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Thesis abstract 

Microorganisms vastly outnumber animals and play key roles in our planet’s biosphere. Recent 

advances in technology and computational tools have made it possible to study the great 

diversity of microorganisms on Earth rapidly and efficiently. A large fraction of this research 

has focused on the microbial communities that inhabit the human body—the human 

microbiota—which account for more than half of the cells we carry and collectively possess 

>100-fold more genes than the human genome. This research has discovered key 

coevolutionary relationships between the host and microbiota, many of which have been shaped 

through human history to the benefit of both partners. Evidence is mounting that disruptions to 

these microbial communities and to the relationship between the host and microbiota 

(dysbioses) can have a drastic effect on human health. There is also evidence that recent 

changes in human societies, such as antibiotic use and exposure to bioactive chemicals, have 

promoted dysbiosis to the detriment of human wellbeing. Thus, there is great interest in 

studying human microbiota that existed prior to these recent changes, with the hope of 

providing insight into the evolution of the human microbiota and informing modern medical 

strategies and the development of new therapies. 

The recent finding that ancient microbial DNA is preserved in human dental calculus 

(calcified dental plaque) offers us the ability to investigate how oral microbiota have changed 

through human history. Additionally, further advances in DNA sequencing technology and 

laboratory methods have made it possible to rapidly process ancient specimens and to obtain 

large quantities of ancient microbial data. However, our ability to analyse this data has not 

caught up with the speed at which we generate it, and there are many analytical challenges and 

pitfalls that stand in the way of realising the full potential of ancient microbial DNA studies.  

This thesis aims to develop and improve methods for analysing ancient microbial DNA 

and to identify and highlight challenges and pitfalls present in the field in order to increase the 

quality of future research. Initially, I propose a novel approach of using ancient microbial DNA 

in dental calculus as a proxy for determining past human migrations. Next, I develop and 

propose criteria to improve research standards in low-biomass microbiota research. I then assess 
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how characteristics of ancient DNA impact our ability to determine the composition of past 

microbiota and develop new analytical strategies and methods to improve current taxonomic 

identification approaches. I also generate and authenticate high-quality data for 132 new ancient 

dental calculus samples from the Asia-Pacific region, and develop and test two new methods 

to analyse this data and determine if oral microbiota can be used to infer past human migration 

and demographic history. Finally, I critically review and respond to three questionable 

palaeomicrobiological studies with the hope that future researchers, reviewers, and editors will 

learn from the issues highlighted. Ultimately, this thesis highlights and constructively addresses 

key pitfalls of palaeomicrobiological research and pushes the field closer to realising its 

potential. 
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Introduction 

Overview 
There is growing interest in studying how human microbiota have changed through time and 

how these changes might have influenced human health. Technological and methodological 

advances have accelerated the research of ancient dental plaque microbiota preserved in human 

dental calculus. However, our ability to realise the potential of this research rests on identifying 

the pitfalls present and developing new tools with which to analyse the burgeoning data. In this 

introduction, I briefly discuss the history of the ancient DNA field and highlight some of its 

difficulties, specifically the characteristics of ancient DNA and DNA contamination. I then 

describe the human microbiota and their recently associated links to human disease, before 

focusing specifically on the oral microbiota. I go on to review current knowledge of the 

dynamics of the dental plaque microbiota, highlighting the strong degree of vertical inheritance 

of this community and the syntrophic partnerships between its members. I then discuss how 

disruptions to these communities and to interactions with the human host can lead to oral 

diseases. Finally, I review the nascent field of palaeomicrobiology—focusing on dental 

calculus as a source of ancient human microbiota—and highlight how analytical techniques are 

critical to realising the prospects and dodging the pitfalls of this new field.  

The difficulties of working with ancient DNA 

A brief history and scope 

Ancient DNA research provides direct measurements of genetic material from past organisms 

through the recovery of preserved DNA. The field of ancient DNA was kick-started with the 

characterisation of mitochondrial DNA obtained from a museum specimen of a quagga (extinct 

zebra) [1]. Since then, next-generation DNA sequencing (NGS) has revolutionised the field, 

unlocking the ability to investigate whole ancient genomes [2] and microbial communities [3]. 

Ancient DNA analysis has been successfully applied to a wide range of organisms, including 

mammoths [4], dogs [5], horses [6], bovids [7], rats [8], chickens [9], Tasmanian tigers [10], 

humans [2], Neanderthals [11], and microorganisms [3,12]. This research has allowed for the 

direct study of evolution through time, shedding light onto past population demographics and 

extinctions, genomic adaptation, pathogen evolution, and past population migrations. To date, 
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the oldest genome successfully recovered and analysed is ~700,000 years old, obtained from a 

horse bone buried in Yukon permafrost [6]. Current theoretical estimates place the limit of 

recoverable DNA to ~1 million years [13]. Ultimately, the ability to successfully obtain and 

analyse ancient DNA depends on the magnitude of its degradation through time. 

 

Characteristics of ancient DNA 

A distinctive feature of ancient DNA is its degraded nature. DNA repair mechanisms cease to 

function at the time of death, resulting in the fragmentation and chemical modification of DNA 

over time. An initial study into the properties of ancient DNA found that almost all extracted 

DNA from samples aged 4 to 13,000 years was degraded into fragments 40-500 bp (base pairs) 

in length [14]. In vitro experiments using modern DNA suggested that a major cause of DNA 

fragmentation is hydrolytic depurination followed by β-elimination, resulting in single-stranded 

breaks [15,16]. This was later supported by ancient DNA research which found an 

overrepresentation of purines (adenine and guanine) at the 5’ ends of ancient DNA [17], which 

would be observed if hydrolytic depurination was causing DNA fragmentation. Furthermore, a 

recent methodological advancement examining single-stranded DNA molecules allowed for the 

finding that purines are also overrepresented at the 3’ ends of ancient DNA fragments [18]. 

These studies provide a mechanistic basis for why we observe short DNA fragment length 

distributions from ancient samples (Figure 1A). 

Chemical modifications can occur within these short DNA fragments and result in two major 

forms sequence modification: blocking and miscoding lesions [19]. Blocking lesions are DNA 

modifications that prevent the movement of polymerases along the template strand, preventing 

DNA amplification and sequencing. These blocking lesions can result from nucleotide 

modifications or cross-links within and/or between different DNA fragments or other molecules 

[19]. In contrast, miscoding lesions do not obstruct DNA polymerases but instead result in the 

incorporation of incorrect nucleotide. The most common miscoding lesion results from the 

hydrolytic deamination of cytosine to uracil, which results in the incorporation of adenine in 

place of guanine when read by most DNA polymerases [20]. This misincorporation results in 

the observed C to T or G to A substitutions (depending on the strand sequenced) characteristic 

of ancient DNA (Figure 1B). These substitutions are primarily observed at the ends of ancient 

DNA molecules and are likely due to the accelerated rate of cytosine deamination in single-

stranded DNA, reflecting the occurrence of single-stranded overhangs at the end of ancient 

DNA molecules [21]. While posing a difficulty in certain bioinformatic analyses such as 

phylogenetic reconstruction, this characteristic misincorporation at the ends of ancient DNA 
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molecules has led to the development of a fundamental bioinformatic tool for assessing the 

authenticity of ancient DNA (Figure 1B) [22].  

The rate of DNA degradation is not constant and depends on myriad factors, such as the 

environment (e.g. temperature, humidity, water flow, salinity, pH) and host physiology 

(histones, metabolic environment, cell wall, etc.). Recent studies into the dynamics of DNA 

degradation found that while cytosine deamination correlates with age of the sample, DNA 

fragmentation does not [23,24]. Ultimately, ancient DNA degradation results in small 

concentrations of highly fragmented and modified DNA (Figure 1), which require special 

laboratory protocols and care to successfully extract and analyse. 

Figure 1. Characteristics of ancient DNA. (A) Ancient DNA typically has a short log-normal 

fragment length distribution due to post-mortem fragmentation. (B) Cytosine deamination 

results in the elevated frequencies of observed C-to-T and G-to-A substitutions at the 5’ and 3’ 

end of sequenced molecules, respectively. Importantly, these characteristics allow for an 

assessment of the authenticity of presumed ancient DNA. Data is from a ~3,000-year-old 

Vanuatu dental calculus sample, and the figure was made using MapDamage 2.0 [25]. 

Figure S2. Example ancient DNA damage patterns

G
C
T
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5’ end of DNA

A
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3’ end of DNA
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Controlling for DNA contamination 

The high sensitivity of PCR (polymerase chain reaction) coupled with Next-Generation 

Sequencing allows for minute quantities of DNA to be analysed. As such, these technologies 

have ushered in a new age of ancient DNA research. While sensitive, these tools are not specific 

to the preserved DNA from an ancient sample (endogenous DNA). Modern DNA that is not 

from the ancient sample (exogenous DNA) is typically less damaged, present in higher 

abundance, and can be preferentially amplified. Therefore, exogenous DNA can result in 

erroneous conclusions. For example, modern human DNA introduced by researchers can 

confound ancient hominin DNA studies [26], and modern microorganisms (which cover most 

surfaces – including humans) can critically influence palaeomicrobiological studies [27–29]. 

Typical sources of exogenous DNA that can affect ancient DNA studies include soil 

microorganisms (if the sample was buried), museum curators, the laboratory environment, 

laboratory reagents, air-borne microorganisms, and researchers [30,31].  

 

There are multiple strategies to try and reduce the impacts of such exogenous contamination 

within ancient DNA research [31,32]. First, proper handling of ancient specimens at the point 

of sampling or museum curation is essential to reduce the crossover of human and microbial 

DNA from people into samples [31]. This involves the use of adequate physical barriers (e.g. 

latex gloves, long-sleeved clothes, and face-masks) to prevent transfer between person and 

sample. Once collected, ancient samples should be examined in an ultra-clean, dedicated 

ancient DNA facility. The facility should be physically isolated from modern molecular biology 

laboratories, which typically contain high concentrations of DNA from PCR reactions, and 

DNA amplification and sequencing should be performed in a separate laboratory to prevent the 

crossover of PCR products into ancient samples [32]. There should be positive air pressure to 

prevent the introduction of air from outside the facility, coupled with HEPA filtered ventilation. 

