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ABSTRACT: This study reports on the real-time binding assessment between heavy metal ions 

and blood proteins immobilized onto nanoporous anodic alumina photonic crystals (NAA-PCs) 

by reflectometric interference spectroscopy (RIfS). The surface of NAA-PCs is chemically 

functionalized with γ-globulin (GG), transferrin (TFN) and serum albumin (HSA), the major 

proteins present in human blood plasma. Protein-modified NAA-PC platforms are exposed to 

analytical solutions of mercury ions of different concentrations. Dynamic changes in the 

effective optical thickness of protein-modified NAA-PCs in response to heavy metal ions are 

assessed in real-time to evaluate the binding kinetics, affinity and mechanism. Protein molecules 

undergo conformational changes upon exposure to mercury ions, with HSA exhibiting the 

strongest affinity. The combination of protein-modified NAA-PCs with RIfS allows real-time 

monitoring of protein-heavy metal ions interactions under dynamic flow conditions. This system 

is capable of detecting dynamic conformational changes in these proteins upon exposure to 

heavy metal ions. Our results provide new insights into these binding events, which could enable 

new methodologies to study the toxicity of heavy metal ions and other biomolecular interactions.  
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INTRODUCTION 

Metal ions play a critical role in biology, the environment and in medicine, particularly as a 

basis for new metal-based drugs.1 A deficiency or excess of metal ions in the human body can 

cause functional disruptions and cellular toxicity.2 Essential metal ions with critical biological 

roles include Na+, K+, Mg2+, Fe2+, Cu2+ and Zn2+.3 Conversely, heavy metal ions such as Cd2+, 

Pb2+, Hg2+ and Cr3+ are harmful to the human body, even at minute concentrations.2 Heavy metal 

ions generated from mining, metal plating, fertilizers and pesticides production and batteries 

industry leach into the ecosystems (i.e. water and soil), accumulate in the biosphere and enter 

living organisms (i.e. plants and animals) through the alimentary chain.4,5 Uptake of heavy metal 

ions leads to the interaction of these toxic ions with proteins present in the human blood plasma 

such as albumin, immunoglobulins, transferrin, haptoglobin and ceruloplasmin.6,7 

Characterization of these protein-heavy metal ions interactions is thus critical to determine 

associated metabolic and physiological processes that lead to toxicity and to understand the 

mechanism of bioavailability, assimilation and excretion of heavy metal ions in the human 

body.6  

The interaction between blood plasma proteins and heavy metal ions is assessed by various 

analytical techniques such as dialysis, chromatography, electrophoresis, inductively coupled 

plasma mass spectroscopy (ICP-MS) and surface plasmon resonance (SPR).5,6,8-14 However, 

these techniques are costly, require laborious preparation processes and do not provide real-time 

monitoring capabilities to study protein-heavy metal ions interactions under dynamic conditions. 

Reflectometric interference spectroscopy (RIfS) presents as a promising complementary 

technique to characterize a broad range of biomolecular binding events.15 RIfS provides low 

cost, sensitivity, operational simplicity and real-time monitoring features under dynamic flow 
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conditions, making it a very attractive technique to complement benchmark analytical 

methodologies. RIfS relies on the interaction of white light with a solid thin film (i.e. sensing 

platform), which generates a characteristic interference pattern due to the Fabry–Pérot effect. 

Biomolecular interactions in the sensing platform result in shifts in the optical interference 

pattern due to modifications of the effective refractive index or physical thickness of the thin 

film. These changes estimated by RIfS can be used as principle to develop sensing systems.16-18 

The combination of RIfS with nanoporous optical films enhances sensitivity and selectivity as 

compared to solid thin films due to the increased specific surface area to accommodate 

functional binding groups.15 Furthermore, the structure of some nanoporous materials can be 

engineered with precision to control light–matter interactions at the nanoscale to further enhance 

the sensing performance.19 Among other materials, nanoporous anodic alumina photonic crystals 

(NAA-PCs) produced by electrochemical oxidation (i.e. anodization) of aluminum are excellent 

platforms to develop RIfS-based sensing systems.20 NAA-PCs provide a versatile nanoporous 

geometry that can be engineered through different anodization strategies, a surface chemistry 

that allows chemical modifications for selectivity toward analytes of interest, stable optical 

signals and biocompatibility.21  

Herein, we assess the binding affinity between heavy metal ions and blood proteins using a 

