continuous depth values degrades the
depth estimation model by negligible amount. Specifically, we equally discretize
the ground-truth depth values of test images in the NYUD2 dataset into different
numbers of bins in the linear and log space respectively and calculate three errors as
is mentioned above. The results are illustrated in Fig. 4.4.
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Figure 4.4: Quantitative evaluations of discretized ground-truth depth values of the
NYUD2 dataset. (a): errors of ground-truth depth values discretized in linear space.

(b): errors of ground-truth depth values discretized in the log space.

We can see from Fig. 4.4 that with the increment of discretization bins, the errors
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of discretized ground-truth depths decrease and stop at a negligible amount. And
the discretization in the log space leads to lower error than the discretization in the
linear space.

As for the accuracies, all the discretized ground-truth depths can reach 100% ex-
cept for the accuracy with threshold 1.25 when linearly discretizing the ground-truth
depths into 10 bins. From this experiment we can see that converting the ground-
truth depths from continuous values to discrete labels has negligible effect on the
performance. We can reformulate depth estimation from a conventional regression
task to a classification task.

We next compare our proposed depth estimation by classification with the con-
ventional depth regression and show the results in Table 4.1. In this experiment, we
apply the deep residual network with 101 layers and the parameters are initialized
with the ResNet101 model in He et al. [2016a] which is trained on the ImageNet
classification dataset. We train our models on standard NYUD2 training set with
795 images and standard KITTI training set with 700 images Eigen et al. [2014] for
fast comparison. As for the test sets, we select 650 and 700 images from the raw
NYUD2 and KITTI test sets respectively as validation sets. For depth regression,
the loss function is standard L2 norm which minimizes the squared euclidean norm
between predicted and ground-truth depths. The output depth map is upsampled
to the same size of the input image through bilinear interpolation. As for our depth
estimation by classification, we discretize the continuous depth values into different
numbers of bins in the log space. We do not apply CRF post-precessing for both
regression and classification. As we can see from Table 4.1 that depth estimation by
classification outperforms the conventional depth regression, and the performance
of depth classification is not very sensitive to the number of discretization bins.

One important reason for depth estimation by classification outperforms the
depth regression is that the regression tends to converge to the mean depth val-
ues. This may cause larger errors in areas that are either too far from or too close
to the camera. The classification with the information gain may alleviate this prob-
lem. In order to testify this, we break down the NYUD2 ground-truth depths into 3
ranges and report the results in Table 4.2. The general setting is the same with the
aforementioned experiment. The ground-truth depths are discretized into 100 bins
in the log space and the α defined in Eq. (4.3) is set to 0.2.

4.4.2 Component evaluation

In this section, we analyze the contribution of key components including the infor-
mation gain matrix, fully connected CRFs and network architectures in our proposed
approach. We evaluate depth estimation on both the NYUD2 and KITTI datasets. We
use the standard training set containing 795 images of the NYUD2 dataset and eval-
uate on the standard 654 test images. The continuous depth values are discretized
into 100 bins in the log space. As for the KITTI dataset, we apply the same split in
Eigen et al. [2014] which contains 700 training images and 697 test images. We only
use left images and discretize the continuous depth values into 50 bins in the log
space. We cap the maximum depth to be 80 meters. During training, we ignore the
missing values in ground-truth depths and only evaluate on valid points.
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Table 4.1: Depth estimation results by continuous depth value regression and discrete
depth label classification for the NYUD2 and KITTI datasets. The first row is the
result by regression. The following rows are results of depth label classification with

different number of discretization bins.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

Regression 65.3% 91.5% 97.4% 0.231 0.095 0.778

10 bins 69.4% 92.4% 97.5% 0.213 0.091 0.754

30 bins 70.5% 92.1% 97.8% 0.210 0.090 0.751

50 bins 68.9% 91.9% 97.0% 0.209 0.092 0.750

80 bins 70.6% 92.0% 97.6% 0.211 0.091 0.747

100 bins 70.1% 92.1% 97.6% 0.209 0.091 0.749

KITTI

Regression 67.5% 88.6% 90.4% 0.279 0.104 7.916

50 bins 76.3% 92.1% 96.3% 0.183 0.077 6.209

80 bins 77.1% 91.7% 96.6% 0.180 0.072 6.311

120 bins 76.8% 91.9% 96.7% 0.187 0.076 6.263

4.4.2.1 Benefit of information gain matrix

In this part, we evaluate the contribution of the information gain matrix in our loss
function. We train the ResNet101 model on both the NYUD2 and KITTI datasets with
and without information gain matrices. The α defined in Eq. (4.3) is set to 0.2 and 0.5
for NYUD2 and KITTI respectively. In our experiments, we find that the performance
is not sensitive to α. The results are illustrated in Table 4.3. As we can see from this
table that the information gain matrix improves the performance of both indoor and
outdoor depth estimation.

4.4.2.2 Benefit of fully connected CRFs

In order to evaluate the effect of the fully connected CRFs, we first train the ResNet101
model on both the NYUD2 and KITTI datasets, and then apply the fully connected
CRFs as post-processing. We illustrate the results in Table 4.4. As we can see from
the table, the fully-connected CRF can improve the depth estimation of both indoor
and outdoor scenes.

4.4.2.3 Network Comparisons

In this part, we compare the performance of deep residual networks with the base-
line VGG16 net Simonyan and Zisserman [2014] on the NYUD2 dataset. Since we
formulate depth estimation as a classification task, we can apply network structures
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Table 4.2: Test results on the NYUD2 dataset with different ground-truth ranges. We
break down the ground-truth depths into 0m-3m, 3m-7m and 7m-10m.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

Regression

0m-3m 65.7% 90.9% 97.4% 0.233 0.087 0.561

3m-7m 70.3% 95.5% 99.5% 0.175 0.075 0.936

7m-10m 45.0% 75.4% 93.5% 0.242 0.129 2.346

Classification

0m-3m 69.6% 91.2% 97.2% 0.216 0.083 0.561

3m-7m 76.0% 94.9% 98.6% 0.151 0.070 0.857

7m-10m 49.7% 74.9% 93.1% 0.238 0.126 2.199

Table 4.3: Test results on the NYUD2 and KITTI datasets with and without informa-
tion gain matrices. For each dataset, the first row is the result without information

gain matrix, the second row is the result with information gain matrix.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

Plain 70.9% 92.1% 98.0% 0.193 0.079 0.716

Infogain 72.2% 92.6% 98.0% 0.192 0.077 0.688

KITTI

Plain 79.9% 93.7% 97.6% 0.166 0.067 5.443

Infogain 81.4% 93.9% 97.6% 0.153 0.062 5.290

that perform well on semantic segmentation task. Specifically, for the VGG16 net, we
apply the structure in Lin et al. [2016]. We keep the layers up to “fc6" in VGG16 net
and add 2 convolutional layers with 512 channels, and 2 fully-connected layers with
512 and 100 channels respectively. The results are illustrated in Table 4.5. The perfor-
mance of residual networks unsurprisingly outperform the VGG16 net, reinforcing
the importance of network depth. Note that the performance by the ResNet152 im-
proves little to the ResNet101, this is caused by the overfitting as the training set
contains only 795 images. We also compare the number of parameters in the Ta-
ble 4.5.

