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Abstract 
 

The application of fiber reinforced laminated composite structures has been 

increasing steadily in many engineering disciplines due to their high specific 

strength and stiffness, corrosion resistance, exceptional durability and many other 

attractive features over the last few decades. A comprehensive strength and failure 

assessment of these structures made of composite materials is extremely important 

for a reliable design of these structures and it has been a major focus of many 

researchers in this field for a long time. To the best of our knowledge, the majority 

of the existing studies based on macro based continuum approach are particularly 

focussed on capturing the effective elastic properties and final failure envelop of 

the composite material, while the subsequent post-yield inelastic behaviour or the 

entire nonlinear response is often overlooked. Composite structures with such 

diverse applications can be subjected to complex loading conditions such as 

impacts, severe dynamic loads or extreme thermal loads which can lead to a 

significant damage or complete failure of these structures. It is therefore essential 

to predict the entire nonlinear response and failure of these structures in many 

situations for a better design with higher confidence. This problem is quite 

challenging, specifically with a macro based continuum approach, as the actual 

failure initiates at the micro scale in the form of matrix cracking, fiber rupture or 

fiber-matrix interface failure which propagate gradually, accumulate together and 

finally manifested as macroscale structural failure. Thus tracking the details on the 

entire failure evolution process from microscale to macroscale is necessary for 

accurately modelling the structural failure. A detailed micromechanical modelling 

approach, where all constituents are explicitly modelled, can capture all these 

microscale failure processes and their evolutions in details but such modelling 

strategy is not computationally feasible for failure analysis for large structures due 

to a huge gap between micro/fiber and macro/structural scales. Thus the analysis of 

these structures requires an innovative modelling approach that can represent and 

capture the essential features of these microscale failure details, while at the same 

time, should be computationally efficient like a macro based continuum model for 

undertaking large scale structural analysis.  
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In this study, a new three-dimensional kinematically enhanced macro-based 

constitutive model is developed which is applicable at the lamina/ply scale of these 

laminated composite structures. A novel analytical technique is developed for 

upscaling the nonlinear response from the fiber/micro scale to the ply scale which 

is the key for achieving such precise modelling of composites with feasible 

computational resources. The proposed approach utilized a strategy of strain field 

enhancements kinematically to account for different rate of deformations in the 

local fields within a fiber reinforced composite (FRC) ply. Based on these 

considerations, closed-form analytical expressions are derived which can be used 

conveniently to express the average macro strain increments of the entire volume 

element in terms of strain increments in the local fields and vice versa. This 

modelling strategy provides an opportunity to incorporate both fiber and matrix 

constitutive responses as well as their interactions into the overall ply response. To 

this end, a thermodynamics-based continuum model is developed using damage 

mechanics and plasticity theory to capture the constitutive response of the matrix. 

This has incorporated two predominant failure mechanisms in the matrix, which 

are permanent plastic deformation and loss of stiffness. For the fiber-matrix 

interface that includes interfacial debonding, an anisotropic damage model is 

developed to account for the directional dependence of the softening response in 

FRC ply due to fiber debonding failure. The proposed approach and models are 

developed in incremental forms, allowing the applications in both linear and 

nonlinear ranges of behaviour. Their verification with available analytical and 

numerical approaches together with the validation against a wide range of 

experimental data show both features and good potentials of the proposed approach. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 

The use of fiber reinforced composite (FRC) materials has been increasing steadily 

in many engineering disciplines over the last few decades since their attractive 

features such as high specific strength and stiffness as well as many other properties 

are preferred over those of conventional materials such as steel or concrete. These 

superior properties are the direct outcome of composing two or more constituent 

materials with distinctive properties to form a unique material where certain 

desirable characteristics can be achieved. In facts, the basic concepts and forms of 

composite materials are found to be existed for centuries with evidences found in 

Egypt dated back to 1500 B.C where bamboo shoots glued with laminated wood 

were used as reinforcement in mud wall [1], or laminated writing materials were 

made from papyrus plant by ancient Egyptians as early as 4000 B.C [2]. On the 

other hand, the application of modern composite materials started in early 20th 

century when fiberglass in polymer matrix were made for manufacturing high-

temperature electrical components. Since then scientist and engineering 

communities around the world have begun to explore the enormous potential of 

fiber reinforced composite (FRC) materials and by this time, these materials have 

been radically transforming our everyday lives. For example, athletes’ performance 

can be effectively enhanced with better sport equipment made of composites 

(racquets, surfing board, bikes, etc.), travelling becomes faster, safer and much 

more fuel efficient as transport vehicles (cars, boats, airplanes, high speed marine 

craft, etc.) built from composites are stronger, lighter, easier to manoeuvre and 

more durable than other traditional materials such as steel or aluminium. A plot of 

specific strength against specific modulus of various materials including traditional 

metal materials as well as advanced fibers and composite materials as shown in 

Figure 1-1 which indicates exceptional characteristics of the new materials.   
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Figure 1-1: Specific Strength and Specific Modulus of fibers, metal and composites (Data 
obtained from [1])  

Advanced composite materials consist of fibers, such as glass, carbon/graphite, 

aramid or boron, and matrix such as epoxy, polyester or vinyl ester resin systems 

are also used for building spacecraft, missiles, military aircrafts as well as 

commercial aircrafts applications. Recent developments in the design and 

manufacture of new passenger airplanes have made a profound remark on the 

significance of FRCs in the aviation industry where the material accounts for more 

than 50% of the entire structural weight of an airplane [3]. Figure 1-2 below shows 

the rapid increase in usage of composite materials in both commercial and military 

aircrafts over the period from 1965 until recently. In the transportation industry, the 

use of composites reduces the self-weight of the vehicles which will improve their 

fuel efficiency and/or increase their pay load carrying capacity leading to extra 

revenue over their service life. In the defence sector, the reduction of self-weight 

will allow for bigger engines having more power which will improve the overall 

performance such as enhanced operating speed and manoeuvrability of a fighter 

plane or naval vessel. 
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(a) 

 

(b) 

 

Figure 1-2: Composite material usage by weight in: (a) Commercial aircraft and (b) Military aircraft [4] 

Initial applications of composites in construction industry were limited to non-

critical components such as cladding, railings or decorations. With the 

improvement for understanding the material behaviours and reduction in 

manufacturing costs, the use of FRC materials has been widely spread across the 

construction industry in the last few decades with more load bearing components 

such as beams, columns, structural panel for walls or floors, bridge decks, etc. are 
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made from composite materials. Moreover, with the exceptional stiffness-to-weight 

ratios and strength-to-weight ratios compared to tradition metals or reinforced 

concrete materials in the construction industry, shell-shaped structures/roof made 

of composites are able to span across much greater distances that enable much more 

flexibility in the design along with remarkable added aesthetic values as well as 

structural efficiency.  

The superior corrosion resistance property of FRC materials are also beneficial for 

structures located in aggressive environment, e.g. off-shore structures, sub-sea level 

applications, etc., where traditional metallic materials are susceptible to corrosion 

and require regular maintenance. Other major use of composite materials in 

construction industry is retrofitting and rehabilitation of existing infrastructures 

where repairs are needed for damaged/degraded structures or upgrades are carried 

out to increase the load bearing capacity of an existing structure [5]. In other 

specialised fields where weight-reductions play a key role in the overall 

performance of the structure, such as construction of larger wind turbines and their 

supporting structure, FRC material has established itself as the most feasible option 

in the selection of materials [6]. The length of a single blade now can exceeds 70m 

and it is increasing rapidly to achieve a higher energy output per unit cost. The use 

of composite laminates and some of its other forms such as sandwich laminates has 

made it possible to design such large blades having sufficient strength and stiffness 

for their efficient operation. Apart from low maintenance costs, aesthetics and other 

benefits, the use of these outstanding lightweight materials helps to reduce the 

transmitted load on the supporting structural components, which has a cumulative 

advantage in weight or material savings leading to a remarkable overall economic 

benefit. 

With such diverse applications, structural components made of composite materials 

can be subjected to highly complex stress scenarios produced by different 

combinations of loading such as extreme thermal loading, severe dynamic loadings 

or impacts, which may lead to a significant damage or complete failure of these 

structures. Due to the composite nature of these materials, their failure 

characteristics are quite complex and an accurate prediction of this process is 

extremely challenging. Therefore, the analyses of these structure require a reliable 

material model to correctly predict the strength and inelastic response of laminated 
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composites. Subsequently, modelling aspects of laminated composite materials 

receives a vast amount of interests from different research communities with 

diversified backgrounds and theoretical bases. Various theories and approaches 

developed for modelling constitutive response of composite materials will be 

briefly discussed in the following section. 

1.2 Mechanical response of FRC 

In this section, a review of mechanical response of FRC is present. First, the 

important aspects of FRC response at structure level are investigated along with the 

relevant laminated plate and shell theories. It is then followed by literature review 

of some critical characteristics of damage processes occurred within a laminate. 

Understandings of these features of FRC structures are essential for the 

development of a reliable design approach to ensure safety and efficient of these 

structures. 

1.2.1 Laminated Plate Theories 

There are different types of plate theories which have been developed since the 

mid-20th century for modelling flat composite laminates using various kinematic 

assumptions for representing the variation of displacements and stresses along the 

laminate thickness. In general, these theories can be categorised into the followings:  

 Equivalent single layer theories (ESLT): 

o Classical plate theory (CPT) 

o First order shear deformation theories (FSDT) 

o Higher order shear deformation theories (HSDT) 

 Layer wise theories (LWT):  

o Discrete layer theories  

The Equivalent Single Layer theories (ESLT) are displacement-based theories 

where some certain type of variations through the plate thickness are taken for the 

displacements, which help to express displacements at any point within any layer 

with respect to displacement parameters at the reference plane (usually plate mid-

plane) [7]. Based on this, the heterogeneous laminates are mathematically replaced 

by a statically equivalent single layer where the stiffness of the laminate is a 

weighted average of the layer stiffness through the thickness. Most of the early 
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works employed the Love-Kirchhoff’s hypothesis used in classical plate theory for 

modelling laminated plates. It assumes that a transverse plane normal to the plate 

mid-plane before bending remains plane and normal/perpendicular to the plate mid-

plane after deformation and inextensible [8]. This leads to linear distributions of in-

plane displacements along the thickness direction and it does not include any 

contribution of the transverse shear deformation which may be acceptable for thin 

plate structures.  

On the other hand, the effects of transverse shear deformation are significant in 

thick plate structures and it is more profound in composite plates as the material is 

weak in shear. Thus various types of variations for the in-plane displacements have 

been adopted for developing first order [9, 10],  or higher order [7, 9, 11–13] shear 

deformation theories. In first order shear deformation theory (FSDT), the transverse 

shear strains are taken as uniform along the plate thickness whereas this variation 

is parabolic for higher order shear deformation theory (FSDT). In general, HSDTs 

are more accurate for representations of the transverse shear stress distributions 

along the thickness of the plate.  

In conclusion, the main advantages of ESLT are their inherent simplicity and low 

computational costs. However, these theories may not be adequate when a more 

realistic distribution of stresses throughout the plate is needed. For laminated plates, 

even in the elastic range having no damage, the transverse stresses are continuous 

and the transverse strains are discontinuous at the interfaces between the layers. 

Unfortunately, these conditions cannot be satisfied using ESLT as it takes smooth 

and continuous distributions of the in-plane displacements throughout the plate 

thickness, which lead to continuous transverse shear strain distributions over the 

entire plate thickness including the interfaces between the layers. 

In certain applications, higher transverse stresses, which are produced at a point in 

actual scenario, may cause a localised failure at that point of the structure such as 

delamination between layers, joint separations and matrix cracking [8]. Therefore, 

a theory that can predict stresses accurately is needed, especially for thick laminate 

plates/shells. Among several theories/approaches have been developed, the layer 

wise theories have been found to be the most suitable where the displacements for 

each layers are modelled explicitly which results in a realistic distribution of 
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stresses and strain with discontinuities in appropriate locations. Early development 

of the layer-wise theories includes the works in [14–18] which can adequately 

predict the deformations of laminated composite structures, however, at the 

expense of high computational efforts due to a large number of degrees of freedoms 

in these formulations. Further studies on plate theories [12, 19–23] employed the 

refinement of the through thickness definition of in-plane displacements follows 

zigzag functions which gave the desirable strain continuity at the lamina interfaces. 

These refined theories helped to improve the model accuracy as well as 

computational efficiency at the same time, however the implementations of these 

theories are relatively challenging.  

1.2.2 Laminated Shell Theories 

Besides the architectural aesthetics, the shapes of shell structures are known for 

their structural efficiency where the majority of applied loads can be transferred in 

the form of in-plane forces by membrane actions which leads to higher load 

carrying capacity of the structures. For this reason, applications of composite shell 

structures can be seen in many fields ranging from military uses, such as aircraft, 

missiles or submarines, to other engineering applications like construction of 

liquid-containing vessels or large span dome structures. Many modelling 

approaches have been developed for the design of these structures where most of 

the theories of shell structures are extension of plate theories with curved 

geometrical configurations. Examples of such theory can be found in [24–26] for 

FSDT, [27] for HSDT or [28–32] for layer-wise theory of multi-layered anisotropic 

shells.  To this end, CPT, FSDT, and HSDT shell theories are applicable for thin 

shell structures while a thick shell structure needs a discrete layer shell theory or a 

refined zigzag theory for an accurate prediction of displacements and stresses. 

1.2.3 Failure Mechanism of Laminated Unidirectional FRC 

The studies on laminated plate and shell theories discussed in the previous sections 

are primarily restricted to the elastic response of composite structures while their 

post-yield inelastic behaviour or the entire nonlinear response is often ignored. 

Nevertheless, composite structures can be subjected to complex loading conditions 

such as impacts, severe dynamic loads or extreme thermal loads which can lead to 

a significant damage or complete failure of these structures. For this reason, large 

volume t of attentions has been drawn from the research community worldwide to 
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investigate the governing failure mechanisms of FRC. To this end, the failure of 

composites is a complex process which involves several interdependent failures 

processes which also depends on loading conditions and the constituent properties. 

In general, there are four common modes of failures observed in composites: matrix 

cracking (intra-laminar fracture) perpendicular to the loading direction or ply 

splitting, fiber/matrix debonding, fiber breakage/failure and delamination between 

two adjacent layers or plies (refer to Figure 1-3).  

 

Figure 1-3: Schematic representation of different failure modes in unidirectional laminate 

under tension [33]  and laminate failures at microscopic scale [34] 

Amongst these failure mechanisms in FRC, fiber fractures are the least common 

failure mode as they process very high ultimate stresses which can be as high as 

5171 MPa for IM8 carbon fibers [2]. More common types of fibers such as glass or 

boron fibers also display a high strength of 4585 MPa and 3799 MPa respectively 

[2]. On the other hand, common matrix materials of advanced composites are 

epoxy, polyester or urethane [1] which exhibit significant lower strength compared 

to fibers and are more susceptible to damage. Figure 1-4 shows typical load 

deflection behaviours of polyester resin where nonlinear behaviours of the matrix 

material beyond their yielding are clearly observed. The nonlinear post-yield 
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response of the resin/matrix usually involves two primary nonlinear effects: 1) 

gradual loss of stiffness (damage) and 2) permanent inelastic (plastic) deformations 

[8, 9]. These nonlinear responses are caused by the inelastic mechanisms (damage 

and plasticity) which occur due to progressive micro-structural changes as the 

material is being loaded. For examples, microscopic processes such as void 

nucleation, void enlargement, void coalescence and microcracking within the 

matrix cause stiffness degradations while frictional sliding and dislocations of 

defects are associated with irreversible plastic deformations [10–12].  

 

Figure 1-4: Typical Stress-strain relationship of polyester [35] 

Furthermore, microcracking in the matrix, under increasing loads, can be 

accumulated or localised and form macro matrix cracking in the ply and their 

effects on the macroscopic behaviour of composites are well-documented in many 

studies [36–41]. In such situations, a sudden change in the stiffness of composites 

can be observed as a result of the cracking process causing the redistribution of 

stresses in the local fields. 

On the other hand, fiber/matrix interface failures (fiber debonding) also play an 

important role contributing to the loss of stiffness and the ultimate failure of FRCs 

[34, 42]. Macroscopic responses of composites are primarily influenced by the 

bonding strength at the fiber/matrix interface [43, 44]. Subsequently, stresses in the 

local fields of the composites may exceed this bonding strength and lead to a 

localised separation of the fiber and matrix. Under increasing loads, this will 
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progressively grow in the fiber direction and simultaneously induce new cracks in 

the matrix towards a direction normal to the fiber  [41]. Further fiber debonding 

can be initiated from the development of the new matrix cracks and eventually 

macro transverse cracking or ply delamination can occurred in the FRC laminate 

(Figure 1- 5). 

Other mode of failure (relatively less common) includes in-plane/translaminar 

shear failure, which is extremely rare in unidirectional plies, as longitudinal splits 

tend to occur before in-plane shear cracks [34]. In addition, fiber kinking/buckling 

failures can be observed under compression loadings. 

 
(a) 

 
(b) 

Figure 1- 5: (a) Matrix cracking (90o splitting) and delamination in a CFRP laminate; (b) 
Cross-section of a compression failure in a 0o/90o laminate [34] 

In summary, modelling of unidirectional FRC laminates are quite challenging with 

complex behaviour of the constituents as well as the macroscopic response in both 

linear and nonlinear range. In this regard, it is important that several key aspects 

need to be addressed for a reliable modelling strategy. First, effective elastic 

properties of the laminates need to be determined from the constituent properties in 

order to model the laminate response in the elastic range. When inelastic response 
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of laminate is considered, suitable yielding and failure criteria for the constituents 

as well as the laminate are needed to accurately depict both constituents’ response 

and the macroscopic behaviour of the laminate under various loading conditions. 

Furthermore, the prediction of the macroscopic response should be derived on the 

basis of physical interactions between the material constituents for a better 

predictive capability of the model rather than based on a curve fitting type 

approach. More details review on the constitutive modelling of composite materials 

are provided in the next section. 

1.3 Constitutive Modelling of Composite Material 

There are a wide range of models available in literature dealing with constitutive 

modelling of composite laminate. To this end, a brief review of theoretical models 

available in literature will be presented in this section. 

1.3.1 Continuum Constitutive Modelling 

Fibre reinforced composite materials have been traditionally modelled as 

homogeneous materials with orthotropic mechanical properties and based on that, 

a number of theories have been proposed by various investigators. The 

developments of these theories rely on phenomenological observations at 

structure/macro scale in order to obtain and use a suitable failure criterion which 

will be able to produce results matching with the experimental data. For example, 

the well-known Tsai-Hill theory [45] belongs to this group, which has been applied 

to unidirectional FRC using Hill’s failures theory for material with low degree of 

anisotropy [46] and has subsequently been  extended to generalise the theory where 

a second order polynomial in tensor form has been used for the failure surface [47]. 

Nevertheless, the quadratic nature of this failure criterion implies that it is 

applicable to materials with identical tensile and compressive strengths only [2]. 

This limitation has been overcome by Hoffman [48] by adding a linear stress term 

to Hill’s criteria to account for different ultimate stresses in tension and 

compression for brittle composites [48]. Hashin and Rotem [49] developed a 

piecewise smooth function at macroscale level which helped to simulate two simple 

failure modes within a lamina: failures due to fiber breakage under the longitudinal 

stress, and failures due to matrix cracking under transverse stresses. However, this 

model [49] is only applicable for plane stress problems. Hashin [50] extended this 
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approach to model unidirectional laminates under three-dimensional loading 

conditions considering tensile and compressive failure of both fibers and the matrix. 

However, the quadratic form of the failure envelop used in these models [49] and 

[50] has been chosen on the basis of curve fitting and interpretation of the energy 

density which has a quadratic form in terms of stresses [50]. Thus, it lacks a strong 

and convincing physical basis. On the other hand, Christensen [51] proposed a 3-D 

stress-strain relationship for transversely isotropic material and a strain-based 

failure criterion closely related to Tsai and Tsai-Hill theories. He also derived a 

stress-based criterion taking into account the effects of hydrostatic pressure on the 

failure envelop[52]. Again, the explicit representations of the constituent behaviour 

in the derivation of macroscopic response are absent due to phenomenological 

nature of the approach. Gosse [53, 54] proposed the well-known Strain Invariant 

Failure Theory (SIFT) or the Onset theory where the critical values of dilatational 

volumetric strains and distortional shear strains are used as the criteria for detecting 

failure initiation of composite lamina, yet the evolutions of failure mechanisms 

were not considered in these studies.  

In the aforementioned works, the focus was to obtain the final failure envelop which 

is needed for the ultimate strength analysis, whilst the whole nonlinear response 

after yielding cannot be captured. The post-yield response of fibre reinforced 

composites usually involves two predominant nonlinear effects: (i) gradual loss of 

stiffness parameters (damage); and (ii) permanent/irreversible deformations 

(plasticity) [55, 56]. These nonlinear effects caused by inelastic deformations 

(damage and plasticity) which occur due to progressive changes in the structural 

form of materials at microscopic scale as the material is being loaded progressively. 

For examples, microscopic processes such as void nucleation, void enlargements, 

void coalescence and micro-cracks within the matrix contribute to the overall 

material stiffness degradations while frictional sliding and dislocations of defects 

are associated with permanent deformations [34, 57]. Furthermore, fiber-matrix 

interface failures (fiber debonding) as well as ply delamination also contribute to 

loss of stiffness in fiber reinforce laminates [34].  

When structures are subjected to extreme loading such as severe dynamic loads, 

impacts, high temperature, etc., it is crucial to model the progressive failure 

processes (due to evolutions of damage and plasticity) in order to correctly assess 
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the safety of a structure. Several attempts have been made to model this nonlinear 

response with some assumptions where the whole damage and plasticity process is 

smeared over the entire lamina/ply and the damage parameter and plastic strains, 

commonly defined as internal variables, are estimated at ply level. The models 

based on Puck’s theory [58, 59] and Pinho’s model [60–62] are some representative 

examples where several failure modes such as fiber failure, matrix failure and inter-

fiber fractures are accounted for and they contribute to the overall ply stiffness 

degradation. The actual physical basis of the inelastic deformations of composites 

is lacking in these models as they are based on curve fitting technique utilising 

experimental test data at ply level. This can produce reasonably good results if the 

loading scenario is not that different from those used to get the data utilised for 

calibrating these models. However poor results can be produced if the loading 

scenario is outside this dataset. Some other techniques based on ply level 

information have also been developed where a plasticity model using Ramberg-

Osgood hardening rule [63–66] or a single parameter orthotropic plasticity model 

[67, 68] have been used. In some of these studies [64–66], the stiffness degradation 

based on a rational damage model has been combined with the plasticity model. On 

the other hand, some researchers [69–75] attempted to develop a 

thermodynamically consistent model where the damage parameter is taken as an 

internal variable and included in the energy potential (e.g. Helmholtz free energy) 

of the material. However, the coupling between damage and plasticity is not 

considered in these models in [69–75]. Schuecker and Pettermann [56] have 

adopted an ad-hoc approach to enhance their damage model with plasticity to 

account for shear bands developed in fracture planes, but this approach lacks a 

strong physical basis for interactions between these two mechanisms. A more 

thermodynamically rigorous approach has been developed by Barbero and Lonetti 

[76] but the coupling between damage and plasticity is weak as separate loading 

surfaces are used for these two processes.    

All the above-mentioned models are based on the continuum approach at macro 

scale which depends on phenomenological observations at macroscopic scale to 

predict mechanical responses and failures of composites. Although these models 

are able to produce reasonable results for simple loading scenarios with good 

computational efficacy, they suffer from the lack of physical basis and therefore 
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cannot capture well the complex interactions between the constituents (fiber and 

matrix) found in many abovementioned situations. These physical interactions of 

the constituents can initiate different localised failure modes at microscopic level 

such as matrix micro cracks or voids, fiber breakage, fiber-matrix debonding, etc. 

even at early loading stage [34]. With the increase of loading, these localised 

failures can accumulate and propagate through the entire laminate leading to 

possible macro crack formations, ply delamination [71, 75, 77] and eventually a 

complete collapse of the structure. Therefore, it is essential that these progressively 

accumulated failure mechanisms and their effects on the overall responses of the 

composite structure should be captured properly to assess the structural safety and 

integrity reliably.  

1.3.2 Micromechanics Modelling 

With the rapid increase of computational resources in recent times and rising 

demands for a reliable material model for composite materials, approaches 

involving a detailed micromechanical analysis at fiber scale have quickly gained 

their momentum in this field of study. These approaches treat composites as non-

homogeneous solids where the constituents and their physical interactions are 

modelled explicitly using finite elements or continuum mechanics based models. 

Therefore they require the behaviour of constituents in details. In these studies, the 

stiffness of fibers is found to increase slightly at higher tensile loads [78] and strain 

rates [79], but this increase is not significant and a linear elastic behaviour of fibers 

up to their failure is generally acceptable in most cases. In contrast, plastic 

deformations and stiffness degradations are found as predominant causes of 

inelastic behaviours of the matrix which need to be correctly captured. Many 

researchers have used pressure-dependent yield criteria such as Mohr-Coulomb 

[80, 81] or Drucker-Prager [82] to model epoxy resins as the failure of these matrix 

materials is sensitive to applied hydrostatic pressure [83]. However, these studies 

did not considered the effect of damage. Others [86] had taken a different approach 

by using the strain invariant failure theory (SIFT) [53, 54] in the micromechanical 

analysis with the use of strain magnification factors to predict the failure behaviour 

of composites, however, the definition of damage evolution was not included in 

this work. Canal et al. [84] and Melro et al. [85] have incorporated the effect of 

stiffness degradation of the matrix in their damage-plasticity coupled models, but 
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both models did not include strain-hardening behaviours and require two separate 

dissipation potentials for plasticity and damage. In short, to the best of our 

knowledge, these available models for matrix are still not adequate yet. In this 

respect, the modelling of matrix behaviour to capture essential characteristics of 

matrix failure is therefore an important part in the development and application of 

micromechanical analysis for FRC. 

The micromechanical modelling techniques require explicit modelling of the 

material constituents and can produce excellent results. Analyses based on a full 

micromechanical model can capture multiple failure modes of the constituents and 

simulate their progressions at micro scale with very fine details. However, this 

requires a huge computational power which is only feasible for small scale 

applications. In this regards, the concept of multiscale modelling approach is an 

attractive proposition which attempts to establish a link between the models at the 

microscopic scale (fiber size) and the macroscopic scale (structure size), where 

crucial information at one length scale are transferred to the next length scale for 

simulations [77]. These can be obtained via analytical or computational 

homogenisation approaches. For composite structures, these approaches can reduce 

computation costs greatly while at the same time giving reliable predictions as 

sufficient details of physical interactions of the constituents at microscopic scale 

are retained within the models. These critical details can subsequently be used for 

predicting the material response at macroscopic scale utilizing a homogenisation 

technique. Examples of these (analytical) homogenisation technique can be seen in 

[87, 88], where inclusions are assumed to be embedded in infinitely extended 

matrix (Eshelby’s assumption) which may not be strictly valid for a composite with 

large fiber volume fractions. In addition, the prediction of instantaneous 

compliance tensor based on Mori-Tanaka’s model [89] does not satisfy the exact 

expression related to local and global inelastic effects, therefore it is not suitable 

for inelastic analyses. Hashin and Rosen [90] develop the well-known concentric 

cylinder assemblage (CCA) model having hexagonal arrays of identical fiber which 

is an extension of Hashin’s earlier work on concentric sphere model [91]. The 

model follows the principle of minimum potential energy and complementary 

energy, which lead to upper and lower bound solutions for the effective elastic 

modulus of composites. In the same study, the concept of random arrangement of 
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fibers has been introduced to eliminate these two bounds and obtain a unique value 

of E1, G12 and G13. However, this could not be achieved for G23 and E2 which are 

having two bounds. This concept of Hashin and Rosen [90] has been enhanced by 

Christensen and Lo [92] using three-phase sphere and cylinder models which 

helped to produce a unique solution of the effective shear modulus. However, these 

models are only applicable within the linear elastic range of composite materials 

[92].  

By this time, some efforts have been made to model the nonlinear response of 

composites based on micro-mechanisms embedded in the macro based continuum 

descriptions. Sun and Chen [93] have derive a three-phase 2-D representative 

volume element (RVE) where fibers belong to one phase which is idealised with a 

square shape and the matrix is divided into two phases which are idealised with two 

rectangular shapes. A linear elastic behavior is used for fibers whereas a plasticity 

based model with no damage is used for the matrix. Aboudi [94, 95] has proposed 

a four-sub-cell RVE, popularly known as method of cells (MOC), which is based 

on displacement compatibility and traction continuity conditions at the interfaces 

between sub-cells in order to obtain the links between stresses and strains in each 

sub-cell and the equivalent homogenised material. Subsequently, the method 

(MOC) has been extended for modelling composites having irregular fiber 

configurations and it has been renamed as generalised method of cells (GMC) 

where a finite element analysis is necessary for modelling a large number of 

repeating sub-cells within the RVE. This method has been refined further by 

Pindera and Bednarcyk [96] to improve the model efficiency but the computational 

cost become very high with the increasing complexity of nonlinear effects in local 

fields[97]. The GMC has also been used by other researchers to investigate the 

inelastic response of fibrous composites under off-axis tensile loading [98] or rate-

dependent behavior of epoxy composites[99]. On the other hand, Huang [100–102] 

developed a bridging micromechanics model which has been combined with 

classical laminate theory to simulate behaviors of multilayered composite 

laminates. Shokrieh et al. [79] examined the strain-rate effects on mechanical 

responses of composite laminates under dynamic loadings using Huang’s model. 

Although Huang’s model considered the effect of plasticity, it did not include the 

effect of damage. Santhosh and Ahmad [103] attempted to predict the nonlinear 
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behaviour of unidirectional fibre reinforced composites made of polymer matrix 

where the plastic deformation and temperature dependency have been accounted 

for without having any stiffness degradation due to damage. Tabiei and Aminjikarai 

[104] have considered both damage and plasticity for predicting the response of 

unidirectional composites under impact loads. They have used Goldberg’s 

viscoplasticity model [105] to account for the rate dependent properties of resin 

whereas the damage evolutions in fiber and matrix are based on Weibull 

distribution functions. Although both damage and plasticity have been included in 

their model, the effects of these two dissipation processes have been included in the 

model discretely and having no coupling between them. 

1.4 Research Objectives 

Based on the above observations, it can be concluded that there is a need for 

development of an efficient constitutive model capable of accurately predicting the 

inelastic response of unidirectional FRC ply at an affordable computational cost. 

This is the main aim of the present investigation. In particular, this model should 

possess the responses and interactions of different constituents (matrix, fiber and 

interfaces) and should cover a wide range of ply responses under different loading 

conditions that can lead to the activation of all essential mechanisms of failure at 

the fibre scale. In addition, the model should have minimal computational demands 

to ensure that it can be used for large scale structure modelling and at the same 

time, it can capture sufficient details of the physical interactions between the 

material constituents (fiber and matrix). In this study, the fiber is assumed to behave 

elastically while two primary inelastic processes are considered for the matrix: 

damage and plasticity. Moreover, as the influence of the fiber/matrix interfacial 

failure process on the response of FRC material is profound, its effects should be 

properly taken into account in order to capture the ply response accurately. On those 

basis, three primary objectives are identified in the present investigation which are 

explained in details as follows: 

Objective 1: Development of an analytical model for upscaling the nonlinear 

response from the fiber/micro scale to the ply scale and vice versa in order to 

achieve such a high precision modelling tool for fiber reinforced composites with 

feasible computational resources. In most of the existing models, the micro scale 
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analysis is carried out with the involvement of a local finite element or other 

numerical model which poses significant challenges from the computational aspect. 

In this regard, a micromechanics-based macro constitutive model is an attractive 

proposition where the behaviour of constituents and their interactions at micro scale 

are retained within the model which will provide a solid physical basis for the 

proposed model. The response of these constituents will be homogenised to 

establish the macro constitutive response of the ply. On the other hand, a model 

based on continuum damage mechanics and plasticity theory will be used to capture 

the inelastic response of constituents, particularly matrix, where the effects of the 

irreversible processes such as permanent plastic deformations and progressive 

damage mechanism together with the pressure dependent responses cannot be 

neglected. The development of the coupled damage-plasticity model is linked to 

the second objective presented below.  