RIfS sensing system in which protein-modified NAA-PCs are exposed to analytical solutions 

containing different concentrations of mercury ions under dynamic flow conditions. This sensing 

concept with the characteristic optical interference pattern and real-time monitoring of protein-

heavy metal ions binding is illustrated in Figure 1. 
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Figure 1. Assessment of binding affinity between blood proteins and mercury ions combining RIfS with NAA-PC 

platforms. a) Illustration describing the geometric features of NAA-PCs including the pore length (Lp), interpore 

distance (dint) and pore diameter (dp). b) Schematic showing the inner surface chemistry of gold-coated NAA-PCs 

modified with APTES. c) Main stages of the sensing approach used to assess the affinity between blood proteins and 

mercury ions: (i) activation of APTES-functionalized NAA-PCs with GTA; (ii) immobilization of blood proteins 

onto the inner surface of NAA-PCs; (iii) exposure of blood protein-modified NAA-PCs to heavy metal ions; and (iv) 

binding of mercury ions to blood proteins. d) RIfS spectrum of NAA-PCs produced by two-step anodization used to 

measure the effective optical thickness (OTeff) by FFT. e) OTeff of NAA-PC platforms estimated by FFT after the 

different surface chemistry modifications. f) Example of real-time monitoring of ∆OTeff at the different sensing 

stages: (i) GTA activation (red); (ii) HSA immobilization (purple); (iii) binding to Hg2+ ions (green); and (iv) final 

∆OTeff. 
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EXPERIMENTAL SECTION 

2.1. Materials. High purity (99.9997%) aluminum (Al) foils 0.32 mm thick were supplied by 

Goodfellow Cambridge Ltd.  (UK). Oxalic acid (H2C2O4), perchloric acid (HClO4), chromic 

acid (H2CrO4), 3-aminotrimethoxysilane (H2N(CH2)3Si(OC2H5)3, APTES), hydrogen peroxide 

(H2O2), glutaraldehyde (CH2(CH2CHO)2, GTA), phosphate buffer saline (PBS), γ-globulin from 

human blood (GG), transferrin from human blood plasma (TFN), albumin from human serum 

(HSA), gold (III) chloride hydrate (HAuCl4H2O) and mercury (II) chloride (HgCl2) were 

purchased from Sigma Aldrich (Australia). Ethanol (C2H5OH, EtOH) and phosphoric acid 

(H3PO4) were supplied by ChemSupply (Australia). Ultrapure water (18.2 Ω.m) Mili-Q® 

(Australia) was used in the preparation of aqueous solutions. 

2.2. Fabrication and Functionalization of Nanoporous Anodic Alumina Sensing Platforms. 

NAA-based Fabry–Pérot interferometers were produced by a two-step electrochemical 

anodization process reported elsewhere and functionalized with APTES molecules by 

silanization .22-24 A detailed explanation of these processes is provided in the Supporting 

Information. 

2.3. Assessment of Blood Proteins-Heavy Metal Ions Binding by RIfS. Details of the RIfS 

setup used in this study and a detailed explanation of the sensing process is provided in the 

Supporting Information.25,26 Briefly, RIfS spectra were acquired in the wavelength range of 

400–1000 nm and processed by applying fast Fourier transform (FFT) to estimate the effective 

optical thickness (OTeff) of NAA-PCs according to Equation 1.  

                                                                                                           (1) 

where OTeff, neff and Lp are the effective optical thickness, the effective refractive index and the 
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physical thickness of the NAA-PC platform, respectively, whereas θ  is the angle of incidence of 

light (i.e. θ = 0⸰  in this case). 

2.4. Structural Characterization of NAA-PCs. The structural features of NAA-PC platforms 

were characterized by field-emission gun scanning electron microscopy (FEG-SEM FEI Quanta 

450). FEG-SEM images were analyzed using ImageJ.27 

RESULTS AND DISCUSSION 

3.1. Structural Characterization of NAA-PCs. Figure 2 shows FEG-SEM images of NAA-

PCs produced by two-step anodization. These NAA-PCs feature straight cylindrical nanopores 

that grow from top to bottom, perpendicularly to the underlying Al substrate (Figures 2a and b). 

