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Abstract 
 

The biotic change along environmental gradients has been the subject of study for well over a 

century, forming one of the first tools to understand how environment shapes the species and 

ecosystems that occur. However, gradient studies have historically relied on limited 

observations on a single transect, limiting their inductive power. Here, I investigate how this 

limitation can be addressed. I present case studies to illustrate how next-generation transect 

studies can integrate observations from a wider range of observations of phenotypes, species 

and communities; together with observations from multiple taxa and gradients. Leaf carbon 

isotope data from bioclimatic gradients in China, South Australia and Western Australia are 

integrated to demonstrate a variety of species- and community-level responses to water 

availability, providing evidence against the previously asserted claim of a simple and 

universal response. Vegetation data from the same gradient is surveyed with two separate 

survey methodologies are co-analysed to demonstrate climate is the primary regional 

determinant of vegetation structure and composition in South Australia, while topographic 

and edaphic variables are important at a local scale. I find no evidence of ecological 

disjunctions that may indicate a threshold of vegetation change associated with climate shifts. 

Comparison of plant and ant species turnover on a spatial gradient suggested that ant 

communities are ca. 7.5 times more sensitive than plant assemblages to spatial change, 

providing evidence that future climate change may force community reorganisation and a 

decoupling of these two taxa, potentially disrupting important interactions and ecosystem 

function. Well-designed transect studies have the potential to help resolve long-standing 

questions around the modes of species adaptation to change, as well as improving our 

understanding of how climate change will shape ecosystems in to the future. 
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Chapter 1: Introduction 

Climate change is impacting global biodiversity through changing selection pressures, 1 

species migration, and local extirpation, compounding other anthropogenic stressors 2 

including habitat fragmentation and pollution (Aitken et al. 2008; Parmesan and Yohe 2003). 3 

These anthropogenic forces are increasing and are likely to lead to widespread ecosystem 4 

transformation and mass extinction (Urban 2015). Consequently, there is a strong incentive to 5 

accurately predict how species and ecosystems will respond to climate change (Sutherland 6 

2006; Urban et al. 2016). Substantial attention has been devoted to this issue over the last two 7 

decades, resulting in a profusion of research outputs focused on modelling predicted biotic 8 

changes with climate and detailing the changes that have already occurred (Pecl et al. 2017; 9 

Urban et al. 2016). Given the poor prognosis for many of the world’s species and ecosystems 10 

due to the threats of climate change (Burrows et al. 2011; Hoegh-Guldberg and Bruno 2010; 11 

Urban 2015), there is a need to move beyond describing biodiversity decline. In this thesis, I 12 

address the pressing issue of how we can mobilise knowledge of climate change impacts 13 

gained from measuring biotic change on spatial environmental gradients to improve the 14 

ongoing monitoring and management of susceptible species and ecosystems. Linking biotic 15 

change to spatial environmental gradients is achieved through the establishment of a linear 16 

network of reference sites aligned with a known gradient (a “transect”). I provide case studies 17 

of trait and species/community level change on the same environmental gradient in South 18 

Australia to describe how the biota respond to this gradient, make predictions about how 19 

these systems may change in the future, and make recommendations regarding future work 20 

(Figure 1). 21 

Ecological forecasting is an iterative process and requires making biodiversity 22 

observations to create a baseline, against which predictions of the direction and magnitude of 23 

change can be made. This process relies on ensuring the baseline is appropriate, as well as 24 
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possessing an understanding of the environmental drivers and mechanisms of biodiversity 25 

change (Luo et al. 2011; Oliver and Roy 2015). While we may have a concept of ecosystems 26 

as being temporally stable, this is largely a matter of time scale – ecosystems are dynamic 27 

and change over time, particularly in response to large-magnitude extrinsic change (e.g. large 28 

climate events; invasions, etc.) and potentially even in relatively stable environmental 29 

conditions. Indeed, the lack of temporal stability in ecosystems means that ecosystem change 30 

in response to a new stressor is not likely to occur from a “standing start”, but rather build 31 

upon the instability brought about by previous ecological perturbation leading to ecological 32 

change of a greater magnitude (Perry et al. 2014). The temporal instability of ecosystems 33 

somewhat undermines the credibility of a “pre-disturbance baseline”, but in practice, we are 34 

only able to pick a reference point in time and measure change against it (Foley et al. 2017). 35 

Once a baseline has been established, we can then monitor to measure the magnitude 36 

and nature of biotic change. Models of ecological change with environmental change can be 37 

established, and ongoing monitoring used to validate those predictions. Ideally, the accuracy 38 

of predictions will be increased over time through continual evaluation, improvement of 39 

mechanistic models and iterative input of data (Dietze et al. 2018; Urban et al. 2016).  40 

Change in ecosystems driven by environmental change can occur at three levels of 41 

biological organisation: a) phenotypic change within species (adaptation, plasticity or 42 

behaviour), b) species and community change (migration or extirpation of individual species; 43 

altered assemblages); and c) ecological transformation (substantial alteration of physical 44 

structure or the replacement of one ecosystem type with another) (Walther et al. 2002). 45 

Environmental variables are likely to have some impact at each of these scales. For example, 46 

a small temperature increase within an ecosystem could result in a phenotypic change in one 47 

species and the emigration or extirpation of a second species. If the second species was a 48 

dominant or keystone species (e.g. a canopy tree or key herbivore), the loss of that species 49 
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could result in ecological transformation. In the following paragraphs, I outline in turn the 50 

motivation for considering phenotypic, and species and community change, and how they 51 

interact to lead to functional and/or transformative change in ecosystems.  52 

 53 

Intra-specific or phenotypic change 54 

The ability of species to adapt to environmental change through their inherent 55 

capacity for genetic and phenotypic change is a fundamental facet of evolutionary processes 56 

(Jump et al. 2009; Pauls et al. 2013). Aside from shifting to a more favourable environment 57 

(migration), there are several mechanisms through which new phenotypes can arise to cope 58 

with new conditions (Christmas et al. 2015). For plants, the primary mechanisms are: a) 59 

adaptation, through which natural selection improves the fitness of a population by providing 60 

a selection pressure for the best-suited genotype for an environment (Hoffmann and Sgrò 61 

2011); b) phenotypic plasticity, under which organisms change phenotype without genetic 62 

modification (typically through epigenetic means) (Nicotra et al. 2010); and c) phenological 63 

change, through which plants modify the timing of key life cycle phases (e.g. flowering time) 64 

(Körner and Basler 2010). Fauna may also be able to respond through behavioural change 65 

(e.g. a shift from diurnal to nocturnal activity, or a change from a declining prey species to 66 

one with greater abundance). Change within species may result in a more advantageous 67 

phenotype, neutral variation, or deleterious effects (e.g. inbreeding depression) (Chown et al. 68 

2010).  69 

Changes in plant physical traits including leaf morphology (Hopkins et al. 2008), 70 

wood density (Swenson and Enquist 2007), and reproductive strategy (Pellissier et al. 2010) 71 

have been assumed to be environmentally driven, but demonstrating a clear mechanistic link 72 

has been difficult. Similarly, genetic clines paralleling environmental gradients have been 73 

detected in several taxa, including plants (Christmas et al. 2017), insects (Hoffmann and 74 
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Weeks 2007), fish (Chlaida et al. 2009) and mammals (Mullen and Hoekstra 2008), which 75 

are assumed to be adaptive. However, genetic clines alone are limited in their capacity to 76 

explain environmentally driven change because changes in allele frequency may be related to 77 

geographic rather than environmental isolation (Warren et al. 2014), and if they are 78 

environmentally driven, may involve multiple genes acting in concert to confer a phenotypic 79 

advantage. For these reasons, where a clear causative mechanism for trait change is not 80 

known, it is important to combine genetic studies with studies of phenotypic trait change in 81 

order to demonstrate that a trait is environmentally sensitive. 82 

A popular trait in investigating plant adaptation to environment is the leaf carbon 83 

isotope ratio (δ13C), because it represents an integrated measure of water use efficiency in C3 84 

plants and is readily measured (Cernusak et al. 2013; Farquhar et al. 1989). Leaf δ13C can be 85 

measured in any plant with leaves, making it possible to compare values across many species 86 

and growth forms. In Chapter 4, I investigate the utility of this trait in understanding biotic 87 

response to environment on three spatial gradients. The environmental drivers of leaf δ13C are 88 

well understood (Cernusak et al. 2013; Farquhar et al. 1989), and it is possible to make a 89 

priori predictions on how changed environmental conditions will affect leaf δ13C. The 90 

expectation of this study is that leaf δ13C will become more positive with increasing aridity 91 

(Kohn 2010), but testing multiple species, growth forms and gradients allows the ubiquity of 92 

this relationship to be tested. A similar response across all tested species irrespective of 93 

growth forms and location would imply a simple carbon discrimination response to aridity 94 

irrespective of individual species traits. Conversely, disparate responses may indicate that 95 

other environmental variables and morphological traits have a strong impact on carbon 96 

isotope discrimination. Resolving this question would help resolve whether all plants display 97 

similar phenotypic responses to aridity, or whether there are multiple successful response 98 

pathways. 99 
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 100 

Species and community level change 101 

The assembly of species into ecological communities is central to understanding the 102 

spatial patterns of diversity across landscapes, and how they may change over time. The 103 

pressing issue of adapting to global environmental change requires a detailed understanding 104 

of how the environment shapes the current diversity within ecological communities. In doing 105 

so, it is important to consider the type of change, which taxa to focus on if not everything can 106 

be surveyed, and how taxonomically different assemblages (such as ants and plants) may 107 

respond to the common environmental pressures across space and time. I will outline each of 108 

these issue in turn and how they will be tackled in this study. 109 

By monitoring the presence, absence and/or abundance of species, it is possible to 110 

detect the decline or migration of species in response to climate change. Changes in species 111 

abundances are of interest in their own right, but species each form a part of a network, so 112 

declines in “keystone” species that provide important services or regulate other species are of 113 

particular concern (Gilman et al. 2010; Griffith et al. 2017; Mills et al. 1993). Vegetation is 114 

probably the most common (and easiest) group on which to monitor compositional change, as 115 

vegetation provides food and habitat for many other taxa, and for dominant species. The 116 

ready and increasing availability of high resolution aerial imagery also provides opportunities 117 

for expensive and labour intensive on-ground monitoring to be at least partly replaced with 118 

cheaper remote sensing. In Chapters 5 and 6, I use abundance data for vascular plants to 119 

represent a biotic gradient, which I correlate to an environmental gradient. 120 

Community composition of indicator groups that are thought to be proxies for broader 121 

ecological function, are also common monitoring targets, including birds (Furness and 122 

Greenwood 2013), invertebrates (particularly ants) (Andersen et al. 2004), and other taxa 123 
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(Lindenmayer et al. 2012a). The utility of indicator taxa as representative of broader 124 

ecosystem composition and/or function has been criticised, often on the basis of quantitative 125 

evidence that one group is unlikely to be always representative of another (Carignan and 126 

Villard 2002). Nevertheless, of the many taxa that have been put forward as representative 127 

indicators, the case for ants is particularly strong. Ants are cosmopolitan, intimately 128 

connected to both the soil and vegetation, and phenotypically diverse, making their 129 

composition and abundance sensitive to disturbance and environmental change (Andersen 130 

and Majer 2004; Majer et al. 2007). In Chapter 6, I combine vegetation and ant responses to 131 

test the comparative sensitivity of these two commonly-investigated groups, as well as 132 

project their likely congruence under future climate change. 133 

 134 

Methodologies for ecological forecasting 135 

Knowledge of how ecosystems were structured and functioned in the past compared 136 

with the current ecosystems is an obvious starting point to understand how ecosystems are 137 

likely to change in the future (Williams and Jackson 2007). However, while historic data sets 138 

can be informative, long-term data of sufficient resolution is not available for most regions 139 

(Lindenmayer et al. 2012b). Perhaps more importantly, a steady increase in anthropogenic 140 

impacts (Ellis et al. 2010), particularly through modification of the global climate (Williams 141 

et al. 2007), means that the past may not be a good model for the future behaviour of many 142 

ecosystems (Fordham et al. 2016; Veloz et al. 2012; Williams and Jackson 2007). In order to 143 

be able to responsibly utilise past environmental and biodiversity data as an indication of the 144 

future, a clear mechanistic model must be presented (Warren et al. 2014). 145 

Contemporary environmental gradients, in which biodiversity changes in tandem with 146 

one or more environmental variables, is an efficient method to associate abiotic change with 147 
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biotic response (Blois et al. 2013a; Parker et al. 2011). This approach has grown from the 148 

gradsect survey technique, in which surveys are conducted along one or more environmental 149 

gradients in order to maximise species detection while minimising survey effort (Austin and 150 

Heyligers 1991). Demonstrating a correlative link between environment and biotic response 151 

is reasonably straightforward, but replication or complimentary experimentation is required 152 

to establish a causative link (Caddy-Retalic et al. 2017; Warren et al. 2014). 153 

Understanding how ecological change occurs across spatial gradients can give a good 154 

insight into both the individual and combined environmental drivers of biodiversity change, 155 

as well as the magnitude of response that may be expected by a change in one or more drivers 156 

(Blois et al. 2013a; Jennings and Harris 2017). This approach of using space as a proxy for 157 

time has the benefit of being based on direct observations, rather than modelled data, and 158 

allows intraspecific through to biome-level observations to be collected. Space-time 159 

substitutions are further discussed in Chapter 7, in which the sensitivity of plant and ant 160 

groups on the TREND are assessed for sensitivity to spatial environmental change, and 161 

potential future climate change, is assessed. 162 

 163 

Ecological thresholds 164 

Ecological thresholds have been defined in many ways (see Huggett (2005) and 165 

Bestelmeyer (2006)), but can essentially be regarded as points or regions on environmental 166 

gradients at which the rate of change in a biotic variable (e.g. trait change, species turnover, 167 

physical structure, etc.) is markedly greater than for the gradient as a whole (Figure 2). 168 

Examples include the estuarine zone separating marine and freshwater ecosystems; and the 169 

alpine “tree line” on mountains which delineates forested slopes and barren peaks. 170 
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Ecological thresholds are an attractive concept for ecologists and ecosystem managers 171 

because they provide an explanation for rapid transitions in ecosystems, as well as 172 

information to support the understanding of biodiversity to changing environmental 173 

conditions. Together, this improved knowledge base facilitates the development of a 174 

management framework to conserve or promote desirable ecosystem attributes (e.g. 175 

temperature must be limited below a value of x in order to avoid large scale coral deaths). 176 

 177 

Thesis aims 178 

In this thesis, I aim to investigate the utility of spatial bioclimatic gradients in 179 

understanding the environmental drivers of within-species, species and community level 180 

biotic change. Each chapter has its own specific aims: 181 

- Demonstrate how single bioclimatic gradient studies can be augmented to improve their 182 

power and utility in creating generalizable biodiversity change models (Chapter 2); 183 

- Determine the variability in leaf carbon isotope response to aridity and test for 184 

generalizable patterns between species and growth forms on three replicated bioclimatic 185 

gradients (Chapter 4); 186 

- Describe the change in vegetation composition and structure on a mediterranean-arid 187 

zone gradient, test for the presence of ecological thresholds at which rapid change 188 

occurs, and determine the degree to which survey methodology impacts on our ability to 189 

describe vegetation change for this region (Chapter 5); and 190 

- Quantify the relative sensitivity of plant and ant assemblages to environmental change 191 

and determine the likely ecological responses of plant and ant assemblages to future 192 

climate change (Chapter 6). 193 
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Over the entire thesis, attempt to I address the pressing issue of how we can improve 194 

our knowledge of climate change impacts gained through spatial gradient studies to gain 195 

insight in to the likely trajectories of species and ecological communities under climate 196 

change, and how this knowledge can be mobilised to promote the ongoing monitoring and 197 

management of species and ecosystems. 198 

 199 

Thesis structure 200 

This thesis comprises seven chapters (Figure 1). 201 

In Chapter 1 (this chapter), I outline the structure of the thesis and give a brief 202 

overview of the context of gradient research in ecology. Additional conceptual material has 203 

been integrated in to Chapter 2.  204 

In Chapter 2, I present an overview of how bioclimatic gradients have traditionally 205 

been used. I undertake a critical evaluation of the power and limitations of bioclimatic 206 

transects as platforms for elucidating the drivers and mechanisms of biodiversity change. I 207 

explain how studies based on environmental gradients can be structured to overcome 208 

potential design weaknesses, particularly through addressing biodiversity change at multiple 209 

scales (intra-species, species, and community level change), as well as replication of transects 210 

and study taxa. I also provide further information on the Australian Transect Network, whose 211 

infrastructure has been used in these studies. Chapter 2 also includes a glossary which defines 212 

many of the main terms and concepts used throughout the thesis. 213 

In Chapter 3, I introduce the TREND, an 800-kilometre aridity gradient spanning the 214 

transition from the Mediterranean to arid zones of South Australia, in order to provide an 215 

overview of the gradient that I use in this thesis. I provide a background of the development 216 

of the TREND through its establishment to its adoption as a part of the Australian Transect 217 
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Network, a group of analogous subcontinental-scale bioclimatic transects used as 218 

infrastructure on which to explore biodiversity change with climate. 219 

Chapter 4 investigates intra-species change using analogous gradients to test whether 220 

the magnitude of trait-change is similar for different species and the gradients as a whole. I 221 

present a case study of change in leaf carbon isotope ratio (an integrated measure of water use 222 

efficiency) measured on three bioclimatic transects in Australia and a further transect in 223 

China to explore differences in trait variation in species on replicated transects. I also test the 224 

“universal scaling hypothesis”, a theory posited following a previous gradient study in China 225 

suggesting that carbon isotope responses to aridity would function identically at both the 226 

species and community scale. 227 

In Chapter 5, I investigate species and structural change in a comparative study of 228 

vegetation structure and species change on the TREND. This analysis shows that the 229 

vegetation on the Adelaide Geosyncline changes monotonically, and finds little support for 230 

any disjunctions of higher than expected species or structural change. 231 

Having explored within-species change (Chapter 4) and species level change (Chapter 232 

5), in Chapter 6, I compare community level responses in plants and ants on the same 233 

transect. I further predict the disruptive pressure of future climate change on ant and plant 234 

communities as an example of investigating multiple taxa on the same gradient. I find that 235 

plant and ant species composition is likely to be affected by future climate change, with ants 236 

likely to be particularly sensitive, but these species are unlikely to migrate in tandem. The 237 

asymmetrical responses of vegetation and ants (in both trajectory and magnitude) implies that 238 

these communities will become somewhat decoupled in the future, potentially leading to a 239 

loss of important ecological relationships and function.  240 
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Finally, Chapter 7 (Discussion and Conclusions) critically evaluates each chapter and 241 

provides a cross-cutting synthesis of the work presented here as a whole. I also provide 242 

suggestions for future research, with particular emphasis on future work that could be 243 

supported by the Australian Transect Network. 244 

  245 
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 246 

Figure 1: Chapter structure for this thesis. TREND = TRansect for ENvironmental 247 

monitoring and Decision making (the primary study platform used in each of the 248 

following chapters), NECT = North East China Transect. 249 

  250 
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 251 

Figure 2: Linear biotic change in response to an environmental gradient (a) continues until a 252 

threshold point (b) or region (c) is reached. Once the threshold point is exceeded, the change 253 

becomes non-linear and may increase in magnitude (d) or reach saturation (e), with no further 254 

biotic response. Similar responses may occur following a threshold region, as well as a return 255 

to the previous rate of change (solid line). Biota on a gradient may display several thresholds 256 

of varying magnitudes.  257 

 258 

  259 
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Chapter 3: Overview of the TREND 1 

 2 

The TRansect for ENvironmental monitoring and Decision making (TREND) was 3 

established in 2012 with the support of the South Australian government. The TREND 4 

program was designed to explore the medium to long-term sustainability of South Australia’s 5 

landscapes in four thematic areas: terrestrial ecosystems, marine ecosystems, agricultural 6 

landscapes and regional towns (Caddy-Retalic et al., 2014). 7 

Under the terrestrial ecosystems theme, policy drivers and questions were identified 8 

through discussions with government and management stakeholders (Guerin et al., 2016). 9 

The research that was subsequently undertaken was designed to determine the drivers of 10 

species composition in South Australia and how it might be affected by climate change, as 11 

well as identify strategies that could improve the resilience of key species and communities 12 

(Guerin et al., 2016). 13 

As a part of this program, a linear network of 85 permanent monitoring plots 14 

(hereafter referred to as the TREND-Guerin transect) was established at 17 locations on the 15 

Adelaide Geosyncline between Deep Creek on the tip of the Fleurieu Peninsula, and Mount 16 

Hack in the northern Flinders Ranges in 2012 (Guerin et al., 2014). The arrangement of these 17 

plots was designed to exploit a strong gradient from the mesic Fleurieu Peninsula through to 18 

the arid Flinders Ranges. In addition to a climatic gradient, an obvious vegetation change was 19 

also evident, with a transition from mesic closed woodlands in the south to more open, arid-20 

adapted shrubland and woodland communities in the north.  21 

Following the formation of the Australian Transect Network as a facility of the 22 

Terrestrial Ecosystems Research Network (Thurgate et al., 2017), the TREND was 23 

resurveyed using the AusPlots Rangelands methodology (White et al., 2012). In addition to 24 
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all TREND-Guerin locations being surveyed, additional plots were situated in gaps in the 25 

transect, and a number of plots were added at the northern end, extending further into the arid 26 

zone. This expanded TREND-AusPlots transect (Figure 1), which forms the core sampling 27 

effort of the present study, encompasses a total of 42 one-hectare sites, and the transect forms 28 

a key component of the Australian Transect Network, which has established similar transects 29 

across several major biogeographic transitions in Australia (Caddy-Retalic et al., 2017). 30 

The TREND-AusPlots transect traverses 6.7° C in mean annual temperature 31 

(difference between northernmost and southernmost sites), with sites becoming warmer 32 

moving north. There was a greater difference in maximum temperature of the warmest 33 

quarter (13.3° C) than coolest temperature of the coldest quarter (2.4° C) (Figure 1). 34 

Precipitation was negatively related to temperature, increasing from north to south, with 35 

673.6 mm difference in mean annual precipitation (i.e. monthly average of 56.1 mm), 24 mm 36 

difference for the wettest month and 3.8 mm difference for the driest month (Figure 1). 37 

Moisture Index showed a similar pattern to temperature. There was no consistent elevational 38 

pattern from north to south, with sites located at high and low elevation across the spine of 39 

the Mt Lofty, Flinders and Gammon Ranges until reaching the low-altitude Stony Plains at 40 

the northernmost extent. A soil pH gradient of ~4.7 pH units was also present (Figure 1), 41 

potentially related to ion accumulation due to high evaporation in the arid north, and soil 42 

leaching effects in the high rainfall (southern) sites. 43 

For consistency, throughout this thesis, each AusPlot is referred to by a four letter 44 

code (e.g. BLCK for Black Hill). Corresponding TREND-Guerin plots are referred to with an 45 

additional letter (e.g. BLCK-A, BLCK-B, etc). A full list of site codes can be found in 46 

Chapter 5. The following pages provide a brief overview of the 42 locations at which the 47 

permanent survey plots investigated in the following pages were established, ordered from 48 



 

47 
 

north to south. I include a brief description of the landform features and vegetation 49 

community, including dominant species and a photographic panorama for each AusPlot.  50 

  51 



 

48 
 

 52 

Figure 1: The location of the 42 locations at which AusPlot surveys were undertaken, with 53 
key environmental variables. AusPlots are colocated with TREND-Guerin plots at 17 54 
locations (WAR1, BRAU, BRAL, WILP, DUTU, DUTL, REMU, REML, SPRG, 55 
TOTR, KAIS, SAND, HALE, BLCK, MONT, HORS and DEEP). 56 

57 
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Transect panoramas 58 
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Abstract 130 

Leaf carbon isotope ratio (δ13C) is reflective of aridity during leaf formation, with higher 131 

values in drier environments. A postulated “universal scaling relationship”, where all C3 132 

species display a single isotopic response to aridity gradients has never been empirically 133 

tested in multiple locations. We compared plants growing along aridity gradients in South 134 

Australia, Western Australia, and northeast China (160-980 mm, 220-745 mm and 145-710 135 

mm mean annual precipitation, respectively) to test for universal scaling. We found δ13C 136 

responses to aridity at the species-level and landscape level differed widely, providing strong 137 

evidence against a universal scaling phenomenon. The trade-off between maintaining CO2 138 

uptake and limiting water loss in arid environments does result in plants responding to aridity 139 

in a generally consistent way, but our data suggests that the magnitude of this response is 140 

highly variable and probably related to location and individual species traits. We suggest the 141 

magnitude of both species- and landscape-level δ13C responses to aridity may be useful in 142 

classifying the sensitivity of species and regional floras to aridification under climate change.   143 

 144 
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 148 

Introduction 149 

Climate change is rapidly altering the composition and distribution of the world’s vegetation. 150 

Migration of many species has already been detected (Chen et al. 2011; Kelly and Goulden 151 

2008; Parmesan 2006) but it has been suggested that some species will be unable to disperse 152 
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fast enough to keep up with climate shifts, particularly where habitat is fragmented (Jump 153 

and Peñuelas 2005; Loarie et al. 2009). Determining the ecophysiological responses of 154 

species in situ to environmental variability across their range has been suggested as a method 155 

to gauge sensitivity and likely persistence of those species under future changed climates and 156 

can inform projections of future vegetation distribution (Moritz and Agudo 2013).  157 

Temperature rise and increased rainfall variability, and their interactions with rising 158 

atmospheric CO2 concentration, are the major changes expected to alter the plant physiology 159 

and vegetation composition of temperate ecosystems under projected future climates (Kertész 160 

and Mika 1999; Murphy and Timbal 2008). Measuring variation in traits of species occurring 161 

along environmental gradients (e.g. increasing aridity through increased temperature and 162 

reduced rainfall) is an established methodology for mapping phenotypic diversity and 163 

possible biotic responses to environmental change (Blois et al. 2013). To be most useful in an 164 

ecological context, selected traits should reflect responses to the environment, and the 165 

physiological mechanisms that control trait expression should be understood (Caddy-Retalic 166 

et al. 2017). Stable carbon isotope ratios are indicative of water use efficiency and water 167 

stress, and are therefore useful traits for predicting the capacity of temperate species to cope 168 

with projected climate change. By comparing the isotopic response of individual species to 169 

the aggregated mean response of numerous species across a landscape, we can infer the 170 

relative sensitivity of those species and the emergent sensitivity of aggregated communities. 171 

The carbon isotope ratio (δ13C) of leaves is indicative of the environmental conditions during 172 

leaf formation, constrained by species physiology (Cernusak et al. 2013; Farquhar et al. 173 

1989). Leaf δ13C reflects the δ13C of atmospheric CO2, modified by the isotopic 174 

discrimination (Δ) that occurs during photosynthesis, calculated as  175 

∆=
δ𝑎−δ𝑝

1+δ𝑝
       (1) 176 



 

68 
 

where δa is atmospheric CO2 δ
13C and δp is leaf δ13C (Cernusak et al. 2013; Farquhar and 177 

Richards 1984).  178 

There are many factors that can affect C3 carbon isotope discrimination (Δ3), including 179 

stomatal conductance, enzyme bias, mesophyll conductance (Flexas et al. 2008), respiration, 180 

light and nutrient availability (Cernusak et al. 2013) and tissue composition (Cernusak et al. 181 

2009). While each of these factors can vary between species and environmental conditions, 182 

the majority require complex instrumentation to quantify and cannot be measured for dead 183 

leaves. Moreover, mesophyll and stomatal conductance are thought to generally respond to 184 

environmental variables in a similar way (Flexas et al. 2008). For these reasons, the simplest 185 

model of carbon isotope discrimination in C3 plants can be appropriate for landscape-scale 186 

studies: 187 

∆3= 𝑎 + (𝑏 − 𝑎)
𝑐𝑖

𝑐𝑎
       (2) 188 

where a is the fractionation caused by diffusion of CO2 molecules through the stomata; b is 189 

the fractionation which occurs during carboxylation through the discrimination against 13CO2 190 

by the RuBisCO enzyme; ci  is the CO2 concentration of the intercellular air spaces within the 191 

leaf; and ca is the CO2 concentration of the atmosphere (Farquhar et al. 1989). Given that a 192 

and b are relatively fixed, the ratio of ci  to ca  is regarded as the major determinant of change 193 

in Δ3, and therefore, leaf δ13C for plants growing in natural environments (Cernusak et al. 194 

2013; Farquhar et al. 1989). 195 

Factors ca and δa can vary in space and time. Burning fossil fuels is steadily increasing ca, 196 

which has risen from ~280ppm to >400ppm since industrialisation (Pachauri et al. 2014). 197 

Combustion of 13C-depleted hydrocarbons has led to a concurrent lowering of δa with a 198 

~1.5‰ decrease in 13C of atmospheric CO2 since 1800 (Francey et al. 1999). Air spaces 199 

which have restricted mixing with the atmosphere, such as dense forest canopies, may also 200 
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display large diurnal changes in ca (due to the shift between photosynthesis and respiration of 201 

trees) and δa (due to the “canopy effect” in which air trapped by forest canopies is 202 

progressively 13C enriched when photosynthesis predominates and 13C depleted when 203 

respiration predominates) (Hymus et al. 2005)). Despite these effects, short term ca and δa can 204 

be considered to be relatively constant, especially in ecosystems that are not isolated from the 205 

open atmosphere by dense canopies (Cernusak et al. 2013). The ci is controlled by the 206 

movement of CO2 into the leaf (stomatal conductance) and the photosynthetic demand of the 207 

leaf. Photosynthetic demand is determined by a range of drivers, including nutrient and light 208 

availability and prevailing climatic conditions (Cernusak et al. 2013).  209 

Water availability is an important control of plant growth. Vapour pressure deficit (VPD) and 210 

soil moisture largely determine a plant’s water budget and are usually negatively correlated 211 

(Zhou et al. 2014). In order to limit water loss, plants in arid conditions must limit stomatal 212 

conductance, which also decreases the diffusion of CO2 to the intercellular air spaces, thus 213 

decreasing ci. The resultant reduction in ci/ca decreases the discrimination of C3 plants and 214 

shifts leaf δ13C values closer to that of atmospheric δ13C. Therefore, leaf δ13C (or Δ) provides 215 

a time-integrated proxy for ci/ca in C3 plants (Cernusak et al. 2013), and in turn reflects the 216 

level of aridity. 217 

In wet conditions, C3 plants have more negative δ13C values (i.e. -31.5‰), whereas in very 218 

arid conditions, these can rise to above -23‰ (Diefendorf et al. 2010; Kohn 2010). A positive 219 

relationship between aridity and leaf δ13C has been demonstrated in regional and global 220 

analyses; however the sensitivity of isotopic ratios to aridity has been reported to vary among 221 

locations and species (Kohn 2010; Ma et al. 2012). The slope of the regression of δ13C versus 222 

moisture availability for a C3 species (ms) occurring along an aridity gradient can be used to 223 

gain insight into the change in stomatal regulation as water becomes increasingly limited. We 224 

suggest that species’ ms values can be compared to infer relative climate sensitivity, and 225 
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compared to a “common slope” of δ13C/moisture availability for the community mean of 226 

many species along a gradient (mc). Measuring mc for multiple regions would enable the 227 

comparative climate-vegetation sensitivity to be assessed for entire bioregions. 228 

Zonation is a biogeographic phenomenon in which individual species occupy overlapping 229 

ranges along an environmental gradient, with turnover referring to the rate of species change 230 

relative to abiotic (e.g. climate) change (Figure 1a). Noting that all plants are limited by water 231 

loss during photosynthesis, and discounting life history traits that could impact water use 232 

efficiency, we might expect all species on a water availability transect to have similar ms, 233 

which would also approximate mc (Figure 1b). This pattern was observed for several species 234 

occurring along the Northeast China Transect (NECT; Figure 2) where a consistent 235 

relationship was found between δ13C and moisture index (MI) and mean annual precipitation 236 

(MAP), both within and between species (i.e. ms ≈ mc) (Prentice et al. 2011). The authors 237 

described this relationship as “universal scaling” (Prentice et al. 2011). In contrast, trees 238 

(Eucalyptus spp.) on the North Australian Tropical Transect (NATT) had a steeper ms than 239 

mc. This meant that individual species displayed an initially lower leaf δ13C value than the 240 

species it replaced along the gradient of increasing aridity, i.e. ms << mc (Figure 1c) (Schulze 241 

et al. 1998). Prentice et al. (2011) referred to this pattern as “biotic homeostasis”, but did not 242 

consider it viable in the absence of a clear causative mechanism. Re-analysis of NATT 243 

Eucalyptus data reported that “the proposed saw-tooth pattern of species was not observed” 244 

(Miller et al. 2001), casting further doubt on the existence of a biotic homeostasis pattern on 245 

natural gradients. The idea that all C3 plants respond similarly on gradients (i.e. conform to 246 

universal scaling) is intriguing, but the claimed “universality” of this scaling warrants further 247 

investigation to test the consistency of carbon isotope ratio patterns on different climate 248 

gradients. Additionally, there is value in comparing ms and mc between and within transects 249 
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to explore relative sensitivity of entire species assemblages and their constituent species to 250 

aridification. 251 

We sought to explore the δ13C response of a range of flora on two new transects, the 252 

TRansect for ENvironmental monitoring and Decision making (TREND; Figure 2) in South 253 

Australia the South West Australian Transitional Transect (SWATT; Figure 2) in Western 254 

Australia. We present new data on δ13C responses for 150 C3 species on the TREND and 49 255 

C3 species on the SWATT, which we contrast with a reanalysis of data from 36 species 256 

collected on the NECT previously published by Prentice et al. (2011) and a global δ13C data 257 

set (Kohn 2010). 258 

The species we tested represent a broad range of functional types including forbs, grasses, 259 

ferns, vines, shrubs, trees and mistletoes. Together, these data are subjected to new statistical 260 

analysis to provide a comprehensive test of the universal scaling hypotheses. By combining 261 

species distributions with carbon isotope values, we aimed to delineate the ecophysiological 262 

strategies employed by plants and test the consistency of these patterns between communities 263 

on analogous bioclimatic transects. Finally, we assessed the potential of ms as a proxy 264 

measure to determine species’ sensitivity to aridification.  265 

 266 

Materials and methods 267 

Study locations and survey methodology 268 

Australia 269 

The TREND consists of 42 sites spanning 6.2° of latitude (~800 km) and 150-980 mm mean 270 

annual precipitation (MAP) near Adelaide in South Australia (Figure 2). The SWATT 271 

consists of 127 sites spanning 9.5° of latitude (~1,000 km) and 220-745 mm MAP in south-272 
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western Australia. Surveys were undertaken from August to November (the austral spring) 273 

from 2012 to 2014. 274 

Sites were located in remnant native vegetation on nature reserves. Vouchers of all vascular 275 

plant species present at a site were collected and deposited with the State Herbarium of South 276 

Australia (TREND) and the Western Australian Herbarium (SWATT). Identifications were 277 

undertaken by the Herbarium botanists. South-Western Australia is an area of exceptionally 278 

high species diversity, and analysis of species distributions on SWATT revealed very high 279 

species turnover (Gibson et al. 2017). Most species had distributions restricted to a small 280 

portion of the gradient, but species distributions were greater in the more arid section of the 281 

transect (Coolgardie bioregion) so most species occurring in this area were selected, resulting 282 

in a narrower rainfall range (220-400 mm MAP) for samples than for the NECT or TREND. 283 

Leaf δ13C was measured in samples of species that occurred at ≥4 sites (TREND) and ≥6 sites 284 

(SWATT; Supplementary Table S1). For most plants, leaf tissue samples were collected in 285 

the field and dried in synthetic gauze bags on silica gel; otherwise samples were taken from 286 

herbarium vouchers. Leaf samples were ground, homogenised using a ball mill (Retsch 287 

MM400 fitted with a Qiagen TissueLyser 24 adapter set), and 2-2.5 mg sub-samples were 288 

weighed to six significant figures using a Simultaneous Thermal Analyser (PerkinElmer STA 289 

6000). Technical replicates were run for 13% of samples. Samples were combusted at 290 

1000°C in an Elemental Analyser (EuroVector EuroEA 3000) in line with a continuous flow 291 

isotope ratio mass spectrometer (Nu Instruments Nu Horizon, University of Adelaide). Pure 292 

glycine, glutamic acid and triphenylamine (all calibrated to international C & N standards) 293 

were used as standards to correct for drift. A standard error of 0.07‰ was achieved. Two-294 

point drift and size corrections based on glycine and glutamic acid standards were 295 

undertaken. 296 
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Functional habits were attributed to species based on the growth forms described in the 297 

National Vegetation Attribute Manual (ESCAVI 2003) derived from Specht (1970), 298 

including ‘grass trees’ (members of the endemic Australian family Xanthorrhoeaceae), and 299 

with grasses and forbs further divided into annual and perennial groups. For TREND sites 300 

only, surface soil samples were suspended in demineralised water and portable probes were 301 

used to measure pH and electroconductivity in the field. Climate data were extracted from 302 

BIOCLIM layers modelled at 9 second resolution extracted from ANUCLIM 6.1 (Xu and 303 

Hutchinson 2013). Soil pH and electroconductivity were measured for the surface layer at all 304 

plots.  305 

China 306 

Data analysed here from the Northeast China Transect (NECT) were published previously by 307 

Prentice et al. (2011). The NECT consists of 33 sites spanning 19.2° longitude (~1,500 km) 308 

and 145-710 mm MAP (Figure 2). Full survey methodology, sample treatment and original 309 

analysis of data are described in Prentice et al. (2011). Briefly, sites appearing to have little 310 

anthropogenic or grazing disturbance were selected and the dominant species at each site 311 

were collected for isotopic analysis. 312 

Global data set 313 

In order to provide a point of comparison for our transect data, a global baseline was 314 

established using a global compilation of site-averaged leaf δ13C values, primarily 315 

representing vegetation in Australia, southern Africa, Europe, North America and Asia 316 

published by Kohn (2010). The dataset was trimmed to include only sites from 145-980 mm 317 

MAP (the range of MAP for on the NECT, TREND and SWATT) to provide a meaningful 318 

comparison with the data from our transects.  319 

 320 
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Statistical analysis 321 

The previous analysis of NECT data used Principal Component Analysis (PCA) and 322 

Redundancy Analysis to determine the primary environmental drivers of isotopic response, 323 

and the homogeneity of species responses was tested using standardised major axis regression 324 

(Prentice et al. 2011; Warton et al. 2012). Here, we repeat the PCA analysis for all three 325 

transects and the global data set and introduce new analyses. 326 

The slope of the regression of δ13C versus moisture availability for each C3 species (ms) was 327 

calculated as the slope of a linear least squares regression between leaf δ13C and MAP for 328 

that species. Both raw p values and Bonferroni adjusted p values, which account for multiple 329 

tests of significance, were calculated. The common slope (mc) of each transect was calculated 330 

for the regression of all species on the transect combined. Global slope (mg) was calculated as 331 

a linear regression between leaf δ13C and MAP for site-averaged data published by Kohn 332 

(2010) (n=392). For the NECT, mc was calculated using data from 154 species (n=333), 333 

including 36 species found at ≥3 locations (n=186). For the TREND, the mc regression was 334 

calculated for 150 species, each sampled at ≥4 locations (n=996). For the SWATT, the mc 335 

regression was calculated for 47 species, each sampled at ≥7 locations, except for one species 336 

from 6 locations (Grevillea hookeriana), and three singletons (Eremophila ionantha, 337 

Grevillea haplantha, Hibbertia rostellata) that were measured by mistake but included as 338 

plants found on the transect and used to develop the common slope (n=552). The number of 339 

species occurrences was increased for the SWATT to improve the likelihood of obtaining 340 

statistically significant ms regressions. To test the consistency of the δ13C response to MAP at 341 

a landscape level, each transect mc regression was compared against mg and the other transect 342 

mc regressions using Chow tests (Chow 1960). 343 
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All data analysis was performed using R (R Core Team 2017). To test the degree to which 344 

climatic and soil variables explained leaf δ13C, a Principal Component Analysis (PCA) was 345 

conducted using FactoMineR (Lê et al. 2008). Linear regressions were also calculated 346 

between each environmental variable and leaf δ13C for all plants on each transect and 347 

compared against mg to test for transect-level differences. Ordinary least squares regressions 348 

and a PCA were also used by (Prentice et al. 2011), but were repeated here for all three 349 

transects. 350 

In order to test for the presence of multiple species responses consistent with those 351 

hypothesised (Figure 1), we used Finite Mixtures of Regression (FMR) models to search for 352 

‘species archetypes’ (Grun and Leisch 2008). For the purposes of defining the nature of 353 

responses, we defined ‘biotic homeostasis’ as 𝑚𝑠  < 1.5(𝑚𝑐), ‘universal scaling’ as 𝑚𝑠 =354 

𝑚𝑐 ± 0.5(𝑚𝑐), ‘insensitivity’, as 𝑚𝑠 = 0 ± 0.5(𝑚𝑐), and ‘contrary’, as 𝑚𝑠 > −0.5(𝑚𝑐) 355 

(Figure 1). Models of 1-4 species archetypes for each transect were assessed using Akaike 356 