Objective 2: The focus of this objective is to develop a coupled damage-plasticity 

constitutive approach for engineering materials using damage mechanics and 

plasticity theory, based on the principles of thermodynamics of solids. This model 

will help to predict the response of the constituent materials in FRC since inelastic 

response of the matrix/resin involves both permanent deformation and stiffness 

reduction due to plasticity and damage processes. The coupling technique between 

damage and plasticity should be sufficiently generic for it to be applicable to a 

variety of different material behaviour. In particular, it will be shown that these 

mechanisms and the corresponding proportion of energy dissipations can be 

controlled or specified to follow the material behaviour observed in experiments. 

The evolution of the underlying dissipative mechanisms (damage and plasticity) 

will be controlled with the use of loading functions while the explicit links between 

these mechanisms are established.  

Objective 3: This objective builds on Objectives 1 and 2 where the continuum 

damage model developed in Objective 2 is incorporated in Objective 1 to capture 

the response of unidirectional fiber reinforced composite ply in nonlinear range. 

The combination of all kinematic enrichments to capture the difference in the 

deformation of different constituents and also their responses in a thermodynamics-

based approach will naturally lead to macro homogenised stress and internal 

equilibrium conditions that governs the behaviour of the FRC. In addition, the 
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effects of fiber/matrix interfacial imperfection in ply constitutive response, which 

is essential when the ply nonlinear behaviour is dominated by fiber debonding, will 

also be accounted for and included in a fiber interface equivalence (FIE) block 

Consequently, all three primary failure processes occurred within a FRC ply, which 

are damage and plasticity in the matrix as well as fiber debonding failure, will be 

effectively considered in this Objective.  

1.5 Thesis Overview 

This thesis is broadly divided into five Chapters. Apart from the Introduction 

(Chapter 1), the main body of work is included in three Chapters (Chapter 2 to 

4) where three research articles (two already published and one to be submitted 

soon for publication) produced by the candidate and his colleges are presented. 

Minor developments based on these major ones are in the Appendix. The remaining 

of the thesis is organised as follows: 

Chapter 2 (Journal Paper 1): A Kinematically Enhanced Constitutive Model 

for Elastic and Inelastic Analysis of Unidirectional Fiber Reinforced 

Composite Materials. 

A micromechanics-based constitutive model that relies on the behaviour and 

interaction of both fiber and matrix components are developed in this paper. Both 

fiber and matrix are represented by different constitutive responses and their 

interactions are accounted for through a set of internal equilibrium conditions at 

their interfaces. The differences in the response of fiber and matrix are represented 

by the enrichment of strain fields and based on this a novel technique is developed 

to upscale the inelastic response of the constituents (fiber and matrix) to the macro 

scale (ply scale). It is noteworthy that the model formulation are conveniently 

derived in incremental form which helps the proposed model accommodating both 

linear and nonlinear behaviour of composite material. Subsequently, numerical 

examples are provided to demonstrate the application of the proposed model for 

both elastic and inelastic range and the model predictions are validated with 

experimental data as well as results obtained from some benchmark theories. 
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Chapter 3 (Journal Paper 2): A Thermodynamics-based Framework for 

Constitutive Models using Damage Mechanics and Plasticity Theory. 

In this paper, a generic framework for coupling damage and plasticity is proposed 

which focuses on the driving mechanisms behind the coupling of the two processes 

(damage and plasticity). It will be shown that these mechanisms and their 

corresponding dissipations can be controlled or specified to follow the material 

behaviour observed in experiments. In addition, it will be demonstrated that the 

evolutions of these dissipation processes can be controlled within the proposed 

framework and different dilative and contractive responses under different loading 

conditions can be accurately modelled. The detailed formulation of the proposed 

generic framework for coupling damage and plasticity is provided along with 

discussions on some of its attractive features. Several aspects of numerical 

implementation of the proposed framework will also be presented.  Finally, the 

applications of the proposed framework for different material models are also 

illustrated through a number of examples.   

Chapter 4 (Journal Paper 3): A Kinematically Enhanced Constitutive Model 

for Unidirectional Fiber Reinforced Composite laminae with Imperfect Fiber 

Interface. 

This paper focuses on the fiber/matrix interface failure which plays play an 

important part contributing to the loss of stiffness and ultimate failures of FRCs. 

To this end, macroscopic responses of composites are significantly influenced by 

the bonding strength at the fiber/matrix interface while other characteristics such as 

fracture energy or stiffness of the interface are of less importance. Subsequently, 

stresses in the composite exceeding this bonding strength can lead to a localised 

separation of the fiber and matrix which, under increasing loads, continuously grow 

in the fiber direction and simultaneously induce matrix cracking in the direction 

normal to the fiber. Further fiber debonding can be initiated from the development 

of matrix cracking and eventually macro transverse cracking can be formed in a 

FRC ply. Thus, in this paper the kinematically enhanced constitutive model for 

predicting the response of unidirectional FRC ply, which is presented in Chapter 

2, is further enhanced with a thermodynamics-based formulation and extended to 

include the effects of fiber/matrix interface failure. Applications of the proposed 
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model are illustrated in a number of examples and its performance is demonstrated 

by comparing the results to other sources obtained from literature. 

Chapter 5: Conclusions and Future Works 

This closing chapter provides a summary of important outcomes and contributions 

of the thesis. Potential applications of the research as well as possible future works 

are also recommended. 
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Abstract 
A constitutive model with an enhanced strain field is developed in this study for 

predicting the behaviour of unidirectional fibre reinforced composite materials. The 

different deformation modes introduced in the enhanced strain field take into 

account of both the variation of strains and internal equilibrium conditions across 

the fibre-matrix interfaces in unidirectional composites. This opens rooms to 

accommodate the difference in the responses of fibre and matrix and allows both 

fibre and matrix to be represented separately by their own constitutive responses. 

The additional deformation modes and internal equilibrium conditions lead to a 

combination of both upper and lower bound solutions on different components of 

the stress/strain tensors, resulting a homogenised macro response that compares 

well with experimental data and sophisticated homogenisation approaches in the 

literature. In addition, the key feature of the proposed approach is that the macro 

homogenised behaviour can be written in terms of incremental responses of both 

constituents and their interactions, facilitating the applications in both linear and 

nonlinear regimes of behaviour of both fibre and matrix. In parallel with this, a new 

coupled damage-plasticity model is also developed for the matrix behaviour and 

validated against experimental data of two resins, before being used in the proposed 

approach. The performance of the model and its promising features are 

demonstrated through verification with existing benchmarking models and 

validation with experimental data in both elastic and inelastic regimes.  

Keywords: unidirectional fibre reinforced composite; micromechanics; kinematic 

enrichment; constitutive modelling; nonlinear behaviour; damage mechanics; 

plasticity theory. 

1. Introduction: 

Applications of fibre reinforced composite (FRC) materials are increasing steadily 

in many engineering disciplines over the last few decades due to their high specific 

strength and stiffness along with exceptional durability and many other features. 

Due to the composite nature of these materials, their failure behaviour is quite 

complex when subjected to extreme loading conditions and an accurate prediction 

of this process is quite challenging. Therefore, the analyses of these structure 

require a reliable material model to correctly predict the strengths and responses of 

fibre reinforced laminated composites. In the literature, the modelling of laminated 
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composite materials and structures has received a vast amount of interests from 

different research communities with diversified backgrounds and theoretical bases. 

For instance, a group of researchers considered FRC as homogeneous materials 

with orthotropic mechanical properties. From this perspective, several theories 

have been proposed where phenomenological observations at 

structure/macroscopic scale are used to obtain a failure criterion which produces 

results by matching with the experimental data. Some representative samples of 

these models are found in [1–7] where the focus was to obtain the final failure 

envelop which is needed for the ultimate strength analysis. However, the entire 

nonlinear post yielding response of the composite material could not be captured 

with these models. In the actual loading situation, the post-yield response of 

composites usually involves two predominant nonlinear effects occurred within the 

material which are: 1) gradual loss of stiffness (damage) of the constituents and 2) 

permanent inelastic (plastic) deformations [8, 9]. These nonlinear effects are caused 

by inelastic mechanisms (damage and plasticity) which occur due to progressive 

micro-structural changes as the material is being loaded. For examples, 

microscopic processes such as void nucleation, void enlargement, void coalescence 

and microcracking within the matrix contribute to overall material stiffness 

degradations while frictional sliding and dislocations of defects are associated with 

permanent deformations [10–12]. Furthermore, fibre-matrix interface failures 

(fibre debonding) and ply delamination also contribute to the loss of stiffness in 

fibre reinforce composite laminates[11].  

By this time, several attempts have been made to model the nonlinear response with 

an assumption that the entire damage and plasticity process is smeared over the 

entire lamina/ply and the damage parameter and plastic strains are estimated at ply 

level. Some important models based on these continuum-based approach can be 

found in[9, 13–31]. Although these models have good computational efficacy, due 

to their phenomenological nature (lack of physical insights of the actual failure 

mechanisms), these models dependence on curve fitting technique utilising 

experimental data for their calibrations[32, 33]. On the other hand, with a rapid 

increase of computational resources in recent days, approaches involving a detailed 

micromechanical analysis at fibre scale have quickly gained their momentum in 

this field of study. These approaches treat composites as non-homogeneous solids 
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where the constituents and their physical interactions are modelled explicitly using 

finite elements and continuum mechanics-based models. Representative examples 

of such models can be found in [34–40]. To this end, analyses based on a full 

micromechanical model require explicit modelling of the material constituents and 

thus they can capture multiple failure modes of the constituents and simulate their 

progressions at micro scale with very fine details. However, these techniques 

require a huge computational power which may be feasible for small scale 

applications only.  

In this scenario, the concept of multiscale modelling approaches is an attractive 

proposition which attempts to establish a link between the models at the 

microscopic scale (fibre size) and the macroscopic scale (structure size), where 

crucial information at one length scale is transferred to the next length scale for 

simulations[32]. For composite materials, these approaches can reduce 

computation costs greatly while at the same time give reliable predictions as 

sufficient details of the physical interactions of its constituents at microscopic scale 

are retained within the models. This can be achieved by considering the composite 

materials as non-homogeneous solids comprising of fibre and matrix phases and 

utilizing certain homogenisation techniques to capture the overall behaviour of 

these materials. Such attempts are made in [41–44] where different approaches are 

used to determine mechanical properties of composites in elastic range. 

By this time, significant efforts have been made to model the nonlinear response of 

composite materials by embedding micro-mechanisms within a continuum model. 

Sun and Chen[45] have derive a three-phase 2-D representative volume element 

(RVE) where fibres belong to one phase which is idealised with a square shaped 

block or cell and the matrix is divided into two phases which are again idealised 

with two rectangular shaped cells. In this work, a linear elastic behavior is used for 

fibres whereas a plasticity based model with no damage is used for the matrix. 

Aboudi[46, 47] has proposed a RVE consisting of four square and rectangular 

shaped cells or sub-cells. This is popularly known as method of cells (MOC), which 

is based on displacement compatibility and traction continuity conditions at the 

interfaces between these sub-cells in order to establish links between stresses and 

strains in each sub-cell and the homogenised material. Subsequently, this method 

(MOC) has been extended for modelling composite materials having irregular fibre 
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configurations and it has been renamed as generalised method of cells (GMC) 

which uses a large number of repeating sub-cells within the RVE. This method has 

been refined further by Pindera and Bednarcyk[48] to improve the model efficiency 

but the computational cost become very high with the increasing complexity of 

nonlinear effects in local fields[49]. Further improvements of GMC were 

introduced in the high fidelity generalised method of cells (HFGMC) proposed by 

Aboudi and Arnold[50]. The frameworks of GMC and HFGMC have been used 

extensively to investigate the inelastic response of fibrous composites under off-

axis tensile loading[51], rate-dependent behavior of epoxy composites[52], effects 

of imperfect bonding along fibre/matrix interface[53] or the response of 

unidirectional composite under large deformation [54]. Huang[55–58] developed 

another model known as bridging micromechanics model which is combined with 

classical laminate theory to simulate behaviors of multilayered composite 

laminates. Shokrieh et al.[59] examined the strain-rate effects on mechanical 

responses of composite laminates under dynamic loadings using Huang’s model. 

Although Huang’s model considered the effects of plasticity, it did not include the 

effects of damage due to micro-cracking, which is essential in modelling failure. 

Santhosh and Ahmad[60] also attempted to predict the nonlinear behaviour of 

unidirectional composites made of polymer matrix where plastic deformation and 

temperature dependency have been accounted for without any stiffness degradation 

due to damage. On the other hand, Tabiei and Aminjikarai[61] have considered 

both plasticity and damage mechanisms for predicting the response of 

unidirectional composites under impact loads. They have used Goldberg’s 

viscoplasticity model[62] to capture the rate dependent properties of resin whereas 

the damage evolutions of the matrix and fibres are based on Weibull distribution 

functions. Although both damage and plasticity have been included in this model, 

the effects of these two dissipation mechanisms have been treated separately 

without considering any coupling between them.  

In this study, a new three-dimensional kinematically enhanced constitutive model 

for unidirectional FRC capable of simulating the nonlinear response at ply level is 

proposed. The model relies on the enrichment of strain field with respect to 

different modes of deformation to take into account the important physical 

interactions of material constituents at fibre scale. In this sense, the enrichment 

provides an opportunity to introduce both fibre and matrix constitutive responses 
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and also their interactions. A novel analytical technique is developed for upscaling 

the nonlinear response from the fibre/micro scale to the ply scale which is the key 

to achieving such precise modeling of composites with feasible computational 

resources. Actually, this specific task encounters significant computational 

challenges in most of the existing models due to the involvement of a local finite 

element or numerical model. A thermodynamics-based coupled damage-plasticity 

model is used for the constituents to account for their plastic deformations and 

progressive damage mechanism. This has also helped to derive a single dissipative 

potential capturing all energy dissipation mechanisms which is convenient for 

implementing the model. It is noted that the proposed formulation is applied to 

modelling at the constitutive level of the composite materials in the current study 

and its applications can be extended to full scale finite element model at structural 

level in future investigations. The structure of this paper is organized as follows. 

Firstly, mathematical derivations for the proposed constitutive model for 

unidirectional FRC ply is presented. Secondly, a thermodynamically consistent 

coupled damage-plasticity formulation is developed to model the constituents’ 

behaviours in the proposed kinematically enriched constitutive model. This is 

followed by numerical examples to demonstrate the application of the proposed 

model for both elastic and inelastic range in which the model predictions are 

validated with experimental data as well as results obtained from some benchmark 

theories.  

2. Mathematical Formulation  

Figure 1a shows a typical cross-sectional view of a unidirectional fibre reinforced 

composite ply having a uniform distribution of fibres or fibre bundles within the 

matrix. A representative portion of the material (Figure 1a) shown separately in 

Figure 1b (magnified) is considered for the development of the proposed model. 

Without changing the fibre volume, a further idealisation of the fibre geometry is 

made (Figure 1c) to facilitate the formulation.  
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Figure 1: (a) Cross-section of a unidirectional FRC and the UVE; (b) Idealised unit 

cell; (c) Idealised unit cell element (F: Fibre block; M-1, M-2, M-3: Matrix blocks). 

Thus the idealised volume element as shown Figure 1c will finally be used for 

deriving the present model where the size of this volume element is normalised to 

unity in all three directions. This unit volume element (Figure 1c) is now divided 

into four material blocks where one of them represents the fibre (F) and other three 

blocks for the surrounding matrix (M-1, M-2 and M3). The length of these material 

blocks along fibres (axis-1 which is perpendicular to both axis-2 and axis-3) is unity 

where the dimensions of their cross-sections can be calculated with the matrix 

volume fraction (f) as follows: and . 

The geometric representation of the proposed unit volume element (UVE) may 

appear similar to that of Aboudi’s MOC[46, 63] and few other models (e.g., 

Robertson and Mall[64]), however their actual model derivations are based on quite 

distinctive approaches. For example, Aboudi[46, 63] has started with a bilinear 

variation of the three displacement components within the four individual material 

blocks which give a non-uniform variation of strain components in any individual 

material block. However, it should be noted that in Aboudi’s model, any 

increase/decrease in normal stresses of the composite is always accompanied by 

increase/decrease in shear stresses[64] which is not strictly correct in all cases. On 

the other hand, Robertson and Mall[64] have started with the strain components 

having constant values within a material block which is similar to the present 

approach to have a computationally efficient model. They enforce the traction 

continuity conditions through normal stresses only at the interface between two 

adjacent material blocks which is quite different to the current approach and MOC 

fzy  111 fzy  1122
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where the traction continuity across the interfaces of the four materials block is then 

enforced in a volume average sense of all stress components acting at the interfaces. 

On the other hand, Robertson and Mall’s model upholds a condition of identical 

transverse shear stresses in all four material blocks and equal to the macroscopic 

one. Subsequently, the same authors proposed a simple approach to develop their 

model using viscoplastic theories, but the relationship between stress/strain 

components of the different material blocks is established using elastic material 

properties which is not valid in the inelastic loading range 

Conversely, Aboudi’s method of cells has gradually been enhanced to GMC by 

Paley and Aboudi[65] and high fidelity generalised method of cells (HFGMC) by 

Aboudi and Arnold[50] for better accuracy, but these models need a detailed 

numerical model similar to that of finite element technique for the analysis of the 

representative volume element . The main difference between the two approaches 

is that the displacement continuity and traction continuity in GMC or HFGMC are 

enforced in an average sense at the interfaces whereas FE technique requires 

displacement continuity to be met at discrete points based on nodal 

displacements[32]. In addition, the equilibrium condition in FE technique is 

achieved by using virtual work method while equilibrium condition in Aboudi’s 

approach is satisfied through set of equations which are based on volume average 

of the subcells. Although GMC is favourable over the standard FE analysis in terms 

of model efficacy[66], but GMC suffers from the same problem and this is simply 

its computing cost that has not reached the practical level for its applications in real 

structures.. The approach in the present study is based on the enrichment strategy 

proposed in [67–69] for constitutive modelling of localised failure, which is 

formulated in incremental form and hence can naturally cover both elastic and 

inelastic ranges of behaviour. 

In the present formulation, any variable possessing superscript 1, 2, 3 and 4 

corresponds to material blocks M-1, M-2, M-3 and F, respectively. The 

homogenised or global average strain rate vector  of the UVE (Figure 1c) can be 

written in terms of strain rate vectors of the four material blocks as:  
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where  (2) 

and the volume fractions of the four blocks for a unit volume element

 are:  

 (3) 

The constitutive relationship of the material blocks may be expressed in the 

following generic form:  

 (i = 1 to 4) (4) 

where  is the tangent stiffness of a material block and the incremental stress 

vector  is defined as: 

 (5) 

It should be noted that the behaviour of any material in its inelastic range is 

nonlinear where the total stresses cannot be obtained from the total strains directly 

and it needs an incremental approach for solving this problem. In this study, the 

strains are imposed incrementally on a material and the stresses produced within 

the material are evaluated iteratively in order to capture the nonlinear behaviour 

precisely. 

At an interfacial plane of two different materials, the in-plane strains (and their 

rates) are found to be continuous due to displacement compatibility whereas the 

corresponding stresses are discontinuous due to change of material properties. On 

the other hand, the out of plane (or transverse) stresses are continuous due to 

equilibrium of stresses which leads to discontinuous transverse strains. Based on 

these considerations, an equal axial strain along the fibre direction is taken into 

account for the four blocks, which leads to unequal axial stresses in these segments. 

In order to satisfy the equilibrium condition of normal stresses ( ;

) in the transverse directions (axis-2 and axis-3 as shown in Figure 1c), 

the normal strains in the transverse directions should be unequal ( ;

) which are imposed by using kinematic enrichments. The shear strains 

follow the same basis of the normal strains.  
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Figure 2: Kinematic strain enhancement of an out-of-plane shear component. 

In order to explain the abovementioned interfacial strain discontinuities, the 

deformation of two material blocks (fibre and matrix block M-2) subjected to an 

out-of-plane shear stress component (τ23) is taken as a sample case which is 

illustrated in Figure 2. The deformed shapes of the two blocks due to the applied 

shear stress are represented by dashed lines. As the matrix is usually having a lower 

stiffness, it is expected that shear deformation/strain in the matrix block is higher 

than that of fibre ( ). Consequently, the difference between these strains 

 (Figure 2) is taken as the component of kinematic strain enhancements for 

this mode of deformation. This will help to derive analytical expressions which can 

be used to express strain rates of the individual material segments in term of the 

average strain rates of the entire volume element conveniently.  

On this basis, the strain rates of the matrix blocks can be defined in terms of strain 

rates of the fibre block and the corresponding kinematic strain enhancements as 

follows:  

 (6) 

 (7) 

 (8) 

where  and  are the rates of kinematic 

strain enhancements, and  and  are dependent on the direction of the 

interfacial planes 2-2 and 3-3 (Figure 1c) respectively (please see Appendix). In 
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Equation (8), and are used to control the proportion of strain enhancements 

in block M-1, which may be expressed as: 

 ;  

(9) 

where the default values of parameters α and β are 1.0 but they can be adjusted 

depending on the material and behaviour. Further explanations and physical 

implications of α and β can be found in subsequent sections. Using Equations (1)-

(6) and (8), the strain rates of the four material blocks can be expressed in term of 

the homogenised strain rate and enhanced strain rates, as primary variables, as 

follows:  

 (10) 

 (11) 

 (12) 

 (13) 

In the above equations, the matrices K1, K2, K3, K4 contain ,  and volume 

fractions of the different material segments (refer to Appendix for details). Now the 

vectors corresponding to the kinematic strain enhancements need to be eliminated 

from the above equations and to achieve this, the Hill-Mandel’s condition[41] for 

virtual works is applied to the unit volume element (Figure 1c) and can be written 

as:  

 (14) 

where  is the macro or average stress of the unit volume element.  

Substitution of  as given in Equations (10)-(13) in the above Equation (14) and 

rearranging the obtained expression, we obtain: 
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In order to satisfy the above equation for any arbitrary values of the primary 

variables , , and , the following conditions are required:  

 

(16) 

 (17) 

 (18) 

The homogenised stresses or macro stresses of the UVE are expressed in terms of 

local stresses of the individual material blocks and their volume fractions in 

Equation (16) while the traction continuity across interfaces 2-2 and 3-3 (Figure 

1c) is enforced by Equations (17) and (18) respectively. For the implementation of 

the model in the inelastic range of loading, the above Equations (16) to (18) are 

expressed in rate forms by replacing the stresses in terms of their rates or increments 

as follows:  

 (19) 

 (20) 

 (21) 

For a given strain increment, the traction continuity conditions in Equations (20) 

and (21) will be iteratively utilised to update the strain enhancements, local stresses 

within individual blocks and eventually the macro stresses of the UVE. A further 

detail on this process is provided later. Substituting Equations (10) to (13) and (4) 

into Equations (20) and (21), we can express the strain enhancements in terms of 

macro strain increments as follows: 
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In the above equation, the matrices A11, A12, A21, A22 and vectors B1, B2 are 

functions of volume fractions of the material blocks and their material properties 

(refer to the Appendix for detailed expressions). 

Substitution of strain enhancements as given in Equation (22) into Equations (10) 

to (13), we can express the local strain rates of four material blocks (Figure 1c) 

exclusively in terms of the macro strain rates of the UVE as follows: 

 

(24) 

 (25) 

 (26) 

 
(27) 

Thus the above equations will help to resolve a macro strain increment imposed on 

the UVE into local strain increments in four blocks. In fact, this resolves the strain 

increments at an integration point within a structural element into strain rates of the 

fibre and surrounding matrix (Figure 1c) when a progressive failure analysis of a 

structure is carried out incrementally. The matrix blocks on the right-hand side 

(Equation (24)-(27)) play the role of strain concentration factors and depend on the 

responses and states of all individual blocks. The local strain increments can be 

used to update the stresses within individual material blocks using their constitutive 

relationships (Equation (4)) along with a suitable stress return algorithm [70] due 

to nonlinear nature of the problem. In the present study, a thermodynamically 

consistent coupled damage plasticity model is applied for the constitutive 

modelling of the individual blocks (details will be provided later). Using the stress 

increments of the individual material blocks, the macro stress increment of the UVE 

can be obtained using Equation (19). Thus the incremental relation between the 

macro stresses and macro strains of the composite material can be obtained by 

substituting Equations (4) and (24) to (27) into Equation (19) and it can be 

expressed as:  

 
(28) 

where the tangent stiffness matrix of the UVE or the composite material is:  
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(29) 

The constitutive relationship of the composite material as presented in Equation 

(29) is defined explicitly in terms of tangent stiffness matrices of the four 

constituent material blocks and their volume fractions. The first term in (29) 

represents the volume averaged stiffness of the four blocks following the rule of 

mixtures for stiffness components, which is, in fact, the upper bound (Voigt) 

solution. It is enhanced with the other terms that occur due to the kinematic 

enrichments of the constitutive structure, resulting in “softer” behaviour that is also 

closer to the exact solution. 

Compared to the HFGMC that needs a detailed numerical model similar to finite 

element technique to perform analysis on the volume element, the kinematic strain 

enhancements in the proposed approach can offer a more computationally efficient 

strategy. In particular, the formulation of HFGMC starts with the definition of three 

displacement components within the representative volume element, which needs 

a detailed numerical model (e.g. finite element analysis). The involvement of this 

numerical analysis at all material or integration point within each iteration of the 

nonlinear structural analysis will require substantial computational resources, 

especially in the analysis of large scale structures. On the other hand, the 

formulation of the proposed approach starts with the definition of strain 

components of four material blocks where strain components of three matrix blocks 

are defined in terms strain components of the fibre block and kinematic strain 

enhancements. This has helped to perform the analysis on the volume element 

analytically, which is computational much more efficient that the numerical 

analysis used in HFGMC. Therefore it offers a more computationally efficient 

strategy in order to achieve a practical level of computing costs for large scale 

structural applications while adequate level of detail interactions between the 

constituents are retained within the model. Moreover, in the proposed approach, the 

homogenization is performed at the constitutive level for all four material blocks, 

resulting in a macro stress-strain relationship that possesses both responses and 

volume fractions of the material block and this is valid for both linear and nonlinear 

behaviour, thanks to the use of rate forms of stress-strain relationships. Thus, the 

incorporation/implementation of the new approach in a structural scale Finite 
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Element Analysis will simply involve the integration of the constitutive equation 

in rate form, like any classical constitutive model, making it straightforward as 

there is no need to modify the structure of the Finite Element package. In our 

opinion, compared to HFGMC, these advantages will help to improve the 

computational efficiency, while not sacrificing much the predictive capability of 

the model, as demonstrated in the numerical examples. However we also believe 

that both HFGMC (relatively more accurate, but also more computationally 

demanding) and the proposed approach (computationally efficient, but relatively 

less accurate than HFGMC) have their own advantages and disadvantages and their 

applications depend on the requirements of the problem. 

It is also worth mentioning here that level of material nonlinearity such as stiffness 

degradations due to damage and/or plastic deformations can vary from one material 

constituent block (Figure 1c) to another block as a result of unequal strain 

increments. Therefore, tangent stiffness matrices of the constituent matrix blocks 

are not necessarily identical in the inelastic loading range and they are varied in 

their own course of deformation or loading. More discussions will be provided in 

Section 3 dealing with numerical examples on inelastic analyses. Also, it should be 

noted that Equation (29) cannot be readily used for getting the macro stress 

increments directly from the macro strain increments as the tangent stiffness 

matrices  (i = 1 to 4) are progressively changed even within a load increment 

at the structural level i.e., strain increment at an integration point. This problem is 

commonly solved iteratively using a stress return algorithm [70] which can be 

applied to individual material blocks to update their stresses but these updated 

stresses may not satisfy the traction continuity conditions (Equations (18) and (19)) 

at the interfaces 2-2 and 3-3 of the UVE (Figure 1c). It needs another level of 

iterations based on a stress return algorithm applicable to the UVE in order to 

satisfy these interfacial traction continuity conditions within a tolerable limit. Thus 

Equations (18) and (19) need to be employed for the derivation of the stress return 

algorithm applicable to the UVE which is presented in the following section.    

2.1 Stress Return Algorithm for the UVE 

Due to the nonlinear nature of constituent responses, and the fact that strain 

increments in numerical analysis are not infinitesimal, the interfacial traction 

)( iD
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continuity conditions (Equations (17) and (18)) are not automatically satisfied. 

Thus the left-hand sides of these equations will produce nonzero values which may 

be defined as traction residuals and these equations can be rewritten as follows: 

 (30) 

 (31) 

where   and  are the traction residual vectors corresponding to 2-2 and 3-3 

interfaces, as shown Figure 1(c).  

A Newton-Raphson based iterative scheme is adopted to reduce the value of these 

residuals to a tolerable limit. For this purpose, a Taylor series expansion of the 

above equations is performed which may be expressed (neglecting higher order 

derivatives) as follows: 

 

(32) 

where j = 2, 3. In order to satisfy the interfacial traction continuity, the new value 

of these residuals should be zero ( ) which can be utilised to rewrite the 

above equation as follows:  

 (33) 

 (34) 

The above stress variations  (i=1 to 4) in the material blocks can be expressed 

in terms of corresponding strain variations using the generic constitutive 

relationship (Equation (4)) as follows:  

  (35) 

Now the strain variations  in the above equations can be expressed in terms 

of iterative strain enhancements and  with the help of Equations (10) to 

(13) as follows: 
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 (39) 

It should be noted that this iterative process for obtaining (i = 1 to 4) starts 

from the previously converged step (referred to as the “zero” iteration) where 

(i = 1 to 4) are obtained with the use of Equations (10) to (13). Therefore, 

subsequent iterations are required to achieve traction continuity which follow the 

same operations in the “zero” iteration but without the appearance of  (Equation 

(36) - (39)) as it has been expended in the initial (or “zero”) step. 

Substituting Equations (35) to (39) into Equations (33) and (34), the iterative strain 

enhancements can be expressed in terms of traction residuals as follows: 

  
(40) 

where , ,  and  are same as those given in Equation (22).  

The iterative stresses of the block are then updated using any classical stress return 

algorithm followed by the computation of iterative macro stress using Equation 

(19). By using these updated stresses in the blocks and Equation (33) - (34), the 

traction residuals are checked against a given limit/tolerance. If traction residuals 

are not less than this tolerance, the iterative process is repeated until the required 

tolerance is achieved. 

The flowchart in Figure 3 depicts the overall procedure for calculating macro stress 

increment from a given macro strain increment. In order to have a simple 

representation of the flowchart, the iterative process is not shown in Figure 3. 

However, this is explained in the following steps.  

1. Resolve the macro strain increments imposed to the material/UVE into local 

strain increments of the four material blocks using Equations (24) to (27). 

2. Use a stress return algorithm to update the stresses within these material 

blocks due to the strain increments found from step 1.  

3. Use the stresses found in step 2 to calculate the traction residuals (Equations 

(30) to (31)).  

a.  If (i=2,3), go to step 4. are defined as follows: 
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b. If  (i=2,3), perform the following operations: 

- Calculate variation of strain enhancements  and  using 

Equation (40). 

- Use stress return algorithm to update the stresses within these 

material blocks due to  and  

- Go to the beginning of step 3.  

4. Update the macro/homogenised stresses of the material. Repeat step 1 to 4 

for all the macro stain increments required for an analysis.  

* The tolerance used in this study is: tol = 10-4. 

It should be noted that step 2 and step 3 in the above procedure can be referred to 

as stress updating scheme at outer level i.e. at the level of the composite block 

(Figure 3) where an iterative process is implemented to obtain a converged 

solutions. This process typically requires 10-20 iterations for an imposed macro 

strain increment with a relatively small size in the order of 10-7. The interfacial 

traction continuity (Equations (30) - (31)) is satisfied in each iteration and this 

process also helps to update the enhancement strain rates and adjust the strain 

increments of the individual material blocks. Subsequently, the stress increments 

in these material blocks are updated in step 4 which is referred to as the stress return 

algorithm at the inner level (Figure 3). In addition, the stress return algorithm for 

the individual blocks is used to ensure the updated stresses of the material blocks 

are on their updated yield surface in case of inelastic loading. As can be seen, the 

whole procedure above is written in the incremental form, facilitating the use of 

any constitutive model for the individual matrix/fibre blocks. This requires a 

suitable mathematical derivation for a coupled damage-plasticity model to analyse 

inelastic responses of each individual material block, which are described in details 

in the following sections. 
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Figure 3: Flowchart for stress return algorithm. 

