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Abstract

Although vaccination of poultry for control of highly pathogenic avian influenza virus

(HPAIV) H5N1 has been practiced during the last decade in several countries, its effective-

ness under field conditions remains largely unquantified. Effective HPAI vaccination is how-

ever essential in preventing incursions, silent infections and generation of new H5N1

antigenic variants. The objective of this study was to asses the level and duration of vaccine

induced immunity in commercial layers in Indonesia. Titres of H5N1 haemagglutination inhi-

bition (HI) antibodies were followed in individual birds from sixteen flocks, age 18–68 week

old (wo). The study revealed that H5N1 vaccination had highly variable outcome, including

vaccination failures, and was largely ineffective in providing long lasting protective immunity.

Flocks were vaccinated with seven different vaccines, administer at various times that could

be grouped into three regimes: In regime A, flocks (n = 8) were vaccinated two or three

times before 19 wo; in regime B (n = 2), two times before and once after 19 wo; and in

regime C (n = 6) three to four times before and two to three times after 19 wo. HI titres in

regime C birds were significantly higher during the entire observation period in comparison

to titres of regime A or B birds, which also differed significantly from each other. The HI titres

of individual birds in each flock differed significantly from birds in other flocks, indicating that

the effectiveness of field vaccination was highly variable and farm related. Protective HI

titres of >4log2, were present in the majority of flocks at 18 wo, declined thereafter at variable

rate and only two regime C flocks had protective HI titres at 68 wo. Laboratory challenge

with HPAIV H5N1 of birds from regime A and C flocks confirmed that protective immunity dif-

fered significantly between flocks vaccinated by these two regimes. The study revealed that

effectiveness of the currently applied H5N1 vaccination could be improved and measures to

achieve this are discussed.

PLOS ONE | https://doi.org/10.1371/journal.pone.0190947 January 10, 2018 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tarigan S, Wibowo MH, Indriani R,

Sumarningsih S, Artanto S, Idris S, et al. (2018)

Field effectiveness of highly pathogenic avian

influenza H5N1 vaccination in commercial layers in

Indonesia. PLoS ONE 13(1): e0190947. https://doi.

org/10.1371/journal.pone.0190947

Editor: Yongchang Cao, Sun Yat-Sen University,

CHINA

Received: June 22, 2017

Accepted: December 24, 2017

Published: January 10, 2018

Copyright: © 2018 Tarigan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: Financial support was provided by

Australian Center for International Agricultural

Research (ACIAR), WWW.aciar.gov.au, Grant No:

AH2010/039, Author received the funding: JI. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

https://doi.org/10.1371/journal.pone.0190947
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0190947&domain=pdf&date_stamp=2018-01-10
https://doi.org/10.1371/journal.pone.0190947
https://doi.org/10.1371/journal.pone.0190947
http://creativecommons.org/licenses/by/4.0/
http://WWW.aciar.gov.au


Introduction

Following the incursion of highly pathogenic avian influenza (HPAI) H5N1 virus into Indone-

sia in 2003, the disease spread rapidly throughout most of the country wherein it has become

endemic [1]. As well as economic losses due to high mortality in poultry, there were also

human fatalities through direct contact with infected poultry [2, 3]. As a result of the failure of

a culling strategy to control the spread of the disease, a program of vaccination of backyard

and commercial poultry against H5N1 was introduced in Indonesia in 2004 [1, 4, 5]. In accor-

dance with the then international guidelines [4] heterologous H5N2 vaccines were used ini-

tially [6]; However, these were found to be suboptimal and subsequently vaccines developed

from local H5N1 strains were approved [7, 8].

In Indonesia since 2003, a large number of H5N1 strains have been isolated [9, 10].

Sequencing of the major protein haemagglutinin (HA) and antigenic typing using the haemag-

glutination inhibition (HI) test have shown antigenic differences between strains that have

emerged over time [8, 10, 11]. Early Indonesian H5N1 strains differed little by sequencing and

are considered to have originated from a single introduction of H5N1 into the country in 2003

[12, 13]. All isolates belonged to subclade 2.1.1, of which the strain A/chicken/Legok/2003

H5N1was used for production of a vaccine in 2005 [7, 8, 14, 15]. By 2008 antigenic variants

have emerged that belonged to subclades 2.1.2 and 2.1.3 of which A/chicken/wj/Pwt-Wij/2006

(Pwt) H5N1was developed into a vaccine since A/chicken/Legok/2003-based vaccine did not

protect against Pwt challenge [8]. Recently, a new H5N1 variant A/duck/Sukoharjo/BBVW-

1428-9/2012 (Skh) has emerged that belongs to a new subclade of H5N1 2.3.2.1 [16].