Top view FEG-SEM images reveal an array of hexagonally arranged nanopores that are 

homogenously distributed across the surface (Figures 2c and d). The average pore diameter (dp), 

interpore distance (dint) and pore length (Lp) estimated by FEG-SEM image analysis were 67 ± 6 

nm, 106 ± 5 nm and 5.5 ± 0.1 µm, respectively.   

3.2. Functionalization of NAA-PCs. To immobilize blood protein molecules onto the inner 

surface of nanopores, NAA-PC platforms were hydroxylated in H2O2 to increase the number of 

hydroxyl groups. A layer of APTES molecules was then deposited onto the inner surface of 

NAA-PCs through chemical vapor deposition to provide amine functional groups.23 These 

groups were then activated by GTA via the aldehyde functionality of GTA. Blood protein 

molecules were selectively immobilized onto the GTA-APTES-activated surface of NAA-PCS 

via N-terminus covalent binding with the aldehyde functionality, where the amine moiety in the 

N-terminus of blood proteins reacts with the aldehyde group of GTA to form an imine.28 

Page 6 of 24

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

7

 

Figure 2. Structural characterization of NAA-PCs produced by two-step anodization. a) Cross-sectional FEG-SEM 

view of a NAA-PC featuring straight cylindrical nanopores along the thickness of the film (scale bar = 5 µm). b) 

Magnified view of (a) (scale bar = 500 nm). c) Top FEG-SEM view of hexagonally arranged cylindrical nanopores 

across the surface of NAA-PCs (scale bar = 3 µm). d) Magnified view of (c) (scale bar = 500 nm).  

 

3.3. Binding Interaction between Hg
2+
 and Blood Proteins. Hg2+

 is one of the largest and most 

dangerous environmental pollutants, with exposure leading to neurological problems, myocardial 

infraction as well as pulmonary and kidney function impairment.4,20 Mercury ions bind 

specifically to sulfhydryl group, causing poisoning of active sites and structural degradation of 

proteins present in human blood plasma.6,29,30 Therefore, techniques that enable real-time 

monitoring of molecular interactions between blood protein molecules and Hg2+ ions are critical 

to understand the toxic effects associated with these ions and implement efficient treatments.  
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3.3.1. Binding Interaction between Hg
2+

 and γ-globulin (GG) 

γ-Globulins (GG) are plasma proteins with important roles in humoral (antibody-mediated) 

immune responses by binding to antigens.31 GGs contain multiple heavy and light polypeptide 

chains cross-linked by disulphide bridges, with a molecular weight of 155–160 kDa.32 The 

disulphide bonds between cysteine residues in GG are prone to denaturation or reduction due to 

solvent exposure to form free sulfhydryls, which have significant affinity to soft metal ions.33,34 

GG-functionalized NAA-PCs were exposed to analytical solutions of Hg2+ with controlled 

concentrations. Figure 3a shows an example of real-time measurement of the effective optical 

thickness changes (∆OTeff) in NAA-PCs by RIfS associated with each stage of the sensing 

process (i.e. GTA activation, GG immobilization and Hg2+ exposure). A stable baseline was first 

obtained by injecting PBS into the flow system containing APTES-functionalized NAA-PCs for 

15 min. 2.5 vol % GTA solution was then flowed through the system for 30 min to activate the 

amine group of APTES. Next, fresh PBS solution was flowed for 15 min to remove physisorbed 

GTA molecules from the inner surface of NAA-PCs, which was denoted by a slight blue shift in 

∆OTeff. A solution of 1 mg mL-1 of GG in PBS was then flowed through the system to 

functionalize the inner surface of NAA-PCs with GG. The immobilization of GG was denoted by 

an increase in ∆OTeff (i.e. red shift). Saturation of the surface of NAA-PCs with GG was denoted 

by a plateau in ∆OTeff. Fresh PBS solution was flowed again for 15 min to remove unbounded 