 

2.2 Modelling Inelastic Response  

As discussed in preceding sections, nonlinear responses of unidirectional FRC are 

caused primarily by the inelastic behaviours of the matrix which are consequences 

of two major irreversible energy dissipation processes, such as plasticity and 

damage. As the plastic behaviour of some matrix material including metal matrix 

such as aluminium are pressure dependent [71], a simple plasticity model such as 

von Mises plasticity model cannot be used. In this situation, the Drucker Prager 

plasticity model is a suitable option and its nonlinear (parabolic) form is a good 

alternative which is adopted in the proposed constitutive model. Since the 

deformation of matrix and/or fibre material is nonlinear with many coupled 

processes such as plastic deformation and cracking, the combined use of damage 

mechanics and plasticity theory for such models is essential. In this sense, a proper 
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coupling of plastic deformations with damage mechanisms and its numerical 

implementation in a convenient form is usually a challenging task. This is achieved 

in the present study by developing an elegant model following the basic concept 

described in Einav et al [72] and further illustrated in Nguyen et al [73]. The benefit 

of this approach is that it needs the definition of only two potentials (energy and 

dissipation potentials) and the model gives a single loading surface which is really 

convenient for its numerical implementation. The enhancement made in the present 

formulation will better control the plastic flow directions, including both dilation 

and compaction that earlier coupled damage-plasticity models under the same 

thermodynamic framework [72, 73] do not have yet. The general thermodynamic 

framework of Houlsby and Puzrin [74] is used for the proposed formulation. On 

the other hand, the inelastic behaviour of fibres is usually not significant and it has 

negligible contribution to the overall inelastic responses of composite materials. 

Thus a linear elastic model is often used to simulate fibre response which is also 

adopted in the present formulation. 

As the change of temperature is not considered in the present problem (i.e., the 

isothermal condition is satisfied), the Helmholtz free energy potential is written in 

terms of two strain parameters (volumetric and equivalent shear strains) and three 

internal variables (damage, plastic volumetric and equivalent shear strains) as: 

  (41) 

where D is the damage variable,  is the plastic volumetric strain,   is the 

equivalent plastic shear strain, is the bulk modulus and  is the shear modulus. 

The total volumetric strain  and the total equivalent shear strain  are defined 

in terms of strain tensor  and deviatoric strain tensor  as: 

  ; ;  (42) 

The Helmholtz free energy can be used to get the pressure p and deviator stress q 

as follows: 
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 (43) 

 

(44) 

Also, the generalised stresses ,  and  corresponding to ,  and 

D can be obtained from the Helmholtz free energy as follows: 

 (45) 

 

(46) 

 

(47) 

The second law of thermodynamics is related to the rate of energy dissipation  

and the law states that  cannot be negative (i.e. ). For rate-independent 

behaviour considered in this study, the dissipation  is a first order homogeneous 

function in terms of rates of internal variables. For a tight coupling between 

different dissipative processes, it can be expressed in the following form:  

 (48) 

where ,  and  are components of the dissipation corresponding to 

plastic volumetric strain, plastic equivalent shear strain and damage but they are 

different from ,  and . The dimensionless parameters  and  used 

in the above equation are functions of stresses which are expressed along with the 

dissipation components ( ,  and ) in alignment with the parabolic Drucker-

Prager yield criterion ( ) as follows:   

 (49) 
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(50) 

 

(51) 

 

(52) 

 

(53) 

where  β and k are functions of internal variables (please see Section 2.2.1 for more 

details), a and b are model parameters which are used for adjusting the proportion 

of dissipations corresponding to plastic volumetric strain and plastic equivalent 

shear strain respectively which will lead to control the direction of plastic flow as 

needed. These two parameters may be combined into a single parameter for the 

entire plastic deformations as: 

   (54) 

Similarly, the user-defined parameter rd in Equation (53) is to adjust the proportion 

of dissipation corresponding to damage and having a relationship with rp as:   

   (55) 

The dissipative generalised stresses using the dissipation function (48) are then:  

 (56) 

 

(57) 

 

(58) 

The above equations along with the Equations (51) – (53) show that the generalised 

dissipative stresses are functions of the rate of all internal variables which ensures 

a strong coupling between the different dissipation mechanisms. Since the 
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dissipation components (51) – (53) are homogeneous first order functions of the 

corresponding rate of the internal variable, Equations (56) – (58) can be used to get 

the loading function in terms of dissipative generalised stresses as:  

 (59) 

This is in fact obtained through the Legendre transformation of the dissipation 

potential (50). The evolution of plastic deformations (plastic flow rules) and 

damage can be obtained from this loading function by taking its derivatives with 

respect to the corresponding generalised dissipative stress. These may be expressed 

with the help of Ziegler’s orthogonality condition (i.e., and ) and 

Equations (45) – (46) as follows: 

 (60) 

 

(61) 

 

(62) 

where  is the non-negative common multiplier. It can be noted that the above 

procedure will give a non-associated plastic flow rule. Finally, using Equation (59) 

and with the help of Equations (49) – (54) and (45) – (46) along with the Ziegler’s 

orthogonality condition, the parabolic Drucker-Prager yield criterion in true stress 

space can be described conveniently in terms of pressure p and deviator stress q as: 

 

(63) 

The direction of plastic flow can be controlled by adjusting the ratio between 

plastic volumetric strain and plastic equivalent shear strain which can be obtained 

with the help of Equations (60) and (61) as:  
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In the present study, the yield function (Equation (63)) is utilised to obtain the 

above ratio for the convenience of numerical implementation as:  

 (65) 

where c is a user defined parameter which will help to get the values of a and b 

using Equations (54) - (55). When c = 1, the direction of plastic flow vector 

generated by the model is same as that obtained directly from the associated plastic 

flow rule. In contrasts, non-associated flow rules can be produced by taking c ≠ 1.  

2.2.1 Thermodynamic admissibility of the model 

The general condition for thermodynamic admissibility of the proposed technique 

requires non-negativeness of the dissipation rate function (48). The conditions 

needed to satisfy  can be derived from the general definitions of functions 

and parameters defined in Section 2.2. Thus, by substituting Equations (49)-(53), 

(60)-(62) into Equation (48) and makes use of the yield condition (Equation (63)), 

the dissipation rate function  is expressed as: 

 

(66) 

Recall that ,  and , the above expression can be 

rewritten as: 

 (67) 

It should be noted that in the above expression, qb and are always non-negative 

while the term pa can be negative, e.g. when the material response is governed by 

dilative behaviour (a < 0) under compression (p > 0). Thus, Equation (67) can be 

rewritten as: 
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(68) 

Thus, the above condition implies restrictive bounds for the parameter c which must 

be met in the selection of c to ensure thermodynamic admissibility of the proposed 

formulation. Since the proposed damage-plasticity model involves parameter c that 

controls the dilation behaviour, the restriction (68) on the value of this parameter is 

needed and this condition is met for the examples in the manuscript.  

2.2.2 Tangent Stiffness: 

The coupled damage-plasticity formulation presented above is now implemented 

for its applications. The above formulations produce a nonlinear (parabolic) 

Drucker-Prager yield surface applicable for a pressure-dependent material as:  

 

(69) 

The different terms used in the above equation can be defined as follows:   

;  ;   ; ; 

 

(70) 

Where σij is the stress tensor, sij is the deviatoric stress tensor, δij is Kronecker delta, 

I1 and J2 are stress invariants, fcy is the uniaxial yield strength in compression and 

fty is the uniaxial yield strength in tension. The value of fcy and fty will be changed 

progressively with the growth of plastic deformation and damage which are 

represented using the following functions for their evolutions.  

,  (71) 

where D is the damage variable, is the accumulated plastic strain with its rate is 

defined as (  is the rate of plastic strain in tensorial form), ft0 

and fc0 are initial yield strengths, and Qt, Qc, bt and bc are material constants with 

subscript t and c indicating tension and compression, respectively. The damage 

variable D admits an initial value of zero and is activated at a certain threshold 

depending on the plastic deformation. It starts increasing during the failure 

progression and can have a maximum value of 1 corresponding to a complete 

failure. The damage growth progressively reduces the values of k and β leading to 
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contraction of the yield surface (Equation (63)). On the other hand, in pre-peak 

regime, a strain hardening effect due to plastic deformations is adopted which leads 

to expansion of the yield surface with the growth of effective plastic strain .   

The plastic flow rule as presented in Equations (60)-(61) provides the plastic strain 

increment in terms of volumetric and shear components but it is expressed in 

tensorial form for the convenience of model implementation as: 

 

(72) 

On the other hand, damage evolution is given in the following form: 

 

(73) 

Similarly, the stresses are expressed in tensorial form with the help of Equation 

(41) as: 

 (74) 

Thus, the incremental stress tensor can be written as: 

 (75) 

The consistency condition for the yield function, , in true 

stress space, can be written as: 

 (76) 

where  is the accumulative plastic strain increment and it is given as: 
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Using Equations (72), (73), (75) to (77), the non-negative multiplier  can be 

obtained as: 

 

(78) 

where 

 (79) 

Finally, the incremental stress-strain relationship can be written as:   

 (80) 

In summary, the followings parameters are required by the proposed model: i) for 

composite model: fv, α and β ii) for each material constituent (fibre and matrix): E, 

ν, ft0, fc0, Qt, Qc, bt, bc, rd, c, εpc where εpc is the critical value of accumulated plastic 

strain used to activate the damage process (please see Section 2.2.2 and Section 3 

for more discussions). 

2.2.3  Stress Return Algorithm 

If a strain increment is imposed at a point within a structure, the stress state of that 

point needs to be updated. If the size of strain increments is infinitesimal, these 

updated stresses can be computed explicitly using the tangent stiffness (Section 

2.2.1) following a numerical technique such as forward-Euler scheme. However, 
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yielding, the new yield surface can be obtained using its Taylor expansion 

considering it first order terms as: 

 (81) 

where  is the stress return increment which is normal to the trial yield surface. 

Using Equation (75) and substituting , as it has already been used for 

moving from the current stress point ( ) to the trial stress point (

),  it can be expressed as: 

 (82) 

It should be noted that this stress return algorithm is different from the full 

backward-Euler scheme where  are recalculated so as make it normal to the 

new yield surface (yn+1) by applying an iterative scheme (see Crisfield [70] for more 

detail). By substituting Equations (72), (73), (77) and (82) into (81) and it can be 

rearranged to get the multiplier  as follows: 

 

(83) 

With these, the final updated stresses can be obtained as: 

 (84) 
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Epoxy) to model their nonlinear responses which are shown in Figure 4. The model 

parameters for these materials are provided in Table 1. The stress-strain response 

of these resins under three different loading configurations (tension, compression, 

and shear) produced by the proposed model is presented in Figure 4 along with the 

corresponding experimental data reported by Kaddour and Hinton[20]. The 

correlation of these results (Figure 4) demonstrates an excellent capability of the 

present model in capturing the inelastic response of pressure-dependent materials 

such as epoxy resin. In this example, rd takes an initial value of zero (damage effect 

is turned off) until the damage process is activated when the accumulated plastic 

strain has reached a critical value (εpc = 1.07% and 1.47% for 8551-7 resin and 

Epoxy resin respectively) then rd  is set to 0.93 in both cases. It should be noted that 

the rate of softening of the stress-strain curves (Figure 4) can be controlled by 

specifying the damage parameter rd. For example, higher values of rd associated 

with higher loss of energy due to damage process leads to more abrupt failure 

(steeper descending curve), whereas lower values of rd indicate lower energy 

dissipation due to damage, resulting in gradual loss of stiffness and a lower rate of 

softening.  

 

Table 1: Model Parameters for 8551-7 Resin and Epoxy Resin 

 E 

(GPa) 

ν ft0 

(MPa) 

fc0 

(MPa) 

Qt 

(MPa) 

Qc 

(MPa) 

bt  bc  c 

8551-7 4.08 0.38 30 40 90 90 100 50 1 

Epoxy 3.2 0.35 60 70 25 50 450 350 1 
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Figure 4: Responses of resins under uniaxial tension, uniaxial compressions, and 

in-plane shear: (a) 8551-7 Resin; (b) Epoxy Resin. Experimental data is provided 

in [20]. 

3. Results and Discussions: 

In this section, the capabilities of the proposed model are demonstrated through 

numerical examples of FRC lamina which include determination of elastic 

properties in the linear range and inelastic response in the nonlinear range. At first, 

we will look at how well the model performs in predicting effective elastic 

properties of unidirectional composites. The results produced by the proposed 

model are validated against published experimental results as well as theoretical 

results produced by other reliable techniques. The good performance of the 

proposed model in the elastic domain will provide confidence in the model’s 
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capability when predicting the inelastic behaviour of unidirectional composite ply 

which will be discussed in subsequent sections. 

3.1 Longitudinal and Transverse Elastic Modulus: 

As can be seen in the model formulation, the proposed approach does not take into 

account the relative sliding between matrix and fibre in the fibre direction. A direct 

consequence is that the longitudinal modulus E1 predicted by the proposed model 

follows the upper bound solution (Voigt model), which can be considered as the 

acceptable behaviour of unidirectional composites under this loading mode. On the 

other hand, the variations of other effective elastic properties of a unidirectional 

Glass/epoxy lamina (refer to Table 2 for material properties of its constituents) 

predicted by the proposed model are plotted against fibre volume fraction and 

compared with existing solutions for a demonstration of its capabilities. 

Table 2: Material Properties of the constituents of a Glass/epoxy lamina[66]. 

Engineering 

constant 

Epoxy Glass 

E (GPa) 5.35 113.4 

ν 0.22 0.35 

 

The transverse modulus of the same FRC predicted by the proposed model for 

various fibre volume fraction is presented in Figure 5 along with the predictions by 

some well-regarded classical theories [42, 43, 75, 76]. As shown in Figure 5, the 

results predicted by the model are in good agreement with these theories. They are 

in between the upper (Voigt) and lower bound solutions (Reuss), as a consequence 

of better assumptions and kinematic enhancements of the proposed approach. For 

instance,  the transverse loading in direction 2 will allow to have same transverse 

normal stress in matrix blocks M-1 and M-2 and the fibre block (

). On the other hand, the transverse normal strain of M-3 is 

same as that of the fibre block F ( ) generating different transverse 

normal stress in M-3 and F due to their different material stiffness values. These 

phenomenon will lead to deviation of the actual behaviour of the lower bound 

solution. This is also supported by experimental data which is shown later where 

)4(
22

)2(
22

)1(
22  

)4(
22

)3(
22  
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the transverse modulus are found to be slightly higher that the lower bound solution 

[77]. 

 

Figure 5: Transverse modulus E2 – (other results obtained from [66]). Material 

properties are given in Table 2. Enhancement control parameters  

It should be noted that a default value of the strain enhancement control parameters 

α and β is taken as 1.0 to produce results given in Figure 6. In order to show the 

influences of α and β on the prediction of elastic modulus of the same composite, 

the values of these parameters are varied from 0.8 to 1.4 as illustrated in Figure 6.  

 

Figure 6: (a) Effects of β on transverse modulus; (b) Effects of α on in-plane shear 

modulus. Material properties are given in Table 2 

Thus α and β can be utilised to control the performance of the model to have a better 

predictions of the composite elastic modulus. For an example, this is illustrated by 

adjusting β to improve the predictions of transverse modulus E2 of a unidirectional 

 
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Boron/epoxy lamina (material properties of the constituents are given in Table 3). 

The results obtained by taking β = 1.0 (default value) and β = 0.8 are plotted in 

Figure 7 along with the experimental data and some commonly used theoretical 

predictions. Figure 7 shows that the results produced by the proposed model with 

the use an appropriate value of β is in well agreement in comparisons to test data 

and other benchmark models. 

Table 3: Material Properties obtained from [77]. 

Engineering 

constant 

Epoxy Boron 

E (GPa) 4.14 414 

ν 0.35 0.2 

 

 

Figure 7: Transverse modulus E2 (Model-A: β = 1; Model-B: β = 0.8) - 

experimental data and other theoretical results obtained from [77].  

3.2 In-plane Shear and Transverse Shear Modulus (G12 and G23) 

The in-plane shear modulus G12 (or G13) and the transverse shear modulus G23 of 

the same Glass/epoxy lamina used in Section 3.1 are predicted by the proposed 

model. These results are presented with numerical results predicted by five 

benchmark theoretical models in Figure 8 which show a very good predicting 

capability of the model for both in-plane and transverse shear modulus.  
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Figure 8: (a) In-plane shear modulus G12; (b) Transverse shear modulus G23 

(other results obtained from [66]).  

On the other hand, a similar lamina with a slightly different material properties (as 

given in Table 4) is analysed. The in-plane shear modulus predicted by the proposed 

model are compared with the experimental results as well as theoretical results in 

Figure 9. A very good correlation between the present results with the experimental 

data can be seen.  

 

Figure 9: In-plane shear modulus G12 (other results obtained from [77]). 
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Table 4: Material Properties obtained from [77]. 

Engineering constant Epoxy Glass 

G (GPa) 1.83 30.19 

ν 0.3 0.2 

 

3.3 Inelastic Response 

The proposed kinematically enhanced model for unidirectional FRC ply is ready to 

be extended to inelastic analyses with the use of the coupled damage-plasticity 

model presented in Section 2.2 for modelling of nonlinear behaviours in matrix 

blocks. In this study, the nonlinear responses of a composite lamina made of Boron 

fibres (fibre volume fraction of 0.47) and Aluminium 6061T0 matrix are examined 

(refer to Table 5 for their elastic properties). The inelastic stress-strain predictions 

made by the present model will be verified with those produced by other benchmark 

models to demonstrate its performance. According to Davidson and Davis [71], 

mechanical properties of Aluminium 6061 are dependent of hydrostatic pressures 

(e.g. ultimate stress can be increased up to 60% at higher pressure in certain cases). 

This pressure-dependent behaviour can be captured by the proposed coupled 

damage-plasticity model with the use of the parabolic Drucker-Prager yield 

criterion (see Section 2.2). Model parameters required by the coupled damage-

plasticity model for the Aluminium 6061T0 matrix are calibrated from the actual 

uniaxial tension test data of Aluminium 6061T0 [45] as shown in Figure 10. Based 

on that, the model parameters estimated for this matrix are: ft0 = 45 (MPa), fc0 = 47 

(MPa), Qt = 41 (MPa), Qc = 44 (MPa), bt = 150 and bc = 155. These correspond to 

an excellent correlation of the model results with the experimental test data (see 

Figure 10).   

Table 5: Material Properties. 

Engineering 

constant 

Aluminium 

6061 

Boron 

E (GPa) 68.3 379.3 

ν 0.3 0.1 
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Figure 10: Uniaxial tensile stress-strain curve of Aluminium 6061T0: 

Experimental data vs model predictions. 

Subsequently, these nonlinear responses within the matrix blocks (responses at the 

micro scale) can be transferred to a higher scale (macro/ply scale), with the help of 

the proposed micromechanics based model (Section 2), which can produce overall 

nonlinear responses of the ply. For this purpose, the nonlinear response of a Boron-

Aluminium composite lamina reported by Robertson and Mall[64] is used. It should 

be noted that information on the plastic volumetric dilation/contracting behaviour 

of the matrix is not provided by Robertson and Mall[64], and a non-associated flow 

rule is used in this study where the parameter c (Section 2.2) for controlling the 

model behaviour is taken as 12.5 to have a good prediction. On the other hand, the 

fibres are assumed to behave elastically up to the rupture in this study, which is 

quite common and generally accepted in literature. In addition, it is assumed that 

the pre-peak response of the composite ply is governed by plastic deformations of 

the matrix with no damage. The damage is activated while modelling the post-peak 

behaviour of the composite as its response is dictated by the failure and post-peak 

behaviour of in matrix. For the damage modelling, the parameter rd (Section 2.2) 

controlling the proportion of damage is taken as 0.59 and this is activated when the 

effective plastic strain εp within a matrix block reaches its critical value εpc=0.014 

corresponding to the uniaxial peak stress of the matrix. Based on these assumptions 

and model parameters, the inelastic response of the composite ply under transverse 

tensile loading along direction 2 (Figure 1) is simulated by the proposed model and 

the stress-strain responses are illustrated in Figure 11a.  
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Figure 11: Inelastic responses of Boron/Aluminium 6061T0 (a) Transverse 

uniaxial tension (b) In-plane shear. 

It can be seen in Figure 11a that the uniaxial tensile response produced by the 

proposed model agree well with the predictions made by Robertson and Mall[64] 

as well as MOC[46, 63]. Furthermore, the proposed model has the capability of 

simulating the strain softening behaviour of the stress-strain curve after its peak 

stress by activating damage coupled with plastic deformations (Figure 11a). 

Similarly, the nonlinear response for the in-plane shear of the same composite ply 

predicted by the proposed model is plotted in Figure 11b along with that of 

Robertson and Mall[64] as well as MOC[46, 63] which shows a good correlation 

of the present results with others. These indicate that the proposed models are able 

to provide reliable and accurate solutions for capturing inelastic responses of 

unidirectional ply, which properly accounts for the adequate level of coupling 

between damage and plastic deformations occurred progressively. It should be 

noted that the effect of fibre debonding is not taken into account yet in the proposed 

model. Its incorporation requires adding more kinematic enhancements to the 

current scheme to account for the displacement jumps at the fibre-matrix interface 

and is a subject of our on-going study. 

4. Conclusions 

We developed a generic approach for modelling fibre reinforced composites at the 

ply level. The proposed approach possesses the material and geometric details on 

the constituents and their interactions, which is applicable in both linear and 

nonlinear ranges of behaviour. In particular, inhomogeneous stress in the material 
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due to differences in fibre and matrix material behaviours is represented by 

different responses of four material blocks characterising fibre and three matrix 

zones. The interactions between the blocks are taken into account through 

equilibrium conditions across their boundaries. A homogenisation technique is 

developed in an incremental form that links the response of the fibre and matrix 

blocks to produce a macro-mechanical stress-strain relationship. Thanks to the 

stress inhomogeneity that represents the composite nature of the material 

behaviour, the resulting effective elastic properties produced by the model agree 

well with classical models and experimental data in the literature. In addition, the 

incremental form of the formulation facilitates the application of the proposed 

approach to inelastic analysis, as it allows the use of any kind of material model for 

matrix and fibre. In conjunction with the development of the composite model, a 

thermodynamics-based model that couples damage with plasticity is also developed 

for its constituents (fibre and matrix). It is shown that the macro failure response of 

the composite can be captured well due to the use of appropriate models for the 

constituents and their intrinsic coupled behaviour in the proposed formulation. We 

acknowledge that the effects of fibre-matrix debonding and fibre distribution on the 

mechanical responses of unidirectional composites have not been accounted for yet 

in the proposed approach. These effects will be addressed in our next papers. 
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5. Appendix 

Expression for : 

 (85) 
 (86) 

 (87) 
 (88) 

Normal matrices in direction 2 and 3: 

s'K

 IμμK 21111 ff 

 IμμK 32122 ff 

IμK 3213 ff 

IμK 2114 ff 
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,  

(89) 

Detailed expressions of matrices in equation (22): 

 

(90) 

 

(91) 

 

(92) 

 

(93) 

 (94) 

 (95) 
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Abstract  
In this study, a generic formulation for constitutive modelling of engineering 

materials is developed, employing theories of plasticity and continuum damage 

mechanics. The development of the proposed formulation is carried out within the 

framework of thermodynamics with internal variables. In this regard, the complete 

constitutive relations are determined by explicitly defining a free energy potential 

and a dissipation function. The focus is put on the rigour and consistency of the 

proposed formulation in accommodating the coupling between damage and 

plasticity, while keeping its structure sufficiently generic to be applicable to a wide 

range of engineering materials. In particular, by specifying the coupling between 

damage and plasticity in the dissipation function, a single generalised loading 

function that controls the simultaneous evolution of these dissipative mechanisms 

is obtained. The proposed formulation can be readily used for either enriching 

existing plasticity models with damage, or for the development of new coupled 

damage-plasticity models. The promising features and the applications of the 

proposed formulation for describing the behaviour of different engineering 

materials are discussed in details. 

Keywords: Constitutive modelling; thermodynamics; damage mechanics; 

plasticity theory; coupled damage-plasticity; concrete; rocks; ductile; brittle 

1. Introduction 

Computer simulations of the mechanical response of structures, by means of a 

numerical technique, such as finite element method (FEM), play a key role in many 

modern civil and mechanical engineering applications. The accuracy of analysis of 

any numerical simulation, however, depends on a constitutive model, capable of 

adequately capturing the material behaviour under complex loading scenarios. 

Theories of plasticity and continuum damage mechanics (CDM) have been widely 

used for the development of constitutive models in order to describe the inelastic 

behaviour of materials. At the macroscopic scale, inelastic behaviour can be 

observed as the reduction in strength and stiffness as well as the occurrence of 

residual strains. The observable macroscopic behaviour of materials is mainly 

governed by several underlying microscopic dissipative mechanisms. These 

dissipative mechanisms are the direct result of progressive, irreversible changes in 
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the material microstructure. Examples of such changes are closure or expansion of 

micro-voids, micro-crack initiation and coalescence, frictional sliding between the 

two surfaces of microcracks, dislocation of defects in the crystal structure of metals 

and so forth. From a phenomenological perspective, the effects of all underlying 

mechanisms which cause the occurrence of residual deformations (e.g. frictional 

sliding, dislocation of defects, etc.) can be represented by a plastic strain tensor as 

a macroscopic variable. Similarly, the effects of all mechanisms giving rise to 

strength and stiffness degradation may be accounted for by a damage variable, 

which can be a scalar or a tensor of higher orders. In general, for any constitutive 

model, a set of internal variables is required for a complete description of inelastic 

behaviours of not only the current state but also the previous history of 

deformations [1-10]. 

Nomenclature 

Ψ        Helmholtz free energy potential 
Φ        total dissipation rate function 

vΦ       dissipation rate function corresponding to volumetric plastic deformation 

sΦ       dissipation rate function corresponding to shear plastic deformation 

DΦ      dissipation rate function corresponding to damage 
D  scalar damage variable 
K  bulk modulus 
G  shear modulus 

Vε  total volumetric strain 

Sε  total effective shear strain 

Vα  volumetric plastic strain 

Sα  effective shear plastic strain 

pε  accumulative plastic strain 

pcε  critical value of the accumulative plastic strain 

ijσ  stress tensor 

ijS  deviatoric stress tensor 

2J        second invariant of the deviatoric stress tensor 

1I         first invariant of the stress tensor 

ijε  strain tensor 

ije  deviatoric strain tensor 
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ijα  plastic strain tensor 

λ         non-negative multiplier 

ijδ  Kronecker delta 

ijklC  elastic stiffness tensor 
t
ijklC  tangent stiffness tensor 

p  mean pressure 
q  deviatoric stress 

ijχ  generalised stress tensor 

Vχ  generalised mean pressure 

sχ  generalised shear stress 

Dχ  conjugate damage energy 

ijχ  generalised dissipative stress tensor 

Vχ  generalised dissipative mean pressure 

sχ  generalised dissipative shear stress 

Dχ  conjugate dissipative damage energy 
y  yield function in true stress space 

*y  yield function in generalised dissipative stress space 

 v function representing the effect of Vα  in total dissipation 

 v function representing the effect of sα  in total dissipation 
 D  function representing the effect of D in total dissipation 
 E        function of stresses and internal variables 
 F        function of stresses and internal variables 

vf  dimensionless function of stresses and internal variables 

sf  dimensionless function of stresses and internal variables 
 a         dimensionless function of stresses and internal variables 
 b         dimensionless function of stresses and internal variables 
 c         dimensionless function of stresses and internal variables 
 rd        dimensionless function of stresses and internal variables 
 rp        dimensionless function of stresses and internal variables 

yf  dimensionless function of stresses and internal variables 

cyf  dimensionless function of stresses and internal variables 

tyf  dimensionless function of stresses and internal variables 

Q        ultimate stress (Von Mises model) 

tQ        ultimate stress in tension (parabolic Drucker-Prager model) 
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cQ        ultimate stress in compression (parabolic Drucker-Prager model) 
H         material parameter determining the rate of expansion of the yield surface 

tH        the value of parameter H in tension 

cH        the value of parameter H in compression 
k          material shear strength (Von Mises model) 
α          parabolic Drucker-Prager material parameter 
β          parabolic Drucker-Prager material parameter 

cp        initial yield pressure under isotropic compression 

tp        initial yield under isotropic decompression (expansion) 
ω         material parameter controlling the shape of the yield surface (geomaterials 
model) 
γ         material parameter controlling the shape of the yield surface (geomaterials 
model) 
ρ         back stress (geomaterials model) 
M       slope of the final failure envelope (geomaterials model) 

 

During the course of inelastic deformation of engineering materials, plasticity and 

damage processes normally occur together and one influences the evolution of the 

other. Hence, constitutive models which take only one of these two mechanisms 

into account may not adequately represent the observed behaviour of materials. 

Formulations based merely on plasticity theory [11-19], for instance, generally 

suffer from limitations in capturing the stiffness reduction due to damage growth 

[11], although they may be successful in modelling the overall stress-strain 

response, by explicitly defining some kind of hardening/softening rules for the yield 

function. Elastic-damage models [20-27], on the other hand, can successfully 

capture the material stiffness reduction due to damage processes, yet they may be 

criticised for their inadequacy in properly modelling the residual strains due to 

plastic deformations, which may only be included into these models by means of 

some empirical definitions [20]. Hence, a combination of both plasticity theory and 

CDM is necessary for the development of a realistic and rigorous constitutive 

model.  

Significant efforts have been made during the past few decades to construct coupled 

damage-plasticity models by specifying the interaction between the two dissipative 

mechanisms.  One of the existing approaches for coupling damage and plasticity is 
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to employ two separate loading functions pertaining to damage and plasticity. In 

this approach, the two inelastic mechanisms are linked through the constitutive 

relations and the plastic yield function is expressed in the effective stress space, 

associated with the undamaged state of the material [8, 28-51]. In these models, 

hardening rules are usually introduced to control the evolution of the yield function, 

while a softening rule controls the evolution of the damage function, and their 

coupling results in an overall hardening or softening behaviour, owing to the 

combined effects of both damage and plasticity. Nevertheless, due to the use of two 

separate loading functions, it is usually difficult to correlate these two surfaces with 

the experimentally obtained yield envelope and its evolution to failure, especially 

in multiaxial loading scenarios. In particular, the coupling between damage and 

plasticity can only take place if the inner loading surface (usually the plastic yield 

surface) evolves and hits the outer one, after which the two surfaces evolve 

together.  

In another class of coupled damage-plasticity models [9, 52-59], the above-

mentioned issues associated with employing two loading surfaces are alleviated by 

explicitly defining the damage growth as a function of plastic strain. In these 

models, the role of the damage function is to only determine the onset of the 

inelastic regime, while the overall inelastic behaviour relies on the yield function 

and its flow rules. A physical interpretation of these models is that plasticity can be 

considered as an active mechanism of deformation and energy dissipation followed 

by damage as a passive mechanism, that is, damage can occur only after some 

plastic deformation has already taken place. Such models have shown great success 

in modelling the deformation and failure of a wide range of materials. Nevertheless, 

the concept of active and passive mechanisms can be used to assess the 

characteristics of such models for further improvements. For instance, in quasi-

brittle materials, such as rocks and concrete under tension, energy dissipation 

processes usually begin with the development of micro-cracking as an active 

mechanism, followed by frictional sliding between the newly created crack surfaces 

(passive mechanism). In compression, on the other hand, experimental 

observations from geological materials [60-67] suggest that plastic dissipation due 

to micro-crack closure and the subsequent frictional sliding takes place together 

with the initiation of new micro-cracks, where the stress condition is favourable. 
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Another example is grain boundary sliding in metallic materials which can be 

inferred as an active plasticity mechanism, followed by the stiffness degradation 

due to debonding process (damage) as a passive mechanism [68]. In our opinion, it 

is always better to have these features reflected in the constitutive model, in 

addition to the requirements on its ease of implementation and adequate predictive 

capability. 