Laboratory studies have shown that vaccination with inactivated oil emulsion avian influ-

enza (AI) vaccines has multiple beneficial effects including prevention of clinical signs and

mortalities, reduction in the number of infected birds and consequently a reduction in the res-

ervoir of virus in the environment [5, 6, 17, 18]. Factors that influence vaccination outcome

include the type and quality of vaccine, vaccination schedule, the dose and method of adminis-

tration [19]. Importantly there is no single recommended regime for HPAI vaccination of

commercial poultry in the endemic situation [18, 20]. Vaccine induced immunity is measured

by the presence of haemagglutination inhibiting (HI) antibodies in vaccinated birds and HI

titres generally reflect the efficacy of the vaccine and correlate with protection from a virulent

H5N1 challenge [19]. In Indonesia over twenty different vaccines intended for control of

HPAIV H5N1 have been registered and the majority of commercial layers are vaccinated [4].

However, as is the case in other countries where HPAIV H5N1 is endemic, the field effective-

ness of these vaccinations remains unknown [5, 21].

The objective of this study was to evaluate through longitudinal sampling, the effectiveness

of H5N1 vaccination in small to medium-sized commercial layer flocks in Indonesia. These

flocks belong to the “Sector 3” classification of poultry production [22] in which birds are kept

under variable biosecurity and husbandry conditions and vaccinated with different AI vac-

cines. The results showed that HPAI vaccination had highly variable outcome and did not pro-

vide sufficiently long protective immunity in the majority of flocks.

Material and methods

Selection of commercial poultry for longitudinal surveillance

This was a prospective longitudinal study wherein individual birds from sixteen commercial

layer flocks from Sector 3 in the provinces of West Java (WJ) and Special Region of Yogyakarta

(DIY) were repeatedly sampled at regular intervals after 18 weeks of age (wo). Protocols for

farms selection have been detailed elsewhere [22]. In brief, an initial visit was made between
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May and August 2012 to thirty-nine layer farms in the province of WJ and twenty-one layer

farms in DIY and farm/flock data obtained. Sector 3 layers were targeted because of sizable

population (from total layer population of 600 million approximately 100 million of layers are

in Sector 3) (1), most farms practiced H5N1 vaccination and was possible to gain access to

farms and flocks’ data for the conduct of the study. Commercial poultry Sector 1 and 2 also

practice H5N1 vaccination, however access to both Sectors is restricted and flock data often

treated as confidential. Farms in WJ were selected by the local District Veterinary Offices

(through which access to farms was only possible) and in DIY by one of the authors (MW),

who also facilitated enrolment of the poultry farms. From the data obtained during the initial

visit, eight layer farms in WJ and eight in DIY were selected for the study based on the follow-

ing criteria: (i) owners were willing to participate in a nine-month long study and allowed tag-

ging of individual birds; and (ii), farms were representative of the Sector with respect to farm

sizes, vaccines used, number of vaccination and husbandry practices. Sampling of selected

flocks occurred between December 2012 and May 2014.

Longitudinal surveillance of selected flocks

At the commencement of the study 25 birds were selected at random from within a flock

housed in cages in one shed, tagged and placed into individual cages positioned uniformly

across the entire shed area. At 18 wo and afterwards when the enrolled flock was 28, 38, 48, 58

and 68 wo, blood samples were collected, placed on ice and transported immediately to labora-

tories in Bogor or Yogyakarta. About one ml of blood was drawn by venipuncture of the bra-

chial vein according to the Food and Agriculture Organisation protocol (http://www.fao.org/

docrep/005/ac802e/ac802e0a.htm). Serum was removed and stored at 4˚C if testing was to be

accomplished within 48 hours, otherwise the sera were stored at -20˚C.

Haemagglutination and haemagglutination inhibition (HI) test

Haemagglutinating antigens (HA) were prepared and HI tests performed according to the pro-

tocols described by the World Organization for Animal Health (OIE) [23] using 4 HA units.

To minimise variability of the HI testing performed in the two laboratories, one batch of HA

antigen was used for testing of all sera. The HA antigens were back-titrated and reference posi-

tive sera of known titre and negative control sera were included in each test plate. Sera col-

lected from the WJ flocks were tested for antibodies against A/chicken/West Java /Subang-29/

2007 (Sb29), Pwt and A/chicken/Indonesia/BL/2003 (BL03) HA antigens and for the DIY

flocks, the sera were tested against Sb29, Pwt and Skh HA antigens (S1 Table).