Laboratory users should enter via dedicated entry rooms, where they don sterile, full-body suits, 

gloves, boots, and face-masks to limit the introduction of modern DNA from their persons. 

Laboratory surfaces should be regularly cleaned with ≥3% sodium hypochlorite (bleach) and 

irradiated with ultra-violet (UV) bulbs, both of which act to destroy or limit the amplification 

of exogenous DNA [33]. Finally, work should be done in still-air hoods to limit cross-

contamination between samples. 

Second, decontamination of ancient samples by removal of exogenous DNA (both modern and 

ancient) from the surfaces is required. For example, the exterior of the sample could be 

physically removed, or the sample could be soaked in bleach to remove exterior DNA 
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contamination. These methods have been shown to improve the recovery of endogenous ancient 

DNA [34,3,12], and are valuable techniques in further reducing the burden of exogenous DNA. 

Third, proper implementation of negative controls is essential to monitor modern exogenous 

DNA introduced into ancient samples [31,32,35]. The inclusion of extraction blank controls 

(empty tubes without sample DNA) in every DNA extraction is required to capture exogenous 

DNA present in the laboratory environment (researchers, reagents, etc.) [30,36,37]. These 

controls should be treated like ordinary samples and taken all the way through to sequencing  

[47–58][28,29]. 

Finally, comparison of sequences found in ancient samples to those in negative controls and 

assessment of ancient DNA damage patterns is necessary to minimise the impact of 

contamination on analyses and conclusions. To assess whether exogenous laboratory 

contamination is confounding the interpretation of ancient data, the presumed ancient data must 

be compared to sequenced extraction blank controls. For example, if microbial DNA belonging 

to a particular species is found in both ancient samples and negative controls, subtractive 

filtering (i.e. removal of that species from further analyses) or other forms of authentication 

must be employed. An important technique for ancient DNA authentication relies on the 

characteristics of ancient DNA damage to discern modern from ancient DNA, specifically, the 

fragmented nature of ancient DNA and the elevated frequency of observed cytosine 

deamination [22].  

Apart from these stringent techniques and strategies to reduce and monitor the introduction of 

exogenous DNA into ancient samples, the molecular methods used to analyse ancient samples 

are similar to those employed in modern molecular work, albeit with some optimisations to 

DNA extraction and library preparation to improve the recovery of short and damaged 

molecules [38–40]. The end result is DNA that can be sent for sequencing on a high-throughput 

DNA sequencing machine, such as the Illumina HiSeq or NextSeq, which typically yield 

billions of DNA sequences. Overall, technological advancements in DNA sequencing coupled 

with careful control of contamination has expanded the spectrum of organisms able to be 

studied by researchers in an ancient context. For instance, it is now possible to study ancient 

microbial communities, especially those associated with ancient humans [3,12]. Such research 

can expand our understanding of host-microbial evolution, past human health, and even ancient 

human migrations. 
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The human microbiota 
In 1985 the development of an efficient, culture-free method of investigating microbial 

communities opened the door for researchers to survey the amazing diversity of 

microorganisms on Earth [41]. This method was built upon pioneering work by Woese and Fox 

on the 16S ribosomal RNA gene, which, being an essential subunit of the ribosome is present 

in all prokaryotes [42]. The combination of conserved regions from which to design universal 

primers and the presence of hypervariable regions renders the 16S rRNA gene a useful marker 

for phylogenetic analysis of prokaryotes, allowing researchers to determine the evolutionary 

relationships between microorganisms and to assign taxonomy to them using databases such as 

SILVA [43] or Greengenes [44]. This powerful amplicon method of determining “who’s there” 

in a microbial sample, combined with the massive throughput and reduced cost of DNA 

sequencing has unlocked a burgeoning new field of research into the microbial communities 

(microbiota) inhabiting diverse environments.  

One habitat of great interest is the human body, which is occupied by more microbial than 

human cells [45]. The human body contains >1,000 microbial species spread across different 

body sites that each support distinct microbial communities due to differences in 

physicochemical properties of each site [46,47]. Some of these communities can play important 

roles in maintaining immune development and homeostasis [48], preventing pathogen invasion 

and colonisation [49], and assisting in host digestion of food [50]. Importantly, some of these 

functions can be achieved by groups of different microbes, i.e. while individuals may differ in 

their microbial compositions, functional redundancy can exist between them [51,52]. However, 

dysregulation of these functions through maladaptation or imbalance is now recognised as an 

important factor in human disease [53,54]. Indeed, changes in these microbial communities 

have been associated with myriad human diseases, including obesity [55,56], type I diabetes 

[57], asthma [58], and depression [59,60].  

 

Oral microbiota 

While the bulk of human microbiota research has been on the gut communities [61], the oral 

cavity is also critically important in understanding human health due to its links with oral health 

[62]. The oral cavity has several distinct microbial habitats, such as teeth, gingiva (gums), soft 

tissue (cheeks), tongue, and saliva. These sites are different from each other due to 

physicochemical factors, such as oxygen concentration, availability of specific surface moieties 

for microbial adhesion, saliva flow rates, abrasion, and epithelial shedding. These 

heterogeneous ecological habitats support the growth of distinct microbiota, both at the 

community [63,47,64] and strain level [65,66].  
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Dynamics of dental plaque microbiota 

Dental plaque is a microbial biofilm that forms on teeth both above and below the gingiva. Host 

proteins adhere to tooth enamel and contain binding sites for the adhesins of bacteria—

especially Actinomyces and Streptococcus—allowing for primary colonisation of the teeth [67]. 

This is followed by further coaggregation of other microbial taxa and the formation of complex 

microbial biofilms [68,69]. Several studies suggest that vertical transmission, either through 

direct transmission from parents to offspring or shared environment, plays a major role in the 

acquisition and establishment of these communities [70–76], with related factors such as host 

genetics [77,78] and early establishment of immunological tolerance [79] also likely playing 

important roles.  

While there is scant literature on the long-term stability of the plaque microbiota [80], studies 

looking at other oral sites (mainly saliva) suggest a large degree of stability through time 

[46,73,81]. The reason for this perceived stability is understudied, and little is known about the 

factors that influence plaque microbial communities. A potential reason for the long-term 

stability of plaque microbiota through time is the establishment of syntrophic relationships 

between microorganisms to harness nutrients provided by the host. Saliva is constantly being 

produced by the host and contains a rich mixture of glycoproteins and enzymes. Mucins, which 

are the major host salivary protein secreted, are rich in sugars that require complex metabolic 

partnerships between microbes to process [82,83]. Recent findings support this idea that 

symbiotic partnerships are an important factor for plaque microbiota [69]. Welch et al. found 

that the 13 most abundant and prevalent genera (present in at least 90% of samples) identified 

in plaque samples accounted for 85% of their sequencing data. These authors used FISH 

(Fluorescent In-Situ Hybridisation) to fluorescently label these ‘core’ plaque genera, allowing 

for spatial visualisation of these communities. Strikingly, they observed co-localisation of 

producers and consumers of metabolites, and functional niche separation (e.g. anaerobes in the 

centre of the structure, aerobes towards the extremities) [69]. Ultimately, plaque microbial 

communities appear not be a random assortment of environmental taxa, but a multispecies 

consortium characterised by a high degree of communication, partnership, and interdependence 

[84] (Figure 2). The fact that teeth are the only non-shedding microbiota-associated body site 

allows more time for co-evolution between plaque microbiota and may aid in the development 

of these highly cooperative partnerships. This also extends to the development of relationships 

between plaque microbiota and the host, which should favour communities positive to the 

host’s health [85]. Indeed, it is being increasingly recognised that disruptions in the relationship 

between host and plaque microbiota can result in dental diseases [86–89]. 
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Figure 2. Hypothesised relationships between bacteria identified in complex plaque structures 

from the 2016 Welch et al. study. Figure reproduced from [69]. 

 

 

Dental plaque microbiota in relation to disease 

According to a 2004-2006 nationwide dental health survey, the prevalence of dental caries 

(tooth decay) and periodontal disease in Australians over 15 years of age was 12.8% and 22.9%, 

respectively [90], with Indigenous populations suffering disproportionately [91]. The total 

expenditure on dental services in Australia for 2012-2013 was $8.7 billion [92]; however, this 

figure does not account for indirect economic and societal costs such as losses in productivity 

and the impacts of oral diseases on systemic health [93]. Dental caries is the destruction of teeth 

by acids that result from the fermentation of dietary carbohydrates by bacteria [94]. 

Streptococcus mutans is a bacterium that has long been touted as the causative agent of dental 

caries [95]; however, recent high-throughput molecular studies have challenged the simplicity 

of this notion, and instead, support a more complex, polymicrobial aetiology for dental caries 

[96]. This shift in thinking from a handful of pathogenic microorganisms to a complex 
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polymicrobial involvement has also been seen in periodontal disease. Periodontal disease refers 

to the inflammation of tissues surrounding the tooth (i.e. gums), which can result in the 

formation of pockets or gaps between the tooth and its surrounding gingiva (gum). Severe forms 

of periodontal disease can result in loss of bone supporting the tooth, resulting in the loosening 

or even loss of the tooth. The association between plaque microbiota and periodontal disease 

has long been appreciated [97], with research in the late 80s and early 90s attributing it three 

specific bacteria — the “red complex” (Tannerella forsythia, Treponema denticola, and 

Porphyromonas gingivalis) [98]. As with dental caries, the aetiology of periodontal disease is 

increasingly recognised as more complex [99,100], with ecological interactions within plaque 

microbiota [101,86] and breakdown in the relationship between the microbiota and host (e.g. 

immune intolerance) being key contributing factors [89,102,103]. The ability to study how 

these intricate relationships have evolved with humans through history could offer important 

insights to aid in the development of new treatments for these polymicrobial diseases. 