4.4.3 State-of-the-art comparisons

In this section, we evaluate our approach on the NYUD2 and KITTI datasets and
compare with recent depth estimation methods. We apply the deep residual network
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Table 4.4: Test results on the NYUD2 and KITTI datasets with and without the fully
connected CRFs as post-processing. For each dataset, the first row is the result with-

out CRFs, the following row is the result with CRFs.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

Plain 70.9% 92.1% 98.0% 0.193 0.079 0.716

CRF 71.3% 92.0% 98.0% 0.190 0.079 0.696

KITTI

Plain 79.9% 93.7% 97.6% 0.166 0.067 5.443

CRF 81.0% 94.1% 97.9% 0.167 0.066 5.349

Table 4.5: Test results on the NYUD2 dataset with different network structures. The
first row is the result of the VGG16 net, the following two rows are the results of
deep residual networks. We also show the total numbers of parameters of the three

networks in the last row.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

VGG16 62.1% 87.2% 96.0% 0.236 0.097 0.857

ResNet101 70.9% 92.1% 98.0% 0.193 0.079 0.716

ResNet152 71.2% 92.3% 98.0% 0.187 0.071 0.681

VGG16 ResNet101 ResNet152

Parameters 13.9× 107 6.7× 107 8.2× 107

with 152 layers and the parameters are initialized with the ResNet152 model in He
et al. [2016a].

4.4.3.1 NYUD2

We train our model using the entire raw training data specified in the official train/test
distribution and test on the standard 654 test images. We discretize the depth values
into 100 bins in the log space. We set the parameter α of the information gain matrix
to be 0.2. The fully connected CRFs are applied as post-processing. The results are
reported in Table 4.6. The first row is the result in Wang et al. [2015] which jointly
performs depth estimation and semantic segmentation. The second row is the result
of deep convolutional neural fields (DCNF) with fully convolutional network and
super-pixel pooling in Liu et al. [2015b]. The third row is the result of nerual re-
gression forest (NRF) in Roy and Todorovic [2016]. The fourth row is the result in
Eigen and Fergus [2015] which performs depth estimation in a multi-scale network
architecture. The fifth row is the result in Laina et al. [2016] which applies an up-
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Table 4.6: Comparison with state-of-the-art on the NYUD2 dataset. The first 4 rows
are results by recent depth estimation models. The last row is the result of our

approach.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

Wang et al. Wang et al. [2015] 60.5% 89.0% 97.0% 0.210 0.094 0.745

Liu et al. Liu et al. [2015b] 65.0% 90.6% 97.6% 0.213 0.087 0.759

Anirban et al. Roy and Todorovic [2016] - - - 0.187 0.078 0.744

Eigen et al. Eigen and Fergus [2015] 76.9% 95.0% 98.8% 0.158 - 0.641

Laina et al. Laina et al. [2016] 81.1% 95.3% 98.8% 0.127 0.055 0.573

Ours 81.9% 96.5% 99.2% 0.141 0.060 0.540

sampling scheme. The last row is depth estimation result by our model. As we can
see from the table, our deep fully convolutional residual network with depth label
classification achieves state-of-the-art performance of 4 evaluation metrics. We also
show some qualitative results in Fig. 4.5, from which we can see our method yields
better visualizations in general.

4.4.3.2 KITTI

We train our model on the same training set in Godard et al. [2017] which contains
33131 images and test on the same 697 images in Eigen et al. [2014]. But different
from the depth estimation method proposed in Godard et al. [2017] which applies
both the left and right images in stereo pairs, we only use the left images. The
missing values in the ground-truth depth maps are ignored during both training and
evaluation. The depth values are discretized into 50 bins in the log space. We set the
parameter α of the information gain matrix to be 0.5 and apply fully connected CRFs
as post-processing. In order to compare with the recent state-of-the-art results, we
cap the maximum depth into both 80 meters and 50 meters and present the results in
Table 4.7. We can see from Table 4.7 that our method outperforms the rest methods
significantly. Some qualitative results are illustrated in Fig. 4.6. Our approach yields
visually better results.

4.4.3.3 Cross-dataset evaluation

In order to show the generalization of our proposed method, we train our model
on the raw NYUD2 dataset and test on the SUN RGB-D dataset Song et al. [2015].
The SUN RGB-D is an indoor dataset contains 10335 RGB-D images captured by
four different sensors. We only select 500 images randomly from the test set for
cross-dataset evaluation. The SUN RGB-D contains 1449 images from the NYUD2
dataset. Our selected testset exlucdes all the images from the NYUD2. We compare
our method with Liu et al. Liu et al. [2015b] and Laina et al. Laina et al. [2016]. We
use the trained models and evaluation codes released by these authors. The results
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Table 4.7: Comparison with state-of-the-art results on the KITTI dataset. We cap the
maximum depth to 50 and 80 meters to compare with recent works. For the work
in Godard et al. [2017], we also report their results with additional training images

in the CityScapes dataset Cordts et al. [2016] and denote as Godard et al. CS.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel rmslog rms

Cap 80 meters

Liu et al. Liu et al. [2015b] 65.6% 88.1% 95.8% 0.217 - 7.046

Eigen et al. Eigen et al. [2014] 69.2% 89.9% 96.7% 0.190 0.270 7.156

Godard et al. Godard et al. [2017] 81.8% 92.9% 96.6% 0.141 0.242 5.849

Godard et al. CS Godard et al. [2017] 83.6% 93.5% 96.8% 0.136 0.236 5.763

Ours 88.7% 96.3% 98.2% 0.115 0.198 4.712

Cap 50 meters

Garg et al. Garg and Reid [2016] 74.0% 90.4% 96.2% 0.169 0.273 5.104

Godard et al. Godard et al. [2017] 84.3% 94.2% 97.2% 0.123 0.221 5.061

Godard et al. CS Godard et al. [2017] 85.8% 94.7% 97.4% 0.118 0.215 4.941

Ours 89.8% 96.6% 98.4% 0.107 0.187 3.605

are illustrated in Table 4.8. We can see that our method can reach satisfactory results
on different dataset, and outperforms other methods.