Vaccines

Seven commercial AI vaccines were used by farms for vaccination of flocks that participated in

the longitudinal study (S2 Table).

Experimental infection of vaccinated layers with H5N1

A challenge study was conducted at the conclusion of the longitudinal study in which 22 birds

from the Csa flock (Experiment 1) and 24 from the Spu flock (Experiment 2), at 70 wo, were

moved from the farms into negative pressure isolators located within the biosafety level 3

experimental facility of the Indonesian Research Centre for Veterinary Science. Each bird was

inoculated orally with 105 median egg-infective doses of H5N1 strain Sb29. All birds were bled

by venipuncture of the brachial vein (approximately one ml of blood/bird) for collection of

sera just before and also at 7 and 14 days post-infection (dpi). Cloacal swabs were also collected
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at 3 and 7 dpi and used for virus isolation. Birds were observed four to five times during the

day for clinical signs and discomfort such as ocular and nasal discharges, coughing, snicking

and dyspnoea, swelling of the sinuses, listlessness, ruffled feathers, reduction in feed and water

intake, cyanosis, nervous signs and diarrhea [23]. Based on clinical signs individual birds were

scored as either normal, slightly ill/mildly depressed, ill/depressed and severely ill [24]. The

intention was that following the diagnosis severely ill chickens be immediately euthanized by

injection of sodium pentobarbital. Groups of unvaccinated control Csa and Spu birds were not

available as unvaccinated birds are a significant risk factor for maintenance of H5N1 infections

in vaccinated flocks and therefore could not be kept on commercial poultry farms. However

the Sb29 H5N1 virus used for challenge was previously shown to induce 100% of mortality

between 3 and 5 dpi in non-vaccinated commercial layers housed in the same biosafety level 3

experimental facility [25].

Re-isolation of challenge virus

Isolation of Sb29 H5N1 virus from individual swab samples from the experimentally infected

birds was performed according to the OIE Manual of Diagnostic Tests and Vaccines [23] and

as previously described [25].

Animal ethics approval

Challenge experiments were approved by the Animal Experimentation Ethics Committee of

the Indonesian Research Institute for Veterinary Sciences, approval number BB/V/A/01/2013.

The approved experimental protocols carried out were in accord with the standard procedures

described in the OIE Manual of Diagnostic Tests and Vaccines [23] and stipulated that chick-

ens could die following H5N1 challenge and that animals would be euthanized if severe clinical

symptoms [24] were observed by a supervising veterinary pathologist specialising in poultry

diseases.

Statistical analyses

Three types of statistical analysis were performed: (i) Repeated measures analysis of variance

was used to compare HI antibody titres in vaccinated layers form the longitudinal study. For

the analysis birds that took part in the longitudinal study were grouped by farm and HI titres

plotted for individual birds as a function of week of age. The timing of HPAI vaccination

events for each farm was then superimposed on each plot as vertical lines. Three distinct

groups of vaccination regimes/farms/flocks were evident: regime A, those vaccinated two to

three times before 19 weeks of age; regime B, those vaccinated twice before 19 weeks of age

with a single follow-up vaccination at around 40 weeks and regime C, farms that fitted neither

of the above two categories. A repeated measures analysis of variance was performed and HI

titres between and within regime A, B, and C groups compared using the "nlme" [26] and

“multcomp” [27] packages in R (R Development Core Team, 2015). In brief, regime A (n = 8),

B (n = 2) and C (n = 6) farms were selected in turn and analyses carried out to test the null

hypothesis that individual bird Sb29 HI titres did not vary across farms within a regime group.

Mauchly’s test of sphericity on each of the three data sets was significant indicating that the

variances of the differences in Sb29 HI titres at different ages were not equal. To deal with this

violation of one of the assumptions of a repeated measures analysis of variance, a multilevel

model was developed for each regime group with Sb29 HI titre as the outcome, farm and age

as explanatory variables and individual bird as a random effect. Within the multilevel model

the assumption of sphericity was relaxed by specifying an unstructured covariate matrix. A

multilevel model was then developed using test details from all birds from all sixteen farms,
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with an identical structure to the model described above. A posteriori contrasts were carried out

to test the hypothesis that: (i) Sb29 HI titres from birds from regime A farms differed from

birds from regimes B and C farms, and (ii) Sb29 HI titres from birds from regime B farms dif-

fered from birds from regime C farms. (ii) The Student’s t-test was used to compare the results

obtained in the challenge study with confidence interval (CI) for the difference set at 95%. Com-

parisons were: (i) individual Sb29 HI titres at the time of challenge (day 0) in surviving versus

birds that died; (ii) HI titres at 0 day in surviving Spu versus Spu birds that died; (iii) HI titres in

surviving Csa birds at day 0 versus day 14, and (iv) mean death time (days) between Csa and

Spu birds. (iii) Fisher’s exact test was used to compare proportions of infected birds and dead

birds for the Csa and Spu groups. A value of p� 0.05 was considered statistically significant.