GG molecules. The stable ∆OTeff signal during this stage suggests that GG molecules were 

strongly immobilized onto the inner surface of NAA-PCs. Binding between Hg2+ and GG inside 

the nanopores of NAA-PCs was established by measuring ∆OTeff over time after exposure to 

analytical solutions of Hg2+ ions. As Figure 3a shows, the exposure of GG-modified NAA-PCs 

to Hg2+ resulted in an initial blue shift in the ∆OTeff signal due to the partial reduction or 
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degradation of disulphide bonds between cysteine residues in immobilized GG. Note that not all 

disulphide bridges in the GG molecules reduce or denature depending on their position within 

the GG molecule. Disulphide bonds between cysteine residues either form between different 

polypeptide chains (i.e. inter-chain bonds) or within the one polypeptide chain (i.e. intra-chain 

bonds).35 Intra-chain disulphides are buried between two layers of anti-parallel β-sheet structured 

chains and hence more protected from degradation.32,35 Conversely, inter-chain disulphide bonds 

are located at the hinge region of the GG molecule, becoming highly solvent-exposed and 

contributing to the higher reactivity of the cysteine residues forming the inter-chain 

disulphides.35,36 Degradation of disulphide bonds trigger a conformational change in the hinge 

region of GG, causing other disulphide bonds to be solvent-exposed to a greater extent and thus 

higher susceptibility to undergo further degradation.36 Therefore, the initial decrease in ∆OTeff 

observed during the injection of Hg2+ can be associated with the reduction of inter-chain 

disulphide bonds into free sulfhydryls. The formation of sulfhydryls groups from the reduction of 

disulphide bonds after interaction with Hg2+ induces a red shift in ∆OTeff. The steep increment of 

∆OTeff is due to the presence of readily accessible thiol groups in the GG that strongly bound to 

Hg2+.37 A maximum of ∆OTeff is achieved when most of sulfhydryls in the GG react with Hg2+. 

However, the ∆OTeff signal is progressively blue shifted after achieving the ∆OTeff maximum due 

to the reorientation of immobilized GG. Hg2+-bound GG molecules undergo a second structural 

conformation change to minimize the steric hindrance and molecular strain. This molecular 

orientation favors the binding of new Hg2+ ions due to exposure of additional functional groups 

within the GG molecule, leading to a new increment of ∆OTeff. Saturation of these extra 

functional groups within the GG is reflected by a plateau in ∆OTeff, which denotes no free Hg2+ 

binding sites within the GG molecules. Finally, fresh PBS solution is flowed through the system 

Page 9 of 24

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

10

for 15 min to remove unbounded Hg2+ ions. This results in a slight blue shift and the 

establishment of the total ∆OTeff associated with the Hg2+-GG interaction at the equilibrium state 

of the reaction. Figure 3b shows ∆OTeff resulting after GG-modified NAA-PCs were exposed to 

different concentrations of Hg2+. The trend in ∆OTeff is similar for all these Hg2+-GG interactions, 

although to decrease [Hg2+] has several effects on the ∆OTeff trend: (i) the initial decrement of 

∆OTeff just after exposure to Hg2+ ions is reduced; (ii) the slope of the initial increment of ∆OTeff 

after (i) decreases; (iii) the width of the parabolic tram of ∆OTeff due to structural conformation 

changes increases; (iv) the minimum of ∆OTeff after the conformational changes decreases –

below the original baseline for 12.5 and 25 µM. These dynamic changes in ∆OTeff due to the 

interaction Hg2+-GG can be associated with the kinetics and binding mechanism of this chemical 

reaction. At a lower [Hg2+], the number of Hg2+ per unit volume is lesser, thus a longer time is 

needed for Hg2+ to interact and bind with the GG immobilized onto the inner surface of NAA-

PCs. The arrows shown in Figure 3b indicate the total ∆OTeff associated with the Hg2+-GG 

interaction after the equilibrium state is reached for each concentration assessed in our study, 

using the initial PBS baseline as a reference before and after exposure to Hg2+. Figure 3c 

summarizes the ∆OTeff estimated for each concentration of Hg2+. It is apparent that ∆OTeff 

increases linearly with increasing [Hg2+] from 0 to 75 µM.  
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Figure 3. Assessment of the binding affinity between Hg2+ ions and GG-functionalized NAA-PCs for different 

concentrations of Hg2+ ions. a) Example of real-time monitoring of ∆OTeff for the different sensing steps: (i) PBS 

baseline, (ii) GTA activation, (iii) PBS washing, (iv) GG functionalization, (v) PBS washing, (vi) Hg2+ binding and 