Furthermore, it is essential for any constitutive model to conform to the principles 

of thermodynamics. Although the requirements for the thermodynamic 

admissibility of a constitutive model can be applied upon completion of its 

development, a more rigorous and consistent approach is to build a constitutive 

model within a well-established thermodynamic framework. Keeping all these 

aspects in view, the development of a generic thermodynamic approach for 

coupling damage and plasticity by addressing the interaction between these two 

dissipative mechanisms, as well as controlling the contribution of each of these 

mechanisms in the total dissipation, is desired. This study is an attempt towards this 

goal by further developing the results of our previous works [68-70] that are based 

on a thermodynamic framework proposed earlier by Houlsby and Puzrin [71]. 

Emphasis is put on the coupling scheme of the proposed formulation so that a single 

plastic-damage loading function can be obtained to describe both yielding and the 

ultimate failure of a material. The evolution rules for both damage and plastic 

strains appear naturally during the derivation of the model from only two scalar 

thermodynamic functions (i.e. the free energy potential and the dissipation 

function). In addition, the degree of contribution of each of these dissipative 

processes can be controlled on the basis of the observed behaviour of materials. 

This will allow for a more convenient and easier implementation and calibration of 

models, particularly, under multi-axial loading. In addition, dilative and/or 

contractive behaviour of engineering materials can be conveniently specified in 

cases of either enhancing an existing material model or when developing new 

material models.  

The outline of this paper is as follows; in section 2, a complete presentation of the 

proposed formulation for coupling damage and plasticity along with a detailed 

discussion on some of its promising features, are provided. In Section 3, the 

applications of the proposed formulation for enhancing the currently existing 
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material models as well as constructing new material models are demonstrated 

through a number of numerical examples.   

2. A New Formulation for Coupling Damage and Plasticity 

The framework of generalised thermodynamics by Houlsby and Puzrin [71, 72] is 

adopted in this study to ensure the thermodynamic consistency of the model. A 

detailed discussion on the development and different features of the proposed 

formulation is provided in this section. The generic formulation provides a 

consistent and robust scheme for coupling damage and plasticity and allows for 

adequately simulating various aspects of material behaviour including dilation, 

compaction and non-associated flow.  

2.1. Thermodynamic-based formulation 

In the formulation presented in this section the notation appropriate for triaxial tests 

is used, with the total volumetric strain being defined as iiV    and the total 

equivalent shear strain as ijijS ee32 , where 3ij ij ij Ve      and δij  is the 

Kronecker delta. Similarly, the plastic volumetric strain is denoted as iiV    

and the equivalent plastic shear strain is represented by p
ij

p
ijS ee32 , where

3p
ij ij ij Ve     . In addition, the hydrostatic pressure and the deviatoric stress are 

defined as 1 3 / 3iip I      and ijij ssJq 233 2  , respectively, where 

ij ij ijs p   . 

For isothermal processes, the Helmholtz free energy potential is the same as the 

elastic strain energy and may be written as: 

      



  22

2
3

2
11 SSVV GKD   (1) 

where K is the bulk modulus and G is the shear modulus, and D is a scalar damage 

variable controlling the strength and stiffness degradation of the material [23, 24]. 

Despite the popularity of this type of isotropic damage formulation used in several 

well-regarded models [e.g. 8, 26, 46, 47, 57, 58], it has been pointed out [29, 73, 

74] that this formulation cannot capture well the change in the Poisson’s ratio due 
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to material deterioration. This is acknowledged as a shortcoming of the proposed 

approach, and this isotropic damage formulation is adopted here due to the 

simplicity in both the formulation and the physical interpretation of damage. The 

resolution of this problem may be the use of tensorial damage [29], or non-linear 

elasticity coupled with scalar damage [73, 74]. 

The stresses, p and q can be obtained from the Helmholtz free energy as follows: 

   VV
V

KDp 






 1  (2) 

   SS
S

GDq 






 31  (3) 

The generalised stresses Vχ , Sχ  and Dχ , associated with internal variables αV, 
αs and D, can also be obtained as: 

    pKD VV
V

V 



 


 1  (4) 

    qGD SS
S

S 



 


 31  (5) 

   
    2

2

2

2
22

16122
3

2
1

DG

q

DK

p
GK

D
SSVVD










   (6) 

In order to specify the coupling between damage and plasticity the following form 

of the dissipation rate function is proposed:      

0222  SSVVDSV ff   (7) 

where  v, s and D are homogeneous first order functions in the rates of the internal 

variables ( Vα , Sα  and D ), representing the effect of each dissipative mechanism 

on the total dissipation rate function, Φ. The dimensionless quantities fv and fs are 

functions of stresses and internal variables, which are responsible for controlling 

the direction of plastic flow vectors in the true stress space by moving the centre of 

yield surface in the dissipative stress space (Fig. 1). The physical meaning of these 

functions will be clearer when the formulation of yield surface will be considered 

in the dissipative stress space (Equation 17). The generic forms of these functions 
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along with the dissipation components (v, s and D) used in the above equation 

are expressed as follows:   

  
 p

p
V

DqpF
DqpEap

f



,,,

,,,
  (8) 

 
 p

p
S

DqpF
DqpEbq

f




,,,
,,,

  (9) 

  VpV DqpF  ,,,  (10) 

  SpS DqpF  ,,,  (11) 

 

 
D

DqpEr

DqpF

pd

Dp
D 






,,,

,,,
  (12) 

where p  is the accumulative effective plastic strain the rate of which is given as 

32 ijijp ααε   . In addition,  pDqpE ,,,  and  pDqpF ,,,  are functions of 

stresses and internal variables and define the form of the yield function in true stress 

space. Throughout the remainder of this paper, these functions are simply referred 

to as E and F for notational convenience. Functions a and b are used to control the 

energy dissipation due to plastic volumetric strain and equivalent shear plastic 

strain and also to control the direction of the plastic flow vector in the stress space 

(see Section 2.2 for more details). In addition, the function rd, in Equation (12), 

controls the activation and evolution of damage processes. Further discussions on 

the role of the functions a, b and rd and their relationship will be provided later 

when deriving the evolution rules for the internal variables. Considering the 

definitions given in Equations (8) – (12), the general condition required for 

thermodynamic admissibility (Φ ≥ 0) can be given as (see Appendix A): 

Frqbpa d  (13) 

The above condition imposes some restrictions on the selection of model 

parameters and on the definition of generic functions when their explicit definitions 

are to be specified for constructing a material model. The further details illustrating 

the proof of thermodynamic admissibility of the constitutive models used in this 

study are provided in Appendix A. 
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The expression of the dissipation rate function as provided in Equation (7) offers 

some advantages over the existing models which employ similar expressions for 

the dissipation potential [68-70]. It facilitates to control the direction of plastic flow 

vector in the stress space for better simulations of dilative and contractive 

behaviour. Furthermore, the existence of a single generalised yield function which 

controls the simultaneous evolution of damage and plastic deformations arises as a 

consequence of expressing the dissipation rate function in the form of Equation (7). 

Within the framework of generalised thermodynamics, the yield function in 

generalised dissipative stress space (not true stress space) can be derived by 

performing a Legendre transformation on the dissipation rate function. Since the 

dissipation rate function is a homogeneous first order function in rates, this 

transformation is a degenerate special case of Legendre transformation [71, 72]. 

Using Equation (7), the generalised dissipative stresses [71] are defined as follows:   

V
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V f













 




























222

 (14) 

S

S
S

DSV

S

S

S

SS
S f













 































222

 (15) 

DDD
D

DSV

DD

D
D

 






































222

 (16) 

It is inferred from the above equations and Equations (10) – (12) that the 

generalised dissipative stresses are functions of the rates of all the internal 

variables. This is a consequence of expressing the dissipation function in the form 

of Equation (7), instead of using the usual additive form in earlier studies [8, 9, 46], 

in which dissipative stresses are dependent on the rate of their associated internal 

variable only. Material models constructed based on the proposed formulation will 

benefit from possessing a single loading function, which is obtained from the 

Legendre transformation of the dissipation function, instead of two separate loading 

functions corresponding to damage and plasticity, had the additive form of the 

dissipation potential been used. Equations (14) – (16) can be used to obtain a single 

generalised loading function as: 
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As illustrated in Figure 1, the above loading function represents an ellipsoid with 

its centre at the point (
V

V
Vf





 , 
S

S
Sf





 , 0) in the generalised dissipative stress 

space (χV, χS, χD). The radii of this ellipsoid are also denoted by VVl   , 

SSm    and Dn D    (Fig. 1).  

 
Figure 1: Geometric interpretation of the yield potential in generalised dissipative 

stress space 

With the evolution of internal variables upon yielding, the size of the loading 

surface and its position in generalised dissipative stress space will vary, however, 

its centre will always remain in the (χV, χS) plane (Equation (17)). The evolution of 

plastic strains and the scalar damage variable can be determined using this loading 

function and by taking its derivatives with respect to the corresponding generalised 

dissipative stresses. Therefore, by making use of Equations (4), (5), (8) – (12) and 

(17), the evolution rules are derived as: 
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where  is a non-negative multiplier. In deriving the above equations, a constitutive 

postulate (i.e. VV    and SS   ) equivalent to Ziegler’s orthogonality 

condition [71] is invoked. It is deduced, from Equations (18) - (20), that the plastic 

flow vector is always normal to the loading surface in the generalised dissipative 

stress space, regardless of the plastic flow being associated or non-associated in 

true stress space. Furthermore, by making use of Equations (4) – (6) and 

substitution of Equations (8) – (12) into Equation (17), the general form of the yield 

function in true stress space can be given as:  

  0222  FErbay d  (21) 

As can be seen in Equation (21) for the yield function, a, b and rd will affect the 

initial shape and size of the yield surface. As these functions a, b and rd are also 

involved in the evolution rules for plastic strains and the scalar damage variable 

(Equations (18) – (20)), they will have effects on the evolution of the yield surface. 

It should be noted that the evolution of the yield surface in a damage-plasticity 

model is governed by both damage and plastic strains. In this sense, the functions 

a, b and rd will have both direct (Equation (21)) and indirect (Equations (18) – (20)) 

influence on the evolution of the yield surface. In order to simplify the calibration 

procedure of the initial yield surface against experimental data, the effects of model 

parameters on the initial the yield surface, and its evolution need to be separated. 

In other words, the calibration of the initial yield can be independent from its 

evolution. For this purpose, the following conditions are imposed to eliminate the 

direct effects of a, b and rd on the initial size and shape of the yield function in true 

stress space: 

prba  22     and      1 pd rr  (22) 

By imposing the above conditions, the functions a, b and rd will only control the 

evolution of the yield surface and not its initial size and shape in true stress space. 

Accordingly, a user input with rd = 1 implies that damage is the only active 

dissipative mechanism and no plastic deformation will take place, whereas the 

reverse is true when rp = 1. For all other cases (0 < rd < 1 and 0 < rp < 1), damage 

and plasticity occur together, while rd > rp (or rp > rd) indicates that damage (or 

plasticity) is the dominant mechanism. Therefore, in order to control the coupling 

between damage and plasticity, the model requires only one input parameter rd (or 
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rp). Similarly, for controlling the direction of plastic flow vector in stress space, 

only one parameter a (or b) is needed. Finally, by imposing the condition of 

Equation (22) on Equation (21), the general form of the yield in true stress space is 

expressed as:              

02  FEy  (23) 

The explicit form of the yield function can be determined by specifying the 

functions E  and F  which in turn are defined on the basis of the specific 

application and the problem to be solved. Further discussion on the various forms 

of these functions E  and F  is provided in Section 3. In addition, it is important 

to examine the proportion of energy dissipation due to damage and plasticity 

relative to the total dissipation rate (defined as RD and RP, respectively). Since for 

rate independent material behaviour, the dissipation potential is a homogeneous 

first-order function in terms of the rates of internal variables [71], by making use 

of Euler’s theorem for homogeneous functions, the dissipation function can be 

written as: 
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 (24) 

where V , S  and D  are the dissipation rate functions corresponding to plastic 

volumetric deformation, plastic shear deformation and damage, respectively (note 

that they are different form functions V , S  and D  in Equation (7)) . As the 

functions V , S  and D  can be written explicitly in term of stresses (see Appendix 

B), the ratios between the dissipation rate due to plasticity or damage and the total 

dissipation rate can be obtained as follows: 

dD

d

r E
r E pa qb



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 (25) 
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 (26) 

Also, the expressions of V  and S (Appendix B) can be used to obtain the ratio 

between the dissipation rates associated with volumetric and shear components of 

the plastic deformations ( PR ) as: 

V

S

pa
qb





 (27) 
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In order to facilitate the calibration of model parameters, the total dissipated energy 

during the entire course of deformation are calculated and compared with the 

experimentally measured total dissipation. This can be achieved if the total 

dissipation rate function can be expressed as an integrable function in terms of the 

rate of one internal variable. For instance, the total dissipation rate function can be 

expressed as a homogeneous first order function in term of s  as (see Appendix 

B): 

  SSS
d q

b
pa

b
Er   








  (28) 

The final form of  SαΓ  is determined by specifying the function E. The above 

discussion is further clarified through an example, given in Section 3.1, for a one-

dimensional Von Mises model, where an explicit form of the total energy 

dissipation (fracture energy) is obtained by integrating the dissipation rate function.  

 

2.2.  Controlling the direction of plastic flow vector 

As discussed previously, the evolutions of plastic strains (Equations (18) – (19)) 

can be controlled by functions a (or b) and rd (or rp), where the relationship between 

these functions is given through the conditions of Equation (22). In this regard, 

Equations (18)  and (19) can be used to give the ratio between the rates of plastic 

volumetric strain and equivalent shear plastic strain as: 

b
a

S

V 




  (29) 

As mentioned earlier, the plastic flow vector is always normal to the loading surface 

y* in the generalised dissipative stress space. However, it is normal to the yield 

surface y in p-q stress space only if the flow rule is associated, where it will satisfy 

the following condition:   

qy
py

b
a


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  (30) 

In order to control the ratio between the plastic volumetric strain and the equivalent 

shear plastic strain rates for simulating non-associated flow, a dimensionless 

function c can be introduced as:  

qy
py

c
b
a


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  (31) 
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where the flow rule is associated if c = 1, and it is non-associated if c ≠ 1. By 

making use of the conditions of Equation (22) functions, a and b can be expressed 

in term of c as follows: 
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Thus, a and b can, in general, be determined indirectly by defining the function c. 

Following the sign convention adopted in this study (compression is positive), 

positive values of a (a > 0) correspond to plastic compaction, whereas negative 

values of a (a < 0) indicate plastic dilation (see Equations (18) and (19)). 

Furthermore, a = 0 implies pure plastic shear deformations (no plastic volumetric 

deformation), which is commonly observed in metals. The role of the function c in 

modelling the material behaviour and its influences on the plastic flow direction is 

illustrated by providing an example in Section 3. 

 

2.3. Tangent stiffness tensor 

In this section, the formulation of the tangent stiffness tensor t
ijklC  is presented as it 

may be necessary for integration of the rate equations if an explicit integration 

scheme is used. The stress tensor can be given, by making use of Equation (1) as: 
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From the above equation, the incremental stress tensor can be determined as: 
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Furthermore, Equations (18) and (19) can be used to obtain the incremental plastic 

strain tensor ij , which can be written as: 
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The consistency condition can now be written by utilising the yield function of 

Equation (23) as: 
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where the rate of effective plastic strain p  can be obtained using Equation (36) 

as: 

ijij
ijijp

yy










**

3
2

3
2   (38) 

Therefore, the non-negative multiplier   is obtained, by making use of Equations 

(20) and (35) – (38), as: 

klkl εMλ   (39) 
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Finally, the incremental stress-strain relationship is expressed as:   
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where t
ijklC  represents the tangent stiffness tensor. 

2.4. Stress Return Algorithm 

Numerical implementations require the stress state be updated for a given strain 

increment. For infinitesimal increments in strains, stresses can be updated explicitly 

using the tangent stiffness or a forward-Euler scheme. However, in practical 

applications, the strain field within a structure is not uniform and hence, strain 

increments at material points (e.g. Gauss points in FEM) may not be infinitesimal 

throughout the body and consequently, the updated stresses may lie outside the 

yield surface. Unless the stresses are corrected and returned onto the yield surface, 

the forward-Euler scheme may give rise to erroneous values for stresses at the 

material point which in turn may result in a divergence in numerical scheme applied 
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for satisfying equilibrium equations at the structural level. Hence, a form of 

backward-Euler scheme is adopted here to return the stresses to the yield surface 

following an elastic trial predictor. Returning procedures, which involve returning 

the trial stresses onto a new yield surface (in cases of hardening or softening), are 

activated only if the trial stresses lie outside the yield surface. To this end, the new 

yield surface is approximated at the trial stress values using a first order Taylor 

expansion as follows: 
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(42) 

As the strain increment has been utilised to move to trial stress values, the return 

stress increments, re
ijσΔ , in the above equation can be obtained as:  
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This stress return algorithm is slightly different from a full backward-Euler scheme 

in which re
ijσΔ  are calculated as normal to the new yield surface ( 1ny ) by applying 

an iterative scheme. By substituting Equations (20), (36), (38) and (43) into 

Equation (42), the non-negative multiplayer  can be obtained as follows: 
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Therefore, the final updated stresses can be obtained as: 
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3. Applications 

In this section, the applicability of the proposed formulation for modelling the 

inelastic behaviour of a wide range of materials is discussed and its promising 

features are demonstrated through some numerical examples. In each case, the 

model predictions are validated against experimental data available in the literature. 

In what follows, firstly, the features of the proposed formulation are illustrated 
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through coupling damage with the Von Mises plasticity model, which is widely 

utilised for modelling the behaviour of pressure independent materials. Secondly, 

the influence of the plastic flow direction on the material response is investigated 

through the development of a coupled damage plasticity model for pressure 

dependent materials based on the parabolic Drucker-Prager yield function. Finally, 

through constructing a new model for cohesive frictional geomaterials, it is 

demonstrated that the proposed formulation can also facilitate the development of 

new elastoplastic damage models. 

On the other hand, it should be noted that the focus of this paper is on the 

development of a thermodynamic-based formulation at the constitutive level and 

the issues related to material stability of the model in solving Boundary Value 

Problems are not considered in this study. The enhancements of the proposed 

models using nonlocal theory or viscous regularization for effectively dealing with 

the issues related to solution of boundary value problems will be the next step of 

developments. Our experience with these kinds of regularisation [8, 9, 32, 70, 81, 

82] showed that these techniques can be readily added to obtain discretisation-

independent numerical solutions. 

3.1. Coupling damage with the Von Mises plasticity model 

The yield function of the classical Von Mises model in the (p - q) stress space can 

be written in the following form: 

    0,,3 2  pp εDkqεDkJy  (46) 

The exclusion of pressure (or the first invariant of stresses I1) in the above 

expression indicates its pressure independency. In order to incorporate the effects 

of plastic deformations and damage in the model the shear strength, k is defined as 

a function of two internal variables, namely, the scalar damage variable, D and 

accumulated plastic strain, εp as: 

    pεH
y eQfDk


 11  (47) 

where fy and Q are the initial yield and the ultimate stresses, respectively, and H is 

a material parameter which determines the rate of expansion/contraction of the 

yield surface. It can be seen from Equations (46) and (47) that the evolution of the 

yield surface is governed by evolutions of damage D and equivalent plastic strain 
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εp, where the evolution of εp is defined by Equation (38). Comparing Equation (46) 

with the generic form of yield function as stated by Equation (23), it can be inferred 

that E = q and F2 = k for von Mises yield function. Therefore, the flow rules can 

be obtained by making use of Equations (18) – (20) as follows:  
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In addition, the plastic flow rule in the tensorial form can be derived using Equation 

(36) as: 
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The stress-strain response produced by the above model definitions is illustrated in 

Figure 2.  The effect of different levels of damage activity, for different values of 

rd, can also be observed in Figure 2. Also, the model parameters used are: Young’s 

modulus = 200000 MPa, Poisson’s ratio (ν) = 0.3, fy = 250 MPa, Q = 50 MPa and 

H = 1000. It should be noted that the incompressibility condition ( 0vα ) of the 

Von Mises model can be accounted for by setting a = 0. In Figure 2, the curve 

associated with rd = 0 indicates a pure plastic deformation of the material without 

having any damage, while for other cases, where the damage and plastic 

deformations evolve together (0 < rd < 1), the effect of damage is observed as 

reduction in the ultimate stress and the softening behaviour (Figure 2).  

In general, the strain hardening behaviour of ductile metals (e.g. steel) under 

uniaxial tensile loading is accompanied by an insignificant reduction in stiffness 

immediately after the initial yielding. For these materials, softening behaviour is 

observed after the ultimate stress is reached followed by complete failure of the 

material. This behaviour can be replicated by making use of the enhanced Von 

Mises model, introduced here, by controlling the degree of activation of damage 

and plasticity. For instance, damage can be switched off during the strain hardening 
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process, where no considerable stiffness reduction is observed (Figure 3(a)), by 

setting rd = 0 (see Equations (48) – (50)).  

 
Figure 2: Stress-strain response of a coupled damage-plasticity model based on 

Von Mises model under uniaxial stress condition for various values of rd. 

 
Figure 3: (a) Effects of different values of rd on the stress-strain response of steel 

under uniaxial tension (b) Corresponding values of rd for activation of damage 

mechanism at a critical value of plastic strain εpc = 4.5×10-3. 

The softening behaviour, however, can be modelled through activation of damage 

by using a value of rd greater than 0, once the accumulated plastic strain reaches a 

critical value εpc (Figure 3(b)). As illustrated in Figure 3 (a), higher values of rd 

correspond to more brittle behaviour with steeper slopes in the post-peak response. 

Furthermore, the stress-strain response of Aluminium Alloy 6082 under uniaxial 

tension [75] can be adequately captured by the proposed model as illustrated in 
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Figure 4. The model parameters used for this analysis are: Young’s modulus = 

30000 MPa, Poisson’s ratio (ν) = 0.3, fy = 40 MPa, Q = 85 MPa, H = 50, and εpc = 

0.48 and rd = 0.97.  

 
Figure 4: Stress-strain response of Aluminium Alloy 6082 under uniaxial tension. 

Damage is activated at a critical value of the plastic strain εpc = 0.48 and rd = 0.97. 

As discussed earlier in Section 2, the calibration of model parameters can be 

facilitated by calculating the total energy dissipation during the course of inelastic 

deformation and also by comparing the calculated and experimentally measured 

total dissipated energy. The explicit analytical expression of the total dissipation 

for the enhanced Von Mises model under uniaxial stress condition is provided in 

Appendix C.  

3.2. Coupling damage with the parabolic Drucker-Prager plasticity model 

Figure 5 illustrates a typical yield surface of plain epoxy resin which has a parabolic 

shape in its initial and final yielding states [76]. In this section, based on the 

coupling scheme of the generic formulation, the parabolic Drucker-Prager model is 

enhanced by coupling this pressure-dependent plasticity model with damage. In 

addition, the non-associated flow and inelastic volumetric deformations (dilation 

and compaction) are successfully modelled thanks to the coupling scheme of the 

proposed generic formulation. 

The parabolic Drucker-Prager yield function can be expressed in terms of pressure 

p and deviatoric stress q as: 

    0,,
3

3 2
12  pp εDβpαqεDβIαJy  (52) 
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Figure 5: Parabolic Drucker-Prager yield function applied to plain epoxy resin 

[76] where qo 2
9  is the octahedral shear stress (Circles indicate experimental 

data points). 

The parameters α and β in the above expression are given as:   

tycy ffβ   and  tycy ffα 3  (53) 

where fcy and fty are the uniaxial yield stress in compression and tension, 

respectively. It is assumed that, fcy and fty will vary progressively with the evolution 

of plastic deformation and therefore their dependency on the damage variable and 

accumulated plastic strain can be defined as:  
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cccy eQfDf
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 11 0 ; and     pt εH

ttty eQfDf


 11 0  (54) 

where ft0 and fc0 are initial yield stresses, and Qt, Qc, Ht, Hc are material constants 

with subscript t and c corresponding to tension and compression, respectively. The 

growth of damage will progressively reduce the values of α and β leading to the 

contraction of the yield surface (Equation (54)). On the other hand, the growth the 

effective plastic strain εp will give rise to the expansion of the yield surface. By 

comparing Equation (52) with Equation (23), it is deduced that E and F can be 

defined as: pαqE  2  and F2 = β. With these expressions of E and F, the 

flow rules can be obtained using Equations (18) – (20) as follows:  

k
pαqaλαV


2

2   (55) 

k
pαqbλαS


2

2   (56) 
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 
D

d

βχ
pαqrλD 


2

2   (57) 

Furthermore, by making use of Equation (34), the plastic flow rule is obtained in 

its tensorial form as: 

 





















ij

ij

ij
ij σ

J

Jβ
pαqbδ

β
pαqaλ

σ
yλα 2

2

22*

32

32
3

2  (58) 

3.2.1. The effect of rd and c on the model response  

The stress-strain response of the coupled damage-plasticity model based on the 

parabolic Drucker-Prager yield function, for uniaxial loading, is illustrated in 

Figure 6. The parameters used for this analysis are: young’s modulus = 35000 MPa, 

Poisson’s ratio (ν) = 0.18, ft0 = 5 MPa, fc0 = 10 MPa, Qt = 15 MPa, Qc = 30 MPa, 

Ht = 2000, Hc = 2000. The effect of rd on the material behaviour is also shown in 

Figure 6, where rd varies from 0 (no damage activation) to 0.18. As can be observed 

in Figure 6 a higher value of rd leads to a higher level of damage activity gives rise 

to a lower ultimate stress with a more significant softening behaviour. 

 
Figure 6: Effect of rd on the stress-strain response of a material under uniaxial 

loading based on the associated flow rule. 

The direction of the plastic flow vector in stress space is indicative of the level of 

contribution of the volumetric and the shear plastic strains to the total plastic 

dissipation. In addition, dilational and/or contractive modes of deformation give 

rise to different directions of the plastic flow vector in stress space. The reverse 

scenario is, however, pursuit here as the model response is controlled by the 
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direction of the plastic flow vector in stress space. The variation in the model 

behaviour due to changes in the direction of plastic flow vector (different values of 

the parameter c) is illustrated in Figure 7. Cases with c > 1 correspond to larger 

plastic volumetric strain rates, with the plastic flow vector being more inclined 

towards the p axis in the (p – q) stress space, compared to that in the case of 

associated flow (c = 1), and the reverse is true for cases with c < 1. In addition, a 

higher value of c gives rise to more dilational behaviour, as illustrated in Figure 7 

(b).  

 
Figure 7: (a) Effect of c on the stress-strain response of a material under uniaxial 

compression (rd = 0.07), (b) Effect of c on the total volumetric strain and 

equivalent shear strain under uniaxial compression (rd = 0.07). 

3.2.2. Behaviour of concrete under uniaxial cyclic loading 

The nonlinear responses of concrete materials under cyclic tensile and compressive 

loading [77] are predicted by the proposed model and the results obtained are 

presented in Figure 8. The model parameters used for the tensile loading are: 

young’s modulus = 31700 MPa, Poisson’s ratio (ν) = 0.18, ft́ = 3.48 MPa, ft0 = 3.48 

MPa, fc0 = 10 MPa Qt = 0 MPa, Qc = 15 MPa, Ht = 0, Hc = 1000 and rd = 0.14. 

Figure 8 (a) shows a reasonable agreement between the model prediction and the 

experimental data. 



CHAPTER 3: JOURNAL PAPER 2 

106 
 

 
Figure 8: Behaviour of concrete under cyclic loading: (a) uniaxial tension 

(experimental data obtained from [77]); (b) uniaxial compression (experimental 

data obtained from [78]) 

In addition, Figure 8 (b) compares the model prediction with the experimental data 

from cyclic compressive loading on concrete [78]. In this case, the model 

parameters used are: young’s modulus = 31000 MPa, Poisson’s ratio (ν) = 0.18, fć 

= 27.6 MPa, ft0 = 3.48 MPa, fc0 = 12 MPa, Qt = 0 MPa, Qc = 38 MPa, Ht = 0, Hc 

= 1600 and rd = 0.28. Figure 8(b) also shows a very good agreement between the 

model predictions and the experimental data which indicates a successful 

performance of the proposed model. 

3.2.3. Dilation of unconfined concrete under uniaxial compression 

The dilative or contractive behaviour of material models constructed following the 

proposed generic formulation can be controlled by appropriately defining the 

parameter c (or functions a and b (see Section 3.3)). The experimental results of an 

unconfined concrete specimen under uniaxial compression [79] is used to 

determine the variation of parameter c with respect to the equivalent shear strain εs, 

as illustrated in Figure 9.  
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Figure 9: Evolution of c for unconfined concrete under uniaxial compression. 

The nonlinear response of the concrete specimen is predicted by the proposed 

model using material properties as; young’s modulus = 35000 MPa, Poisson’s ratio 

(ν) = 0.18, ft́ = 2.4 MPa, and fć = 32 MPa [78]. The model parameters used are: ft0 

= 2.4 MPa, fc0 = 10 MPa, Qt = 0 MPa, Qc = 29 MPa, Ht = 0, Hc = 2600 and rd = 

0.17 along with the values of c as indicated in Figure 9. The comparison between 

the model prediction and experimental data, as illustrated in Figure 10, highlights 

the capability of the proposed model.  

 
Figure 10: (a) Stress-strain response of concrete under uniaxial compressive 

loading; (b) Variation of volumetric strain (experimental validation). 
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3.3. Development of an elastoplastic damage model for cohesive-frictional 
geomaterials 

In laboratory experiments, inelastic deformation of cohesive-frictional 

geomaterials such as rocks, hard clays, etc., is observed as a reduction in stiffness 

and strength as well as the occurrence of residual strains. The failure process begins 

with a relatively uniform distribution of micro-cracks throughout the material 

followed by localisation of microcracks within a band which finally leads to the 

formation of a macro-crack and then shear sliding of the two faces of the 

macroscopic fracture. A common strategy for modelling such failure process is to 

employ a yield function or a plastic potential, which controls the evolution of 

dissipative processes (damage and plasticity), for the states before the formation of 

the final macro-fracture, and a separate failure function to describe the shear sliding 

between the two faces of the macro-fracture [36]. In this section, specific 

definitions of the functions E  and F , in the generic formulation, are given so that 

a single-surface yield function in true stress space is obtained. This yield surface is 

then transformed to a final failure function as the scalar damage variable grows 

from zero to one. This is a promising feature of this model which facilitates 

capturing the brittle and ductile responses as well as the brittle-ductile transition, 

without any need for separately introducing hardening/softening rules. It is also 

demonstrated briefly that the features of proposed generic formulation facilitate the 

modelling of dilative and contractive responses of cohesive geomaterials. 

3.3.1. The yield function 

In order for the model to be capable of capturing the inelastic volumetric 

deformation of the material under isotropic compression (or expansion), it is 

required that the yield function have a closed envelope in the principal stress space. 

Hence, a single-surface yield function with a tear-drop shape in true stress space 

[4] is derived following the structure of the proposed generic formulation. In this 

regard, the damage is incorporated in the model formulation in such a way that the 

initial yield function is transformed gradually into a linear frictional failure function 

as the damage variable grows from zero to unity. To this end, the functions E and 

F in Equations (8) – (12) are defined as follows:  
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   ρpωDpF  1  (60) 

In the above expressions, 10 ω  and 10  γ  are materials parameters while pc 

and pt represent pressures at initial yield under isotropic compression and 

expansion, respectively. The parameter M represents the slope of the final failure 

envelope in true stress space. By making use of the above definitions and the 

general form of the yield function, given by Equation (23), the yield function in 

true stress space is obtained as:  
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 (61) 

In the above expressions, parameter ρ  represents the pressure at the intersection 

of the final failure envelope and the initial yield surface and it can be calculated by 

considering the yield condition under isotropic compression as: 

 
 tc

ctc

pp
ppp





2

4 2
  (62) 

In addition, for γ = ω = 1 and pt = 0 the yield function of Equation (61) is the same 

as the modified Cam-Clay. Figure 11 illustrates the evolution of the yield surface 

with damage growth and the transformation of the initial yield surface to the final 

failure surface when the damage variable is one.  