Results

Relatedness of HA antigens used to measure AI immunity

Since layer flocks in the study were vaccinated with a variety of vaccines, four H5N1 strains,

BL03, Pwt, Sb29 and Skh, isolated in Indonesia between 2004 and 2013 were used as HA anti-

gens. Homologous HI titre for Sb29 was 5log2 and for BL03, Pwt and Skh antigens 7log2 (in

the range detected for other H5N1 strains [7]), but their heterologous HI titres differed with all

other HA antigens, indicating considerable antigenic differences between strains (S1 Table).

Profile of study farms and flock vaccination

Eight commercial layer farms in the province of WJ and eight in the province of DIY took part

in the longitudinal study. Farm data, vaccine used and vaccination schedules are shown in

Table 1. Of the seven different vaccines, Medivac was the most frequently used (7/16 farms).

Table 1. Profile of layer farms participating in the longitudinal surveillance study.

Provincea Farm/ flockb District Total birds

(no of sheds)

Flock age at vaccination (weeks) Vaccine usedc

(age at vaccination in weeks)

WJ Cwi Cianjur 150,000 (50) 4, 12, 22, 44 Vaksimune AI

Csa Cianjur 97,000 (66) 1, 4, 13, 17, 35, 46 Medivac AI

Cha Cianjur 80,000 (18) 1, 5, 17 Caprivac AI-K

Cci Cianjur 100,000 (43) 1, 6, 19, 28, 45 Medivac [1, 6, 9] & Caprivac [28, 45]

Ckr Cianjur 55,000 (24) 1, 5, 9, 19, 29 Caprivac AI-K

Spu Sukabumi 12,000 (8) 5, 10, 17 Medivac AI

Sta Sukabumi 15,000 (25) 6, 16, 47 Medivac AI

Ssc Sukabumi 80,000 (24) 3, 12, 19, 28, 48 BioTek H5N2 [3,12,19] & BirdCLOSE [28, 48]

DIY SL.1 Sleman 27,000 (13) 1, 11, 18 ProTek AI

SL.2 Sleman 30,000 (10) 4, 8, 17 Vaksimun AI

SL.3 Sleman 100,000 (38) 4, 9, 18 Gallimune™
SL.4 Sleman 80,000 (30) 4, 14 Medivac AI

SL.6 Sleman 30,000 (16) 6, 14, 40 Medivac AI

SL.7 Sleman 20,000 (15) 1, 5, 18 Medivac AI

KP.1 Kulon Progo 32,000 (21) 4, 17 Caprivac AI-K

GK.1 Gunung Kidul 50,000 (30) 5, 13, 26, 40 ProTek AI

a Provinces of West Java (WJ) and Special District of Yogyakarta (DIY).
b Farm designation used in order to maintain farms’ anonymity, derived from abbreviations for the district in which the farm was located and the farm name.
c Manufacturers’ designation. Conventional inactivated vaccines.

https://doi.org/10.1371/journal.pone.0190947.t001
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Vaccines were based on seed strains from either the H5N1, H5N2 or H5N9 subtype. Although

flocks were vaccinated between two and six times, the vaccination schedules differed on all

farms (Table 1). All flocks were vaccinated before 19 wo (taken as the “point-of-lay”) either

two, three or four times and 8/16 flocks were also re-vaccinated during the laying period. The

most frequently used vaccination regime was three times before 19 wo. This regime was

applied on six farms using five different vaccines.

Antibody titres in vaccinated layers determined using Sb29 HA antigen

A line plot showing Sb29 HI titres for individual birds, grouped by farm/flock/regime, as a

function of age, is shown in Fig 1. Three distinct regime groups were evident. Flocks in regime

A were vaccinated either two or three times before 19 wo. Those in the regime B group were

vaccinated twice before 19 wo, with a single follow-up vaccination at 40 or 47 wo. Those in the

regime C group were vaccinated two, three or four times before 19 wo with two or three fol-

low-up vaccinations between 19 and 48 wo. In birds on Ssc and SL.1 farms, although they had

been vaccinated two and three times, there were no detectable HI antibodies at 18 wo (Fig 1).