 

 

Studying ancient human microbiota: prospects and pitfalls 
 

The brief yet controversial history of palaeomicrobiology 

Palaeomicrobiology—the study of ancient microorganisms—is a rapidly growing area of 

research that has the potential to enhance our understanding of microbial evolution [104], host-

microbiota interactions [12], past human interactions and movements [105], and the emergence 

and evolution of human pathogens [106,107]. However, in the short history of the field, these 

prospects have been tarnished by numerous claims [108–119] that have been questioned [120–

128,27–29] on the basis of insufficient evidence, controls, and authenticity. As with other 

ancient DNA research, NGS has expanded the scope of palaeomicrobiological research by 

allowing researchers to rapidly profile microbial communities and their functions and to 

reconstruct whole genomes [12,104]. NGS has also enhanced researchers’ ability to assess the 

authenticity of their own findings [25,35], as well as contentious claims made by others [28,29]. 

Another catalyst critical to the recent advancement of palaeomicrobiology was the discovery 

that ancient dental calculus (calcified dental plaque) is a robust reservoir of ancient microbial 

DNA [129]. 
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Dental calculus: ushering in a new age of palaeomicrobiology 

Dental plaque undergoes periodic mineralisation events which incrementally trap the resident 

microbiota in a hard calcium phosphate matrix called dental calculus [130] (Figure 3). This 

occurs throughout the lifetime of an individual. Coupled with the absence of modern dentistry 

practices in past populations, this lifelong process allows for recovery of calculus on human 

skulls hundreds or even thousands of years old [104]. The mineralisation of plaque to calculus 

also acts to protect the endogenous microbial DNA from external contamination, rendering 

calculus an ideal substrate for palaeomicrobiological research. Dobney and Brothwell were the 

first to observe microorganisms trapped in archaeological dental calculus over 30 years ago 

[131,132], but it was not known whether ancient microbial DNA was preserved within calculus 

until a 2011 study by Preus et al. [129]. This was quickly followed by the first community-level 

analysis of microorganisms within dental calculus [3], leveraging recent advances in NGS and 

16S rRNA amplicon techniques [133]. A subsequent study by Warinner et al. was the first to 

characterise the protein functions associated within dental calculus and to reconstruct the 

genome of a putative periodontal pathogen [12]. In the most recently published study of ancient 

dental calculus by Weyrich et al., the authors were able to reconstruct a ~49,000-year-old oral 

archaeal genome (Methanobrevibacter oralis) from a Neanderthal dental calculus sample 

[104].   

 
Figure 3. Example of ancient dental calculus on a molar from  

a Medieval specimen, York, U.K. Figure reproduced from [134] 
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Collectively, these landmark studies have demonstrated the feasibility of obtaining high-

resolution human microbiota data from ancient dental calculus and have ushered in a new age 

of palaeomicrobiology. It is now possible to investigate how oral microbiota have changed 

through human history, both at the community and the individual genome level [3,12,104]. 

Such research is poised to shed light upon host-microbiota co-evolution and how this 

relationship influences dental diseases. Ancient dental calculus research could also provide 

valuable bioarchaeological information about past human cultures. If plaque communities are 

labile to host dietary habits, such changes could be used to infer differences in diet both within 

and between cultures. Recent research suggests that dental calculus can trap dietary items, 

potentially providing new insights into the behaviour and diet of past cultures [104]. 

Additionally, given the putative stability of plaque microbiota, past human migration, 

movements, and interactions between cultures could be measured using genomic information 

from microorganisms within ancient dental calculus, following an approach similar to that 

which has already been used with modern microorganisms [135,136] (this concept is proposed 

and discussed in Chapter I). Underpinning and crucial to realising these prospects of ancient 

dental calculus research are the methods used to analyse ancient microbial DNA. 

 

Analysing ancient microbial DNA 

While technological and methodological advances now allow for the recovery and 

authentication of vast amounts of ancient microbial DNA from ancient dental calculus, the 

bioinformatic tools used to analyse such data are still in their infancy. Initial attempts at 

classifying microbial communities in ancient dental calculus [3] used the 16S rRNA gene 

amplicon technique [133]. However, Ziesemer et al. later found that this method is 

inappropriate when applied to ancient DNA [137]. Specifically, the amplicon sizes targeted by 

16S primers are typically larger than the short fragment sizes of ancient DNA; hence, longer 

contaminant DNA can be preferentially amplified. Critically, it was found that differences 

between microbial taxa in the length of the regions amplified lead to differential amplification 

success for different taxa, and therefore to biased representation of communities [137]. Since 

the publication of these findings, shotgun metagenomic sequencing—the nonspecific recovery 

of all DNA in a sample—has been established as the standard for classifying ancient microbial 

communities [12,35,104,137]. 

The shift from a single amplicon to nonspecific, shotgun metagenomic information containing 

millions or billions of base pairs is a major computational and analytical challenge for the field. 

Currently, the two main strategies for analysing shotgun metagenomic are de novo assembly 
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and reference-based alignment. The goal of de novo assembly is to find overlaps in DNA 

fragments and merge the fragments to build larger sequences (contigs), and potentially whole 

genomes. Tools commonly used for this approach in modern metagenomic studies include 

MetaVelvet [138] and GroopM [139]. An advantage of de novo assembly is that it allows for 

the discovery of new genomic information or microorganisms that are not currently in reference 

databases [140]. However, the extremely short length of ancient DNA renders de novo assembly 

unfeasible for palaeomicrobiology, as ultra-short reads are computationally difficult to merge 

into longer contigs. This is illustrated in Warinner et al. [12] whereby the mean and maximum 

contig length for two deeply sequenced ancient specimens were short, being ~200 and 12,000 

base pairs, respectively.  

Reference-based alignment works by matching (aligning) DNA fragments within a sample to 

reference sequences or genomes in a database. Commonly used tools for this approach include 

BLAST (Basic Local Alignment Search Tool) [141], Bowtie2 [142], and BWA (Burrows-

Wheeler Aligner) [143]. Reference-based alignment can reliably align reads ~30 bp in length 

making it applicable to palaeomicrobiological data (I demonstrate this in Chapter III). However, 

the constant growth of reference databases, coupled with larger DNA sequencing outputs, 

substantially expands the number of possible alignments between sequences, which drastically 

increases computation time and the resources required for such analysis. This is especially an 

issue in metagenomic research where researchers are interested in surveying the large diversity 

of microorganisms, leading to databases with tens of thousands of reference genomes. To 

combat this issue, new algorithms, such as MALT [144], MetaPhlAn [145], and KRAKEN 

[146], have been developed to reduce the computational burden. Of these tools, MALT has 

been shown to offer great performance for classifying microbial communities in 

palaeomicrobiological studies [104,147]. However, a key issue for the reference-based 

alignment strategy is the relatively small breadth of microbial diversity captured in whole-

genome reference databases, which is yet to catch up with larger 16S databases [148,149]. The 

impact of this problem on the reconstruction of ancient microbial communities is yet to be 

investigated, although it is likely substantial due to microbial ‘extinctions’ in past human 

microbiota and the focus of modern microbial genome reconstructions on healthy individuals 

of ‘Western’ ancestry [66].  

Overall, technological and methodological advances have improved our ability to generate 

ancient microbial DNA, but further improvements and assessments of analytical techniques are 

essential to expand both the scope and quality of palaeomicrobiological research. Such 

advances will allow us to realise novel prospects of palaeomicrobiology and help in avoiding 

its pitfalls. 
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Thesis overview: 
This thesis contains six chapters and three appendix chapters that build upon ideas and address 

issues identified in this introductory section. The overarching theme of this thesis is the 

development and critical assessment of analytical techniques for analysing ancient microbial 

DNA. This thesis also calls into question recent palaeomicrobiological studies that lacked 

appropriate experimental controls and made claims unsubstantiated by evidence. Ultimately, 

this thesis seeks to expand the scope of palaeomicrobiology and improve the quality and 

reproducibility of future research. 

 

Chapter I: Ancient Microbial DNA in Dental Calculus: A New method for Studying Rapid 

Human Migration Events 

In this first chapter, I propose the use of microbial DNA in ancient dental calculus as a proxy 

for past human movements and explore the advantages of such an approach to enhance our 

understanding of past human demographic histories. I propose that the best location to test this 

idea is in the Pacific Islands, so I review the current archaeological, linguistic, and genetic 

evidence for the peopling of the Pacific and highlight the difficulties of determining past, rapid 

human settlements in this area using currently available tools.  

 

Chapter II: Contamination in low-biomass microbiome studies: issues and recommendations 

This chapter, while not focusing on palaeomicrobiology, seeks to share practices and 

authentication criteria used within the field of ancient DNA with modern low-biomass 

microbiota research. Low-biomass microbiota research suffers from similar pitfalls to 

palaeomicrobiology, including low concentrations of endogenous DNA, DNA contamination, 

and the presence of controversial studies lacking appropriate controls. In this chapter, I review 

the state of low-biomass microbiota research, highlighting the issues of reproducibility and the 

lack of an agreed-upon set of standards unifying the field. With the help of experts in modern 

microbiota research, I develop and propose a set of authentication criteria for low-biomass 

microbiota studies to help researchers, reviewers, and editors improve the quality and 

reproducibility of future research. 

 

Chapter III: Assessing alignment-based taxonomic classification of ancient microbial DNA 

While palaeomicrobiologists have converged on reference-based alignment for the 

reconstruction of ancient microbial communities, there has not yet been a thorough examination 

of how the characteristics of ancient DNA impact such analysis. In this chapter, I use simulated 

and real data to perform an in-depth assessment of how DNA fragment length, deamination, 
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divergence, and missing reference sequences influence alignment-based methods. By 

constructing and using the largest and most diverse reference database to date for reference-

alignment, I also examine the extent of missing microbial diversity when reconstructing the 

taxonomic composition of ancient microbiota, and perform a reanalysis of a previously 

published study. Finally, I use these findings to provide clear recommendations for other 

researchers that aim to use alignment-based methods in future palaeomicrobiological research. 