(vii) PBS washing. b) Real-time Hg2+ binding stage (red square in (a)) for each [Hg2+] (i.e. 12.5, 25, 50, 75 and 100 

µM). c) Correlation between ∆OTeff and [Hg2+] for GG-functionalized NAA-PCs. (d) Correlation of tsat and [Hg2+] 

for GG-functionalized NAA-PCs. e) Kinetic rate (R∆OTeff) for the binding reaction between Hg2+ ions and GG-

functionalized NAA-PCs for each [Hg2+]. 
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If the number of sulfhydryl groups present in the GG for Hg2+ binding is the same for all the 

Hg2+ concentrations, the higher [Hg2+] the more the Hg2+ ions available per unit volume. As a 

result, the increasing the number of Hg2+-GG interactions on the inner surface of GG-

functionalized NAA-PCs is translated into larger ∆OTeff. As Figure 3c indicates, this reaction 

achieves its saturation point at [Hg2+] = 75 µM, which is denoted by a plateau in ∆OTeff. A linear 

fitting from 0 to 75 µM was used to establish the sensitivity (SGG-Hg) of GG-modified NAA-PCs 

toward Hg2+ ions, the low limit of detection (LoDGG-Hg) of this system, which were 0.901 ± 0.090 

nm µM-1 and 10.5 ± 1.0 µM, respectively, with a linearity R2-GG = 0.967.  

The kinetics of the Hg2+-GG reaction in NAA-PCs are characterized by estimating the saturation 

time (tsat –time at which the equilibrium state is reached) for each [Hg2+] from Figure 3b. Figure 

3d reveals that tsat decreases exponentially as [Hg2+] increases. The higher concentration of Hg2+ 

ions inside the nanopores increases exponentially the frequency of binding events with GG 

molecules immobilized onto the inner surface of NAA-PCs. As a result, shorter time is required 

to occupy the available binding sites (i.e. sulfhydryl groups) in the GG. The binding rate R∆OTeff, 

calculated as the ratio between ∆OTeff and tsat for each [Hg2+], was estimated to gain a better 

insight into the kinetics of the Hg2+-GG interaction. Figure 3e shows this relationship, with an 

apparent sigmoidal kinetics model, where the binding activity of GG increases rapidly with 

[Hg2+] until equilibrium state is reached. This sigmoidal kinetic behavior suggests several Hg2+ 

binding sites in the GG molecules, which is consistent with the generation of free thiol groups 

formed during the reduction/degradation of disulphide bonds fter exposure to Hg2+. Initial 

binding of Hg2+ ions to thiol groups present in the GG molecules affects the affinity of 

subsequent Hg2+-GG interactions, inducing an increment in affinity with increasing Hg2+ 

concentration due to molecular conformational changes.38 
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3.3.2. Binding Interaction between Hg
2+

 and transferrin (TFN) 

Transferrin is a glycoprotein composed of a single polypeptide chain with a molecular weight of 

~80 kDa.39 Folding of the polypeptide chain gives TFN a bilobal structure, where the two 

globular lobes (i.e. N-lobe and C-lobe) are composed of alternating α-helical and β-sheet 

segments joined by a short peptide chain in the form of a random coil.40 The lobes possess a 

metal binding site and are structurally similar. The main function of transferrin is to transport 

Fe3+ within the circulatory system.41 Fe3+ coordinates to the ligands in the metal binding site 

formed by two tyrosine residues, a histidine and an aspartic acid residue.40 Binding of Fe3+ to 

TFN occurs with the concomitant binding of a synergistic anion such as carbonate and oxalate. 