Information Criterion (AIC), with models differing <4 from the model with the lowest AIC 357 

for a given transect regarded as having strong support, <7 from the lowest AIC regarded as 358 

having moderate support, and an AIC >10 from the lowest AIC as having little to no support 359 

(Burnham and Anderson 2004). 360 

To determine whether species response was affected by growth form, we ran linear mixed 361 

effect models using a maximum likelihood approach in the lme4 package (Bates et al. 2015). 362 

The first model used species as a random effect; and the second model used species as a 363 

random effect nested within growth form as a random effect. Model outputs were compared 364 

using an ANOVA, with model explanatory power assessed by comparing the correlation 365 

between the fitted and the observed values. 366 

 367 
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Results 368 

Species distributions 369 

For the TREND, a total of 150 species from 44 families were recorded at four or more sites 370 

(Table 1). There were 15 alien (non-native) species, including annual forbs (7), perennial 371 

forbs (2), annual grasses (5) and a vine on the TREND. We recorded 47 species from 21 372 

families at six or more sites on the SWATT, all of which were native. On the NECT, a total 373 

of 42 species from 21 families were recorded at three or more sites, but native/alien status 374 

was not available for these species. Refer to Supplementary Table S1 for full species details.  375 

Vegetation on all transects showed strong structural partitioning. On the NECT; forest 376 

communities dominated by trees, ferns, vines and sedges were found on the eastern (wet) end 377 

of the gradient, transitioning to meadows comprised of grasses, forbs and chenopods in the 378 

arid west (Figure 2; Figure S1; Ni and Zhang 2000). On the TREND, sedges, grass trees and 379 

vines were located predominantly at the southern (wet) end of the gradient, while chenopods 380 

and annual forbs dominated more northern (dry) sites (Figure 2; Figure S2; Chapter 5). The 381 

SWATT displayed a similar transition to the TREND, with trees and perennial forbs most 382 

common in the southern (mesic) sites, transitioning to chenopods, perennial grasses and a 383 

vine species in the more arid northern sites (Figure 2, Figure S3; Gibson et al. 2017). 384 

Vegetation complexity also changed with aridity, with wetter sites displaying complex multi-385 

strata woodland communities, eventually transitioning to sparse chenopod shrublands and 386 

grasslands in the more arid north (TREND and SWATT) and east (NECT). The transition in 387 

growth forms with aridity was most graded on the TREND and SWATT, with most growth 388 

forms being found across much of those transects, whereas on the NECT, growth forms were 389 

more spatially partitioned. 390 

 391 
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Carbon isotope responses 392 

Leaf δ13C values varied by 9-11‰ across all transects, regardless of MAP range (NECT =-393 

34.2‰ to -22.6‰, TREND=-34.0‰ to -22.8‰, SWATT=-31.7‰ to -20.5‰). Principal 394 

component analyses revealed Component 1 (the primary aridity gradient) explained the 395 

majority of observed leaf δ13C variance (67.16%, 75.88% and 65.19% for the NECT, 396 

TREND and SWATT, respectively; Figure 3; Table 2). The length of the δ13C response 397 

vector (in red) indicates the strength of the relationship with predictor variables. Vectors for 398 

predictor variables on a similar angle to the δ13C response were positively correlated. Plant 399 

growth forms exhibited some differences in leaf δ13C (Figure S4) but these were likely a 400 

result of differences in growth environment, rather than growth form (e.g. chenopods are 401 

restricted to drier environments whereas sedges occupy wetter environments). 402 

Linear regressions revealed highly significant correlations of foliar leaf δ13C values with 403 

several environmental variables (Table 3). For the NECT, the strongest environmental 404 

correlates were mean moisture index (precipitation divided by potential evapotranspiration) 405 

of the wettest quarter (MaxMI), MAP and mean annual moisture index (MAMI) (R2=0.721, 406 

0.715 and 0.714 respectively). For the TREND and SWATT, correlation between leaf δ13C 407 

and environmental variables were much weaker. The strongest correlates for the TREND 408 

were MAP, mean moisture index of the driest quarter (MinMI) and precipitation of the 409 

wettest week (MaxP) (R2=0.143, 0.139 and 0.133 respectively). On the SWATT, the 410 

strongest environmental correlates were MaxP, longitude and MAP (R2=0.066, 0.025 and 411 

0.013 respectively) (Table 3). 412 

Because MAP has been determined to be the strongest global driver of leaf δ13C (Diefendorf 413 

et al. 2010) and was in the top three strongest environmental correlates with leaf δ13C across 414 

all of our transects, MAP was used as the predictor variable for subsequent analyses. The 415 
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slope of the regressions between MAP and leaf δ13C varied for all three transects (Figure 4; 416 

Table 4) and Chow tests confirmed that they were statistically distinguishable from both the 417 

global regression (mg) and each other (Table 5). The NECT regression was much steeper than 418 

that for the global dataset published by Kohn (2010), lacking strongly negative δ13C values 419 

for the desert steppe (MAP < 250 mm), and more positive δ13C values at the forested end 420 

(MAP > 500mm) (Figure 4b). By contrast, the TREND regression was similar to the global 421 

dataset in slope and the spread of data, but the intercept was offset by -2.11‰ (Figure 4c). 422 

The SWATT regression was limited to a smaller MAP range (220-745 mm, with only three 423 

values >400mm) and was driven by these few more mesic data points. Nevertheless, the 424 

SWATT mc appeared similar to the TREND and global regressions in terms of spread, slope 425 

and intercept (Figure 4d). 426 

There were 28 species that showed statistically significant ms (p<0.05) (10 on the NECT; 13 427 

on the TREND and 5 on the SWATT; Table 6). Following Bonferroni correction, only 428 

Asparagus dauricus (Asparagaceae; NECT), Dianella revoluta (Xanthorrhoeaceae; TREND 429 

and SWATT) and Platysace trachymenioides (Apiaceae; SWATT) returned a statistically 430 

significant ms (Table 6). The ms for D. revoluta and P. trachymenioides was much steeper 431 

than the mc of their transects, while A. dauricus had ms values similar to the NECT mc (Figure 432 

5; Table 6). 433 

Frequency histograms of ms values revealed TREND plants were approximately normally 434 

distributed around the TREND mc. The lower number of species meant that normality was 435 

difficult to assess for the NECT or SWATT (Supplementary Figure S5). ms values varied 436 

considerably, with no apparent consistency between growth form or transect (Supplementary 437 

Figure S1-S3, Table S1). Just over a quarter (25.9%) of species displayed responses close to 438 

mc, consistent with the universal scaling hypothesis presented by Prentice et al. (2011). 439 

43.1% displayed steeper slopes than the common slope, consistent with biotic homeostasis, 440 
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while 14.6% had slopes near 0 (insensitive). A fourth subset (16.4%) displayed a positive 441 

relationship between δ13C and MAP (contrary) (Supplementary Figure S1-S3, Table S1). 442 

Finite Mixture of Regression (FMR) models were used to further probe data sets for evidence 443 

of the existence of two, three and four distinct responses (Figure 6). For the NECT, the most 444 

supported model (based on AIC value) included three components, but all archetype 445 

responses were aligned with a universal scaling response, consistent with the findings of 446 

Prentice et al. (2011) for that transect. For the TREND, the most supported model was for 447 

two archetypes (universal scaling and insensitive), but the three archetype model (universal 448 

scaling, insensitive and biotic homeostasis) was also supported (i.e. had an AIC <7 higher 449 

than the two-archetype model; Figure 6). For the SWATT, a single response (i.e. universal 450 

scaling) was the strongest model, but two archetype (biotic homeostasis and contrary) and 451 

three archetype (biotic homeostasis and insensitive) models were also highly supported (i.e. 452 

had an AIC <4 higher than the single archetype model; Figure 6). 453 

We used a linear mixed-effects model to test whether growth form significantly affected leaf 454 

δ13C. Due to the comparatively low sampling of NECT species (median observations per 455 

species n = 4), analysis was confined to the TREND and SWATT (median of six and 11 456 

observations per species respectively). Growth form did not increase the explanatory power 457 

of the model (correlation between the fitted and the observed values of model without growth 458 

form as a fixed effect was stronger for both the TREND and the SWATT). Growth form was 459 

found to significantly affect leaf δ13C for the TREND (p<0.001) but not the SWATT 460 

(p>0.05). 461 

 462 
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Discussion 463 

The variety of mc and ms responses observed in species sampled from three subcontinental-464 

scale transects is strong evidence that a universal scaling relationship between aridity and leaf 465 

δ13C does not hold. Lack of a consistent relationship among regions could be due to a range 466 

of factors influencing both spatial variability between transects in different locations, and 467 

variability among species on the same transect due to differing sensitivity to aridity.  468 

 469 

Variability between transects 470 

The large difference observed for mc between the NECT (−13.5 ‰ m−1), TREND 471 

(−3.0 ‰ m−1) and SWATT (−5.6 ‰ m−1) is somewhat surprising, given that the transects 472 

traverse similar MAP gradients. One of the most obvious differences among transects is that 473 

the NECT is longitudinal, the TREND is latitudinal and the SWATT traverses both latitude 474 

and longitude (Figure 2). Latitude and longitude were less correlated with leaf δ13C than 475 

climate variation across the gradients (Table 3), reinforcing previous findings that latitude 476 

does not have a strong effect once its impacts on climate are accounted for (Diefendorf et al. 477 

2010). On the other hand, elevation is likely to limit discrimination, meaning plants at 478 

altitude will experience more positive δ13C values (Körner et al. 1991). The NECT and 479 

TREND experience similar elevation change (1173 m and 913 m respectively) (Prentice et al. 480 

2011; Chapter 3), but on the NECT, altitude changes consistently across the transect (highest 481 

at the desert steppe end), potentially exaggerating the effect of MAP on leaf δ13C. By 482 

contrast, elevation change on the TREND is not monotonic (Chapter 3), and the SWATT is 483 

confined to lower-elevation sand plains (Gibson et al. 2017). 484 

Rainfall extremes may also play a role in influencing transect level leaf δ13C responses. The 485 

difference in correlation strength between leaf δ13C and MAP (strongest for the NECT and 486 
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TREND), versus leaf δ13C and maximum precipitation (strongest for the SWATT) suggests 487 

that rainfall variability may be responsible for differences in mc between the transects. 488 

However, the SWATT mc is the least robust due to the narrow sampling range, and if the data 489 

point at ~750 mm MAP (Dianella revoluta) is removed, the regression is no longer 490 

significant.  491 

The vegetation present on the gradients is also likely to have influenced transect-level δ13C 492 

responses. Vegetation on the TREND and NECT is largely sclerophyllous and evergreen. 493 

However, the NECT traverses a change between sclerophyllous steppe vegetation and 494 

deciduous forests. Deciduous plant forms have different nutrient use strategies, and as a 495 

whole, deciduous communities are able to display higher carbon isotope discrimination than 496 

similar evergreen or xeric communities (Diefendorf et al. 2010). The presence of deciduous 497 

communities could therefore drive more negative leaf δ13C values at the wetter end of the 498 

NECT, which, compounded with the effects of altitude increasing leaf δ13C values at the drier 499 

end, creates a steeper overall slope than would be expected for a global compilation or 500 

gradient where deciduousness and altitude are not negatively associated. 501 

The difference in observed mc between transects suggests limitations in the concept of 502 

universal scaling as a global explanatory mode, as different regions have different mc against 503 

which ms are to be compared. Using a global dataset synthesised for a meta-analysis of plant 504 

δ13C values (Kohn 2010), we calculated a global common slope (mg) for the MAP range 505 

sampled on the TREND and NECT (145-980 mm) of −2.8 ‰ m−1. Given that the mg was 506 

similar to the mc values calculated for the TREND and SWATT, the flora of these regions 507 

may be more representative of global carbon isotope responses than the NECT, which 508 

displayed an mc more than three times steeper than the global common slope (Figure 4). 509 

While Kohn (2010) appears to be the most comprehensive global dataset published to date, it 510 
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includes only 392 site-averaged data points within the MAP range of our study (compared to 511 

the 1881 individual species observations we present here). 512 

 513 

Variability between species 514 

We found a diverse range of species responses across all three transects, providing strong 515 

impetus to examine whether all species in an area display a similar isotopic response to 516 

aridity. However, the low number of species returning significant linear regressions 517 

(following Bonferroni correction; Table 6; Table S1) means some caution is required. For this 518 

reason, the Finite Mixture of Regressions approach was used to ‘borrow strength’ across 519 

many poorly-sampled species and evaluated using AIC values (Brewer et al. 2016; Burnham 520 

and Anderson 2004). The presence of only the universal scaling archetype in the NECT FMR 521 

models provides support for the conclusions of Prentice et al. (2011) that universal scaling 522 

was the only response mode present on the NECT. However, the small AIC difference in 2-3 523 

archetype models on the TREND and SWATT indicates additional spread present in these 524 

larger data sets. Nevertheless, the strong performance of models showing insensitive 525 

(i.e. 𝑚𝑠 = 0 ± 0.5(𝑚𝑐)), and biotic homeostasis (i.e. 𝑚𝑠  < 1.5(𝑚𝑐)) responses and 526 

detection of three species populations (Dianella revoluta on both the TREND and SWATT 527 

and Platysace trachymenioides on the SWATT) displaying a response consistent with biotic 528 

homeostasis provides support for the existence of non-universal scaling responses. We were 529 

not able to unambiguously confirm the existence of the four theoretical modes that we 530 

postulated. Nevertheless, to the degree that we are able to relate leaf δ13C to MAP and 531 

stomatal regulation, our data imply a more complex relationship between leaf δ13C and MAP 532 

than presented by Prentice et al. (2011). 533 
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Universal scaling (ms ≈ mc) and biotic homeostasis (ms << mc) modes show a negative 534 

relationship between leaf δ13C and rainfall, conforming to the expectations of more positive 535 

carbon isotope ratios with greater aridity due to reduced stomatal conductance and reduced 536 

ci/ca (Farquhar et al. 1989). Biotic homeostasis, rather than universal scaling, could occur in 537 

species that display the capacity to strongly adjust stomatal conductance, leading to higher 538 

discrimination in mesic environments, and/or the ability to maintain photosynthesis at low 539 

values of ci in environments too arid for other plants to persist. Universal scaling, which 540 

requires a more muted ms than biotic homeostasis, might then be more likely to occur in 541 

species which also adjust other traits in response to aridity, such as belowground carbon 542 

allocation and hydraulic architecture, in addition to stomatal conductance (Givnish et al. 543 

2014).      544 

The remaining modes, insensitive (ms≈0) and contrary (ms>>0) are counter to the simplest 545 

interpretation of the interaction between water availability and carbon isotope fractionation 546 

during C3 photosynthesis. Some flat or positive slopes may be artefactual, particularly when 547 

these occur in poorly sampled species (i.e. three or four occurrences). Yet, given >30% of 548 

species were insensitive or contrary, it seems reasonable to regard this phenomenon as 549 

genuine. Such responses could be attributed to opportunistic growth in a short window of 550 

favourable conditions (Ehleringer 1993), or through interactions with other species that may 551 

make climatically adverse conditions more suitable (Metz and Tielbörger 2016). Deep-rooted 552 

species may also be able to tap water unavailable to other plants in their region (e.g. 553 

groundwater). If plants were opportunistically able to access such water at the drier end of 554 

their distribution, it could reasonably override the prevailing climatic signal. 555 

Nevertheless, the regular occurrence of these modes identified on both transects studied here 556 

is compelling. Reanalysis of data collected as part of other gradient studies, as we have done 557 

with the NECT, as well as examination of other leaf trait data to better constrain the 558 
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proportion of leaf δ13C driven by aridity, may provide further support for the existence of 559 

four different response modes. 560 

To the extent that variable plant responses can be linked to aridity, ms could be used to 561 

determine the relative sensitivity of C3 plants to aridification and would be a useful factor to 562 

include in models of plant function and persistence under climate change. Understanding the 563 

potential mechanisms of each response mode is important in interpreting ms values in an 564 

ecological context and ascribing a sensitivity to those species. Below, we discuss the 565 

empirical support for the theoretical modes presented in Figure 1, and some of the possible 566 

drivers of such responses. 567 

 568 

Universal scaling 569 

The hypothesis of universal scaling postulates that C3 plants have similar patterns of stomatal 570 

adjustment, irrespective of phylogeny and traits (including growth form). Plant attributes are 571 

therefore not relevant for the purposes of modelling community and regional ecophysiology 572 

for C3 plants (Prentice et al. 2011). We find that while ms can approximate mc, only a 573 

minority (25.7%) of the tested species conformed to this model (47.2% on the NECT, 26% on 574 

the TREND, 8.5% on the SWATT). A departure from universal scaling may simply represent 575 

data scatter, with biotic homeostasis and contrary responses being outlier measurements. 576 

However, the heteroscedasticity of species regressions shows a more positive skew than 577 

would be expected if universal scaling were the most common response (Supplementary 578 

Figure S5). The NECT and SWATT require additional species to be sampled to gain a better 579 

sense of ms distribution. Nevertheless, it is possible that universal scaling may represent a 580 

‘default’ response for plants in ideal conditions. 581 

 582 



 

85 
 

Biotic homeostasis 583 

Biotic homeostasis was the most common response mode, with 43.3% of tested species 584 

showing 𝑚𝑠 > 1.5 × 𝑚𝑐 (16.7% on the NECT, 44.3% on the TREND, 63.8% on the 585 

SWATT). Plants with a wide capacity for stomatal adjustment and low desiccation tolerance 586 

are likely to show the greatest isotopic sensitivity to aridity and could be vulnerable to further 587 

drying. On the other hand, plants that are able to maintain photosynthesis in low-water 588 

conditions (and thus display more positive leaf δ13C values) through leaf trait adjustment may 589 

be the most robust to future aridification. It is also possible that the local conditions of a plant 590 

can magnify the steepness of the climate gradient. For example, if individuals at the wetter 591 

end of a species’ range were collected from unusually wet microhabitats (e.g. within drainage 592 

lines) and/or the plants at the drier end were collected from unusually dry microhabitats, this 593 

would have the potential to give the effect of a greater climatic gradient, and steeper ms.  594 

However, happenstance of microhabitat is unlikely to be a primary cause given that response 595 

modes are not uniform within groups restricted to a narrow range of microhabitats (e.g. 596 

sedges and ferns). It is more likely that high species sensitivity, or current climate stress, is 597 

the major driver of this response. If universal scaling were considered to be a ‘default’ 598 

response mode, climatic perturbation may have led to a shift towards biotic homeostasis. This 599 

hypothesis could be tested by repeated sampling of species exhibiting a biotic homeostasis 600 

response – if climate stress is indeed responsible, steeper ms (and therefore more species 601 

displaying biotic homeostasis) should be recorded with time due to ongoing climate change. 602 

 603 

Insensitive response 604 

A minority of species (14.6%) were classified as insensitive (22.2% on the NECT, 15.3% on 605 

the TREND, 6.4% on the SWATT). A number of related scenarios could explain why some 606 
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species had no appreciable isotopic response to changes in aridity. Annual species, and 607 

perennial species that limit foliage growth to the wetter parts of the year, are likely to display 608 

less leaf δ13C effect from climate pressures because they fix carbon in periods of 609 

comparatively high rainfall. Another explanation for an apparently insensitive response is that 610 

deep rooted species are able to tap into permanent or ephemeral water resources not available 611 

to other plants, compensating for the effect of an arid climate on the plant’s water balance 612 

and dampening the climate impact on ms. Similarly, plants inhabiting relatively moist 613 

microhabitats (such as under shrubs and in drainage channels) may be able to extract 614 

additional moisture from the soil and/or limit water loss through evapotranspiration, which 615 

could lead to a shallower ms than would be expected from the prevailing climatic conditions 616 

alone.  617 

 618 

Contrary response 619 

There were 16.3% of species that were classified as ‘contrary’ (13.9% on the NECT, 15.3% 620 

on the TREND, 21.3% on the SWATT). It may be tempting to dismiss these values as 621 

artefactual or attributable to sampling error, but four contrary species returned significant 622 

regressions prior to Bonferroni correction. Occasional positive slopes may be artefactual, 623 

particularly when these occur in poorly sampled species (i.e. three or four occurrences). Yet, 624 

given the abundance of these contrary species, one of which (Ptilotus obovatus) was 625 

measured at 13 locations, it seems reasonable to regard this phenomenon as biologically real. 626 

Within the stomatal conductance framework, contrary slopes could result from some plants 627 

accessing hidden water sources, allowing them to maintain low water use efficiency in 628 

otherwise arid conditions, or through a “grow fast” approach, in which plants persist 629 
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throughout the year but confine most growth to a short growing season. Further investigation 630 

is likely to reveal a range of circumstances in which contrary responses can occur.  631 

 632 

Strengths of the transect approach 633 

By measuring species in situ in relatively intact habitat, the plants we measured are likely to 634 

have benefitted from interactions with other plants (e.g. through facilitation (Maestre et al. 635 

2009) and soil biota (Wardle et al. 2004)). It is probable that these interactions would make 636 

plants more resilient to aridification, both in space and time. While it was beyond the scope 637 

of this study to quantify biotic interactions and their impacts, the approach we have taken 638 

allows a realistic inference of plant response to environment to be interpreted with potentially 639 

important associations intact. 640 

Many studies of plant carbon isotopes on climatic gradients have focused on fewer than five 641 

species (e.g. Bai et al. 2008; Gouveia and Freitas 2009; Lambrecht and Dawson 2007), 642 

several closely related species (e.g. eucalypts; Schulze et al. 2006) or only one functional 643 

group (e.g. woody vegetation; Bai et al. 2008; Schulze et al. 2006). Functionally similar or 644 

phylogenetically related species are often spatially partitioned on environmental gradients, 645 

presumably due to optimisation to a particular environmental envelope. Restricting analysis 646 

to a subset of plants is helpful in the identification of a pattern within that group, but is likely 647 

to limit the range of responses observed. We caution against developing regional mc values 648 

based on restricted collections of only a few species or growth forms, as it is likely to skew 649 

broader inference of plant sensitivity for that region. We recommend extensive bioclimatic 650 

gradients be used for the development of additional ms and mc values in additional biomes, 651 

which will enable the development of a more comprehensive mg than is currently available. 652 
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Ideally, such studies would be combined with common garden or greenhouse experiments to 653 

help disentangle the different environmental drivers of leaf δ13C (Caddy-Retalic et al. 2017). 654 

 655 

Ecological implications and potential for monitoring 656 

The data presented here indicate that it may be possible to posit the current and likely future 657 

sensitivity of plant species to aridification by comparing the derived ms for individual species 658 

across their natural range with a regional mc or global mg value. In this study, the most 659 

extreme (and variable) ms values were recorded for species collected at less than six 660 

locations, suggesting that collection of seven or more sites is required to provide a 661 

systematically reliable classification of aridity response. Indeed, given that only three of 233 662 

C3 species tested returned statistically significant ms values following Bonferroni correction, 663 

future research should focus on more intensive collection within species. 664 

One weakness of the approach detailed here is that any leaf δ13C change within or between 665 

species is attributed to stomatal conductance. Other factors that have been established to 666 

affect carbon isotope discrimination, as detailed in Cernusak et al (2013), were not 667 

considered. For example, mesophyll conductance can modify leaf δ13C by 2-4‰ (Flexas et al. 668 

2008) and respiration by >3‰ (Gillon and Griffiths 1997). Given that the mean within-669 

species leaf δ13C range was 3.4‰ (though >8.5‰ for the vines Glycine rubiginosa and 670 

Clematis microphylla) in this study, unaccounted-for discrimination factors could introduce 671 

much of the variability in the data presented here. The impact of other known determinants of 672 

leaf δ13C including shading and nutrient availability could be investigated through the 673 

examination of other leaf traits including stomatal density, leaf nutrient content and specific 674 

leaf area. Ongoing research will improve our ability to model the degree to which these 675 



 

89 
 

factors contribute to carbon isotope discrimination for different species and environmental 676 

conditions. 677 

Leaf carbon isotope measurement represents a useful tool for ongoing monitoring of climate 678 

stress in C3 plants and is a rapid and cost-effective method requiring minimal fieldwork. The 679 

quantitative results yielded by this approach can be used to further refine our understanding 680 

of the tolerances and adaptive capacity of vascular plants and improve predictive models for 681 

the future. Careful consideration should be given to which species to monitor. A diverse and 682 

ecologically representative mix of species should be selected if possible, including dominant 683 

species, as their responses may result in localised community transformation. 684 

 685 

Directions for future research 686 

Our analyses interpret leaf δ13C as exclusively a factor of stomatal conductance that, while 687 

likely to drive the majority of observed δ13C change across aridity gradients, is not the only 688 

determinant. Future research should focus on relating changes in leaf δ13C on bioclimatic 689 

gradients to a larger range of variables, potentially through the measurement of other leaf 690 

traits (e.g. specific leaf area and nutrient content). Controlling other drivers of δ13C would 691 

allow the degree to which stomatal conductance controls leaf δ13C to be quantified and verify 692 

the utility of species-specific regressions as a tool for predicting sensitivity to aridity.  693 

 694 

Conclusion 695 

We provide evidence for multiple modes of leaf stable carbon isotope ratio response to 696 

moisture availability for C3 plants. Comparison of data from three subcontinental-scale 697 

transects indicates that there is no ‘one size fits all’ approach to predicting aridity sensitivity 698 
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at a species or regional level. Nevertheless, developing species-specific regressions shows 699 

potential as a tool to determine sensitivity to aridity and would be an informative and 700 

effective approach to monitoring impacts on plant function and persistence under climate 701 

change. Indicative delineation of four modes provides a framework for the interpretation of 702 

future carbon isotope studies in an ecological context. 703 
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Table 1: Number of tested species by growth form for each transect 

Growth form NECT TREND SWATT 

Annual grasses - 5 - 

Perennial grasses 4 5 3 

Sedges 2 2 4 

Annual forbs - 23 - 

Perennial forbs 17 41 2 

Ferns 1 3 - 

Vines - 5 1 

Chenopods 1 10 3 

Grass trees - 2 - 

Shrubs 5 40 30 

Trees 6 12 4 

Mistletoes - 2 - 

Total 36 150 47 

 855 

  856 
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Table 2: Component description for Principal Component Analyses of each gradient 

 NECT TREND SWATT 

 Component 1 Component 2 Component 1 Component 2 Component 1 Component 2 

Leaf δ13C  -0.85***  -0.37***   -0.16*** 

MAT 0.28*** 0.96*** -0.92*** 0.35*** -0.98*** 0.16*** 

MinT  0.68*** 0.48*** 0.86*** -0.39*** 0.53*** 

MaxT -0.57*** 0.66*** -0.96***  -0.97***  

MAP 0.99***  0.98*** 0.09***  0.41*** 

MinP 0.90*** -0.29*** 0.95*** -0.16*** 0.84*** -0.46*** 

MaxP 0.91***  0.95*** 0.20***  0.95*** 

MAMI 0.99*** -0.12* 0.98***  0.92*** 0.36*** 

MinMI 0.94*** -0.25*** 0.96***  0.87*** -0.25*** 

MaxMI 0.99***  0.96***  0.92*** 0.27*** 

Elevation -0.79*** -0.56*** 0.18*** 0.97*** -0.76*** -0.17*** 

Soil pH   -0.85*** 0.12***   

Soil EC       

Variance 

explained 
67.16% 22.98% 75.88% 17.50% 65.19% 18.91% 

Total 

variance 

explained 

90.14% 93.38% 84.10% 

Mean Annual Temperature (MAT; Bio01); Mean temperature of warmest quarter (MaxT; 

Bio10); Mean temperature of coldest quarter (MinT; Bio11); Mean Annual Precipitation 

(MAP; Bio012); Precipitation of wettest week (MaxP; Bio13); Precipitation of driest week 

(MinP; Bio14); Mean annual moisture index (MAMI; Bio28); Mean moisture index of the 

driest quarter (MinMI; Bio33) and Mean moisture index of the wettest quarter (MaxMI; 

Bio32) were extracted from BioClim layers of a 1960-2014 long-term average at 9 second 

(ca. 30m resolution). *p<0.05, ***p<0.001 
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Table 3: Linear regression R2 statistics for leaf δ13C with environmental variables 

Category Variable NECT TREND SWATT 

Temperature (°C) 

MAT 0.032*** 0.116*** -0.002 ns 

MaxT 0.254*** 0.124*** -0.002 ns 

MinT 0.120*** 0.017*** -0.002 ns 

Precipitation (mm) 

MAP 0.715*** 0.143*** 0.013** 

MaxP 0.568*** 0.133*** 0.066*** 

MinP 0.587*** 0.112*** 0.004 ns 

Moisture Index 

MAMI 0.714*** 0.128*** 0.010* 

MaxMI 0.721*** 0.113*** 0.006* 

MinMI 0.641*** 0.139*** 0.003 ns 

Soil 
Soil pH  0.092***  

Soil EC  0.002 ns  

Landscape 

Elevation (m asl) 0.445*** 0.017*** -0.002 ns 

Latitude 0.157*** 0.094*** -0.000 ns 

Longitude 0.711*** 0.018*** 0.025*** 

Mean Annual Temperature (MAT; Bio01); Mean temperature of warmest quarter (MaxT; 

Bio10); Mean temperature of coldest quarter (MinT; Bio11); Mean Annual Precipitation (MAP; 

Bio012); Precipitation of wettest week (MaxP; Bio13); Precipitation of driest week (MinP; 

Bio14); Mean annual moisture index (MAMI; Bio28); Mean moisture index of the driest quarter 

(MinMI; Bio33) and Mean moisture index of the wettest quarter (MaxMI; Bio32) were 

extracted from BioClim layers of a 1960-2014 long-term average at 9 second (ca. 30m 

resolution). * (p <0.05), **p<0.01, ***p<0.001, ns (not significant). 
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Table 4: Descriptive statistics for δ13C regressions with MAP (mc) for the TREND, NECT, 

the subset of Kohn (2010) values within the climatic range of TREND and NECT (mg); and 

an updated global compilation of TREND, NECT and Kohn data (mg). 

 Kohn global subset (mg) NECT (mc) TREND (mc) SWATT (mc) 

n species na 153 150 50 

n observations 392 333 996 552 

Slope (‰ m-

1) 

-2.8 -13.5 -3.0 -5.6 

Intercept -25.3572 -22.0081 -27.4683 -25.4224 

Adjusted R2 0.171 0.701 0.143 0.013 

p value <0.0001*** <0.0001*** <0.0001*** 0.0037** 

**p<0.005, ***p<0.001  
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Table 5: Chow tests comparing each mc regressions for each transect with the global 

regression (mg) and the other transects. 

Test F value Degrees of 

freedom 

(numerator) 

Degrees of 

freedom 

(denominator) 

p value 

mg vs NECT mc 39.020 2 940 <0.001*** 

mg vs TREND mc 251.269 2 1384 <0.001*** 

mg vs SWATT mc 264.778 2 721 <0.001*** 

NECT mc vs TREND mc 175.512 2 1325 <0.001*** 

TREND mc vs SWATT mc 89.184 2 1544 <0.001*** 

NECT mc vs SWATT mc 42.459 2 881 <0.001*** 

***p<0.001 
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Table 6: Linear regression statistics for species displaying a statistically significant 

regression between mean annual precipitation and leaf δ13C 

Species n 
Growth 

form 

MAP 

range 

δ13C 

range 

ms 

(‰ m-

1) 

R2 p Adj. p Transect 

Acacia pycnantha 12 Tree 565.92 5.6‰ -6.0 0.382 0.0191 2.8588 TREND 

Agropyron michnoi 3 Per. Grass  49.98 2.1‰ -43.0 1.000 0.0075 0.2713 NECT 

Allium mongolicum 6 Per. Forb 200.32 5.5‰ -22.1 0.751 0.0160 0.5752 NECT 

Allium ramosum 11 Per. Forb 239.10 2.8‰ -7.0 0.553 0.0052 0.1887 NECT 

Allocasuarina 

spinosissima 
17 Shrub 58.66 3.9‰ -20.8 0.208 0.0377 1.7731 SWATT 

Allocasuarina 

verticillata 
9 Tree 565.92 5.3‰ -8.1 0.493 0.0210 3.1517 TREND 

Artemisia frigida 12 Per. Forb 173.43 3.2‰ -9.6 0.298 0.0387 1.3916 NECT 

Artemisia sacrorum 5 Per. Forb 241.75 3.3‰ -12.4 0.839 0.0185 0.6670 NECT 

Asparagus dauricus 7 Per. Forb 437.79 6.3‰ -12.7 0.882 0.0011 0.0385* NECT 

Avena barbata 6 Ann. Grass 449.94 2.8‰ -5.4 0.719 0.0206 3.0911 TREND 

Bulbine bulbosa 4 Per. Forb 400.70 3.0‰ -6.6 0.859 0.0482 7.2289 TREND 

Cassinia laevis 6 Shrub 253.81 3.9‰ -13.3 0.592 0.0454 6.8114 TREND 

Dianella revoluta 23 Per. Forb 491.50 6.98‰ -10.9 0.402 0.0007 0.0324* SWATT 

Dianella revoluta 15 Per. Forb 603.61 4.3‰ -7.4 0.656 0.0002 0.0228* TREND 

Dodonaea viscosa 16 Shrub 644.75 3.7‰ -4.2 0.493 0.0014 0.2175 TREND 

Eremophila 

maculata 
4 Shrub 132.37 4.8‰ 35.7 0.992 0.0027 0.4102 TREND 

Eucalyptus 

leptopoda 
13 Tree 81.98 2.41‰ -19.0 0.281 0.0361 1.6987 SWATT 

Goodenia blackiana 7 Per. Forb 334.93 4.9‰ -11.4 0.576 0.0293 4.3988 TREND 

Lespedeza davurica 9 Per. Forb 254.93 3.9‰ -11.8 0.721 0.0023 0.0833 NECT 

Lysiana exocarpi 6 Mistletoe 372.55 3.2‰ -7.6 0.691 0.0251 3.7676 TREND 

Nicotiana simulans 6 Ann. Forb 120.23 5.2‰ 32.5 0.623 0.0383 5.7510 TREND 

Pittosporum 

angustifolium 
4 Tree 138.28 3.0‰ 20.9 0.883 0.0399 5.9793 TREND 

Platysace 

trachymenioides 
12 Shrub 58.66 4.0‰ -58.2 0.720 0.0003 0.0140* SWATT 

Potentilla chinensis 7 Per. Forb 358.70 4.1‰ -10.9 0.577 0.0291 1.0461 NECT 

Pteridium aquilinum 4 Fern 154.73 3.6‰ -21.9 0.943 0.0191 0.6864 NECT 

Ptilotus obovatus 13 Shrub 45.46 5.58‰ 82.8 0.473 0.0056 0.2625 SWATT 

Rhagodia parabolica 7 Chenopod 283.71 5.8‰ -13.9 0.716 0.0102 1.5229 TREND 

Stipa sareptana 10 Per. Grass 198.18 3.3‰ -9.3 0.424 0.0247 0.8888 NECT 

n=number of individuals sampled; ms = Species level slope of the linear regression between 

MAP and leaf δ13C. 
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 867 

Figure 1: Theoretical framework for potential ms responses in C3 plants occupying 868 

successive niches on an aridity gradient. Solid lines represent individual species (ms), dashed 869 

line represents all species on a gradient (mc). a) hypothetical species distribution on a 870 

gradient; b) “universal scaling”, with response of similar slope both within and between 871 

species; c) “biotic homeostasis”, with individual species response slopes more than 1.5x the 872 

common slope; d) insensitivity within species, but stepped response between species; and e) 873 

inverse or “contrary” response (i.e. not consistent with expectations of carbon isotope 874 

discrimination increasing with moisture availability). 875 
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 878 

Figure 4: Leaf stable carbon isotope ratio (δ13C) relationship with mean annual precipitation 879 

(MAP) for (a) a global meta-analysis of C3 plants (published by Kohn (2010) and trimmed to 880 

145-980 mm MAP to match the transects presented here), (b) the NECT (n=333), (c) the 881 

TREND (n=996), and (d) the SWATT (n=552). Dashed line=mg (MAP~leaf δ13C regression) 882 

for (a); n=392, r2=0.17, p<0.001). Solid lines= mc (MAP~leaf δ13C regressions) for the NECT 883 

((b); r2=0.70, p<0.001), TREND ((c); r2=0.14, p<0.001) and the SWATT ((d); r2=0.01, 884 

p<0.05). 885 
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Figure 6: Response archetypes for two, three and four component species archetype models 888 

overlaid on C3 leaf δ13C data for the NECT, TREND and SWATT including a transect-wide 889 

leaf δ13C~MAP response (mc). Archetype models (dashed lines) are classified based on their 890 

conformance to theoretical “modes” of carbon isotope response (Figure 1). Models were 891 

assessed based on AIC score (***=most supported model, **highly supported (AIC <4 from 892 

most supported model), *moderately supported (AIC <7 from most supported model). The 893 

most well-supported-models were three archetypes (all universal scaling) for the NECT, two 894 

or three archetypes (universal scaling, insensitive and biotic homeostasis) for the TREND and 895 

one to three archetypes (biotic homeostasis, contrary and insensitive) for the SWATT. 896 
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Table S1: Statistics for all tested species 

Species* n Family Growth form Origin 
Min 

MAP 

Max 

MAP 

Min δ13C 
Max 

δ13C 

Intercept 
ms 

(‰ m-1) 

R2 p Transect Mode^ 

Acacia colletioides 8 Fabaceae Shrub Native 254.20 320.63 -28.7 -25.4 -32.7053 18.3 -0.01651 0.382824 SWATT CO 

Acacia inaequiloba 9 Fabaceae Shrub Native 301.49 311.94 -30.1 -25.7 -69.5183 135.1 -0.00277 0.355652 SWATT CO 

Acacia ligulata 6 Fabaceae Shrub Native 161.55 428.35 -29.7 -25.6 -28.1455 3.0 -0.17268 0.634633 TREND CO 

Acacia ligulata 10 Fabaceae Shrub Native 257.04 304.44 -30.3 -26.0 -20.0565 -26.2 0.019205 0.309724 SWATT BH 

Acacia myrtifolia 6 Fabaceae Shrub Native 506.13 979.90 -31.7 -28.9 -29.3252 -1.2 -0.21356 0.746391 TREND IS 

Acacia oswaldii 5 Fabaceae Shrub Native 168.43 413.97 -29.2 -25.8 -27.2605 -2.2 -0.30252 0.8072 TREND US 

Acacia paradoxa 7 Fabaceae Shrub Native 546.30 838.25 -32.1 -27.3 -20.4516 -12.9 0.389888 0.079224 TREND BH 

Acacia pycnantha 12 Fabaceae Tree Native 413.97 979.90 -32.0 -26.4 -25.5028 -6.0 0.381831 0.019059 TREND BH 

Acacia tetragonophylla 12 Fabaceae Shrub Native 161.55 307.00 -30.1 -26.1 -28.9119 4.3 -0.06733 0.59227 TREND CO 

Acacia victoriae 10 Fabaceae Shrub Native 168.24 283.29 -28.8 -25.5 -24.0683 -12.9 0.147138 0.148773 TREND BH 

Acacia yorkraekinensis 8 Fabaceae Shrub Native 294.35 347.62 -29.3 -26.5 -28.0317 -0.4 -0.16661 0.986886 SWATT US 

Acaena echinata 9 Rosaceae Per. Forb Native 653.04 980.00 -32.0 -28.7 -25.119 -6.8 0.304552 0.071498 TREND BH 

Acer pictum 4 Sapindaceae Tree  555.22 709.95 -30.3 -28.8 -27.6035 -3.4 -0.31223 0.646195 NECT IS 

Agropyron michnoi 3 Poaceae Per. Grass  350.54 400.52 -26.8 -24.6 -9.55413 -43.0 0.99972 0.007537 NECT BH 

Alectryon oleifolius 8 Sapindaceae Tree Native 236.02 428.35 -28.6 -26.5 -26.7751 -3.2 -0.03432 0.414614 TREND US 

Allium mongolicum 6 Amaryllidaceae Per. Forb  200.20 400.52 -28.1 -22.6 -18.5673 -22.1 0.751131 0.015979 NECT BH 

Allium ramosum 11 Amaryllidaceae Per. Forb  145.05 384.15 -26.6 -23.8 -23.2966 -7.0 0.553386 0.005241 NECT US 

Allocasuarina campestris 9 Casuarinaceae Shrub Native 299.07 341.72 -30.9 -26.0 -18.7617 -28.4 0.003596 0.344193 SWATT BH 

Allocasuarina muelleriana 4 Casuarinaceae Tree Native 399.11 841.06 -31.6 -28.6 -27.8939 -2.7 -0.29809 0.63311 TREND US 

Allocasuarina spinosissima 17 Casuarinaceae Shrub Native 283.07 341.72 -29.4 -25.5 -18.9108 -26.9 0.207671 0.037726 SWATT BH 

Allocasuarina verticillata 9 Casuarinaceae Tree Native 413.97 980.00 -30.7 -25.4 -23.5534 -8.1 0.493037 0.021011 TREND BH 
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Amphipogon caricinus 16 Poaceae Per. Grass Native 257.04 340.90 -31.1 -27.2 -25.2196 -12.3 0.01816 0.277367 SWATT BH 

Amyema miquelii 10 Loranthaceae Epiphyte Native 249.16 807.80 -31.6 -29 -29.8167 -1.6 0.088006 0.208823 TREND US 

