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Abstract

Salinity tolerance is correlated with shoot chloride (CI) exclusion in many horticultural and
crop species (e.g. grapevine, soybean). It is hypothesized that the key regulatory step in root-
to-shoot transfer of ClI” is conferred by plasma membrane-localised anion transporters
associated within the root vasculature. Reducing long-distance CI” transport by manipulating
the regulation of anion transporters in the root vasculature is therefore a strategy that
promises to increase plant tolerance to saline environments. However, the information of
which candidate genes are responsible for this process is limited. To gain a greater
knowledge of the long distance CI” movement from a molecular aspect, a number of
candidate anion transporters from Arabidopsis thaliana were identified from a preliminary
microarray study. Quantitative PCR was used to indicate transcriptional levels of candidate
anion transporters that decreased upon NaCl and ABA treatment. Based on this analysis,
AtSLAH1, AtSLAH3 and AtNRT1.5 were selected as genes of interest (GOI) that were likely to

be involved in the CI” movement between the root stele symplast and the xylem vessels.

To functionally characterize the transport properties of all GOIs at a protein level, various
heterologous systems were used to investigate the anion (CI” and NO;") transport capacity.
Two-electrode voltage clamp electrophysiology was used to measure the currents that were
generated by the target anions crossing oocyte membranes. A yeast expression system was

also used to further study the anion transport properties in vitro.

AtSLAH1 cRNA injected oocytes were not able to produce significant anion currents. Also, no
evident anion currents were generated from a site-directed mutant of AtSLAH1 in a putative
phosphorylation site injected into oocytes. Although there was evidence that anion currents
were elicited from AtSLAH1 and AtSnRk2.3 co-injected oocytes, due to difficulties in the
ability to reproduce these results, it is uncertain whether AtSLAH1 can function as an anion
transporter in the conditions tested. Both wild type and site-mutated AtSLAH1 was also

separately transformed into yeast for further examination without an observable phenotype.
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In order to examine the effect of altered AtSLAHI1 expression on shoot anion accumulation,
AtSLAH1 amiRNA knockdown and constitutive over expression of AtSLAHI mutant plants
were generated. AtSLAH1 knockdown lines (T,) exhibited strong repression in transcript
abundance in low salt environments and resulted in a significant reduction in shoot CI"when
compared to nulls. Constitutive over expression of AtSLAH1 showed increased shoot CI
contents under high salt stress. These results indicated the potential role of AtSLAH1 in CI”

transport in plants.

Electrophysiological characterization of AtSLAH3 in oocytes showed that AtSLAH3 was able to
produce significant NO;~ but not CI” currents suggesting a role in the efflux of NO3; out of
cells in most of circumstances. Similar results were gained in AtSLAH3- transformed yeast.
However, AtSLAH3 over-expression lines showed a decreased shoot CI” without an effect on
shoot NO;” under high salt stress compared to null plants. The potential reasons for this are

discussed and further experiments are proposed to test these hypotheses.

Although AtNRT1.5 has been reported to transport NO;, electrophysiological
characterization of AtNRT1.5 in X. Laevis oocytes was not able to detect any anion currents
induced by the gene. Interestingly, AtNRT1.5 transformed yeast showed a significant
inhibited phenotype (grow less well than empty vector control) when challenged with high
concentration of CI” and NO;™ within the growth media, indicating a role the transport of
both anions. Constitutive over- expression lines showed a potent shoot Cl reduction under
high salt stress compared to nulls. Interestingly, no significant NO;™ accumulation in shoot
was identified. These results might suggest that AtNRT1.5 was able to regulate both CI” and

NO; transport from root to shoot; however, the mechanism by which this occurs is unclear.

Previous findings indicated the possibilities that CI” and NO5 can be transported through the
same anion channel/transporter. To further study the regulation of CI” and NO; uptake, an
anion blocker (DIDS) was used to test the anion shoot accumulation under different salt

conditions. Under high salt stress, DIDS was able to reduce the CI"accumulation and increase
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the NO; contents in shoots. Further experiments are required at both a physiological and
molecular level to further understand how plants recognize and respond to this blocker, as
the molecular targets of this blocker are a potential way to improve the plant salt tolerance

and nitrogen use efficiency under high salt stress.

In summary, new information was revealed on several candidates that affect root-to-shoot
loading of chloride and new research avenues have been proposed based on the findings of

this study.
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