TFN in serum is partially saturated with Fe3+, leaving substantial vacant binding sites available 

to bind of other metal ions present in the blood stream.42 TFN can bind to a wide variety of 

divalent, trivalent and tetravalent metal ions.43-47 Nonetheless, the metal binding sites in TFN 

have strongest affinity to Fe3+.39,41,48 Limited studies have been reported the binding affinity 

between TFN and Hg2+ ions but it is known that Hg2+ binds to the two tyrosine residues present 

in TFN molecules to form metallo-transferrin complexes.40,49 Figure 4a presents an example of 

the real-time monitoring of ∆OTeff in TFN-functionalized NAA-PCs after each sensing stage. 

Figure 4a shows a slight blue shift in ∆OTeff when TFN-functionalized NAA-PCs are exposed to 

Hg2+, which is associated to conformational changes of immobilized TFN molecules. The 

continuous flow of Hg2+ ions results in a sharp red shift in ∆OTeff, which indicates a strong 

interaction between TFN and Hg2+ ions during this stage.  
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Figure 4. Assessment of the binding affinity between Hg2+ ions and TFN-functionalized NAA-PCs for different 

concentrations of Hg2+ ions. a) Example of real-time monitoring of ∆OTeff for the different sensing steps: (i) PBS 

baseline, (ii) GTA activation, (iii) PBS washing, (iv) TFN functionalization, (v) PBS washing, (vi) Hg2+ binding and 

(vii) PBS washing. b) Real-time Hg2+ binding stage (red square in (a)) for each [Hg2+] (i.e. 12.5, 25, 50, 75 and 100 

µM). c) Correlation between ∆OTeff and [Hg2+] for TFN-functionalized NAA-PCs. (d) Correlation of tsat and [Hg2+] 

for TFN-functionalized NAA-PCs. e) Kinetic rate (R∆OTeff) for the binding reaction between Hg2+ ions and TFN-

functionalized NAA-PCs for each [Hg2+]. 
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After the initial conformational change, the binding sites in the N- and C-lobes in the TFN are 

exposed to the Hg2+ ions present in the solution. The tyrosine and sulfur-containing residues in 

the metal binding sites of TFN have high affinity to hard metal ions.42 Hg2+ is a divalent metal 

ion, with relatively acidic character and a relatively high stability constant that favors strong 

interactions with the tyrosine and sulfur-containing residues in the TFN molecules.40,49,50 TFN 

undergoes a wide-open to closed conformational change upon binding Fe3+.40,51-54 As Figure 4a 

reveals, ∆OTeff undergoes a blue shift just after reaching its maximum and then it red-shifts again 

to achieve equilibrium state. This behavior is ascribed to dynamic conformational changes of 

immobilized TFN. After initial Hg2+ binding, TFN molecules switch the lobes from open to 

closed form (i.e. blue shift).48,55 However, due to the difference in ionic radius between Hg2+ 

(1.02 Å) and Fe3+ (0.65 Å), TFN cannot completely achieve a closed conformation.48,56 

Therefore, TFN molecules undergo a conformation change to accommodate Hg2+ ions by a 

certain degree of domain closure (i.e. red shift).48 Finally, fresh PBS was flowed through the 

system after achieving equilibrium state. Figure 4b shows the dynamic ∆OTeff for the Hg2+-TFN 

interactions at different Hg2+ concentrations. This system follows identical underlying binding 

mechanism for the range of concentrations studied, from 12.5 to 100 µM. Figure 4c reveals a 

linear increment of ∆OTeff with [Hg2+] from 0 to 100 µM. The sensing parameters of the TFN-

functionalized NAA-PCs were obtained from the linear fitting shown in Figure 4c, with a 

sensitivity STFN-Hg = 0.902 ± 0.090 nm µM-1, a low limit of detection LoDTFN-Hg = 15.4 ± 1.5 µM, 

and a linearity R2-TFN = 0.966. Figure 4d shows the values of tsat estimated for the TFN-

modified NAA-PCs for each [Hg2+], where tsat decreases exponentially from 25 to 100 µM upon 

exposure to Hg2+. Finally, Figure 4e shows the reaction rate (R∆OTeff) for this system, estimated 

as the ratio ∆OTeff/tsat for each concentration of Hg2+. The sigmoidal kinetics of Hg2+-TFN 
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binding implies a low binding activity of TFN at low [Hg2+] and a drastic increase in binding 

activity as TFN is exposed to higher [Hg2+]. The sigmoidal curve indicates the existence of two 

specific metal binding sites in the TFN molecules that allow co-operative binding of Hg2+. The 

initial binding of Hg2+ to the first metal binding site in TFN determines further binding 

interactions with Hg2+ at the secondary metal binding sites, which is consistent with previous 

studies.40  

3.3.3. Binding Interaction between Hg
2+

 and Human Serum Albumin (HSA) 