Table 4.8: Test results on the SUN RGB-D dataset for cross-dataset evaluation. The
first 2 rows are results by recent depth estimation models. The last row is the result

of our approach.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

Liu Liu et al. [2015b] 35.6% 57.6% 83.1% 0.316 0.161 0.931

Laina Laina et al. [2016] 53.9% 70.3% 89.0% 0.279 0.138 0.851

Ours 56.3% 72.7% 88.2% 0.256 0.127 0.839

4.5 Conclusion

We have presented a deep fully convolutional residual network architecture for depth
estimation from single monocular images. We have made use of the recent deep
residual networks, discretized continuous depth values into different bins and for-
mulated depth estimation as a discrete classification problem. By this formulation we
can easily obtain the confidence of a prediction which can be applied during training
via information gain matrices as well as post-processing via fully-connected CRFs.
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We have shown that our discretization approach surprisingly performs well.
Note that the proposed network can be further improved by applying the tech-

niques that have been previously explored. For example, it is expected that

• Multi-scale inputs as in Eigen and Fergus [2015] would improve our result.

• Concatenating the mid-layers’ outputs may better use the low-, mid-layers in-
formation as in Hariharan et al. [2015].

• Upsampling the prediction maps as in Long et al. [2015] would be beneficial
too.

We leave these directions in our future work.

(a) 

(b) 

(c) 

(d) 

(e) 

(f)

Figure 4.5: Some depth estimation results on the NYUD2 dataset. (a) RGB Input; (b)
Ground-truth depth; (c) Results of Liu et al. Liu et al. [2015b]; (d) Results of Eigen et
al. Eigen and Fergus [2015]; (e) Results of our model without fully-connected CRFs;

(f) Results of our model with fully-connected CRFs.
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a)
(c
)

(b
)

Figure 4.6: Some depth estimation results of the KITTI dataset. The first row are the
ground-truth depths, the second row are the results by Garg and Reid [2016], the last

row are the results by our approach.
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Chapter 5

Monocular Depth Estimation with
Augmented Ordinal Depth
Relationships

5.1 Introduction

Predicting accurate depths from single monocular images is a fundamental task in
computer vision and has been an active research topic for decades. Typical methods
formulate depth estimation as a supervised learning task Saxena et al. [2005]; Liu
et al. [2015a]; Eigen et al. [2014]. As a result, large amounts of metric ground-truth
depths are needed. However, the acquisition of metric ground-truth depths requires
depth sensors, and the collected RGB-D training data is limited in the size as well
as the diversity of scenes due to the limitation of depth sensors. For example, the
popular Microsoft Kinect can not obtain the depths of far objects in outdoor scenes.

In order to overcome the problem of limited metric ground-truth depths, some
recent works manage to predict depths from stereo videos Garg and Reid [2016];
Godard et al. [2017]; Xie et al. [2016] without the supervision of ground-truth depths.
Specifically, the model is trained by computing the disparity maps and minimizing
an image reconstruction loss between training stereo pairs. The performance is not
satisfactory due to the absence of ground-truth depths during training. However, the
training stereo videos are easier to obtain than metric ground-truth depths and are
plenty in terms of amount as well as scene diversity.

Driven by the aforementioned characteristics of recent depth estimation methods,
a question arises: Is it possible to acquire large quantities of training data from stereo
videos to improve the performance of monocular depth estimation?

Compared to metric depths, relative depths can be easily obtained from stereo
videos using existing stereo matching algorithms Zbontar and LeCun [2016]; Spy-
ropoulos et al. [2014]; Luo et al. [2016]; Zhang et al. [2009]. The recent works by
Zoran et al. Zoran et al. [2015] and Chen et al. Chen et al. [2016] have revealed that
it is possible to predict satisfactory metric depths with only relative ground-truth
depths. In this chapter, we propose to improve the performance of metric depth es-
timation with relative depths generated from stereo movie videos. An overview of
our approach is illustrated in Fig. 5.1. Our approach can be broadly divided into 3

59
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Figure 5.1: Overview of our proposed depth estimation method. We first generate
relative depths from stereo pairs, then pretrain a deep residual network with the
relative depths. Finally, we finetune the network with metric depths for monocular

depth estimation.

steps: We first obtain ground-truth relative depths from stereo movie videos, then
we pretrain a deep residual network with our relative ground-truth depths. Finally,
we finetune our network on benchmark RGB-D datasets with metric ground-truth
depths. Note that, as we exploit 3D movie stereo videos, which do not have the cam-
era parameters and typically are re-calibrated for display, it is impossible to compute
the metric depth.

Most existing methods formulate depth estimation as a regression problem due
to the continuous property of depths Liu et al. [2015a]; Eigen et al. [2014]; Laina
et al. [2016]. For human beings, we may find it difficult to tell the exact distance of
a specific point in a natural scene, but we can easily give a rough distance range of
that point. Motivated by this, we formulate depth estimation as a pixel-wise clas-
sification task by discretizing the continuous depth values into several discrete bins
and show that this simple re-formulation scheme performs surprisingly well. More
importantly, we can easily obtain the confidence of a depth prediction in the form of
probability distribution. With this confidence, we can apply an information gain loss
to make use of the predictions that are close to ground-truth during training.

To summarize, we highlight the contributions of our work as follows:

1. We formulate depth estimation as a classification task and propose an informa-
tion gain loss.

2. We propose a new dataset Relative Depth in Stereo (RDIS) containing images
labelled with dense relative depths. The relative depths are generated with
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very low cost.

3. We show that our proposed RDIS dataset can improve the performance of met-
ric depth estimation significantly and our proposed method outperforms state-
of-the-art depth estimation methods on both indoor and outdoor benchmark
RGB-D datasets.

5.2 Background

Traditional depth estimation methods are mainly based on geometric models. For
example, the works of Hedau et al. [2010]; Gupta et al. [2010b]; Schwing and Urta-
sun [2012] rely on box-shaped models and try to fit the box edges to those observed
in the image. These methods are limited to only model particular scene structures
and therefore are not applicable for general-scene depth estimations. More recently,
non-parametric methods Karsch et al. [2014] are explored. These methods consist
of candidate images retrieval, scene alignment and then depth inference using opti-
mizations with smoothness constraints. These methods are based on the assumption
that scenes with semantically similar appearances should have similar depth distri-
butions when densely aligned.