The Ssc flock was re-vaccinated, whereas the SL.1 farm did not re-vaccinate and the flock

remained HI antibody negative. With the exception of SL.4, there was a decline of HI antibody

titres after 18 wo in all regime A flocks.

After adjusting for the effect of farm, week of sampling and individual bird-level effects,

the Sb29 HI titres for regime A flocks were significantly lower (p< 0.01) compared with titres

in regime B and C flocks (z test statistic -4.034; p< 0.01). Regime B flocks titres were lower

than those in regime C flocks (z test statistic 1.949; p = 0.05). Exclusion of the SL.1 (non-

responder) flock in this comparison did not alter these inferences. The Sb29 HI titres for flocks

in the regime A (F7,193 = 107.191; p< 0.01), regime B (F1,48 = 164.49; p< 0.01) and regime C

(F5,144 = 162.68; p< 0.01) groups were significantly different indicating that vaccination out-

comes for flocks within each regime group were variable.

In the majority of flocks that responded to vaccination (10/15) all birds had similar Sb29 HI

titres through the observation period (Fig 1), with coefficient of variation (that describes the

level of variability within each flock) between 10 and 34. In five flocks (Cwi, Ssc, SL.4, SL.6 and

SL.7) the Sb29 HI titre of individual birds differed at two to four time points with a coefficient

of variation between 36 and 71 (S3 Table). In the SL.4 flock 16/25 birds had Sb29 HI titres that

did not change significantly over the follow up period, but in nine birds Sb29 HI titres were

higher at 38 wo (2–3 log2) in comparison to titres at 28 wo.

Level and duration of protective antibody titres in vaccinated layers

The percentage of birds with Sb29 HI titres of�4log2 that are considered protective [28], is

shown in Fig 2. At 18 wo, in the majority of flocks (12/16) 60% - 100% of birds had Sb29 HI

titres above 4log2 but in four flocks HI titres were below protective 4log2 level in spite of two or

three vaccinations. The duration of protective immunity was variable and, to a degree, related

to vaccination regime. From 18 wo and until 68 wo the number of protected birds declined in

most flocks and only two flocks, Cci and GK.1, in regime C remained protected until 68 wo

(Fig 2). Another two flocks (Ckr and Sta) in regime C and B, were protected until 58 and 48

wo, respectively. In comparison, in regime A, 4/8 flocks were protected at 38 wo, 2/8 only at 18

wo and 2/8 where not protected at any time. The overall short duration and a sudden drop of

protective HI titres was not related to the vaccine used, nor the timing of vaccination, as could

be concluded from a comparison of SL.3, SL.7 and Spu flocks. Re-vaccination during the lay-

ing period was efficacious when carried out in the presence of low antibody levels (Sta, SL.6

and Cwi flocks) and in some cases also when flocks were fully immune (Cci, Ckr and GK.1).

Effectiveness of H5N1 vaccination
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Re-vaccination was not effective in other flocks (SL.6, Csa and Cwi), although birds had low

antibody levels (Fig 2).

Fig 1. Haemagglutination inhibition (HI) titres against Sb29 H5N1 haemagglutinating antigen in vaccinated birds. Titres in individual birds determined at 18, 28,

38, 48, 58 and 68 weeks of age and grouped by flock/farm (n = 25 per farm) and vaccination regimes. Regime A–(blue) birds vaccinated two (SL.4 and KP.1) or three

times (SL.1, SL.2, SL.3, SL.7, Cha and Spu) before 18 weeks of age; regime B (green)—birds vaccinated two times before 18 weeks of age, with a single follow-up

vaccination at either 47 or 40 weeks (Sta and SL.6); regime C (red)–birds vaccinated two, three or four times before 18 weeks of age, with two or three follow-up

vaccinations between 19 and 48 weeks of age. The timing of highly pathogenic avian influenza vaccination events for each farm are shown as dashed vertical lines.

https://doi.org/10.1371/journal.pone.0190947.g001
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Fig 2. Proportion of vaccinated birds with protective haemagglutination inhibition (HI) titres of�4log2. HI titres in sera of individual vaccinated birds

determined against Sb29, Pwt, Skh and BL03 H5N1 haemagglutinating antigen at 18, 28, 38, 48, 58 and 68 weeks of age and grouped by flock/farm (n = 25 per farm)

and vaccination regimes A (blue), B (green) and C (pink) as detailed in Fig 1. The timing of highly pathogenic avian influenza vaccination for each farm are shown as

dashed vertical lines. Percent of infected birds presented as proportion on the scale 0–1.0 (= 0–100%).