Human serum albumin (HSA) is responsible for maintaining the pH and osmotic pressure of 

plasma, and facilitating the transportation, distribution and metabolism of many ligands such as 

fatty acids, amino acids, metal ions and drugs.57,58 HSA is a monomeric multi-domain 

macromolecule of 585 amino acid residues, containing 35 cysteine residues, 17 structural 

disulphide bonds, one free thiolate (Cys 34) and one tryptophan (Trp 214), in a globular heart-

shaped conformation with a molecular weight of ~66 kDa.57,59,60 The multi-domain ligand 

binding organization of HSA make it an ideal cargo to transport critical biological components.61 

The binding between HSA and Hg2+ ions was assessed in real-time using HSA-functionalized 

NAA-PCs in combination with RIfS. Figure 5a shows an example of real-time monitoring of 

∆OTeff in HSA-modified NAA-PCs. The inflow of Hg2+ analyte solution into the system 

generates an initial conformational change of HSA that makes the Cys 34 binding site for Hg2+ 

binding accessible. The loop-link-loop structure of HSA allows it to undergo flexible structural 

transitions upon exposure to certain molecules.62 Although the HSA's Cys 34 is located at the 

surface of the protein, the free sulfhydryl group is facing toward the interior of the molecule and 

it is shielded by side chains of amino acids, preventing reaction with other external molecules.58 

However, the presence of Hg2+ ions triggers an initial conformational change in the HSA (i.e. 
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initial blue shift), where the phenolic side chain of tyrosine turns over to allow Hg2+ binding at 

the Cys 34 site. This conformation modification also shifts the free sulfhydryl group closer to the 

exterior of the HSA molecule.58 The enhanced accessibility of Cys 34 promotes the binding of 

Hg2+ to its free sulfhydryl group, as indicated by the red shift of ∆OTeff after initial 

conformational change. ∆OTeff then rises until it reaches a maximum, indicating that most of the 

Cys 34 binding sites of HSA molecules are bounded to Hg2+.6,8,63 However, the Hg2+-bounded 

HSA molecules undergo a new conformational change after achieving the ∆OTeff maximum, 

which is translated into a blue shift in ∆OTeff. After initial binding, HSA molecules change their 

conformation to accommodate the captured Hg2+ ions. This secondary structural change in HSA 

is associated with the binding of Hg2+ ions to the active donor atoms of amino acid side chains, 

where the α-helix structure is transitioned into a β-sheet arrangement due to the destabilization 

of the hydrogen bonds between carbonyl and amide moiety present in the α-helix structure.8 

Finally, a new red shift in ∆OTeff occurs after the secondary structural change is achieved. HSA 

has other metal binding sites such as N-terminal and multi-metal binding sites, which consist of 

amino acid residues with N and O donor atoms that are capable of binding Hg2+ ions.55 

Conformational changes of HSA exposes additional molecular binding sites for additional 

binding interactions with Hg2+ until equilibrium state is reached. The process is terminated by 

flowing fresh PBS solution through the system to establish the total ∆OTeff associated with HSA 

upon exposure to different [Hg2+] (Figure 5b). Interaction between Hg2+ ions and HSA-

functionalized NAA-PCs over time monitored through ∆OTeff shows a trend comparable to that 

observed in GG and TFN systems. Figure 5c summarizes the obtained results for ∆OTeff 

measured after the equilibrium state is reached for each [Hg2+].  
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Figure 5. Assessment of the binding affinity between Hg2+ ions and HSA-functionalized NAA-PCs for different 

concentrations of Hg2+ ions. a) Example of real-time monitoring of ∆OTeff for the different sensing steps: (i) PBS 

baseline, (ii) GTA activation, (iii) PBS washing, (iv) HSA functionalization, (v) PBS washing, (vi) Hg2+ binding and 