Most depth estimation algorithms in recent years achieve outstanding perfor-
mance by training deep convolutional neural networks (CNN) Krizhevsky et al.
[2012]; Simonyan and Zisserman [2014]; Long et al. [2015] with fully annotated RGB-
D datasets Silberman et al. [2012]; Saxena et al. [2009]; Geiger et al. [2013]. Liu et
al. Liu et al. [2015b] presented a deep convolutional neural field which jointly learns
the unary and pairwise potentials of continuous conditional random fields (CRF) in
a unified deep network. Eigen et al. Eigen and Fergus [2015] proposed a multi-scale
network architecture to predict depths as well as surface normals and semantic la-
bels. Li et al. Li et al. [2015a] and Wang et al. Wang et al. [2015] formulated depth
estimation in a two-layer hierarchical CRF to enforce synergy between global and
local predictions. Laina et al. Laina et al. [2016] applied the latest deep residual
network He et al. [2016a] as well as an up-sampling scheme for depth estimation.

Other recent works managed to train deep CNNs for depth estimation in an un-
supervised manner. To name a few, Garg et al. Garg and Reid [2016] and Clément
et al. Godard et al. [2017] treated depth estimation as an image reconstruction Flynn
et al. [2016] problem during training and output disparity maps during prediction. In
order to construct a fully differentiable training loss, Taylor approximation and bilin-
ear interpolation are applied in Garg and Reid [2016] and Godard et al. [2017] respec-
tively. Since the network outputs of Garg and Reid [2016] and Godard et al. [2017]
are disparity maps, camera parameters are needed to recover the metric depths. Sim-
ilarly, the Deep3D model Xie et al. [2016] also applied an image reconstruction loss
during training, where their goal is to predict the right view from the left view of a
stereo pair, and the disparity map is generated internally.

Ordinal relationships and rankings have also been exploited for mid-level vision
tasks including depth estimation in recent years. Zoran et al. Zoran et al. [2015]
learned the ordinal relationships between pairs of points using a classification loss,
then they solved a constrained quadratic optimization problem to map the ordinal
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estimates to metric values. Chen et al. Chen et al. [2016] proposed to learn ordinal
relationships through a ranking loss Cao et al. [2007] and retrieve the metric depth
values by simple normalization. Notably, Chen et al. [2016] also proposed a new
dataset Depth in the Wild (DIW) consisting of images in the wild labelled with rela-
tive depths.

Our work is mainly inspired by Chen et al.’s single-image depth perception in
the wild Chen et al. [2016]. However, our approach is different in three distinct
aspects. First, instead of manually labelling pixels with relative relationships, we
acquire relative depths using existing stereo matching algorithm from stereo movie
videos and thus can obtain large amount of training data with low cost. Second,
instead of labelling only one pair of points per image with relative relationships,
we generate dense relative depth maps. Finally, in order to retrieve metric depth
predictions, they arbitrarily normalize the predicted relative depth maps such that
the mean and standard deviation are the same with the metric ground-truth depths
of training set, while we finetune our pretrained network with metric ground-truth
depths for better performance.

5.3 Proposed Method

In this section, we elaborate our proposed method for monocular depth estimation.
We first present the stereo matching algorithm that we used to generate relative
ground-truth depth. Then we introduce our network architecture, followed by the
introduction of our loss functions.

5.3.1 Relative depth generation

The first step of our approach is to generate relative ground-truth depth from stereo
videos using existing stereo matching algorithm. Stereo matching algorithms rely on
computing matching costs to measure the similarities of stereo pairs. In this chapter,
we choose the commonly-used absolute difference (AD) matching cost combined
with a background subtraction by bilateral filtering (BilSub) which has been proven
to perform well by Hirschmuller et al. Hirschmuller and Scharstein [2009]. For a
pixel p in the left image, its corresponding pixel in the right image is represented as
p− d, where d is the disparity. The absolute difference is represented as:

Cad(p, d) = |IL(p)− IR(p− d)|, (5.1)

where IL and IR are left and right images respectively. We sum the costs of all
three channels of color images. The bilateral filtering effectively removes a local off-
set without blurring high contrast texture differences that may correspond to depth
discontinuities.

As for the stereo algorithm, we use the semi-global matching (SGM) method Hirschmuller
[2008]. It aims to minimize a global 2D energy function by solving a large number of
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Figure 5.2: Some examples of our Relative Depth in Stereo (RDIS) dataset. The
first row are RGB images, the second row are disparity maps directly generated by
stereo algorithm. The last row are post-processed disparity maps, which are used as

ground-truths.
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1D minimization problems. The energy function is:

E(D) =∑
p
(C(p, Dp) + ∑

q∈Np

P1T[|Dp − Dq| = 1]

+ ∑
q∈Np

P2T[|Dp − Dq| > 1]),
(5.2)

where the first term calculates the sum of a pixel-wise matching cost for all pixels at
their disparities Dp. The second term adds a constant penalty P1 for all pixels q in
the neighborhood Np of p, for which the disparity changes a little bit (i.e., 1 pixel).
Similarly, the third term adds a larger constant penalty P2, for all larger disparity
changes. The SGM calculates E(D) along 1D paths from 8 directions towards each
pixel of interest using dynamic programming. The costs of all paths are summed for
each pixel and disparity. The disparity is then determined by winner-takes-all. Dur-
ing training, We label the pairs of points with ordinal relationships (farther, closer,
equal) according to their disparities. Since the disparity values of two points can
not be exactly the same, we apply a relaxed definition of equality. The ordinal rela-
tionship of a pair of points is equal if the disparity difference is smaller than a fixed
threshold.

The direct output of stereo matching algorithm is a dense disparity map with the
left image treated as the reference image. This disparity map can not be directly used
for training due to the defects such as noise, discontinuities or incorrect values. Some
examples are shown in Fig. 5.2. As a result, we need to post-process the disparity
maps generated by stereo algorithm. The post-processing is done by experienced
workers from movie production company using professional movie production soft-
ware. Specifically, we first correct the vague or missing boundaries of objects using
B-splines, then we smooth the disparity values within objects and background. It
takes a median of 90 seconds to post-process an image of our dataset. Although the
labelling of our dataset takes longer time than the DIW dataset, our dataset is densely
labelled and contains more ordinal relationships than the DIW dataset. In terms of
single ordinal relationship labelling our method is much more efficient. After post-
processing, each disparity map is visually checked by two workers according to the
intensities. The workers are required to assign “overall correct", “contain mislabelled
parts" or “not sure" to each disparity map. We only keep the disparity maps which
both workers assigned as “overall correct".