 
Figure 11: Evolution of the yield surface with damage growth. 



CHAPTER 3: JOURNAL PAPER 2 

110 
 

3.3.2. Dilative and contractive responses with non-associated flow rules 

For any point (stress state) on the initial yield surface y in true stress space p-q, 

there exists an elliptical loading surface y* in generalised dissipative stress space 

SV χχ   which can be expressed by making use of Equation (17) as:   

      0222*  ErFEbqχEapχy dSV  (63) 

These loading functions in dissipative stress space are analogous to the concept of 

plastic potential in conventional plasticity. As illustrated in Figure 12, the flow 

vectors in true stress space are defined as normal to the corresponding elliptical 

loading function in dissipative stress space. Furthermore, functions a and b, 

appeared in Equation (63), can be defined in terms of true stresses which helps to 

predict the directions of flow vectors in true stress space. Possible definitions of 

these functions are proposed as follows:   









 22

2

1
FM

qra p  (64) 

22

2

FM
qrb p  (65) 

Following the sign convention of compression positive, the plus and minus signs 

used in Equation (64) correspond to plastic volumetric contraction and dilation, 

respectively. Hence, a dilative or contractive response at any point on the yield 

surface can be simulated by choosing the appropriate sign of parameter a.  For 

instance, Figure 12 (a) – (c) illustrates the directions of flow vectors on the initial 

yield surface of Bentheim sandstone corresponding to confining pressures (σr) of 

30 MPa, 120 MPa and 300 MPa . For any positive value of parameter a, the model 

behaviour is contractive, whereas the model exhibits dilational behaviour if a 

negative value of a is chosen (Figure 12).  
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Figure 12: Initial yield loci in dissipative stress space (y*) and in true stress space 

(y), with directions of flow vectors for Bentheim sandstone at the onset of 

yielding under triaxial loading at (a) 30 MPa, (b) 120 MPa and (c) 300 MPa 

confinement 

In order to set a criterion for appropriately choosing the sign of parameter a, the 

pressure at the intersection of the final failure line and the initial yield locus, i.e. ρ

(Equation (62)), is defined as the critical pressure. Any point on the yield surface 

with a pressure below the critical pressure (p < ρ) corresponds to dilative response 

and softening behaviour, where the parameter a is negative.  If, on the other hand, 

this pressure exceeds the critical pressure (p > ρ), the model exhibits compaction 

and hardening or ductile behaviour where parameter a will be positive. The model 

behaviour at the intersection of the initial yield surface and the final failure line (p 

= ρ) is perfectly plastic (brittle-ductile transition), as shown in Figure 13. It is also 

important to note that regardless of the sign of a, the dissipation rate function, as 

given in Equation (7), is always positive (see Appendix C).   
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Figure 12: (a) Brittle, brittle-ductile transition and ductile responses and (b) 

Dilation/softening and compaction/hardening regions with their transition for 

Bentheim sandstone (pc=400 MPa, pt = 10 MPa, M =1.45, ω = 0.6 and γ = 0.8) 

4.1.1 Behaviour and validation of the proposed model 

A series of experimental data of Bentheim sandstone [80] is used to assess the 

performance of the model. A number of yield points (Figure 14) corresponding to 

different confining pressures are used for the calibration of initial yield parameters, 

i.e.  pc, pt, M, ω and γ. 
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Figure 14: Calibration of the model parameters (pc=400 MPa, pt = 10 MPa, M 

=1.45, ω = 0.6 and γ = 0.8) 

Figure 15 illustrates the performance of the model with the same level of activity 

for damage and plasticity processes, i.e. rd = rp = 0.5. It is expected, however, that 

the contributions of damage and plasticity in energy dissipation vary for different 

levels of confining pressure. In the dilation/softening region (see Figure 13 (b)), 

under low confining pressures, damage is the dominant mechanism of the inelastic 

deformation, while at medium to relatively high confining pressure, the dominant 

mechanism of deformation and energy dissipation is plasticity. At significantly 

high confining pressures, however, damage is envisaged to be the dominant 

mechanism again. The dominance of the damage dissipation at significantly high 

pressures in granular materials can be attributed to phenomena like grain crushing 

[5, 6, 81, 82]. Model predictions, in general, show a reasonable agreement with the 

experimental data (Figure 15). However, as can be seen in Figure 15 (b), the model 

prediction does not closely follow the experimental data in the brittle/softening 

region. The main reason for this deviation is that the material behaviour, produced 

by the model, is compared with that of the specimen without considering the size 

effect of the specimen used for recording the experimental data. The size effect of 

a structure (or a specimen) on the nominal strength and post-peak behaviour is a 

well-known issue and it is more profound when the material undergoes softening 

[see e.g. 83]. The issues of localised failure and size effects can be resolved by 

using a regularisation technique which is not considered in this study as this is not 

the primary focus of this investigation.  
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Figure 15: Model validation against experimental data of Bentheim 

sandstone [79], (a) pressure-volumetric strain (b) differential stress-axial 

strain with rd = rp = 0.5 

 

4. Discussions and Conclusions  

 A thermodynamically consistent generic formulation for constructing constitutive 

models for engineering materials is proposed in this study. The focus of the study 

is to obtain a rigorous and consistent method for coupling damage and plasticity for 

a range of engineering materials. As a result, a general form of the total dissipation 

rate function is developed which can be conveniently transformed to get a single 

generalised loading surface for both yield and failure states. This single loading 

surface governs the simultaneous evolutions of both damage and plasticity where 

the coupling between these two mechanisms is effectively specified through a 

model parameter without imposing any restrictions to the model. In addition, the 
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inherent features of the generic formulation also facilitate the modelling of the 

inelastic dilative and contractive behaviour of materials. 

It is shows that the proposed generic formulation possess good potentials in 

enhancing existing as well as developing new constitutive models. Despite the 

impression that a large number of parameters is needed for the model, it should be 

noted that the majority of these parameters are in fact used for defining the yielding 

behaviour of three different types of materials in a generic form utilising functions 

E and F. Since the yield points in stress space are usually obtained from 

experiments (see the example of porous rocks in Section 3.3), these parameters can 

be readily calibrated. It is to be noted that these parameters are independent from 

the remaining small number of parameters used for defining the failure evolutions, 

which facilitates the calibration of the remaining parameters for the inelastic 

behaviour. For defining the inelastic response, besides the elastic modulus and the 

Poisson’s ratio, the proposed formulation requires two mandatory parameters 

which are rd (or rp) to specify the proportion of energy dissipation due to damage 

(or plasticity), and a (or b) to control the direction of the plastic flow vector. Besides 

these mandatory parameters, an additional set of 3 to 4 parameters are needed to 

control the hardening and softening processes of metal (Figure 4) and concrete 

(Figure 8) while the failure of porous rock (Figure 13) does not need any additional 

parameters. We also acknowledge that all models used in this work are relatively 

simple, as they are just used for the purpose of illustrating the applicability of the 

proposed generic approach. In this sense, future focus on a particular material 

and/or behaviour may help to identify shortcoming of the approach for further 

developments and improvements. 
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Appendix A: The general condition for thermodynamic admissibility 

The general condition for thermodynamic admissibility is derived from the premise 

of strictly non-negativeness of the dissipation rate function, given by Equation (7). 

This condition can be derived by making use of the general definition of functions 

and parameters appearing in Equation (7), and defined through Equations (8) – (12) 

as well as the flow rules of Equations (18) – (20) and the yield condition, as given 

by Equation (23). For convenience these Equations and definitions are also repeated 

here: 

The dissipation potential 

0222  SSVVDSV ff   (A-1) 
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The yield function in true stress space 
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02  FEy  (A-10) 

Substitution of Equations (A-2) – (A-9) into Equation (A-1) and making use of 

Equation (A-10), results in: 
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Since 0λ the non-negativeness of the term in the parentheses is required, i.e. 
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Since 0F , recalling the condition of Equation (22) (a2 + b2 = rp and rp + rd = 1) 

and, the above expression is reduced to: 

0 Frqbpa d  (A-13) 

In the above expression, the second and the third terms are always non-negative. 

The first term, however, can be negative when the model behaviour is dilative (a < 

0) under compression (p > 0). The following general condition is therefore required 

to be satisfied for thermodynamic admissibility:  

Frqbpa d  (A-14) 

It should be noted that the expression at the right-hand side of the inequality in the 

above condition is always non-negative.   

In the case of the Von Mises model, due to incompressibility constraint, i.e. αv = a 

= 0, the condition of Equation (A-14) is always satisfied. For the case of the 

enhanced Drucker-Prager model, in which an additional parameter c is used to 

control the direction of the plastic flow vector in stress space, no general proof can 

be given for thermodynamic admissibility. However, by making use of the general 

condition of Equation (A-14), some restriction is put on selecting the parameter c 

for modelling the dilational behaviour under compression. In this regards, 

parameter a in (A-14)  can be substituted for form Equation (31) to give the 

following restrictive condition on c: 
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Considering the Drucker-Prager yield function, as stated by Equation (52) the 

above condition can be rewritten as: 
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This condition imposes a restriction on the direction of the flow vector and is met 

for the example presented in the manuscript. 

In the case of the new geomaterial model it is required to demonstrate that the model 

conforms to the condition of Equation (A-14) for modelling the dilative behaviour 

under compression. To this end, parameters a and b in (A-14) are substituted for 

from Equations (64) and (65) to give:  
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Comparing the above expression with the yield function of Equation (61), the above 

expression can be rewritten as:  
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Functions F and A are always positive or non-negative, therefore, (A-18) can be 

rearranged to give: 
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In the dilation regime the term (p - ρ) is always negative See Figure A1, while the 

right-hand side of the above expression is always positive. Therefore, it is deduced 

that the model follows the general condition for thermodynamic admissibility as 

stated by Equation (A-14). 

 
Figure A1: Sign determination diagram for volumetric and shear dissipation rate 

functions 
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APPENDIX B: Energy dissipation potential as a function of stresses and sα  

Using the definition of V , S  and D , Equation (24) can be rewritten as: 

0 DDSSVV    (B-1) 

Substitutions of Equations (18) – (20) into Equation (B-1), gives: 
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Recalling the constitutive postulate of vv χχ   and ss χχ   and using Equations 

(4)  and (5), the above expression can be rewritten as: 
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Therefore, the following expressions for the dissipation rate functions 

corresponding to each internal variable can be obtained, using Equation (B-3), as: 
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From the above equations, the following ratios are defined: 
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Substituting the above ratios into Equation (24), the total dissipation rate function 

  can be expressed in terms of S  and stresses as: 
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Since SSS    and  qχχ ss  ,  it follows that: 

SS q  (B-10) 

Thus, substitution of Equation (B-10) into Equation (B-9), the expression of the 

total dissipation rate function,  , in terms of S  and stresses  are obtained as: 
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APPENDIX C: Energy dissipation aspects of Von-Mises materials under 

uniaxial loading 

As 0V  in the Von-Mises material model, ij
V

ij
p

ije  
3

 and thus S  

can be written as: 
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Furthermore, using Equations (47) and (48), the relationship between D  and p  

is expressed as: 
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For the case of uniaxial stress, the pressure p  and the deviatoric stress q  are 

given as follows:  
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Using Equation (7) and Equations (C-3) and (C-4), D  can be expressed as: 

 2
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Substitution of Equation (C-5) into Equation (C-2) gives the following 

relationship: 
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From the yield function, given by Equation (46), q can be obtained as: 
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Thus, the following expression can be derived by making use of Equations (C-6)  

and (C-7): 
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Integrating both sides of Equation (C-8) with results in the following expression: 
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The integration constant C  is calculated for the following cases:  

Case 1: Evolution of damage and plasticity together at yielding (see Figure 1 for 

rd = 0.5 and 0.25) 

For the case of damage being initiated at the onset of yielding together with plastic 

strains, the expression of C can be obtained by using εp = 0, D = 0 as the initial 

conditions which are substituted into Equation (C-9) to give the following 

expression for the constant C: 
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Case 2: Only plasticity occurs at yielding and damage initiates when pcp εε   (see 

Figure 2(a)) 

In the example provided in Section 3.1, damage is not initiated (rd = 0) until  

)105.4( 3 pcp  . Hence, the initial conditions are: D = 0, εp = 4.5x10-3 which 

are substituted into Equation (C-9) to obtain the integration constant C as follows: 
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In order to obtain the explicit expression of D in term of the accumulated plastic 

strain, εp,  Equation (C-9) is rearranged to give: 
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It is critical to note that the expression of D in Equation (C-12) is defined only for 

 pfpcp  ,  where εpc is the effective plastic strain at the onset of damage 

initiation, and εpf is the effective plastic strain at failure. By substituting Equation 

(C-12) into Equation (C-8), D  can be expressed explicitly in term of p  as: 
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Now the total dissipation rate function can be expressed as: 

SSD D      (no volumetric plastic strain) (C-14) 

Substituting (C-5), (C-7), (C-12) and (C-13) into the above equation, gives: 
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 (C-15) 

Thus, the total energy dissipated during the entire deformation process (or the total 

fracture energy) can be calculated by integrating both sides of Equation (C-15) with 

respect to εp. In addition, the damage dissipation rate ratio RD, given in 

Equation (25), can also be defined as a function of  εp by making use of Equation 

(C-7) as: 
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
1

 
(C-16) 

The above equation provides the explicit link between the proportion of energy 

dissipation due to damage and plasticity. With the expressions given in Equations 

(C-12) and (C-16), the variation of RD and D with respect to εp  are plotted for 

different values of rd in Figure B1 (Case 1) and Figure B2 (Case 2). 

 
Figure B1: Von Mises material model under uniaxial tension (Case 1: damage is 

activated simultaneously with plasticity) 

 

Figure B2: Von Mises material model under uniaxial tension (Case 2: damage is 

activated at 3105.4 p ).   
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As illustrated in Figures B1 and B2, a higher level of damage activation (by 

assigning a larger rd) associates with a higher proportion of damage dissipation rate 

RD and a faster damage growth compared to a lower level of damage activity (lower 

rd). Furthermore, Figures B1(a) and B2(a) show a sharp increase in damage 

dissipation rate at sufficiently high plastic strain which indicates a complete 

disintegration of material towards the end of loading procedure where damage is 

the dominant mechanism of energy dissipation.  
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Abstract 

In this study, the evolution of fiber debonding, degradation of matrix modulus and 

failure of fibers in unidirectional fiber reinforced composite (FRC) ply is analysed 

using a thermodynamics- and micromechanics-based constitutive model possessing 

the mechanical responses and interaction of different constituents. The combination 

of all kinematic enrichments to capture the difference in the deformation of 

different constituents and also their responses in a thermodynamics-based approach 

naturally leads to macro homogenised stress and internal equilibrium conditions 

that governs the behaviour of the FRC. As a consequence, the overall ply 

constitutive behaviour consists of four material blocks: one is used to represent the 

fiber constituent and other three are for matrix. In addition, the effects of 

fiber/matrix interfacial imperfection in ply constitutive response, which is essential 

when the ply nonlinear behaviour is dominated by fiber debonding, is also 

accounted for and included in the fiber block. This overcomes a vital drawback of 

many existing constitutive models where a perfect bonding condition at the 

interface of fiber and matrix is assumed. The performance of the proposed model 

is demonstrated through several examples using experimental data available in 

literature as well as numerical results obtained from other studies using detailed 

micromechanical analyses or homogenisation techniques. 

Keywords: fibre reinforced composite, unidirectional, constitutive modelling, 

nonlinear behaviour, damage, plasticity, fiber debonding. 

1. Introduction: 

The use of unidirectional fiber reinforced composite (FRC) has become 

increasingly common in many engineering disciplines and distinctive fields such 

as aircraft/aerospace, defence or construction industries. Its superior properties in 

term of strength, stiffness and lightweight are favoured over many conventional 

materials such as steel or aluminium. However, failure behaviour of FRC is quite 

complex and highly nonlinear which has imposed serious challenges for the 

material to be used as the primary components and structures. To overcome this 

difficulty, significant volume of research has been dedicated to gain the 

understanding of the fundamental mechanisms behind the nonlinear response of 

composite materials.  
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Extensive literature survey suggests clear attributions of material properties of the 

composite constituents (i.e. fiber and matrix) as well as their bonding 

characteristics at the interfaces to the macroscopic behaviour of composite ply [1–

6]. Due the immense difference in stiffness between fiber and matrix, the latter may 

exhibit extremely large deformations before the ultimate fracture while the 

response of the former one usually is much stiffer and more brittle in nature. To 

this end, the macroscopic response of FRCs is characterised by the governing 

source of deformation that is whether it is controlled by either fiber or matrix [7]. 

In facts, the deformations in fiber and matrix in a FRC ply are varied significantly 

under different loading direction which explains highly anisotropic behaviour 

observed in FRCs. For example, deformations of FRCs loaded longitudinally in 

fiber direction are controlled by fiber properties whereas matrix and the interface 

deformations prevail under transverse tension/compression. In this regard, linear-

elastic behaviour of fiber [8, 9] leads to linear elastic response of FRC ply in fiber 

direction under the dominance of fiber response. On the other hand, nonlinear 

behaviour of FRC plies in transverse direction is a direct result of nonlinear 

deformations due to the inelastic processes taking place within the matrix as well 

as due to fiber debonding failure mechanism occurs at the interface of fiber and 

matrix. These two primary sources of nonlinearity are widely recognised by many 

researchers as the essential elements in any modelling approaches/theories dealing 

with nonlinear response of FRC. To this end, matrix constituents are manufactured 

primarily from aluminium, ceramic or polymer resin and for such materials, loading 

beyond elastic domain leads to the activation of two irreversible  energy dissipation 

mechanisms: (i) the gradual loss of stiffness (damage) and (ii) permanent inelastic 

deformation (plasticity) [6, 10, 11]. In facts, closer examinations of microstructural 

changes in various materials reveal that irreversible deformation mechanisms such 

as void nucleation, void growths and coalescence along with microcracking are 

responsible the stiffness degradations [12–14] while dislocations of defects, 

frictional sliding and twining are associated with plastic deformations [6, 15–17]. 

At macroscopic scale, the impacts of matrix cracking on the macroscopic behaviour 

of composites are well-documented in many studies [4, 18–22] where sudden 

change in stiffness of the composite can be observed as a result of cracking process 

causing the redistribution of stresses in the local fields. Furthermore, experimental 

evidence also suggests that the progression of these microscopic mechanisms can 
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be profoundly influenced by the nature of deformations induced under different 

loading conditions. For examples, Aps et al [23] explored the effects of yielding 

and failures of polymer composite due to cavitation-inducing cracking in matrix 

where an interesting link between the initiation of cavitation and dilatational 

behaviour was presented. On the other hand, crack-closure effects in matrix under 

hydrostatic compression were examined in [24, 25]. In addition, the rate-dependent 

characteristic of polymer matrix, commonly observed when the material is 

subjected to dynamic or impact loadings, was also investigated numerically and 

experimentally in several studies such as those found in [26–33].  

On the other hand, fiber/matrix interface failures (fiber debonding) also play an 

important part contributing to the loss of stiffness and ultimate failures of FRCs [2, 

13]. Macroscopic responses of composites are primarily influenced by the bonding 

strength at the fiber/matrix interface [34, 35] while other characteristics such as 

fracture energy or stiffness of the interface are of less importance [36]. 

Subsequently, stresses in the local fields of the composite may exceed this bonding 

strength and lead to a localised separation of the fiber and matrix which, under 

increasing loads, will progressively grow in the fiber direction and simultaneously 

induce new cracks in the matrix towards the direction normal to the fiber [4]. 

Further fiber debonding can be initiated from the development of the new matrix 

cracks and eventually macro transverse cracking can be formed in the FRC ply. 

Numbers of investigators have devoted to investigate the aspect that influences the 

debonding process as well as its development in FRCs. For instance, the effects of 

fiber spatial distribution on the sensitivity of interfacial failure which is more likely 

to occur in region with higher fiber density due to higher local stresses compared 

to that in region having less fibers [37]. Furthermore, numbers of studies [38, 39], 

both analytical and experimental, also reported more profound impacts of 

interfacial damage on the macroscopic behaviour of composite materials, are 

associated with higher fiber volume fractions. In such cases, the debonding 

behaviour is magnified by larger area of debonded interface which proportionates 

with the fiber volume, i.e. larger contact area between fiber and matrix.. In addition, 

the connections between the fiber size as well as its shape and the failure behaviour 

of composite were also examined in numbers of studies [37, 40–43].  
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Complexity in modelling of constituent behaviours and progressive failure 

mechanism in composite materials pose a great challenge in predicting the response 

of composites. Many experts have attempted to tackle this problem and the majority 

of them have very distinctive research background and disciplines with very 

specific needs and agendas. As a result, there are large numbers of different 

approaches used to solve this problem which involves vast variation of length scales 

at which the material descriptions are given. For instance, a detailed 

micromechanical analysis of FRC failures can be carried out at fiber length scale 

(microscopic scale) [44–47]. The behaviours of each fiber, the surrounding matrix 

as well as the fiber/matrix interface are modelled explicitly based on continuum 

mechanics and the overall characteristics of the composites can be obtained using 

finite element technique. The result is a rigorous analysis of failure mechanisms 

and their progression along with detailed insights of the stress/strain fields in the 

composite. In addition, important information such as fibers size, shape and the 

distribution of fibers, which can affect the macroscopic behaviour of composite, 

can be included in the micromechanical analysis for more realistic representation 

of the homogenised material response. However, the shortfall of such approach is 

that it cannot be implemented in large structures due to the huge computational 

costs involved. 

On the other hand, some researchers have attempted to capture the behaviour of 

FRC using material descriptions and properties observed at macroscopic scale. 

Examples of models based on such approach can be found in [11, 48–65] where 

composites were considered as homogeneous anisotropic materials. Nonlinear 

response of composites is subsequently captured by using continuum models in 

which damage or plastic strains variables are characterised at ply level. In this 

sense, macromechanics models have an advantage over a full micromechanics 

analysis in terms of computational efficacy, however they are generally perceived 

as lack of strong physical basis for the development failure mechanisms, 

subsequently lead to their dependency on experiment data and curve fitting 

technique for model calibrations [8, 66]. 

To that end, multiscale approach is an appealing alternative concept which utilises 

detail descriptions of the materials in both microscopic and macroscopic scales [8, 

67, 68] to offer a balance between computing powers and model details. The 



CHAPTER 4: MANUSCRIPT 3 

144 
 

strategy here is to perform detailed micromechanical analyses only at integration 

points within a structural element, the resulted material responses are then used to 

comprise the overall structural response accordingly with the help of finite element 

analyses. Despite several promising features and improvements in modelling 

efficiency, enormous amount of computational power is still needed for the 

simulation and the approach is ineffective for failure analyses of large structure. 

Alternatively by utilising this concept, however, the full micromechanics analyses 

at integration points are replaced by more efficient homogenisation technique 

where only the most important failure mechanisms at fiber scale are retained [69–

84]. Therefore, adequate level of details can be obtained in the model for accurate 

predictions of material behaviour without the need of a detail finite element 

analysis.  

Recently, an analytical technique is developed by Vu et al [85] for upscaling the 

nonlinear response from the fiber/micro scale to the ply scale in order to capture 

the inelastic response of unidirectional FRCs. In this model, the physical 

interactions between fiber and matrix are accounted for by incorporating the 

kinematic strain enhancements into the analytical expressions of the strain fields in 

fiber and matrix, thus, the relationship between local/micro and 

homogenized/macro stress and strain fields were established. The inelastic 

behaviours of the material constituents, particularly matrix, are modelled by using 

a coupled damage-plasticity formulation in order to capture plastic deformations 

and progressive damage mechanism within the matrix. In this paper, the 

kinematically enhanced constitutive model for predicting the response of 

unidirectional FRC ply is extended to include the effects of fiber/matrix interface 

failure. First, mathematical formulations of the proposed constitutive model are 

introduced with a new thermodynamics-based approach. This is then followed by 

illustrations of model applications to number of examples and the results are 

compared to other sources obtained from literature to demonstrate its performance. 
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2. Kinematically Enhanced Multi-phase Constitutive Model for 

Unidirectional FRC Ply 

2.1 Basis of kinematic enrichments 

The constitutive model for unidirectional FRC adopted in this study is developed 

in a generic form based on thermodynamics principles and the procedures for 

plasticity-based models in [86]. The multi-phase nature of the approach, which 

include fibre and different matrix phases corresponding to different stress states in 

the matrix, together with the incremental form allow the employment of the 

approach in both elastic and inelastic stages of behaviour. While the basis, in terms 

of kinematic enrichments and idealised configuration of a unit volume element 

(UVE), is similar to and based on our previous works [85], the thermodynamic 

formulation in this paper allows connecting all these ingredients in a rigorous and 

consistent way. In addition, improvements in modelling fibre-matrix interfacical 

debonding is also included to cover a wide range of loading conditions in which 

interface failure plays a key role in the behaviour of the material. All these were 

missing or not addressed at length in our previous work [85]. 

Before the assembly of all ingredients in a thermodynamic formulation for 

constitutive models of unidirectional FRCs, a basis on the kinematic enrichments 

to represent the difference in strain distributions and mechanical responses in both 

matrix and fibre is needed here, following our earlier work [85]. For this purpose, 

a typical cross-section of a unidirectional FRC ply with a uniform distribution of 

the fibers or fiber bundles within the matrix, as shown in Figure 1a, is analysed and 

a magnified portion of the material is also shown separately in Figure 1b. 

Subsequently, this unit volume element (UVE) is further idealised and partitioned 

into four rectangular material blocks where the fiber is represented by one block 

(F) and other three blocks (M-1, M-2 and M3) are used for the matrix Figure 1c). 

The dimensions of these material blocks are normalised to unity in all three 

directions (axis-1, axis-2 and axis-3 as seen in Figure 1c), thus from the given 

matrix volume fraction (f), volume fractions of these blocks can be computed as: 

 11
)4(

21
)3(
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where  and . The strain rate (or increment) vectors of the four material blocks can 

be used to obtain an expression for the average (homogenised) strain rate vector   of 

the UVE (Figure 1c) as: 





4

1

)()(

i

iif εε   
(2) 

where  Tiiiiiii )(
13

)(
23

)(
12

)(
33

)(
22

)(
11

)( ,,,,, ε  (3) 
 

In the above expression and throughout this article, any variables having the 

superscript (i) with i = 1, 2, 3 and 4 are corresponding to material blocks M-1, M-

2, M-3 and F, respectively. 

 

Figure 1: (a) Cross-section of a unidirectional FRC and the UVE; (b) Idealised unit 

cell; (c) Idealised unit cell element (F: Fiber block; M-1, M-2, M-3: Matrix blocks), 

after [85]. 

The strain rates of the matrix blocks are defined in terms of strain rates of the fiber 

block as well as the corresponding kinematic strain enhancements as follows:  

 323212
)4()1( ~~ εμNεμNεε    (4) 

22
)4()2( ~εNεε    (5) 

33
)4()3( ~εNεε    (6) 

 

where  2322221222
~,~,~~

  ε  and  3332331333
~,~,~~

  ε  are the kinematic strain 

enhancements defined in rate form, N2 and N3 are operational matrices correspond 

to 2
~ε  and 3

~ε , µ1 and  µ2 are used to specify the proportion of 2
~ε  and 3

~ε  allocated 

to the strain rates of material block M-1. The readers may refer to [85] for more 
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detailed descriptions and explanations on these model parameters. To this end, the 

generic form of the constitutive relationship for the material blocks is given as:  

)()()( iii εDσ    (i = 1 to 4) (7) 

where D(i) is the tangent stiffness of a material block, and )(iσ  is the stress increment 

vector.  

2.2 A thermodynamics-based formulation 

Due to the multi-phase nature of the model that includes four different material 

blocks representing fibre and three matrix phases under different deformation, the 

Helmholtz free energy for isothermal process can be written as volume-averaged 

energy, in the following form: 

4
( ) ( )

1 1 2 2 3 3 4 4
1

i i T T T T

i
f


       C Λ C Λ C Λ C Λ   

(8) 

where ( )if  represents the volume fraction of block (i) (see details in the preceding 

section), and ( )i  is the corresponding Helmholtz free energy potential of that block. 

The first three constraints in (8) are related to the three strain enrichments (4-6) 

described in the preceding section:   

 (1) (4)
1 2 1 2 3 2 3    C ε ε N μ ε N μ ε 0    

(9) 

 (2) (4)
2 2 2   C ε ε N ε 0   

(10) 

 (3) (4)
3 3 3   C ε ε N ε 0   

(11) 

while the last constraint C4 links the strains in the four blocks with the macrostrain 
ε: 

4
( ) ( )

4
1

i i

i
f


  C ε ε 0   

(12) 

In this sense, the strains in the four blocks and the enrichment strains 2ε  and 3ε  

are considered as internal variables of the macro model represented by the 

relationship between macro strain ε and macro stress σ. In a similar way, the macro 

dissipation potential takes the following form: 
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4
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(13) 

where ( )i are the dissipation potential of the individual block (i). 

Following the procedures established beforehand in [106] for the derivation of a 

model from the Helmholtz and dissipation potentials, from the Helmholtz free 

energy, the true stresses and generalised stresses associated with corresponding 

internal variables, which as mentioned are strains in the four blocks and enrichment 

strains, are: 
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     

 εχ Λ Λ
ε ε

  
(17) 
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(20) 

From the dissipation potential (13), we obtain the following dissipative generalised 

stresses associated with their corresponding rates of internal variables, which in 

fact do not appear in the dissipation potential. As a consequence, we have: 

(1) (1)


 
εχ 0
ε

  
(21) 

(2) (2)


 
εχ 0
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(22) 

(3) (3)
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εχ 0
ε

  
(23) 



CHAPTER 4: MANUSCRIPT 3 

149 
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εχ 0
ε 
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The Ziegler’s orthogonality conditions  [106] in the forms, (1) (1)ε εχ χ , 

(2) (2)ε εχ χ , (3) (3)ε εχ χ , (4) (4)ε εχ χ , 
2 2
ε εχ χ  , and 

3 3
ε εχ χ   lead to: 

(1) (1) (1)
1 f f Λ σ σ  (27) 

(2) (2) (2)
2 f f Λ σ σ  (28) 

(3) (3) (3)
3 f f Λ σ σ  (29) 

(4)
(4) (4) (4) (1) (1) (1) (2) (2) (2) (3) (3) (3) (4)

(4)f f f f f f f f f
       


σ σ σ σ σ σ σ σ

ε
 

(30) 

  22112 ΛNΛμN TT    (31) 

  33123 ΛNΛμN TT    (32) 

From Eq. (30), we obtain the volume-averaged form of macro stress σ: 

 (1) (1) (2) (2) (3) (3) (4) (4) (1) (2) (3) (4)f f f f f f f f       σ σ σ σ σ σ  
(33) 

Using Eqs. (27) to (29), (31) to (32) we obtain the following conditions: 

   )2()2()2(
2

)1()1()1(
21 σσNσσNμ ffff TTT    (34) 

   )3()3()3(
3

)1()1()1(
32 σσNσσNμ ffff TTT    (35) 

These equations (34) and (35) can be combined with the one expressing the macro 

stress (33) as volume-averaged stress to obtain the following internal equilibrium 

conditions across the boundaries of the blocks. In particular, (33) and (34) lead to 

the traction continuity in averaged form between blocks (1, 2) and (3, 4), e.g. the 

interface indicated by line a-a in Figure 1c: 
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   
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             

    

σ N μ μ I σ N I μ I

σ N μ I σ N μ I
 

(36) 

And in a similar way, (33) and (35) lead to the internal equilibrium condition 

between blocks (1, 3) and (2, 4), e.g. the interface indicated by line b-b in Figure 

1c: 

   
   

(1) (1) (1) (3) (3) (3) (1) (3)
3 2 2 3 2
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T T
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f f f f f f

f f f f f f

             

    

σ N μ μ I σ N I μ I

σ N μ I σ N μ I
 

(37) 

In summary, Eq. (33) provides the relationship between the homogenised (macro) 

stress increments of the UVE and the local stress increments in the four material 

blocks. On the other hand, Eqs (36) and (37) specify the conditions required for 

fulfilling traction continuity across the interfaces a-a and b-b (Figure 1c). This 

traction continuity condition, however, is not automatically achieved for any 

arbitrary stress/strain increment due to nonlinear nature of the constituent 

behaviour, in which case an iterative scheme is needed to correctly update the strain 

enhancements and the stresses in the UVE. Such computational scheme has been 

developed and implemented in the works of [107] and hence is not presented here. 