 

Chapter IV: Development and validation of a complementary approach to reconstruct ancient 

microbial communities 

While the use of 16S rRNA gene fragments from metagenomes has been previously used to 

reconstruct ancient microbial communities, there is yet to be a robust assessment this approach 

when applied to ancient DNA. In Chapter IV, I develop and assess a new technique for 

reconstructing ancient microbial communities using hybridisation enrichment of 16S rRNA 

gene fragments from metagenomes. Using both simulated and real data, I also assess the 

influence of the characteristics of ancient DNA on the quality of taxonomic assignment of 16S 

rRNA gene fragments.  

 

Chapter V: Palaeomicrobiology of the Pacific: unlocking a high-resolution proxy for past 

human movements 

In this chapter, I test if oral microbiota can be used to examine ancient human migrations by 

generating and authenticating high-quality data for 117 ancient Asia-Pacific dental calculus 

samples. I compare and contrast this data to modern plaque samples, explore the microbial 

community structure between islands, and develop and test two different approaches for using 

dental calculus as a proxy for past human migration. Building upon the concepts highlighted in 

Chapter I of this thesis, this is the first study to demonstrate that microbial DNA in ancient 

dental calculus can act as a high-resolution proxy for past human movement. 

 

Chapter VI: Insights into the demographic history of Japan using ancient oral microbiota 

How cultural and population admixtures influence human microbiota remain to be understood. 

Ancient DNA allows for the measurement of microbiota states prior to and post major 

demographic changes, such as what happened in ancient Japan with the admixture of Jomon 

hunter-gatherers with agriculturalists from mainland Asia. In this chapter, I compare and 

contrast the microbiota of Jomon hunter-gatherers with later Edo period agriculturalists, 

exploring how diet, disease, and culture can alter or confound ancient human microbiota 
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studies. Using genomic information, I also investigate whether bacterial lineages can be lost 

due to such changes. 

 

Appendices I-III:  

Isolating viable ancient bacteria: what you put in is what you get out 

Reply to Santiago-Rodriguez et al.: proper authentication of ancient DNA is essential 

Proper Authentication of Ancient DNA Is Still Essential 

The field of ancient DNA has been fraught with controversial studies lacking the appropriate 

procedures and controls. While recent technological and methodological improvements have 

made it easier to authenticate ancient DNA, there are still studies being published that lack 

sufficient scientific rigour. In these three replies to such studies, I call into question to the 

validity of the claims made by these authors, and alert other researchers, reviewers, and editors 

to the various pitfalls of palaeomicrobiological research. 
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ABSTRACT

Ancient human migrations provide the critical genetic background to
historical and contemporary human demographic patterns. However,
our ability to infer past human migration events, especially those
that occurred over rapid timescales, is often limited. A key example is
the peopling of Polynesia, where the timing is relatively well defined,
but the exact routes taken during the final stages and the source pop-
ulations are not. Here, we discuss the technical limitations of current
methods for inferring rapid human migration events, using the final
stages of Polynesian migration as an example. We also introduce a
promising new proxy method to infer human migrations—patterns of
bacterial evolution within ancient dental calculus (calcified plaque).
While we focus on Polynesia, this method should be applicable to
other past migrations, enhancing our understanding of human
prehistory and revealing the crucial events that shaped it.

Keywords commensal models, ancient DNA, archaeogenetics, Polynesia,
Pacific settlement

INTRODUCTION

Determining past human migrations (de-
fined here as the movement by people from
one place to another with the intention of
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settling) are of great cultural interest and
significance to many people, and can pro-
vide a sense of identity and connectedness
to one’s culture. The peopling of East Poly-
nesia ∼AD 1000–1300 was the last major
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Figure 1. General pattern of the colonization of Polynesia, and unresolved questions. The origin of
populations ancestral to Polynesians in Island Southeast Asia (ISEA—red shaded area).
Movement eastwards to the Bismarck Archipelago and development of Lapita culture
∼1400 BC (large red arrow). Further movement eastwards by Lapita culture settling
as far as Samoa and Tonga ∼800 BC (green arrow and shaded area marking eastern-
most extent of Lapita material culture). A ∼1,800-year pause before migration into the
Society Islands ∼1000–1100 AD (orange arrow and shaded area). Rapid settlement of
the remaining islands in the Polynesian Triangle (blue shaded area) by ∼1300 AD. The
numbered, differently patterned black arrows are specific to sections in the discussion
highlighting unanswered questions (i.e., sections 1–5). Top-right inset illustrates the ex-
tensive size of Polynesia.

human migration before the modern era,
and one of the most geographically exten-
sive. East Polynesia covers an area larger
than North America (Figure 1), and the col-
onization of its islands involved the longest
maritime migrations in pre-modern history
(i.e., before AD 1500). Studies of material
culture, linguistics, seafaring and climatic
simulation, and genetics have disclosed
much about the tempo and directions of mi-
gration in the western Pacific, notably of the
Lapita culture that extended out to Tonga
and Samoa by ∼800 BC. Despite this, simi-
lar research has shown relatively little about
the peopling of East Polynesia, as the time-
span involved is considerably shorter.

The chronological data for East Polyne-
sia remains unsettled, as some archaeolo-
gists argue for initial colonization of Central
East Polynesia (Society, Cooks, Marquesas,
western Tuamotus) or perhaps Hawaii by
the late first millennium AD (Athens et al.
2014), while others argue that colonization
in these archipelagos began in the twelfth
century and had reached all the marginal
islands, including Easter Island and New
Zealand, by the late thirteenth century
(Wilmshurst et al. 2011). Either way, these
migrations seem to have been episodic,
with an earlier influx to Central East Poly-
nesia, a later movement to Marginal East
Polynesia (Hawaii, Easter Island), and a
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subsequent expansion into the outlying
islands around New Zealand. The brevity of
these migration pulses, each <200 years in
duration, makes it difficult to reconstruct
their internal structure, order, and the
directions of the movements involved using
current methods (archaeological material
culture, linguistics, and human genetics).

A new means to infer rapid human
migration events has been created through
the study of the diverse communities of
bacteria (microbiota) contained within the
human body. These communities contain
thousands of bacterial species (Hooper
and Gordon 2001) that are acquired from
birth via both vertical inheritance (i.e.,
transmission from parents to offspring) and
common environment (diet, cohabitation,
etc.) (Goodrich et al. 2016; Song et al. 2013;
Tims et al. 2013). In addition to the strong
element of vertical inheritance, these bac-
teria replicate quickly—a characteristic
that renders the microbiota a promising
proxy to infer rapid human migrations.
The recent discovery that archaeological
dental calculus (calcified plaque) contains
ancient microbial DNA (Adler et al. 2013;
Preus et al. 2011; Warinner et al. 2014)
offers researchers a powerful new tool
for reconstructing ancient or historical
human movements that remain undocu-
mented. Here, we summarize the existing
narrative of Polynesian migrations, noting
the issues that remain both unresolved
and undetectable by current methods, and
explain the merits of a microbial genetics
approach.

POLYNESIAN MIGRATION

The origins of populations ancestral to
Polynesians have been traced back to Is-
land Southeast Asia (ISEA), on the basis
of linguistic, archaeological, and genetic
evidence (Anderson 2016; Anderson et al.
2014). Genetic and archaeological evi-
dence suggest a Taiwanese contribution to
modern Oceanic populations, along with
significant contributions from ISEA and

older groups resident in the western Pa-
cific (Papuan)—although recent evidence
suggests that Papuan genetic contribu-
tions occurred after the initial wave of
settlement in western Polynesia (Skoglund
et al. 2016). All of the Austronesian lan-
guages spoken outside Taiwan belong to
the Malayo-Polynesian group, which ex-
tends from Madagascar through ISEA and
across the Pacific to Easter Island and New
Zealand. However, Malayo-Polynesian is
not documented as occurring in Taiwan
(Blust 2009:740) and the possibility that it
entered ISEA by a different route cannot be
ruled out. Further, all of the components
of the so-called “transported landscape” of
Oceanic populations (Kirch 2000), which
included root and tree crops and commen-
sal and domestic animals, originate in ISEA
or mainland SEA rather than Taiwan.

Moving eastwards, the development of
the Lapita culture ∼1400 BC in the Bis-
marck Archipelago was a major driving pro-
cess in the peopling of Remote Oceania.
The Lapita culture was the first to cross
the boundary between Near and Remote
Oceania (a 400 km stretch of open ocean)
to Vanuatu ∼1000–1200 BC (Bedford et al.
2006), and moved as far as Samoa and Tonga
by ∼800 BC (Rieth and Hunt 2008), mark-
ing the easternmost edge of Lapita mate-
rial culture, as Lapita sites further east have
not been discovered. Post-Lapita migration
reached the outlying islands of West Poly-
nesia, such as Rotuma, Niue, and Pukapuka
200 BC–AD 1 (Anderson et al. 2014:25), fol-
lowed much later by colonization of the So-
ciety Islands ∼AD 1000–1100 (Wilmshurst
et al. 2011), and possibly others in cen-
tral East Polynesia as distant as Mangareva.
Some 100–200 years later (AD ∼1200),
further eastward migration occurred out
to the marginal islands of East Polyne-
sia: Hawaii, Easter Island, then southwards
to New Zealand and its outlying islands
(i.e., Norfolk Island, Kermadecs, Chathams,
Subantarctic islands) (Wilmshurst et al.
2011).