We also test several other stereo matching algorithms including the deep learning
based. Although the qualities of these direct output disparities are different, they
are all very coarse, furthermore the difference becomes negligible after human post-
processing. So we pick the simplest stereo matching method.

We collect 70 3D movies produced in recent years. Since the stereo matching
algorithm requires the stereo videos to be rectified, we only use 3D movies created
by post-production instead of movies taken with stereo cameras. In order to avoid
similar frames, we only select roughly 1500 frames in each movie. With the selected
frames, we generate a new dataset Relative Depth in Stereo (RDIS) containing 97652
training images labelled with dense relative ground-truth depths. Notably, we can
not obtain the metric depths from the relative depths because we do not have the
camera parameters of these 3D movies. Our dataset has no test images because: 1)
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The goal of our dataset is to improve the performance of metric depth estimation.
2) Our ground-truth disparities are obtained through stereo matching algorithm and
inevitably contain noisy points.

5.3.2 Network architecture

Recently, a deep residual learning framework has been introduced by He et al. He
et al. [2016a,b] and showing compelling accuracy and nice convergence behaviours.
In our work, we follow the deep residual network architecture proposed by Wu et
al. Wu et al. [2016] which contains fewer layers but outperforms the deep residual
network with 152 layers in He et al. [2016a].

Instead of directly learning the underlying mapping of a few stacked layer, the
deep residual network learns the residual mapping through building blocks. We
consider two types of building blocks in our network architecture. The first is defined
as:

y = F(x, {Wi}) + x, (5.3)

where x and y are the input and output matrices of stacked layers respectively. The
function F(x, {Wi}) is the residual mapping that need to be learned. The dimensions
of x and F need to be equal since the addition is element-wise. If this is not the case,
we apply another building block defined as:

y = F(x, {Wi}) + Wsx. (5.4)

Comparing to the shortcut connection in Eq. (5.3), a linear projection Ws is applied
to match the dimensions of x and F.

We illustrate our detailed network structure in Fig. 5.3. Generally, it is com-
posed of 6 convolution blocks. Each convolution block starts with a building block
with linear projection followed by different numbers of building blocks with iden-
tity mapping. Two max pooling layers with stride of 2 are applied before the first
and the second convolution blocks. The first convolutional layers of block 3, 4 and
5 have a stride of 2. The dilations of the first convolutional layers of block 4 and
5 are 2 and 4 respectively. As a result, our network takes as inputs of arbitrarily
sized images and downsamples by a factor of 8. Batch normalizations (BNs) Ioffe
and Szegedy [2015] and ReLUs are applied before weight layers. We initialize the
layers up to block 6 with our model pretrained on the ImageNet Russakovsky et al.
[2015] and Places365 Zhou et al. [2017] datasets. After block 6, we add 3 convolu-
tional layers with randomly initialized weights. The channels of the first and second
added convolutional layers are 1024 and 512 respectively. The channel number of last
convolutional layer is determined by the loss function. The channel number is 1 for
the pretraining using ranking loss. As for the finetuning, we discretize the continu-
ous metric depths into several bins and formulate depth estimation as a classification
task, the channel number is equal to the bin number. We give more details about the
loss functions below.
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Figure 5.3: Detailed structure of our deep residual network. It has 6 convolution
blocks, each with different numbers of residual units.
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5.3.3 Loss function

Our proposed approach for depth estimation contains two training stages: pretrain-
ing with relative depths and finetuning with metric depths. For the pretraining, we
employ the ranking loss which encourages a small difference between depths if the
ground-truth ordinal relation is equality and encourages a large difference otherwise.
Specifically, consider a training image I with K pairs of points with ground-truth or-
dinal relations R = {(ik, jk, rk)}, k ∈ [1, . . . , K], where ik and jk are the two points of
k-th pair, and rk is the ground-truth depth relation between ik and jk: closer (+1), far-
ther (−1) and equal (0). Let z be the output depth map of our deep residual network
and zik , zjk be the predicted depth values of ik and jk. The ranking loss is defined as:

Lrank(I, R, z) =
K

∑
k=1

E(I, ik, jk, r, z), (5.5)

where E(I, ik, jk, r, z) is the loss of the k-th pair:

E =


log(1 + exp(−zik + zjk)), rk = +1;
log(1 + exp(zik − zjk)), rk = −1;
(zjk − zik)

2, rk = 0.

(5.6)

After pretraining, we finetune our network with discretized metric depths. We
use the pixel-wise multinomial logistic loss defined as:

Llog = − 1
N

N

∑
i=1

B

∑
D=1

H(D∗i , D) log(P(D|zi)), (5.7)

where D∗i ∈ [1, . . . , B] is the ground-truth depth label of pixel i and B is the total
number of discretization bins. N is the number of pixels. P(D|zi) = ezi ,D/∑B

d=1 ezi,d is
the probability of pixel i labelled with D. zi,d is the output of last convolutional layer
in the network.

Although we formulate depth estimation as a classification task by discretizing
continuous depth values into several bins, the depth labels are different with the
labels of other classification tasks (e.g., semantic segmentation). Predicted depth
labels that are closer to ground-truth should have more contribution in updating
network weights. This is achieved through the information gain matrix H in Eq. (5.7).
It is a B× B symmetric matrix with elements H(p, q) = exp[−α(p− q)2] and α is a
constant. During training, we equally discretize the continuous depths in the log
space into several bins and during prediction, we set the depth value of each pixel to
be the center of its corresponding bin.