Anagallis arvensis 8 Primulaceae Ann. Forb Alien 288.631 829.052 -33.5 -27.6 -27.2814 -5.4 0.171304 0.168784 TREND BH 

Artemisia frigida 12 Asteraceae Per. Forb  227.09 400.52 -29.5 -26.3 -24.5627 -9.6 0.297632 0.038655 NECT US 

Artemisia sacrorum 5 Asteraceae Per. Forb  380.18 621.93 -30.2 -26.9 -22.4772 -12.4 0.838831 0.018529 NECT US 

Artemisia scoparia 3 Asteraceae Per. Forb  376.77 418.94 -30.4 -26.9 -27.3177 -3.7 -0.99505 0.968315 NECT IS 

Arthropodium strictum 7 Asparagaceae Per. Forb Native 399.11 980.00 -30.5 -29.0 -28.8601 -1.4 0.101443 0.251847 TREND IS 

Asparagus asparagoides 6 Asparagaceae Vine Alien 357.87 807.80 -32.8 -26.0 -24.5118 -8.2 0.100294 0.280116 TREND BH 

Asparagus dauricus 7 Asparagaceae Per. Forb  145.05 582.84 -30.1 -23.8 -22.4841 -12.7 0.881881 0.001071 NECT US 

Aster altaicus 3 Asteraceae Per. Forb  316.03 380.18 -27.4 -25.9 -34.433 22.1 0.876668 0.159761 NECT CO 

Astroloma conostephioides 6 Ericaceae Shrub Native 399.11 729.13 -31.3 -28.6 -30.0137 0.3 -0.24893 0.956181 TREND IS 

Astroloma humifusum 11 Ericaceae Shrub Native 376.29 838.25 -31.8 -28.6 -29.3979 -1.3 -0.04797 0.480249 TREND IS 

Austrostipa elegantissima 6 Poaceae Per. Grass Native 293.91 688.07 -29.2 -26.8 -26.6449 -3.0 0.018128 0.354956 TREND US 

Austrostipa elegantissima 14 Poaceae Per. Grass Native 283.07 320.63 -27.0 -24.4 -21.2089 -14.6 -0.01287 0.378879 SWATT BH 

Austrostipa mollis 4 Poaceae Per. Grass Native 506.13 729.13 -29.9 -27.3 -22.0189 -10.8 0.686508 0.110615 TREND BH 

Austrostipa nitida 4 Poaceae Per. Grass Native 234.26 357.87 -29.2 -27.1 -24.0306 -15.2 0.511089 0.178989 TREND BH 

Austrostipa scabra 4 Poaceae Per. Grass Native 293.91 688.07 -26.9 -23.0 -23.5723 -4.4 -0.21248 0.56219 TREND US 

Avena barbata 6 Poaceae Ann. Grass Alien 357.87 807.80 -30.8 -28.0 -26.3427 -5.4 0.718839 0.020607 TREND BH 

Beyeria sulcata 9 Euphorbiaceae Shrub Native 283.07 336.69 -26.6 -25.0 -23.8895 -5.9 -0.11751 0.70216 SWATT US 

Bossiaea prostrata 4 Fabaceae Shrub Native 653.04 829.05 -30.1 -28.1 -23.081 -8.3 0.461548 0.199355 TREND BH 

Brachyscome ciliaris 12 Asteraceae Per. Forb Native 161.55 399.11 -34.0 -28.4 -27.9537 -11.7 0.264848 0.050032 TREND BH 

Brassica tournefortii 4 Brassicaceae Ann. Forb Alien 161.54 445.25 -28.3 -24.3 -26.1092 -4.0 -0.35656 0.690769 TREND US 

Briza maxima 6 Poaceae Ann. Grass Alien 653.04 980.00 -31.8 -27.8 -26.1838 -5.0 -0.06622 0.453037 TREND BH 

Bromus diandrus 4 Poaceae Ann. Grass Alien 428.35 807.80 -31.2 -29.5 -31.4728 2.4 -0.02414 0.436757 TREND CO 
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Brunonia australis 5 Goodeniaceae Per. Forb Native 661.55 980.00 -32.4 -30.4 -29.9582 -1.6 -0.25043 0.685842 TREND US 

Bulbine alata 5 Xanthorrhoeaceae Ann. Forb Native 161.55 399.11 -29.7 -26.1 -27.1322 -2.2 -0.29605 0.788094 TREND US 

Bulbine bulbosa 4 Xanthorrhoeaceae Per. Forb Native 428.35 829.05 -32.9 -29.9 -27.0796 -6.6 0.858905 0.048193 TREND BH 

Burchardia umbellata 4 Colchicaceae Per. Forb Native 688.07 980.00 -28.7 -26.7 -22.4051 -6.7 0.580707 0.151194 TREND BH 

Bursaria spinosa 14 Pittosporaceae Shrub Native 306.97 829.05 -30.2 -25.2 -28.1824 -0.4 -0.08092 0.872802 TREND IS 

Caesia calliantha 8 Xanthorrhoeaceae Per. Forb Native 288.63 980.00 -31.9 -28.6 -28.4424 -3.1 0.194354 0.152175 TREND US 

Calandrinia eremaea 4 Portulacaceae Ann. Forb Native 277.64 445.25 -27.1 -24.4 -24.0735 -6.9 -0.22824 0.574354 TREND BH 

Callitris glaucophylla 8 Cupressaceae Tree Native 253.13 482.13 -27.3 -25.6 -25.2324 -3.6 0.08163 0.249898 TREND US 

Callitris preissii 15 Cupressaceae Tree Native 299.07 347.70 -27.8 -24.8 -22.6291 -12.3 -0.03303 0.47055 SWATT BH 

Calotis hispidula 9 Asteraceae Ann. Forb Native 161.55 293.91 -32.6 -28.6 -29.9295 -3.5 -0.11343 0.680021 TREND US 

Calothamnus gilesii 7 Myrtaceae Shrub Native 294.35 340.08 -30.2 -27.4 -33.5269 16.2 -0.11049 0.553451 SWATT CO 

Calytrix tetragona 9 Myrtaceae Shrub Native 379.55 729.13 -31.2 -25.4 -22.9932 -8.9 0.157059 0.158537 TREND BH 

Caragana microphylla 8 Fabaceae Shrub  151.04 371.17 -27.2 -24.6 -24.1125 -5.4 0.228332 0.13024 NECT IS 

Caragana stenophylla 7 Fabaceae Shrub  145.18 263.23 -25.0 -23.9 -23.7106 -3.8 -0.07402 0.478358 NECT IS 

Carex pediformis 3 Cyperaceae Sedge  555.22 568.96 -31.2 -29.4 44.28438 -132.7 0.98023 0.0634 NECT BH 

Carex sp. 3 Cyperaceae Sedge  554.73 582.84 -31.0 -28.9 -70.652 71.0 0.445756 0.352935 NECT CO 

Carrichtera annua 7 Brassicaceae Ann. Forb Alien 234.26 413.97 -29.2 -26.0 -28.2159 1.8 -0.18878 0.836614 TREND CO 

Cassinia complanata 4 Asteraceae Shrub Native 283.29 506.13 -30.9 -28.8 -27.9398 -5.8 0.301816 0.268875 TREND BH 

Cassinia laevis 6 Asteraceae Shrub Native 306.97 560.78 -31.3 -27.4 -23.5237 -13.3 0.591647 0.045409 TREND BH 

Cassytha glabella 4 Lauraceae Vine Native 661.55 841.06 -28.0 -26.9 -25.3075 -2.5 -0.2179 0.566335 TREND US 

Casuarina pauper 7 Casuarinaceae Tree Native 173.75 531.37 -28.3 -26.2 -26.0223 -4.0 0.273092 0.131094 TREND US 

Chamaescilla corymbosa 4 Asparagaceae Per. Forb Native 293.91 841.06 -31.5 -28.0 -26.0471 -5.9 0.736276 0.092154 TREND BH 

Cheilanthes austrotenuifolia 11 Pteridaceae Fern Native 413.97 980.00 -32.0 -27.4 -28.5834 -0.7 -0.10206 0.791902 TREND IS 

Cheilanthes lasiophylla 6 Pteridaceae Fern Native 236.02 482.13 -30.5 -28.2 -30.1107 3.4 -0.08854 0.484117 TREND CO 
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Cheilanthes sieberi 7 Pteridaceae Fern Native 306.97 661.55 -30.0 -26.7 -26.0513 -4.2 -0.03046 0.406001 TREND US 

Chenopodium acuminatum 3 Chenopodiaceae Chenopod  365.25 371.17 -29.1 -27.9 -68.9212 110.2 -0.41888 0.637576 NECT CO 

Chenopodium desertorum 4 Chenopodiaceae Chenopod Native 250.34 506.13 -30.8 -28.1 -32.5472 7.2 0.256805 0.289692 TREND CO 

Chrysocephalum apiculatum 4 Asteraceae Per. Forb Native 399.11 506.13 -32.1 -28.1 -28.141 -3.9 -0.48201 0.890489 TREND US 

Chrysocephalum 

semipapposum 

5 Asteraceae Per. Forb Native 288.63 428.35 -30.5 -25.9 -33.1562 13.3 -0.14779 0.536293 TREND CO 

Clematis microphylla 6 Ranunculaceae Vine Native 445.25 980.00 -32.5 -23.9 -23.791 -7.2 0.085216 0.292656 TREND BH 

Convolvulus remotus 7 Convolvulaceae Per. Forb Native 168.43 729.13 -30.1 -26.5 -26.9976 -4.1 0.37811 0.083617 TREND US 

Corylus heterophylla 6 Betulaceae Shrub  554.73 709.95 -31.9 -27.9 -23.0681 -11.0 0.029556 0.343515 NECT US 

Craspedia variabilis 5 Asteraceae Ann. Forb Native 482.13 829.05 -33.1 -32.0 -33.0419 0.5 -0.29962 0.79839 TREND IS 

Daucus glochidiatus 10 Apiaceae Ann. Forb Native 164.63 653.04 -32.4 -27.8 -29.0278 -3.0 -0.0124 0.373147 TREND US 

Dianella revoluta 15 Xanthorrhoeaceae Per. Forb Native 376.29 980.00 -30.7 -26.4 -23.7719 -7.4 0.656377 0.000152 TREND BH 

Dianella revoluta 23 Xanthorrhoeaceae  Per. Forb Native 254.20 745.70 -31.3 -24.3 -22.78 -10.9 0.402277 0.000689 SWATT BH 

Dioscorea nipponica 3 Dioscoreaceae Per. Forb  568.96 709.95 -32.1 -28.8 -18.7073 -18.7 0.572575 0.305944 NECT US 

Dodonaea viscosa 16 Sapindaceae Shrub Native 163.05 807.80 -29.7 -26.0 -25.7536 -4.2 0.493381 0.00145 TREND US 

Drosera auriculata 4 Droseraceae Per. Forb Native 546.30 838.25 -29.9 -27.4 -28.9407 0.5 -0.49291 0.931272 TREND IS 

Drosera whittakeri 5 Droseraceae Per. Forb Native 546.30 841.06 -29.2 -27.1 -30.3434 2.6 -0.10933 0.493129 TREND CO 

Echium plantagineum 7 Boraginaceae Ann. Forb Alien 306.97 829.05 -30.4 -28.0 -30.804 1.9 0.050529 0.302681 TREND CO 

Einadia nutans 8 Chenopodiaceae Chenopod Native 161.55 506.13 -30.8 -26.6 -28.5928 -4.1 0.009129 0.341975 TREND US 

Enchylaena tomentosa 14 Chenopodiaceae Chenopod Native 161.54 445.25 -30.7 -23.7 -25.2196 -6.8 0.073697 0.179281 TREND BH 

Enchylaena tomentosa 8 Chenopodiaceae Chenopod Native 265.07 299.65 -28.8 -24.9 -41.7841 54.8 0.352665 0.070685 SWATT CO 

Eremophila deserti 4 Scrophulariaceae Shrub Native 283.29 379.55 -29.5 -27.0 -25.5325 -9.3 -0.28327 0.619882 TREND BH 

Eremophila freelingii 6 Scrophulariaceae Shrub Native 168.24 293.91 -27.4 -25.5 -24.0067 -9.0 0.40698 0.103059 TREND BH 

Eremophila longifolia 4 Scrophulariaceae Shrub Native 168.43 428.35 -29.4 -25.7 -26.2003 -4.1 -0.37523 0.711592 TREND US 
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Eremophila maculata 4 Scrophulariaceae Shrub Native 161.55 293.91 -30.7 -25.9 -36.2721 35.7 0.991807 0.002735 TREND CO 

Eremophila scoparia 9 Scrophulariaceae Shrub Native 283.07 320.63 -28.3 -24.7 -13.2296 -45.4 0.252523 0.095732 SWATT BH 

Eriochiton sclerolaenoides 6 Chenopodiaceae Chenopod Native 168.24 376.29 -30.4 -28.4 -27.3716 -7.9 0.431489 0.093721 TREND BH 

Erodium cicutarium 4 Geraniaceae Ann. Forb Alien 161.54 506.13 -29.5 -24.4 -25.185 -7.3 -0.14321 0.512289 TREND BH 

Erodium crinitum 6 Geraniaceae Ann. Forb Native 168.24 293.91 -31.4 -28.1 -30.7865 5.4 -0.17313 0.635646 TREND CO 

Eucalyptus fasciculosa 7 Myrtaceae Tree Native 546.30 829.05 -30.7 -27.9 -29.3112 0.3 -0.19904 0.95198 TREND IS 

Eucalyptus flindersii 5 Myrtaceae Tree Native 283.29 399.11 -28.1 -25.1 -32.4667 16.1 0.36208 0.168256 TREND CO 

Eucalyptus intertexta 6 Myrtaceae Tree Native 261.87 399.11 -29.7 -26.4 -25.9705 -8.4 -0.12005 0.533122 TREND BH 

Eucalyptus leptopoda 13 Myrtaceae Tree Native 265.65 347.62 -28.4 -26.0 -21.2712 -19.0 0.281053 0.036142 SWATT BH 

Eucalyptus obliqua 5 Myrtaceae Tree Native 678.44 980.00 -31.3 -28.3 -25.822 -4.5 -0.14146 0.528844 TREND US 

Eucalyptus odorata 4 Myrtaceae Tree Native 413.97 506.13 -28.1 -25.6 -20.8859 -13.2 -0.27747 0.61483 TREND BH 

Eucalyptus rigidula 10 Myrtaceae Tree Native 297.33 347.70 -27.4 -25.3 -28.6192 7.0 -0.08358 0.595379 SWATT CO 

Euryomyrtus maidenii 9 Myrtaceae Shrub Native 297.33 347.70 -28.7 -26.6 -22.2341 -18.4 0.039465 0.286877 SWATT BH 

Eutaxia microphylla 7 Fabaceae Shrub Native 376.29 729.13 -30.9 -26.7 -25.5383 -6.3 0.368744 0.087233 TREND BH 

Exocarpos aphyllus 6 Santalaceae Shrub Native 277.64 413.97 -28.7 -23.8 -23.9855 -10.1 -0.1387 0.565691 TREND BH 

Exocarpos aphyllus 10 Santalaceae Shrub Native 283.07 347.70 -28.5 -26.5 -27.8882 1.4 -0.12302 0.908431 SWATT IS 

Exocarpos cupressiformis 8 Santalaceae Shrub Native 506.13 980.00 -32.1 -27.0 -26.6272 -5.5 0.248751 0.118376 TREND BH 

Fraxinus chinensis 4 Oleaceae Tree  555.22 582.84 -31.6 -30.1 -22.9754 -13.3 -0.43343 0.78933 NECT US 

Glischrocaryon behrii 5 Haloragaceae Per. Forb Native 661.55 980.00 -31.5 -29.3 -27.7445 -3.4 0.038043 0.360681 TREND US 

Glycine rubiginosa 8 Fabaceae Vine Native 234.26 531.37 -32.7 -23.8 -24.2221 -11.8 0.157009 0.179857 TREND BH 

Gonocarpus elatus 8 Haloragaceae Per. Forb Native 428.35 729.13 -32.7 -28.6 -25.6318 -7.3 0.306283 0.089588 TREND BH 

Gonocarpus tetragynus 8 Haloragaceae Per. Forb Native 560.78 980.00 -32.0 -29.1 -29.3191 -1.5 -0.10482 0.583308 TREND IS 

Goodenia blackiana 7 Goodeniaceae Per. Forb Native 506.13 841.06 -31.3 -26.4 -21.0005 -11.4 0.575576 0.029325 TREND BH 

Goodenia fascicularis 9 Goodeniaceae Per. Forb Native 161.55 293.91 -31.3 -27.9 -28.4575 -4.6 -0.09794 0.609145 TREND BH 
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Grevillea didymobotrya 20 Proteaceae Shrub Native 294.35 347.70 -27.6 -25.3 -22.5672 -13.5 0.036272 0.206794 SWATT BH 

Grevillea hookeriana 6 Proteaceae Shrub Native 301.19 306.26 -26.3 -24.5 17.41797 -140.9 -0.09336 0.491194 SWATT BH 

Hakea erecta 11 Proteaceae Shrub Native 297.33 347.70 -28.1 -23.9 -16.5372 -29.1 0.158476 0.123734 SWATT BH 

Hakea francisiana 10 Proteaceae Shrub Native 265.07 329.20 -28.1 -22.7 -21.8045 -12.5 -0.08772 0.614737 SWATT BH 

Hakea rostrata 5 Proteaceae Shrub Native 678.44 980.00 -31.5 -28.1 -24.2248 -6.8 0.135211 0.292118 TREND BH 

Hakea rugosa 5 Proteaceae Shrub Native 288.63 807.80 -30.7 -26.2 -28.5716 0.8 -0.31781 0.862864 TREND IS 

Halgania cyanea 5 Boraginaceae Shrub Native 288.63 531.37 -31.4 -27.4 -26.7572 -6.3 -0.14486 0.532829 TREND BH 

Hibbertia crinita 11 Dilleniaceae Per. Forb Native 376.29 980.00 -31.9 -27.5 -27.4439 -3.4 0.125972 0.152616 TREND US 

Hibbertia exutiacies 8 Dilleniaceae Per. Forb Native 506.13 980.00 -32.4 -28.4 -28.7652 -1.8 -0.11299 0.609977 TREND US 

Hypochaeris glabra 5 Asteraceae Ann. Forb Alien 288.63 807.80 -31.8 -29.0 -30.78 0.5 -0.32492 0.898965 TREND IS 

Iris lactea 3 Iridaceae Per. Forb  316.03 370.36 -25.3 -24.3 -28.4674 10.0 -0.36089 0.617526 NECT CO 

Jacksonia nematoclada 10 Fabaceae Shrub Native 297.33 347.70 -28.8 -25.6 -28.2529 2.7 -0.12076 0.866286 SWATT IS 

Keraudrenia velutina 14 Malvaceae Shrub Native 265.07 306.26 -29.0 -25.1 -22.5981 -15.6 -0.02268 0.415379 SWATT BH 

Klasea yamatsutana 4 Asteraceae Per. Forb  263.23 382.19 -29.17 -26.1 -21.1761 -17.9 0.303883 0.267933 NECT US 

Lagenophora huegelii 4 Asteraceae Per. Forb Native 560.78 807.80 -32.7 -29.9 -39.1659 10.8 0.591963 0.146785 TREND CO 

Leiocarpa semicalva 7 Asteraceae Per. Forb Native 250.34 482.13 -31.7 -29.8 -30.9333 -0.5 -0.19469 0.887314 TREND IS 

Leiocarpa websteri 5 Asteraceae Per. Forb Native 161.55 186.68 -31.3 -27.6 -9.50444 -118.3 0.309811 0.193122 TREND BH 

Lepidium papillosum 4 Brassicaceae Ann. Forb Native 261.87 293.91 -30.7 -28.7 -32.3166 8.3 -0.47705 0.876305 TREND CO 

Lepidobolus preissianus 11 Restionaceae Per. Forb Native 294.35 449.67 -30.2 -26.1 -25.6544 -6.7 -0.04895 0.483771 SWATT BH 

Lepidosperma rigidulum 11 Cyperaceae Sedge Native 296.00 340.90 -29.5 -24.4 -20.1109 -20.4 -0.06892 0.565838 SWATT BH 

Lepidosperma sanguinolentum 14 Cyperaceae Sedge Native 301.19 347.70 -28.0 -24.5 -14.72 -35.9 0.202109 0.06048 SWATT BH 

Lepidosperma semiteres 6 Cyperaceae Sedge Native 678.44 980.00 -31.3 -27.4 -28.0042 -1.7 -0.22409 0.785539 TREND US 

Leptomeria preissiana 9 Santalaceae Shrub Native 299.07 347.70 -29.1 -27.8 -31.3651 9.1 -0.00659 0.362749 SWATT CO 

Leptospermum fastigiatum 12 Myrtaceae Shrub Native 296.41 306.26 -29.3 -26.2 -15.5897 -38.8 -0.08363 0.705693 SWATT BH 
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Leptospermum myrsinoides 4 Myrtaceae Shrub Native 678.44 980.00 -29.9 -29.1 -29.6929 0.3 -0.47973 0.883756 TREND IS 

Lespedeza bicolor 5 Fabaceae Shrub  554.73 635.30 -33.0 -28.0 -8.22728 -39.7 0.277788 0.209349 NECT BH 

Lespedeza davurica 9 Fabaceae Per. Forb  367.00 621.93 -29.6 -25.7 -22.2828 -11.8 0.721464 0.002313 NECT US 

Leymus chinensis 9 Poaceae Per. Grass  263.23 418.94 -26.7 -25.0 -26.4792 1.4 -0.13235 0.806183 NECT IS 

Lissanthe strigosa 4 Ericaceae Shrub Native 661.55 838.25 -31.0 -28.6 -24.83 -6.2 -0.11635 0.494267 TREND BH 

Lolium rigidum 4 Poaceae Ann. Grass Alien 506.13 688.07 -31.8 -28.7 -30.6501 0.9 -0.49419 0.93778 TREND IS 

Lomandra densiflora 8 Asparagaceae Per. Forb Native 482.13 980.00 -31.4 -27.5 -26.4266 -3.7 0.140175 0.193719 TREND US 

Lomandra micrantha 5 Asparagaceae Per. Forb Native 653.04 980.00 -28.4 -25.8 -24.8384 -2.4 -0.20402 0.609989 TREND US 

Lomandra multiflora 14 Asparagaceae Per. Forb Native 261.87 980.00 -28.0 -22.8 -26.6306 -0.1 -0.08284 0.942047 TREND IS 

Lysiana exocarpi 6 Loranthaceae Epiphyte Native 173.75 546.30 -29.7 -26.5 -25.3416 -7.6 0.691009 0.025118 TREND BH 

Maireana pyramidata 5 Chenopodiaceae Chenopod Native 161.55 250.34 -26.8 -24.8 -23.3499 -13.6 0.071723 0.335583 TREND BH 

Maireana trichoptera 12 Chenopodiaceae Chenopod Native 283.07 299.65 -28.6 -25.4 2.416295 -99.0 0.118388 0.146588 SWATT BH 

Marrubium vulgare 4 Lamiaceae Per. Forb Alien 253.13 428.35 -30.8 -28.7 -27.4026 -7.8 0.158675 0.337341 TREND BH 

Medicago ruthenica 6 Fabaceae Per. Forb  263.23 400.52 -27.7 -25.1 -22.4451 -11.0 0.254001 0.175541 NECT US 

Melaleuca calyptroides 11 Myrtaceae Shrub Native 299.65 347.70 -29.3 -26.4 -24.2489 -11.8 -0.04926 0.484904 SWATT BH 

Melaleuca cordata 16 Myrtaceae Shrub Native 294.35 347.70 -28.6 -26.9 -25.4836 -7.6 0.002937 0.324183 SWATT US 

Melaleuca hamata 9 Myrtaceae Shrub Native 283.07 332.29 -29.1 -25.8 -15.8426 -38.0 0.11482 0.196492 SWATT BH 

Minuria cunninghamii 4 Asteraceae Per. Forb Native 164.63 261.87 -31.6 -27.7 -28.1771 -9.0 -0.40128 0.743454 TREND BH 

Monachather paradoxus 11 Poaceae Per. Grass Native 257.04 319.11 -31.7 -27.0 -31.818 10.6 -0.08192 0.633981 SWATT CO 

Nicotiana simulans 6 Solanaceae Ann. Forb Native 163.05 283.29 -30.6 -25.4 -35.3627 32.5 0.622688 0.03834 TREND CO 

Olearia decurrens 8 Asteraceae Shrub Native 283.29 560.78 -29.6 -25.9 -25.1485 -7.2 0.372202 0.063722 TREND BH 

Olearia muelleri 12 Asteraceae Shrub Native 283.07 320.63 -28.3 -24.8 -22.366 -13.8 -0.06771 0.594445 SWATT BH 

Olearia ramulosa 7 Asteraceae Shrub Native 482.13 841.06 -32.9 -28.4 -27.0218 -5.1 0.085364 0.266954 TREND BH 

Oxalis perennans 11 Oxalidaceae Ann. Forb Native 250.34 980.00 -33.8 -29.4 -30.6111 -2.3 0.097611 0.182959 TREND US 
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Persoonia coriacea 12 Proteaceae Shrub Native 297.33 347.70 -27.7 -25.1 -27.3757 2.6 -0.09644 0.860517 SWATT IS 

Philadelphus tenuifolius 3 Saxifragaceae Shrub  555.22 709.95 -31.0 -28.7 -20.9252 -14.6 0.658894 0.271025 NECT US 

Phlomis maximowiczii 3 Lamiaceae Per. Forb  568.96 709.95 -32.7 -31.9 -30.4411 -3.1 -0.32363 0.604904 NECT IS 

Pimelea humilis 6 Thymelaeaceae Shrub Native 653.04 980.00 -31.1 -27.1 -23.8133 -7.3 0.174688 0.224696 TREND BH 

Pimelea linifolia 5 Thymelaeaceae Shrub Native 560.78 980.00 -31.2 -27.9 -24.1159 -7.2 0.667809 0.057354 TREND BH 

Pimelea microcephala 4 Thymelaeaceae Shrub Native 173.75 413.97 -28.9 -27.5 -28.9401 2.5 -0.21769 0.566171 TREND CO 

Pimelea simplex 4 Thymelaeaceae Shrub Native 163.05 168.43 -28.4 -24.7 -94.3918 410.6 0.201268 0.316251 TREND CO 

Pittosporum angustifolium 4 Pittosporaceae Tree Native 306.97 445.25 -28.6 -25.6 -34.6777 20.9 0.882797 0.039862 TREND CO 

Plantago drummondii 5 Plantaginaceae Ann. Forb Native 161.55 413.97 -31.2 -25.9 -26.9773 -6.1 -0.19643 0.59911 TREND BH 

Platylobium obtusangulum 4 Fabaceae Shrub Native 699.09 980.00 -31.6 -29.3 -31.7531 1.3 -0.4625 0.841879 TREND IS 

Platysace trachymenioides 12 Apiaceae Shrub Native 283.07 341.72 -29.8 -25.9 -9.583 -58.2 0.719632 0.000299 SWATT BH 

Poa crassicaudex 7 Poaceae Per. Grass Native 482.13 980.00 -30.8 -28.9 -28.1957 -2.3 0.382891 0.081813 TREND US 

Polycalymma stuartii 4 Asteraceae Ann. Forb Native 161.54 168.24 -29.3 -26.2 -17.3161 -64.9 -0.46132 0.839413 TREND BH 

Polygonum divaricatum 4 Polygonaceae Per. Forb  376.77 400.52 -28.1 -27.5 -27.391 -1.4 -0.49567 0.946286 NECT IS 

Potentilla acaulis 3 Rosaceae Per. Forb  316.03 370.36 -27.1 -26.2 -27.0676 1.7 -0.98604 0.94676 NECT IS 

Potentilla chinensis 7 Rosaceae Per. Forb  263.23 621.93 -29.4 -25.2 -23.0483 -10.9 0.577024 0.029058 NECT US 

Prostanthera striatiflora 4 Lamiaceae Shrub Native 261.87 376.29 -29.5 -27.2 -24.6923 -12.5 0.012715 0.415355 TREND BH 

Psammomoya choretroides 8 Celastraceae Shrub Native 297.33 340.90 -29.8 -25.6 -21.0521 -20.3 -0.09057 0.541561 SWATT BH 

Pteridium aquilinum 4 Dennstaedtiaceae Fern  555.22 709.95 -33.3 -29.6 -17.4941 -21.9 0.943348 0.019066 NECT BH 

Pterocaulon sphacelatum 9 Asteraceae Per. Forb Native 161.55 283.29 -29.5 -26.5 -24.6759 -13.1 0.319996 0.06537 TREND BH 

Ptilotus nobilis 4 Amaranthaceae Per. Forb Native 236.02 428.35 -29.2 -25.0 -20.4374 -20.4 0.804555 0.067421 TREND BH 

Ptilotus obovatus 9 Amaranthaceae Per. Forb Native 236.02 379.55 -30.6 -27.5 -27.8147 -4.1 -0.10786 0.652464 TREND US 

Ptilotus obovatus 13 Amaranthaceae Shrub Native 254.20 299.65 -29.3 -23.7 -49.5416 82.8 0.473463 0.005586 SWATT CO 

Pultenaea daphnoides 4 Fabaceae Shrub Native 829.05 980.00 -32.3 -28.3 -29.4914 -0.3 -0.49976 0.987307 TREND IS 
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Pultenaea largiflorens 5 Fabaceae Shrub Native 560.78 841.06 -30.3 -29.0 -31.0827 2.1 -0.04117 0.426531 TREND CO 

Quercus mongolica 7 Fagaceae Tree  554.73 709.95 -30.5 -27.6 -35.9966 11.9 0.200149 0.174589 NECT CO 

Rhagodia parabolica 7 Chenopodiaceae Chenopod Native 161.54 445.25 -31.0 -25.2 -24.4088 -13.9 0.716111 0.010152 TREND BH 

Rhagodia spinescens 6 Chenopodiaceae Chenopod Native 161.54 250.34 -30.3 -25.9 -25.1505 -15.7 -0.13916 0.566528 TREND BH 

Rhodanthe moschata 5 Asteraceae Ann. Forb Native 161.54 168.24 -31.6 -25.3 92.36396 -734.4 0.5807 0.083411 TREND BH 

Rhodanthe pygmaea 8 Asteraceae Ann. Forb Native 163.05 293.91 -32.2 -29.9 -30.6376 -0.9 -0.16033 0.862302 TREND IS 

Rhyncharrhena linearis 7 Apocynaceae Vine Native 256.21 287.66 -29.9 -26.7 -15.3926 -47.3 -0.05143 0.438939 SWATT BH 

Santalum acuminatum 14 Santalaceae Tree Native 257.04 341.72 -30.8 -26.8 -21.1775 -23.5 0.040923 0.236233 SWATT BH 

Scaevola albida 4 Goodeniaceae Shrub Native 688.07 980.00 -30.8 -28.3 -24.6165 -5.8 0.234268 0.300349 TREND BH 

Scaevola spinescens 10 Goodeniaceae Shrub Native 256.21 320.63 -28.3 -25.5 -26.0233 -3.5 -0.11611 0.807121 SWATT US 

Schismus barbatus 4 Poaceae Ann. Grass Alien 250.34 838.25 -31.3 -27.8 -30.2272 0.5 -0.489 0.914359 TREND IS 

Schoenus apogon 4 Cyperaceae Sedge Native 653.04 829.05 -31.7 -29.5 -26.0741 -6.2 -0.03896 0.445597 TREND BH 

Schoenus hexandrus 10 Cyperaceae Sedge Native 297.33 347.70 -28.4 -26.0 -23.0814 -13.0 -0.02758 0.409181 SWATT BH 

Schoenus subaphyllus 7 Cyperaceae Sedge Native 301.19 329.20 -29.9 -24.9 -15.8156 -37.9 -0.12507 0.588897 SWATT BH 

Sclerolaena brachyptera 4 Chenopodiaceae Chenopod Native 164.63 277.64 -26.8 -24.3 -25.4303 -2.5 -0.47891 0.88142 TREND US 

Sclerolaena diacantha 7 Chenopodiaceae Chenopod Native 161.55 357.87 -28.4 -26.8 -27.641 -0.6 -0.19315 0.872067 TREND IS 

Sclerolaena diacantha 11 Chenopodiaceae Chenopod Native 283.07 320.63 -28.8 -24.6 -14.9055 -40.0 0.095553 0.185377 SWATT BH 

Sclerolaena obliquicuspis 4 Chenopodiaceae Chenopod Native 173.75 250.34 -28.6 -25.3 -32.6846 25.3 0.121548 0.356288 TREND CO 

Senecio pterophorus 5 Asteraceae Per. Forb Alien 653.04 980.00 -31.5 -28.5 -25.415 -5.7 0.03509 0.362957 TREND BH 

Senecio quadridentatus 6 Asteraceae Per. Forb Native 283.29 807.80 -33.4 -27.9 -28.6644 -4.7 0.010048 0.363276 TREND US 

Senecio spanomerus 4 Asteraceae Per. Forb Native 173.75 261.87 -31.1 -26.4 -39.3428 47.0 0.703131 0.104407 TREND CO 

Senna artemisioides 27 Fabaceae Shrub Native 168.24 428.35 -29.7 -24.2 -26.7233 -2.2 -0.02786 0.591624 TREND US 

Senna artemisioides 24 Fabaceae Shrub Native 254.20 320.63 -29.3 -20.5 -35.626 32.9 0.118254 0.05561 SWATT CO 

Sida fibulifera 15 Malvaceae Per. Forb Native 161.55 293.91 -30.8 -26.2 -29.0805 4.1 -0.03755 0.494855 TREND CO 
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Sida petrophila 9 Malvaceae Shrub Native 236.02 306.97 -30.5 -25.8 -17.2863 -39.8 0.206344 0.122699 TREND BH 

Solanum ellipticum 7 Solanaceae Per. Forb Native 161.55 482.13 -29.4 -26.5 -25.2568 -8.6 0.335369 0.101048 TREND BH 

Solanum lasiophyllum 18 Solanaceae Shrub Native 254.20 299.65 -31.3 -25.0 -40.4366 43.2 0.161319 0.055376 SWATT CO 

Solanum petrophilum 5 Solanaceae Per. Forb Native 250.34 413.97 -29.7 -28.1 -29.5101 1.9 -0.29544 0.786381 TREND IS 

Solanum quadriloculatum 10 Solanaceae Per. Forb Native 163.05 306.97 -30.4 -26.0 -26.8477 -6.7 -0.06089 0.506542 TREND BH 

Sonchus oleraceus 15 Asteraceae Ann. Forb Alien 161.54 807.80 -32.1 -25.5 -28.7563 -1.7 -0.04448 0.536153 TREND US 

Spyridium parvifolium 4 Rhamnaceae Shrub Native 506.13 699.09 -30.0 -27.6 -27.3317 -2.5 -0.41342 0.759754 TREND US 

Stipa sareptana 10 Poaceae Per. Grass  200.20 398.38 -26.4 -23.1 -22.1278 -9.3 0.423658 0.024688 NECT US 

Stipa tianschanica 4 Poaceae Per. Grass  145.05 155.12 -25.4 -23.3 -1.52971 -155.0 0.453571 0.202683 NECT BH 

Tetragonia eremaea 6 Aizoaceae Ann. Forb Native 168.24 277.64 -29.6 -23.7 -22.5332 -25.4 0.123119 0.26202 TREND BH 

Thalictrum squarrosum 3 Ranunculaceae Per. Forb  371.17 400.52 -26.6 -25.4 -22.3214 -9.4 -0.8959 0.853468 NECT US 

Thysanotus patersonii 4 Asparagaceae Vine Native 546.30 980.00 -32.0 -29.6 -29.0502 -1.8 -0.35863 0.693004 TREND US 

Tilia amurensis 3 Tiliaceae Tree  554.73 568.01 -31.5 -30.1 -24.8745 -10.7 -0.97333 0.926322 NECT US 

Tilia mandshurica 3 Tiliaceae Tree  555.22 709.95 -31.3 -28.5 -21.8351 -13.0 0.01165 0.496292 NECT US 

Ulmus davidiana 5 Ulmaceae Tree  384.15 621.93 -29.9 -26.6 -21.8058 -12.1 0.375013 0.162399 NECT US 

Vittadinia cuneata 4 Asteraceae Ann. Forb Native 413.97 688.07 -31.3 -29.8 -33.1795 5.1 0.552207 0.162461 TREND CO 

Vittadinia sulcata 4 Asteraceae Ann. Forb Native 234.26 293.91 -32.3 -27.6 -21.7222 -32.5 -0.16104 0.524634 TREND BH 

Wahlenbergia luteola 5 Campanulaceae Per. Forb Native 283.29 661.55 -31.8 -28.9 -28.3033 -4.3 0.011256 0.381796 TREND US 

Wahlenbergia stricta 7 Campanulaceae Per. Forb Native 531.37 980.00 -31.4 -29.5 -31.0874 1.1 -0.14088 0.632396 TREND IS 

Xanthorrhoea quadrangulata 11 Xanthorrhoeaceae Grass Tree Native 283.29 729.13 -29.8 -25.2 -24.8643 -6.1 0.242681 0.070559 TREND BH 

Xanthorrhoea semiplana 9 Xanthorrhoeaceae Grass Tree Native 546.30 980.00 -29.1 -26.1 -25.2304 -3.7 0.076972 0.237645 TREND US 

*Chinese (NECT) species descriptions, including authorities, are available in the online Flora of China (http://www.floraofchina.org/). TREND species descriptions, including authorities, are available in Barker et al. 

(2016). SWATT species descriptions, including authorities, are available in the online FloraBase (http://www.florabase.dpaw.wa.gov.au). ^ Biotic Homeostasis (BH), Contrary (CO), Universal Scaling (US), IS 

(Insensitive). 