Although some aspects of the chronol-
ogy of these migration episodes remain
uncertain, it is apparent that the general

THE JOURNAL OF ISLAND AND COASTAL ARCHAEOLOGY 3



 

 40  

Raphael Eisenhofer et al.

pattern of initial colonization within Poly-
nesia is well known (Figure 1). However,
much less is known about the particular
origins of the migrating populations. Some
clues are evident in material culture—
especially where pottery is included, but
pottery was not produced in East Polynesia.
Many early East Polynesian artefact assem-
blages contain types of adzes, fish hooks,
and ornaments that are so widely shared,
they provide little indication of the se-
quence of historical relationships amongst
them (Kirch 2000:243–244). Within Central
East Polynesia, some specific connections
can be established by source identification
of basalt adzes, notably those from Marque-
san and Samoan sources (Weisler 1997), but
two artefacts of tropical marine shell that
reached New Zealand cannot be attributed
to a specific origin (Anderson et al. 2014;
Davidson et al. 2011), and no other specific
connections can be drawn between the
central and marginal archipelagos. Histori-
cal linguistics are similarly constrained. For
example, on Captain Cook’s first voyage to
the Pacific, Tupaia (a navigator from Raiatea
in the Society Islands) was able to act as
a translator during contacts with Maori in
New Zealand (Cook 2003) because Maori
and Tahitian languages had remained mu-
tually intelligible to a large extent despite
500 years of separation; this was also true
of Cook Islands Maori, Tahitian-Hawaiian,
and so on. However, there was also some
regional clustering within East Polynesian
languages, which centered upon the So-
ciety and Cook Islands to the west and
the Marquesas and southeastern Tuamotus-
Mangareva to the east, but the extent of
difference is insufficient to provide more
than a general indication of the routes of
migration. For example, it is clear that the
Maori language and much of Maori esoteric
culture belongs to the Tahitic group, but it
has been impossible to use linguistic data to
show that migrations to New Zealand orig-
inated in the Society Islands, rather than
the Cook Islands or the Australs. In short,
a means to more finely discriminate human
population origins is needed, especially
where migrations occurred within short
timescales.

Human Genetics

To date, most human DNA studies have
not directly addressed the sequence of
colonization within Polynesia and have in-
stead focused on questions about the earlier
phases of Austronesian migration and the
extent of admixture between Austronesians
and Near Oceanians (Kayser et al. 2008;
Lipson et al. 2014; Skoglund et al. 2016;
Soares et al. 2011; Xu et al. 2012). Migration
within Polynesia, especially East Polynesia,
is difficult to study with genetics because
the initial founding populations were likely
small and underwent drastic and successive
bottlenecks during each island migration
event, further reducing genetic variation
(Murray-McIntosh et al. 1998). Back mi-
grations and modern-day admixture also
likely rendered genetic diversity more ho-
mogeneous, resulting in a loss of dispersal
signals. Genetic diversity in Polynesia is
also likely to have been further reduced by
disease epidemics introduced by early Euro-
pean explorers and colonists, as well as the
spread of these diseases in more recent his-
tory (e.g., 1918 Influenza epidemic) (Kirch
and Rallu 2007). As a result, the few studies
that have measured modern genetic diver-
sity in East Polynesia found limited genetic
variation (Benton et al. 2012; Murray-
McIntosh et al. 1998; Whyte et al. 2005). It
is possible, however, that future studies ex-
amining larger amounts of nuclear DNA thr-
ough SNP (Single-Nucleotide-
Polymorphism) panels or whole genome
sequencing may provide greater resolution.

Ancient DNA from human skeletal re-
mains has been used to determine histor-
ical human migrations around the globe
(Allentoft et al. 2015; Haak et al. 2015;
Lazaridis et al. 2014). A major advantage of
using ancient DNA is that it circumvents the
influence of subsequent back-migration and
contemporary genetic admixture on the mi-
gratory signal—providing key data both in
time and space. However, there are a num-
ber of limitations when examining ancient
human DNA in Polynesia. Warm, humid cli-
mates dominate throughout Polynesia and
are known to result in poor DNA preser-
vation (Allentoft et al. 2012). Ethical issues
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involved with performing destructive sam-
pling and analysis of human remains has
also restricted the application of ancient hu-
man DNA analysis in the region. Despite
this, Deguilloux et al. (2011) were able to
obtain mtDNA from five ∼500-year-old sam-
ples located in the Gambier Islands, and
identified novel polymorphisms in a Near
Oceania-associated haplogroup (Q1) and
the Polynesian Motif mtDNA haplogroup. In
addition, Knapp et al. (2012) applied next-
generation sequencing to ∼700-year-old hu-
man remains in the Wairau Bar site of New
Zealand. From the 19 samples screened,
DNA was successfully obtained from only
4 samples, from which full mitochondrial
genomes were obtained and novel Polyne-
sian mtDNA variation identified. Recently,
Skoglund et al. obtained genome-wide an-
cient DNA data from three individuals from
a Lapita site in Teouma (Vanuatu) and
one individual from Tonga (Skoglund et al.
2016). Their results suggest that the first
wave of humans into Remote Oceania had
little to no Papuan ancestry, contrasting the
∼25% Papuan genetic contribution found in
modern Oceanic populations, and suggest-
ing later population movements introduced
Papuan ancestry to Remote Oceania. How-
ever, the small number of available ancient
samples in Polynesia has limited the use of
ancient human genetic data for testing hy-
potheses regarding later migration routes.

Genetics of Animal Proxies

Polynesians are known to have trans-
ported a number of domestic animal taxa
on their voyages: dogs (Canis lupus fa-
miliaris), pigs (Sus scrofa), and chickens
(Gallus gallus), as well as the commensal
rodent—the Pacific rat (Rattus exulans).
The DNA of these animals can be used as a
proxy for human migration, with the added
bonus that the marine dispersal abilities of
these animals were generally poor, limiting
natural migration from blurring the human
migratory signal (for a review see Storey
et al. 2013). Modern and ancient DNA from
these animals have been used as a proxy for
human migration into the Pacific. Mitochon-
drial DNA has been used to trace the dis-

persal of dogs to Polynesia via a southwest-
ern route through Indonesia (Oskarsson
et al. 2011). Ancient mitochondrial DNA
from 14 dogs found at the Wairau Bar site
identified a small number of haplogroups,
suggesting limited genetic variation in the
founding population (Greig et al. 2015). Ge-
netic evidence for pig dispersal to Polyne-
sia mirrors that of dogs (Larson et al. 2007,
2010), which is concordant with geometric
morphometric analyses of teeth and bones
(Dobney et al. 2008). The Pacific rat has
been traced back as far as Flores in Indone-
sia using ancient and modern mitochondrial
DNA (Thomson et al. 2014a), with east-
wards dispersal to Polynesia (Matisoo-Smith
and Robins 2004). Studies using modern
and ancient mitochondrial DNA from chick-
ens suggest an origin in the Philippines with
movement eastwards to Polynesia (Dan-
cause et al. 2011; Thomson et al. 2014b).

These studies have contributed sub-
stantially to our understanding of the earlier
phases of migration in Oceania, but have
yet to be applied to East Polynesia. This may
be due to several limitations. Pig, chicken,
and dog are distributed patchily in East Poly-
nesia, and only the Pacific rat (R. exulans)
occurred on nearly all islands (Anderson
2009). Again, modern DNA analyses suffer
from contemporary admixture, including
through European introductions. Ancient
DNA analyses of these animals share many
of the same limitations as for human
specimens, albeit with fewer ethical con-
siderations. As with humans, the increasing
and extreme genetic bottlenecks that these
organisms experienced through successive
island colonization, coupled with the short
and rapid timescale of migrations, prevent
resolution of the routes taken during the
final phases of Polynesian migration. Future
recovery of more and better-preserved
samples—coupled with genome-scale DNA
analyses—may yet provide an improved
reconstruction of events.

While constraints in current research
approaches to understanding migrations in
East Polynesia might well be overcome with
future technical advances in existing fields
of study, the most promising alternative for
the moment is the study of microbial DNA.
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Modern Microbial DNA

The human microbiota contains
>100 × more genes than the human
genome (Hooper and Gordon 2001),
which—in combination with the typically
fast generation time of bacteria—should
provide more information about migration
events than can be obtained from human
or animal proxy species. While microor-
ganisms have been used to trace large-scale
human migrations, they have yet to be
tested on rapid migratory events. For ex-
ample, Helicobacter pylori is a bacterium
that lives in the stomach of most individuals
and is vertically transmitted within families
(Rocha et al. 2003). It accompanied hu-
mans out of Africa and has thus been used
as a proxy for global prehistoric human
migration (Falush 2003). H. pylori phylo-
genies have also been used to explore the
peopling of Oceania (Moodley et al. 2009),
supporting other lines of evidence for two
distinct migrations into the Pacific—an ear-
lier one by Australians/Near Oceanians, and
a later one by Malayo-Polynesian speaking
people (Lapita).

Biogeographic signatures have also
been obtained from bacteria within the
modern human oral microbiota. Using a sin-
gle protein-coding gene, gtf from Strepto-
coccus oralis, Henne et al. (2014) were
able to detect remarkable geographic reso-
lution, especially considering its small size
(330 bp). Due to the falling costs of DNA
sequencing, future studies combining mul-
tiple informative genes from many bacterial
species may provide the necessary resolu-
tion to reconstruct rapid human migrations.
However, there are several limitations to us-
ing modern microbial DNA for this purpose.
For H. pylori, sampling involves performing
a stomach biopsy on a living individual—an
invasive procedure that precludes extensive
sampling. While microbial DNA likely has
the resolution required to infer rapid human
migratory events, there is the potential issue
of modern genetic admixture reducing ge-
ographic signals. Consequently, a common,
robust source of ancient human-associated
microbial DNA is needed, and this has now

been identified on the teeth of our long-
dead ancestors.