In this regard, by utilising Equations (1), (4) to (4), (36) and (37) along with a series 

of mathematical operations, the local strain rates of four material blocks (Figure 

1c) can be determined completely from the macro strain rates as follows: 

 εPKNPKNIε  223112
)1(   (38) 

 εPKNPKNIε  243132
)2(   (39) 

 εPKNPKNIε  263152
)3(   (40) 

 εPKNPKNIε  233142
)4(   (41) 

where matrices P1 and P2 can be obtained from the properties of the four material 

blocks and their volume fractions (please see detailed expression given in 

Appendix. Essentially, when nonlinear analyses are performed on a structure, the 

strain increments in the local fields (material blocks) are obtained from a given 

macro strain increment (Eqs (38)-(41)) at each integration points within a structural 

element. The corresponding stresses in the material blocks are subsequently 



CHAPTER 4: MANUSCRIPT 3 

151 
 

updated using the constitutive relationship specified for each block (Equation (4)), 

and the macro stress of the UVE can also be determined through volume averaging 

stresses in all four material blocks (Eq. (33)). Based on these considerations, the 

macro stress increment can be related to the macro strain increment by substituting 

Equations (4), (38)-(41) into Eq. (33) and the following expression for macro stress 

increment can be obtain: 

εDσ    (42) 

where the tangent stiffness matrix of the UVE or the composite material is given 

as:  
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(43) 

The constitutive relationship of the composite material as presented in Equation 

(43) requires the descriptions of the tangent stiffness matrices for all four material 

blocks and their volume fractions. In addition, the proposed tangent stiffness 

formulation is described in an incremental form which facilitates the model 

application in both elastic and inelastic ranges of response of the material. To this 

end, the main sources of nonlinearity in the behaviour of composite material are 

matrix inelastic response, due to damage coupled with plasticity process, and fiber 

debonding mechanism, caused by failure of the cohesive layer between fiber and 

matrix. Thus, these two distinctive failure processes need separate approaches to 

capture the constitutive response of composite materials under their influences. As 

a result, two different damage models will be used to describe the evolution of the 

tangent stiffness for the four material blocks which will be presented in the 

subsequent sections for a complete mathematical formulation of the proposed 

model.  

3. Anisotropic Damage Model for Fiber Interfacial Debonding: 

3.1 Fiber and Fiber Interface Failure Behaviour: 

The response of fiber and failure behaviour due to debonding mechanism that takes 

place at the fiber/matrix interface is an important factor that influences the 

aggregate behaviour of the FRC plies, and consequently their effects need adequate 

understanding. To this end, experimental results indicate the properties of fiber 
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remain linear elastic until final fracture occurs [2, 77], which is immediately 

followed by its brittle failure behaviour. In addition, recent study [79] reported a 

variation of fiber elastic modulus along with changing strain rates (or rate of 

loading). However, under assumption of quasi-static loading condition, it is 

generally sufficient to assume a constant elastic modulus of fiber throughout 

loading prior to fiber fracture. This presumption is also widely adopted in many 

other studies such as those found in [79, 81, 93, 108–110]. On the other hand, the 

behaviour of fiber interfacial failure is much more complex which has considerable 

effects on the macroscopic performance of FRCs. Experimental findings [111–113] 

documented direct relations between nonlinear behaviour of FRCs and fiber 

debonding mechanism along with frictional sliding at the end of the debonding 

process. These investigations are commonly carried out using fiber/rod pull out test 

where the reported load-displacement curves clearly show nonlinear portion of the 

curve characterised by interface debonding. It is worth mentioning that under 

increasing loads, excessive fiber debonding is followed by a completed separation 

of fiber from matrix and the specimen enters a stage where only frictional forces 

remained acting at the interface. This fiber interface failure process usually initiates 

from matrix cracks or defects in the matrix that develop towards fiber/matrix 

interface where a region of stress concentration is formed. Subsequently, if the 

bonding between the two constituents is strong enough, the fiber and matrix are 

compatible at the interface since there will be no sliding or debonding and there is 

no loss of stiffness in the overall ply response due to interfacial failure. On the 

contrary, fiber fracture can occur instead of fiber debonding as a result of matrix 

cracks penetrating through the fiber and this process usually happens when the 

toughness of the fiber/matrix interface is much greater than the fiber toughness 

[114, 115]. In this situation, the energy is dissipated mainly via fiber fracture. 

Furthermore, it is noted failure mode due to the fiber debonding is much more 

common than fiber fracture since modern fibers usually possess excellent 

toughness that helps to deflect the progression of matrix cracking and prevent 

premature failure of fiber. Thus, with weaker interfacial bonding strength, 

separation of fiber from the surrounding matrix occurs and subsequently results in 

progressive sliding at the fiber/matrix interface and the degradation of bonding 

strength between the two surfaces [115]. As fiber/matrix interfacial failure 

progresses, a gradual loss of overall stiffness of the composite is noted which is 
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most profound in the transverse direction perpendicular to the fiber [81]. The 

aggregate stiffness of the composite in the longitudinal direction, on the other hand, 

is also affected by fiber debonding process, however to a much lesser extent [116], 

since the deformations occur in this direction are not severely influenced by the 

conditions of the interface but rather being mainly controlled by fiber 

characteristics [81]. 

Based on the above considerations, the intention of this study is to incorporate the 

nonlinear effects due to fiber/matrix interfacial debonding mechanism into the 

proposed micromechanical model. Among all four material blocks that constitute 

the homogenised ply response, only fiber behaves in a linear-elastic manner until 

its final fracture while matrix blocks process inelastic properties beyond their 

elastic domain. In this study, it is proposed that the inelastic effects of debonding 

failure on the ply response to be encapsulated in the response of a modified fiber 

block, namely Fiber-Interface Equivalence (FIE) block which is shown in Figure 

1. The response of FIE block will be specified in such a way that it has the combined 

characteristics of both linear-elastic behaviour of fiber and inelastic behaviour of 

the interface. This actually reflects changes of stress fields in the fiber due to 

softening interface that weakens the load carrying capability of the whole 

composite system. In this sense, fiber is not able to fully utilise its outstanding 

stiffness and excellent load carrying capacity but its performance is rather dictated 

by the bonding properties of the interface. Thus, a new constitutive model is needed 

to effectively convey the nonlinear effects of interfacial failure in the FIE block 

(Figure 2) which will be described in the next section.  

 
Figure 2: (a) Idealised unit cell with fiber/matrix interface debonding (b) Idealised unit 
cell element takes into account the effects of interface debonding in the Fiber-Interface 

Equivalent (FIE) block 
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3.2 Anisotropic Damage Model for Fiber Interface Failures: 

Fiber interfacial failure is highly anisotropic in nature and therefore capturing its 

response requires anisotropic damage model accordingly. It is also noted that the 

development of fiber/matrix interface failure is restricted to pre-defined planes 

parallel to the fiber direction and the direction perpendicular to this surface will be 

referred to as the direction of fiber decohesion/debonding from here onwards. As 

discussed previously, ply stiffness reductions due to fiber interface failure are the 

most profound in the direction of debonding, whereas its softening effects also can 

be observed in the other transverse direction (perpendicular to fiber direction), 

however, to a lesser extent. For example, Figure 3 depicts the fiber debonding 

failure in direction 3 due to the applied tensile stress σ3 and compressive stress σ2 

in direction 3 and 2 respectively. In this case, it can be expected that the stiffness 

reductions of the homogenised material are much more severe in the direction 3 

compared to that of direction 2. On this basis, an isotropic damage model with the 

use of a scalar damage variable deems to be inadequate to capture the varying 

effects of damage in different directions. Therefore an anisotropic model is 

essential. 

 

Figure 3: Illustration of Fiber/matrix interface failure due to tensile loading in 

direction 2 and compressive loading in direction 3. 

On the other hand, the proposed micromechanics model enables explicit modelling 

of stresses and strains in the constituent blocks which can be used conveniently to 

control the initiation and progressions of debonding failure in the FIE block. 

Furthermore, strains in principal stress directions normal to the fiber of FIE block 

are compared against a critical debonding threshold εc and the debonding failure 

Fiber decohesion 
σ3 

σ3 

σ2 σ2 

Fiber  

Matrix 
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process is activated only when this threshold is exceeded. This can be illustrated in 

Figure 4 which shows the limit of strains in the principal direction 2 and 3 where 

values of strain lying inside these limits (  4
2 < εc and  4

3 < εc) imply perfect bonds 

between fiber and matrix (no debonding failure takes place). On the other hand, 

debonding failure is in effects if  4
2 > εc or  4

3 > εc.  

 
Figure 4: Limits of strains for fiber debonding failure 

On this basis, the damage evolution rule is proposed in the following form:  

d
iei

 1)(  (44) 

(i = 2, 3 represents the principal stress directions normal to the fiber)  

where ω(i) is damage variable associated with debonding failure, parameter γ 

governs rate of damage growth, and d
i  is the portion of strain in the principal stress 

direction that exceeds the debonding threshold and its expression is given as:  

 
ci

d
i   4  (45) 

where  is Macaulay bracket, εc is the debonding failure threshold that evolves 

with deformation and keeps its maximum previously reached value of  4
i , where 

 4
i  is the strain in FIE block in principal stress direction ith (Equation (45)). From 

the above equation, it can be inferred that for  4
i < εc , d

i takes a value of zero and 

damage is inactive as ω(i) = 0 (Equations (44)). In contrast, if  4
i > εc, the debonding 

mechanism is activated since ω(i) now takes a nonzero and increasing value and the 

damage effects are incorporated into the elastic stiffness matrix of fiber in the total 

form as follow: 

ε 3

ε2 εc

εc
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where Dij are the elastic constants of the elastic stiffness matrix of fiber while Γ11, 

Γ 22 and Γ 33 are given as follows:  

   
n/1

3222 )1)(1(    (47) 

   
n/1

2333 )1)(1(    (48) 

 )1( 22112   (49) 

 )1( 33113   (50) 

   )1)(1( 323223    (51) 

The parameter n in the above expressions is used to account for the unequal effects 

of debonding failure in different directions. For instance, n > 1 indicates that the 

effects of damage are lesser in the principal direction where debonding failure does 

not occur. In contrast, for n = 1, the stiffness reductions due to debonding failure 

are of the same order of magnitude in both directions (Γ22 = Γ33). More detail 

analyses on the influence of n are provided in subsequent sections. On this basis, 

the principal stresses in the FIE block is calculated using the following expression: 

   4)4(4
pdamagedp D    (52) 

Thus, the proposed debonding criterion leads to the establishment of a failure 

surface in the principal stress space for the FIE block. The envelop is obtained by 

producing a uniaxial/biaxial stress state with a constant ratio between σ2 and σ3 and 

both stress values are recorded when debonding failure is activated (see Equations 

(44) and (45)). These stresses at the onset of debonding under various ratios 

between σ2 and σ3 are subsequently used to form the initial debonding envelop 

which can be illustrated in Figure 5 along with the corresponding stress-strain 

responses under (a) uniaxial tension; (b) uniaxial compression and (c) biaxial 

loading (tension along direction 3 and compression along direction 2). It can be 

seen in Figure 5 that stress state of the material falling inside this envelop implies 

there is no debonding while stress state outside this initial surface is an indication 
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of debonding failure between fiber and matrix. Furthermore, it can be seen in Figure 

5 that the softening effects of varied magnitude are seen in all transverse directions 

which is characterised by the anisotropic nature of fiber debonding problems. 

Furthermore, it is worthy of attention that the evolution of damage is a function of 

the tensile strains in the corresponding principal direction (see Equation (44)). The 

rate of deformation (or strain increment), on the other hand, effectively depends on 

the characteristics of applied loads in the material block. The effects of different 

loading condition on the growth of damage can also be illustrated in Figure 5 where 

identical strain rate is imposed on both loading case (a) and (b) and fiber is 

debonded from the surrounding matrix in the principal direction 3. In loading case 

(b), debonding failure is activated by tensile strain in the principal direction 3 

developed under Poisson effects. Thus, this tensile strain increment is only a 

fraction of strain rate in the loading direction 3 and it is much less than that of 

loading case (a). As a result, the damage effects are developed at a slower rate in 

loading case (b) compared to the other case which eventually manifest in much 

more profound nonlinearity observed in loading case (a).   

 

Figure 5: Illustration of debonding failure envelop in biaxial stress space and typical 

stress-strain responses of the FIE block in three loading cases (a) uniaxial tension; 

(b) uniaxial compression and (c) biaxial loading. 
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3.3 Parametric Study: 

The rate of damage evolution in the proposed model is influenced by strain 

increment (Equation (44)) in the principal direction as well as anisotropic 

characteristics of the debonding failure. To this end, the proposed model utilises a 

parameter n (Equations (47) - (48)) to specify the anisotropic effects of fiber 

debonding on the constitutive response of the material. This can be illustrated in 

Figure 6 which shows the stress-strain response of the FIE block under loading case 

(c) for different parameter n = 1, 3, 4, 5 and 100 and the material parameters used 

in the proposed constitutive model are E = 74000 (MPa), v = 0.15, γ = 1400, εc = 

0.0001. The material specimen is subjected to tension along principal direction 2 

(ε2 > 0) and compression in direction 3 (ε3 < 0) while the ratio between ε2 and ε3 is 

maintained at ε2/ε3 = -2 throughout the entire loading domain. It should be noted 

that n = 1 implies that damage effects are identical in both directions which is in 

contrast with the case where ݊ = 100 (݊ → ∞) indicates that debonding failure in 

direction 2 does not have any impacts on the stress-strain response in direction 3 

and the reverse is also hold.  

 

 Figure 6: Stress-strain response in biaxial loading case for various values of n. 

On the other hand, the evolution of damage due to debonding is governed by 

parameter γ which is coupled with the strain increment in the corresponding 

principal direction (Equation (44)). Examples of using γ in the proposed model to 

capture effects of debonding with various magnitudes are shown in Figure 7 where 

the constitutive responses with damage of the FIE block are illustrated for the 
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following cases: uniaxial tension (Figure 7a) and uniaxial compression (Figure 7a). 

The material parameters used in this example are E = 74000 (MPa), v = 0.15, n =2, 

εc = 0.0001. It can be seen in Figure 7 that the rate of softening is increased with 

increasing values of γ in both uniaxial tension and uniaxial compression cases 

where much more abrupt drop in stiffness are observed in the former case for the 

same value of γ. This is due to the fact that debonding failure strain εd (Equation 

(45)) is developed in the same direction as loading in uniaxial tension case (Figure 

7a) and therefore its magnitude is much higher to that of uniaxial compression case 

(Figure 7b) where fiber is debonded in transverse direction of loading. This 

debonding failure strain εd  is subsequently magnified by the parameter γ which 

eventually either intensify or lessen the effects of fiber debonding depending on the 

chosen value of parameter γ. Thus, the use of γ within the proposed model helps to 

properly capture the effects of deboning on the constitutive response of the material 

which will be present in more realistic applications in subsequent sections. 

 (a)  (b) 

  
  

Figure 7: Effects of changing γ in (a) uniaxial tensile stress and (b) uniaxial 

compressive stress 

4. A coupled Damage-Plasticity Constitutive Model for Matrix: 

4.1 Mathematical Formulation: 

The evolutions of plasticity and damage processes are dependent on one another, 

thus, their coupling effects should be appropriately reflected in the development of 

a constitutive model for matrix. In this study, the inelastic response of each matrix 

block (Figure 1c) is modelled based on the coupled damage-plasticity formulation 
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proposed by [117] where failures in the matrix is accounted for using an isotropic 

damage model. The stress-strain-damage relationship is of the following form: 

   klklijklij CD   1  (53) 

where σij is the stress tensor, D is the scalar damage variable Cijkl is the tangent 

stiffness tensor, εkl is the strain tensor, αkl is the plastic strain tensor. The model 

utilises a Drucker-Prager yield criterion given the pressure-dependent behaviour 

commonly observed in polymer composite [83] and even in metals such as 

Aluminium [118]. Furthermore, the experimental evidence [83, 119] reveals that 

the yield surface of polymer matrix takes a parabolic shape in the (p-q) stress space, 

where p is the hydrostatic pressure and q is the deviatoric stress. Based on these 

considerations, the yield function for matrix can be expressed in the following 

form: 

kpqy  2  (54) 

The different terms used in the above equation can be defined as follows [120]:   

33
1 iiIp 
 ;  ijijssJq

2
33 2  ;   ps ijijij   ; 

  tycy ff  3 ; tycy ffk   

(55) 

where sij is the deviatoric stress tensor, δij is Kronecker delta, I1 and J2 are stress 

invariants, fcy is the uniaxial yield strength in compression and fty is the uniaxial 

yield strength in tension. The value of fcy and fty are defined using the following 

functions: 

    pcb
cccy eQfDf  11 0 ,     ptb

ttty eQfDf  11 0  (56) 

where εp is the effective/accumulative plastic strain (where its rate is defined in 

Equation (57)), ft0 and fc0 are initial yield strengths, and Qt, Qc, bt and bc are material 

constants with subscript t and c indicating tensile and compressive states, 

respectively. The rate of accumulative plastic strain p  is given as: 

ijijp  
3
2

  (57) 

On the other hand, the evolutions of plastic strain tensor ij  and damage variable D 

are obtained from a unique loading function [117] and they are given as follows: 
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where a and b in the above equations are related to the growths of volumetric and 

deviatoric components, respectively, of the total plastic strain and they can be 

combined into a single parameter rp (0 ≤ rp ≤ 1) representing the energy dissipation 

due to plasticity. On the other hand, the parameter rd represents the energy 

dissipated due to damage process and it is calculated as rd = 1 - rp. For more 

comprehensive model derivations and definitions, the readers may refer to [117]. 

In their works, the direction of plastic flow can be controlled by specifying the ratio 

between parameters a and b in Equation (58) and for associated flow rules (plastic 

flow vector normal to the yield surface), which will be used throughout this paper, 

the parameters a and b are given as follows: 
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The coupled damage-plasticity model described above along with a stress return 

algorithm [107] are then implemented in a Matlab program to produce the nonlinear 

behaviour of several polymer resins. Figure 8 shows the responses of four epoxies 

under uniaxial tension obtained from experiments (data collected by Asp [121]) 

along with the plot of results produced by the proposed model. The model 

parameters used to capture the response of the four epoxies are given in Table 1. 

The Young’s Modulus E were given in [121] by averaging the data obtained in 

several studies. The Poisson ratio is assumed to be 0.35 as this is a standard value 

assigned to epoxy in the range 0.32 – 0.35 [121]. It can be seen from Figure 8 that 

the coupled damage-plasticity capture very well the response of polymer resin in 

uniaxial tension. 
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Table 1: Model Parameters for Epoxy Resins 

 E 

GPa 

ν ft0 

MPa 

fc0 

MPa 

Qt 

MPa 

Qc 

MPa 

bt  bc  rd 

TGDDM/DDS 3.77 0.35 35 70 40 50 600 600 0 

DGEBA/MHPA 2.92 0.35 40 70 50 50 250 350 0.008 

DGEBA/APTA 2.93 0.35 40 70 40 50 350 350 0.07 

DGEBA/DETA 2.07 0.35 25 70 50 50 150 350 0 

 

 

Figure 8: Responses epoxies under uniaxial tension (Experimental Data obtained 

from Aps 1995). 

In addition, the response of other epoxy is also measured experimentally in [83] 

under uniaxial tension, uniaxial compression and pure in-plane shear. The 

experimental results are plotted in Figure 9 along with results obtained from [109]. 

Figure 9 also shows the results produced by the proposed model using the following 

model parameters: E = 3.76 (GPa), ν = 0.39, ft0 = 45 (MPa), fc0 = 70 (MPa), Qt = 48 

(MPa), Qc = 55 (MPa), bt = 200, bc = 200, rd = 0. It can be seen that the present 

results are in good agreement with both experimental measurement and results 
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provided by others. It should be noted that post-peak response of the specimen was 

not obtained from experiment for all three loading scenarios, thus in the current 

study it is assumed that the stress response of the epoxy will exhibit a perfect 

plasticity behaviour once the ultimate values of stresses have been reached. This 

results in plateau responses in the stress-strain curve of the epoxy under all three 

loading cases as seen in Figure 9. 

 

Figure 9: Reponses of epoxy under uniaxial tension, uniaxial compression and 

pure in-plane shear: Comparisons between experimental measurements, 

numerical results and results produced by the proposed model. 

5. Inelastic Response of FRC Ply 

The proposed kinematically enhanced constitutive model for FRCs described in 

Section 2.1 requires separate constitutive models for its constituent blocks (fiber 

and matrix – Figure 1c). Thus, Section 2.2 provides a constitutive model for the 

modified fiber block, so-called FIE block (Figure 2), which accounts the response 

of fiber as well as the effects of fiber/matrix interface failure. On the other hand, a 

coupled damage-plasticity model, which can capture the effects of nonlinear 

mechanisms such as damage and plasticity on the response of matrix, is presented 

in Section 2.3. Subsequently, the two constitutive relationships for the fiber-

interface and the matrix are incorporated into the overall constitutive model for 

unidirectional FRC ply in a Matlab programme. In this section, the inelastic 
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behaviours of FRCs are generated by the model for three different loading 

conditions: uniaxial longitudinal tension, uniaxial transverse tension and uniaxial 

transverse compression. To demonstrate the performance of the proposed model, 

for each loading condition the homogenised stress-strain response are plotted and 

compared to experimental measurements obtained from literature as well as 

predictions made by other existing models. 

5.1 Uniaxial tension along fiber direction 

In this example, the composite ply is made of silicon carbide (SCS6) fibers and 

titanium-based-alloy (Ti-β21S) resin with fiber volume fraction of 0.343 and it is 

subjected to uniaxial tension along fiber directions. The responses of the ply 

produced by the model are plotted in Figure 10. The model parameters used for the 

FIE block are: E = 400 (GPa), ν = 0.25, εc = 0.01%, n = 2  and γ = 140 whereas 

model parameters for the matrix blocks are: E = 100 (GPa), ν = 0.35, ft0 = 200 

(MPa), fc0 = 250 (MPa), Qt = 280 (MPa), Qc = 400 (MPa), bt = 100, bc = 100, rd = 

0. It should be noted that due to the nature of loading condition, fiber debonding 

does not occur and hence an assumption on perfect fibre-matrix interface can be 

taken [107]. Figure 10 shows that the results produced by the proposed model are 

in good agreement with both experimentally measured values and numerical results 

provided by Robertson & Mall [110].  

  

Figure 10: Responses of 0o-lamina for SCS6/Ti-β21S under uniaxial tension. 
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It can be seen from Figure 10 that the model is able to properly capture the high 

stress state exhibited in the composite owning to its inherent high stiffness and high 

load carrying capacity of fiber in tension. The homogenised response is dictated by 

the elastic behaviour of fiber with only low degree of nonlinearity is observed due 

to inelastic response of matrix in high strains for both present model and other 

results.  

5.2 Uniaxial tension in transverse direction 

The same composite ply SCS6/Ti-β21S (Section 5.1) is now examined for its 

response under uniaxial transverse tension in the directional normal to the fiber. 

Figure 11 shows the good agreement between the results produced by the proposed 

model and experimental measurements as well as numerical results provided by 

Robertson & Mall [110]. It should be underlined that the observed nonlinearity in 

the homogenised response of the composite ply under transverse tension is due to 

the combination of fiber debonding (in the direction of loading) and matrix 

yielding, both mechanisms are effectively taken into account by the proposed 

model. The softening effects of fiber debonding are manifested in the nonlinear 

response of FIE block as seen in Figure 12. This is further confirmed in a numerical 

study carried out by Melro et al [85] where the influences of fiber/matrix interface 

failure and inelastic behaviour of matrix on the response of the E-glass/epoxy 

unidirectional ply are investigated. The ply has a fiber volume fraction of 0.6 and 

is subjected to transverse tension. In their study, the same epoxy behaviour 

described in Section 2.4.1 is used for the response of matrix constituent in a detailed 

finite element analysis with and without the consideration of fiber debonding 

mechanism. The numerical results obtained from their study [85] are plotted in 

Figure 13 which indicates strong influence of fiber/matrix interface failure on the 

homogenised response. The results produced by the proposed model are also 

plotted in Figure 13. For the current analysis involved fiber debonding failure, the 

model parameters taken for the FIE block are: E = 40 (GPa), ν = 0.2, εc = 0.001%, 

n = 1.3 and γ = 250, for the matrix block the model parameters are: E = 3.76 (GPa), 

ν = 0.39, ft0 = 25 (MPa), fc0 = 40 (MPa), Qt = 48 (MPa), Qc = 80 (MPa), bt = 350, 

bc = 350, rd = 0. In other case where interface failure is neglected, εc is set to a large 

value so fiber debonding is inactive through the entire loading curve. Although the 

proposed model requires much less computational demand, thanks to the embedded 
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responses of different matrix, fibre and interfaces, the results produced by the 

proposed model are comparable to the numerical results given by [85] where a 

detailed finite element analysis is needed. Again, it can be seen in Figure 14 that 

the softening response due to fiber debonding process is captured in the proposed 

model thanks to the nonlinear responses of both the FIE block and other matrix 

blocks. 

 
Figure 11: Responses of SCS6/Ti-β21S under uniaxial tension in transverse 

direction. 

 
Figure 12: Responses of each material block FIE, M1, M2, M3 and the 
homogenised response SCS6/Ti-β21S lamina under transverse tension 
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Figure 13: Responses of E-Glass/Epoxy under uniaxial tension in transverse 

direction. Micromechanical results are from [85] 

 

Figure 14: Responses of each material block FIE, M1, M2, M3 and the 

homogenised response of E-Glass/Epoxy lamina under transverse tension 
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Kaddour and Hinton as part of the Second World-wide Failure Exercise and the 

results are provided in [73]. These experimental results will be used to evaluate the 

performance of the proposed model by comparing these test data to the results 

produced by the model. The material constituents of these lamina are summarised 

in Table 2. On the other hand, the model parameters used for matrix blocks in 

Lamina 1, 2 and 5 are calibrated from their uniaxial responses obtained from 

experiment [73]. These experimental results are plotted in Figure 15 along with the 

model predictions which show good alignments between test data and model 

outputs. Thus, the corresponding model parameters obtained are given in Table 3 

which are subsequently used to produce the overall stress-strain response of the 

laminas. It should be noted that the behaviour of Epoxy 1 and PR319 is assumed to 

be elastic up to failure point [73] where their elastic properties are also provided in 

Table 3. 

 

Table 2: Lamina subjected to transverse uniaxial compression 

 Fiber Volume 

Fraction 

Fiber Matrix α  β 

Lamina 1 0.6 E-Glass MY750 1 0.85 

Lamina 2 0.6 S-Glass Epoxy 2 1 1.5 

Lamina 3 0.6 AS - Carbon Epoxy 1 1 2.6 

Lamina 4 0.6 T300 PR319 1 3.0 

Lamina 5 0.6 IM7 8551 1 0.01 

 

Table 3: Model Parameters for matrix blocks 

 E 

(GPa) 

ν ft0 

(MPa) 

fc0 

(MPa) 

Qt 

(MPa) 

Qc 

(MPa) 

bt  bc  

MY750 3.35 0.35 65 70 35 50 450 350 

Epoxy 2 3.2 0.35 60 70 25 50 450 350 

8551-7 4.08 0.38 30 40 90 90 100 50 

Epoxy 1 3.2 0.35 N/A N/A N/A N/A N/A N/A 

PR319 0.95 0.35 N/A N/A N/A N/A N/A N/A 
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Figure 15: Responses of resins under uniaxial tension, uniaxial compression in 

transverse direction and in-plane shear: (a) MY750 Resin; (b) Epoxy 2 Resin; (c) 

8551-7 Resin. Experimental data is provided in [73]. 

In other tests, as all five laminas are compressed in transverse direction (e.g. 

direction 2 – Figure 1c), it is expected that tensile stresses/strains will occur at the 

interface between fiber and matrix in direction 3 due to Poisson effects which will 

lead to fiber debonding failure. Thus, these debonding failure can cause the 

reductions in the overall stiffness of the composite which subsequently manifest in 

the nonlinear response of the lamina as seen in Figure 16. The parameters used for 

fiber models are given in Table 4. Figure 16 shows that there are high correlations 

between the model and experimental results which indicates very good 

performance of the proposed model. The inelastic characteristics of the stress-strain 

response observed in Figure 16 are the results of the proposed formulation taking 

into accounts of fiber debonding mechanisms introduced in the previous sections. 
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These nonlinear effects can be observed in the stress-strain curves of all four 

material block for the five laminas as illustrated in Figure 17 to Figure 21.We note 

that our previous model in [107] neglects the effects of interface debonding and 

hence cannot capture these responses. The responses of individual blocks constitute 

the overall ply behaviour, demonstrating both the effectiveness and predictive 

capability of the proposed approach. 

 

 

Table 4: Model Parameters used to model the behaviour of FIE block 

Fiber E1 

(GPa) 

E2 

(GPa) 

ν12 ν23 εc 

(%) 

n γ 

E-Glass 74 74 0.2 0.2 0.005 2 850 

S-Glass 87 87 0.2 0.2 0.01 1.4 750 

AS-Carbon 231 15 0.2 0.071 0.06 7 300 

T300 231 15 0.2 0.071 0.009 3 600 

IM7 276 19 0.2 0.357 0.01 2 130 
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Figure 16: Responses composite under uniaxial compression in transverse 

direction: (a) Lamina 1: E-Glass/MY750; (b) Lamina 2: S-Glass/Epoxy 2; (c) 

Lamina 3: AS-Carbon/Epoxy 1; (d) Lamina 4: T300/PR319; (e) Lamina 5: 

IM7/8551.  

-160
-140
-120
-100
-80
-60
-40
-20

0
-0.015 -0.01 -0.005 0

σ 2
2

(M
Pa

)

ԑ22 (a)

Present Model
Experiment

-200

-150

-100

-50

0
-0.02 -0.015 -0.01 -0.005 0

σ 2
2

(M
Pa

)

ԑ22
(b)

Present Model
Experiment

-160
-140
-120

-100
-80

-60
-40

-20
0

-0.02 -0.015 -0.01 -0.005 0

σ 2
2

(M
Pa

)

ԑ22
(c)

Experiment
Present Model

-140

-120

-100

-80

-60

-40

-20

0
-0.03 -0.02 -0.01 0

σ 2
2

(M
Pa

) 

ԑ22 (d)

Present Model
Experiment

-200

-150

-100

-50

0
-0.04 -0.03 -0.02 -0.01 0

σ 2
2

(M
Pa

)
ԑ22

(e)

Present Model
Experiment



CHAPTER 4: MANUSCRIPT 3 

172 
 

 

Figure 17: Lamina 1: E-Glass/MY750 – Response of FIE, M1, M2, M3 and the 

homogenised response 

 

Figure 18: Lamina 2: S-Glass/Epoxy 2 – Response of FIE, M1, M2, M3 and the 

homogenised response 

 

Figure 19: Lamina 3: AS-Carbon/Epoxy 1 – Response of FIE, M1, M2, M3 and 

the homogenised response. 
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Figure 20: Lamina 4: T300/PR319 – Response of FIE, M1, M2, M3 and the 

homogenised response 

 

Figure 21: Lamina 5: IM7/8551 – Response of FIE, M1, M2, M3 and the 

homogenised response 

Furthermore, the performance of the proposed model under this loading mode is 

also evaluated by comparing the results predicted by the present model with 

numerical results provided in [85] for the response of E-glass/epoxy ply under 

transverse uniaxial compression. The model parameters for matrix are given in 

Section 2.3.2 and model parameters used for the FIE block are in Section 3.2. The 

results are plotted in Figure 22 which shows that the present results for ply response 

are predominantly linear in the case interface failure is neglected whereas a slight 

nonlinearity is observed in other case considering debonding effects. This indicates 

the present model is capable of successfully capturing the debonding mechanism at 

the interface of fiber and matrix. The results are in good correlations with the 
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numerical predictions in small to medium strain, however in large strain region 

more non-linear behaviour is observed in the latter model. It is noted that the 

softening curves are provided in the micromechanical analysis which are not 

produced by the present model. This is due to the assumption made in [85] where 

total failure of matrix in compression occurs at high strain (Figure 9) whereas in 

the present model the stress-strain response of matrix is assumed to follow a 

perfectly plastic response once the ultimate strength has been reached. The issue 

with identifying the ultimate failure point for epoxy material under uniaxial 

compression is commonly encountered where special settings for the experiment 

are usually required for the failure to occur. It is also worth mentioning that the 

failure characteristics of the specimen are size-dependent due to the effects of 

localised failures which can be addressed through regularisation techniques. 