5.4 Experiments

We organize our experiments into the following 3 parts: 1) We demonstrate the ben-
efit of the pretraining on our proposed Relative Depth in Stereo (RDIS) dataset by
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comparing with other pretraining schemes; 2) We evaluate the metric depth esti-
mation on indoor and outdoor benchmark RGB-D datasets and analyze the contri-
butions of some key components in our approach; 3) We evaluate both metric and
relative depth estimation and compare with state-of-the-art results. During pretrain-
ing and finetuning, we apply online data augmentation including random scaling
and flipping. We apply the following measures for metric depth evaluation:

• root mean squared error (rms):
√

1
T ∑p(dgt − dp)2

• average relative error (rel): 1
T ∑p

|dgt−dp|
dgt

• average log10 error (log10): 1
T ∑p | log10 dgt − log10 dp|

• root mean squared log error (rmslog)
√

1
T ∑p(log dgt − log dp)2

• accuracy with threshold thr:
percentage (%) of dp s.t. max( dgt

dp
, dp

dgt
) = δ < thr where dgt and dp are the ground-

truth and predicted depths respectively of pixels, and T is the total number of pixels
in all the evaluated images. As for the relative depth evaluation, we report the
Weighted Human Disagreement Rate (WHDR) Zoran et al. [2015], the average dis-
agreement rate with human annotators, weighted by their confidence (here set to 1).
We implement our network training based on the MXNet Chen et al. [2015b].

5.4.1 Benefit of pretraining

In this section, we show the benefit of the pretraining with our proposed RDIS
dataset. Since our proposed RDIS dataset is densely labelled with relative depths,
we need first to determine the number of ground-truth pairs in each image during
pretraining. We randomly sample 100, 500, 1K and 5K ground-truth pairs in each
input image during pretraining and finetune on both the NYUD2 Silberman et al.
[2012] and KITTI Geiger et al. [2013] datasets.

The standard NYUD2 training set contains 795 images. We split the 795 images
into a training set with 400 images and a validation set with 395 images. We dis-
cretize the continuous metric depth values into 100 bins in the log space. As for
the KITTI dataset, we apply the same split in Eigen et al. [2014] which contains 700
training images and 697 test images. We further evenly split the 700 training images
into a training set and a validation set. We only use left images and discretize the
continuous metric depth values into 50 bins in the log space. We cap the maximum
depth to be 80 meters. For both the NYUD2 and KITTI datasets, we finetune on our
split training sets and evaluate on our validation sets. During finetuning, we ignore
the missing values in ground-truth depth maps and only evaluate on valid points.
We do not apply the information gain matrix in this experiment. The results are il-
lustrated in Table 5.1. As we can see from the table that for both indoor and outdoor
datasets, the performance increases with the number of pairs and achieves the best
when using 1K pairs per input image. Further increasing the number of pairs does
not improve the performance. For pretraining with 5K pairs of points, we further
add dropouts and evaluate the accuracy with δ < 1.25 on the NYUD2 dataset. The
accuracies are 63.7%, 63.1%, 62.6% and 62.3% with 32K, 35K, 40K and 43K iterations.
It demonstrates that the performance decrease is caused by overfitting. In the follow-



§5.4 Experiments 69

Table 5.1: Comparison between different numbers of pairs during pretraining. The
model is pretrained on our RDIS dataset and finetuned on NYUD2 and KITTI
datasets. For each dataset, each row represents different numbers of ground-truth

pairs in each input image during pretraining.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

100 pairs 63.8% 90.2% 97.5% 0.202 0.090 0.816

500 pairs 68.2% 92.5% 98.6% 0.178 0.081 0.750

1K pairs 71.1% 93.3% 98.6% 0.173 0.077 0.721

5K pairs 63.0% 89.1% 97.1% 0.208 0.092 0.828

KITTI

100 pairs 70.6% 88.3% 94.6% 0.230 0.088 6.357

500 pairs 74.1% 90.0% 95.3% 0.205 0.079 5.900

1K pairs 74.2% 90.0% 95.5% 0.205 0.079 5.828

5K pairs 70.2% 87.3% 94.1% 0.223 0.088 6.629

ing experiments, we all sample 1K ground-truth pairs in each input image during
pretraining.

In order to demonstrate the quality of our proposed RDIS dataset, we conduct
experimental comparisons against several pretraining shcemes: 1) Directly finetune
our ResNet model on RGB-D datasets without pretraining (Direct); 2) Pretrain our
ResNet model on the DIW Chen et al. [2016] dataset and finetune on RGB-D datasets
(DIW); 3) Pretrain our ResNet model using our RDIS images and finetune on RGB-
D datasets, the ground-truth relative depths for pretraining are generated using the
Deep3D model Xie et al. [2016] (Deep3D).

We perform finetuning on the standard training set of the NYUD2 which contains
795 images and evaluate on the standard test set which contains 654 images. The
continuous metric depth values are discretized into 100 bins in the log space. The
parameter α of the information gain matrix defined in Eq. (5.7) is set to 2.0. As for
the KITTI dataset, we finetune on the same 700 training images and evaluate on the
same 697 test images as in Eigen et al. [2014]. The continuous metric depth values
are discretized into 50 bins in the log space and the maximum depth value is capped
to be 80 meters. The parameter α is set to 0.2. We ignore the missing ground-truth
values during both finetuning and evaluation.

We show the results in Table 5.2. We can see from the table that the pretrain-
ing on our proposed RDIS dataset improves the depth estimation of both indoor
and outdoor datasets significantly, and even outperforms the pretraining on the DIW
dataset. Notably, compared to the DIW dataset which contains 421K training images
with manually labelled relative depths, our RDIS dataset contains only 97652 im-
ages, and the relative ground-truth depths are generated by existing stereo matching
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Table 5.2: Test results on the NYUD2 and KITTI datasets with different pretraining.
For each dataset, the first row is the result without pretraining; the second row is the
result with pretaining on the DIW dataset; the third row is the result with pretaining
using our RDIS images but the ground-truth relative depths are generated by the
Deep3D Xie et al. [2016] model; the last row is the result with pretraining on our

RDIS dataset.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

Direct 73.3% 93.5% 98.1% 0.186 0.075 0.666

DIW 77.3% 95.4% 98.9% 0.160 0.066 0.600

Deep3D 72.5% 92.8% 97.8% 0.191 0.077 0.683

Ours 78.1% 95.4% 98.9% 0.157 0.065 0.604

KITTI

Direct 77.3% 92.1% 96.9% 0.173 0.070 5.890

DIW 79.7% 93.7% 97.8% 0.154 0.064 5.251

Deep3D 76.1% 91.9% 97.1% 0.178 0.072 5.765

Ours 82.9% 94.3% 98.2% 0.142 0.058 5.066

algorithm.

5.4.2 Component analysis

In this section, we evaluate metric depth estimation on the indoor NYUD2 and out-
door KITTI datasets and analyze the contributions of some key components of our
approach. We use the same dataset settings with the second experiment in Sec. 5.4.1.