ANCIENT DENTAL CALCULUS AS A NEW
MEANS OF TRACKING HUMAN

MIGRATIONS

Dental plaque is a dense, complex living
microbial community that adheres to and
grows on the surface of teeth. During the
life of an individual, calcium phosphate ions
from saliva cause this soft plaque to un-
dergo periodic mineralization events, trap-
ping lower layers in an extremely hard, cal-
cified deposit called dental calculus. The
prevalence and robust nature of dental cal-
culus makes it common on the teeth of
archaeological human remains. The first
definitive observation of calcified bacteria
trapped within archaeological dental calcu-
lus occurred nearly 30 years ago (Dobney
and Brothwell 1986), which led to subse-
quent research over the next 8 years (Dob-
ney and Brothwell 1988; Dobney 1994).
It was not until the application of new
scientific techniques in archaeology some
13 years later that actual bacterial DNA pre-
served within ancient dental calculus was
observed for the first time via gold-labeled
antibody transmission electron microscopy
(Preus et al. 2011). This was further verified
by the successful extraction, amplification,
and sequencing of bacterial DNA from an-
cient dental calculus (De La Fuente et al.
2013). The first community-level analyses
of ancient dental calculus detected changes
in human oral microbiota communities
likely correlating with dietary changes over
8,000 years, from early agriculturalists to
the Industrial Revolution (Adler et al.
2013). An increase in the carriage of tooth
decay-associated bacteria was also observed
through time, likely reflecting the increas-
ing availability of carbohydrates. The com-
position of the human oral microbiota ap-
peared relatively distinct to each culture
and geographic region, highlighting the po-
tential power of microbiota DNA preserved
within dental calculus to provide an ancient
genetic signal of cultural affinity (Adler
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et al. 2013). Subsequent studies have re-
constructed full genomes of oral pathogens
such as Tannerella forsythia from medieval
specimens (Warinner et al 2014). Collec-
tively, these pioneering studies illustrate
that high-resolution investigation of ancient
oral microbiota, both at the community and
individual bacterium level has the power to
provide novel views of human bio-cultural
evolution. Protein sequencing has also been
applied to ancient calculus, showing that
bacterial functions (e.g., virulence factors)
and their interactions with the human host
(e.g., immune proteins) are obtainable from
ancient dental calculus (Warinner et al.
2014). A further key finding was that DNA
from ancient calculus includes signals from
food sources such as plants and animals,
demonstrating the ability to obtain dietary
information from ancient human popula-
tions, providing further information to de-
lineate past human lifeways (Warinner et al.
2014; Weyrich et al. 2017).

While the ethics involved in analyzing
ancient human DNA can be extremely sen-
sitive, ancient dental calculus is almost en-
tirely microbial in origin (>99.9%), with
very limited amounts of human DNA. In
addition, dental calculus can be easily re-
moved from teeth, avoiding the destruc-
tion of human remains. These two factors
ensure ancient calculus can be examined
with minimal alteration to valuable museum
specimens, potentially allowing large num-
bers of samples to be collected and ana-
lyzed. Practically speaking, ancient dental
calculus contains a much higher concen-
tration of DNA than bone (Warinner et al.
2014), which increases the odds of success-
fully obtaining DNA from poorly preserved
ancient specimens. Importantly, the use of
oral bacterial DNA in ancient dental calcu-
lus also solves the issue of modern genetic
admixtures confounding human migration
signal. In addition, the oral microbiota ex-
hibits a strong degree of vertical inheritance
(Corby et al. 2007; Ebersole et al. 2014;
Li et al. 2007; Okada et al. 2004), making
it a suitable proxy for human migration.
Finally, the large amount of genetic mate-
rial found in the oral microbiota, coupled
with the rapid generation time in bacteria,

should provide the resolution required for
discerning rapid human migratory events.
These characteristics render ancient hu-
man dental calculus a promising new
means of studying past human population
movements.

Potential Methods for Analyzing Oral
Bacteria for Human Migrations

To track human migrations using an-
cient dental calculus, genetic mutations
within bacterial species must be identified,
as bacterial community structure would
likely provide insufficient resolution. To
examine species and strain level resolution
within ancient calculus specimens, several
techniques could be applied. The most
promising centers around a recently pub-
lished method called StrainPhlAn (Truong
et al. 2017). StrainPhlAn uses species-
specific marker genes (Truong et al. 2015)
to measure strain-level genetic diversity
from metagenomic samples. Briefly, DNA
reads from a metagenomic sample are
mapped to species-specific markers, and
consensus sequences of the dominant
strains are constructed. For each species,
the consensus sequences are then aligned,
concatenated, and used as input for maxi-
mum likelihood phylogenetic analysis. This
program provides the ability to investigate
genetic differences with high resolution
between bacterial species from different
samples, which may be sufficient to infer
past rapid human migrations. In addition,
genome level information from strains
could be similarly obtained; strain level
resolution of commensal species has been
recently observed, suggesting that this
approach may be feasible for future studies
(Weyrich et al. 2017). In either approach,
different strains would need to be identified
and assessed individually; then, DNA from
the dominant strain or multiple strains can
be compared and assessed through time as
a marker for human migration.

To ensure this method can be utilized,
shared bacterial taxa must be identified
within each of the samples of interest. This
should be a limited issue in dental calculus,
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as research suggests that many species are
shared between individuals within popula-
tions, reflecting a ‘core’ calculus microbiota
(Welch et al. 2016). The oral microbiome
has also been shown to be the one of
the most stable and conserved human
microbiomes to date (Utter et al. 2016),
and many oral strains have been shown
to be conserved across hominin species
(Weyrich et al. 2017), indicating that shared
microbial taxa may be available for this
type of analyses across human populations.
Strain heterogeneity within a sample might
confound basic phylogenetic analysis in
some cases, but it is likely that the sample
will be dominated by a single strain (Truong
et al. 2017), which could be used to infer
migratory processes. For example, (Truong
et al. 2017) found that for 1,500 deeply
sequenced gut metagenomes, a single
strain typically dominated—even through
time—for >70% of the species analyzed,
indicating that this approach is plausible
within diverse, mixed strain metagenomes.

Another important consideration is the
sequencing coverage of the genetic loci to
be analyzed (i.e., how many DNA sequences
can be obtained for each genetic locus).
Insufficient coverage would likely result in
the inability to determine if a nucleotide
change is due to stochastic effects (se-
quencing artefacts, DNA damage, etc.), or if
a mixed signal is resulting from strain-level
polymorphisms. Obtaining sufficient cov-
erage is especially challenging for ancient
DNA due to its fragmented and damaged
nature (Dabney et al. 2013). However,
one possible solution is to improve the
coverage of genetic loci of interest using
hybridization-enrichment (Maricic et al.
2010), whereby specific DNA sequences
are captured prior to sequencing. This
technique drastically lowers the cost of
sequencing and increases the coverage
obtained, especially for ancient DNA
(Schuenemann et al. 2011; Skoglund et al.
2016). Finally, while reference bias towards
well-studied strains may make strain-level
identification challenging, (Truong et al.
2017) were able to reconstruct strain-level
genetic diversities 10-fold higher than

were previously available, demonstrating
StrainPhlAn’s ability to accommodate in-
complete reference data.

A potential issue for using bacteria
as a proxy for human migration is hori-
zontal gene transfer (HGT). Bacteria are
known to transfer genetic material be-
tween each other—even among distantly
related species—and such transfers could
confound phylogenetic analyses. To circum-
vent this issue, one can target genetic loci
that are conserved, single-copy, and show
no or low levels of horizontal gene transfer.
Such genes are typically involved in essen-
tial informational processes and are parts of
large, complex systems (e.g., transcription,
translation, tRNA synthetases) (Rivera et al.
1998), and are thought to be recalcitrant to
horizontal transfer (Hao and Golding 2008;
Jain et al. 1999). The practical use of such
loci for bacterial phylogenetic analyses
has been previously demonstrated in the
literature (Ankenbrand and Keller 2016;
Darling et al. 2014; Wu et al. 2013; Wu and
Scott 2012). To ensure that these genetic
loci are not horizontally transferred, soft-
ware is available that can detect horizontal
gene transfer/recombination in bacterial
genomes (Croucher et al. 2015; Martin et al.
2015). One can use these tools to identify
putatively horizontally-transferred loci, and
once identified, these loci can be discarded
from phylogenetic analyses.

To summarize, the approach and tools
required for employing dental calculus as a
high-resolution proxy of past human migra-
tions are available and feasible, and so is the
prospect of being able to infer rapid human
migration events from such data.

DISCUSSION AND CONCLUSIONS

As we continue to investigate the origins
of migrating populations in Polynesia, it is
pertinent to ask which migration events to
consider, and why these specific events are
of interest to Polynesian prehistory. Below,
we have listed five issues for which analysis
of ancient microbial DNA could provide
critical insights into Polynesian prehistory.
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1. The initial colonization of West Poly-
nesia, and questions about possible
later migrations from Micronesia (Addi-
son and Matisoo-Smith 2010; Davidson
2012), constitute an important unre-
solved issue. The radiocarbon chronol-
ogy of colonization sites indicates mi-
gration from Fiji, colonized about 900
BC, to Tonga and Samoa by 800 BC
(Burley et al. 2010; Petchey 2001).
In contrast, the relative frequency of
Lapita sites suggests a linear migration
through Tonga (where Lapita sites are
scarcer to the north) and Samoa (where
there is only one Lapita site) (Clark
and Anderson 2009). However, it is also
possible that Fiji was the direct source
of migrants for both Samoa and Tonga,
in which case a progressive decay of
the migratory pulse would require an al-
ternative explanation (e.g., Burley et al.
2011; Rieth et al. 2008).

2. On the same theme, the later coloniza-
tion of Niue remains unknown. Niue is
closer to Tonga than Samoa, and the
Niuean language is closer to Tongan.
However, Samoan features are strongly
evident in the place names and oral tra-
ditions. In addition, there is some ev-
idence that Niue was colonized from
East Polynesia (Walter and Anderson
2002). Was the initial source population
from Tonga or Samoa, and when did
East Polynesian influence begin? Identi-
fication of either Tonga or Samoa as the
source has potentially significant impli-
cations for the later colonization of East
Polynesia.

3. Samoa is commonly referred to as
the most likely source of the original
migrants to East Polynesia, with sug-
gested voyages through the northern
and southern Cook Islands, through the
northern Cook Islands to the Society
Islands, or perhaps on several routes
during the colonizing period (Kirch
2000; Kirch and Green 2001; Montene-
gro et al. 2014, 2016; Wilson 2012).
However, there is a strong linguistic ar-
gument for initial migration into East
Polynesia through the northern atolls,
including the Phoenix and Line Is-

lands, suggesting that a more likely en-
try to East Polynesia would have been
through the Marquesas (Wilson 2012).
The different scenarios imply quite dif-
ferent histories of colonization, includ-
ing the development and spread of lan-
guage, material culture, and seafaring
capabilities.