899 
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 900 

Figure S1: Species leaf δ13C~MAP regressions (ms) for 36 NECT species and NECT 901 

common regression (mc). Colours represent 21 different families to demonstrate the 902 

phylogenetic diversity within growth form classes.  903 
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 904 

Figure S2: Species leaf δ13C~MAP regressions (ms) for 150 TREND species and TREND 905 

common regression (mc). Colours represent 44 different families to demonstrate the 906 

phylogenetic diversity within growth form classes.  907 
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 908 

Figure S3: Species leaf δ13C~MAP regressions (ms) for 47 SWATT species and SWATT 909 

common regression (mc). Colours represent 21 different families to demonstrate the 910 

phylogenetic diversity within growth form classes.  911 
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 929 

Abstract 930 

Questions: 931 

How do the rate and main drivers of vegetation change across a Mediterranean-arid zone 932 

gradient? 933 

Is species turnover and vegetation structural change monotonic, or are there one or more 934 

disjunctions which may represent ecological thresholds for vegetation change? 935 

Do different survey methodologies lead to similar descriptions of vegetation change? 936 

 937 

Location: 938 

127 sites spanning ca. 800 km and 160-980 mm MAP from the temperate Fleurieu Peninsula 939 

to the arid Stony Plains of southern Australia. 940 

 941 
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Methods:  942 

Overlapping transects were established across a bioclimatic gradient using two 943 

methodologies; a nested approach of five small (30x30 m) plots at 17 locations; and a non-944 

nested approach using 42 single, large (100x100 m) plots across an extended gradient. We 945 

related change in vegetation composition and structure to soil, landscape and climate to 946 

determine the strongest environmental associations. Ordinations and TITAN threshold 947 

analysis were used to detect potential ecological disjunctions associated with environmental 948 

thresholds. Site groupings based on Bray-Curtis classification were aligned with landscape 949 

classifiers (bioregions, sub-regions and agro-climatic zones) to test for congruence. Results 950 

from the two transects were compared to test the effects of the different sampling 951 

methodology and spatial sampling on pattern detection.  952 

 953 

Results: 954 

We found similar trends for both transects. Ordinations and regressions for both transects 955 

indicate vegetation changes linearly with the environmental gradient. Species richness and 956 

total cover were positively correlated with rainfall but declined with temperature. Species 957 

turnover was very high, with low nestedness, indicating species replacement was very high 958 

for this region. NMDS ordinations indicated that vegetation was structured along the primary 959 

(latitudinal) climate gradient and a weaker (longitudinal) soil gradient. We also identified 960 

strong structural change, with woody cover positively correlated with rainfall. TITAN 961 

analysis of the nested (TREND-Guerin) transect indicated an ecotone between 400-600 mm 962 

MAP, however little support for an ecotone was found on the longer TREND-AusPlots 963 

transect. Classification of sites was reasonably aligned with a coarse landscape classifier 964 

(agro-climatic zones) but poorly aligned with bioregions and subregions.  965 
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Conclusions: 966 

Climate is the major driver of broad-scale vegetation change in South Australia, while 967 

topographic and edaphic variables drive vegetation change at a more local scale. At the 968 

subcontinental scale, tested survey methodologies revealed similar vegetation patterning, 969 

suggesting biotic change is readily recovered by a variety of survey methods. TITAN 970 

identification of a threshold within the shorter, nested transect but not the longer transect 971 

which extended in to the arid zone, indicates that while smaller-scale vegetation disjunctions 972 

may be present, change spanning the entire mesic to arid zone is largely monotonic. 973 

 974 

Nomenclature: 975 

Census of South Australian Plants. Available at www.flora.sa.gov.au/census.shtml 976 

 977 

Abbreviations: 978 

EC = Soil Electrical conductivity; MAP = mean annual precipitation; NMDS = Non-metric 979 

dimensional scaling; TITAN = Threshold Indicator Taxa Analysis; VCE = visual cover 980 

estimate 981 

982 
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Introduction 983 

Plot networks that are spatially aligned with environmental gradients (e.g. climatic or 984 

soil gradients) allow species turnover to be linked to potential environmental drivers, which is 985 

critical to understanding how and why ecosystems change in time and space. Locations on 986 

such environmental gradients at which species turnover is higher than for the rest of the 987 

gradient may indicate the presence of an abiotic threshold, at which point non-linear biotic 988 

change occurs. By linking vegetation change to known environmental gradients and 989 

understanding if and where non-linear disjunctions occur, we can better predict how 990 

vegetation will response to perturbations (including climate change) and promote biodiversity 991 

conservation and management. 992 

Drivers of species turnover can include abiotic factors such as climate and soil, as 993 

well as biotic effects, such as shade or associations with other organisms. Because these 994 

factors rarely change in isolation, most studies examine complex gradients comprised of 995 

several overlapping factors (e.g. temperature, rainfall, soil pH). These variables potentially 996 

affect vegetation independently, as well as together. Complex gradients can therefore lead to 997 

cumulative, dampening or otherwise interacting effects of multiple variables (Conover and 998 

Schultz 1995; Powers and Reynolds 1999). 999 

Because environmental drivers co-vary on complex gradients, isolating the effects of 1000 

a single driver (including spatial distance) on species turnover can be difficult (Warren et al. 1001 

2014). Nevertheless, generalizable trends of how vegetation responds to common gradients is 1002 

of interest (e.g. the transition between temperate and arid zones is represented in Australia, 1003 

Europe, Africa and the Americas). When observations of change from independent taxa and 1004 

locations are combined, it is possible to determine if a generalised response can be expected, 1005 
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or if responses to environmental change are likely to be peculiar to a specific location 1006 

(Caddy-Retalic et al. 2017). 1007 

Rapid global change, particularly in climate, has seen increased interest in bioclimatic 1008 

transects, where vegetation and environment vary together, as a tool to identify whether space 1009 

can be used as a proxy for time in predicting how vegetation might change in the future 1010 

(Blois et al. 2013; Caddy-Retalic et al. 2017). In addition to determining the primary drivers 1011 

and mechanisms of change, a goal of this approach is to establish whether species turnover 1012 

and vegetation structure are linearly linked to the environment, or if there are thresholds at 1013 

which non-linear or abrupt change occurs. Abrupt vegetation transitions have been detected 1014 

on gradients of elevation (Crausbay and Hotchkiss 2010; Díaz-Varela et al. 2010) and climate 1015 

(Allen and Breshears 1998; Kutiel et al. 1995) but other gradients have revealed continuous 1016 

change with no obvious threshold (e.g. Auerbach and Shmida 1993). If thresholds of 1017 

vegetation change exist and can be detected, they may be able to be used to predict whether 1018 

vegetation will respond to ongoing climate change gradually, or experience one or more 1019 

dramatic transitions as thresholds are breached (Kreyling et al. 2014; Lenton 2011).  1020 

Should thresholds exist on a large-scale gradient, they may occur at the intersection of 1021 

different physical environments (i.e. prevailing climate, landform, etc.) because different 1022 

environments will impose different filtering processes on the species that can persist. In order 1023 

to divide large spatial areas, such as continents, into units that are both environmentally 1024 

meaningful (i.e. of similar environment) and an appropriate scale to be useful for 1025 

management, landscape classification processes have been undertaken for many parts of the 1026 

globe. In Australia, the agro-climatic classification (Hutchinson et al. 2005; hereafter known 1027 

as agro-climatic zones) and Interim Biogeographic Regionalisation for Australia (Thackway 1028 

and Cresswell 1995; hereafter known as IBRA bioregions and subregions) represent the two 1029 

most commonly used landscape classification systems. Both of these classification systems 1030 
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have been undertaken at a continental scale, but it is unclear as to whether vegetation 1031 

transition across zones will relate to ecotones at a finer spatial scale.  1032 

The transition between the Mediterranean and arid zones is an ideal study location for 1033 

vegetation gradient research, because this transition occurs at many locations around the 1034 

globe, providing opportunities for replication. Additionally, the mediterranean climate zone is 1035 

usually associated with intensive human use, particularly for agriculture, yet is predicted to 1036 

shift globally over the next century (Klausmeyer and Shaw 2009). The mediterranean biome 1037 

is megadiverse (Abbott and Le Maitre 2010), and the combined threats of climate change and 1038 

land use change make it one of the world’s most vulnerable biomes (Underwood et al. 2009). 1039 

Understanding how vegetation might change in response to such perturbation is therefore 1040 

important for human use and biodiversity conservation in the mediterranean zone. 1041 

Our efforts to detect vegetation response to environmental change (including 1042 

thresholds) may be influenced by the survey method chosen to describe a system. For 1043 

example, the impacts of a design using many small plots or fewer larger plots has been 1044 

debated (Vittoz and Guisan 2007). Large plots better represent the spatial patterns of 1045 

association among plants, particularly for larger growth forms such as trees, which are 1046 

typically more sparsely distributed than herbaceous plants. On the other hand, smaller plots 1047 

are likely to deliver more complete species inventories because there is less area to search 1048 

(Bonham 2013). Similarly, within equal resource constraints, field measures of plant cover 1049 

can emphasise accuracy, through a larger number of qualitative measures; or precision, 1050 

through fewer, more quantitative measures. The choice between few large or many smaller 1051 

plots is common to all vegetation surveys and must be guided by the survey environment and 1052 

scientific questions being addressed, usually requiring a compromise between competing 1053 

interests (e.g. plot homogeneity and survey intensity) (Vittoz and Guisan 2007). 1054 
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Here, we leverage the data available from two programs undertaken in southern 1055 

Australia, where the mediterranean zone is projected to contract towards the southern coast 1056 

(Klausmeyer and Shaw 2009). The first program surveyed the vegetation on the Adelaide 1057 

geosyncline, a protracted linear basin with uplifted ranges extending inland from the Fleurieu 1058 

peninsula, to establish the Transect for Environmental Monitoring and Decision making 1059 

(TREND), a ca. 550 km transect of vegetation plots traversing the gradient between the 1060 

mediterranean zone and arid zone (Guerin et al. 2014; Guerin et al. 2016). The TREND was 1061 

subsequently resampled and expanded under the auspices of the Australian Transect Network 1062 

(Caddy-Retalic et al. 2017). We use the data provided by these programs to address the 1063 

following aims: 1064 

Aim 1: Describe the vegetation change across a bioclimatic gradient from the mediterranean 1065 

zone to the arid zone of South Australia and determine the degree to which plant 1066 

composition and structural change is associated with climate. 1067 

Aim 2: Test whether vegetation composition and structural change on the gradient is 1068 

monotonic or if there are one or more disjunctions which may represent ecological 1069 

thresholds for vegetation change. 1070 

Aim 3: Determine whether survey methodology affects our ability to relate changes in 1071 

species richness, cover and composition to the environment. 1072 

Aim 4: Determine the degree to which vegetation communities on a gradient align with 1073 

coarse scale environmental classifications. 1074 

  1075 

  1076 
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Methods 1077 

Field surveys 1078 

Two field campaigns were undertaken using different survey methods. The initial 1079 

survey, hereafter referred to as the TREND-Guerin transect, was undertaken in the austral 1080 

spring (August to December) of 2011 by Guerin et al. (2014), using a nested design of five 1081 

900 m2 (30x30 m) plots spread across 17 locations, spanning a 550 km transect from Deep 1082 

Creek, on the Fleurieu Peninsula to Mt Hack in the Northern Flinders Ranges (Figure 1, 1083 

Supplementary Table S1, Table S2). The survey was undertaken in order to assess the study 1084 

region as a spatial analogue for climate change through the linking of vegetation composition 1085 

with spatial environmental change (Guerin et al. 2014). The survey methodology included 1086 

making a plant species inventory at each site with cover estimates for all species.  1087 

The second field campaign, to establish the TREND-AusPlots transect, was 1088 

undertaken during spring from 2012 to 2014 using the AusPlots Rangelands survey method 1089 

(White et al. 2012). Ideally, all surveys would have been undertaken in a single trip, but 1090 

logistical challenges in gaining access to remote sites and the exhaustive survey of large plots 1091 

made this impossible. Rather than extend a single trip over multiple seasons (i.e. winter to 1092 

spring or spring to summer), we maximised the quantity and quality floral material by 1093 

undertaking three spring surveys. 1094 

The TREND-AusPlots surveys were undertaken as an investment in ecological 1095 

infrastructure by Australia’s Terrestrial Ecosystem Research Network using a methodology 1096 

designed to promote quantitative and repeatable surveillance monitoring of rangeland biomes 1097 

(White et al. 2012). One hectare (100 x100 m) plots were situated to overlap a TREND-1098 

Guerin plot in 17 locations, with an additional 8 plots situated to fill gaps in the gradient 1099 

between TREND-Guerin plot locations, and 17 plots to extend the transect 150 km north to 1100 
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the Gammon Ranges and Stony Plains (Figure 1, Supplementary Table S1). At each AusPlot, 1101 

collections were made of all vascular plant species, and structure, including cover, measured 1102 

using a point intercept method. All plants present at 1010 intercept points on N-S and E-W 1103 

transects across the plot were recorded, providing a quantitative measurement of vegetation 1104 

structure (White et al. 2012). 1105 

To minimise the potential of sampling transitional or heavily degraded vegetation, all 1106 

sites were chosen in large areas of homogenous “best on offer” native vegetation on public or 1107 

private conservation reserves, except the northernmost Stony Plains AusPlots (Mt Lyndhurst 1108 

and Murnpeowie), which are on pastoral stations. Surveys were conducted in years which 1109 

experienced rainfall near to or more than the long-term mean (Figure S1). Vouchers were 1110 

identified following the nomenclature of Barker et al. (2016) and deposited in the State 1111 

Herbarium of South Australia (AD). 1112 

 1113 

Environmental data 1114 

Elevation was extracted from the 9s Digital Elevation Model v3 (Hutchinson et al. 1115 

2008). Site values for Mean Annual Temperature (MAT; Bio01); Mean temperature of 1116 

warmest quarter (MaxT; Bio10); Mean temperature of coldest quarter (MinT; Bio11); Mean 1117 

Annual Precipitation (MAP; Bio012); Precipitation of wettest week (MaxP; Bio13), 1118 

Precipitation of driest week (MinP; Bio14); Mean Annual Moisture Index (MAMI; Bio28); 1119 

Mean moisture index of the wettest quarter (MaxMI; Bio32) and Mean moisture index of the 1120 

driest quarter (MinMI; Bio33) were extracted from BioClim layers of a 1960-2014 long-term 1121 

average at 9 second (approx. 250m resolution) extracted from ANUCLIM 6.1 (Xu and 1122 

Hutchinson 2013) with the GEODATA 9 second DEM (Hutchinson et al. 2008) derived by 1123 

CSIRO (Harwood et al. 2014). Monthly climate data for four permanent weather stations 1124 

(Arkaroola (107099), Hawker SA (019017), Clare Calcannia (021075) and Pawara Sharon 1125 
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(023761) was provided by the Australian Bureau of Meteorology 1126 

(http://www.bom.gov.au/climate/data). 1127 

Surface soil pH and EC were measured for all sites using portable probes on samples 1128 

suspended in demineralised water. For the TREND-Guerin surveys only, the sand, nitrate, 1129 

ammonium, potassium and phosphorus content of surface soils were measured in the 1130 

laboratory and estimates made of percentage surface strew and outcrop.  1131 

 1132 

Data analysis 1133 

All data analyses were undertaken in R (R Core Team 2017). In order to assess the 1134 

completeness of species detection in our surveys, species accumulation curves were 1135 

calculated using vegan (Oksanen et al. 2016). For the TREND-AusPlots sites, cover for 1136 

each species was calculated by dividing the number of point intercepts at which each species 1137 

was encountered by the number of points sampled (1010). Due to the potential for multiple 1138 

species to occur at different strata at the same intercept point, cover values of a growth form 1139 

or an entire plot can exceed 100%. To account for aspect being a circular variable (i.e. there 1140 

is only 1° difference between 0° and 359°), aspect was converted to the linear variables 1141 

“eastness”: sin(
aspect × π

180
) and “northness”: cos(

aspect × π

180
). 1142 

In order to test the spread of sites in environmental space and determine the dominant 1143 

environmental variables across space, we ran a Principal Component Analysis (PCA) on 1144 

environmental variables for both transects. Variables were scaled to ensure variables with 1145 

larger scales did not dominate the analysis. Bray-Curtis dissimilarity indices for each transect 1146 

were calculated based on plant composition, and non-metric dimensional scaling (NMDS) 1147 

and canonical correspondence analysis (CCA) ordinations undertaken in vegan. We 1148 

assessed which environmental variable showed the strongest association with community 1149 
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change by correlating all environmental variables against the NMDS ordination. Mean annual 1150 

precipitation (MAP) and mean annual moisture index showed the highest correlation to 1151 

ordinations, and MAP was selected to represent the gradient for subsequent analyses due to 1152 

its clear control on plant productivity, particularly in the arid zone. Species richness and 1153 

cover values were regressed against MAP to visually inspect for non-linear relationships. The 1154 

cover and species richness of herbaceous and woody species richness were regressed to test 1155 

for potential suppressive influence on herbaceous species through shading. To quantify the 1156 

rate of species turnover with environmental change, we measured the species turnover (ßSIM) 1157 

and nestedness (ßSNE) of assemblages on both transects using betapart (Baselga and Orme 1158 

2012) using the spatial order of sites along the transects from north to south.  1159 

In order to compare the structure of species assemblages across the gradient, we built 1160 

species composition dendrograms based on Bray-Curtis dissimilarities and reordered the 1161 

leaves by latitude to respect the spatial structure of the plots. Finally, we attempted to identify 1162 

the region of highest biotic change on each transect using Threshold Indicator Taxa Analysis 1163 

(TITAN; Baker and King 2010). Datasets were filtered to exclude species found at <3 sites 1164 

and MAP used to represent the gradient. TITAN analysis was undertaken using TITAN2 1165 

(Baker et al. 2015), with 1000 bootstrap replicates for each data set.  1166 

 1167 

Results 1168 

Environmental gradient analysis 1169 

Principal Component Analysis (PCA) of the TREND-Guerin and TREND-AusPlots 1170 

transects confirmed a primary temperature-rainfall gradient corresponding to the first PCA 1171 

axis, and an orthogonal soil (EC, NO3 and K) gradient (Figure 2). Hutchinson agro-climatic 1172 

zones are clearly delineated on these ordinations, with the exception of some overlap between 1173 
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E1 and E2 zones for the TREND-AusPlot sites. The E6 (semi-arid) and E2 (dry 1174 

mediterranean) zones occupied the most environmental space, with more mesic (D5, cool, 1175 

wet; E1, mediterranean) and arid (G, desert) sites confined to the periphery (Figure 2). 1176 

Most tested environmental variables correlated with the environmental PCA (Figure 1177 

2), indicating a dominant gradient characterised by moisture availability (precipitation and 1178 

moisture index), temperature (mean annual temperature and minimum temperature of the 1179 

coolest month) and soil pH; with a minor orthogonal gradient of soil and topographic 1180 

variables (elevation, sand content, slope and soil electroconductivity. This correlation of 1181 

many environmental variables indicates that our study gradient exemplifies a complex 1182 

gradient.  1183 

The variables best able to represent the gradient (based on R2 scores for NMDS 1184 

ordinations of both transects) were mean annual precipitation (MAP) and mean annual 1185 

moisture index (Table 1). Temperature, precipitation and moisture values were highly 1186 

correlated with the ordination, with TREND-AusPlots showing greater overall R2 values than 1187 

TREND-Guerin plots due to the greater environmental extent of that transect. Except for soil 1188 

pH, edaphic variables did not correlate strongly with the PCAs, suggesting that while a weak 1189 

edaphic gradient is present, soil factors vary considerably locally across the two transects. 1190 

 1191 

Vegetation patterning 1192 

Across all sites, a total of 4,861 plants were identified, comprising 794 species from 1193 

82 families. 698 species were detected on the TREND-AusPlot transect, with 417 species 1194 

identified on the TREND-Guerin transect. An average of 45.9 (95% CI ±3.7) species were 1195 

found in each one-hectare AusPlot and 33.2 (95% CI ±2.2) species in the smaller (0.09 ha) 1196 

TREND-Guerin plots. 96 species were found in TREND-Guerin plots exclusively, roughly 1197 
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half of which were herbaceous grasses, sedges or small forbs (particularly orchids), which 1198 

may have not been present when AusPlot surveys were being undertaken. Most of the larger 1199 

trees and shrub species (e.g. Eucalyptus and Acacia species) that were present in TREND-1200 

Guerin plots but not TREND-AusPlot were present in low cover (i.e. scattered individuals) in 1201 

plots that did not overlap the co-located AusPlot. Based on species accumulation curves 1202 

(Figure S2), the TREND-Guerin transect was more completely sampled than the TREND-1203 

AusPlots transect.  1204 

The most widespread species were the shrubs Dodonaea viscosa (Sapindaceae; 16 1205 

locations) and Senna artemisioides (Fabaceae, 16 locations) and the forbs Sonchus oleraceus 1206 

(Asteraceae, 16 locations), Dianella revoluta (Xanthorrhoeaceae, 15 locations) and Sida 1207 

fibulifera (Malvaceae, 15 locations).  1208 

Woody and total (woody+herbaceous) species richness were correlated with MAP for 1209 

both TREND-AusPlot and TREND-Guerin plots but herbaceous richness was correlated with 1210 

MAP for the TREND-Guerin transect only (Figure 3). For the entire mediterranean zone 1211 

(agro-climatic zones D5, E1 & E2), total species richness was 51.9±6.7/ha for the TREND-1212 

AusPlot transect, and increased linearly with MAP (Table 2; Figure 3). Total cover also 1213 

increased linearly with MAP for both TREND-Guerin plots and TREND-AusPlot, although 1214 

TREND-Guerin cover values (summed VCEs for each species) were consistently higher than 1215 

the TREND-AusPlot cover values (calculated from point intercept data) (Figure 3). The 1216 

correlation between vegetation cover and rainfall was driven by woody vegetation, 1217 

particularly trees and shrubs (Figure S3). No relationship was found between herbaceous 1218 

cover and MAP (Figure 3; Figure S3) or between woody and herbaceous cover (Figure 4).  1219 

Entire-transect beta diversity (measured as Sørensen dissimilarity) was 0.976 1220 

(TREND-Guerin) and 0.966 (TREND-AusPlots) with low nestedness (0.059 for both 1221 
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transects, Table 3), consistent with results reported for vegetation on a similar gradient in 1222 

Western Australia (Gibson et al. 2017). 1223 

 1224 

Environmental correlates with vegetation change 1225 

Constrained correspondence analysis of species cover values in each plot (Figure 5) 1226 

revealed vegetation corresponded to the temperature-rainfall gradient shown in Figure 2. Soil 1227 

chemistry data were only available for TREND-Guerin plots, but revealed weaker gradients 1228 

of soil potassium (K), phosphorus (P), ammonium (NH4), nitrate (NO3), as well as the cover 1229 

values for rock outcrop and surface strew, all aligned with the primary temperature-rainfall 1230 

gradient. 1231 

NMDS ordination of sites based on species cover values showed a primary north-1232 

south gradient for both transects (Figure 6). Tests for correlations between the ordinations 1233 

and environmental variables showed all tested climatic variables were strongly correlated to 1234 

vegetation composition, but topographic and edaphic variables were much more weakly 1235 

correlated (Table 1). Mean Annual Precipitation (MAP) and Mean Annual Moisture Index 1236 

(MAMI) were the strongest correlates with both datasets (Table 1). MAP was therefore used 1237 

to represent the gradient in subsequent biotic analyses. 1238 

Biotic change appears to mirror MAP change along the gradient, with no immediately 1239 

discernible disjunctions based on cover or richness correlations (Figure 3), or species 1240 

composition and cover ordinations (Figure 6). The TREND-Guerin NMDS showed some 1241 

overlap between sites at different locations (e.g. REMU and TOTR, and HORS and MONT, 1242 

and similar spread for sites within and between several survey locations (Figure 6b). 1243 
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Threshold analysis indicated that the area of highest species turnover occurred 1244 

between ca. 400-600mm MAP for the TREND-Guerin transect, but in a much broader 1245 

interval of 160-600mm MAP for the broader AusPlot transect (Figure S4). 1246 

 1247 

Congruence of vegetation groupings with landscape classifications 1248 

Classification of sites based on species composition and cover was broadly aligned 1249 

with agro-climatic zones (Figure S5; Figure S6). The first division within the TREND-1250 

AusPlot classification (Figure S6) was between the far north (Gammon Ranges and Stony 1251 

Plains sites) and the rest of the transect. Subsequent divisions are congruent with semi-arid 1252 

and temperate agro-climatic zones, but an important exception was the mallee woodland sites 1253 

(PEDB, TOTR, REML, PENG, CLEM and ARK3). Mallee woodlands are characteristic of 1254 

the semi-arid zone in Australia, but extend into the arid and temperate zones. Mallee 1255 

woodlands dominated by Eucalyptus odorata cluster together in the E2 climatic zone despite 1256 

REML being an E6 site, and similarly a Eucalyptus socialis dominated mallee clade in the E6 1257 

zone includes the E2 PENG and CLEM sites. The REML sites formed a similar outlier 1258 

cluster in the classification of TREND-Guerin plots (Figure S5). The Horsnell Gully (HORS) 1259 

group of sites sit within the D5 (cool, wet) agro-climatic zone, rather than the mediterranean 1260 

zone, but were not separated by the dendrogram from sites from the surrounding 1261 

mediterranean zone (Figure S5).  1262 

Less alignment was visible between the classifications and IBRA bioregions or 1263 

subregions (Figure S7; Figure S8), particularly for the longer TREND-AusPlots transect 1264 

which traversed more bioregions.  Only two branches sat completely within any one IBRA 1265 

bioregion, but most bioregions were represented in more than one group (Figure S8). 1266 

 1267 
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Discussion 1268 

By examining two overlapping transects, we described turnover in vegetation 1269 

structure and composition from the arid zone to the mediterranean zone, and found that 1270 

vegetation responds to a complex gradient of environmental variables. Our results provide 1271 

limited support for an ecotonal region between 400-600 mm MAP as reported by Guerin et 1272 

al. (2014), but this ecotone was not apparent in the analysis of the TREND-AusPlots transect, 1273 

which extended further in to the arid zone. The lack of evidence for an ecotone in the longer 1274 

transect indicates that while there may be a zone of elevated species turnover within the 1275 

northern Mt Lofty ranges and southern Flinders Ranges, when a slightly greater climatic 1276 

range is considered, this putative ecotone is not a major vegetation delineator. Here, we 1277 

discuss the patterns of vegetation patterning with climate on the TREND gradient and the 1278 

consistency of results between the TREND-Guerin and TREND-AusPlots transects.  1279 

 1280 

Environmental gradient detection 1281 

The correlated variables of temperature and rainfall dominated both the TREND-1282 

Guerin and TREND-AusPlot transects, transitioning from the cool, wet south to the hot, dry 1283 

north. Most other tested variables (soil nutrients and pH, outcrop and surface strew) 1284 

corresponded weakly with the climatic gradient, and together form a complex bio-edaphic 1285 

gradient. Complex gradients comprised of many environmental variables can be represented 1286 

by ordination axes but can be difficult to intuitively conceptualise. As MAP was the 1287 

putatively strongest driver of vegetation change, this was how we represented the complex 1288 

gradient, but the covariance of most tested variables, including temperature, rainfall, soil pH 1289 

and soil nutrients makes it impossible to isolate a single variable as the primary driver, 1290 

particularly given that there are causative relationships between many variables. For example, 1291 

increased rainfall leads to leaching of basic ions from soils and a corresponding decrease in 1292 
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soil pH, particularly in sandy soils. A relationship between MAP, soil pH and percentage 1293 

sand is therefore expected. The dominance of climate (rather than soil or topography) as the 1294 

driver of change on this large-scale gradient aligns with results that suggests that globally, 1295 

plant community composition is largely edaphically driven at a local scale, but becomes 1296 

climatically driven at increasing spatial scales (Siefert et al. 2012).  1297 

 1298 

Because we used MAP to represent the complex gradient, we investigated the 1299 

consistency of the survey years with long-term averages for our study region. Overall, rainfall 1300 

was reasonably representative of the long term average. 2011 and 2012 had some exceptions, 1301 

recording high autumn rainfall on the northern half of the transect, and a low winter-spring 1302 

rainfall around Clare. Higher than average rainfall is likely to have prompted the growth of 1303 

some herbaceous species in the arid zone at the northern end of the transect. Conversely,  the 1304 

lower than average rainfall in 2011 and 2012 may have depressed these species, particularly 1305 

short-lived annuals. 1306 

 1307 

For this study, we sampled nine second (~250 m) resolution climate layers, which 1308 

have similar cell size to the survey plots (30-100 m). High resolution layers give more 1309 

accurate climate data than the 1 km interpolated data used in other studies (e.g. Guerin et al. 1310 

(2014)), particularly for sites in the Mt Lofty, Flinders and Gammon Ranges. These Ranges 1311 

are topographically complex, with elevation and aspect - and thus climate - varying 1312 

substantially within 1 km cells. Downscaling to nine second cells therefore substantially 1313 

improves our ability to resolve the environmental drivers of vegetation change. 1314 

  1315 
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Survey methodology and biases 1316 

All survey methodologies bring inherent strengths, weaknesses and biases, and ideally 1317 

each survey should be optimised to answer one or more specific questions (Nichols and 1318 

Williams 2006). Field ecology is time consuming and expensive, however, and there is 1319 

increasing call to re-use ecological data (Kapfer et al. 2016; Zimmerman 2008). The 1320 

TREND-Guerin plot survey methodology was developed for the location-specific purpose of 1321 

testing the influence of an environmental gradient on species turnover (Guerin et al. 2014), 1322 

while the TREND-AusPlot methodology was designed to measure a suite of popular 1323 

ecological attributes while maximising flexibility and applicability across many ecosystem 1324 

types to support continental-scale investigations by many researchers (White et al. 2012). 1325 

 1326 

The three primary biases of vegetation resurvey are plot relocation, observer bias and 1327 

seasonality bias (Kapfer et al. 2016). Because specific plots were not resurveyed in this 1328 

study, we discuss the potential impacts of observer and seasonality bias, as well as the 1329 

additional potential bias of plot design. 1330 

 1331 

In order to emphasise accuracy at each location, small (30 m x 30 m; 0.09 ha) 1332 

TREND-Guerin plots were surveyed with a nested design to allow variation in species 1333 

richness, abundance and composition to be quantified. TREND-AusPlot are designed to be 1334 

used in a variety of vegetation types, particularly sparse rangeland communities, and 1335 

therefore use a large (1 ha) plot size, which reduces variability in vegetation analysis 1336 

(Otypková et al. 2006). The smaller size of the TREND-Guerin plots likely means a less 1337 

complete representation of the local species were present, even across a grouping of five plots 1338 

(0.45 ha) compared to one AusPlot. Because the TREND-Guerin plots were permanently 1339 

marked, we were able to ensure that the TREND-AusPlot sites completely encompassed a 1340 
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TREND-Guerin plot, but because TREND-AusPlots sites were larger, a larger total area was 1341 

surveyed. The TREND-Guerin plots and co-located TREND-AusPlot site were located in 1342 

large areas of homogenous vegetation. Assuming the vegetation was homogenous at the scale 1343 

of the plots, plot design seems unlikely to substantially influence the ability to detect 1344 

vegetation patterns across the gradient. 1345 

 1346 

The data used in this study were collected over several years, but confined to spring in 1347 

order to minimise variation across seasons and maximise the flowering material available to 1348 

aid in species determinations. The northern end of the transect received higher than normal 1349 

rainfall in February-March 2011 and 2012, but these sites were not surveyed until 2013. 1350 

Other rainfall fluctuations were relatively minor and unlikely to have substantially affected 1351 

the presence or cover of vegetation. Our surveys consisted of a single visit to each site, 1352 

meaning we were only able to sample species present at that time. It is likely that we did not 1353 

detect some species, particularly short-lived annual forbs and grasses, and species that can be 1354 

difficult to distinguish in the field (e.g. some species of Eucalyptus), particularly when only 1355 

sterile material is available. The limitation of a single visit is likely to have limited our 1356 

detection of species particularly in the arid zone, where many species may only emerge 1357 

following specific environmental cues (Dickman et al. 2014). While it is likely that revisits to 1358 

the sites over a year would increase the number of species detected,this was not possible 1359 

within the resourcing constraints of our study. Species accumulation curves indicated most 1360 

species within the sampled habitat and season were detected in both surveys (Figure S2). 1361 

 1362 

Observer bias can lead to major differences in species detection and cover values 1363 

(Lepš and Hadincová 1992), but it is difficult to quantify observer differences for different 1364 

methodologies. Species recorded in the TREND-Guerin sites that were not detected in the 1365 
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later TREND-AusPlot sites may have been absent, or not detected despite similar observer 1366 

skill and effort because the TREND-AusPlots were more than 10x larger than the TREND-1367 

Guerin sites. Cover for each species was estimated for the TREND-Guerin plots, which is a 1368 

known source of potential observer bias, particularly for species with low cover (Kennedy 1369 

and Addison 1987). Additionally, the TREND-Guerin methodology used 1% as the lowest 1370 

possible cover value (Guerin et al. 2014), potentially inflating the dominance of rare species. 1371 

The AusPlots methodology is designed to replicate sites at a scale larger than our study 1372 

location, and emphasises precision and repeatability of cover estimates by employing a point 1373 

intercept method to minimise observer error (Lepš and Hadincová 1992; White et al. 2012). 1374 

By comparing the visual estimate data from the TREND-Guerin sites and contrasting it with 1375 

quantitative vegetation cover derived from the TREND-AusPlots, we were able to determine 1376 

that patterns of composition and structure were not significantly affected by plot design. 1377 

 1378 

Indeed, the fact that our results were consistent across two independent survey 1379 

campaigns reinforces that our results were reasonably robust for the sampled region and time 1380 

period, and that any difference between the surveys can be attributed to the greater spatial 1381 

extent of the TREND-AusPlots transect or temporal change between the surveys or the 1382 

methodology used. The consistency of our results provides evidence that data from different 1383 

survey programs can be reasonably combined in larger analyses.  1384 

 1385 

Vegetation response to environment 1386 

Our finding of smooth vegetation transition between the mediterranean and arid zones 1387 

is relevant because globally the extent of the mediterranean zone is projected to change 1388 

substantially. Over the next century, the entire mediterranean zone will expand by 6-11%, but 1389 

contract in Australia, North America and South Africa, primarily through conversion to more 1390 
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arid systems (Klausmeyer and Shaw 2009). To the extent that our spatial gradient can be used 1391 

to infer a future temporal response, we may therefore expect aridification will lead to a 1392 

smooth transition to a more arid-adapted flora, rather than a stepped change, highlighting the 1393 

relevance of our study to global biodiversity change. Our description of spatial floristic 1394 

change also provide a platform on which to test similar gradients elsewhere to see whether 1395 

this trend is uniform for all mediterranean systems, or unique to southern Australia (Caddy-1396 

Retalic et al. 2017). Additionally, this work forms a starting point for comparisons with other 1397 

taxa, such as the examination of flora-fauna community congruence (Caddy-Retalic et al. in 1398 

prep).  1399 

 1400 

Species richness 1401 

Patterns of species richness on the TREND gradient are similar to those recorded 1402 

elsewhere. Plant species richness is positively correlated with rainfall across much of the 1403 

world (Pausas and Austin 2001), and an increase in species richness, woody cover and total 1404 

cover with MAP (Figure 3) is consistent with similar bioclimatic gradients in Western 1405 

Australia (Gibson et al. 2017) and Israel (Aronson and Shmida 1992)). Similarly, the mean 1406 

species richness for AusPlots in the mediterranean zone (D1, E1 and E2 agro-climatic zones) 1407 

was 51.9 ± 6.7 species/ha (Table 2), which is consistent with the values published for other 1408 

mediterranean regions: 68 ± 20 /ha (SW Australia); 70 ± 21 /ha (South Africa); 70 ± 54 /ha 1409 

(Mediterranean Basin) and (31 ± 10/ha (California) (Cowling et al. 1996). The higher species 1410 

richness for TREND-AusPlot  compared to TREND-Guerin plots is likely to be a factor of 1411 

the larger size of the TREND-AusPlot (1 ha compared to 0.09 ha). Without the development 1412 

of species-area curves for each group of sites, it was not possible to standardise species 1413 

richness values to a common area for all plots.  1414 
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Herbaceous species richness was far more variable than woody species richness 1415 

(Figure 3), presumably due to the potential for a community that has a homogenous overstory 1416 

to harbour a far more heterogeneous understory, with many species showing low abundance 1417 

and patchy distribution. Our finding that herbaceous species richness was related to MAP in 1418 

TREND-Guerin plots but not TREND-AusPlot (Figure 3) may be related to the extension of 1419 

that transect in to the arid zone, which displays higher herbaceous species richness than some 1420 

sites in the wetter half of the transect. High herbaceous species richness in the arid zone is 1421 

often related to facilitative effects, with small plants often found in association with larger 1422 

protective grasses, chenopods or shrubs, presumably due to the “nurse plant” role larger 1423 

plants can have in protecting smaller plants from harsh climatic conditions (Flores et al. 1424 

2003). 1425 

 1426 

It is notable that we detected increasing species richness and cover with MAP for 1427 

woody species but not for herbaceous species, which is consistent with results from a 1428 

mediterranean-arid transect in Israel (Aronson and Shmida 1992) and an elevational transect 1429 

in the Himalayas (Bhattarai and Vetaas 2003). Although a significant relationship between 1430 

MAP and herbaceous species richness was detected for TREND-Guerin plots, this was not 1431 

present in the wider TREND-AusPlot gradient, which displayed high herbaceous species 1432 

richness (>30 spp/ha) in some arid sites and lower richness (<20 spp/ha) in a few mesic sites 1433 

(Figure 3). High herbaceous species richness in the arid zone could be related to facilitative 1434 

effects, as small plants were often found in association with larger, presumably protective 1435 

grasses, chenopods or shrubs. High herbaceous species richness in the arid and semi-arid 1436 

zones may be related to the lack of shading from dominant woody vegetation, which was low 1437 

for those sites, or involve a shift from perennial to short-lived species. Our surveys were 1438 

undertaken in years which experienced close to the long-term rainfall average, but high 1439 
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interannual rainfall variability means that our surveys were undertaken in “good” years rather 1440 

than “bad” (dry) years, which is likely to have encouraged the germination of annual forbs 1441 

and grasses (Aronson and Shmida 1992). 1442 

 1443 

Community composition 1444 

We found no obvious evidence of community disjunctions on the gradient. For 1445 

example, there was no obvious clustering of sites for the AusPlots in NMDS ordinations, with 1446 

a smooth transition between the Stony Plains, Flinders Ranges, Mt Lofty Ranges and Fleurieu 1447 

Peninsula sites (Figure 6). The lack of appreciable clustering was probably related to the high 1448 

degree of species replacement and low nestedness (Table 3), indicating that most species 1449 

were not shared between many sites. 1450 

 1451 

Vegetation cover 1452 

A positive correlation was present between vegetation cover and MAP (Figure 3), 1453 

suggesting water availability is a primary driver of these ecosystem attributes. The difference 1454 

in cover values between TREND-AusPlot and TREND-Guerin plots is probably due to the 1455 

different estimation methods used. TREND-AusPlot used a point intercept method to 1456 

quantitatively and repeatably obtain cover for each species (White et al. 2012), emphasising 1457 

measurement precision. TREND-Guerin plot surveys used visual cover estimates, which can 1458 

be varied in their consistancy and bias (Zhou et al. 1998), but the survey of five plots in a 1459 

cluster allowed estimates of accuracy to be generated. The higher woody species cover in 1460 

TREND-Guerin plots is probably related to a tendency for the cover of overstory species to 1461 

be overestimated visually (Vanha-Majamaa et al. 2000). The lack of a clear trend in 1462 

herbaceous cover may be related to a lack of rainfall and/or soil fertility at the northern end of 1463 

the gradient and the suppressive effect of overstorey shading at the southern end. Individual 1464 
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growth forms displayed uniformly low cover (forbs), a patchy distribution that does not 1465 

appear to be driven by MAP (e.g. grasses), or a combination (i.e. restricted to the arid or 1466 

mesic end of the gradient but not otherwise showing an obvious relationship with MAP, e.g. 1467 

sedges (also displayed by woody grass trees and arid-adapted chenopods). 1468 

 1469 

Direct comparison did not reveal a relationship between woody and herbaceous cover 1470 

or species richness (Figure 4). The lack of correlation between woody and herbaceous plant 1471 

metrics indicates that while the overstory may have a supressive effect on the understory 1472 

through light or soil moisture competition at individual sites, any such effects do not occur in 1473 

a consistent manner across the gradient. 1474 

 1475 

Threshold detection 1476 

The detection of ecotones in natural systems is informative because they may 1477 

represent thresholds at which future environmental change (e.g. climate change) will prompt 1478 

a transformative biotic response. Modelling of species turnover based on species presence 1479 

data from 3567 historical survey plots was used to postulate an arid-mesic ecotone for our 1480 

study region between 400-600 mm MAP (Guerin et al. 2013). Analysis of indicator species 1481 

scores based on species cover for the TREND-Guerin plots supported a 400-600 mm MAP 1482 

ecotone (Figure S4a) roughly congruent with the E2 agro-climatic zone, but a much broader 1483 

ecotone (ca. 160-600mm MAP) for the TREND-AusPlot (Figure S4b). Agreement of an 1484 

upper MAP threshold of ca. 600 mm provides strong support for its actuality, but the lower 1485 

threshold is more dubious. For the TREND-Guerin transect, there were only two groups of 1486 

plots with MAP <600 mm, suggesting that more intensive sampling at the arid end of the 1487 

transect may have altered the results. The TREND-AusPlot sampled heavily on the arid end 1488 

of the transect (31 of 42 plots had MAP <600 mm), yet failed to find a lower limit to a 1489 
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putative ecotone (160 mm MAP was the limit of the dataset). The lack of an obvious break in 1490 

linear regressions (Figure 3) or ordinations (Figure 6) supports any such transition zone as 1491 

either absent, very subtle or inadequately sampled. If a threshold were present in our data, for 1492 

example a sharp shift from woodlands dominated by trees to a grassland dominated by 1493 

herbaceous species, there would be a non-linear relationship between both herbaceous and 1494 

woody cover and MAP. While the ongoing establishment of TREND-AusPlot in the semi-1495 

arid and arid zones of South Australia may lead to a more conclusive analysis of the presence 1496 

of one or more ecotones in our study region, the “E2 ecotone” is plausible, as it represents the 1497 

environmental extremity for several characteristic arid and temperate zone species (e.g. 1498 

Xanthorrhoea semiplana and Senna artemisioides respectively). 1499 

 1500 

Relationship between woody and herbaceous growth forms 1501 

Dominant woody vegetation can suppress the growth and occurrence of herbaceous 1502 

understory species through shading and competition for soil nutrients and moisture. However, 1503 

the lack of a negative relationship between woody and herbaceous cover or species diversity 1504 

(Figure 4) suggests that interaction between woody and herbaceous growth forms is more 1505 

complex. While both tree and shrub cover increased with latitude, herbaceous cover did not 1506 

(Figure S3). The apparent lack of a suppressive effect could be explained by a facilitative 1507 

relationship between woody and herbaceous vegetation. Facilitative relationships, in which 1508 

species display positive interactions which improve one or both species’ ability to persist, are 1509 

generally more common at the more stressful end of an environmental gradient (Maestre et 1510 

al. 2009). The presence of a competitive interaction at the benign end of a the transect could 1511 

transform to a facilitative interaction at the more stressful end. For example, while shading 1512 

reduces photosynthetic potential, it also decreases heat stress and dessication. Thus, dominant 1513 

woody species could suppress herbaceous species at the mesic end of our transects, while 1514 
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simultaneously providing hospitable microhabitats which allow similar species to persist at 1515 

the arid end of the transects. 1516 

 1517 

Another important consideration is that the traits of woody plants may be a stronger 1518 

driver of species turnover than cover alone implies. Some woody plants may be able to exert 1519 

positive influences on herbaceous species that outweigh their suppressive effect. For 1520 

example, nitrogen fixing Acacia trees and shrubs were present in 88% of TREND-AusPlot, 1521 

with a mean cover value of 3.8%. While dominant nitrogen-fixers probably do shade out 1522 

some species, the nitrogen that they introduce in to the environment is likely to promote 1523 

others, either directly, or by fostering soil fungi that benefit many species through improving 1524 

nutrient cycling, water holding potential and mycorhizzal associations (Callaway and Walker 1525 

1997).  1526 

 1527 

Site groupings and congruence with landscape classifications 1528 

Classification of sites was reasonably consistent between TREND-Guerin plots 1529 

(Figure S5) and TREND-AusPlots (Figure S6), although some plots grouped in different 1530 

clusters between surveys. The REML site is an E. odorata dominated mallee woodland, 1531 

which clustered with other E. odorata mallee woodlands, TOTR and PEDB in AusPlot 1532 

surveys (Figure S6), but was a first-level outlier in the TREND-Guerin surveys (Figure S5). 1533 