However, this is not a focus of this study and therefore it is not considered in this 

paper. Further investigations on the performance of the proposed model in relations 

to this matter may be carried out in future studies. 

 

Figure 22: Comparisons between finite element results by Melro et al [85] and the 

present model for uniaxial compression in transverse direction. 
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4. Conclusions 

The kinematically enhanced constitutive model developed in [107] to predict the 

behaviour of unidirectional FRC ply is used in this study where a RVE is considered 

for which fiber and matrix can be characterised by four material blocks, one is used 

for fiber and the other three are for matrix. Furthermore, a new thermodynamics-

based formulation is employed to assemble all essential ingredients of the 

previously proposed micromechanics-based model. The internal equilibrium 

conditions between the four material blocks and the homogenised stresses are 

obtained as a results of the proposed thermodynamics formulations. This leads to 

the establishment of a complete homogenisation procedure where the responses of 

the four material blocks comprise the overall macro constitutive relationship of the 

composite ply.  

On the other hand, the inelastic behaviour of composite ply beyond elastic range 

due to matrix yielding/softening and fiber delamination are also captured in this 

study. A coupled damage-plasticity constitutive model [107, 117] is used to capture 

the inelastic effects in the matrix constituent while the nonlinear effects of 

interfacial debonding are taken into account by using a newly proposed anisotropic 

damage model in a combined fiber-interface-equivalence (FIE) block. In facts, this 

damage model helps to characterise the directional dependence of the softening 

response in FRC ply due to fiber debonding failure. Applications of the proposed 

model are carried out on a number of examples and the produced results compare 

very well to other existing numerical models as well as experimental measurements 

which indicates good performance of the proposed model.  
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6. Appendices 

Expressions for A11, A12, A21, A22 are: 
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Expressions for P1 and P2 are: 
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Where: 

       3
25

)3(2
23

)2(1
21

)1(4
24

)4(
1 DNKDNKDNKDNKB TTTTTTTT ffff   (67) 

       3
36

)3(2
34

)2(1
32

)1(4
33

)4(
2 DNKDNKDNKDNKB TTTTTTTT ffff   (68) 

Expressions for Ks  are: 

 IμμK 11 211 ff   (69) 

 IμμK 222 31 ff   (70) 

 IμIK 13 21 ff   (71) 

IμK 24 31 ff   (72) 

IμK 15 21 ff   (73) 

 IμIK 26 31 ff   (74) 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 
5.1  Summary 

A micromechanics-based constitutive model for predicting progressive failures in 

unidirectional FRC ply has been proposed in the previous Chapters. Along with the 

development of the model and other related components, several key research 

contributions have been made which are outlined as follows: 

1. A generic kinematically enhanced and thermodynamically based approach 

for developing micromechanics-based models for FRC ply has been 

developed. The fiber and matrix constituents are represented by four 

idealised material blocks one of which is used for fiber and other three are 

for matrix. The interactions between the blocks are taken into account 

through equilibrium conditions across their boundaries. This strategy allows 

for the ply response of the FRC to be explicitly derived from the constitutive 

behaviours of fiber and matrix, and their interactions. Therefore the 

homogenised constitutive relationship can be obtained conveniently in a 

concise analytical expression. The incremental form of the formulation 

facilitates the use of the model in both elastic and inelastic domains. The 

effective elastic properties obtained from this homogenisation scheme are 

in good agreement with both sophisticated analytical solutions in the 

literature and available experimental data. It is addressed here that the 

incremental form of the homogenised response is a great advantage 

compared to these sophisticated techniques as this facilitate the inelastic 

analysis without having to make any further assumptions. The constitutive 

response of matrix in the inelastic range is captured using a coupled 

damage-plasticity model based on continuum damage mechanics. The 

damage-plasticity model and a new way to couple damage with plasticity 

are developed within a generic framework proposed by Houlsby and Puzrin 

[106] to ensure its thermodynamic consistency. 

2. A new thermodynamic consistent framework, employing theories of 

plasticity and continuum damage mechanics, is developed to model a wide 

range of material behaviour, including both pressure-independent and 

pressure-dependent materials. The proposed formulation is derived within 
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the framework of thermodynamics with internal variables. In this regard, 

the complete constitutive relations are determined by explicitly defining a 

free energy potential and a special form of dissipation function which can 

be transformed to obtain a unique loading surface for both yield and failure 

states. This single loading surface governs the simultaneous evolutions of 

both damage and plasticity where the coupling between these two 

mechanisms is effectively specified through a model parameter without 

imposing any restrictions to the model. Direction of plastic flow vector can 

be conveniently controlled which facilitates the modelling of the inelastic 

dilative and contractive behaviour of materials. This development facilitates 

the modelling of matrix failure, which has been shown to be pressure-

sensitive. In addition it is also generic enough to cover a wide range of 

models and responses and can be used either for the development of new 

models, or for enhancing existing models. The examples in Chapter 3 and 

in the Appendix show the versatility of the proposed framework. 

3. The development of a new anisotropic damage model for the proposed 

Fiber-Interface Equivalence (FIE) block to effectively capture the effects 

fibre-matrix debonding failures. The interactions between the FIE block and 

the other three matrix blocks are then combined in a thermodynamics based 

approach naturally leads to macro homogenised stress and internal 

equilibrium conditions that governs the behaviour of the FRC ply. To this 

end, the proposed model for FRC ply is able to simultaneously incorporate 

the three primary inelastic mechanisms, which are plasticity and damage 

mechanisms of matrix as well as fiber debonding. All these have profound 

impacts on the response of FRC ply in order to produce the most reliable 

and realistic predictions with regards to FRC ply behaviour at a fraction of 

computational cost compared to sophisticated and detailed 

micromechanical modelling of FRC. To the best of our knowledge, this 

offers a good balance between accuracy, predictive capability, and 

computational expense. This is an advantage that can facilitate the 

applications of the proposed model in structural analysis.  
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5.2 Research Conclusions 

The reliability and performance of the proposed model have been verified in 

number of numerical examples. Based on these investigations, the main 

conclusions are drawn as follows: 

1. It is always possible to extend the existing approaches to modelling FRC 

for large scale applications. Within the scope of this thesis, the limitations 

of these existing approach in our opinion are the imbalance between several 

factors which are the accuracy and also predictive capability in both elastic 

and inelastic ranges of behaviour as well as simplicity in implementation 

and low computational demanding. In this respect, the framework for 

modelling unidirectional FRC ply developed in this thesis is believed to be 

able to strike a balance between the above-mentioned aspects. In particular, 

the proposed model possesses links between the macro ply response and its 

individual constituents (fibre, matrix and interface) and hence is capable of 

effectively capture the mechanical response of unidirectional FRC ply in 

both elastic and inelastic ranges, including plies consisting of isotropic or 

anisotropic fibers embedded in polymer or metal matrices. The proposed 

homogenisation technique using the kinematic strain enhancements 

significantly improves the computational effectiveness of the model as well 

as maintains a reasonable level of details on the physical interactions 

between the constituents. 

2. The newly developed thermodynamic consistent framework is able to 

properly model diversified material behaviour ranging from pressure 

independent materials such as steel to pressure dependent materials such as 

concrete or other geotechnical materials. It can be used to enhance existing 

models or to develop new ones with many desired characteristics reflecting 

the experimental observations. Dilative and contractive behaviours of 

distinctive materials beyond elastic domain can be effectively modelled and 

controlled by adjusting the plastic flow direction via a few parameters. 

Furthermore, only a single loading (or yield) function is obtained from the 

Legendre transformation of the dissipation, instead of having two separate 

loading functions corresponding to damage and plastic when the additive 

form of dissipation potential is used. To this end, the use of a single loading 
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surface is very helpful in the implementation stage as it helps eliminating 

the risks of numerical instabilities caused by complex numerical algorithm 

which is required for combining multiple loading surfaces. Thus, the 

evolution rules for both damage variable and plastic strains can be derived 

directly from the same loading function. The proportions of energy 

dissipation due to plasticity and damage can be specified through a user-

defined parameter rd which is introduced as part of the model derivations 

without imposing any restrictions to the formulation. 

3. The softening effects of interfacial debonding are successfully considered 

with the use of an anisotropic damage model in a combined FIE block. In 

addition, the proposed damage model helps to properly characterise the 

directional dependence of the softening response in FRC ply due to fiber 

debonding failure. This helps to overcome a vital drawbacks of many 

existing constitutive models where a perfect bonding condition at the 

interface of fiber and matrix is assumed. 

 

5.3   Recommended Future Works 

In the present study, we developed an efficient constitutive model to predict the 

behaviour of FRC ply in inelastic range. The followings are some of the possible 

areas of research where the present study can be extended in future: 

1. The present investigation is based on the assumption of quasi-static loading 

where the strain-rate has no effects on the material response. Further 

investigations on viscoplastic behaviour of composite materials is a 

potential area of research since some applications of composite materials 

can induce extremely high strain-rates. Under such loading scenario, the 

actual material response cannot be captured accurately if viscoplastic 

behaviour of the material are not properly addressed. 

2. Due to limited amount of suitable test data at the time of conducting this 

research, the model analyses were carried out for uniaxial loading cases. It 

is recommended that future works may include undertaking biaxial as well 

as off-axis loading tests to obtain suitable data for model validation 

purposes. 
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3. Stiffness reduction due to fatigue loading in composite structures is one of 

the critical issues that needs to be taken care of by designers and engineers, 

especially when these structures/components are subjected to cyclic 

loadings over a long period of time. Fatigue-induced damage usually 

involves extensive matrix cracking throughout the structural volume and 

over the long period, it can lead to the formation of ply cracking, interfacial 

debonding or delamination. As a result, this may cause significant 

degradation of the structure integrity (reduced strength and stiffness) and 

eventually leads to structural failures. It is possible to extend the present 

study to include the effects of fatigue damage on the response of FRC ply 

by incorporating a fatigue damage model into the constitutive response of 

the individual material blocks including FIE. It is expected that the 

prediction of fatigue at the ply level can be obtained as a result of the 

combined responses and interactions of fatigue response of these individual 

blocks. 

4. In the present study, the proposed model used for predicting the constitutive 

response of FRC is limited at the ply level. To perform a progressive 

damage analysis of a full structure, the current constitutive model for ply 

failure need to be implemented within a finite element framework for 

modelling composite plates/shells having multilayered configurations. To 

this end, the present constitutive model can be integrated into a laminated 

plate/shell element or a 3-D element at their integration points. By doing 

this, the characteristics of multilayered composite laminates can be 

determined which helps to construct the overall structural stiffness matrix 

that is required in a finite element analysis of a large structure. 

.  
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ABSTRACT 

In this paper, a new micromechanics-based constitutive model is developed for 

fibre reinforced polymer matrix composites having unidirectional fibre orientations 

which can incorporate elastic and inelastic responses of both fibres and matrix. The 

composite material is idealised by a representative volume element consisting of 

four material blocks where one of them is for fibre and the others for matrix. 

Kinematic enrichments of different strain components for the different material 

blocks are used to accommodate the responses of different material blocks. The 

model is first used to evaluate orthotropic material properties of composites in the 

elastic range using isotropic material properties of the constituents. After a 
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successful validation of these predicted material properties using existing 

theoretical as well as experimental results, the model is applied to inelastic material 

response to assess its performance in the nonlinear range. 

1 INTRODUCTION 

The use of composite materials is becoming popular in many engineering 

disciplines over the last few decades due to their high specific strength and stiffness, 

exceptional durability and some other attractive features. The composite structures 

can be subjected to complex loading conditions such as extreme temperature, 

dynamic loads, impact, corrosion and some other loading scenarios which will 

induce complex loading paths on the materials. Moreover, the composite nature of 

these materials consisting of different dissimilar phases leads to additional 

complexities. Thus the analysis of composite structures requires a good model that 

can predict the behaviour of the material properly. This in turn needs an advanced 

constitutive model which will accurately capture the deformation of the matrix and 

fibres along with their interactions. 

In the literature, a large number of models have been developed by different 

researchers attempting to capture the responses of these materials correctly. Most 

of the existing models can be categorised into two distinct branches: macro-

mechanical and micro-mechanical models. The initial developments of some 

popular macro-mechanical models are due to Hoffman, Puck, Hashin and Rotem 

[1-3] and few others. Tsai [45] also attempted to develop a failure criterion, 

popularly known as Tsai-Hill theory, for “weak” anisotropic materials. Although 

these models are easy to use, they are of phenomenological nature that needs a large 

set of experimental data for their development. As a consequence these models may 

not be reliable when applied outside the range of these data sets. Macro-mechanical 

models actually treat the composite material as a single homogeneous material and 

do not follow the actual deformations and correct failure mechanisms of the 

constituents and their interactions. 

On the other hand, some researchers such as Christensen and Lo, Mori and 

Tanaka, and Aboudi  [5-7] have proposed micromechanics-based models, in which 

the overall properties of the composites are determined by using a Representative 

Volume Element (RVE) consist of their constituents. Despite the fact that more 
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realistic results could be obtained by using these micromechanics-based models, 

most of the earlier ones are not applicable in inelastic range where the constituents 

will have plastic deformations, damage and their coupling. Besides, thanks to the 

advances of computing power, full micromechanical analyses of composite 

materials, where all constituents can be modelled explicitly, are gradually 

applicable. This provides us with useful tools for the analysis of composite failure 

in the inelastic range and can produce results with high levels of accuracy, which 

seems quite attractive for furthering the understanding of failure mechanisms. 

However, the computational demand of a full micromechanical model is so high 

that the use of such model is not feasible for the analysis of a real structure. 

In this study, a micromechanics-based constitutive model for unidirectional fibre 

composite is developed that can be used within a framework of a macro-mechanical 

analysis. The model inherits the computational efficiency of a macro-mechanical 

model and at the same time the important physical behaviours and interactions of 

matrix and fibre are embraced. First, a mathematical derivation of the current model 

is introduced following by the validation of the model in the elastic range with some 

existing classical theories as well as experimental results available in literature. The 

validation of these results covering a wide range of elastic material properties 

shows a promising performance of the proposed model. The model is then applied 

in the inelastic range taking nonlinear material response of the constituents and 

their interactions. The trend of the nonlinear results indicates a good future potential 

of the model.   

2 A MICROMECHANICS BASED CONSTITUTIVE MODEL 

Figure 1 shows a representative volume element (RVE) which is conceptualised 

for modelling the behaviours of unidirectional composites aiming to retain essential 

mechanisms of fibres, matrix and their interactions whilst being simple enough to 

accommodate inelastic behaviours of different phases. The central idea of this 

model is to have sufficient lower scale (fibre scale) details for the prediction at 

higher scales, while minimising the computational demand. In this sense, the 

deformation of the matrix and the fibre will be modelled distinctly and they will be 

combined together utilising their interaction to predict the deformation of the 

composite material. Denoting f as the matrix volume fraction, the corresponding 
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volume fractions of the three matrix blocks (M-1, M-2, M-3), defined as f1, f2 and 

f3 respectively, can easily be expressed in terms of f (Figure 1). The homogenised 

or macro strain rate of the volume element or the composite can be written in 

matrix-vector form as:  

{̇ߝ} = ଵ݂{ߝ௠̇ଵ} + ଶ݂{ߝ௠̇ଶ} + ଷ݂{ߝ௠̇ଷ} + (1 − ݂)൛ߝ௙̇ൟ (1) 

The strain rates (or increments) of the different matrix blocks can be defined in 

terms of fibre block strain rates with the enhancement of their transverse strain 

increments as: 

{௠̇ଵߝ} = ൛ߝ௙̇ൟ + [ ଶܰ]൛̃ߝଶ̇ൟ + [ ଷܰ]൛̃ߝଷ̇ൟ (2) 

{௠̇ଶߝ} = ൛ߝ௙̇ൟ + [ ଶܰ]൛̃ߝଶ̇ൟ (3) 

{௠̇ଷߝ} = ൛ߝ௙̇ൟ + [ ଷܰ]൛̃ߝଷ̇ൟ (4) 

where the enhancement terms (൛̃ߝଶ̇ൟ = ൛ߛ෤̇ଶ௫௬ ଶ̇௬௬̃ߝ	 ෤̇ଶ௬௭ൟߛ		
்
	and ൛̃ߝଷ̇ൟ =

൛ߛ෤̇ଷ௫௭ ෤̇ଷ௬௭ߛ	 ଷ̇௭௭ൟ̃ߝ		
்

 ) appear only in the appropriate positions of the strain vectors 

which are accommodated with the help of two matrices [N2] and	[N3] 

corresponding to the directions (y and z respectively) of the two interfaces (see 

Appendix for details). 

 
Figure 1: A Representative Volume Element for unidirectional composites (F: 

Fibre block; M-1, M-2, M-3: Matrix blocks). 
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From Equations (1) to (4), we can express the matrix and fibre strain rates in 

term of the homogenised strain rate and enhanced strain rates as:  

൛ߝ௙̇ൟ = {̇ߝ} − ( ଵ݂ + ଶ݂)[ ଶܰ]൛̃ߝଶ̇ൟ − ( ଵ݂ + ଷ݂)[ ଷܰ]൛̃ߝଷ̇ൟ (5) 

{௠̇ଵߝ} = {̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ]൛̃ߝଶ̇ൟ + ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ]൛̃ߝଷ̇ൟ (6) 

{௠̇ଶߝ} = {̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ]൛̃ߝଶ̇ൟ − ( ଵ݂ + ଷ݂)[ ଷܰ]൛̃ߝଷ̇ൟ (7) 

{௠̇ଷߝ} = {̇ߝ} − ( ଵ݂ + ଶ݂)[ ଶܰ]൛̃ߝଶ̇ൟ + ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ]൛̃ߝଷ̇ൟ (8) 

The enhanced strain rates can be eliminated from the above equations which will 

help to express the matrix and fibre strain rates in term of homogenised strain rates 

and volume fractions. Now the Hill-Mandel condition of virtual work [87] can be 

used as:  

{̇ߝ}்{ߪ} = ଵ݂{ߪ௠ଵ}்{ߝ௠̇ଵ} + ଶ݂{ߪ௠ଶ}்{ߝ௠̇ଶ} + ଷ݂{ߪ௠ଷ}்{ߝ௠̇ଷ}

+ (1 − ݂)൛ߪ௙ൟ
்
൛ߝ௙̇ൟ (9) 

Substitution of the segmental strain rates as expressed in Equations (5) to (8) 

into the above equation (9), it can be rewritten as: 

{̇ߝ}்{ߪ} = ଵ݂{ߪ௠ଵ}்൫{̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ]൛̃ߝଶ̇ൟ

+ ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ]൛̃ߝଷ̇ൟ൯

+ ଶ݂{ߪ௠ଶ}்൫{̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ]൛̃ߝଶ̇ൟ

− ( ଵ݂ + ଷ݂)[ ଷܰ]൛̃ߝଷ̇ൟ൯

+ ଷ݂{ߪ௠ଷ}்൫{̇ߝ} − ( ଵ݂ + ଶ݂)[ ଶܰ]൛̃ߝଶ̇ൟ

+ ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ]൛̃ߝଷ̇ൟ൯

+ (1 − ݂)൛ߪ௙ൟ
்
൫{̇ߝ} − ( ଵ݂ + ଶ݂)[ ଶܰ]൛̃ߝଶ̇ൟ

− ( ଵ݂ + ଷ݂)[ ଷܰ]൛̃ߝଷ̇ൟ൯ 
(10) 

The above equation will be valid for any arbitrary values of these strain rates 

{ε̇୤}, ൛ε෤̇ଶൟ, and ൛ε෤̇ଷൟ if the following conditions are satisfied: 

{ߪ} = ଵ݂{ߪ௠ଵ} + ଶ݂{ߪ௠ଶ} + ଷ݂{ߪ௠ଷ} + (1 − ݂)൛ߪ௙ൟ  (11) 
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ଵ݂൫1 − ( ଵ݂ + ଶ݂)൯{ߪ௠ଵ}்[ ଶܰ] + ଶ݂൫1 − ( ଵ݂ + ଶ݂)൯{ߪ௠ଶ}்[ ଶܰ] − ଷ݂( ଵ݂ +

ଶ݂){ߪ௠ଷ}்[ ଶܰ] − (1 − ݂)( ଵ݂ + ଶ݂)൛ߪ௙ൟ
்[ ଶܰ] = 0  (12) 

ଵ݂൫1 − ( ଵ݂ + ଷ݂)൯{ߪ௠ଵ}்[ ଷܰ] − ଶ݂( ଵ݂ + ଷ݂){ߪ௠ଶ}்[ ଷܰ] + ଷ݂൫1 − ( ଵ݂ +

ଷ݂)൯{ߪ௠ଷ}்[ ଷܰ] − (1 − ݂)( ଵ݂ + ଷ݂)൛ߪ௙ൟ
்[ ଷܰ] = 0  (13) 

Equation (11) gives the homogenised stresses of the whole RVE expressed in 

terms of stresses of the matrix and fibre and their volume fractions. Equations (12) 

and (13) enforce average traction continuity across the interfaces 2-2 and 3-3 

(Figure 1).  

Now denoting [ܨ] and [ܯ] as the tangent stiffness matrix of the fibre and matrix 

respectively, the stresses rates in the fibre and matrix blocks can be written in 

generic forms as: 

൛̇ߪ௙ൟ =  ௙̇ൟ (14)ߝ൛[ܨ]

{௠ଵߪ̇} =  (15) {௠̇ଵߝ}[ଵܯ]

{௠ଶߪ̇} =  (16) {௠̇ଶߝ}[ଶܯ]

{௠ଷߪ̇} =  (17) {௠̇ଷߝ}[ଷܯ]

Using Equation (11), the relationship between the homogenised or macro stress 

rates can be expressed in terms of stress rates of all the material blocks as: 

{ߪ̇} = ଵ݂{̇ߪ௠ଵ} + ଶ݂{̇ߪ௠ଶ} + ଷ݂{̇ߪ௠ଷ} + (1 − ݂)൛̇ߪ௙ൟ (18) 

Moreover, the stress rates in all material blocks are connected through the 

continuity of traction rates at the interfaces between the fibre and matrix blocks 

which can be obtained using Equations (12) and (13) as: 

ଵ݂൫1 − ( ଵ݂ + ଶ݂)൯{̇ߪ௠ଵ}்[ ଶܰ] + ଶ݂൫1 − ( ଵ݂ + ଶ݂)൯{̇ߪ௠ଶ}்[ ଶܰ] − ଷ݂( ଵ݂ +

ଶ݂){̇ߪ௠ଷ}்[ ଶܰ] − (1 − ݂)( ଵ݂ + ଶ݂)൛̇ߪ௙ൟ
்[ ଶܰ] = 0  (19) 

ଵ݂൫1 − ( ଵ݂ + ଷ݂)൯{̇ߪ௠ଵ}்[ ଷܰ] − ଶ݂( ଵ݂ + ଷ݂){̇ߪ௠ଶ}்[ ଷܰ] + ଷ݂൫1 − ( ଵ݂ +

ଷ݂)൯{̇ߪ௠ଷ}்[ ଷܰ] − (1 − ݂)( ଵ݂ + ଷ݂)൛̇ߪ௙ൟ
்[ ଷܰ] = 0  (20) 
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Substitution of Equations (5) - (8) and (14) - (17) into Equations (19) and (20), 

we can obtain: 

൤ܣଵଵ ଵଶܣ
ଶଵܣ ଶଶܣ

൨ ቊ
൛̃ߝଶ̇ൟ
൛̃ߝଷ̇ൟ

ቋ = ൤ܤଵܤଶ
൨  {̇ߝ}

(21) 

which shows that the homogenised strain rates can be determined with the strain 

enhancements, and the matrices [ܣଵଵ], ,[ଵଶܣ] ,[ଶଵܣ] ,[ଶଶܣ]  which are [ଶܤ]	&	[ଵܤ]

dependent on material properties and volume fractions of the matrix and fibres 

(refer to the Appendix for more details). Now the strain enhancement terms can be 

expressed in terms of the homogenised strain terms from the above equation as: 

ቊ
൛̃ߝଶ̇ൟ
൛̃ߝଷ̇ൟ

ቋ = ൤ܣଵଵ ଵଶܣ
ଶଵܣ ଶଶܣ

൨
ିଵ
൤ܤଵܤଶ

൨ {̇ߝ} = ൤ ଵܲ

ଶܲ
൨  {̇ߝ}

(22) 

Using Equations (5) to (8) and (22), the strain rates in the matrix and fibre blocks 

can be completely defined by the homogenised strain rate as: 

{௠̇ଵߝ} = {̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ][ ଵܲ]{̇ߝ} + ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ][ ଶܲ]{̇ߝ}	  (23) 

{௠̇ଶߝ} = {̇ߝ} + ൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ][ ଵܲ]{̇ߝ} − ( ଵ݂ + ଷ݂)[ ଷܰ][ ଶܲ]{̇ߝ}  (24) 

{௠̇ଷߝ} = {̇ߝ} + ( ଵ݂ + ଶ݂)[ ଶܰ][ ଵܲ]{̇ߝ} − ൫1 − ( ଵ݂ + ଷ݂)൯[ ଷܰ][ ଶܲ]{̇ߝ}  (25) 

൛ߝ௙̇ൟ = {̇ߝ} − ( ଵ݂ + ଶ݂)[ ଶܰ][ ଵܲ]{̇ߝ} − ( ଵ݂ + ଷ݂)[ ଷܰ][ ଶܲ]{̇ߝ}  (26) 

Substituting these strain rate expressions (23-26) into the volume averaged stress 

rate relationship (18), the constitutive relationship for the homogenised/macro 

stress and strain can finally be obtained in rate form as: 

{ߪ̇} =  (27) {̇ߝ}[ܥ]

where 

[ܥ] = ଵ݂[ܯଵ] + ଶ݂[ܯଶ] + ଷ݂[ܯଷ] + (1 − [ܨ](݂ + ( ଵ݂ − ଵ݂( ଵ݂ +

ଶ݂))[ܯଵ][ ଶܰ][ ଵܲ] + ( ଵ݂ − ଵ݂( ଵ݂ + ଷ݂))[ܯଵ][ ଷܰ][ ଶܲ] + ( ଶ݂ − ଶ݂( ଵ݂ +

ଶ݂))[ܯଶ][ ଶܰ][ ଵܲ] − ଶ݂( ଵ݂ + ଷ݂)[ܯଶ][ ଷܰ][ ଶܲ] − ଷ݂( ଵ݂ +

ଶ݂)[ܯଷ][ ଶܰ][ ଵܲ] + ( ଷ݂ − ଷ݂( ଵ݂ + ଷ݂))[ܯଷ][ ଷܰ][ ଶܲ] − (1 − ݂)( ଵ݂ +

ଶ݂)[ܨ][ ଶܰ][ ଵܲ] − (1 − ݂)( ଵ݂ + ଷ݂)[ܨ][ ଷܰ][ ଶܲ]  (28) 
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The above equation shows that the rate form of the constitutive matrix of the 

homogenised composite material is explicitly defined in terms of constitutive 

matrices (in rate form) of the constituents and their volume fractions. Thus the 

model does not have any restriction in its application in the elastic as well as 

inelastic ranges. In principle, the macro-mechanical strain rates at an integration 

point of an element within a structure can be resolved into strain rates of the fibre 

and matrix blocks (Fig. 1). With these strain rates, the stresses in each block can be 

calculated following standard stress return algorithms (see [123]). The 

homogenised stress can then be obtained from Equation (11). Further details can 

be found in [124].  

 

3 INELASTIC ANALYSIS 

As mentioned in the previous section, the formulation can be readily extended 

to inelastic/nonlinear range. To test the ability of the model in predicting 

constitutive behaviours of metal matrix composite, the material blocks in this study 

are assumed to follow Von Mises plasticity model. The stress-strain relationship 

can be described as: 

௜௝ߪ = ௜௝ߝ௜௝௞௟൫ܥ − ௜௝ߝ
௣ ൯ (29) 

where Cijkl is the elastic tangent stiffness tensor, ߝ௜௝
௣  represents the plastic strain 

tensor and ߝ௜௝  is the total strain tensor comprising elastic  and plastic strains. 

According to von Mises plasticity theory, the yield function may be written as: 

ݕ = ݂൫ߝ௣൯ = ௘ߪ − ݇ (30) 

with associated flow rule: 

௜̇௝ߝ
௣ = ߣ̇

ݕ߲
௜௝ߪ߲

 (31) 

The effective stress σe and effective plastic strain εp used in the above equations 

can be defined as: 

௘ߪ = ඥ3ܬଶ = ඨ3
2  ௜௝ݏ௜௝ݏ

(32) 
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௣̇ߝ = 	ඨ
2
3 ௜̇௝ߝ

௣ߝ௜̇௝
௣ = ඨߣ݀

2
3
ݕ߲
௜௝ߪ߲

ݕ߲
௜௝ߪ߲

 (33) 

The term k used in Equation (30) corresponds to instantaneous yield stress for 

an uniaxially loaded member which represents hardening or softening process and 

it is a function of effective plastic strain ߝ௣ . This yield stress for a linear 

hardening/softening case may be expressed as: 

݇ = ௬ߪ +  ௣ (34)ߝܪ

For nonlinear hardening/softening case, it can be expressed as: 

݇ = ௬ߪ + ܳ൫1 − ݁ି௕ఌ೛൯ (35) 

where ܪ is the hardening or softening rate with respect to plastic strain; ܳ is the 

difference between initial yielding stress and ultimate stress; and ܾ is another 

material property that controls the hardening or softening for the nonlinear case. 

The choice of these material constants dictates the behaviours of the material blocks 

of interest.  

 

4 RESULTS AND DISCUSSIONS 

This section is dedicated to the verification of the proposed micromechanics 

based model in both elastic and inelastic range. Initially the elastic stiffness 

parameters of unidirectional FRC are predicted by the proposed model and these 

results are validated with existing theoretical and experimental results for various 

fibre volume fractions. The proposed model is then examined for its ability to 

capture the inelastic responses of unidirectional FRC with both hardening and 

softening behaviours.  

4.1 Elastic Properties 

4.1.1 Longitudinal Elastic Modulus: 

Figure  shows the prediction of longitudinal modulus E1 of a composite material 

(refer to Table 2 for materials properties of the constituents) with respect to fibre 

volume fractions. The model predictions follow the upper bound solution according 

to rule of mix or Voigt model. This corresponds to the condition of equal strains 

within the constituents and it is nicely simulated by the proposed model as it does 
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not have strain enhancement in the longitudinal direction. This behaviour is 

commonly considered appropriate in the literature.  

 

Engineering 

constant 

 Matrix Fibre 

E [GPa] 5.35 113.4 

ν – 0.22 0.35 

Table 1: Material Properties obtained from [2]. 

 

 

Figure 2: Longitudinal Young modulus E1 – (other results obtained from [2]). 

4.1.2 Transverse Elastic Modulus (E2 and E3): 

In a similar manner, the variation of transverse modulus predicted by the 

proposed model is presented in Figure 3 which is found to deviate from the lower 

bound solution (Reuss model). According to the rule of mixture, the transverse 

modulus should follow the lower bound solution which corresponds to the 

condition of equal stress within the constituents. However, the real test data 

indicates that the value of transverse modulus should be higher that the lower bound 

solution and definitely lower than the upper bound solution. Actually, the lower 

bound solution is based on an assumption that the transverse normal stress within 

the entire volume of the matrix in the RVE is equal to that  of the fibre which 

follows the concept of springs-in-series. However, this assumption is not valid in 

reality as only a portion of the matrix volume behaves according to this concept. 