https://doi.org/10.1371/journal.pone.0190947.g002
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Protective antibody titres in vaccinated layers determined by additional

HA antigens

In addition to Sb29 HI titres, protective antibody titres were determined using Pwt and BL03

and Pwt and Skh HA antigens in WJ and DIY flocks, respectively (Fig 2). The percentage of

protected birds obtained by three different HA antigens was similar in the majority of flocks

(11/16), indicating that the Sb29 was an effective HA antigen for detecting vaccinal immunity,

regardless of vaccine used. In five flocks (Ssc, KP.1, Cha, Cwi and SL.4) titres obtained by three

HA antigens differed. In the Ssc flock the BL03 HI antibodies were the highest, as expected,

since they increased following primary and secondary vaccination with the BirdCLOSE vac-

cine based on H5N1 strain homologous to BL03. In the KP.1 flock Skh HI titres remain high

after 48 wo whereas Sb29 and Pwt titres declined, possibly due to vaccination or field challenge

with Skh-related strains before 18 wo. In the Cha and Cwi flocks HI titres for Sb29, Pwt and

Skh were inconsistent or contradictory. For example in the Cwi flock, Sb29 and BL03 titres

increased following vaccination at 42 wo but not following vaccination at 22 wo, whereas Pwt

titres remained high throughout the follow up period. In the SL.4 flock Sb29, Pwt and Skh HI

titres were the same only in tree birds, whereas in others Pwt and Skh titres, in particular, were

variable and inconsistent (results for six birds are shown in S1 Fig).

Protective immunity in vaccinated layers following virulent H5N1

challenge

Birds from the Spu (regime A) and Csa (regime C) flocks vaccinated three and six times, were

challenged at 70 wo with Sb29 H5N1 strain to determine whether birds from these groups dif-

fered in susceptibility to virulent H5N1 challenge (S4 Table), as predicted by their HI titres

(Fig 2). Following challenge 75% and 50% of the Spu and Csa birds died between day 5 and 10

after challenge (mean death time of 7.5 days in both groups), but the difference in the mortality

rate was not statistically significant. Clinical signs of depression and respiratory distress were

visible in some birds, but only after 6 dpi and were scored as mild or moderate. The clinical

signs observed, however, were not a reliable indicator if birds were to survive or die, and all

deaths were sudden. The number of infected birds, 92% and 55% in Spu and Csa group,

respectively, was significantly different (p< 0.05). The majority of Spu and Csa birds that sur-

vived infection, 5/6 and 10/11 respectively, had at the time of infection Sb29 Hi titres of

�4log2 and the majority of those that died, 17/18 and 10/11 respectively, HI titres of�3 log2.

Geometric mean Sb29 HI titre in surviving Spu and Csa birds was 3.8 and 4.3 log2 and statisti-

cally significantly different from the geometric mean Sb29 HI titres in birds that died, 2.7 and

2.7 log2, respectively (p< 0.001).

Discussion

Seven different commercial AI vaccines were used for vaccination of sixteen flocks but none

was consistently effective. Most of the vaccines were of H5N1 subtype, based either on A/

chicken/Legok/2003, A/chicken/West Java/ 30/2007 or A/chicken/West Java/Pwt-Wij/2006

(Pwt), HPAIV strains that belong to clades, 2.1.1 and 2.1.3.2 and differed antigenically [10].

However it was not attempted to confirm the strain identity in any of the vaccine, for example

by sequencing [8]. Since introduction of vaccination, over twenty vaccines have been regis-

tered for use in Indonesia [1, 8]. In 2011, the Ministry of Agriculture implemented regulations

requiring that H5N1 HPAI vaccines use seed strain based on local H5N1 variants. This regula-

tion permitted the sale of existing stock of imported vaccine, and this explains why several

farms in our study used H5N2 and H5N9 based vaccines. The protective capacity of vaccines

Effectiveness of H5N1 vaccination

PLOS ONE | https://doi.org/10.1371/journal.pone.0190947 January 10, 2018 9 / 15

https://doi.org/10.1371/journal.pone.0190947


derived from H5N2, H5N9, A/chicken/Legok/2003 and A/chicken/West Java/Pwt-Wij/2006

(Pwt) strains has been established in laboratory experiments [8, 24] however many factors that

influence vaccine effectiveness [18, 29] including application at farm level, are difficult to con-

trol in Indonesia [1].