The HALE AusPlot formed a cluster with MONT and HORS TREND-AusPlot, but the 1534 

TREND-Guerin plot aligned more closely with BLCK and SAND. These differences 1535 

persisted in a classification of only those TREND-AusPlot collocated with TREND-Guerin 1536 

plots (not shown). The HORS site in the D5 agro-climatic zone did not separate from the 1537 

mediterranean TREND-AusPlot (Figure S6) or TREND-Guerin Plots (Figure S5). The D5 1538 

zone within is a very small island in the Mt Lofty Ranges, surrounded by the mediterranean 1539 
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(E1 and E2) zones. Due to the restricted nature of the D5 zone, it seems reasonable to assume 1540 

that its flora would be similar to the surrounding mediterranean communities rather than 1541 

reminiscent of vegetation in the nearest D5 zone (Victoria, ca. 360km SE). 1542 

 1543 

The Interim Biogeographic Regionalisation for Australia (IBRA) classifies the 1544 

Australian continent in to bioregions and subregions based on “dominant landscape scale 1545 

attributes of climate, lithology, geology, landforms and vegetation” (Thackway and Cresswell 1546 

1995). One of the primary motivations to undertake the bioregionalisation process was the 1547 

desire to develop ecological zones that were not governed by state boundaries (as distinct 1548 

from Natural Resource Management regions) and could be used for cross-jurisdictional 1549 

environmental management. IBRA boundaries have been periodically revised since IBRA’s 1550 

inception, and are currently in their seventh iteration (IBRA 7). The agro-climatic zones of 1551 

Australia are derived from extrapolations of elevation-dependent climate zones, aligned with 1552 

the now superseded version IBRA 5.1 in order to inform on plant growth conditions 1553 

(Hutchinson et al. 2005). We were interested in testing whether vegetation groupings align 1554 

with these coarse-level landscape classifications in order to evaluate their management utility. 1555 

The more arid regions (agro-climatic zones E6 and G; and the IBRA Stony Plains (STP) and 1556 

northern Flinders Lofty Block (FLB) bioregions have been comparitively poorly studied and 1557 

their likely response to climate change is still unclear (Sparrow et al. 2014).  1558 

 1559 

The lack of clear clade groupings within agro-climatic zones (i.e. three of the four 1560 

highest groupings contain sites from more than one zone) indicates that there are not clear 1561 

delineations of vegetation between the agro-climatic zones (Figure S5; Figure S6), or the 1562 

IBRA regions/subregions (Figure S7; Figure S8). We therefore conclude that these coarse 1563 

level classifications are not suitable for classifying vegetation plots at the scale of our study. 1564 



 

 153 

TREND-Guerin plots had a better alignment with agro-climatic zones (Figure S5), but there 1565 

were fewer, more spatially restricted plots located in fewer agro-climatic zones and IBRA 1566 

subregions. Our inability to resolve an independent classification of vegetation plots based on 1567 

species composition and cover with IBRA bioregions follows a similar failure with a larger, 1568 

continent-wide network of TREND-AusPlot across the Australian rangelands (Baruch et al. 1569 

in review). 1570 

 1571 

The lack of matching between IBRA and our vegetation classifications is presumably 1572 

due to IBRA (sub)regions being determined on the basis of a suite of factors, of which 1573 

vegetation composition is only one. Similarly, as agro-climatic zones are based on climate 1574 

aligned to IBRA regions, they are unlikely to match well to vegetation communities. 1575 

Navigation of South Australia’s vegetation map 1576 

(https://data.environment.sa.gov.au/NatureMaps/Pages/default.aspx) indicates that several 1577 

vegetation groups traverse IBRA bioregions, particularly mallee and Eucalyptus woodlands.  1578 

 1579 

Limitations and future research 1580 

In addition to the biases introduced by methodologies, our results are also likely to 1581 

have been heavily influenced by survey locations. We attempted to locate sites in areas 1582 

representative of the broader landscape at each location, but substantial vegetation clearing, a 1583 

paucity of large protected areas and a number of recent fires in the northern Mt Lofty and 1584 

southern Flinders Ranges (-34 to -32º latitude) limited our ability to locate sites in these areas 1585 

as densely as was possible at the northern and southern ends of the transects. Future studies 1586 

on these transects should attempt to investigate remnant vegetation in this region. Potential 1587 

locations include Mt Brown Conservation Park (-32.498º, 138.029º), Wirrabara State Forest 1588 

(-33.060º, 138.182º) and The Pines Recreation Reserve (-34.299º, 138.856º). 1589 
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By confining our analyses to only vegetation, we ignored a substantial proportion of 1590 

biodiversity and potentially overlooked important factors controlling the presence or absence 1591 

of some plant species. Given the importance of biotic interactions (e.g. plants and soil biota; 1592 

plants and fauna) in maintaining ecosystem function, we recommend future studies should 1593 

focus on examining multiple groups on bioclimatic transects. By investigating the degree to 1594 

which environment influences taxa of different types, it will be possible to gain a more 1595 

holistic understanding of community-level shifts and improve future precitions of 1596 

biodiversity change. 1597 

 1598 

The analyses presented here test for the presence of linear relationships between 1599 

environmental variables and biotic responses such as species richness, cover and community 1600 

composition. It is possible that these techniques are not sensitive enough to detect all possible 1601 

responses, particularly if they are non-linear. A suite of other techniques, such as Generalised 1602 

Dissimilarity Modelling (Ferrier et al. 2007) may be more sensitive in detecting such 1603 

responses, however such approaches may be more appropriate for larger data sets such as the 1604 

Biological Survey of South Australia (Guerin et al. 2013). 1605 

 1606 

Conclusion 1607 

We find that the vegetation change on the transect traversing from the arid Stony Plains to the 1608 

mesic Fleurieu peninsula is driven by a complex gradient of climate and edaphic variables, 1609 

with climate controlling vegetation at larger scales and edaphic variables at a more local 1610 

scale. Due to the relationships between tested variables and the descriptive methods used, we 1611 

were not able to disentangle the effects of single drivers but found the gradient can be readily 1612 

represented by MAP. Total species richness and cover increased monotonically with rainfall, 1613 

but this trend was much more pronounced with woody vegetation than herbacious species. 1614 
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Species composition changed linearly across the gradient. Threshold analysis of indicator 1615 

species in TREND-Guerin plots supported previous findings of an ecotonal zone between 1616 

400-600 mm MAP but no lower threshold was supported for the longer TREND-AusPlots 1617 

transect, suggesting there is no clear disjunction on this longer gradient. The consistency of 1618 

results between the AusPlots and TREND-Guerin methodologies suggest that both are 1619 

appropriate for describing vegetation within this region. Vegetation composition did change 1620 

with IBRAs and arid zones, but there are no clear delineations in vegetation community 1621 

composition or structure visible in our data. While zonation may be useful for environmental 1622 

planning, we caution against treating zones as homogenous entities, as not all vegetation 1623 

communities within an agro-climatic zone or IBRA (sub)region are likely to respond 1624 

together. We recommend future work in this region focus on collecting vegetation in 1625 

currently under-sampled areas, as well as investigations of multiple taxa to improve 1626 

understanding of inter-species facilitation. 1627 

  1628 



 

 156 

Data availability 1629 

All vegetation data used in this study are available through the AEKOS data repository. 1630 

TREND-Guerin plots data (Guerin et al. 2015) are available at 1631 

http://www.aekos.org.au/dataset/173971. TREND-AusPlot data are available at 1632 

http://aekos.org.au/collection/adelaide.edu.au/trend. 1633 
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Table 1: Individual environmental variable correlations with NMDS ordinations of 

AusPlots and Guerin plots based on plant composition and cover† values.  

Category Variable AusPlots Guerin Plots 

Topographic 

Latitude 0.83*** 0.77*** 

Longitude 0.05* 0.28*** 

Elevation 0.52* 0.12** 

Eastness  0.01 ns 

Northness  0.23*** 

Slope  0.09* 

Climatic 

MAP 0.88*** 0.86*** 

MinP 0.85*** 0.59*** 

MaxP 0.80*** 0.86*** 

MAMI 0.89*** 0.85*** 

MinMI 0.84*** 0.76*** 

MaxMI 0.87*** 0.72*** 

MAT 0.86*** 0.56*** 

MinT 0.49*** 0.41*** 

MaxT 0.86*** 0.86*** 

Edaphic 

Surface pH 0.67*** 0.49*** 

Surface EC 0.11 ns 0.10** 

% Surface strew  0.39** 

% Outcrop  0.28*** 

% Sand  0.35*** 

P  0.17*** 

K  0.37*** 

NO3  0.10** 

NH4  0.35*** 

Mean Annual Temperature (MAT; Bio01); Mean temperature of warmest quarter 

(MaxT; Bio10); Mean temperature of coldest quarter (MinT; Bio11); Mean Annual 

Precipitation (MAP; Bio012); Precipitation of wettest week (MaxP; Bio13) and 

Precipitation of driest week (MinP; Bio14) were extracted from BioClim layers of a 

1960-2014 long-term average at 9 second (ca. 30m resolution). †Cover values for 

AusPlots quantitatively measured using point intercepts; cover values for Guerin 

plots are coarse visual estimates. *p<0.05, **p<0.01, ***p<0.001, ns = not significant. 

 1775 

 1776 
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Table 2: Descriptions of agro-climatic zones and mallee woodland group, with characteristic 

species for each. 

Group Description* Sites Richness Frequent woody 

species 

Frequent 

herbaceous 

species 

D5/E1 D5: Moisture 

availability high in 

winter-spring, 

moderate in 

summer, most 

plant growth in 

spring 

E1: Classic 

mediterranean 

climate with peaks 

of growth in winter 

and spring and 

moderate growth in 

winter 

HORS (D5),  

DEEP, KYEE 

MTBI, SCOT 

(E1) 

Species 

richness: 

56.4±15.7 

Xanthorrhoeaea 

semiplana (5) 

Exocarpos 

cupressiformis (4) 

Olearia ramulosa (4) 

Acaena echinata (5) 

Dianella revoluta (4) 

Gonocarpus 

tetragynus (4) 

Senecio pterophorus 

(4) 

E2 “Mediterranean” 

climate, but with 

drier cooler winters 

and less growth 

than E1 

BLCK, 

BEEV, 

CLEM, 

HALE, KAIS, 

MONT, 

PEDB, PENG, 

SAND, SPRG, 

TOTR 

Species 

richness: 

49.8±8.5 

Acacia pycnantha (7) 

Gonocarpus elatus 

(6) 

Acacia paradoxa (5) 

Allocasuarina 

verticillata (5) 

Eucalyptus 

fasciculosa (5) 

Hibbertia crinita (5) 

Dianella revoluta (6) 

Cheilanthes 

austrotenuifolia (6) 

Goodenia blackiana 

(5) 

 

E6 Semi-arid climate 

that is too dry to 

support field crops. 

Soil moisture tends 

to be greatest in 

winter 

ARK1, ARK2, 

ARK3, ARK4, 

ARK5, 

BRAL, 

BRAU, 

DUTL, 

DUTU, 

MUR2, 

REML, 

REMU, 

VGR1, VGR2, 

VGR3, VGR5, 

WAR1, 

WAR2, 

WAR3, WILP 

Species 

richness: 

43.0±4.5 

Senna artemisioides 

(13) 

Dodonaea viscosa 

(11) 

Acacia 

tetragonophilla (10) 

Sida fibulifera (13) 

Sonchus oleraceus 

(10) 

Ptilotus obovatus 

(10) 

G Desert, supporting 

very little plant 

growth due to 

water limitation 

LYN1, LYN2, 

MUR1, 

MUR3, 

MUR4 

Species 

richness: 

38.4±13.3 

Enchylaena 

tomentosa (4) 

 

Calotis hispidula (5) 

Rhodanthe moschata 

(5) 

Eragrostis setifolia 

(4) 

Plantago drummondii 

(4) 
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Mallee Vegetation 

communities 

dominated by 

Eucalyptus odorata 

or E. socialis. 

ARK3, 

CLEM, 

PEDB, PENG, 

REML, TOTR 

Species 

richness: 

49.2±9.2 

Enchylaeana 

tomentosa (5) 

Rhagodia parabolica 

(5) 

Alectryon oleifolius 

(4) 

Senna artemisioides 

(4) 

Carrichtera annua 

(4) 

Rytidosperma 

caespitosum (4) 

*Agro-climatic zone descriptions from Hutchinson et al. (2005). Number of site occurrences 

for frequent species is noted in parentheses. 
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 1779 

  1780 
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Table 3: Components of ß-diversity for two transects 

 ßSIM ßSNE ßSOR 

TREND-AusPlots 0.959 0.006 0.966 

TREND-Guerin 0.970 0.006 0.976 

ßSIM = species replacement, ßSNE = nestedness component of ß-diversity, 

ßSOR = Sørensen pairwise dissimilarity 

 1781 

  1782 
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 1783 

Figure 1: Plot locations in South Australia (a) traversing the mediterranean-arid zone. Guerin 1784 

plots were co-located with an AusPlot (b) at 17 of 42 locations. c) The transect traverses 1785 

818mm mean annual precipitation from the Fleurieu Peninsula, through the Mt Lofty, 1786 

Flinders and Gammon Ranges before terminating in the arid Stony Plains. d) The agro-1787 

climatic zones described by Hutchinson et al. (2005), broadly aligned to mean annual 1788 

precipitation: Desert (<170mm); Semi-arid (170-500mm); Mediterranean dry (500-600mm); 1789 

Mediterranean (600-920mm); Cool, wet (>920mm). e) IBRA bioregions and sub-regions 1790 

surveyed. 1791 

1792 
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 1793 

Figure 2: Principal Component Analysis of a) AusPlot and b) Guerin sites based on 1794 

environmental variables (Table 1). Plots are coloured by agro-climatic zone. Note not all soil 1795 

and landscape variables were available for AusPlots. 1796 

 1797 

  1798 
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 1799 

Figure 3: Total woody and herbaceous species richness and cover for AusPlots (open circles) 1800 

and Guerin plots (filled circles) against mean annual precipitation (MAP). Woody values 1801 

include chenopods, grass trees, mistletoes, shrubs and trees. Herbaceous values include ferns, 1802 

forbs, grasses, sedges and vines. Cover values for AusPlots are calculated as summed cover 1803 

values per species (point intercepts/1010). Cover values for Guerin plots are average summed 1804 

visual cover estimates. Error bars represent 95% confidence interval across five sites. Solid 1805 

lines represent statistically significant regressions (*p<0.05, **p<0.01, ***p<0.001). 1806 

  1807 
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 1808 

Figure 4: Total woody and herbaceous species cover; and woody and herbaceous species 1809 

richness for AusPlots. No significant correlations were present across the tested gradient. 1810 

  1811 
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 1812 

Figure 5: Environmental vectors based on Canonical Correspondence analysis of plant 1813 

species cover for a) AusPlots and b) Guerin plots based on the environmental variables listed 1814 

in Table 1. A primary temperature-rainfall gradient is evident corresponding with CCA1, 1815 

with an orthogonal elevation axis (CCA2). Only environmental variables with R2 values of 1816 

>0.5 for at least one dataset are shown. 1817 

  1818 
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1819 

Figure 6: NMDS ordinations of TREND-Guerin (a, c) and TREND-AusPlots sites (b, d) 1820 

based on species composition, with fitted surfaces of mean annual precipitation (grey 1821 

isohyets). Sites are coloured by agro-climatic zones (a, b) and IBRA 7 sub-regions (c, d).  1822 

  1823 
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Supplementary Information 1824 

 1825 

Table S1: Comparison of Guerin and AusPlot transect surveys 

Design Guerin plots AusPlots 

Total plots 85 42 

Plot configuration 17 groups of 5 plots Single plots 

Plot size 900m2 (30x30m) 1 ha (100x100m) 

Total area sampled 7.65 ha 42 ha 

Transect length 550 km 

4.8º latitude 

700 km 

6.2º latitude 

Environmental 

gradient 

684 mm MAP (307-991 

mm) 

818 mm MAP (980-162 mm) 

 4º C MAT (13.4-17.4º C) 7.2º C MAT (13.4-20.6º C) 

Time of sampling 1 Sept – 9 Nov 2011 (all 

sites) 

13-22 Aug 2012 (SATFLB0001-

15, SATKAN0001-2). 

6-17 Aug 2013 (SATFLB0016-

25, SATSTP0001-8) 

28 Oct – 6 Nov 2014 

(SATEYB0001-2, SATFLB0027-

28, SATKAN0003-4) 

Observers GRG EJL, SCR & IF 

 1826 

  1827 
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Table S2: TREND site codes and location information including agro-climatic zone and Interim 

Bioregionalization of Australia (IBRA) subregion. 
Location Code Guerin 

Code* 

AusPlot Code Agro-climatic 

zone 
IBRA 

Subregion† 

Latitude Longitude 

Mt Lyndhurst 2 LYN2   SATSTP0008 G STP03 -29.3874 138.8819 

Mt Lyndhurst 1 LYN1  SATSTP0005 G STP03 -29.4562 138.8493 

Murnpeowie 3 MUR3  SATSTP0006 G STP03 -29.5301 138.8172 

Murnpeowie 4 MUR4  SATSTP0007 G STP03 -29.5356 138.8176 

Murnpeowie 1 MUR1  SATSTP0003 G STP03 -29.7548 138.8497 

Murnpeowie 2 MUR2  SATSTP0004 E6 STP03 -29.791 138.8324 

Radium Ridge ARK5  SATFLB0018 E6 FLB05 -30.2186 139.3247 

Arkaroola 4 ARK4  SATFLB0019 E6 FLB05 -30.2191 139.2334 

Arkaroola 3 ARK3  SATFLB0020 E6 FLB05 -30.2552 139.2278 

Arkaroola 2 ARK2  SATFLB0017 E6 FLB05 -30.3314 139.3742 

Arkaroola 1 ARK1  SATFLB0016 E6 FLB05 -30.343 139.3402 

Vulkathunha-

Gammon Ranges 

Ridgetop 2 

VGR2  SATFLB0022 E6 FLB05 -30.4056 139.2266 

Vulkathunha-

Gammon Ranges 

Ridgetop 1 

VGR1  SATFLB0021 E6 FLB05 -30.4117 139.2205 

Vulkathunha-

Gammon Ranges 

Plains 1 

VGR4  SATSTP0001 E6 STP03 -30.5612 139.4368 

Nepabunna VGR3  SATFLB0023 E6 FLB05 -30.5990 139.0741 

Vulkathunha-

Gammon Ranges 

Plains 2 

VGR5  SATSTP0002 G STP03 -30.6559 139.5479 

Warraweena Plain WAR2  SATFLB0024 E6 FLB05 -30.7604 138.5801 

Warraweena Mt 

Hack 
WAR1 WAR SATFLB0006 E6 FLB05 -30.7752 138.7981 

Warraweena Range WAR3  SATFLB0025 E6 FLB05 -30.7846 138.6335 

Brachina Upper BRAU BRA2 SATFLB0005 E6 FLB06 -31.315 138.5669 

Brachina Lower BRAL BRA1 SATFLB0004 E6 FLB06 -31.3273 138.5679 

Wilpena Pound WILP WIL SATFLB0007 E6 FLB06 -31.5435 138.5952 

Dutchman’s Stern 

Upper 
DUTU DUT2 SATFLB0009 E6 FLB04 -32.3101 137.9688 

Dutchman’s Stern 

Lower 
DUTL DUT1 SATFLB0008 E6 FLB04 -32.3204 137.9549 

Mt Remarkable 

Upper 
REMU REM2 SATFLB0011 E6 FLB04 -32.7480 138.1368 

Mt Remarkable 

Lower 
REML REM1 SATFLB0010 E6 FLB04 -32.8281 138.0333 

Clement’s Gap CLEM  SATEYB0002 E2 EYB02 -33.4886 138.0807 

Pedler’s Block PEDB  SATFLB0028 E2 FLB02 -33.5526 138.3938 

Spring Gully SPRG SPR SATFLB0013 E2 FLB02 -33.9137 138.6043 

Tothill Range TOTR TOT SATFLB0014 E2 FLB02 -34.0047 138.9599 

Pengilly Scrub PENG  SATEYB0001 E2 EYB02 -34.5038 138.7038 

Kaiserstuhl KAIS KAI SATFLB0003 E2 FLB01 -34.5765 139.0067 

Sandy Creek SAND SAN SATFLB0001 E2 FLB01 -34.6085 138.8619 

Hale HALE HAL SATFLB0002 E2 FLB01 -34.6827 138.9090 

Black Hill BLCK BLA SATFLB0012 E2 FLB01 -34.8804 138.7088 

Montacute MONT MON SATFLB0026 E2 FLB01 -34.8873 138.7876 

Mount Beevor BEEV  SATKAN0004 E1 KAN02 -34.9267 139.0387 

Horsnell Gully HORS HOR SATFLB0015 D5 FLB01 -34.9330 138.7275 

Scott Creek SCOT  SATFLB0027 E2 FLB01 -35.0827 138.6796 

Kyeema KYEE  SATKAN0002 E1 KAN02 -35.2717 138.6907 

Mount Billy MTBI  SATKAN0003 E1 KAN02 -35.4605 138.6046 

Deep Creek DEEP DEE SATKAN0001 E1 KAN02 -35.6078 138.2618 
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*Guerin codes align to those published in (Guerin et al. 2014). †EYB=Eyre Yorke Block (EYB02=St Vincent 

subregion), FLB=Flinders Lofty Block (FLB01=Mt Lofty Ranges, FLB02=Broughton, FLB04=Southern Flinders, 

FLB05=Northern Flinders, FLB06=Central Flinders subregions), KAN=Kanmantoo (KAN02=Fleurieu subregion), 

STP=Stony Plains (STP03=Murnpeowie subregion). Descriptions of agro-climatic zones in Table 2. 
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 1830 

Figure S1: Monthly rainfall data for Bureau of Meteorology weather stations distributed on 1831 

the TREND for 2011-2014. Dashed line represents long term average of recordings for that 1832 

station. 1833 

  1834 
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 1835 

Figure S2: Species accumulation curves for the TREND-Guerin (a) and TREND-AusPlots 1836 

(b) transects. Bold, red curves show species accumulation from north to south. Black curves 1837 

show species accumulation from random site order with 95% confidence intervals. 1838 

 1839 
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 1840 

Figure S3: Total cover values by growth form for a) AusPlots and b) Guerin plots. Error bars 1841 

for Guerin plots represent 95% confidence intervals across five sites. 1842 

 1843 

  1844 



 

 176 

   1845 

Figure S4: Plant community response from TITAN analysis of Guerin (a) and AusPlot (b) 1846 

data sets, calculated for 100 bootstrap replicates. Unfilled circles signify change points 1847 

calculated for species which increase with rainfall and filled circles signify change points 1848 

calculated for species which decrease with rainfall. 1849 

  1850 
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 1851 
Figure S5: Species composition dendrogram of the Guerin transect with leaves ordered by 1852 

latitude. Colours represent agro-climatic zones (Table 2; Hutchinson et al. 2005). Sub-sites 1853 

cluster together closely, indicating sub-sites have sampled the same vegetation community. 1854 

Sites marked with an asterisk are mallee woodlands dominated by Eucalyptus odorata.  1855 

 1856 

 1857 

 1858 

 1859 

 1860 
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 1861 

Figure S6: Species composition dendrogram of the AusPlot transect with leaves ordered by 1862 

latitude. Colours represent agro-climatic zones (Table 2; Hutchinson et al. 2005).While there 1863 

is a clear transition between agro-climatic zones, these do not correspond uniformly between 1864 

high-level divisions of the dendrograms.  Annotated sites are mallee woodlands dominated by 1865 

Eucalyptus odorata (*) or E. socialis (†), generally characteristic of the arid and semi-arid 1866 

plains of southern Australia.  1867 

 1868 
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 1869 

Figure S7: Species composition dendrogram of the Guerin transect with leaves ordered by 1870 

latitude. Colours represent IBRA subregions (Hutchinson et al. 2005). There is limited 1871 

congruence between IBRA subregions and high level division of groupings. Annotated sites 1872 

are mallee woodlands dominated by Eucalyptus odorata (*), generally characteristic of the 1873 

arid and semi-arid zone of southern Australia. FLB=Flinders Lofty Block (FLB01=Mt Lofty 1874 

Ranges, FLB02=Broughton, FLB04=Southern Flinders, FLB05=Northern Flinders, 1875 

FLB06=Central Flinders subregions), KAN=Kanmantoo (KAN02=Fleurieu subregion). 1876 
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 1877 
 1878 

Figure S8: Species composition dendrogram of the AusPlot transect with leaves ordered by 1879 

latitude. Colours represent IBRA subregions (Hutchinson et al. 2005). There is limited 1880 

congruence between IBRA subregions and high level division of groupings. Annotated sites 1881 

are mallee woodlands dominated by Eucalyptus odorata (*) or E. socialis (†), generally 1882 

characteristic of the arid and semi-arid zone of southern Australia. EYB=Eyre Yorke Block 1883 

(EYB02=St Vincent subregion), FLB=Flinders Lofty Block (FLB01=Mt Lofty Ranges, 1884 

FLB02=Broughton, FLB04=Southern Flinders, FLB05=Northern Flinders, FLB06=Central 1885 

Flinders subregions), KAN=Kanmantoo (KAN02=Fleurieu subregion), STP=Stony Plains 1886 

(STP03=Murnpeowie subregion). 1887 

 1888 

  1889 
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Abstract 14 

Climate change is affecting ecological assemblages and has been responsible for widespread 15 

shifts in species distributions and ecosystem function. Different taxa are likely to respond to 16 

climate change differently due to different responses to climatic drivers, potentially leading to 17 

a breakdown of community structure and function. We aimed to determine the comparative 18 

sensitivity of flora and ant fauna to environmental change. We use analysis of plant and ant 19 

assemblages along a bioclimatic gradient in South Australia to establish assemblage-level 20 

responses to spatial climatic change, and then project future biotic response to climate change 21 

scenarios. Ant assemblages were up to 7.5 times more sensitive to projected climate change 22 

than were plant assemblages, suggesting a very substantial decoupling of these assemblages 23 

under a future climate. Our results suggest that a high degree of community reorganisation 24 

and change in ecosystem function should be expected under climate change.  25 
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Introduction 26 

Most studies of ecological impacts of climate change have focussed on responses of 27 

individual species or biomes. However, climate change has important implications for 28 

community assembly that has received less scientific attention. Component species are likely 29 

to vary markedly in terms of the relative importance of climatic drivers (Foden et al., 2013), 30 

such that major community deconstruction and reconstruction might be expected (Gilman et 31 

al., 2010). Disproportionate species sensitivity to environmental drivers has important 32 

implications for community diversity, food web structure and species interactions (Sheldon et 33 

al., 2011). It is particularly important to understand the potential for decoupling of plant-34 

animal associations under future climates. Marked differences in responses of plants and 35 

animals could have profound effects on community structure and function, with implications 36 

for habitat structure and resource availability for fauna, and the provision of faunal-mediated 37 

ecological services for plants (Van der Putten et al., 2010). 38 

The composition of species assemblages across the landscape is strongly influenced 39 

by their environment, resulting in the familiar descriptions of biomes and vegetation types. 40 

However, climate change is rapidly altering both the abiotic environment, as well as the 41 

biotic environment, through modification of the dominant flora and fauna. The evidence for 42 

these changes is mounting (Parmesan, 2006, Chen et al., 2011, Corlett and Westcott, 2013, 43 

Pecl et al., 2017), but it is not yet clear how changing climatic conditions will affect the 44 

overall species composition of sites, and whether these responses will impact all groups 45 

(Wittmann and Pörtner, 2013, Bozinovic and Pörtner, 2015), and all places, equally 46 

(Carvalho et al., 2010, Garcia et al., 2014). In the face of this uncertainty, our ability to make 47 

well-informed decisions about how to address the current threats to biodiversity is severely 48 

limited, driving the need to develop new techniques to accurately predict future biodiversity 49 

changes on a large scale (Oliver and Morecroft, 2014, Urban et al., 2016).  50 
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Much work on predicting future biodiversity has focused on modelling species-level 51 

responses by establishing a bioclimatic envelope for each species and then projecting the 52 

required migration of that species in order to maintain conditions similar to its current climate 53 

in to the future (Araújo and Peterson, 2012). Such an approach is useful to infer the possible 54 

response of single species, but assumes that species require environments similar to their 55 

current distribution (which is particularly concerning given that climate change will result in 56 

many no-analogue enviroments), neglects biotic interactions (e.g. facilitation and 57 

competition), is resource intensive and, unless done on a massive scale, does not give 58 

substantial insight into the change of entire assemblages or landscapes (Reiss et al., 2009). 59 

Given the extent of change already underway, we do not have the luxury of taking the time to 60 

directly track changes across all species and landscapes, and we therefore need to find ways 61 

to gain some insight from current associations of species across sites that span a range of 62 

present day climates. While it would be convenient to be able to generalise the responses 63 

across taxonomic groups within ecosystems, there is limited understanding of how each 64 

group may, or may not, be concordant in responses to climate change, and the extent to which 65 

non-climatic environmental variables may constrain the ability of species to thrive in novel 66 

environments (Lavergne et al., 2010). 67 

The current ecological breadth of species may provide guidance for the type of 68 

responses to expect. Some species have broad tolerances to temperature, moisture or other 69 

environmental variables (and therefore broad ecological niches), while others have more 70 

restricted requirements (narrower niches). The sensitivity of individual species to 71 

environmental change is variable, but is heavily constrained by physiology. For example, as 72 

ectotherms, invertebrates are sensitive to changes in temperature, as they are limited to 73 

behavioural rather than metabolic thermoregulation, but must maintain a thermal window 74 

warm enough to allow rapid movement for foraging and defence, but cool enough to avoid 75 
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overheating. Noting that a wide range of abiotic variables can control species distributions, 76 

temperature is known to be a major driver of ant distributions (Andersen et al., 2015), while 77 

water availability is a primary driver for plants (Kreft and Jetz, 2007).  78 

By surveying species composition on a linear gradient of climatic change, where 79 

environmental variation is maximised over a limited spatial extent, we can describe the 80 

association between species turnover and environment (Austin, 1987, Caddy-Retalic et al., 81 

2017). This approach allows the degree to which species turnover is related to environmental 82 

change and geographic distance to be disentangled, essentially building an assemblage-level 83 

model of biotic sensitivity to the environmental change captured by the gradient.  84 

By comparing species turnover models for multiple assemblages on the same gradient 85 

we can identify organism types that are more, or less, responsive to environmental change. 86 

For example, a comparison of species turnover in multiple functional groups of rainforest 87 

taxa on a land-use intensity gradient in Sulawesi revealed that ant and bee assemblages 88 

showed less response to the tested gradient than birds and vascular plant assemblages 89 

(Kessler et al., 2009). If assemblages show marked differences in sensitivity to ecosystem 90 

change, that might presage a decline in species co-occurrence across multiple functional 91 

groups within ecological communities on that gradient. In the Sulawesi example, the 92 

sensitivity shown by ants and bees might be reflective of the response that could be expected 93 

from all invertebrates, representing a shared sensitivity to the gradient due to a common trait 94 

(e.g. ectothermic metabolism). Disproportionate responses of some assemblages within an 95 

ecosystem could disrupt important interactions between species.  96 

The many processes that characterise species interactions such as mutualism, 97 

commensalism, competition and predation; are critical for ecosystem function. Associations 98 

between generalist species can be established quickly, but specialist interactions take much 99 
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longer to develop and may become obligate, meaning that one species is reliant on the 100 

presence of another for survival. Disproportionate response to environmental change from 101 

one assemblage (e.g. plants) will also alter ecosystem function through changed interactions 102 

between species across different assemblages. 103 

Plants form the basis of the food web and are an important structural component of 104 

terrestrial ecosystems. Fauna are important consumers, and shape ecosystems through 105 

modification of the flora, herbivory and carnivory. Ants (Formicidae) are one of the most 106 

dominant and species-rich faunal groups, with near-ubiquitous distribution and provide major 107 

roles as ecosystem engineers and nutrient cyclers (Del Toro et al., 2012). Due to their 108 

ubiquity, ease of sampling and myriad of interactions with other biota, ants are often 109 

nominated as effective bioindicators of ecosystem function and/or disturbance (Gerlach et al., 110 

2013). The relationships between ants and plants are broad. Plants provide shade and habitat, 111 

attract herbivore prey and are a food source, while ants help disperse seeds, defend against 112 

herbivores and cycle nutrients in the soil (Buckley, 2012). These joint contributions to 113 

ecosystem function make plants and ants attractive research foci, but it is unknown whether 114 

these keystone taxa are likely to show similar or different responses to climate change. 115 

Should plants and ants show similar response to extrinsic change, it is reasonable to assume 116 

that they will adapt, migrate or die together. On the other hand, if the response is uneven, we 117 

may see a breakdown of current assemblages and the loss of important interactions.  118 

By linking change in plant and ant assemblages to spatial climatic change on a 119 

significant bioclimatic gradient, we attempt to quantify the climatic sensitivity of these 120 

groups to give us insight in to the biotic response we might expect from ongoing climate 121 

change. We observed plant and ant assemblages on a bioclimatic gradient traversing the 122 

Mediterranean to arid zone in South Australia. The spatial gradient spans a climatic change of 123 

approximately 5°C in mean annual temperature and 800mm in mean annual rainfall over 550 124 
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km, with cool, wet conditions in the south transitioning to warm, dry conditions in the north 125 

(Guerin et al., 2014), representing a similar change to that experienced between northern 126 

Portugal and Marrakesh, or Oregon and Baja California. The spatial gradient also 127 

encompasses the approximate temporal projections of global climate change (e.g. 1.1-4.8°C 128 

increase in mean annual temperature by 2100 (IPCC, 2013)). The vegetation on this gradient 129 

displays near-monotonic change in plant species turnover and vegetation structure (Caddy-130 

Retalic et al., in review). Specifically, we address the following aims: 131 

Aim 1: To examine the extent to which variation in the composition of plant and ant 132 

communities is differentially sensitive to climatic drivers, by describing variation in 133 

species richness, β-diversity and the composition of plant and ant communities in 134 

relation to climatic variation along the environmental gradient.  135 

Aim 2: To forecast changes in plant and ant species composition under future 136 

climates, based on sensitivity to contemporary climatic variation in space. 137 

Aim 3: Examine consistency of projected plant and ant community sensitivity given 138 

different climate projections.  139 

 140 

Methods 141 

Sampling 142 

In order to assess the biotic change associated with spatial environmental change, a 143 

transect design was implemented, with groups of three sites established at 17 locations along 144 

the bioclimatic gradient present on the Adelaide Geosyncline in South Australia (Figure 1; 145 

Table 1). This nested design allowed us to quantify the biotic variability for each location, 146 

including that caused by disturbance. . Survey locations were established in areas of large, 147 

homogenous vegetation protected either in private or public biodiversity conservation 148 
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reserves (Guerin et al. (2014). Plants were comprehensively surveyed in a 30 x 30 m plot at 149 

each of the 51 sites in the spring of 2011. For each species, growth form and a visual estimate 150 

of projected cover were recorded (minimum of 1% for very low cover, thereafter in 5% 151 

increments). Plants were identified to species (where possible) and vouchers lodged at the 152 

State Herbarium of South Australia. Other environmental variables (aspect, slope, estimated 153 

percentage rock outcrop and estimated percentage surface strew) were also recorded. Surface 154 

soil samples were collected and tested in the laboratory for sand content, pH, 155 

electroconductivity, and the concentration of ammonium (NH4), nitrate (NO3), phosphorous 156 

(P) and potassium (K). The circular variable “aspect” was transformed to the linear variables 157 

“eastness”: sin(
aspect × π

180
) and “northness”: cos(

aspect × π

180
) to allow these to be combined with 158 

other linear variables.  159 

The same sites were sampled for ants from north to south in November 2012. Ants 160 

were trapped in pitfall traps in a 5 x 3 grid, with 10 m spacing. Pitfall traps were plastic 161 

containers (internal diameter of 42 mm), filled three quarters with 70% ethyl glycol as a 162 

preservative. Traps were left in the field for 48 hours. Ants were sorted to morphospecies 163 

(hereafter referred to as species), with undescribed species assigned a letter code applicable to 164 

this study only. For each trap, ant abundance was capped at 50 individuals of each species to 165 

reduce the influence of highly abundant species, or over-representation of species with nests 166 

situated close to a trap. A complete set of voucher specimens was lodged at the CSIRO 167 

Tropical Ecosystems Research Centre in Darwin.  168 

Elevation was extracted from the GEODATA 9 second digital elevation model 169 

(Hutchinson et al., 2008). Site values for Mean Annual Temperature (MAT; Bio01); Mean 170 

temperature of warmest quarter (MaxT; Bio10); Mean temperature of coldest quarter (MinT; 171 

Bio11); Mean Annual Precipitation (MAP; Bio012); Precipitation of wettest month (MaxP; 172 
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Bio13) and Precipitation of driest month (MinP; Bio14) were extracted from BIOCLIM 173 

layers modelled at 9 second resolution extracted from ANUCLIM 6.1 (Xu and Hutchinson, 174 

2013) with the GEODATA 9 second DEM (Hutchinson et al., 2008) derived by CSIRO 175 

(Harwood et al., 2014). Climate averages cover 30 years (1975 to 2005), centred on 1990 as a 176 

baseline.  177 

 178 

Analysis 179 

All data analyses were undertaken in R (R Core Team, 2017). To describe the rate of 180 

species change along our gradient, we calculated ß-diversity for plant and ant assemblages. ß-181 

diversity can be partitioned into the species replacement (ßSIM) and to species nestedness (the 182 

degree to which the species at one site are a subset of those from another site) (Baselga, 183 

2012). To account for the contributions of species replacement and nestedness to ß-diversity, 184 

we calculated ßSIM and the nestedness fraction of dissimilarity (ßSNE), as well as Sørensen 185 

pairwise dissimilarity (ßSOR = ßSNE + ßSIM) using betapart (Baselga and Orme, 2012).  186 

We used non-metric multidimensional scaling (NMDS) of plant and ant assemblages 187 

to describe and visualise the relationship between species composition and environmental 188 

variables,  correlating environmental variables to the resultant ordination coordinates using 189 

vegan (Oksanen et al., 2016). Assemblages of plants and ants across the gradient were 190 

compared in two ways. First, we compared NMDS ordinations for plant and ant assemblages 191 

using a ‘Procrustes’ analysis, which fits one ordination onto another through scaling and 192 

symmetrical rotation to determine whether plant and ant assemblages are similarly distributed 193 

through biotic space across the gradient (Peres-Neto and Jackson, 2001). Second, we built 194 

dendrograms of both plant and ant assemblages, which were aligned using stepwise 195 

disentanglement of trees using dendextend (Galili, 2015). We were then able to visualise 196 
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the alignment of plant and ant assemblage difference across the gradient and calculate 197 

“entanglement” between trees (i.e. the degree to which differences between the taxa and their 198 

drivers interferes with alignment of assemblages). 199 

To make predictions of compositional change based on future climate projections, we 200 

used Canonical Correspondence Analysis (CCA) ordination to constrain compositional 201 

variation to that explained by environmental variables. To avoid “over-fitting” of the 202 

biological response, we used a separate stepwise model building process to select variables 203 

for plant and ant assemblages, where the most parsimonious set of explanatory variables were 204 

evaluated based on adjusted r2 and p scores (Oksanen et al., 2016). 205 

The baseline model was used to assess future change, and the workflow used to 206 

develop future predictions of plant and ant assemblages is illustrated in Figure 2. We 207 

obtained future values of the climatic variables from model simulations, and combined these 208 

with current soil and landscape variables to produce a predicted environmental variables 209 

matrix. Using the relationships established between environmental variables and assemblages 210 

in the baseline (current) CCA, we were able to generate a predicted CCA (pCCA) showing 211 

how the assemblages on the gradient are likely to migrate on the gradient in biotic space in 212 

response to the change in climate variables.  213 

To represent biotic change over time and under different climate predictions, we 214 

generated 12 pCCAs using projected data for three time periods (2050, 2070 and 2090) from 215 

two climate models (the Australian Community Climate and Earth-System Simulator 216 

(ACCESS; Bi et al., 2013) and Geophysical Fluid Dynamics Laboratory (GFDL; Dunne et 217 

al., 2013)) and two Representative Concentration Pathways (RCPs; RCP4.5, where carbon 218 

emissions are rapidly controlled and stabilised by the end of the century with 1.1-2.6°C 219 

warming by 2100) and RCP8.5 (unchecked carbon emissions; 2.6-4.8°C warming by 220 
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2100) (IPCC, 2013). The climate scenario projections were generated and thermally-adjusted 221 

for topographic variation by the CSIRO (Harwood et al., 2014). All climate variables were 222 

extracted through ANUCLIM v6.1 (Xu and Hutchinson, 2013). 223 

We then calculated the linear distance between the first two axes of the baseline 224 

(current) CCA and pCCA coordinates for each site, as a measure of predicted change 225 

between the baseline and a future climate scenario (Figure S1). This process was repeated for 226 

each pCCA, giving values of changes in Euclidean distances until 2090 under two climate 227 

models (ACCESS and GFDL) and two greenhouse gas concentration scenarios (RCP4.5 and 228 