5.4.2.1 Network comparisons

In this part, we compare our deep residual network architecture against two baseline
networks: deep residual network with 101 and 152 layers in He et al. [2016a]. We
pretrain the 3 models on our RDIS dataset and finetune on the NYUD2 dataset. Sim-
ilar to our network architecture, we replace the last 1000-way classification layers of
ResNet101 and ResNet152 with one channel convolutional layers during pretraining
and 100-way classification layers during finetuning. We also add two convolutional
layers with 1024 and 512 channels respectively before the last layer. We do not ap-
ply the information gain matrix in this experiment. The results are illustrated in
Table 5.3. From the table we can see that our network architecture outperforms the
deeper ResNet101 and ResNet152.
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Table 5.3: Test results on the NYUD2 dataset with different network architectures.
The first row is the result of the ResNet101, the second row is the result of the

ResNet152, the last row is the result of our network.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

Res101 76.1% 94.7% 98.5% 0.170 0.071 0.632

Res152 76.2% 94.9% 98.5% 0.169 0.070 0.626

Ours 77.8% 95.3% 98.8% 0.159 0.066 0.606

Table 5.4: Test results on the NYUD2 and KITTI datasets with and without informa-
tion gain matrix. For each dataset, the first row is the result without information gain

matrix, the following row is the result with information gain matrix.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

Plain 77.8% 95.3% 98.8% 0.159 0.066 0.606

Infogain 78.1% 95.4% 98.9% 0.157 0.065 0.604

KITTI

Plain 80.5% 93.9% 97.7% 0.158 0.064 5.415

Infogain 82.9% 94.3% 98.2% 0.142 0.058 5.066

5.4.2.2 Benefit of information gain matrix

In this part, we evaluate the contribution of the information gain matrix during fine-
tuning. We pretrain the network on our RDIS dataset and finetune on both the
NYUD2 and KITTI datasets with and without the information gain matrix. The pa-
rameter α defined in Eq. (5.7) is set to 2.0 and 0.2 respectively for the NYUD2 and
KITTI datasets. The results are illustrated in Table 5.4. As we can see from the ta-
ble that the information gain matrix improves the performance of both indoor and
outdoor depth estimation.

5.4.2.3 Depth classification vs. depth regression

In this part, we compare our depth estimation by classification with the conventional
regression. We directly train the ResNet101 model without pretraining on our RDIS
dataset. For depth regression, we use the L2 loss. For our depth estimation as
classification, we discretize the continuous depth values into 100 and 50 bins in the
log space respectively for the NYUD2 and KITTI datasets. And we set the parameter
α to 2.0 and 0.2 respectively. We show the results in Table 5.5, from which we can see
that our depth estimation by classification outperforms the conventional regression.
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Table 5.5: Test results of depth estimation by classification and regression on the
NYUD2 and KITTI datasets. For each dataset, the first row is the result of regression,

the following row is the result of classification.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

NYUD2

regression 66.9% 92.1% 98.0% 0.215 0.084 0.730

classification 72.3% 92.7% 98.3% 0.195 0.077 0.691

KITTI

regression 68.9% 89.4% 91.1% 0.256 0.092 7.160

classification 79.9% 93.7% 97.6% 0.166 0.067 5.443

Table 5.6: Comparison with state-of-the-art results on the NYUD2 dataset. The first
5 rows are the results by recent depth estimation methods, the last row is the result

by our approach.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel log10 rms

Wang et al. Wang et al. [2015] 60.5% 89.0% 97.0% 0.210 0.094 0.745

Liu et al. Liu et al. [2015b] 65.0% 90.6% 97.6% 0.213 0.087 0.759

Eigen et al. Eigen and Fergus [2015] 76.9% 95.0% 98.8% 0.158 - 0.641

Laina et al. Laina et al. [2016] 81.1% 95.3% 98.8% 0.127 0.055 0.573

Ours 83.1% 96.2% 98.8% 0.132 0.057 0.538

5.4.3 State-of-the-art comparisons

In this section, we evaluate metric depth estimation on the NYUD2 and KITTI datasets
and compare with recent depth estimation methods. During pretraining, we use 1K
pairs of points in each input image. During finetuning, we discretize the continuous
metric depths into 100 and 50 bins in log space for the NYUD2 and KITTI datasets
respectively. We also evaluate relative depth estimation on the Depth in the Wild
(DIW) Chen et al. [2016] dataset.

5.4.3.1 NYUD2

We finetune our model on the raw NYUD2 training set and test on the standard 654
images. We set the parameter α of the information gain matrix to be 2.0. We compare
our approach against several prior works and report the results in Table 5.6, from
which we can see that we achieve state-of-the-art results of 4 evaluation metrics with-
out using any multi-scale network architecture, up-sampling or CRF post-processing.
Fig. 5.4 illustrates some qualitative evaluations of our method compared against Liu
et al. Liu et al. [2015b] and Eigen et al. Eigen and Fergus [2015].
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Table 5.7: Comparison with state-of-the-art results on the KITTI dataset. We cap the
maximum depth to 50 and 80 meters to compare with recent works. For the work
in Godard et al. [2017], we also report their results with additional training images

in the CityScapes dataset Cordts et al. [2016] and denote as Godard et al. CS.

Accuracy Error
δ < 1.25 δ < 1.252 δ < 1.253 rel rmslog rms

Cap 80 meters

Liu et al. Liu et al. [2015b] 65.6% 88.1% 95.8% 0.217 - 7.046

Eigen et al. Eigen et al. [2014] 69.2% 89.9% 96.7% 0.190 0.270 7.156

Godard et al. Godard et al. [2017] 81.8% 92.9% 96.6% 0.141 0.242 5.849

Godard et al. CS Godard et al. [2017] 83.6% 93.5% 96.8% 0.136 0.236 5.763

Ours 89.0% 96.7% 98.4% 0.120 0.192 4.533

Cap 50 meters

Garg et al. Garg and Reid [2016] 74.0% 90.4% 96.2% 0.169 0.273 5.104

Godard et al. Godard et al. [2017] 84.3% 94.2% 97.2% 0.123 0.221 5.061

Godard et al. CS Godard et al. [2017] 85.8% 94.7% 97.4% 0.118 0.215 4.941

Ours 89.7% 96.8% 98.4% 0.117 0.189 3.753

Table 5.8: Comparison with state-of-the-art results on the DIW dataset. The evalua-
tion metric is Weighted Human Disagreement Rate (WHDR).