The timing of flock vaccination differed on all farms, but three vaccination regimes/sched-

ules were evident: regime A, in which flocks were vaccinated either two or three times before

onset of lay at 19 wo, was the most commonly practiced; regime B, where flocks were vacci-

nated twice before 19 wo with a single follow-up vaccination at 40 or 47 wo and regime C

where flocks were vaccinated two, three or four times before 19 wo with two or three follow-

up vaccinations between 20 and 48 wo. There is no single recommended regime for HPAI vac-

cination of commercial poultry in the endemic situation [18, 20]. Two vaccinations prior to

and one during lay, similar to regime B, have been proposed for control of low pathogenic

avian influenza [30]. This regime has been also advocated for use in vaccination for HPAI [1,

31]. The manufacturer’s recommendation for Caprivac vaccine was similar to regime B

whereas recommendations for Medivac vaccine were similar to either regime A or C. Although

9/16 flocks used Caprivac and Medivac vaccines, only in one flock was Medivac’s recom-

mended vaccination protocol followed.

The field effectiveness of vaccination, as determined by the presence and titres of Sb29 HI

antibodies, differed in all flocks and vaccination outcome was difficult to predict, except in

general terms. In two flocks, no HI antibodies were detected in spite of the layer birds receiving

two or three vaccinations prior to 19 wo, thus indicating undetected vaccine administration

problems on these farms. Maternal antibodies did not appear to have played a major role in

development of vaccinal immunity because all flocks were vaccinated at, or after 3 wo (and

once or twice thereafter) at the time when AIV maternal antibodies are expected to be at low

levels [25] and do not interfere with vaccination [32]. Antibody response was detected in the

majority of vaccinated flocks and overall the level of Sb29 HI antibodies correlated with the

number of vaccinations: In flocks vaccinated with regime C, HI titres were significantly higher

through the observation period in comparison to HI titres in flocks vaccinated with regimes A

and B. Similarly, HI titres in flocks vaccinated with regime B were higher than in those vacci-

nated with regime A. Thus the most frequently practiced H5N1 vaccination regime in Indone-

sia, regime A, induced the lowest level of vaccinal immunity. Importantly the HI titres of

individual birds in each flock differed significantly from birds in other flocks vaccinated with

the same regime, indicating that effectiveness of field vaccination was highly variable and farm

related. A random cross-sectional survey of Sector 3 layer farms in the provinces of East and

Central Java, undertaken following this study, confirmed that regime A (two to three vaccina-

tion before lay) was the most commonly practiced vaccination regime in Sector 3 layers (S.H.

Irianingsih, personal communication).

An important characteristic of an effective H5N1 vaccination program is the number of

birds that are protected from virulent challenge, i.e. the “level of flock immunity” [7, 33]. The

current estimate of this is that where�60% of birds have HI titres of� 4log2 spread of H5N1

challenge virus is reduced or prevented [33, 34]. The majority of vaccinated flocks in our study

(12/16) had HI titres of� 4log2 at 18 wo and thus were protected. However, thereafter, protec-

tive immunity declined at a variable rate and was associated with, to a degree, the number of

vaccinations given. The regime A flocks were protected at between 18 and 38 wo, whereas

those vaccinated with regime C were protected until 58 wo. Only two flocks, vaccinated with

the regime C were fully protected until 68 wo. Sector 3 layers, including flocks in the study, are

generally kept until between 80 and 100 wo [1, 22] and therefore the majority were not pro-

tected against H5N1 challenge throughout the production period.
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There are only a few studies in which duration of HI antibodies following AI vaccination

has been determined. Laboratory vaccination of commercial chickens by a single administra-

tion of an experimental H5N1 vaccine induced high titres of HI antibodies (approximately

8log2) that lasted up to 12 weeks [35], while in another study a single vaccination of free-range

layers with H5N2 vaccine induced protective immunity that lasted for more than one year

[36]. In studies with SPF chickens, a single dose of an inactivated H5N1 virus induced immu-

nity that lasted up to 138 weeks [37] but in comparison infection with low-pathogenic live AI

virus induced HI antibodies that lasted 22 weeks [38]. The reason for short duration and steep

decline of HI antibodies in flocks surveyed is currently speculative, but could be due to insuffi-

cient antigenic mass in the inoculum [19]. Recommended vaccination dose for Indonesian

vaccines vary between 0.3 ml and 0.5 ml per bird, injected either subcutaneously or intramus-

cularly, easy amenable to variation in volume administered considering that a large number of

birds are vaccinated at any one time.