RCP8.5); and allowed us to visualise whether linear distances (i.e. change in biodiversity) for 229 

plants and ants separately was projected to increase, decrease or remain static. In order to 230 

visualise the climatic change associated with biotic projections, we repeated the above 231 

process for climate data only using Principal Component Analysis (PCA) and projected PCA 232 

ordinations (Figure 2). 233 

To determine how plant and ant assemblages are projected to change in relation to one 234 

another, a separate, but similar workflow was implemented (Figure 3). Linear distances 235 

between the coordinates of the first two axes for each site of CCAs established for current 236 

plant and ant assemblages measured and established as a baseline. The same process was then 237 

repeated using pCCAs generated using future environmental matrices derived for 12 future 238 

climates as described above. Euclidean distances were measured between sites for each pair 239 

of plant and ant assemblages at each time point under the 12 future climates (Figure S2). 240 

 241 

 242 
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Results 243 

Surveys of sites across the entire bioclimatic gradient yielded a total of 363 plant 244 

species, primarily forbs and shrubs (40% and 33% of species respectively). We detected 227 245 

ant species from eight subfamilies, primarily Formicinae and Myrmicinae (42% and 30% of 246 

species respectively). Species accumulation curves pooled across all sites for both the plant 247 

and ant datasets showed flattening consistent with sampling the majority of the regional 248 

species pool for sampled habitats, although ants appeared to be more completely sampled 249 

than plants (Figure S3). 145 ant species (66.8% of total) could not be identified to species and 250 

are likely to be undescribed.  251 

 252 

Species diversity 253 

Plant species richness was positively correlated with MAP while ant species richness 254 

was not (Figure 4). Total vegetation cover showed a strong positive correlation with MAP 255 

(r2=0.5159, p<0.001), primarily driven by forbs and woody plants (Figure S4), but there was 256 

no relationship between total vegetation cover and either ant species richness or abundance 257 

(Figure S5). 258 

ß-diversity was very high for both plants (ßSOR=0.963) and ants (ßSOR=0.967), with 259 

species replacement (ßSIM) accounting for most species turnover in both cases (Table 2).  260 

 261 

Species composition 262 

NMDS ordinations correlated with all climate variables for both plants and ants. Plant 263 

assemblages were best associated with climatic (temperature, precipitation and moisture) 264 

variables and had weaker (but generally highly significant) correlations with most landscape 265 
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and soil variables (Table 3). Ant assemblages were more-weakly correlated with climate, and 266 

did not show a significant relationship with any physical variables except latitude (which was 267 

correlated with climate) and slope. The strongest environmental correlates with community 268 

composition were MaxT (plants:  R = 0.87, p<0.001; ants:  R = 0.18, p<0.05), MaxP (plants:  269 

R = 0.86, p<0.001; ants:  R = 0.28, p<0.01) and MAP (plants: R = 0.85, p<0.001; ants: R = 270 

0.28, p<0.01). Precipitation variables were the strongest environmental correlate for both ant 271 

and plant assemblages. MaxP and MAP were highly correlated (R = 0.996, p <0.001) so 272 

despite being marginally less correlated than MaxP, MAP was chosen as the dominant 273 

environmental variable for subsequent analysis to facilitate ready comparison with other 274 

studies. 275 

Based on plant community composition, sites fell in to three main clusters, mostly 276 

aligned with the Fleurieu Peninsula, Mid North and Flinders Ranges regions (Figure 5). 277 

There were two exceptions to this alignment: the Upper Dutchman’s Stern (DUTU) sites 278 

were placed within the Mid-North cluster despite being located in the Flinders Ranges; and 279 

the lower Mt Remarkable (REML) sites formed an outlier group. Sites arranged by ant 280 

species composition displayed a similar pattern, with REML sites again forming an outlier 281 

group, but there was generally more variability than in plant communities, leading to a less 282 

clear geographic alignment of community composition. The Mt Remarkable Upper (REMU) 283 

and Dutchman’s Stern (DUTU and DUTL) sites showed particularly high assemblage 284 

variability and were placed in all three geographic regions. Three Fleurieu sites (Kaiserstuhl-285 

E (KAIS-E) Deep Creek-C (DEEP-C) and Montacute-C (MONT-C)) were placed in the Mid-286 

North cluster despite being located in the Fleurieu. Alignment between plant and ant 287 

communities was high, with an entanglement of 0.108 (based on a scale of 0-1, where 0 288 

indicates perfect alignment (Galili, 2015)), suggesting a high degree of similarity in the 289 

structuring of plant and ant communities in relation to environmental variation (Figure 5). 290 
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Procrustes correlation of plant and ant NMDS ordinations revealed a significant correlation 291 

(correlation= 0.36, p=0.004), again indicating substantial congruence between the plant and 292 

ant assemblages across the gradient. 293 

Using variables selected through the stepwise model building process (Table 4), CCA 294 

ordinations of environmental variables were able to constrain 65% and 50% of observed 295 

variation in plant and ant species composition respectively. In order to visualise predicted 296 

change across the entire gradient, we represented each CCA and pCCA as a polygon of the 297 

ordination space occupied by all sites (Figure 6). For all four model-RCP scenario pairs, the 298 

biotic responses shifted far more markedly than the climatic space of the entire gradient, 299 

although this masks substantial climatic movement of individual sites (not shown). Plant 300 

communities were very sensitive to predicted climate change across all four tested scenarios 301 

but did not show ongoing movement along a single axis, instead migrating in a different 302 

direction between each time point. Ant communities showed a stronger and more consistent 303 

response, with the polygon representing the entirety of the gradient in ant composition space 304 

migrating extensively along a MaxT/MAP/MaxP axis. There was no consistent difference in 305 

biotic projections based on climate projections of RCP 4.5 and 8.5 scenarios from the 306 

ACCESS and GFDL models, but biotic projections based on GFDL models were less linear 307 

over time compared to ACCESS projections (Figure 6). 308 

We represented the magnitude of compositional change (i.e. linear distance) over time 309 

for plant and ant assemblages compared to their current baseline, and for paired plant-ant 310 

assemblages through time (Figure 7). The projected compositional change for plant 311 

communities was much lower than for ant communities. The plant communities of Flinders 312 

Ranges and Fleurieu Peninsula sites generally appeared to be more sensitive than the Mid-313 

North sites, although this was highly dependent on the model and emissions scenario. 314 

Projections for ant communities were similarly variable, with Fleurieu Peninsula and Mid-315 
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North sites generally projected to show the greatest species change, regardless of emissions 316 

scenario. Many sites showed a decrease in linear distances after 2070, indicating movement 317 

back toward baseline and therefore partial ecological recovery. Such ecological recovery 318 

could be attributed to a climatic recovery for the RCP 4.5 scenarios, which assumes carbon 319 

emissions will peak around 2040, however this is not the case for the RCP 8.5 scenarios, 320 

which assume that emissions will not peak before the end of the century (Meinshausen et al., 321 

2011). Because the ant community response was much greater than the plant community 322 

response, the total divergence (i.e. linear distance between a site’s projected plant community 323 

and ant community) was dominated by the ant community response. 324 

Ant assemblages were far more sensitive than plants irrespective of climate model or 325 

greenhouse gas scenario, but when the ratios of linear distances for plant and ant assemblage 326 

projected change by 2050 (Supplementary Figure S6) are compared, ants range from 3.4 327 

times (ACCESS RCP4.5) to 7.5 times more sensitive than plants (GFDL RCP 8.5). When 328 

compared across models and greenhouse gas scenario pairs, climate model has a slightly 329 

larger effect than greenhouse gas scenario (Table 5). 330 

While there was no systematic pattern of sensitivity to climate at a regional level, 331 

when looking at responses site-by-site (Supplementary Figure S6), some trends emerged. Mt 332 

Remarkable Lower (REML) appears to be the most consistently sensitive site for both plants 333 

and ants across all tested climate scenarios, indicating this area has a high likelihood of 334 

undergoing significant biodiversity shifts, while Kaiserstuhl (KAIS) is predicted to have 335 

comparatively low change. The lack of consistency in relative sensitivity of sites across 336 

different model-RCP scenario pairs indicates there is substantial uncertainty about which 337 

sites and assemblages will show the most response to future abiotic change. 338 

 339 
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Discussion 340 

We used the sensitivity of ant and plant responses to spatial environmental change to 341 

predict whether these two focal taxa will show concordant responses future climate change. 342 

We found that variation in plant and ant assemblages were well-aligned across the spatial 343 

gradient, but there were differences in the environmental variables that explained the patterns 344 

of diversity. The general trend of warming and drying (with more rainfall variability) 345 

predicted for our study region is likely to have a greater impact on ant assemblages than plant 346 

assemblages.  347 

 348 

Patterns of species richness 349 

Determining whether patterns of species richness are consistent in different taxa and 350 

environments is important to understand the fundamental drivers of biodiversity. Our finding 351 

that species richness was correlated with MAP for plants but not ants indicates that there may 352 

be different processes driving diversity for these groups. The lack of change in ant species 353 

richness across a wide climate gradient is unusual (Dunn et al., 2009), but mirrors results 354 

from gradients from steppe to desert in central Asia (Pfeiffer et al., 2003) and tropical to arid 355 

zone savannas in northern Australia (Andersen et al., 2015). Consistent richness across the 356 

northern Australian gradient was attributed to a lack of temperature change, and/or the 357 

presence of a megadiverse ant fauna in the arid zone, which has been a source of species 358 

radiation back in to tropical savannas (Andersen et al., 2015, Andersen, 2016). On our 359 

southern Australian gradient, ant species richness was maintained despite temperature and 360 

rainfall changing together, suggesting that temperature is not driving ant diversity, or that 361 

temperature and rainfall acted on species richness diametrically. Both gradients move from 362 

wetter coastal environments to the arid interior, however, providing support that ant species 363 
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diversity might be maintained by an unusually diverse species pool in the arid zone. Our 364 

finding of no association between total vegetation cover and ant species richness or 365 

abundance (Figure S5) is incongruent with other studies (e.g. Lassau and Hochuli, 2004, 366 

Vasconcelos et al., 2008), and suggests relationships between vegetation and ant richness 367 

may be region-dependant and driven by the vegetation type and species identities and 368 

functional roles of the regional ant fauna.  369 

 370 

Species composition and environmental drivers 371 

We found that variation in both plant and ant species composition was correlated with 372 

their environment, although there was a much stronger correlation between individual 373 

environmental variables and assemblages of plants than ants (Table 3). The finding that ant 374 

assemblages correlated more strongly with precipitation than temperature variables was 375 

contrary to our expectations that small ectotherms would be primarily temperature-driven as 376 

found in other studies (Sanders et al., 2007, Tiede et al., 2017). However, the included 377 

temperature variables were modelled air temperature rather than ground surface temperature, 378 

the latter being likely to be more relevant for ants (Lessard et al., 2009) and subject to small-379 

scale microclimatic variation (Keppel et al., 2017). The correlation of slope and aspect 380 

variables to ant assemblages (Table 3) and the inclusion of those variables as predictors in 381 

our stepwise model building process (Table 4) reflects the importance of insolation as a key 382 

driver of ant species composition (Andersen, 1995). 383 

When considered together, linear combinations of environmental variables were able 384 

to constrain 65% of assemblage variation for plants and 50% of assemblage variation for ants 385 

(Table 4). The weaker association of ant assemblages with individual environmental variables 386 

may point to the diversity of ant species, each of which may be more or less sensitive to a 387 
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range of environmental drivers (temperature; moisture; soil type; cover, etc.), meaning that 388 

the assemblage as a whole does not correlate well with change in one driver. Our ability to 389 

explain 50% of assemblage variation with a suite of environmental drivers provides support 390 

for this hypothesis, but suggests that there are other important factors at play. Such factors 391 

could include untested variables, such as seasonality or climate variability, which can be an 392 

important driver of trait variation and species distributions, particularly for ants (Arnan et al., 393 

2014). Incomplete sampling of assemblages (particularly for ants, which are more easily 394 

overlooked than plants) can also impede the signal between environment and biodiversity 395 

response. Potential nonlinear relationships between biodiversity occurrence and turnover and 396 

the environment could be further explored using other regression-based tools, such as 397 

generalised dissimilarity modelling (Ferrier et al., 2007) or fitting linear models to each 398 

species independently (Wang et al., 2012). 399 

It is also likely that some species distributions are not driven by current environmental 400 

conditions. Indeed, stochastic factors may play an important role in observed distributions of 401 

species with restricted dispersal capacity, including many invertebrates and some plants. 402 

Short-range endemic invertebrate species are common in Australia, particularly in 403 

fragmented landscapes (Harvey, 2002). Non-environmentally driven species change could 404 

also be attributed to recent habitat clearance. This is plausible for our study region, which has 405 

experienced extensive clearing since European settlement and now comprises largely non-406 

contiguous reserves, particularly in areas of high elevation surrounded by plains, such as 407 

Dutchman’s Stern (DUTL, DUTU), Mt Remarkable (REML, REMU) and the Tothill Range 408 

(TOTR) sets of sites (see Figure 1). 409 

The relationship between the assemblages of different organisms provides an 410 

indication as to whether factors shaping species distributions (including environment, historic 411 

biogeography and even serendipity) have affected different taxa together or independently. 412 
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Our finding that plant and ant assemblages both exhibited high ß-diversity (Table 2) and 413 

similar spatial structuring over the environmental gradient (Figure 5), suggests that these 414 

assemblages have indeed been fashioned through similar ecological processes. Biotic 415 

interactions may also play a role in linking assemblages by the development of associations 416 

between species that strengthen local biotic networks. Close associations between plant and 417 

ant assemblages was also detected on an elevational gradient in Nevada (Sanders et al., 418 

2003). Similarly, assemblage fidelity between plant and invertebrate assemblages was found 419 

in logged and unlogged forest sites (Oliver et al., 1998) and in riparian corridors in eastern 420 

Australia (Ives et al., 2011), suggesting congruence between plant and invertebrate taxa may 421 

be common.  422 

 423 

Projecting changes in species composition  424 

In addition to better understanding the drivers of current biodiversity, models of biotic 425 

response to spatial gradients allows projections to be made of how biodiversity will respond 426 

to future climate change. Any projections are subject to the limitations of the initial model. 427 

Nevertheless, despite the existence of drivers that impact on species distributions that we 428 

were not able to model, we were able to constrain nearly two thirds and half of observed 429 

variation in plants and ants respectively (Table 4). Nevertheless, because we do not know 430 

what is driving the unconstrained component of the observed species distributions, it is 431 

impossible to know whether unmodelled forces are extant or if they will accelerate or dampen 432 

the magnitude of any change in future climates. Moreover, when the predictive model is 433 

based on assemblage responses to correlated environmental variables, such as temperature 434 

and rainfall on our gradient, a decoupling of these variables (i.e. a novel environment) may 435 

lead to biotic change that cannot be predicted by the model. Noting these limitations, we have 436 
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used “mild” (RCP 4.5) and “severe” (RCP 8.5) climate change scenarios from two global 437 

climate models to account for climate uncertainty and used these variables to predict how 438 

plant and ant assemblages will change by 2050, 2070 and 2090 (Figure 2; Figure 3).  439 

The biotic predictions that we make using these scenarios are based on the 440 

environment-associated variability we were able to constrain and do not predict species 441 

occurrences directly, but rather the direction and magnitude of shift in “biodiversity space” 442 

over time. This approach has the benefit of accounting for the important, yet often neglected 443 

elements of species abundance and trait variability (McMahon et al., 2011, Ehrlén and 444 

Morris, 2015), but has several important limitations. Chief amongst these are the assumptions 445 

that: a) species are immutable (i.e. will not exhibit trait change that allows them to persist in 446 

currently unsuitable habitat); b) no new species will enter the system; c) all responses are 447 

environmentally driven and occur linearly with environmental change; d) all species are able 448 

to instantly disperse to locations with a suitable environment; and e) species absence 449 

indicates that the environment is not suitable. Unfortunately, none of these assumptions hold 450 

true in all cases, and will limit the accuracy of any predictions made. Nonetheless, strong 451 

environmental controls on species composition are evident across space, and this approach 452 

gives useful insight in to the trends we are likely to see in plants and ant fauna, and allows 453 

speculation on the comparative magnitude of biodiversity shifts we are likely to see in 454 

different taxa, locations and under different climate change scenarios.  455 

The results of this analysis, that projected ant assemblages are far more responsive to 456 

projected environmental change than plant communities (Figure 6, Figure 7, Supplementary 457 

Figure S6), is surprising given both groups displayed similar species turnover (Table 2) and 458 

assemblage patterns (Figure 5). It is likely that the high proportion of ant species found at 459 

only one site (40.6%; compared to 23.5% of plant species) contributed to this uneven 460 

response, but it is unknown whether this current site-specificity represents an 461 
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environmentally driven species response or a stochastic element that may not be responsive 462 

to future climate change. Surprisingly, the migration of the future plant assemblages through 463 

biotic space does not appear to be strongly aligned with any single dominant environmental 464 

variable (Figure 6). On the other hand, ant assemblages appear to be migrating on an axis of 465 

increasing MAP and MaxP and decreasing MaxT, despite the climate models generally 466 

predicting increased temperatures and rainfall variability, providing evidence that 467 

temperature and rainfall do drive ant assemblage change but each can mask the effect of the 468 

other. The approach we have used here of representing the entire gradient as a polygon in 469 

climate and biotic space may mask the rearrangement of individual sites within that polygon, 470 

but aggregating the response at a gradient level is likely to be more representative of the 471 

change we see in the future than site level change due to the reduced role of stochastic 472 

processes at the landscape level. 473 

We have used linear distance to give a sense of the magnitude of projected biotic 474 

shifts, but it is important to realise that while related, linear distances do not necessarily scale 475 

to biodiversity change. Plant and ant assemblages at many sites show a peak in linear distance 476 

by 2050 or 2070, followed by a decrease by 2090 (Figure 7). It is tempting to interpret such a 477 

pattern as an “ecological recovery” following climate change being arrested. While this could 478 

be the case for the RCP4.5 scenarios, the presence of this response in assemblages under the 479 

RCP8.5 scenarios, for which there is no climatic recovery, suggests an alternative 480 

explanation. We found a high ßSIM (Table 2) and proportion of species detected at only one 481 

site (40.6% for ants, 23.5% for plants) for this gradient, suggesting a small environmental 482 

change is likely to result in the loss of several species from the system. The resulting increase 483 

the nestedness component of ß-diversity (ßSNE) and homogenisation of assemblages across 484 

the gradient could result in a decline in linear distances despite increasing environmental 485 

change. Given that our modelling approach is unable to accommodate changes in traits or 486 
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behaviours within species, or the migration of new species in to the study system, species loss 487 

is probably exaggerated. This suggests that decreases in linear distances between time periods 488 

are unlikely to be associated with real ecosystem recovery, and will instead be associated 489 

with increased species extirpation and immigration of new species. 490 

It is likely that there will be a substantial lag in response to changed environment for 491 

some species. The generation time of both plants and ant colonies is variable, ranging from 492 

weeks to decades (Keller, 1998, Marbà et al., 2007), with some woody plants able to live 493 

substantially longer. Short-lived or rapidly dispersing species are likely to show the most 494 

rapid response to environmental change, with longer lived species and those with poor 495 

dispersal showing less response (Pearson and Dawson, 2003). It is therefore likely that some 496 

species (ants, short-lived plants) will show a more rapid environmental response to climate 497 

change, either dispersing to new locations or extirpated from the system. Longer-lived 498 

species, such as trees may persist far beyond their capacity to reproduce in a changed 499 

environment (Vellend et al., 2006), leading to an “extinction debt”. 500 

In addition to this extinction debt, there may be an “immigration credit”, whereby the 501 

environment changes sufficiently to allow other species to migrate in to previously unsuitable 502 

habitat may also occur (Jackson and Sax, 2010). Extinction debts and immigration credits 503 

will have the effect of reducing shorter-term biodiversity response, but ecological inertia can 504 

continue to alter ecosystem assemblages for some time, even if climate change is arrested 505 

(Blonder et al., 2017). While we can therefore expect substantial changes in biodiversity and 506 

ecosystem function, the ecological lag of these effects may mean that these effects may take 507 

some time to materialise and accumulate to the point where second order changes (such as 508 

biotic-driven environmental change) can occur (Xu et al., 2015). In addition to the ecosystem 509 

services that the ecosystem engineering guilds of plants and ants provide, individual species 510 

associations play an important role in species persistence. Facilitative effects may allow some 511 
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species to flourish in otherwise hostile environments (Gilman et al., 2010); while altered 512 

competition (Vergnon et al., 2017), predation (Beukema and Dekker, 2005) or other 513 

ecosystem dynamics may lead to species being extirpated from otherwise benign conditions. 514 

Our finding that a given site’s predicted biodiversity change can be in the top or 515 

bottom tertile depending on the RCP scenario or model selected underscores the bias and 516 

uncertainty climate model selection can introduce in to any biodiversity projections. The 517 

uneven sensitivity across taxa (Figure 6) and lack of clear regional trends (Figure 7) suggests 518 

simple space-for-time substitutions are unlikely to be accurate when predicting long-term 519 

biodiversity shifts for this study region, indicating such an approach should be approached 520 

with caution (Blois et al., 2013).  521 

Despite evidence of strong congruence between plant and ant assemblage structuring 522 

under current climate conditions, our model suggest that climate change will place significant 523 

stress on this congruence. Taking into account the uncertainty in climate scenarios, a greater 524 

magnitude response to climate change of the ant fauna compared to the plant species along 525 

the gradient is likely to lead to decoupling of these keystone taxa. We interpret this to mean 526 

that other assemblages of organisms within communities are likely to show similarly uneven 527 

sensitivities to future climate change, which could lead to substantial change in species mix 528 

and function. These findings could be further augmented by analysis using newer techniques 529 

such as generalised dissimilarity modelling (Ferrier et al., 2007) which accommodates 530 

nonlinear relationships and has the potential to confirm and further refine the results we 531 

present here. 532 

 533 



 

 209 

Conclusion 534 

We found environment explained nearly two thirds of species composition for plants 535 

and half of species composition for ants, and that these two groups showed strong congruence 536 

over the tested bioclimatic gradient. We found that both groups are likely to display strong 537 

response to future climate change, but the magnitude of ants assemblage change by 2050 will 538 

be ca. 3.4 to 7.5 times greater than that for plants. This finding suggests that a decoupling of 539 

ant and plant assemblages are likely occur, which may have negative implications for the 540 

stability and function of these communities. This work provides exciting avenues for future 541 

research, including extension to include other important taxa, replication on other gradients to 542 

test for similar responses, and ongoing monitoring to test the accuracy of our predictions. The 543 

development of a global network of well-characterised plot networks through national and 544 

international ecological observatory networks such as the National Ecological Observatory 545 

Network in the United States, the Terrestrial Ecosystem Research Network in Australia and 546 

the International Long Term Ecological Research Network, provides a very strong 547 

infrastructure base on which this research could be undertaken. 548 
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Table 1: Survey site information for 51 sites ordered north to south. 

Region Site code Site name Reserve Latitude Longitude 

Flinders 

Ranges 

WARR-B Warraweena B 

Warraweena* 

-30.7757 138.7975 

WARR-C Warraweena C -30.7757 138.7960 

WARR-E Warraweena E -30.7757 138.7929 

BRAU-D Brachina Upper D 

Ikara-Flinders 

Ranges National 

Park 

-31.3132 138.5654 

BRAU-C Brachina Upper C -31.3136 138.5668 

BRAU-E Brachina Upper E -31.3155 138.5664 

BRAL-C Brachina Lower C -31.3246 138.5664 

BRAL-B Brachina Lower B -31.3262 138.5675 

BRAL-E Brachina Lower E -31.3277 138.5674 

WILP-A Wilpena Pound A -31.5439 138.5956 

WILP-C Wilpena Pound C -31.5463 138.5955 

WILP-E Wilpena Pound E -31.5485 138.5970 

DUTU-E Dutchman’s Stern Upper E 

Dutchman’s Stern 

Conservation Park 

-32.3078 137.9703 

DUTU-B Dutchman’s Stern Upper B -32.3105 137.9680 

DUTU-A Dutchman’s Stern Upper A -32.3114 137.9680 

DUTL-E Dutchman’s Stern Lower E -32.318 137.9559 

DUTL-B Dutchman’s Stern Lower B -32.3209 137.9545 

DUTL-A Dutchman’s Stern Lower A -32.3222 137.9545 

Mid-

North 

REMU-A Mt Remarkable Upper A 

Mt Remarkable 

National Park 

-32.7486 138.1367 

REMU-C Mt Remarkable Upper C -32.7514 138.1370 

REMU-D Mt Remarkable Upper D -32.7539 138.1379 

REML-E Mt Remarkable Lower E -32.826 138.0306 

REML-C Mt Remarkable Lower C -32.8284 138.0310 

REML-A Mt Remarkable Lower A -32.8285 138.0334 

SPRG-A Spring Gully A 
Spring Gully 

Conservation Park 

-33.914 138.6043 

SPRG-C Spring Gully C -33.9158 138.6052 

SPRG-E Spring Gully E -33.9188 138.6044 

TOTR-A Tothill Range A 

Tothill Range* 

-34.005 138.9598 

TOTR-B Tothill Range B -34.0068 138.9605 

TOTR-D Tothill Range D -34.0076 138.9634 

Fleurieu 

Peninsula 

KAIS-C Kaiserstuhl C 
Kaiserstuhl 

Conservation Park 

-34.5741 139.0086 

KAIS-A Kaiserstuhl A -34.5767 139.0071 

KAIS-E Kaiserstuhl E -34.5783 139.0096 

SAND-B Sandy Creek B 
Sandy Creek 

Conservation Park 

-34.609 138.8613 

SAND-A Sandy Creek A -34.6094 138.8597 

SAND-D Sandy Creek D -34.6095 138.8576 

HALE-D Hale D 
Hale Conservation 

Park 

-34.6818 138.9048 

HALE-B Hale B -34.6822 138.9074 

HALE-A Hale A -34.6827 138.9086 

BLCK-E Black Hill E 
Black Hill 

Conservation Park 

-34.8792 138.7108 

BLCK -B Black Hill B -34.8808 138.7084 

BLCK -C Black Hill C -34.8823 138.7080 

MONT-B Montacute B 
Montacute 

Conservation Park 

-34.8866 138.7885 

MONT-C Montacute C -34.8873 138.7873 

MONT-A Montacute A -34.8874 138.7908 

HORS-A Horsnell Gully A 
Giles Conservation 

Park 

-34.9341 138.7271 

HORS-B Horsenell Gully B -34.9352 138.7289 

HORS-E Horsnell Gully E -34.9359 138.7316 

DEEP-A Deep Creek A 
Deep Creek 

Conservation Park 

-35.6083 138.2613 

DEEP-C Deep Creek C -35.6092 138.2633 

DEEP-D Deep Creek D -35.6094 138.2644 

*Private conservation reserve  
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Table 2: Components of ß-diversity for plant and ant assemblages. 

 
ßSIM ßSNE ßSOR 

Plant 
0.954 0.009 0.963 

Ant 
0.958 0.009 0.967 

ßSIM = species replacement, ßSNE = nestedness component of ß-

diversity, ßSOR = Sørensen pairwise dissimilarity 
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Table 3: Correlations of environmental variables with NMDS ordinations. 

Variable Plant assemblage Ant assemblage 

Latitude 0.75*** 0.13* 

Longitude 0.28** 0.03 ns 

MAT 0.58*** 0.17* 

MaxT 0.87*** 0.18* 

MinT 0.41*** 0.14* 

MAP 0.85*** 0.28** 

MaxP 0.86*** 0.28** 

MinP 0.56*** 0.14* 

MAMI 0.84*** 0.21** 

MaxMI 0.71*** 0.20** 

MinMI 0.78*** 0.21** 

Elevation 0.11** 0.05 ns 

Aspect 0.01 ns 0.05 ns 

Slope 0.10 ns 0.13* 

Outcrop 0.25*** 0.11 ns 

Percentage surface strew 0.38*** 0.01 ns 

Percentage sand 0.30*** 0.03 ns 

NH4 0.34*** 0.09 ns 

NO3 0.14** 0.11 ns 

P 0.13*** 0.06 ns 

K 0.34*** 0.05 ns 

Surface EC 0.15* 0.01 ns 

Surface pH 0.57*** 0.07 ns 

Mean Annual Temperature (MAT; Bio01); Mean temperature of warmest quarter 

(MaxT; Bio10); Mean temperature of coldest quarter (MinT; Bio11); Mean Annual 

Precipitation (MAP; Bio012); Precipitation of wettest week (MaxP; Bio13) and 

Precipitation of driest week (MinP; Bio14) were extracted from BioClim layers of a 

1960-2014 long-term average at 9 second (ca. 30m resolution). 
*p<0.05, **p<0.01, ***p<0.001, ns = not significant 
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Table 4: Results from stepwise model building process to establish the most 

parsimonious environmental variables to constrain baseline CCAs. 

Variable Plants Ants 

MAT Yes Yes 

MaxT Yes Yes 

MinT Yes Yes 

MAP Yes Yes 

MaxP Yes Yes 

MinP Yes Yes 

Elevation Yes Yes 

Northness Yes Yes 

Eastness Yes  

Slope  Yes 

Outcrop Yes  

Surface strew Yes Yes 

Sand   

NH4   

NO3 Yes  

P   

K Yes  

Surface EC Yes  

Surface pH Yes  

# variables 15 10 

Constrained 0.650 0.501 

Variation constrained in first two 

components 

0.337 0.422 
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Table 5: Comparative magnitude of determinant for average biotic 

response. 

Determinant Plant assemblage Ant assemblage Congruence 

Model 1.28 1.95 1.93 

RCP Scenario 1.18 1.83 2.03 
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 791 

Figure 1: Map of survey plot locations with context map of Australia (a), indicative layout of 792 

three plots at each location (b), location of survey locations in a bioregional context (c) and 793 

on a precipitation gradient (d). 794 
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 795 

Figure 2: To predict change over time for a single ecosystem component (i.e. plants or ants), 796 

long-term climatic variables and current soil and landscape variables, together with a 797 

community matrix, were used to generate a Canonical Correspondence Analysis (CCA) 798 

ordination (green dots). A predicted CCA (pCCA; purple dots) was generated using the 799 

relationship established between the position of sites on the initial CCA and projected 800 

environmental variables (generated as a combination of current soil and landscape variables 801 

and modelled climate projections). The linear distance between each sites’ coordinates on the 802 
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baseline CCA and pCCA for 2050, 2070 and 2090 was used to generate a predicted change in 803 

linear distance over time for each climate model/scenario pair. In order to project climatic 804 

shifts, the same process was undertaken using Principal Component Analysis (PCA) and 805 

predicted PCA for future scenarios. 806 

 807 

 808 

 809 
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 810 

Figure 3: To project whether the network of ant and plant communities are likely to be 811 

maintained under climate change, long-term climate variables were combined with current 812 

soil and landscape variables and the ant and plant community matrices to generate CCAs of 813 

our survey sites for both the plant (green) and ant (orange) communities. The linear distance 814 

between the plant and ant communities in this initial CCA ordination space was taken as a 815 
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baseline (2012) value. pCCAs for both plant and ant communities were generated from the 816 

initial CCAs with predicted environmental variables  (generated as a combination of current 817 

soil and landscape variables and modelled climate projections). The linear distance between 818 

each site’s plant and ant coordinates in ordination space for pCCAs for 2050, 2070 and 2090 819 

were subsequently recorded to show the change in relative positions between plant and ant 820 

projected ordinations over time. See Supplementary Figure S2 for more detail on the 821 

calculation of linear distances.  822 

 823 

 824 
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 825 

Figure 4: Plant species richness was positively correlated with mean annual precipitation 826 

(r2=0.52, ***=p<0.001) but ant species richness was not (r2=-0.06, p>0.05). 827 

 828 

 829 

 830 



 

 227 

 831 

Figure 5: Tanglegram generated using stepwise disentanglement of dendrograms generated 832 

from ant and plant species composition. Following disentanglement, plots were ordered north 833 

to south. An entanglement factor of 0.108 indicates that the two dendrograms are highly 834 

aligned, with entanglement of 0 representing perfect alignment and 1 indicating no alignment 835 

of sites between trees. Colours represent bioregions (dark blue=Fleurieu Peninsula; light 836 

blue=Mid North; orange=Flinders Ranges).  837 

 838 
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 839 

Figure 6: CCA ordinations of current environmental and species matrices (grey hulls) and 840 

predicted CCA ordinations (coloured hulls) generated using climate projections from the 841 

GFD and ACCESS models assuming RCP 4.5 (limited climate change) and RCP 8.5 842 

(uncontrolled climate change) scenarios. Hulls are drawn from the outermost site coordinates 843 

for each ordination and thus represents the entire ordination space covered by an assemblage 844 

matrix at a single point in time. Note the different scale for ant ordinations.  845 

 846 
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 847 

Figure 7: Linear distances between site coordinates in ordination space for vegetation 848 

communities, ant communities and between ant and plant communities (Divergence). Sites 849 

are coloured by bioregion (dark blue = Fleurieu Peninsula (most mesic, southernmost), light 850 

blue = Mid North, orange = Flinders Ranges (most arid, northernmost). Note the smaller y-851 

axis scale for plant assemblage plots. 852 
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Supplementary Information 853 

 854 

Figure S1: For each survey site (a-d), the linear distance between that site’s coordinates in 855 

the initial CCA of community matrix (green) and pCCAs for each time period. Zero is used 856 

as a baseline for the starting point (t0). The linear distances are then mapped to show overall 857 

change in linear distance for each site. A rapid and consistent change in linear distance (a) 858 

would indicate a high level change in species assemblages. A lower magnitude response (b) 859 

correspondingly indicates a low level of linear distance change, potentially indicating a 860 

smaller assemblage change. A steep increase followed by a reduction in linear distance (c, d) 861 

may indicate an ecological recovery in species assemblages, which having been redistributed 862 

on the gradient by environmental pressures are returning to a configuration resembling their 863 

original state. Alternately, this pattern may represent species being reorganised until the 864 
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environmental change exceeds a large number of species’ capacities to migrate, after which 865 

time they are removed from the system and the new assemblage is more similar to the 866 

baseline (although with fewer species present). 867 

  868 
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 869 

Figure S2: For each survey site (a-d), the linear distance between that site’s coordinates in 870 

the initial CCA of the plant community matrix (green) and initial CCA of the ant community 871 

matrix (orange) is used as a baseline (t0). The same process is undertaken for predicted CCAs 872 

at each time point (t1-t3). The linear distances are then mapped to show overall change in 873 

linear distance for each site. A maintenance of linear distance (site a) would indicate that 874 

while a site may migrate in ordination space, this is mirrored at the same scale for both plant 875 

and ant taxa, and the interactions between these groups may be maintained. A decrease (site 876 

b) or increase (site c) in linear distance indicates that plants and ants are responding unevenly, 877 

and likely represents a decoupling of these communities and a potential breakdown of 878 

ecological function. Because the origin (baseline) is the only reference point, both 879 

convergence (reducing linear distance) and divergence (increasing linear distance) are likely 880 
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to both represent decoupling. However, if a site displays an increase in linear distance and 881 

then a subsequent decrease (site d) (or vice versa), this may represent an ecological recovery 882 

of that site following a climatic recovery. 883 
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 885 

Figure S3: Accumulation curves for plant and ant species. Red lines show north (arid) to 886 

south (mesic) collector accumulation, black line indicates mean accumulation for 1000 887 

random permutations of site sampling order with 95% confidence intervals. Flattening of 888 

both curves indicates that the majority of the regional species pool was sampled. 889 
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 891 

Figure S4: Mean vegetation cover by growth form for each site set ordered by mean annual 892 

precipitation (drier sites in the north). Error bars show minimum and maximum values within 893 

site set. 894 
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 896 

Figure S5: Total vegetation cover (summed visual cover estimates for all species at a site) 897 

was highly variable across the three sites at each location. We found no relationship between 898 

vegetation cover and ant species richness (a), or abundance (b). Error bars show the 899 

minimum, maximum and mean values for each group of three sites. 900 

 901 
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902 

Figure S6: Predicted linear distances for the year 2050 for each of the plant assemblages, ant 903 

assemblages and for total divergence between plant and ant assemblages, for each site and for 904 

the four climate change scenarios based on the two climate models (ACCESS and GFDL, and 905 

the greenhouse gas concentration scenarios (RCP4.5 earlier peak and RCP8.5 no peak in 906 

carbon emissions). Results are coloured to represent the largest projected linear 907 

distance/ecological change tertile (red), median tertile (yellow) and smallest projected linear 908 

distance/ecological change tertile (green). 909 

 910 
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Chapter 7: Thesis Discussion, Conclusions and Recommendations 1 

 2 

This thesis has been presented as a series of manuscripts, either published, or in 3 

preparation for submission. Each chapter has its own discussion where results are considered 4 

in the context of the aims and literature associated with that chapter. Here, I present a more 5 

synthetic discussion of the overall contribution of this body of work to our understanding of 6 

how ecological communities respond to bioclimatic gradients and the implications for 7 

detecting and monitoring biotic responses to climate change. 8 

 9 

Species and ecosystem response to environmental change, non-linear responses and 10 

ecological thresholds 11 

One of the fundamental principles and foci of ecology is the knowledge that species 12 

and ecosystems are responsive to their environment. A growing appreciation that 13 

environment (particularly climate) is in a state of constant change and that humans have a 14 

major role in shaping this has led to an increased sense of urgency in understanding how 15 

these changes will affect biodiversity at different scales and time frames.  16 

To study this type of response, spatial bioclimatic gradients can be used as a platform 17 

from which to investigate how a change in environment determines biodiversity response at 18 

an infra-species, species and assemblage level. Such studies provide confirmation of the 19 

importance, but also complex nature, of the response to environmental and climatic change at 20 

different levels of biological organisation. 21 

The simplest relationships between biota and the environment are linear. Linear 22 

change, such as the relationship between plant species richness and rainfall on the TREND 23 

(Chapters 5 & 6), are easy to conceptualise and model, but given the complexity of 24 
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ecosystems and their many drivers, biotic change on gradients may be non-linear, displaying 25 

curvilinear or stepped responses (Ferrier et al., 2007, Eamus et al., 2015). Given the urgent 26 

need to understand how rapid climate change is likely to impact ecosystems, non-linear 27 

ecological thresholds are of particular interest. 28 

Thresholds have been detected in some studies but not others (Huggett, 2005, 29 

Lindenmayer and Luck, 2005). In Chapter 5, I attempted to identify one or more regions of 30 

higher than expected species turnover or structural change (which may represent an 31 

ecological threshold) on the TREND gradient, as has been described for this study region 32 

previously (Guerin et al., 2013). While I detected a threshold in community composition on 33 

the transect surveyed by Guerin et al. (2014), this threshold was not evident on the 34 

overlapping TREND-AusPlot transect, which extended further in to the arid zone. While the 35 

search for thresholds was not a focus in Chapter 4 (leaf carbon isotope responses) or the 36 

comparative sensitivity of plant and ant communities to climate change (Chapter 6), the 37 

ordination and linear regression methods used did have the potential to reveal disjunctions if 38 

present. However, no evidence for thresholds was identified in those analyses.  39 

While ecological thresholds are unambiguously present on some environmental 40 

gradients, their detection is dependent on the analytical techniques used to search for them 41 

(Andersen et al., 2009, Francesco Ficetola and Denoël, 2009), leading to suggestions that 42 

putative thresholds should be confirmed with multiple statistical approaches (Qian and 43 

Cuffney, 2012). 44 

Regardless of which analytical approach(es) are used, the ability to detect thresholds 45 

will be dependent on the quality of the ecological data used, meaning survey design is of 46 

critical importance. Surveys which are not representative of the study region have the 47 

potential to erroneously identify false thresholds (type I error) or fail to detect real thresholds 48 
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(type II error). For this reason, threshold detection should ideally be approached using a 49 

spatially expansive, long-term data set that encompasses the known ecological variability of 50 

the study region (in both space and time). This approach is possible for regions where large-51 

scale, systematic biodiversity surveys have taken place, but such resources are a rarity and 52 

when not available, a gradient-oriented transect design becomes an attractive and cost-53 

effective option. 54 

The stratification of survey times and locations is critical in considering the capacity 55 

of transects to inform on the existence of ecological thresholds. Thresholds can occur from 56 

scales ranging from metres to hundreds of kilometres. As a result, uneven survey effort may 57 

highlight minor ecotones in intensively sampled regions while poorly constraining thresholds 58 

at larger spatial scales. This is a potential issue for the TREND-AusPlots transect, which has 59 

a comparatively high concentration of sites at its northern extent, and large gaps of cleared 60 

vegetation in the mid-north region (Chapter 5). Despite this design limitation, the lack of 61 

detection of any thresholds for this transect rules out a type I error. The possibility of a type II 62 

error (i.e. false negative) in species composition cannot be overlooked, particularly given that 63 

an analysis of a much larger network of Biological Survey of South Australia plots found 64 

support for an ecotone between 400 and 600 mm mean annual precipitation (Guerin et al., 65 

2013). It is possible that this ecotone is not readily detectable with substantially fewer sites 66 

and may highlight the high sampling intensity that can be required for ecotone detection. 67 