(vii) PBS washing. b) Real-time Hg2+ binding stage (red square in (a)) for each [Hg2+] (i.e. 12.5, 25, 50, 75 and 100 

µM). c) Correlation between ∆OTeff and [Hg2+] for HSA-functionalized NAA-PCs. (d) Correlation of tsat and [Hg2+] 

for HSA-functionalized NAA-PCs. e) Kinetic rate (R∆OTeff) for the binding reaction between Hg2+ ions and HSA-

functionalized NAA-PCs for each [Hg2+]. 
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∆OTeff increases linearly for [Hg2+] from 0 to 75 µm. However, a plateau is reached for [Hg2+] > 

75 µM, indicating the complete saturation of binding sites in HSA molecules above that [Hg2+]. 

Binding of Hg2+ ions to HSA significantly affects the secondary and tertiary structure of HSA 

due to the bonding with active donor atoms of the amino acid residues.8 More α-helix chains 

transit to β-turn fractions with increasing [Hg2+]. A linear fitting within the linear range of the 

Hg2+-HSA reaction was used to establish the sensing parameters of the system (Figure 5c). SHSA-

Hg, LoDHSA-Hg and R2-HSA for this reaction were 0.920 ± 0.090 nm µM-1, 11.3 ± 1.1 µM and 

0.984, respectively. As Figure 5d shows, tsat increases linearly with [Hg2+] from 0 to 50 µM and 

decreases exponentially from 50 to 100 µM. Thus for [Hg2+] < 50 µM, the saturation of the 

binding sites of HSA takes longer time with increasing concentration of Hg2+. This phenomenon 

is associated with concentration-dependent conformational changes in HSA molecules. 

However, at concentrations above 50 µM, HSA molecules undergo significant structural changes 

that accelerate binding of Hg2+ since more binding sites are exposed. This leads to an exponential 

decrement of tsat with [Hg2+] since the availability of Hg2+ inside the nanopores increases the 

frequency of binding events. Figure 5e illustrates R∆OTeff for the HSA-modified NAA-PC system. 

The HSA-Hg2+ interaction follows a sigmoidal kinetics model, where R∆OTeff is slow at low 

[Hg2+] but it increases rapidly as [Hg2+] increases, suggesting an optimum [Hg2+] range in which 

R∆OTeff is enhanced. The binding of Hg2+ to the first binding sites present in HSA enhances its 

binding affinity due to the exposure of additional binding sites as a result of conformational 

changes. 
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CONCLUSIONS 

This study provides new insights into interactions between blood proteins and heavy metal 

ions. The combination of blood protein-modified NAA-PCs with RIfS enables real-time, in-situ 

monitoring of these biochemical interactions. This technique makes it possible to detect and 

quantify dynamic conformational changes in immobilized blood protein molecules upon 

exposure to analytical solutions of heavy metal ions. The interactions between three model blood 

proteins with mercury ions were assessed, including γ-globulin (GG), transferrin (TFN) and 

serum albumin (HSA). HSA showed the highest affinity toward Hg2+ followed by TFN and GG 

(SHSA-Hg = 0.920 nm µM-1 > STFN-Hg = 0.902 nm µM-1 > SGG-Hg = 0.901 nm µM-1), using changes 

in the effective optical thickness of NAA-PCs as sensing parameter. All these blood proteins 

underwent conformational changes upon exposure to mercury ions, with a binding mechanism 

that is dependent on the type of blood protein. GG, TFN and HSA showed a two-stage 

conformational change when exposed to mercury ions, in which the initial interaction with these 

ions exposes additional functional groups within the protein molecule to bind and accommodate 

additional mercury ions. This system can also be readily used to study other interactions between 

proteins and other types of metal ions (Supporting Information). 

In summary, this study provides new opportunities to develop easy-to-use, fast, portable and 

cost-competitive systems that are capable of monitoring and quantifying interactions between 

blood proteins and heavy metal ions. This system is an excellent complement to benchmark 

analytical techniques currently used to study these interactions. Studies of this type are crucial to 

understand the fate of metal ions and metal-based drugs in biological systems and the 

development of antidotes for heavy metal poisoning. 
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