APPENDICES 

217 
 

The current model is based on more realistic assumptions and according to these, 

the loading in a transverse direction, e.g., direction 2 will allow only matrix blocks 

M-1 and M-2 to have same transverse normal stresses (ߪଶଶ௠ଵ and ߪଶଶ௠ଶ) as that of  

fibre block (ߪଶଶ
௙ ). On the other hand, the transverse normal strain of M-3 (ߝଶଶ௠ଷ) will 

be equal to that of fibre (ߝଶଶ
௙ ) that will produce different stress within these two 

blocks as they are having different stiffness of material properties. The present 

results are also found to closely follows the trend of other theoretical models such 

as Mori-Tanaka[88], upper bound of Concentric Cylinder Assemblage (CCA+)[90] 

or Self-Consistent[125] (Figure 3). A similar behaviour is also found for loading in 

transverse direction 3 and in-plane shearing. 

 

Figure 3: Transverse modulus E2 – (other results obtained from [2]). Material 

properties are given in Table 2. 

The transverse modulus E2 or E3 predicted by the current model for different 

fibre volume fractions are found to be marginally higher than the upper bound 

solution of [90]( Figure 4). It should be noted that the concept of Hashin’s upper 

bound solution is different from that of rule of mixture. Actually, Hashin’s model 

is based on two hypotheses: (i) maximum potential energy and (ii) maximum elastic 

compliance energy, which results in two distinct bounds for a single material 

parameter such as transverse modulus. This is a little confusing as this model does 

not provide a unique value of a modulus. In that sense, the present model is 

consistent as it predicts a single solution.  
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The transverse modulus predicted by the current model is also validated against 

experimental results, as shown in Figure 4 where the material properties used for 

the constituents are given in Table 3. 

 

Figure 4: Transverse modulus E2 and in-plane shear modulus G12 and G23 (other 

results and experimental data obtained from [1]) – Material properties are given in 

Table 3.  

Engineering 

constant 

 Matrix Fibre 

E [GPa] 4.14 414 

ν – 0.35 0.2 

Table 3: Material Properties obtained from [1]. 

4.1.3 In-plane Shear Modulus 

The variation of in-plane shear modulus G12 and G13 predicted by the proposed 

model is plotted in Figure 5 along with that obtained by other theories such as Mori-

Tanaka[88], Method of Cells (MOCTI)[94] and Self-Consistent[125]. The results 

in Figure 5 show good correlation with those predicted by most of existing theories. 

The present results are also validated against the experimental data in Figure 6 

which show good agreement between them. In this case, the properties of fibre and 

matrix are given in Table 4. 
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Figure 5: In-plane Shear modulus G12 & G23 - (other results obtained from [2]). 

Material properties are given in Table 2. 

 

Figure 6: In-plane shear modulus G12 and G23 for fibre volume fraction from 0.45 

to 0.75 (other results obtained from [1]) - Material properties are given in Table 4. 

Engineering constant  Matrix Fibre 

G [GPa] 1.83 30.19 

E (Calculated) [GPa] 5.35 113.4 

ν (Calculated) – 0.22 0.35 

Table 2: Material Properties obtained from [1]. 

4.1.4 Transverse Shear Modulus 

The transverse shear modulus G23 predicted by the current model is presented in 

Figure 7 along with that obtained from other theories. The values of G23 are less 

than in-plane shear modulus and closer to the lower bound solution of rule of mix 
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(Figure 7). The predicted values of G23 are consistent with the typical properties of 

unidirectional lamina having isotropic constituents according to [2] i.e., the 

transverse shear modulus are slightly less than the in-plan shear modulus for the 

same fibre volume fraction. 

    

Figure 7: Shear modulus G12 & G23 - other results obtained from [2]. Material 

properties are given in Table 2. 

4.2 Inelastic Response 

Examples of plastic behaviours at constitutive level are given in this section. 

Table 5 & 6 below provide the model parameters used for the four materials 

behaviours in the study. In all four cases simulations were carried out under uniaxial 

tension along fibre direction for matrix volume fraction of 0.38. Different softening 

behaviours of the constituents are employed. We note that this is only a preliminary 

analysis to demonstrate the behaviour of the proposed composite model in inelastic 

range. More advanced constitutive models for the constituents are being developed 

and further analyses will be carried out and presented in the future. 

Engineering 

constant 

 Matrix Fibre 

E [GPa] 4.14 414 

ν – 0.35 0.2 

௬ߪ  [GPa] 0.03 0.8 

Table 3: Material Properties in both hardening and softening cases. 

As illustrated in Figure 8 & 9 the proposed constitutive model has the ability to 

capture stress-strain curve of the homogenised RVE while keeping track of the 
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behaviours in the material constituents. In other words, the constituent behaviours 

are homogenised in every step of calculation to obtain the macro behaviour, 

following the steps described above. This allows both elastic and inelastic 

behaviours for the constituents. 

The responses of all four material blocks (refer to previous sections) are 

governed by parameters of the Von Mises model. They in turn control the overall 

constitutive behaviour of the homogenised composite model. As anticipated, under 

uniaxial loading in the fibre direction the overall behaviours of the composite is 

substantially influenced by the responses of fibres which are expected to have major 

impacts to the overall material stiffness in this loading condition (Figs. 8 & 9). On 

the other hands, in this uniaxial condition, due to significantly low stiffness of 

matrix compared to fibres, the contribution of matrix to the overall stiffness of the 

material is negligible. The softening behaviour in this case is encountered in all 

constituents. While the fibre behaviour is distinguished, all three matrix blocks 

behave only slightly differently in this case. These blocks in general response 

differently due to difference in their input strain rates [10].  

Case Engineering 

constant 

 Matrix Fibre 

Linear Hardening H – 5 20 

Linear Softening H – -0.5 -5 

Non-linear Hardening Q [GPa] 0.08 1 

 b – 40 100 

Non-linear Softening Q [GPa] -0.08 -1 

 b – 20 50 

Table 4: Model parameters. 
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 Figure 1: Stress-strain curve for linear strain hardening and softening 

materials. 

 
Figure 2: Stress-strain curve for nonlinear strain hardening and softening 

materials. 

5 CONCLUSION 

The current micromechanics based model has shown very good potentials 

through their predictions of elastic properties comparable to those by classical 

theories and experimental results, while possessing capability to handle material 

nonlinearity. In particular, the enhancements through kinematic terms in this case 

lead to a mix upper-lower bound solution that in turn result in effective properties 

close to classical predictions. The embedded fibre and matrix phases are interacting 

with each other and together control the response of the composite material model. 

Thanks to the rate form of the whole formulation, any constitutive behaviour can 

be used for the matrix and fibre. This is the key advantages in further extending the 

model capability to nonlinear cases with the development and incorporating more 

capable constitutive behaviour for fibre and matrix. 
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Detailed expressions of enhanced strains and normal matrix [ ଶܰ] and [ ଷܰ] 
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Detailed expressions of matrices in equation (21): 

[ଵଵܣ] = ଵ݂൫1 − ( ଵ݂ + ଶ݂)൯ଶ[ ଶܰ]்[ܯଵ][ ଶܰ] + ଶ݂൫1 − ( ଵ݂ + ଶ݂)൯ଶ[ ଶܰ]்[ܯଶ][ ଶܰ] +

ଷ݂( ଵ݂ + ଶ݂)ଶ[ ଶܰ]்[ܯଷ][ ଶܰ] + (1 − ݂)( ଵ݂ + ଶ݂)ଶ[ ଶܰ]்[ܨ][ ଶܰ]  

 

 

[ଵଶܣ] = ଵ݂൫1 − ( ଵ݂ + ଶ݂)൯൫1 − ( ଵ݂ + ଷ݂)൯[ ଶܰ]்[ܯଵ][ ଷܰ] − ଶ݂൫1 − ( ଵ݂ + ଶ݂)൯( ଵ݂ +

ଷ݂)[ ଶܰ]்[ܯଶ][ ଷܰ] − ଷ݂( ଵ݂ + ଶ݂)൫1 − ( ଵ݂ + ଷ݂)൯[ ଶܰ]்[ܯଷ][ ଷܰ] + (1 − ݂)( ଵ݂ +
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ଶ݂)( ଵ݂ + ଷ݂)[ ଶܰ]்[ܨ][ ଷܰ]  

[ଶଵܣ] = ଵ݂൫1 − ( ଵ݂ + ଷ݂)൯൫1 − ( ଵ݂ + ଶ݂)൯[ ଷܰ]்[ܯଵ][ ଶܰ] − ଶ݂( ଵ݂ + ଷ݂)൫1 −

( ଵ݂ + ଶ݂)൯[ ଷܰ]்[ܯଶ][ ଶܰ] − ଷ݂൫1 − ( ଵ݂ + ଷ݂)൯( ଵ݂ + ଶ݂)[ ଷܰ]்[ܯଷ][ ଶܰ] +

(1 − ݂)( ଵ݂ + ଷ݂)( ଵ݂ + ଶ݂)[ ଷܰ]்[ܨ][ ଶܰ]  
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ଷ݂൫1 − ( ଵ݂ + ଷ݂)൯
ଶ[ ଷܰ]்[ܯଷ][ ଷܰ] + (1 − ݂)( ଵ݂ + ଷ݂)ଶ[ ଷܰ]்[ܨ][ ଷܰ]  

 

[ଵܤ] = (1 − ݂)( ଵ݂ + ଶ݂)[ ଶܰ]்[ܨ] − ଵ݂൫1 − ( ଵ݂ + ଶ݂)൯[ ଶܰ]்[ܯଵ] − ଶ݂൫1 −
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Abstract. The focus of this work is on specifying the coupling between damage 

and plasticity, which are commonly recognised as two underlying dissipative 

mechanisms in deformation of engineering materials. The features of the proposed 

framework allow for the existence of a single generalised yield potential, which 

controls the evolution of all internal variables. Developments of the proposed 

framework are presented and its applications to modelling different behaviours of 

materials, particularly, the inelastic dilative/contractive behaviours with non-

associated flow rules are discussed.   

Introduction 

Theories of plasticity and continuum damage mechanics (CDM) have been 

widely used in order to develop constitutive models for engineering materials, such 

as steel, concrete, composites, polymers, etc. and geomaterials such as soils and 

rocks. Within the framework of thermodynamics with internal variables (TIV), 

inelastic deformation at macro scale can be described by capturing the fundamental 

mechanisms of deformation and energy dissipation at micro scale by expressing 

them as functions of internal variables that encapsulate the history of deformation, 
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mailto:g.nguyen@adelaide.edu.au,
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e.g. [1-9]. In constitutive modelling, the effect of all underlying mechanisms that 

give rise to the macroscopic residual strains (e.g. frictional sliding, dislocation of 

defects, etc.) is represented by plastic strains while mechanisms responsible for 

strength and stiffness degradation (e.g void nucleations and growths, void 

coalescence, microcrack openings, etc.) are represented by a damage variable. 

During the course of inelastic deformation damage and plasticity can occur together 

and they influence the evolution of each other. Therefore it is essential for a 

constitutive model to address the interaction and coupling between these dissipative 

mechanisms through a unified yield/failure function.   

In this study, a generic framework for constitutive modelling of engineering 

materials is developed based on the principles of TIV. Within this framework the 

entire constitutive relations are derived through introducing two scalar functions, 

one describing the energy stored within a material and the other describing the 

energy dissipated during the course of inelastic deformation of the material. The 

coupling between damage and plasticity is controlled through introducing a 

coupling parameter. It is also shown that the features of the proposed framework 

allow for addressing the modelling issues in problems involving inelastic 

volumetric deformations and non-associated flow rules. A brief presentation of the 

general formulation, described in detail in [10], is given in the subsequent section, 

followed by illustrations of coupling effects between damage and plasticity for both 

pressure-independent and pressure-dependent materials. 

Coupling damage with plasticity in a thermodynamics based formulation 

For rate independent materials under isothermal deformation, the Helmholtz free 

energy function is:      

           



  22

2
3

2
11 SSVV GKDf  . 

(36) 

 

In the above expression, iiV    and 3/2 ijijS ee  are total volumetric and 

effective shear strains (with ij  being the strain tensor and ijijS ee32  the 

deviatoric strain tensor), while Vα  and Sα   represent plastic volumetric and 

effective plastic shear strains, the bulk and shear moduli are denoted as K and G , 

respectively, and D  is a scalar damage variable representing the effects of micro-
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defects which is assumed to be uniformly distributed within the material. Following 

the procedures in Houlsby and Puzrin [2], the true triaxial stresses ( p , q), 

generalised stresses (
Vχ  and 

Sχ ), and conjugate damage energy 
Dχ  can be deduced 

as:   

        VV
V

V KDfp 


 



 1 ,   and  S 

   SS
S

GDfq 






 31 . 
(37) 

        2 21 3
2 2D V V S S

f K G
D

    
     


. (38) 

The dissipation rate function is proposed in the following form [10]:     

     0Φ 222  SSVVDSV φrφrφφφ . (39) 

In the above expression, Vφ , Sφ  and Dφ  are homogeneous first order functions 

in terms of the rates of internal variables, representing the contribution of the three 

individual dissipative mechanisms (volumetric plastic deformation, plastic 

deformation in shear and damage), and the dimensionless parameters rv  and rs are 

functions of stresses. These functions can be defined as [10]:   

       VpV αεDqpFφ ,,, , and   SpS αεDqpFφ ,,, . (40) 

     
 

 p
V DqpF

qpEap
r

,,,
,
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 
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,,,
,

 . (41) 

     
 

 
D

qpEω
χεDqpF

φ Dp
D


,cos

,,,
 . (42) 

where E and F are functions of stresses and internal variables with specific forms 

depending on the type of material behaviour [10], and pε  is the accumulative 

plastic strain, the rate of which is defined as ijijp   32 where ij  is plastic 

strain tensor. The parameters a  and b meeting the condition 222 sin ba  are 

responsible for capturing the dilatant and contractive behaviour, commonly 

observed in pressure dependent materials [10]. The auxiliary angle , which 

appears in Eqs. (7), is employed in order to quantify the contribution of damage 

processes and plastic deformations in the total dissipated energy, during the course 
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of inelastic deformation. In this sense, 0ω  implies that damage is the only active 

dissipative mechanism with no occurrence of plastic deformation and the reverse is 

true when  90ω . Full details on the formulation can be found in [10]. The 

Legendre transformation of the dissipation potential leads to the following yield 

function in generalised stress space [10]:  

     01
222

* 
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VV
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





. (43) 

with the following evolution rules for plastic strains and damage: 
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(44) 

It can be seen in (9) that the magnitudes of volumetric and shear plastic deformation 

is governed by the ratio between parameters a and b. In this sense, in order to 

control the dilatant and contractive behaviours through controlling the direction of 

the plastic flow vector [10] a parameter c is also introduced so that: 

     
qy
pyc

y
y

b
a

s S

VV


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

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


*

*




. (45) 

By substituting Eqs. (5) – (7) into Eq. (8) the generic form of the yield function in 

true stress space is given as:  

     02  FEy . (46) 

Applications 

In this section, the coupling features of the proposed framework is demonstrated 

by coupling damage with Von Mises plasticity, which is widely used for modelling 

the behaviour of pressure independent materials. The capability of the proposed 

framework in producing the non-associated flow rules by controlling the plastic 

flow direction is also investigated through constructing a coupled damage plasticity 

model for pressure dependent materials based on the Drucker-Prager model.  

Von Mises type model. Using qE   and kF  , the yield function of the 
classical Von Mises model can be obtained as: 
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         0,,3 2  pp DkqDkJy  . (47) 

The function  pDkk ,  governing the yielding and failure process may take the 

following form: 

         pb
y eQfDk  11 . (48) 

Figure 1 shows the effect of the coupling parameter ω  on stress-strain curves 

of steel with the model parameters: GPaE 200 , 3.0 , MPafy 250 , 

MPaQ 50  and 1000tb . Since there are no volumetric plastic strains for Von 

Mises type materials, associated flow rules are used in this case by setting 0 ca

, which in turn results in ωb sin . For cases when plastic deformations and damage 

processes evolve together (  900 ω ), the effect of damage is manifested by 

lower ultimate stresses, compared to purely plastic deformation ( 90ω ).  

 

Figure 1: (a) Stress strain response under uniaxial stress condition with associated 

flow rules; (b) Typical Stress-strain response of steel generated by the model, 

using different values of    

Experimental observations have revealed that metals exhibit a ductile behaviour 

which can be described as strain hardening with negligible reduction in stiffness, 

immediately after the initial yield stress. In tensile loading, once a critical strain is 

reached, softening behaviour is observed followed by complete disintegration of 

the material. This type of behaviour can be captured by the model through varying 

the coupling angle ω  to mimic the real behaviour of the material Figure 1 (a). For 

instance, effects of damage can be switched off during the strain hardening process, 
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assuming a purely plastic deformation, by setting 
oω 90 , 0a  and 1sin  ωb . 

As can be seen from the unloading paths in the hardening region in Fig 1(b) no 

stiffness reduction occurs due to deactivation of damage. On the other hand, 

softening behaviour can be modelled through activating damage processes by 

switching  to values less than 90o, once the critical strain is reached (Figure 1b).  

Drucker-Prager type model. The Drucker-Prager yield function can be 
generated by taking F  and pqE  : 

      Dpqy p ,  . (49) 

In the above expression  tycytycy ffff 2  and  tycytycy ffff 3 , where  

fcy and fty are yield stresses under uniaxial compression and tension, respectively. 

Also the hardening rules may be defined as: 

         pcb
cccy eQfDf  11 0 , and     ptb

ttty eQfDf  11 0 . (50) 

where Qt, Qc, bt and bc are material constants, representing the ultimate stress and 

rate of expansion of the yield surface in compression (subscript c) and tension 

(subscript t), respectively. As illustrated in Figure 2(a) the model behaviour 

transforms from a more brittle response towards a more ductile response as the 

plasticity is set to be the dominant mechanism of energy dissipation by setting 

values of ω closer to 90 . The model behaviour under triaxial compression is also 

demonstrated in Figure 2(b) for three different confining pressures. Increase in 

nominal strength and more ductile behaviour is predicted by the model for higher 

confining pressures, as expected for pressure dependent materials. 
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Figure 2:  (a) The effect of    on the model behaviour under uniaxial loading 

and (b) pressure dependent behaviour under triaxial loading; fcy = Qc = 20 MPa, 

fty = Qt = 10 MPa, bt = 1500 and bc = 500. 

Figure 3 (a) shows how the dilatant behaviour of the material can be controlled 

by varying the parameter c.  Also, as shown in Figure 3 (b), if a larger volumetric 

plastic strain increment than that calculated by the associate flow is assumed ( 1c

), the model behaviour is more brittle whereas for 1c  more ductile behaviour is 

exhibited by the model.  

     

Figure 3: The effect of c and non-associated flow rule (a) on stress strain response 

and (b) on dilative behaviour, under uniaxial compression (ω = 60o). 
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4 Conclusion 

We proposed a general approach to couple damage with plasticity to 

appropriately describe the behaviour of engineering materials. The whole 

formulation is casted in the TIV framework, ensuring consistency and rigour in 

both the behaviour and energy aspects of the model. A brief presentation with some 

examples are given in this short paper, while more details and examples involving 

the application of the proposed approach to both enhancing existing models and 

developing new and better constitutive models are described in detail in [10]. 

Future applications will include more underlying micro-mechanisms to enhance the 

predictive capability of constitutive models. 
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Abstract 

The importance of inelastic volumetric strains as well as frictional processes or the 

pressure sensitivity has long been recognised in the study of geomaterials. In this 

paper, a systematic derivation of the constitutive relations within the framework of 

thermodynamics with internal variables (TIV) is presented. Within this framework 

the entire constitutive description is given through introducing two scalar functions, 

namely the energy function and the dissipation rate function, and the 

thermodynamic admissibility of the model is guaranteed. In addition, non-

associated plastic flow is defined as normal to the yield surface in generalised 

dissipative stress space, rather than through introducing a plastic potential in true 

stress space. The dilatant or contractive behaviour is also controlled through 

introducing two parameters in the dissipation rate function which eventually gives 

rise to a single-surface loading function which controls the simultaneous evolution 

of damage and plasticity. The single-surface yield function exhibits a smooth and 

closed shape in true stress space, thus it is capable of reflecting the primary yielding 

condition at significantly high confining pressures. The evolution of the loading 

function from an initial yield surface to a final failure surface is governed by the 

evolution of the damage variable as it grows from zero to unity. The model, 

therefore, profits from  using  one  single  loading  function  for  the  description  of  

initial yielding,  softening (or hardening)  and  failure. Finally, the model behaviour 

is assessed against experimental data on sandstone available in the literature.    

mailto:*arash.mir@adelaide.edu.au
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Introduction  

Stability analysis of any excavation in relatively soft geological formations requires 

the knowledge and understanding of deformation and failure of materials 

comprising these formations. Laboratory and field observations testify that changes 

in effective pressure, at different excavation depths or under different loading 

configuration in experiments, lead to variations in failure mode (e.g. Baud et al., 

2004; Baud et al., 2006; Klein et al., 2001; Lyakhovsky et al., 2015; Sheldon et al., 

2006; Sheldon and Ord, 2005; Vajdova et al., 2004a, b; Wong and Baud, 1999; Zhu 

and Wong, 1997). At shallower depths and under low effective pressures soft rocks 

display dilatancy and fail by strain softening and brittle faulting. Under 

significantly high effective pressures at deeper depths the failure of soft rocks can 

be described as compaction with homogeneous distribution of damage within the 

material. The transition from localised shear dilation to homogeneous compaction 

involves localised compaction or formation of compaction bands under medium 

effective pressures. These behaviours observable at macro-scale are, however, 

mainly governed by deformation and energy dissipative processes at micro-scale.  

At micro-scale, inelastic deformation of soft rocks involves a series of micro-

mechanical processes which lead to degradation of micro-structure of the material. 

These processes usually begin with initiation of micro-cracks followed by frictional 

sliding between the two surfaces of pervasive micro-cracks. Micro-cracks then 

localise within a band of certain thickness where they finally coalesce and form the 

macroscopic fracture. The initiation and development of micro-cracks or damage 

is observed as stiffness and strength reduction at macro-scale. Furthermore, 

residual or plastic strains observed as dilation and/or compaction at macro-scale 

can be ascribed to phenomena such as frictional sliding and asperity interlocking. 

A common practice in constitutive modelling is to describe all the mechanisms that 

cause stiffness and strength reduction as damage and all the phenomena that give 

rise to residual strains as plastic deformations. Furthermore, during the course of 

inelastic deformations damage and plastic deformations occur together and one 

affects the evolution of the other. Therefore, specification of coupling between 
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damage and plasticity in the model formulation is of necessity for the model to 

follow the experimental observations closely.  

Constitutive modelling within the framework of TIV (Houlsby and Puzrin, 2007; 

Ziegler, 1983) requires the explicit definition of two scalar functions. These 

functions include the free energy potential and the dissipation rate function. Once 

the explicit expression of the dissipation rate function is given, the formulation of 

the yield function in dissipative stress space can be derived by performing a 

degenerate Legendre transformation. Flow rules are also defined as normal to the 

yield surface in dissipative stress space rather than true stress space. Constitutive 

models developed within the TIV framework are guaranteed to be 

thermodynamically admissible. In this paper, following the coupling scheme 

developed by (Vu et al., 2016) within the framework of TIV, coupling between 

damage and plasticity is specified in the formulation of the dissipation rate function. 

This method of coupling allows for the existence of a single yield function which 

controls the evolution of both damage and plasticity processes. The yield function, 

which has a closed tear drop-shaped envelope in true stress space, evolves as 

damage grows within the material until it is transformed to a linear frictional 

Coulomb type failure envelope when the material is fully damaged. This evolution 

of yield behaviour is also observed in laboratory experiments on sandstones (Baud 

et al., 2006; Tembe et al., 2008; Wong and Baud, 2012). Furthermore, following 

the standard procedures of TIV, non-associated flow rules are defined using the 

yield function in dissipative stress space. It is also shown that controllable flow 

rules allow for describing the dilatant and contractive behaviours in accordance 

with softening and hardening responses. Throughout this paper, notations 

appropriate for triaxial tests, namely, mean pressure, 3iiσp  , deviatoric stress, 

23Jq  , volumetric strain, iiv εε   and effective shear strain, 3/2 ijijs eeε  , 

with 3vijij εεe   are used. 

 

Methodology; Thermomechanical Formulation 
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In this section, following the principles of TIV the entire constitutive relations are 

derived through explicitly defining two scalar functions, namely the free energy 

potential and the dissipation rate function.  

Free Energy Potential, Dissipation Rate Function and Yield Function 

In the case of isothermal problems, an appropriate choice for the free energy 

potential is the Helmholtz free energy, which can be given, for triaxial tests, as 

follows: 

      



 

22

2
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2
11Ψ p

ss
p
vv εεGεεKD  

[1] 

 

In the above expression K and G are bulk and shear moduli, respectively and D is 

the scalar damage variable. Based on the above definition for free energy potential, 

following the standard procedures, mean pressure, p, and deviatoric stress, q, are 

given as follows:    
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Also, generalised stresses (see Houlsby and Puzrin, 2007), vχ  and sχ , and the 

conjugate damage energy, Dχ , are derived as: 
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The dissipation rate function for rate independent behaviour of material is a 

homogeneous first order function in the rates of internal variables ( p
vε , p

sε  and D

). Following the coupling scheme developed by (Vu et al., 2016), the following 

form of the dissipation rate function is assumed: 

0Φ 222  ssvvDsv φfφfφφφ  [5] 

In the above expression, φv, φs and φD are homogeneous firs order functions in terms 

of the rates of internal variables, representing the contribution of each individual 

dissipative mechanism in the total dissipation rate and the dimensionless 
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parameters fv and fs are functions of stresses. The specific definitions of these 

functions depend on the problem in hand. For the purpose of constitutive modelling 

for soft rocks these functions are defined as follows: 

   p
i

p
ii εFερpαpφ   ;   svi ,  [6] 

  
D

Ec

χF
D

M
q

A
FρpDc

χF
φ DD

D
 

















 


221

 
[7] 

  FEapfv  ; and   FEbqf s   [8] 

with parameters ρ and α in Eq. [6] being defined as:  
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where α0 and γ are material parameters and pt and pc are pressures at yield under 

isotropic compression and expansion, respectively. Also, parameters A and M 

appearing in Eq. [7] are given as: 
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where M0 is the slope of the final failure envelope in p-q space. Parameters a, b and 

c in Eqs. [7] and [8] determine the level to which each dissipation mechanism is 

active. In particular, parameters a and b control the share of volumetric and shear 

plastic deformations in the total plastic dissipation rate at each step of inelastic 

loading and, therefore, control the direction of plastic flow vector in true stress 

space. Furthermore, inelastic dilation in soft rocks can be attributed to damage and 

volumetric plastic strain due to asperity interlocking of micro-cracks. Hence, 

energy dissipation due to damage and volumetric plastic strain is termed here as 

volumetric dissipation and its contribution to the total dissipation rate is represented 

by a ratio rv defined as; rv = a2 + c2.  Another source of energy dissipation is shear 

sliding between the two faces of micro- and macro-cracks. The share of frictional 

sliding in total dissipation rate is, thus, termed as shear dissipation and it is denoted 

by a ratio rs = b2. Ratios, rv and rs are fractions of a unit energy budget that has been 

dissipated and thereby they are bound through the condition; rv + rs  = 1. Within 

the framework of TIV, the yield function in generalised dissipative stress space can 
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be derived by performing a Legendre transformation on the dissipation rate 

function. Performing Legendre transform on a first-order function of rates of 

internal variables, ),,(ΦΦ Dεε p
s

p
v

 , results in a function of the conjugate 

variables, ),,(** Dsv χχχyy  . Using Eq. [5] these conjugate variables are defined 

as follows:   
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As can be seen in Eqs. [11]-[13] each conjugate variable is linked to the rates of all 

internal variables. Accordingly, specification of coupling between internal 

variables in the expression of the dissipation rate function gives rise to the existence 

of a single yield function which controls the simultaneous evolution of damage and 

plasticity and it is obtained as: 
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In addition, using Eqs. [6]-[8] along with Eq. [14], the yield function in true stress 

space, y = y (p, q, D), is given as: 
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Figure 1: Yield function in true stress space 

As illustrated in Figure 1, the yield function of Eq. [14] possesses a tear-drop shape 

in true stress space, p – q, similar to that developed by (Collins and Hilder, 2002) 

for sand. Furthermore, incorporation of damage in the formulation of yield function 

allows for transformation of the initial yield surface to a linear frictional Coulomb 

type failure envelope as the damage variable grows from zero to unity.   

Non-associated Flow Rules 

Within the framework of TIV flow rules are defined using the yield function in 

generalised dissipative stress space. By use of Eqs. [3] and [4] and by invoking 

Ziegler’s orthogonality condition, evolution rules for plastic strains and damage 

variable are given as: 

 2* 2 FEaλχyλε v
p
v

  ; and  2* 2 FEbλχyλε s
p
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   [16] 

DD χFEcλχyλD 22* 2    [17] 

From the plastic flow rules, given by “Eq. [16]”, the ratio between the volumetric 

and shear components of the plastic flow vector is: 

baεε p
s

p
v   [18] 

Furthermore, parameter a is defined in terms of stresses as follows: 

tpρp
ρpa


  [19] 
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Figure 2: Non-associated flow for Bentheim sandstone with model parameters as; 

γ = 0.82, α0 = 0.55, M0 = 1.4, pc = 400 MPa, pt = –10 MPa, rv = 0.8, and rs = 0.2 

(a) dilation and (b) compaction  

Direction of Plastic flow vectors is now controlled merely by determining the 

contribution of the volumetric and shear dissipation rates in the total dissipation 

rate, that is, by determining rv  and rs . The plastic flow vectors are defined as normal 

to the yield surface in dissipative stress space. However, they are not always normal 

to the yield surface in true stress space except for non-frictional materials for which 

the flow rules are associated. Corresponding to any yield point on the initial yield 

surface in true stress space (py–qy), there exist an ellipsoidal yield potential in 

generalised dissipative stress space (χv, χs, χs) which can be obtained, from Eq. [14], 

as:   

  

        2222
* FχχEcEbqχEapχy DDysyv   

[20] 
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Figure 3: Model behaviour (a) softening and hardening responses and (b) dilative 

and contractive behaviours 

These yield loci in dissipative stress space are analogous to the concept of plastic 

potential in conventional plasticity. The projection of the ellipsoidal yield potential 

on the plane χD = 0, corresponding to a number of yield points (py–qy), is illustrated 

in Figure 2. As can be seen in Figure 2, for the present formulation the planes χD = 

0 and p-q coincide, however, this is not always the case (see Collins and Hilder, 

2002). In accordance with the direction of plastic flow vector in Fig. 2, 

dilative/softening and contractive/hardening behaviour of the model is 

demonstrated in Figure 3. Model input parameters were taken from tests on 

Bentheim sandstone (Wong et al., 2001).     
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Results and Discussion 

In this section the predictive capability of the model is assesed against experimental 

data from Berea sandstone (Baud et al., 2006). The model parameters are calibrated 

using the initial yield point for one or two sets of data. As illustrated in Figure 4 the 

proposed model predicts the inelastic deformation of these sandstones reasonable 

well. Altough the calibration of the model parametrs is relatively straightforward, 

it is desirable for the two model parametres rv and rs (representing the share of 

volumetric and shear dissipation, respectively) to be determined in a more 

systematic manner.       

   
Berea sandstone (a) Mean stress-volumetric strain (b) deviatoric stress-axial strain 

with model parameters; M0 = 1.35, γ = 0.75, α0 = 0.65, pc = 387 MPa, pt = -10 

MPa, Young’s modulus = 14.125 GPa, Poisson’s ratio = 0.2 

Conclusion 

A thermodynamically consistent coupled damage-plasticity model is developed to 

describe the mechanical behaviour of soft rocks. The whole formulation is casted 

in the framework of thermodynamics with internal variables, ensuring the 

consistency and rigour both the behaviour and energy aspects of the model. A brief 

presentation with some examples are given in this short paper, while further 

improvements and generalisations will be given in Vu et al (2016). Future 

improvements will focus mainly on further generalisation of the dissipation rate 

function and on a detailed analysis of different failure modes as well as modes of 

energy dissipation.   
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