 68 

Spatial and Temporal Considerations 69 

Types of bioclimatic gradients 70 

The primary purpose of a gradient approach is to maximise climatic variation (or 71 

more broadly, variation in some other environmental variable), while minimising spatial 72 
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extent. While gradients can traverse any environmental change, the three key types of 73 

bioclimatic gradients that are commonly encountered in the scientific literature are latitudinal 74 

gradients (such as the TREND), longitudinal gradients (such as the Northeast China Transect 75 

(NECT)) and altitudinal gradients.  76 

Latitudinal and longitudinal gradients tend to be spatially expansive, covering 77 

hundreds of kilometres and traversing broad climatic change, often from coastal to inland 78 

regions. In addition to change in climate, latitudinal gradients also encompass change in day 79 

length, which may represent a confounding influence when investigating taxa sensitive to 80 

small changes in photoperiod (e.g. mosquitoes (Urbanski et al., 2012)), and/or for very long 81 

transects traversing from (sub)polar to equatorial regions and thus massive differences in 82 

photoperiod. The <30 minute change in day length across the TREND is unlikely to have 83 

significantly impacted any of the biotic variables addressed in this thesis, but could be 84 

investigated in future work.  85 

This thesis has largely relied on linear analyses to examine the relationship between 86 

environment and biotic response. When using linear techniques, it is important to note that 87 

the interpretation of patterns along very long transects should be approached with caution, as 88 

they may lose power to inform on the drivers of biotic change once they extend beyond a 89 

linear change in climate. For example, the TREND traverses from the high rainfall 90 

mediterranean zone in to the arid interior of the continent, and could be extended further 91 

north to increase the spatial and climatic extent. However, extension of the TREND north of 92 

~24° latitude would encompass a transition from winter dominated to summer dominated 93 

(tropical) rainfall and increased monsoonal influence. The effect of such a long transect 94 

would be to effectively have two transitions (moving north, a temperate to arid transition, 95 

followed by an arid to tropical transition). Attributing biological change to a simple climatic 96 

change across the transect with linear statistics would therefore be problematic.  97 
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For this reason, bioclimatic transects should ideally be positioned to follow a simple 98 

and linear (i.e. monotonic) climatic transition, rather than multiple transitions. Data from 99 

multiple transects can then be integrated together (Caddy-Retalic et al., 2017). Alternately, 100 

non-linear approaches, such as Generalised Dissimilarity Modelling (Ferrier et al., 2007) may 101 

be used. 102 

Altitudinal transects exploit the rapid change in climate associated with increased 103 

elevation (i.e. decreased temperature, increased precipitation), resulting in very compact 104 

gradients (potentially only a few hundred metres) that encompass massive environmental 105 

change. The major benefit of this approach is that the effect of geographic isolation is much 106 

lower than with spatially extensive latitudinal or longitudinal gradients, and trait or species 107 

changes across the gradient are more likely to be driven by environment than simply because 108 

they are a long way apart. However, like latitudinal transects, altitudinal transects include 109 

inherent change in other environmental variables, including air pressure and solar radiation 110 

which may confound analyses, particularly for organisms sensitive to gas pressures (e.g. 111 

plants and invertebrates).  112 

 It is possible to effectively combine multiple transect types in to a transect-network 113 

that draws on the strength of each transect type. For example, longitudinal gradients are not 114 

affected by changes in photoperiod, and therefore observation across similar climatic space 115 

on latitudinal and longitudinal transects may represent a means of isolating the impact of 116 

photoperiod on biotic change. Likewise, combining a long transect (>200km) across a 117 

mountain range with regularly positioned smaller altitudinal transects (<1km) could allow 118 

environmental and spatial distance to be disentangled and would represent a powerful 119 

approach to improving knowledge of the climatic drivers of biotic change. 120 

 121 
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Temporal considerations and space/time substitutions 122 

 Analyses of spatial gradients generally assume that the biota are temporally static. 123 

However, ecosystems change temporally, with both stochastic and directional processes 124 

altering the biodiversity present over time. It is difficult to appreciate the magnitude of these 125 

stochastic and directional processes (which are likely to affect different taxa, ecosystems and 126 

regions differently) without repeated measurements, which are beyond the scope of most 127 

studies. This is true for any ecological investigation, but holds particular relevance for 128 

gradient studies for which there is an interest in using space as a proxy for time (Pickett, 129 

1989, Blois et al., 2013). 130 

 In the absence of temporal data for most systems, the concept of measuring biotic 131 

change over space to inform on biotic change at a location over time is attractive, particularly 132 

given the ongoing effort to understand the impacts of climate change on ecosystems. There 133 

are two major limitations to this approach. The first is our ability to constrain biotic 134 

variability as a response to environment, and the second is establishing equivalence between 135 

the environmental change that occurs over space and over time. 136 

 Associating any biotic response with the accompanying environmental change is a 137 

reasonably straightforward process. In Chapter 6, I was able to explain nearly two thirds of 138 

variation in plant assemblages and over half of variation in ant assemblages with a small 139 

number of climate and soil variables. However, while this biotic response may indeed be 140 

driven by those environmental variables, there may be a raft of other drivers and 141 

environmental filters which have shaped the biota to coincide with an environmental 142 

gradient. Such drivers could include ancient or recent processes include fire, glaciation, 143 

species introductions, landscape fragmentation, or unaccounted for environmental change 144 

(e.g. grazing pressure), as well as the effects of biotic interactions (Wisz et al., 2013, 145 
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Ovaskainen et al., 2017). It is also unknown to what degree biotic change is related to the 146 

variation in a single environmental variable (e.g. mean annual precipitation) or a potentially 147 

complex combination of variables (e.g. mean annual precipitation; maximum temperature of 148 

the warmest month, soil nitrate content and aspect). Therefore, an unknown degree of 149 

uncertainty is introduced to the biodiversity response model that cannot be readily 150 

constrained. 151 

 The degree to which spatial environmental change parallels temporal change is also 152 

difficult to determine. For much of South Australia, we expect a general climatic trend of 153 

increased temperatures and increased rainfall variability (together having an aridifying effect) 154 

(CSIRO and Bureau of Meteorology, 2015). This pattern does occur across the TREND 155 

spatial gradient, but the degree to which the future climate of a location on the TREND can 156 

be matched by a simple move north is uncertain. This uncertainty is related to the inherent 157 

uncertainty of climate models, both in terms of their ability to represent global circulation 158 

models, and our projections of atmospheric greenhouse gas concentrations. While we expect 159 

climate to shift, landscape and soil variables are not expected to change rapidly. The 160 

movement of climate but not soil will result in novel environmental conditions for most 161 

locations, making it difficult to predict the biodiversity response.  162 

 Above, I have considered the degree to which space may provide a proxy for 163 

predicting future change. Predicting, or hindcasting, past change is much more 164 

straightforward, and it is certainly more feasible to conduct a time-scale study and then relate 165 

it to a spatial analogue. While this process would be interesting, there is less of an imperative 166 

to explain environmental change in the recent past, which may explain the lack of interest in 167 

exploring this question to date.  168 
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 In summary, while it is possible to draw some parallels between change in space and 169 

time, incomplete knowledge of how biota respond to a complex mix of environmental 170 

variables and the degree to which future environmental change will mirror current spatial 171 

change, makes anything further than generalised predictions fraught with uncertainty.  172 

 173 

Key findings 174 

This study sought to “investigate the utility of spatial bioclimatic gradients in understanding 175 

the environmental drivers of within-species, species and community level biotic change” 176 

(Chapter 1). In Chapter 2, I argued that transect-based research can be strengthened through 177 

replication of observations on multiple transects, and the observation of multiple taxa on 178 

single transects. The subsequent chapters demonstrate this approach through a) the replication 179 

of the same observations on spatially isolated transects (Chapter 4), b) surveying spatially 180 

overlapping gradients with different methodologies (Chapter 5) and c) surveying multiple 181 

taxa on the same gradient to investigate concordance/discordance amongst different groups in 182 

response to environmental change (Chapter 6). 183 

 Chapter 4 provided a case study which used three subcontinental scale transects to 184 

empirically test the universality of the relationship between precipitation and leaf carbon 185 

isotope ratio. The study indicated that while there is a general pattern of increasing carbon 186 

isotope discrimination with moisture availability (Farquhar et al., 1989, Cernusak et al., 187 

2013), the magnitude of this change varied substantially between different species and 188 

gradients, and was not consistent between growth forms. Therefore, Chapter 4 demonstrated 189 

that the “universal scaling relationship” proposed by Prentice et al. (2011) lacked empirical 190 

support. The study also demonstrated that by observing a trait (leaf carbon isotope ratio) that 191 

can be measured irrespective of species identity, it is possible to expand from a model of 192 
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change established on a single transect (e.g. Prentice et al. (2011) and Dong et al. (2017)), 193 

those models can then be tested on other gradients to allow the model to be validated or 194 

falsified (Cadotte et al., 2011). 195 

 In Chapter 5, I examined vegetation change on the same environmental gradient using 196 

two overlapping transects. I determined that the ability to detect a previously identified plant 197 

community ecotone is dependent on the scale of the gradient, with a disjunction apparent in 198 

the spatially restricted transect, but not when the transect was resurveyed with a different 199 

methodology and extended a relatively short distance (ca. 100 km). This result highlights the 200 

importance of conducting analyses of environmental change at a scale appropriate to the 201 

environmental change present in the study system of interest. Determining an appropriate 202 

spatial/environmental scale is likely heavily dependent on the study system and may only be 203 

determinable through empirical investigation. However, work presented in this thesis and 204 

analyses of other Australian transects (e.g. the South West Australian Transitional Transect 205 

(Gibson et al., 2017) and North Australian Tropical Transect (Williams et al., 1996) indicates 206 

that several degrees of mean annual temperature and/or several hundred mm of mean annual 207 

precipitation (equating to hundreds of kilometres) is appropriate for the detection of major 208 

vegetation ecotones. 209 

 In testing the consistency of climate sensitivity between ant and plant assemblages on 210 

the TREND (Chapter 6), I demonstrated that despite similarity in current compositional 211 

patterns, ant assemblages are likely to have far greater sensitivity to future environmental 212 

change. This finding suggests that we are likely to observe an ecological “decoupling” of 213 

plant and ant assemblages under climate change, with the potential for a significant loss of 214 

ecosystem function through lost biotic interactions. The uneven sensitivity between flora and 215 

ant fauna demonstrates the value in testing environmental responses of multiple taxa to 216 
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investigate the potential impacts of climate change on ecosystem function through altered 217 

species associations. 218 

 Each of these four case studies (Chapters 2, and 4–6) demonstrated the potential for 219 

single-transect studies to be augmented to improve the veracity and relevance of gradient-220 

derived models beyond one specific study system. Together, these studies provide a range of 221 

analytical approaches in which effective use of the survey effort can be achieved. The major 222 

innovation of this work was to demonstrate that with careful design, traditional gradient-223 

based approaches can be improved to bolster their inferential power and effectiveness in 224 

detecting and explaining change within species and ecological communities. These 225 

approaches can be united to provide a coherent and efficient platform from which to explore 226 

ecosystem responses to climate change. 227 

 228 

Considerations for future work 229 

Methodological considerations 230 

Survey methodology is, as always, an important consideration for any ecological 231 

study (Kent, 2011). Species are detected by searching or sampling each site, and the 232 

percentage of species detected will be a function of the thoroughness of the search/sampling 233 

effort. For plants, this is a straightforward process, and over small areas, few species are 234 

likely to be overlooked. A comparison between the two vegetation survey methods used 235 

(AusPlots and the TREND-Guerin method) is discussed in Chapter 5, but differences in plot 236 

size and nestedness may alter pattern detection. Smaller plots tend to produce less stable 237 

ordinations than larger plots, primarily due to small-scale differences in vegetation patterning 238 

overriding a larger environmental signal (Otypková et al., 2006). Such effects are particularly 239 

strong with very small plots (i.e. <100 m2) and in areas with low β-diversity (Otypková et al., 240 
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2006). Plot size was comparatively large for both TREND-Guerin (900 m2) and AusPlots (1 241 

ha), and β-diversity was high (>0.95; Chapter 5), indicating plot size is unlikely to have had a 242 

substantial influence on pattern detection for most of the transect. It is possible that plot size 243 

may have had an impact in the drier Stony Plains sites, where vegetation was relatively sparse 244 

(i.e. <40% total cover; Chapter 5), but only AusPlots surveys were undertaken at these 245 

locations.  246 

Survey methodology is likely to have had a larger impact on the characterisation of 247 

ant assemblages. There are several methods available for sampling ants, including pitfall 248 

trapping, hand trapping, Winkler litter extraction and baited traps (Delabie et al., 2000), and 249 

the efficacy of each method for providing a sample representative of the local ant fauna is 250 

dependent on the habitat type and type of ant fauna present (Lopes and Vasconcelos, 2008). 251 

To thoroughly survey the species present in even a small plot, it is likely that a variety of 252 

methods and extended period of time will be required (Agosti and Alonso, 2000). For this 253 

reason, pitfall trapping is commonly used as a “general purpose” approach that allows rapid 254 

detection of many species, facilitating assessment of diversity and biogeographical analysis, 255 

and comparison of results across the scientific literature. Nevertheless, differences in trap 256 

size, baits, preservative and trap arrangement can bias the taxa collected (Schirmel et al., 257 

2010, Hancock and Legg, 2012).  258 

The surveys in Chapter 6 were undertaken with unbaited, uncovered traps left in the 259 

field for 48 hours. While the ant species accumulation curve indicates that we were able to 260 

sample the majority of the ant fauna present, this may only represent a fraction of species 261 

readily caught in pitfall traps over a short period. Species detection is related to trapping 262 

period, with one study finding that most species are detected within 48 hours, but some 263 

species may only be captured after several days (Borgelt and New, 2006). Additionally, some 264 
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species are very recalcitrant to standard pitfall trapping and may only be detected through 265 

specialist traps designed to detect cryptic species (Schmidt and Solar, 2010). 266 

 Finally, all plant and ant surveys were undertaken in a single visit, which certainly 267 

prevented our detection of some species. In addition to providing additional search time, 268 

repeated surveys would have increased the potential of less dominant ants and ephemeral 269 

plant species (i.e. annual herbaceous species; such as orchids).  270 

Ultimately, resource constraints make elaborate or prolonged field campaigns 271 

difficult, particularly over large study regions, but it is reasonable to assume that our 272 

sampling primarily represents the most dominant and/or easily trapped species, and that 273 

including other survey techniques and/or leaving traps in the field for longer would have 274 

yielded more complete sampling of the regional ant fauna. Ongoing work on the TREND 275 

(including DNA metabarcoding of soils) may facilitate surveys with different methodologies 276 

in the future which may yield a more complete picture of both plant and ant biodiversity.  277 

 278 

Multiple drivers of change 279 

Most of the work in this thesis addresses the degree to which biota respond to changes 280 

in climate, but there are several factors that might limit the detection of a climate signal. One 281 

of the primary factors is non-climatic environmental change, including edaphic (soil 282 

chemistry and structure, lithology, etc.) and land use change (including fire regime, grazing 283 

pressure, ecosystem fragmentation and altered hydrology). 284 

A suite of biotic drivers can also drive ecological change. Introduced species 285 

including plants (e.g. buffel grass (Cenchrus ciliaris) and olives (Olea europa)) herbivores 286 

(e.g. rabbits (Oryctolagus cuniculus) and goats (Capra aegagrus)) predators (e.g. cane toads 287 

(Rhinella marina) and cats (Felis catus)) and pathogens (e.g. chytrid fungus 288 
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(Batrachochytrium dendrobatidis) and myrtle rust (Uredo rangelii)) can alter species 289 

composition through competition, herbivory, predation or pathogenesis. Such impacts can 290 

occur in concert with climate and land use impacts to lead to greater cumulative impacts or 291 

“threat syndromes” (Burgman et al., 2007). The cumulative impacts of climate change, 292 

altered hydrology and fire regimes and introduced pest species has led to the southwest 293 

mediterranean zone being listed as one of Australia’s most vulnerable ecosystems (Laurance 294 

et al., 2011). 295 

Finally, there may be a biotic lag in the response of many species to extrinsic change 296 

(Chapter 6). Populations might not be able to adapt quickly enough to maintain phenotypic 297 

fitness, particularly in situations where there is low standing genetic diversity or barriers to 298 

gene flow (e.g. fragmented populations). This “adaptation lag” could eventually lead to 299 

extirpation, particularly if combined with other extrinsic threats such as increased 300 

competition from invasive species, new pathogens or changed fire regime (Aitken et al., 301 

2008). Additionally, some long lived species can persist for decades despite their 302 

environment becoming hostile enough to prevent ongoing recruitment (Jackson and Sax, 303 

2010, Talluto et al., 2017). As with adaptation lags, such “extinction debts” might not be 304 

immediately obvious, and if not detected, the magnitude of biotic response to environmental 305 

change is likely to be underestimated.  306 

Understanding that climatic and non-climatic drivers can independently or 307 

cumulatively impact on species composition and ecosystem function in space and time is 308 

critical to modelling biotic responses to climate change. If the impact of non-climatic drivers 309 

is not effectively isolated from change models, responses may be hard to constrain in the 310 

context of the environmental gradient of interest.   311 

 312 
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The power of using bioclimatic gradients  313 

Climate is understood to be a main driver of species distribution and influences the 314 

composition of species within communities and their dynamics and function within 315 

ecosystems. 316 

Understanding how biodiversity changes in time is a vexed issue. Governments, 317 

together with research institutions have made major investments in ecological surveys to 318 

answer the question “what biodiversity do we have?”. In Australia, this investment has come 319 

through programs such as the Biological Survey of South Australia (BSSA) (Armstrong et 320 

al., 2003) and Bush Blitz (Preece et al., 2015) for terrestrial systems, with similar investments 321 

such as the Marine Biodiversity Hub for marine systems (Butler et al., 2010). These programs 322 

necessitate extensive field campaigns and resources, requiring substantial investment from 323 

governments. This investment is justified by the dual ambitions of facilitating exploration and 324 

providing a baseline against which future change can be measured. 325 

Establishment of a baseline condition (i.e. the state from which any change is 326 

measured) is critical to drawing any kind of inference on the “trajectory” of one or more 327 

ecosystems. Unfortunately, interest in a particular region or species often peaks in response to 328 

some type of perturbation, at which point it is impossible to go back in time and collect 329 

baseline data from a pre-impact state (Pickett, 1989). Once a baseline has been collected, 330 

however, its value is limited without ongoing time-series (monitoring) data. It is this post-331 

baseline data that is most often lacking. Once the original “discovery” phase has been 332 

completed, there appears to be reluctance to invest in ongoing monitoring. The reasons for 333 

this are complex and relate to cost, competing priorities and political interest. The need for 334 

this data is strong, however, and has been underlined by a string of publications over the last 335 

three decades (e.g. Hinds, 1984, Lindenmayer et al., 2012b).  336 
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Despite continued predictions of biodiversity shifts due to climate and land use 337 

change in southern Australia (Brereton et al., 1995, Williams et al., 2009, Pecl et al., 2017), 338 

there has been no systematic resurvey of the BSSA plot network since its establishment. The 339 

need for monitoring data is clear: a lack of coordinated, long term ecological data has been 340 

regularly cited as one of the primary limitations in an ability to track the condition of 341 

Australia’s ecosystems (e.g. Jackson et al., 2017). An inability to measure the trajectories of 342 

important ecosystems limits our understanding of the impacts of climate and other stressors 343 

are having on these systems, and thus stymies our ability to effectively intervene or manage 344 

those systems.  345 

Ecological monitoring is time consuming and expensive and must be targeted in order 346 

to be cost effective (Nichols and Williams, 2006, Lindenmayer et al., 2012a). The survey 347 

methodology used for monitoring is also likely to be different to that for biodiversity 348 

discovery, as the former should include considerations to minimise observer bias (Milberg et 349 

al., 2008) and be sensitive to relatively small ecological change (Reynolds et al., 2011). 350 

 The regular and ongoing resurvey of large plot networks such as the BSSA (which 351 

comprises 15, 615 sites), would require a substantial ongoing commitment, which may be 352 

beyond the capacity of the management agencies involved. An alternative approach would be 353 

to identify key gradients within the survey plots, which could be used to identify a small 354 

subset to be targeted for ongoing monitoring. For example, an analysis of 3,567 BSSA 355 

vegetation plots on the Adelaide Geosyncline identified a putative arid-mesic ecotone that 356 

was predicted to be sensitive to future climate shifts (Guerin et al., 2013), and was a key 357 

result in justifying the ongoing development of the TREND. Identifying a small number of 358 

similar gradients across the BSSA network through analysis of existing baseline data, 359 

together with likely ecological stressors (e.g. fragmentation, dryland salinity, desertification, 360 

change in fire regime, etc.) would effectively allow a subset of the BSSA network to be 361 
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prioritised to focus on those areas most likely to change. If combined with the development 362 

of an appropriate monitoring methodology that would allow comparison with the existing 363 

baseline but focus on robust change detection, a strong monitoring program could be 364 

achieved with a much smaller ongoing investment and would be suitable for any large plot 365 

network. 366 

 367 

Implications for monitoring and management 368 

 Ecological management is generally focused on maintaining biodiversity and 369 

ecosystem function within a region. The standard approach for this is to conduct baseline 370 

surveys and establish ecological values that are to be conserved (e.g. the presence of one or 371 

more species or communities, or the maintenance of ecosystem services such as carbon 372 

sequestration (forests) or protection from storms (reefs and mangroves). Resources to 373 

undertake baseline surveys are usually limited, prohibiting the widespread, intensive field 374 

surveys that would be required to thoroughly document the biodiversity of a large area. The 375 

gradsect approach of positioning survey transects across one or more environmental gradients 376 

allows the greatest environmental range to be covered with a given number of plots, which 377 

represents the most efficient survey design when time and/or money resources are limited 378 

(Chapter 2; Austin and Heyligers, 1991). 379 

 Gradsects used for biodiversity discovery can be repurposed as transects which allow 380 

the rate of biotic change to be associated with the gradient as discussed earlier. Models of 381 

change can be developed for taxa of interest at a trait- species- or assemblage- level. 382 

Repeated measurement of the transect/s over time can then form the basis of a cost-effective 383 

monitoring strategy.  384 

 385 
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The value of transects as research infrastructure and future priorities 386 

The Australian Transect Network (ATN) was established to facilitate: 387 

 “the study of ecological structure and processes over major biophysical gradients to 388 

document ecological change and adaptation in relation to climate variation across 389 

Australia’s major terrestrial biomes. The ATN’s primary focus is observations and 390 

monitoring of natural and semi-natural terrestrial ecosystem gradients, generating data 391 

and products to enable researchers to predict how species and ecosystems will change in 392 

the future.” 393 

  (Rodrigo and Andersen, 2016). 394 

In order to maximise the value of the ATN (or other investments in transect 395 

infrastructure) in furthering these aims, it is useful to review the strengths of the transect 396 

approach and identify areas of potential future investment which may further bolster transect 397 

platforms for advancing our understanding of biotic responses to environmental change. 398 

 By providing a spatially explicit platform on which to examine the effect of 399 

environmental drivers on the biota, transects can be used to test biological hypotheses in the 400 

real world. For example, the universal scaling hypothesis of leaf carbon isotope response to 401 

aridity (Chapter 4) and the leaf nitrogen coordination hypothesis (Dong et al., 2017). Co-402 

locating many such investigations on one or a small number of gradients allows those 403 

systems to become better characterised over time, increasing their usefulness for new 404 

research as well as providing opportunities for time-series studies. Existing surveys of the 405 

flora and ant fauna on the TREND (Chapters 5 and 6) and other ATN transects have provided 406 

impetus to characterise the bacteria, fungi, archaea and eukaryotes present in the soil 407 

microbiome (Bissett et al., 2016) to determine if they display similar biogeographic 408 
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patterning to other taxa and improve our capability to accurately forecast biological responses 409 

to climate change. 410 

 Ideally, common measurements conducted on multiple transects should be undertaken 411 

that can be independent of species identity. Such common measurements could include 412 

observations of species composition for different groups (e.g. plant, invertebrate surveys), as 413 

well as infra-species traits such as leaf traits (δ13C, specific leaf area, etc. which can be 414 

undertaken on any vegetation community). 415 

 The utility of bioclimatic transects to predict change in ecosystems is limited by the 416 

types of transitions that are studied. For example, the TREND traverses the mediterranean to 417 

arid zones and is therefore potentially useful for studying the aridification of mediterranean 418 

systems. To be able to generalise across many biome transitions, observations repeated on 419 

multiple gradients are required (e.g. tropical to arid, temperate to subarctic, etc.), and to be 420 

most useful, a network of transects should encompass as many different large-scale 421 

transitions as possible. 422 

 It is possible to use transects across environmental gradients to associate putative 423 

environmental (e.g. climatic) drivers with a biotic response and create a model of predicted 424 

change. Because many environmental factors co-vary on gradients, it is not possible to gauge 425 

the accuracy of models built solely from observational data, particularly when they are 426 

extended in to novel conditions (such as those already occurring under climate change). The 427 

strength of biotic change models can be improved through manipulative experiments, which 428 

allows the disentanglement of single environmental drivers (Chapter 2). The predictions 429 

made from these models can then be validated through ongoing monitoring.  430 

 The Australian transect infrastructure used for the studies presented in this thesis have 431 

been developed by the ATN, which is part of the Terrestrial Ecosystem Research Network 432 
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(TERN) (Thurgate et al., 2017). Future investment in Australian transect infrastructure, either 433 

through TERN or other means, could profitably focus on: 1) improving common observations 434 

on several transects (e.g. plants and ants with the same methodology) to facilitate 435 

comparisons between regions and taxa; 2) increasing the spatial coverage of the network to 436 

encompass areas of Australia’s geographic and climatic space currently unrepresented in the 437 

network, particularly in cooler regions such as the Australian alps and Tasmanian highlands 438 

that are expected to undergo rapid climatic shifts in the future (Chapter 2, Figure 2); 3) the 439 

augmentation of the network with manipulative experiments such as common gardens and 440 

reciprocal transplants; and 4) ongoing monitoring of survey sites (e.g. repeated surveys every 441 

1-5 years) to validate and further refine predictions under climate change. 442 

In conclusion, bioclimatic transects represent an efficient and powerful 443 

methodological approach to improving our understanding the environmental drivers of 444 

biodiversity change in space and time. While gradient-based studies are inherently 445 

observational, through careful design, replication and augmentation with embedded 446 

experiments, methodological weaknesses can be overcome. Such an approach provides an 447 

opportunity for robust scientific study to help build our understanding of future biodiversity 448 

change. 449 

  450 
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Environment 534 pp. 4-13. DOI: 10.1016/j.scitotenv.2015.11.089 10 
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561. DOI: 10.1111/aec.12474 15 
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diversity database. GigaScience 5(21). DOI: 10.1186/s13742-016-0126-5 19 

5. Dong, N., Prentice, I. C., Evans, B. J., Caddy-Retalic, S., Lowe, A. J. & Wright, I. J. 20 

(2016) Leaf nitrogen from first principles: field evidence for adaptive variation with 21 

climate. Biogeosciences 14 pp. 481-495. DOI: 10.5194/bg-2016-89 22 

6. Guerin, G., Sweeney, S., Pisanu, P., Caddy-Retalic, S. & Lowe, A. (2016) 23 

Establishment of an ecosystem transect to address climate change policy questions for 24 

natural resource management. South Australian Department of Environment, Water 25 

and Natural Resources Technical Report 2016/14. 26 

7. Nielson, K. E., McInerney, F. A. & Caddy-Retalic, S. (2017) SWATT Foliar Carbon 27 

Isotope Pilot Study. A report for the Western Australian Department of Biodiversity, 28 

Conservation and Attractions. 29 

8. *Baruch, Z., Caddy-Retalic, S., Guerin, G. R., Sparrow, B., Leitch, E., Tokmakoff, 30 
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Australia. Organic Geochemistry. 35 
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of rangeland environments. Journal of Applied Vegetation Science. 39 

*Manuscript not included here as it will form part of another PhD thesis. 40 
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Executive Summary 

The leaf stable carbon isotope ratio (δ13C) of C3 plants has potential to provide an integrated 

measure of plant responses to water stress. Recent work comparing the carbon isotope 

responses of a wide range of species on different aridity gradients provides evidence that 

individual species and landscapes have different carbon isotope responses to available 

moisture (Caddy-Retalic et al. In preparation). These findings refute the claim that a 

“universal scaling” relationship exists between leaf δ13C ratios and measures of moisture 

(Prentice et al. 2011a).  The variation observed suggests instead that the slope of this 

regression reflects the sensitivities of individual species and entire landscapes to aridity. This 

information can be used to inform projections of biotic responses to climate change, and 

may provide early indications of the species most and least at risk of future changes in 

available moisture. 

To further investigate the potential utility of these relationships, we were engaged by the 

Australian Transect Network and Western Australian Department of Biodiversity, 

Conservation and Attractions to investigate a suite of plant species on the South-West 

Australian Transitional Transect (SWATT).  In total, 663 plant tissue samples were analysed 

from across the SWATT (Figure 1) for leaf carbon isotope ratio, nitrogen isotope ratio, 

carbon and nitrogen content.   

The leaf carbon isotope ratios of plants analysed here on SWATT show a weak but 

statistically significant correlation with mean annual precipitation (MAP).  The weakness of 

the correlation likely results from the relatively narrow range of precipitation. The slope of 

the regression is similar to that on the South Australian Transect for Environmental 

monitoring and Decision making (TREND), but shallower than that on the North East China 

Transect (NECT) (Caddy-Retalic et al. In preparation).   

Of the 49 species analysed from six or more sites, two exhibited statistically significant 

correlations (Bonferroni adjusted p<0.05) with mean annual precipitation. These slopes 

were steeper than the community slope, providing evidence against universal scaling. 

Two sympatric species, Eucalyptus salmonophloia and Eucalyptus salubris, were analysed 

with higher sampling intensity (n>50). In spite of high sample numbers, they did not exhibit 

a statistically significant correlation between δ13C and mean annual precipitation. They did, 

however, exhibit statistically significant differences in δ13C and carbon content which 

provides evidence that these species display functional physiological differences despite 

their apparently similar habit and leaf morphology.   
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Figure 1: SWATT sampling locations for species-community comparison (left) and Eucalyptus study (right).  

 

Background and Motivation 

Most Australian plants, including all trees and most shrubs and forbs, utilise the C3 

photosynthetic pathway. Some Australian plant species use the alternative C4 (primarily 

warm season grasses and some chenopods) or Crassulacean Acid Metabolism (CAM; 

primarily xeric succulents) photosynthetic pathways, which are subject to different 

biochemical processes and are not addressed here. 

For C3 plants, the photosynthetic uptake of carbon and the associated fractionation of 

carbon isotopes been widely applied to understanding water management. RuBisCO, the 

enzyme responsible for converting carbon dioxide to organic molecules, preferentially 

utilises the lighter and more abundant 12C and discriminates against the heavier 13C. This 

discrimination results from a combination of differences in diffusion rates and fixation rates 

for 12CO2 and 13CO2 and results in photosynthetic products that are even further 13C-

depleted than the atmosphere (Cernusak et al. 2013; Farquhar et al. 1989; Werner et al. 

2012).  

Carbon isotope values are expressed in delta notation, where the ratio of carbon isotopes in 

a sample are compared to that of a standard: 

δ13C = (

C13

C12
𝑠𝑎𝑚𝑝𝑙𝑒

C13

C12
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗ 1000    (Equation 1) 

The reference standard used is the Vienna Pee Dee Belemnite (VPDB) and δ13C values are 

expressed in per mille, or parts per thousand (‰). 
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Carbon isotope fractionation during photosynthesis is presented as the discrimination (13C) 

between the isotopic signature of the plant (13Cp) and that of the atmosphere (13Ca): 

∆13C =  
(δ13Ca‐δ13Cp)

(1+δ13Cp)
     (Equation 2) 

Plants discriminate against 13C during photosynthesis, and the degree of discrimination in C3 

plants depends largely on the ratio of the concentration of CO2 inside the intercellular air 

spaces (ci) to that outside the leaf (ca) (Farquhar et al. 1982).  The simplified model of what 

controls photosynthetic carbon isotope discrimination is 

∆13C = 𝑎 + (𝑏 − 𝑎)
𝑐𝑖

𝑐𝑎
    (Equation 3) 

where a is the fractionation during diffusion of CO2 in air (4.4‰), b is the fractionation due 

to carboxylation in C3 plants (approx. 27‰) and ci and ca are the partial pressure of CO2 

inside the leaf (sub-stomatal) and in the atmosphere, respectively (Farquhar et al. 1982).   

There are more complex models that include numerous additional corrections, but the 

simplified model sufficient for many applications including the approach taken here 

(Cernusak et al. 2013). 

This model implies that the primary control on the carbon isotope fractionation in a plant 

relative to the atmosphere is the ratio of the concentration of CO2 within the intercellular 

air spaces of the leaf to that of the atmosphere (ci/ca). This ratio is a function of the supply 

of gases through stomata (stomatal conductance, gs) and the demand for photosynthetic 

assimilation of carbon (A). Because water loss through transpiration is also controlled by the 

flow of water out through stomata, 13C varies with mean annual precipitation at a global 

scale (Diefendorf et al. 2010; Kohn 2010).  

The δ13C of atmospheric CO2 (δ13Ca) displays small seasonal variations, especially in the 

northern hemisphere, a general long-term decline due to the burning of fossil fuels, and 

localised decreases proximal to fossil fuel combustion sources. In addition, closed canopy 

forests can trap soil respired 13C-depleted CO2, causing a significant departure from the 

open atmosphere. However, due to the lack of concentrated industry and lack of dense, 

closed canopies, we have regarded spatial and temporal variation in δ13Ca as negligible.  

Therefore, rather than considering carbon isotope discrimination between the plant and the 

atmosphere (13C), we report plant tissue results in terms of leaf carbon isotope ratios 

(δ13Cp). 

The δ13Cp of C3 leaf tissue generally ranges between -34 to -24‰. Plants under water stress 

close their stomata to limit stomatal transpiration, isolating the intercellular CO2 pool from 

the atmosphere (Cernusak et al. 2013; Farquhar et al. 1982). When stomata are closed, 

RuBisCo is forced to fix more 13CO2, decreasing the observed discrimination as compared to 

plants that are not under water stress.  

This trade off between water loss and carbon uptake leads to a negative relationship 

between water availability and δ13Cp. It is important to note that there are other 

environmental factors that have the potential to influence carbon isotope discrimination in 
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C3 plants, including light, temperature, altitude and soil nutrient availability. However, water 

availability is a major determinant in carbon isotope discrimination, which allows plant δ13C 

values to be used as an integrated proxy for water stress in C3 plants (Cernusak et al. 2013). 

The general relationship between water availability and leaf δ13C values in C3 plants has led 

to the hypothesis of a universal scaling relationship between δ13C and moisture across all 

species  (Prentice et al. 2011a). This hypothesis predicts that the δ13C response to available 

moisture (precipitation or moisture index) is the same for individual species as the 

community as a whole, and that this is a universal response.  This hypothesis can be tested 

by examining the slope of the regression for individual species (ms) and comparing it to the 

community slope (mc) along a moisture availability gradient and by comparing different 

gradients.  These tests have begun with the work on the South Australian Transect for 

Environmental monitoring and Decision making (TREND) and North East China Transect 

(NECT) (Caddy-Retalic et al. In preparation) and could be expanded through comparison 

with other bioclimatic gradients. 

The competing hypothesis is that, through different expression of individual traits, species 

have the potential to display a range of relationships between δ13Cp and moisture 

availability (ms1≠ms2), which may not match the response of the community as a whole  

(ms≠mc). Additionally, landscape-level responses of plants on different gradients could 

produce different relationships (mc1≠mc2). This hypothesis has been supported by the 

development and comparison of ms values for 186 species on the TREND (150) and NECT 

(36), many of which are different to the community mean (ms) (Caddy-Retalic et al. In 

preparation). In addition, the community mean slopes for the two transects differ (Figure 2a 

and b).  These data show that different species and gradients appear to have different δ13C 

responses to precipitation and supports the hypothesis that ms and mc values could be used 

to compare the relative sensitivity of species and landscapes to aridity. 

The findings that ms and mc values could be used to infer sensitivity to aridity has motivated 

interest in testing to what degree these values vary within semi-arid Australian ecosystems. 

Much of the work to date has occurred on the TREND in South Australia, which spans ~150-

1000mm mean annual precipitation (MAP) and transitions from arid grasslands and 

chenopod shrublands to increasingly dense shrublands and woodlands at the mesic end. 

The development of a second semi-arid Australian gradient, the South West Australian 

Transitional Transect (SWATT) with floristic data and plant leaf tissue samples has motivated 

this study. The SWATT spans a similar rainfall gradient to the TREND, from ~250mm MAP at 

Weebo to 740mm MAP at Mt Roe but is entirely based on sand-plain communities. The 

transect spans the South West Australian global biodiversity hotspot and Central and 

Eastern Avon Wheatbelt Australian biodiversity hotspot, both of which are at risk under 

climate change.  
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Study Design and Aims 

This purpose of this study was to examine the relationship between δ13Cp and precipitation 

in the most common C3 species present on the SWATT. The study was comprised of two 

components. 

The first component sampled the most commonly sampled species on the SWATT in order 

to establish both a suite of ms values for common species, as well as an mc value for the 

entire gradient. Well-collected species were selected based on our experience conducting a 

similar study on the TREND in order to ensure the SWATT mc was representative of common 

species and to maximise the robustness of the ms values for those species. ms values were 

calculated for all species sampled from at least six sites (49 species from 127 sites, Figure 

1a). 

The evidence from earlier work on the TREND and NECT suggests that species have variable 

ms values, potentially relating to different leaf traits and/or water use strategies. The second 

component of the study compared ms values from two similar eucalypts found on the 

SWATT, Eucalyptus salmonophloia and Eucalyptus salubris, with a much higher sampling 

intensity (E. salubris n= 50; E. salmonophloia n=51, Figure 1b). The intention of this strategy 

was to quantify the δ13Cp range expressed by these species across their natural ranges and 

maximise the robustness of calculated ms values, in order to determine whether it is 

possible to distinguish these species based on their isotopic signatures. 

In summary, the aims of this study are to determine whether:  

1) the community δ13C-MAP slope (mc) of SWATT is similar to or different from TREND, 

NECT and a global compilation; 

2) the species δ13C-MAP regression slopes (ms) are similar to or different from the 

community slope (mc) on SWATT; and 

3) the geographically overlapping Eucalyptus salubris and E. salmonophloia 

demonstrate different isotopic ranges and ms values in order to determine whether 

these species can be distinguished isotopically. 

 

Methods 
160 individual sites were surveyed for the SWATT using the methodology described by 
Gibson et al. (2017), augmented by a number of AusPlots surveys using the methodology 
described by White et al. (2012). Surveys occurred at ten locations spanning the SWATT 
gradient (Figure 1), with full floristics data available for download from the AEKOS data 
repository. 
 
Plant materials were collected and dried in the field either as pressed specimens (SWATT 
plots and AusPlots) or as leaf samples stored in gauze bags and dried on silica (AusPlots 
only). Pressed voucher specimens were identified at the Western Australian Herbarium. 
Previous work on the TREND indicated that at least seven plant sampling locations were 
required to reasonably examine the slope of the δ13C-MAP regression. 46 C3 species 
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collected at seven or more sites were selected, with one species (Grevillea hookeriana) 
having only six collections (Appendix A). The limited number of sites at the mesic end of the 
SWATT gradient, coupled with the high species turnover in this region meant that most 
selected species were from the semi-arid zone, particularly the Coolgardie bioregion, with a 
relatively narrow precipitation range (250-350mm MAP). Single specimens of Eremophila 
ionantha, Grevillea haplantha and Hibbertia rostellata were also inadvertently processed – 
these singletons were not able to be used in calculating ms values, but were incorporated in 
to the calculation of the mc value for the entire gradient. 
  
Additional leaf samples of Eucalyptus salmonophloia (n=51) and E. salubris (n=50) were 
provided by the Western Australian Department of Biodiversity, Conservation and 
Attractions. These samples included replicate or closely-located samples to better quantify 
variability (5 replicates for E. salubris; 1-2 replicates from more closely located sites for E. 
salmonophloia). Individual ms values were calculated for these species, and their data 
integrated in to the whole SWATT mc value. 
 
Leaf samples were taken from WA Herbarium vouchers and AusPlots leaf tissue collections 
stored in gauze bags on silica gel. Approximately 20mg of dried leaf tissue was placed in a 
2mL screw top eppendorf tube with two 5mm steel ball bearings. Eppendorf tubes were 
loaded into a Retsch ball mill fitted with a Qiagen Tissuelyser adaptor plate (2 x 24 
tubes/plate) and ground for 2 to 5 minutes. If samples were not ground after two minutes, 
the partially ground leaf material was transferred to a 5 mL stainless steel grinding jar and 
ground for 30 to 90 seconds in 30 second intervals.  
 
Ground material (2.5 mg ± 10%) was weighed into tin capsules. Samples were analysed for 
δ13C, δ15N, %C and %N at the University of Adelaide on a EuroVector Euro elemental 
analyser inline with a Nu Instruments Continuous Flow Isotope Ratio Mass Spectrometer 
(CF-IRMS). Internal isotope standards run alongside were glycine (δ13C, δ15N), and glutamic 
acid (δ13C, δ15N). Certified reference material for elemental concentration was Triphenyl 
Amine (TPA; C:N). The uncertainty for carbon isotope measurements was ±0.09 ‰ and for 
nitrogen isotope measurements was ±0.12 ‰.  
 