Method WHDR

Baseline Chen et al. [2016] 31.37%

Eigen Chen et al. [2016] 25.70%

Chen-NYU Chen et al. [2016] 31.31%

Chen-DIW Chen et al. [2016] 22.14%

Chen-NYU-DIW Chen et al. [2016] 14.39%

Ours-RDIS 18.05%

Ours-NYU-RDIS 11.55%
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Image GT Eigen et al. Liu et al. Ours

Figure 5.4: Qualitative comparisons with state-of-the-art results on the NYUD2
dataset. The first two columns are RGB images and ground-truth depths respec-
tively. The third row are predictions by Eigen and Fergus [2015], the fourth row are
predictions by Liu et al. [2015b], the last row are our predictions. Depths are shown

in color (red is far, blue is close).
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Figure 5.5: Qualitative comparisons with state-of-the-art results on the KITTI dataset.
The first row are RGB images, the second row are predictions by Garg and Reid
[2016], the last two rows are ground-truth depths and our predictions respectively.
Depths are shown in color (red is far, blue is close). Since the ground-truth captured
by the velodyne is very sparse, we inpaint the ground-truth for visualization pur-
poses. We also crop the ground-truth and our predictions to mask out the vast sky

regions.
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Image DIW Ours Failure Samples

Figure 5.6: Some examples of relative depth estimation of the DIW dataset. The
first column are the RGB images, the second column are the predictions of Chen et
al. Chen et al. [2016], the third column are our predictions. The last two columns are
some failure samples of our approach. The pairs of points labelled with ground-truth

ordinal relations are marked as red crosses.

5.4.3.2 KITTI

We finetune our model on the same training set in Godard et al. [2017] which contains
33131 images and test on the same 697 images in Eigen et al. [2014]. But different
with the depth estimation method proposed in Godard et al. [2017] which applies
both the left and right images in stereo pairs, we only use the left images. The
missing values in the ground-truth depth maps are ignored during finetuning and
evaluation. We set the parameter α of the information gain matrix to be 0.2. In order
to compare with the recent state-of-the-art results, we cap the maximum depth to
both 80 meters and 50 meters and present the results in Table 5.7. We outperform
state-of-the-art results of all evaluation metrics significantly. Some qualitative results
are illustrated in Fig. 5.5. Our method yields outstanding visual predictions.

5.4.3.3 DIW

We evaluate relative depth estimation on the DIW test set and report the WHDR of
7 methods in Table 5.8: 1) a baseline method that uses only the location of the query
points: classify the lower point to be closer or guess randomly if the two points are
at the same height (Baseline); 2) the model trained by Eigen et al. Eigen and Fergus
[2015] on the raw NYUD2 dataset (Eigen); 3) the model trained by Chen et al. Chen
et al. [2016] on the raw NYUD2 dataset (Chen-NYU); 4) the model trained by Chen
et al. Chen et al. [2016] on the DIW dataset (Chen-DIW). 5) the model by Chen et
al. Chen et al. [2016] pretrained on the raw NYUD2 dataset and finetuned on the
DIW dataset (Chen-NYU-DIW). 6) our model trained on our RDIS dataset (Ours-
RDIS). 7) our model pretrained on the raw NYUD2 dataset and finetuned on our
RDIS dataset (Ours-NYU-RDIS). From the table we can see that even though we do
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not train our model on the DIW training set, we achieve state-of-the-art result on the
DIW test set. We show some of our predicted relative depth maps as well as some
failure samples in Fig. 5.6, from which we can see that our predicted relative depth
maps are visually better. As for the failure samples, we can also predict satisfactory
relative depth maps. Notably, the ground-truth pairs in failure samples are those
points with almost equal distance. Given the fact that the equal relation is absent in
DIW, we can conclude that we reach the nearly perfect performance on the DIW test
set.

5.5 Conclusion

We have proposed a new dataset Relative Depths in Stereo (RDIS) containing images
labelled with dense relative depths. The ground-truth relative depths are obtained
through existing stereo algorithm as well as manual post-processing. We have shown
that augmenting benchmark RGB-D datasets with our proposed RDIS dataset, the
performance of single-image depth estimation can be improved significantly.

Note that the goal of this work is to predict depths from single monocular images.
However the application of our proposed RDIS dataset is not limited to this. With
the learning scheme based on relative depths, we can perform 2D-to-3D conversion
like Deep3D Xie et al. [2016]. We leave this as our future work.



Chapter 6

Conclusion

6.1 Conclusion

In this thesis, we have proposed a set of algorithms for RGB-D vision tasks, including
monocular depth estimation, RGB-D object detection and semantic segmentation, all
built upon state-of-the-art deep learning architectures. To sum up, they are:

• Two RGB-D object detection algorithms and two RGB-D semantic segmentation
algorithms that are presented in Chapter 3. These algorithms are based on
deep convolutional neural fields (DCNF) model which exploits depths from
single monocular images. The exploited depths are combined with RGB data
in different ways to improve the performance of object detection and semantic
segmentation.

• A monocular depth estimation algorithm which formulates depth estimation
as classification is presented in Chapter 4. By formulating depth estimation as
classification, we can easily obtain the confidence of a depth prediction. The
confidence can be used during training as well as post-processing.

• A monocular depth estimation algorithm which employs relative depths as
additional training data is presented in Chapter 5. The relative depths are ex-
tracted from stereo videos using existing stereo matching algorithm. By doing
so we have proposed a new Relative Depth in Stereo (RDIS) dataset that densely
labelled with relative depths.

6.2 Future directions

Even though we have made considerable progress in several RGB-D vision tasks in
this thesis, several possible directions are still worth exploring. We list some future
directions as follows.

• We have proposed to employ relative depths from stereo videos in Chapter 5.
The relative depths are only used to improve the performance of metric depth
estimation. With our proposed Relative Depth in Stereo (RDIS) dataset, we can
train CNNs that are able to predict relative depth maps (disparities) from a
given image, and thus generate a new view to formulate a stereo vision. We
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can also embed the depth image based rendering (DIBR) in the network so the
CNNs can be trained in an end-to-end style.

• The generative adversarial network (GAN) Goodfellow et al. [2014] has become
a popular research topic and has been applied to many unsupervised learning
tasks such as image super-resolution, image generation and image denoising.
In recent years, GAN has been used in supervised dense prediction tasks such
as semantic segmentation and achieves outstanding performance. With the
models proposed in this thesis being viewed as generative models, we can also
apply GAN to our monocular depth estimation or the aforementioned stereo
view generation.
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