4. Within East Polynesia, there are several
cases where alternative source pop-
ulations of initial migrants are possi-
ble, and sorting out the alternatives
will help to refine issues of origin, re-
latedness, and interaction in the re-
gion. Hawaii may have been colonized
from the Marquesas (Kirch 2000:291),
but it is possible that some colonists
came from Tahiti, as marked by a
Tahiti cosmogony in Hawaii (Marck
2000:230). Similarly, the colonization
of New Zealand was from the Tahitic
(western) region of central East Polyne-
sia, but its specific origin remains un-
known. Was it directly from the Society
Islands? Was it from the Southern Cook
Islands or from the Austral Islands? Was
it a single population dispersal from
one particular island or archipelago or
a general movement from across the
Tahitic region? These differences can
help inform the causes of migration
(i.e., dispersals triggered by specific
events mentioned in oral traditions, or
a broader event horizon or process).
The Moriori people of the Chatham Is-
lands that lie east of New Zealand have
linguistic and material culture parallels
with New Zealand Maori (Sutton 1980),
but their oral traditions are somewhat
different (Shand 1911). Modern Mori-
ori prefer the possibility that their an-
cestors arrived by direct passages from
central East Polynesia, and the distance
to Chatham Island and New Zealand
from the southern Cook Islands is al-
most exactly the same.

5. Accumulating data are once more rais-
ing the question about whether some
earlier migrants to Easter Island had
Amerindian origins. The oldest archae-
ology that appears on Easter Island
clearly has East Polynesian origins,
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but research in genetics (Moreno-Mayar
2014) and in the origins of monumen-
tal architecture (Martinsson-Wallin et al.
2013) has suggested a New World influ-
ence soon after initial colonization.

All of these and many other questions
about the prehistory of Polynesia exist pri-
marily because our current methodologies
do not have sufficient temporal discrimi-
nation to trace the movement of people
between islands at a centennial scale res-
olution. Such difficulties are not unique
to Polynesia and are observed elsewhere,
including the Caribbean and within the
American continents (Fitzpatrick 2015;
Hofman et al. 2008; Keegan and Hofman
2017). The study of ancient microbial DNA
within dental calculus, as outlined here,
presents a powerful new tool to identify hu-
man cultural signals, track bacterial genome
evolution, and ultimately reconstruct hu-
man migration patterns. Analysis of the
microbiota in dental calculus will provide
unprecedented opportunities to trace hu-
man movements, thereby enhancing our
understanding of human prehistory.
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Abstract 
 

Next-generation sequencing approaches in microbiome research have reshaped the way we 

view the world, allowing researchers to survey microbial communities, their genomes, and their 

functions with higher sensitivity than ever before. However, this sensitivity is a double-edged 

sword, as these tools also efficiently detect contaminant DNA (DNA from sources other than 

the samples under study) and cross-contamination (DNA exchange between samples). 

Contaminant DNA and cross-contamination can confound the interpretations of microbiome 

data by generating false signals, which have been recently, and repeatedly, interpreted as 

meaningful findings. Therefore, there is urgent need for the field to integrate key controls into 

microbiome research to improve the integrity of microbiome studies. Here, we review how 

contaminant DNA and cross-contamination arise within microbiome studies and discuss the 

negative impacts they can have in microbiome research, especially during the analysis of low-

biomass samples. We then identify several key measures that researchers can implement to 

reduce the impacts of contaminant DNA and cross-contamination during microbiome research. 

We put forth a set of minimal experimental criteria to improve the validity of future low-

biomass research, and we package our recommendations into a novel checklist to help 

scientists, reviewers, and editors improve microbiome research, called the ‘RIDE’ checklist – 

Report methodology, Include controls, Determine the limit of detection, and Explore the 

impacts of contamination in downstream analysis. We hope that these criteria will help improve 

the scientific integrity of future microbiome research.    
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Background 
 

The completion of the Human Microbiome Project in 2017	 [1] was a major landmark in 

microbiome research. This research field has the potential to create novel therapies for human 

disease, aid in environmental conservation, improve agricultural outputs, understand our 

ancestor’s lifestyles, and identify criminals in forensic casework, amongst many other areas	[2–

6].  

 

Amplification-based methods that target hypervariable regions (e.g. PCR amplification of the 

16S ribosomal RNA (rRNA) gene) account for the majority of current studies exploring 

microbiota because of their speed and inexpensive cost	 [7]. Shotgun sequencing has also 

become more popular in recent years due to decreasing DNA sequencing costs and the ability 

to obtain both species-level taxonomic resolution and functional genomic information. Both of 

these approaches rapidly illuminate unculturable microorganisms and allow researchers to 

compare and contrast microbial communities in diverse environments, including the human 

body, subglacial Antarctic lakes, NASA’s space equipment, deep-sea hydrothermal vents, 

extinct hominids, and coral reefs	[5,8–12]. 

 

Despite their benefits, the molecular methods used to investigate microbial communities have 

key limitations, namely non-proportional target amplification and the inclusion of 

contamination. While tools to address non-proportional target amplification have been 

developed	[13–15], strategies to limit contamination are less appreciated. Several studies have 

documented the routine amplification of contamination and its impacts on biological 

interpretations	 [16–24], but there is still no systematic requirement to examine or report 

contamination within microbiota or microbiome (hereby referred to as microbiome) studies. 

Here, we highlight how contamination has negatively impacted microbiome research, 

especially when assessing low-biomass samples, and provide several recommendations to 

minimize the effects of contamination in future research. 
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Main text 
 

What are contaminants in microbiome studies, where do they arise, and are they static? 

 

Two key types of contamination can arise in microbiome studies: contaminant DNA and 

cross-contamination.  Contaminant DNA can originate from many sources despite the utmost 

care in sample collection and preparation, including the sampling and laboratory environments	

[25–27], researchers, plastic consumables	[28], nucleic acid extraction kits	[5,19,23,24,29–32], 

laboratory reagents, including PCR mastermixes	[16–18,33–36], and cross-contamination from 

other samples and sequencing runs	[37,38]. To date, over 30 common contaminant taxa have 

been identified in DNA extraction blank controls and no-template controls across multiple 

studies. For example, Salter et al. found that several contaminant taxa were shared in blank 

controls across multiple studies, laboratories, and DNA extraction methods	 [19]. These 

widespread contaminant taxa appear to originate from common sources (e.g. kit and reagent 

manufacturing, human commensals on lab personnel, or thrive within laboratory 

environments). Despite the identification of some common contaminants, the types and 

abundance of contaminant taxa vary between extraction kits and laboratories	[5,19,23,24] and 

even through time within the same laboratory [76: Weyrich et al. in-review].  

Cross-contamination is another challenge during microbiome sample processing and 

includes the transfer of primary sample DNA, barcodes, or amplicons from neighboring wells 

or tubes to create “batch effects”	 [39]. Cross-contamination can occur at multiple steps 

throughout sample processing: sample DNA can be accidentally transferred during initial 

sample processing and placement into tubes or plates	[40], from aerosolization during pipetting, 

or during plate cover removal	[41]. Barcode cross-contamination may also occur when incorrect 

neighboring barcodes ‘jump’ into sample wells or tubes — a phenomenon known as ‘tag 

switching’	[42]. Finally, cross-contamination can also occur on the sequencing instrument from 

barcode sequencing errors, residual amplicons from past sequencing runs, or “barcode 

hopping,” where some platforms mismatch indexing reads to sequencing reads. Overall, both 

contaminant DNA and cross-contamination are dynamic and need to be consistently and 

routinely monitored.  
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Which sample types are most affected? 

The impacts of contaminant DNA and cross-contamination can vary between samples 

according to their levels of microbial biomass. If one assumes an equal and stable background 

contaminant profile, the biomass in a sample can be determined by comparing the quantity of 

DNA in samples (e.g. quantitative PCR of 16S rRNA amplicons) to that in blank controls	[23]. 

Samples of ‘high-biomass’ (e.g. gut or soil) will contain substantially more DNA than blank 

controls, while ‘low-biomass’ samples will contain DNA levels similar to or lower than blank 

controls and include glacial ice, air, rocks, the built environment, placenta, and blood. Lower 

levels of DNA within low-biomass samples allow contaminant DNA and cross-contamination 

(e.g. from high-biomass samples processed simultaneously) to easily outcompete and dominate 

the biological signal within samples	[19,23,24,43]. 

How does contaminant DNA influence microbiome studies? 

The amount and composition of contaminant DNA and cross-contamination can vary through 

time and location, generating signals within low-biomass samples that can be easily perceived 

as biological; this concept is illustrated in Figure 1. Numerous studies have described 

contaminant DNA and demonstrated how it can skew results, including those in published low-

biomass studies	[19,23,24]. For example, >95% of the taxonomic composition in a  Salmonella 

bongori culture diluted to ~1,000 cell was revealed to be contamination using both amplicon 

and shotgun DNA sequencing	 [19]. Another study found that infant nasopharyngeal swabs 

clustered according to the DNA extraction kit lot number, demonstrating that contaminant taxa 

introduced during DNA extraction were driving the observed signal	[19]. A comparison of low-

biomass placental samples with blank controls, saliva, and vaginal swabs revealed that 16S 

rRNA sequences in placental samples could not be distinguished from those in blank controls	

[23]. Lastly, an analysis of peripheral blood and submucosal tissue samples demonstrated that 

99% and 95% of the respective identified sequences corresponded to contaminant taxa	[24]. 

The impacts of contaminant DNA and cross-contamination are not limited to these ‘whistle-

blower’ studies and have likely impacted each and every low-biomass study published to date. 

Even if controls and low-biomass samples can be distinguished using beta-diversity analyses 

(e.g. a PCoA plot of unweighted UniFrac distances), measures of alpha (within-sample) 
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diversity are easily inflated in microbiome studies due to contaminant DNA and cross-

contamination. Together, these findings demonstrate that contaminant DNA and cross-

contamination can have a severe impact on low-biomass microbiota studies and will continue 

to pose a demonstrable threat to the integrity of the field if left unaddressed.  