Re-vaccination during the laying period was important for maintaining the level of flock

protective immunity, but it was not always effective even though ‘vaccine take’ and an anam-

nestic response in the order of�3log2 [39] was expected. In eight flocks that were revaccinated

in total 14 times, increase in HI titres occurred only following six revaccinations, whereas in

others, they declined or remained at the same level. Post-vaccination serological monitoring is

not routinely undertaken in Sector 3 poultry in Indonesia and many poultry farms rely only

on vaccine manufacturer recommendations to achieve flock-level H5N1 protection.

The Sb29 HA antigen, the nationally recommended antigen for measuring AI immunity

during the study period, differed antigenically from BL03, Pwt and Skh. In spite of this, the

Sb29 antigen was sufficiently cross-reactive and accurately measured immunity in the majority

of vaccinated flocks, including those vaccinated with H5N2- and H5N9-based vaccines. In

eleven flocks vaccinated with five different H5 vaccines there was an almost complete agree-

ment between HI antibody titres, regardless of the HA antigen used. Studies have shown that

H5N1 strains which are genetically similar may be antigenically different [10, 40] and complete

antigenic homology between immunising or infecting strain and detecting HA antigen is

rarely possible [40]. The primary and secondary immunisation with inactivated vaccines

favour development of subtype specific antibodies and little cross-reaction is detected in HI

test between the HA antigens and heterologous sera as was shown to be the case with Sb29,

BL03, Pwt and Skh antigen using their primary antisera. Also this was evident in the Ssc flock

where following two vaccinations with the BirdCLOSE vaccine HI titres obtained with homol-

ogous BL03 antigen were higher compared with Sb29 and Pwt HI titres. Multiple AIV immu-

nisations are known to increase titres of both subtype-specific and cross-reactive HI

antibodies, thus broadening the antigenic profile of induced antibodies and allowing for use of

heterologous HA antigen for detection of AIV antibodies [41, 42].

That the Sb29 HI titres detected in vaccinated birds were an accurate measure of vaccinal

immunity and correlated with protection was demonstrated in the challenge experiments of

birds from two flocks vaccinated with regime A and C. It was predicted from the Sb29 HI titres

at 68 wo that 79% and 48% of birds from of Spu and Csa birds, respectively, would be suscepti-

ble to virulent H5N1 challenge. Following challenge 92% and 75% of Spu and 54% and 50% of

Csa birds were infected or died, respectively, confirming that the Sb29 measured HI titres

reflected adequately the level of vaccinal and protective H5N1 immunity [7, 8, 34, 43].

Notably in all flocks, except for SL.4, there were no unexpected increases in HI titres in the

absence of vaccination, thus suggesting the absence of field H5N1 challenge through the period

of one year. This was an unexpected finding, contrary to anecdotal evidence that HPAIV

H5N1 is common in Sector 3 poultry due to low biosecurity and ample opportunity for con-

tacts with free range poultry, or wild birds. In the SL.4 flock in some birds (9/25) HI titres
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increased (2 -3log2) between 28 and 38 wo, an increase expected following revaccination (2

-3log2) rather then live virus challenge (5 - 8log2). Also highly inconsistent Pwt and Skh HI

titres and high CV(%) indicated that SL.4 sera themself were the source of erroneous HI results

[38].

Conclusions

HPAI vaccination, intensively applied in Sector 3 layers in Indonesia, had highly variable out-

come, including vaccination failures and did not provide sufficiently long protective immunity

in the majority of flocks. Indonesia adopted HPAI vaccination in 2004 with the aim of reduc-

ing the incidence of H5N1 infections in poultry, with the ultimate objective of achieving eradi-

cation of the virus. Assessment of field effectiveness of the currently applied H5N1 vaccination

was useful in demonstrating that vaccination, as practiced in Sector 3 poultry, could be

improved. In particular, we have identified that the most frequently used vaccination regime,

consisting of three vaccinations before 19 wo, does not provide sufficiently long lasting immu-

nity and protection of layers with any of the commonly used HPAI vaccines. Instead, four or

five vaccinations, of which two are during the laying period at 26–28 and 40–48 wo, would

ensure longer lasting protection and further reduce the risk from exogenously introduced

H5N1 infections. Monitoring the level of immunity in vaccinated flocks would help to identify

key factors that contribute to inadequate responses to vaccination, short duration of protective

immunity and vaccination failures. The timing of re-vaccination could be adjusted according

to the flock immunity, ensuring an effective response and longer lasting protective immunity.
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