Climate data for all sites was extracted from long-term (1960-2012) 0.01 degree (~1km) 
gridded BioClim layers based on ANUCLIM v6, provided by CSIRO Ecosystem Services and 
published by the Atlas of Living Australia (www.ala.org.au). 
 
Data analysis was undertaken in R using the methodology developed for analysis of TREND 
and NECT isotopic datasets (Caddy-Retalic et al. in prep). Species level responses (ms) were 

calculated as the linear regression of 13Cp~MAP for all observations of that species. Because 
multiple linear regressions were calculated, significance (p) values were adjusted using a 
Bonferroni correction based on the number of analyses undertaken per transect. 
 
 
 
 
 
 

http://www.ala.org.au/
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Results and discussion 
 
Isotope measurements and slopes for species are presented in Appendix A. 
Species, sites, and climate information for sampling sites are presented in Appendix B. 
Notably, the MAP for the entire dataset ranges from 220-746 mm/year, with most data 
being between 250-350mm MAP, which is a more restricted range than previous studies 
that produced community slopes (Caddy-Retalic et al. in prep; Diefendorf et al. 2010; 
Prentice et al. 2010).   
  
Aim 1: Determine whether the community δ13C~MAP slope (mc) of SWATT was similar to or 
different from TREND, NECT and global compilations. 
 
The SWATT δ13C~MAP slope (mc) was 0.004 which was similar to that recorded for the 
TREND and site-averaged global compilation data (Figure 2, Table 1). While statistically 
significant (p<0.05), the R2 value for this correlation is very low, indicating that the data is a 
poor fit for the overall regression and predictive power is low. This limitation is due to the 
concentration of samples analysed within 250-350mm MAP. While this range has been 
sufficient to display an aridity effect, complementary sampling at the more mesic end of the 
gradient would make this relationship far more statistically robust. Given the high species 
turnover in this region, additional mesic sampling would require either additional surveys to 
accumulate >6 occurrences of species, or a lowering of the threshold below six occurrences 
with the current available sample set. 
  
 

 
Figure 2: Gradient-level relationships between leaf δ13C and mean annual precipitation (MAP) for a) the NECT; b) the 
TREND and c) the SWATT. Dashed lines represent a global MAP~leaf δ13C linear regression derived from a global dataset 
of site-averaged leaf δ13C values restricted to the MAP ranges of the gradients presented here. Solid lines show 
MAP~leaf δ13C linear regressions for each gradient. Linear model statistics are shown in Table 1. *p<0.05, ***p<0.001. 

 

Table 1: Gradient level statistics for the NECT, TREND, SWATT and global compilation 

Gradient Observations Min 

MAP 

Max 

MAP 

MAP 

range 

Slope Intercept R 

Global compilation 392 140 980 830 -0.0028 -25.3571 0.171*** 

NECT 333 145 710 565 -0.0135 -22.0081 0.701*** 

TREND 996 162 980 818 -0.0030 -27.4683 0.143*** 

SWATT 652 220 746 526 -0.0040 -25.6973 0.006* 
*p<0.05, ***p<0.001. All MAP figures in mm. 
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Aim 2: Determine whether species δ13C-MAP regression slopes (ms) are similar to or 

different from the community slope (mc) on SWATT. 

Slopes for individual species were highly variable along the SWATT, mirroring the results 
found on the TREND (Figure 3). Six species recorded statistically significant ms values: 
Allocasuarina spinosissima, Dianella revoluta, Eucalyptus leptopoda, Eucalyptus salubris, 
Platysace trachymenioides and Ptilotus obovatus (Appendix A). Following Bonferroni 
adjustment, where p values are multiplied by the number of tests in order to account for 
the increased likelihood of p<0.05 results occurring via chance, only D. revoluta and P. 
trachymenioides retained statistically significant ms values (Appendix A).  
 
Dianella revoluta is a perennial forb that is also present on the TREND in South Australia, 
and also produced a statistically significant ms on TREND, where no other species exhibited 
a statistically significant ms. This may point to D. revoluta exhibiting traits that make the 
species more sensitive to changes in ci/ca and/or less sensitive to other potential effects 
(e.g. mesophyll conductance). The D. revoluta ms on the SWATT (-0.0109) was similar to that 
the species’ TREND ms of -0.0074, suggesting the species probably displays a similar 
response to aridity throughout its range.   
 
Both D. revoluta and P. trachymenioides exhibited species slopes that were steeper than the 
community slope providing further evidence against universal scaling.  Furthermore, it 
provides some evidence that these species are more isotopically responsive to changes in 
aridity than the entire tested flora at a landscape level. 
 
P. trachymenioides exhibited a steeper ms  (-0.0146) than D. revoluta (-0.0109), indicating it 
is more isotopically responsive to changed MAP and suggests that it is unlikely to be able to 
maintain its current photosynthetic profile in environments more arid than those tested. 
This lower value may be an artefact of the limited sampling range, as when checked against 
the distribution of this species in the Australian Virtual Herbarium, its occurrence in MAP 
ranges of 208-436mm indicates it is able to persist in drier conditions than in which we 
sampled. Nevertheless, if the ms we have calculated for this species based on its occurrence 
on the SWATT is correct, it is likely to be very sensitive to aridification in the future. 
 
The sampling of >6 individuals across the SWATT did not produce numerous significant δ13C-
MAP relationships, likely due to the narrow range of MAP values.  Nonetheless, the sample 
set does provide a measure of the average carbon isotope ratios of these species across a 
large geographic and climatic range (Figure 4), which could be easily expanded upon in the 
future. The differences among species could reflect differences in water use efficiency, with 
more positive values indicating greater water use efficiency (assimilation relative to water 
loss).  However, we caution that other factors may contribute such as sampling of shaded 
versus fully sunlit leaves, and differences in mesophyll conductance.   
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Figure 3: Species regressions for δ13C vs. MAP for 49 species sampled on the SWATT, grouped by growth form. All species 
returned non-significant regressions except Platysace trachymenioides (shrub) and Dianella revoluta (forb). 

 

 
Figure 4: Box plots for δ13C for all species measured in this study. Species are grouped according to their growth form 
(Chen=Chenopods; F=Forbs; V=Vines) and arranged alphabetically. 
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Aim 3: Determine whether the geographically overlapping Eucalyptus salubris and E. 

salmonophloia demonstrate different isotopic signature ranges and ms values in order to 

determine whether these species can be distinguished isotopically. 

Two Eucalyptus species (Eucalyptus salmonophloia and E. salubris) were selected for a high-
resolution study to assess the value of more intensive sampling (n=50) within species, to 
quantify the natural δ13C ranges of these species, and to determine whether these two 
similar and sympatric species exhibit different isotopic profiles. 
 
While E. salubris did return a statistically significant ms value (p=0.0442), this was not 
significant following Bonferroni correction (adj. p=2.1369; Appendix A). E. salmonophloia did 
not return a statistically significant ms (p=0.8700). Thus, we were unable to statistically 
validate the isotopic response to changed MAP for either species, although this may be 
possible with either further sampling or additional control over other potential 
determinants of δ13Cp. In particular, as the leaves used for this analysis were initially 
collected for genetic analysis, it is unclear whether collections were standardised to ensure 
only sunlit leaves were collected to minimise the effect of shade altering photosynthetic 
demand. 
 
When comparing the range of δ13Cp values for E. salmonophloia and E. salubris, there is a 
clear offset between the two species (Figure 5), with E. salmonophloia displaying a lower 
δ13C signature (mean δ13C = -26.31 ‰, standard deviation = 1.10 ‰) than E. salubris (mean 
δ13C = -24.98 ‰, standard deviation = 1.17 ‰). An analysis of variance (ANOVA) confirms 
that these two species are statistically distinguishable (Table 2). A similar result is evident 
for leaf carbon content (Figure 5, Table 3). 
 
Isotope ratios of nitrogen are routinely measured along with carbon isotopes. As with 
carbon, stable nitrogen isotope measurements are a ratio of the heavier isotope (15N) to the 
lighter isotope (14N) compared to a standard (atmospheric nitrogen) and expressed in delta 
notation (δ15N). Nitrogen isotopes in plants are controlled by a potentially complex mix of 
drivers including soil chemistry and mycorhizzal associations (Craine et al. 2015). The lack of 
separation in δ15N values between E. salmonophloia and E. salubris provides some evidence 
that soil-based processes are not influencing δ13C in these species and one or more other 
environmental variables, or traits of the plants themselves, are driving the carbon isotope 
offset. 
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Figure 5: Despite having similar leaf morphology and overlapping distributions, Eucalyptus salmonophloia (open circles) 
and E. salubris (filled circles) were readily distinguishable based on leaf carbon isotope (δ13C) signatures (a,b) and carbon 
content (d), but not based on leaf nitrogen isotope (δ15N) signature (b) or C:N (b). 

Table 2: Species level ANOVA results of δ13C difference 

 Degrees of freedom Sum of Squares Mean Squares F value p value 

Species 1 44.38 44.38 34.57 <0.0001*** 

Residuals 99 127.10 1.28   

 
 

Table 3: Species level ANOVA results of % C differences 

Degrees of freedom Sum of Squares Mean Squares F value p value 

1 137.5 62.38 3.97 <0.0001*** 

99 218.3 2.2   
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Conclusion 
 

- Significant δ13C-MAP relationships have been identified in a global compilation and 
on the TREND and NECT bioclimatic transects which span large ranges of MAP.   

- This is also true of the SWATT, despite our samples being concentrated primarily in a 
much smaller MAP range (200-400 mm/year).   

- With only two exceptions, individual species failed to produce significant 
relationships between leaf δ13C and MAP.  

- The small range of MAP likely hindered detection of significant species slopes in spite 
of efforts to sample more intensively than previously on either TREND or NECT. 

- The two significant species slopes are steeper than the community slope, providing 
evidence against universal scaling occurring at different scales on the SWATT. 

- The high intensity Eucalyptus study shows that finding significant species slopes is 
not simply a function of sampling intensity. 

- The offset in δ13C and carbon content between two sympatric eucalypts suggest that 
species-specific traits play a measurable role in leaf δ13C, even when those species 
are very similar. 

- Likewise, the similar response of Dianella revoluta on two different transects 
suggests species are able to respond similarly even in quite different environment 
(sandplains vs the TREND soil mosaic). 

- The diversity of ms (albeit without statistical significance) could be due to narrow 
range or precipitation, but could also reflect diversity or approaches to managing 
water limitation that are not evident on other transects. 

- The calculation of a gradient-wide δ13C-MAP regression (mc) for the SWATT that does 
not closely resemble those calculated for other subcontinental gradients (NECT) 
provides additional support for different landscape-level responses and further 
refutes the concept of universal scaling operating at different locations. 
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Appendix A: Species level carbon isotope statistics.  Significance indicated by shading of p value (p), and Bonferroni adjusted p (adj.p) 
 

Species n Family Form MAP δ13Cp δ13Cp~MAP regression 

    Min Max Min Max Slope (ms) Intercept R2 p Adj.p 

Acacia colletioides 8 Fabaceae Shrub 254.20 320.63 -28.68 -25.37 0.0183 -32.7053 -0.0165 0.3828 18.7584 

Acacia inaequiloba 9 Fabaceae Shrub 301.49 311.94 -30.08 -25.7 0.1351 -69.5183 -0.0028 0.3557 17.4270 

Acacia ligulata 10 Fabaceae Shrub 257.04 304.44 -30.28 -25.97 -0.0262 -20.0565 0.0192 0.3097 15.1765 

Acacia yorkrakinensis 8 Fabaceae Shrub 294.35 347.62 -29.34 -26.46 -0.0004 -28.0317 -0.1666 0.9869 48.3574 

Allocasuarina campestris 9 Casuarinaceae Shrub 299.07 341.72 -30.86 -25.95 -0.0284 -18.7617 0.0036 0.3442 16.8655 

Allocasuarina spinosissima 17 Casuarinaceae Shrub 283.07 341.72 -29.38 -25.5 -0.0269 -18.9108 0.2077 0.0377 1.8486 

Amphipogon caricinus 16 Poaceae Grass 257.04 340.90 -31.08 -27.17 -0.0123 -25.2196 0.0182 0.2774 13.5910 

Austrostipa elegantissima 14 Poaceae Grass 283.07 320.63 -26.96 -24.39 -0.0146 -21.2089 -0.0129 0.3789 18.5651 

Beyeria sulcata 9 Euphorbiaceae Shrub 283.07 336.69 -26.57 -24.97 -0.0059 -23.8895 -0.1175 0.7022 34.4058 

Callitris preissii 15 Cupressaceae Tree 299.07 347.70 -27.83 -24.79 -0.0122 -22.6291 -0.0330 0.4705 23.0569 

Calothamnus gilesii 7 Myrtaceae Shrub 294.35 340.08 -30.18 -27.43 0.0162 -33.5269 -0.1105 0.5535 27.1191 

Dianella revoluta 23 Xanthorrhoeaceae  Forb 254.20 745.70 -31.31 -24.33 -0.0109 -22.7800 0.4023 0.0007 0.0337 

Enchylaena tomentosa 8 Chenopodiaceae Chenopod 265.07 299.65 -28.77 -24.94 0.0548 -41.7841 0.3527 0.0707 3.4636 

Eremophila scoparia 9 Scrophulariaceae Shrub 283.07 320.63 -28.25 -24.73 -0.0454 -13.2296 0.2525 0.0957 4.6908 

Eucalyptus leptopoda 13 Myrtaceae Tree 265.65 347.62 -28.43 -26.02 -0.0190 -21.2712 0.2811 0.0361 1.7709 

Eucalyptus rigidula 10 Myrtaceae Tree 297.33 347.70 -27.39 -25.28 0.0070 -28.6192 -0.0836 0.5954 29.1736 

Eucalyptus salmonophloia 61 Myrtaceae Tree 220.32 512.27 -28.6 -24.51 0.0005 -26.4950 -0.0165 0.8701 42.6358 

Eucalyptus salubris 50 Myrtaceae Tree 237.51 388.64 -28.05 -22.23 -0.0081 -22.4877 0.0626 0.0442 2.1639 

Euryomyrtus maidenii 9 Myrtaceae Shrub 297.33 347.70 -28.71 -26.56 -0.0184 -22.2341 0.0395 0.2869 14.0570 

Exocarpos aphyllus 10 Santalaceae Shrub 283.07 347.70 -28.5 -26.46 0.0014 -27.8882 -0.1230 0.9084 44.5131 

Grevillea didymobotrya 20 Proteaceae Shrub 294.35 347.70 -27.6 -25.32 -0.0134 -22.5672 0.0363 0.2068 10.1329 

Grevillea hookeriana 6 Proteaceae Shrub 301.19 306.26 -26.28 -24.52 -0.1409 17.4180 -0.0934 0.4912 24.0685 

Hakea erecta 11 Proteaceae Shrub 297.33 347.70 -28.12 -23.91 -0.0291 -16.5372 0.1585 0.1237 6.0630 

Hakea francisiana 10 Proteaceae Shrub 265.07 329.20 -28.09 -22.72 -0.0125 -21.8045 -0.0877 0.6147 30.1221 

Jacksonia nematoclada 10 Fabaceae Shrub 297.33 347.70 -28.78 -25.58 0.0027 -28.2529 -0.1208 0.8663 42.4480 

Keraudrenia velutina 14 Malvaceae Shrub 265.07 306.26 -28.95 -25.1 -0.0156 -22.5981 -0.0227 0.4154 20.3536 

Lepidobolus preissianus 11 Restionaceae Forb 294.35 449.67 -30.16 -26.05 -0.0067 -25.6544 -0.0489 0.4838 23.7048 

Lepidosperma rigidulum 11 Cyperaceae Sedge 296.00 340.90 -29.47 -24.38 -0.0204 -20.1109 -0.0689 0.5658 27.7260 

Lepidosperma sanguinolentum 14 Cyperaceae Sedge 301.19 347.70 -27.99 -24.46 -0.0359 -14.7200 0.2021 0.0605 2.9635 

Leptomeria preissiana 9 Santalaceae Shrub 299.07 347.70 -29.14 -27.81 0.0091 -31.3651 -0.0066 0.3627 17.7747 

Leptospermum fastigiatum 12 Myrtaceae Shrub 296.41 306.26 -29.33 -26.17 -0.0388 -15.5897 -0.0836 0.7057 34.5790 

Maireana trichoptera 12 Chenopodiaceae Chenopod 283.07 299.65 -28.56 -25.36 -0.0990 2.4163 0.1184 0.1466 7.1828 

Melaleuca calyptroides 11 Myrtaceae Shrub 299.65 347.70 -29.25 -26.39 -0.0118 -24.2489 -0.0493 0.4849 23.7603 

Melaleuca cordata 16 Myrtaceae Shrub 294.35 347.70 -28.56 -26.93 -0.0076 -25.4836 0.0029 0.3242 15.8850 

Melaleuca hamata 9 Myrtaceae Shrub 283.07 332.29 -29.07 -25.82 -0.0380 -15.8426 0.1148 0.1965 9.6281 

Monachather paradoxus 11 Poaceae Grass 257.04 319.11 -31.71 -26.99 0.0106 -31.8180 -0.0819 0.6340 31.0651 

Olearia muelleri 12 Asteraceae Shrub 283.07 320.63 -28.28 -24.78 -0.0138 -22.3660 -0.0677 0.5944 29.1278 
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Persoonia coriacea 12 Proteaceae Shrub 297.33 347.70 -27.65 -25.14 0.0026 -27.3757 -0.0964 0.8605 42.1653 

Platysace trachymenioides 12 Apiaceae Shrub 283.07 341.72 -29.84 -25.85 -0.0582 -9.5830 0.7196 0.0003 0.0146 

Psammomoya choretroides 8 Celastraceae Shrub 297.33 340.90 -29.83 -25.6 -0.0203 -21.0521 -0.0906 0.5416 26.5365 

Ptilotus obovatus 13 Amaranthaceae Shrub 254.20 299.65 -29.29 -23.71 0.0828 -49.5416 0.4735 0.0056 0.2737 

Rhyncharrhena linearis 7 Apocynaceae Vine 256.21 287.66 -29.85 -26.73 -0.0473 -15.3926 -0.0514 0.4389 21.5080 

Santalum acuminatum 14 Santalaceae Tree 257.04 341.72 -30.76 -26.75 -0.0235 -21.1775 0.0409 0.2362 11.5754 

Scaevola spinescens 10 Goodeniaceae Shrub 256.21 320.63 -28.28 -25.45 -0.0035 -26.0233 -0.1161 0.8071 39.5489 

Schoenus hexandrus 10 Cyperaceae Sedge 297.33 347.70 -28.41 -26.04 -0.0130 -23.0814 -0.0276 0.4092 20.0499 

Schoenus subaphyllus 7 Cyperaceae Sedge 301.19 329.20 -29.93 -24.87 -0.0379 -15.8156 -0.1251 0.5889 28.8559 

Sclerolaena diacantha 11 Chenopodiaceae Chenopod 283.07 320.63 -28.76 -24.61 -0.0400 -14.9055 0.0956 0.1854 9.0835 

Senna artemisioides 24 Fabaceae Shrub 254.20 320.63 -29.32 -20.51 0.0329 -35.6260 0.1183 0.0556 2.7249 

Solanum lasiophyllum 18 Solanaceae Shrub 254.20 299.65 -31.31 -25.02 0.0432 -40.4366 0.1613 0.0554 2.7134 
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Appendix B: Site location and climate information 

Site Site type Latitude Longitude Elevation MAT MaxT MinT MAP MaxP MinP MAMI MaxMI MinMI 

SWA0101 SWATT -34.6192 117.1554 231.9 15.11 26.98 6.53 745.70 28.06 4.85 0.6380 1.0000 0.1262 

SWA0301 SWATT -32.8746 119.1580 329.8 16.46 31.84 4.46 332.29 10.87 2.89 0.2696 0.5985 0.0704 

SWA0302 SWATT -32.8752 119.1844 349.3 16.37 31.73 4.41 335.40 10.90 2.91 0.2728 0.6038 0.0716 

SWA0303 SWATT -32.8672 119.1927 354.3 16.36 31.74 4.40 336.69 10.93 2.92 0.2737 0.6053 0.0718 

SWA0304 SWATT -32.8147 119.1428 363.9 16.37 31.93 4.32 341.72 11.28 2.93 0.2789 0.6201 0.0711 

SWA0401 SWATT -31.8458 118.9052 440.1 17.10 33.78 4.09 347.70 11.64 3.33 0.2671 0.6211 0.0612 

SWA0402 SWATT -31.8532 118.8963 438.7 17.10 33.78 4.10 347.62 11.65 3.33 0.2674 0.6219 0.0612 

SWA0403 SWATT -31.8811 118.8934 402.3 17.27 33.93 4.22 340.08 11.35 3.26 0.2599 0.6052 0.0597 

SWA0404 SWATT -31.9023 118.9437 408.4 17.21 33.87 4.16 340.90 11.30 3.29 0.2608 0.6061 0.0602 

SWA0502 SWATT -31.4012 119.5396 432.6 17.49 34.15 3.81 329.20 9.78 3.34 0.2279 0.5101 0.0606 

SWA0503 SWATT -31.4014 119.5738 399.3 17.66 34.29 3.93 320.32 9.43 3.20 0.2191 0.4895 0.0589 

SWA0504 SWATT -31.4014 119.6405 378.0 17.79 34.37 4.04 311.94 9.06 3.08 0.2110 0.4701 0.0576 

SWA0601 SWATT -31.2032 120.3082 434.6 17.90 34.16 4.36 302.61 8.07 3.27 0.1910 0.4080 0.0650 

SWA0701 SWATT -30.7885 120.3150 421.7 18.46 34.78 4.53 294.35 7.75 2.94 0.1764 0.3775 0.0606 

SWA0702 SWATT -30.7783 120.3058 433.9 18.40 34.74 4.48 296.41 7.83 2.99 0.1783 0.3820 0.0610 

SWA0703 SWATT -30.7572 120.2699 461.1 18.28 34.66 4.37 301.19 8.06 3.10 0.1831 0.3937 0.0616 

SWA0704 SWATT -30.6854 120.2574 482.8 18.24 34.65 4.31 304.38 8.19 3.15 0.1852 0.3990 0.0619 

SWA0802 SWATT -30.5015 120.6600 522.7 18.34 34.58 4.52 304.44 8.24 3.00 0.1782 0.3767 0.0648 

SWA0901 SWATT -28.1431 120.9661 522.7 20.81 37.24 5.62 257.04 11.23 1.49 0.1220 0.2447 0.0418 

SWA0902 SWATT -28.1318 120.9625 512.4 20.87 37.30 5.66 256.21 11.26 1.47 0.1211 0.2425 0.0412 

SWA0904 SWATT -28.0651 121.0137 473.5 21.12 37.54 5.78 254.20 11.54 1.36 0.1177 0.2337 0.0385 

SWA1001 SWATT -27.3828 120.6911 530.4 21.19 37.97 4.90 266.08 11.55 1.17 0.1188 0.2275 0.0379 

SWA1002 SWATT -27.3892 120.6986 531.7 21.18 37.95 4.91 266.14 11.57 1.17 0.1189 0.2277 0.0380 

SWA1003 SWATT -27.3994 120.6822 531.6 21.17 37.95 4.90 265.65 11.44 1.18 0.1190 0.2284 0.0382 

WAAAVW0001 AusPlot -31.9022 118.9436 408.4 17.21 33.87 4.16 340.90 11.30 3.29 0.2608 0.6061 0.0602 

WAAAVW0002 AusPlot -31.8458 118.9051 440.1 17.10 33.78 4.09 347.70 11.64 3.33 0.2671 0.6211 0.0612 

WAAAVW0003 AusPlot -32.4804 116.9389 343.9 16.31 32.36 4.61 449.99 19.61 2.45 0.4278 0.9275 0.0615 

WAAAVW0004 AusPlot -32.4797 116.9357 341.4 16.32 32.38 4.61 449.67 19.60 2.44 0.4273 0.9269 0.0614 

WAACOO0001 AusPlot -30.4352 120.6441 497.7 18.54 34.79 4.60 299.65 8.32 2.91 0.1732 0.3658 0.0630 

WAACOO0003 AusPlot -30.3917 120.6483 487.3 18.64 34.89 4.64 297.33 8.42 2.87 0.1706 0.3600 0.0622 

WAACOO0004 AusPlot -30.4653 120.8064 413.6 18.97 35.09 4.97 283.07 8.24 2.61 0.1578 0.3286 0.0596 

WAACOO0005 AusPlot -31.6029 119.8096 393.4 17.56 33.97 4.11 319.11 9.39 3.42 0.2185 0.4816 0.0614 

WAACOO0006 AusPlot -31.5964 119.8241 407.4 17.50 33.91 4.07 320.63 9.41 3.46 0.2200 0.4847 0.0621 

WAACOO0007 AusPlot -31.6067 119.8075 394.2 17.55 33.96 4.11 319.36 9.41 3.43 0.2188 0.4822 0.0615 

WAACOO0008 AusPlot -31.5964 119.8241 407.4 17.50 33.91 4.07 320.63 9.41 3.46 0.2200 0.4847 0.0621 

WAACOO0009 AusPlot -31.2391 120.3261 391.5 18.09 34.30 4.50 295.53 7.91 3.16 0.1844 0.3926 0.0635 

WAACOO0010 AusPlot -31.2318 120.3298 395.2 18.08 34.29 4.49 296.00 7.92 3.16 0.1847 0.3933 0.0636 

WAACOO0011 AusPlot -31.2528 120.3428 383.5 18.12 34.31 4.54 294.22 7.88 3.14 0.1831 0.3892 0.0635 

WAACOO0012 AusPlot -31.2374 120.3323 390.4 18.10 34.30 4.51 295.24 7.91 3.15 0.1840 0.3916 0.0635 
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WAACOO0016 AusPlot -31.2032 120.3082 434.6 17.90 34.16 4.36 302.61 8.07 3.27 0.1910 0.4080 0.0650 

WAACOO0017 AusPlot -31.1692 120.3055 429.8 17.97 34.23 4.38 301.19 8.04 3.22 0.1890 0.4040 0.0644 

WAACOO0018 AusPlot -31.1952 120.3184 435.1 17.91 34.16 4.37 302.46 8.07 3.26 0.1906 0.4068 0.0651 

WAACOO0019 AusPlot -31.2071 120.2651 452.1 17.80 34.09 4.27 306.26 8.17 3.36 0.1953 0.4188 0.0652 

WAACOO0020 AusPlot -30.1919 120.6551 436.3 19.13 35.39 4.85 287.35 8.86 2.65 0.1592 0.3343 0.0587 

WAACOO0021 AusPlot -30.1923 120.6506 437.6 19.12 35.39 4.84 287.66 8.86 2.66 0.1595 0.3350 0.0587 

WAACOO0022 AusPlot -30.1953 120.6328 448.8 19.05 35.33 4.80 289.85 8.85 2.70 0.1616 0.3399 0.0593 

WAACOO0023 AusPlot -30.1924 120.6587 435.6 19.13 35.40 4.85 287.19 8.87 2.65 0.1591 0.3339 0.0586 

WAACOO0024 AusPlot -30.1850 120.6447 443.8 19.09 35.37 4.82 288.79 8.89 2.67 0.1605 0.3372 0.0590 

WAACOO0025 AusPlot -30.1951 120.5988 475.4 18.91 35.22 4.69 294.90 8.87 2.79 0.1662 0.3509 0.0604 

WAACOO0026 AusPlot -30.5304 120.6657 502.3 18.42 34.63 4.59 301.27 8.14 2.93 0.1755 0.3702 0.0642 

WAACOO0027 AusPlot -30.5010 120.6606 522.7 18.34 34.58 4.52 304.44 8.24 3.00 0.1782 0.3767 0.0648 

WAACOO0028 AusPlot -30.4871 120.6587 520.0 18.37 34.61 4.53 303.82 8.27 2.99 0.1775 0.3752 0.0645 

WAACOO0029 AusPlot -30.4324 120.6272 507.1 18.49 34.75 4.56 301.49 8.34 2.95 0.1750 0.3701 0.0633 

WAACOO0030 AusPlot -30.4324 120.6272 507.1 18.49 34.75 4.56 301.49 8.34 2.95 0.1750 0.3701 0.0633 

WAACOO0031 AusPlot -30.6853 120.2574 482.8 18.24 34.65 4.31 304.38 8.19 3.15 0.1852 0.3990 0.0619 

WAACOO0032 AusPlot -30.7885 120.3149 421.7 18.46 34.78 4.53 294.35 7.75 2.94 0.1764 0.3775 0.0606 

WAAESP0001 AusPlot -34.4769 117.7543 171.6 15.73 27.13 6.78 509.98 17.83 4.23 0.4983 0.9200 0.1038 

WAALSD0001 AusPlot -25.0962 120.7245 609.3 22.56 39.08 5.02 261.01 18.77 0.73 0.0891 0.1344 0.0218 

WAALSD0002 AusPlot -25.0567 120.7397 575.3 22.76 39.27 5.15 257.62 18.96 0.67 0.0866 0.1330 0.0206 

WAALSD0003 AusPlot -25.2684 120.6280 639.6 22.29 38.87 4.89 258.96 17.57 0.81 0.0912 0.1408 0.0225 

WAAMAL0002 AusPlot -32.8147 119.1428 363.9 16.37 31.93 4.32 341.72 11.28 2.93 0.2789 0.6201 0.0711 

WAAMAL0003 AusPlot -32.8746 119.1580 329.8 16.46 31.84 4.46 332.29 10.87 2.89 0.2696 0.5985 0.0704 

WAAMUR0001 AusPlot -28.0651 121.0137 473.5 21.12 37.54 5.78 254.20 11.54 1.36 0.1177 0.2337 0.0385 

WAAMUR0002 AusPlot -28.1431 120.9661 522.7 20.81 37.24 5.62 257.04 11.23 1.49 0.1220 0.2447 0.0418 

WAAMUR0028 AusPlot -27.3887 120.6991 531.7 21.18 37.95 4.91 266.14 11.57 1.17 0.1189 0.2277 0.0380 

WAAMUR0029 AusPlot -27.3994 120.6822 531.6 21.17 37.95 4.90 265.65 11.44 1.18 0.1190 0.2284 0.0382 

WAAMUR0030 AusPlot -27.3823 120.6917 530.0 21.19 37.97 4.90 266.11 11.56 1.16 0.1188 0.2273 0.0379 

WAAMUR0031 AusPlot -27.4386 120.6555 539.6 21.10 37.87 4.88 265.07 11.18 1.22 0.1201 0.2318 0.0390 

WAGCOO0001 AusPlot -30.4361 120.6429 497.7 18.54 34.79 4.60 299.65 8.32 2.91 0.1732 0.3658 0.0630 

WAGCOO0002 AusPlot -30.3510 120.6427 499.2 18.62 34.89 4.61 299.07 8.53 2.90 0.1717 0.3629 0.0623 

WAGCOO0004 AusPlot -30.4653 120.8064 413.6 18.97 35.09 4.97 283.07 8.24 2.61 0.1578 0.3286 0.0596 

BAN Eucalypt -30.3675 121.2720 421.1 19.07 35.17 4.95 271.15 8.59 2.57 0.1483 0.3081 0.0562 

BEN Eucalypt -30.8101 117.8203 357.5 18.65 35.12 5.86 304.99 10.84 2.74 0.2245 0.5458 0.0463 

BEV Eucalypt -32.1788 116.9765 211.3 17.44 33.99 4.86 394.45 17.01 2.05 0.3598 0.8366 0.0521 

BOO Eucalypt -31.5953 119.8219 405.2 17.51 33.92 4.08 320.35 9.40 3.45 0.2197 0.4841 0.0620 

BRR Eucalypt -32.0479 117.9129 289.0 17.42 33.62 4.86 321.57 12.38 2.36 0.2690 0.6465 0.0524 

BUL Eucalypt -30.5200 121.7900 395.9 18.96 35.22 4.65 262.00 8.51 2.60 0.1450 0.3016 0.0516 

BUN Eucalypt -32.9833 118.8333 301.7 16.39 31.71 4.51 331.91 11.84 2.87 0.2813 0.6350 0.0671 

BUR Eucalypt -31.6276 118.5115 411.5 17.51 34.03 4.64 345.92 12.13 2.95 0.2642 0.6265 0.0565 

CHF Eucalypt -30.9955 122.8492 282.5 18.75 34.74 4.58 255.89 9.23 2.87 0.1439 0.2754 0.0557 
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CHR Eucalypt -31.6304 121.1679 440.5 17.44 33.15 4.49 302.79 8.07 3.80 0.1942 0.3910 0.0777 

CHR Eucalypt -33.9679 118.1103 249.9 15.84 28.89 5.92 360.38 12.32 3.05 0.3497 0.7253 0.0805 

COO Eucalypt -31.0515 123.0540 357.3 18.25 34.25 4.25 264.00 9.24 3.06 0.1549 0.2993 0.0586 

COW Eucalypt -31.1112 122.4534 292.1 18.65 34.57 4.65 267.80 9.34 3.13 0.1517 0.2924 0.0608 

CRE Eucalypt -30.1900 120.6500 437.6 19.12 35.39 4.84 287.66 8.86 2.66 0.1595 0.3350 0.0587 

CRN Eucalypt -30.3757 120.7467 428.7 18.98 35.16 4.89 285.57 8.43 2.66 0.1594 0.3336 0.0594 

CRS Eucalypt -30.1908 120.6641 434.3 19.14 35.40 4.86 286.87 8.87 2.64 0.1588 0.3332 0.0586 

CRW Eucalypt -30.4406 120.5165 444.7 18.78 35.07 4.69 292.65 8.09 2.79 0.1678 0.3550 0.0604 

DAY Eucalypt -32.2300 120.4506 356.9 17.15 32.70 4.61 305.41 8.26 3.91 0.2107 0.4339 0.0731 

DOO Eucalypt -31.6893 117.9820 321.5 17.78 34.04 5.09 323.31 11.28 2.55 0.2542 0.6050 0.0518 

FHN Eucalypt -33.0684 120.0466 373.4 16.21 30.43 5.12 341.74 10.15 3.50 0.2597 0.5323 0.0861 

FLF Eucalypt -32.1000 119.1000 400.0 17.05 33.61 4.10 346.40 11.40 3.43 0.2670 0.6132 0.0635 

GOO Eucalypt -30.0800 121.1500 374.7 19.61 35.77 5.18 264.59 9.35 2.32 0.1397 0.2896 0.0534 

HOL Eucalypt -31.6779 120.4634 442.5 17.34 33.34 4.31 310.23 8.12 3.86 0.2059 0.4315 0.0716 

HOL Eucalypt -31.9299 120.1085 429.6 17.09 33.14 4.19 323.08 9.22 3.90 0.2256 0.4835 0.0700 

HRK Eucalypt -31.3976 120.0112 439.3 17.58 33.97 4.08 312.89 8.63 3.46 0.2085 0.4547 0.0633 

JAE Eucalypt -30.8198 120.3527 418.5 18.45 34.74 4.56 293.82 7.74 2.92 0.1757 0.3749 0.0612 

JAE Eucalypt -30.8198 120.3527 418.5 18.45 34.74 4.56 293.82 7.74 2.92 0.1757 0.3749 0.0612 

JDS Eucalypt -30.8728 120.1907 431.8 18.27 34.67 4.37 298.39 8.09 3.11 0.1834 0.3959 0.0603 

KAH Eucalypt -30.9900 121.1200 420.0 18.44 34.15 5.18 293.15 8.29 2.51 0.1685 0.3401 0.0681 

KAM Eucalypt -31.2000 121.6000 320.1 18.57 34.22 5.07 269.64 8.04 3.06 0.1558 0.3136 0.0660 

KAM Eucalypt -31.2000 121.6000 320.1 18.57 34.22 5.07 269.64 8.04 3.06 0.1558 0.3136 0.0660 

KAN Eucalypt -31.0536 121.5686 332.3 18.70 34.35 5.16 266.32 7.99 2.86 0.1509 0.3055 0.0631 

KAN Eucalypt -31.2219 121.5887 325.2 18.53 34.17 5.05 271.37 8.06 3.10 0.1575 0.3168 0.0666 

KHT Eucalypt -31.0683 121.0850 419.9 18.33 34.07 5.09 293.77 8.26 2.66 0.1711 0.3458 0.0693 

KNT Eucalypt -33.3700 118.7400 317.8 15.96 30.31 4.92 339.33 11.13 3.14 0.2991 0.6479 0.0768 

KOO Eucalypt -29.3996 121.2818 408.7 20.14 36.40 5.41 262.81 11.56 2.04 0.1334 0.2766 0.0509 

KUL Eucalypt -32.5500 118.0200 326.7 16.67 32.73 4.57 334.36 12.54 2.63 0.2981 0.7011 0.0589 

KWO Eucalypt -31.7743 117.7712 270.6 17.83 34.07 5.10 313.35 11.31 2.42 0.2542 0.6105 0.0492 

LCN Eucalypt -32.3820 119.7584 382.7 16.84 32.62 4.36 334.20 10.22 3.60 0.2463 0.5335 0.0720 

LGE Eucalypt -29.8771 119.9710 444.5 19.29 35.91 4.53 292.83 8.99 2.73 0.1656 0.3551 0.0556 

LKG Eucalypt -33.0932 119.3495 347.9 16.14 30.80 4.68 336.54 10.57 3.27 0.2718 0.5861 0.0789 

LOC Eucalypt -33.3000 119.0200 318.3 15.97 30.34 4.74 345.29 11.10 3.21 0.2926 0.6307 0.0792 

MAD Eucalypt -31.3854 122.1136 336.3 18.15 33.90 4.56 280.68 8.35 3.46 0.1685 0.3317 0.0689 

MOD Eucalypt -32.5260 119.3984 329.5 16.94 32.78 4.44 341.01 10.77 3.24 0.2590 0.5716 0.0702 

MTH Eucalypt -32.9167 116.8667 369.9 15.59 31.30 4.41 512.27 22.29 2.59 0.4949 0.9804 0.0689 

NEW Eucalypt -33.3090 119.1946 310.5 16.05 30.20 4.88 348.42 10.85 3.35 0.2875 0.6109 0.0826 

NOR Eucalypt -31.7500 116.7500 211.7 17.71 34.36 5.02 407.67 17.56 1.81 0.3667 0.8570 0.0462 

NYA Eucalypt -33.5833 118.3333 338.0 15.78 29.86 5.31 357.86 12.31 3.02 0.3389 0.7269 0.0799 

PRS Eucalypt -31.7755 119.6125 399.0 17.34 33.78 4.05 336.41 10.66 3.54 0.2392 0.5331 0.0619 

QUH Eucalypt -32.5463 117.4940 276.0 16.83 32.58 5.00 342.41 13.60 2.31 0.3185 0.7459 0.0540 
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QUS Eucalypt -32.0836 117.3683 223.1 17.59 33.87 4.96 328.19 12.79 2.25 0.2885 0.6904 0.0497 

QUW Eucalypt -31.9629 117.1795 330.1 17.13 33.64 4.59 383.94 15.67 2.35 0.3492 0.8172 0.0505 

QVS Eucalypt -30.1500 123.3200 355.4 19.17 35.42 4.43 237.51 9.52 2.32 0.1202 0.2246 0.0505 

RAV Eucalypt -33.4500 120.0300 283.7 16.31 29.27 5.97 388.64 11.07 4.17 0.2948 0.5800 0.1023 

SKP Eucalypt -33.4167 118.4667 280.9 16.22 30.55 5.34 332.32 11.19 3.06 0.3012 0.6592 0.0735 

VRN Eucalypt -31.2485 120.9390 421.0 18.06 33.88 4.84 296.09 8.12 3.03 0.1782 0.3632 0.0712 

WEL Eucalypt -31.1234 119.7792 382.1 18.11 34.69 4.14 298.85 8.76 2.96 0.1940 0.4299 0.0556 

WOG Eucalypt -31.9097 118.5214 331.8 17.62 34.17 4.74 336.16 11.34 2.93 0.2581 0.6055 0.0575 

WOO Eucalypt -31.1381 120.6342 418.5 18.15 34.18 4.70 296.01 8.02 2.95 0.1782 0.3710 0.0683 

YEL Eucalypt -31.2959 119.6544 380.1 17.89 34.50 4.03 303.18 8.90 2.86 0.2030 0.4530 0.0561 

ZAN Eucalypt -31.0276 123.5962 267.2 18.61 34.53 4.43 220.32 7.93 2.59 0.1226 0.2257 0.0512 
MAT= Mean Annual Temperature; MaxT=Mean maximum temperature of the warmest month; MinT=Mean minimum temperature of the coolest month; MAP=Mean Annual Precipitation; MaxP=Mean maximum 

precipitation of the wettest month; MinP=Mean minimum precipitation of the wettest month; MAMI=Mean Annual Moisture Index; MaxMI=Mean Moisure Index of the wettest quarter; MinMI=Mean Moisture 

Index of the driest quarter. All climate variables derived from 0.01° (~1km) gridded cells derived from ANUCLIM v6.0 extracted from the Atlas of Living Australia. Site type=SWATT (surveyed by Rachel Meissner 

during the establishment of the SWATT; AusPlot; Eucalypt (sampling location of Eucalyptus salmonophloia or E. salubris only). 