 

 

 

Figure 1: Illustration of how contaminant DNA can influence interpretations of low-

biomass microbiome data.  

Both treatment groups (triangle vs. circle) of low-biomass samples are not different in microbial 

composition (sample DNA colors are same, blue and orange). However, differences in 

contaminant DNA (in this case, red vs. black) drive the signal, leading to the conclusion that 

the treatment groups have different microbial compositions. Proper randomization of sample 

collection/processing would eliminate this artifact.  
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How has DNA contamination already impacted the microbiome research field? 

 

The failure to include controls to assess DNA contaminants and cross-contamination has 

resulted in several controversial studies. For example, a recent study identified a distinct 

microbial community within human placenta without publishing appropriate controls	 [44]. 

Bacterial DNA contribution from maternal blood was raised as an issue	[45], and no evidence 

for a distinct placental microbiota was found when placental samples were compared with blank 

controls in a follow-up study	 [23]. A recent, comprehensive review concluded that current 

evidence does not support the notion that the human placenta harbors a distinct microbiota	[46]. 

Nevertheless, the initial publication	 [44] spurred several subsequent studies	 [47–50] on the 

‘placental microbiota’; all lacked appropriate controls and further perpetuated the notion that 

the placenta harbors a distinct microbiota. In addition to the placenta, there has been a recent 

surge of other low-biomass microbiota studies, especially in clinical medicine, and include 

investigations of the microbial components of brain tissue	 [51], breast tissue	 [52,53], nipple 

aspirate fluid	 [54], intrauterine samples	 [55], and seminal fluid	 [56]. None of these studies 

included appropriate controls or an assessment of contaminant taxa and cross-contamination in 

their findings. Unsurprisingly, each of these studies identified common contaminant taxa from 

commercial extraction kits and molecular reagents as the taxa driving the observed biological 

signals. In addition, the studies failed to examine the limit of detection using their methodology 

– the critical first step when exploring low-biomass communities. While it is possible that these 

are true biological signals, it is also possible that they arise from contaminant DNA, and 

additional experiments should be included to determine if such microbial DNA originates from 

living cells as opposed to contaminant DNA	 [57].  Together, these studies highlight the 

desperate need for the field to recognize and adhere to a minimum set of experimental criteria 

to ensure valid and reproducible findings.  

 

 

How can we mitigate the impacts of contaminant DNA? 

 

To control for contaminant DNA and cross-contamination in low-biomass microbiome studies, 

there are several measures that need to be taken to 1.) reduce all types of contamination and 

experimental bias, 2.) monitor and identify contaminant sources, and 3.) recognize and mitigate 
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the effects of contaminant DNA and cross-contamination during analysis (Figure 2). We briefly 

provide suggestions for each approach, put forth minimum guidelines, and establish the new 

‘RIDE’ checklist to help researchers, editors, and reviewers manage the effects of 

contamination in future microbiome research (Box 1). 

 

Box 1: For authors, reviewers, and editors, the ‘RIDE’ minimum standards checklist for 

performing/reviewing low-biomass microbiome studies. 

ü Report	 experimental	 design	 and	 approaches	 used	 to	 reduce	 and	 assess	 the	

contributions	of	contamination.	

ü Include	 controls	 to	 assess	 contaminant	 DNA	 and	 cross-contamination:	 sampling	

blanks,	DNA	extraction	blanks,	and	no-template	amplification	controls	at	a	ratio	of	at	

least	 1	 per	 12	 biological	 samples;	 and	 12-24	 mock	 community	 positive	 extraction	

controls	and	positive	amplification	controls.	

ü Determine	the	limit	of	detection	using	comparisons	to	controls.	

ü Explore	 the	 contaminant	 taxa	 within	 each	 study	 and	 report	 its	 impacts	 on	 the	

interpretation	of	biological	samples.	

 

 

1.) Reduce experimental bias and contamination during sampling and processing. 

Simple measures during sample collection and processing can be used to limit the introduction 

of contaminant DNA and cross-contamination and minimize their downstream effects. First, 

randomizing samples and treatments (i.e. collecting or processing samples from different 

treatments together) is an important experimental design consideration to prevent erroneous 

conclusions arising from batch effects or day-to-day variation of contaminant DNA (Figure 1). 

In addition, the same researcher, reagents, robots, and equipment should be used to process all 

of the samples in a specific study, if possible. To specifically avoid contaminant DNA, there 

are several key considerations. Samples should be collected in the cleanest available 

environment, and personnel should wear protective clothing and equipment to cover all exposed 

human surfaces (i.e. lab coats, face masks, hair nets, sleeves, and clean disposable gloves). 

Ideally, trained researchers with protective clothing should also process the samples in an 

isolated, low-contaminant, controlled environment (e.g. still-air cabinet or laminar-flow hood) 

where surfaces and equipment are treated with a ≥3% bleach solution and ultraviolet radiation 

to minimize environmental contaminant DNA	 [58]. Samples should be processed using 

certified sterile or DNA-free consumables, including reagents, lab ware, and sampling 
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equipment. As consumables labeled ‘DNA free’ typically contain degraded microbial DNA	

[36], consumables with hard surfaces, such as plastic tubes and pipettes, can be decontaminated 

using ethylene oxide treatment	[28], and reagents can be decontaminated by UV treatment that 

is optimized for each reagent (i.e. UV irradiation can destroy enzyme function)	[59]. Ideally, a 

physically isolated workstation should also be used to aliquot stock reagents to limit 

contamination	[60]. To minimize cross-contamination, there are additional steps to consider. 

Library preparation should be performed in a separate room from DNA extraction to minimize 

contamination from highly-amplified products (i.e. pre-PCR work should be physically isolated 

from post-PCR work). It is also important to perform the recommended bleach and maintenance 

washes in the DNA sequencer between sequencing runs, as this can reduce run-to-run cross-

contamination in Illumina MiSeq studies by 100-fold (from 0.01% to 0.0001%; Illumina 

correspondence). 

 

Minimum guidelines: Different sample types or treatments should be randomized and not 

processed independently. Researchers should wear disposable lab gloves, face masks, and avoid 

exposed skin to reduce the introduction of contaminant DNA into the samples. As many 

procedures as possible (e.g. sample transfer, DNA extraction, library preparation, and 

sequencing) should be performed in a cleaned, isolated working environment with 

appropriately treated equipment and consumables.  

	

	

2.) Include controls from sampling to sequencing. 

Several types of controls should be included in every analysis to monitor contaminant DNA 

and assess the levels of cross-contamination between samples. These controls include both 

negative controls to monitor background levels of contaminant DNA: (1) sampling blank 

controls, (2) DNA extraction blank controls, and (3) no-template amplification negative 

controls; and two types of positive controls to determine the limit of detection and ensure cross-

contamination does not drive the results of the study: (4) DNA extraction positive controls and 

(5) amplification positive controls.  

 

 

Negative controls 

Three types of negative controls are minimally required to allow adequate monitoring of 

contaminants throughout sample handling and processing and provide the ability to detect when 

and how contaminants are introduced into biological samples. Each type of negative control 
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should be included at a minimum rate of 1:12, control to biological samples; for larger studies 

(>100 samples), 8 of each negative control type should be minimally required per study. (1) 

Sampling blank controls allow for detection of contaminant DNA introduced during the 

sampling procedure, including items used to collect the sample, such as swabs, gauze, or drills, 

and any reagents or preservatives used to store or transport the samples (e.g. media, alcohol, or 

RNA stabilizer). Material analyzed in sampling blanks should be collected in the same room 

and at the same time as biological samples and should undergo the same laboratory treatment 

as the biological samples, from collection to sequencing. (2) DNA extraction blank controls 

monitor the contaminant DNA content in extraction kits, molecular reagents, and the laboratory 

environment through the DNA extraction process and, as above, should be processed alongside 

the biological samples from extraction to sequencing. (3) No-template amplification controls 

can monitor contaminant DNA present in reagents and the laboratory environment during 

library preparation and sequencing. All negative controls provide a semi-quantitative estimate 

of background contaminants and allow researchers to identify contaminants that can be used in 

downstream subtractive analyses. Finally, it should be noted that blank controls can contain too 

little DNA to be effectively processed. In these cases, the use of known carrier DNA in blank 

controls can help to efficiently amplify contaminants	[61]. 

 

Positive Controls 

Two types of positive controls should be included to determine the limit of detection and 

provide insight into the effects of cross-contamination during extraction, library preparation, 

and sequencing. Both positive control types should be included at a minimum rate of 1:12, 

control to biological samples; in larger studies, at least 12 total positive controls should be 

included per study. (4) DNA extraction positive controls monitor DNA extraction efficiency, 

determine the level of detection, and examine levels of cross-contamination during DNA 

extraction. To include a DNA extraction positive control, a serial dilution of a known cell 

type(s) (e.g. 1, 10, 100, and 1000 cells) should be extracted alongside samples and span the 

expected limit of detection of the assay (see Kathroseq below)	[62]. Ideally, researchers should 

use a commercially available mixed community, such as the Zymo mock community (Zymo, 

D6300), as this enables standardization across different laboratories. Researchers can also 

consider including a range of positive titration spike-ins into liquid samples, such as blood, 

urine, or mucus, to evaluate the efficiency of extraction and the limit of detection, which is 

important as many sample types have inhibitors or chemicals that can increase the limit of 

detection. The bottom line is to use a positive control of known concentration that is relevant 

to your study and experimental questions. (5) The last recommended control is a positive 
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amplification control, which is again a titration of DNA from known organism type(s) to be 

processed solely during the library preparation stage. This control enables a detection limit to 

be established for library preparation. Critically, both positive control types can be used to 

calculate the limit of detection within the laboratory techniques used and the levels of cross-

contamination using novel bioinformatic approaches	 [62]. For example, Katharoseq utilizes 

differences in amplification efficiencies of true positives compared to negatives to 

mathematically determine a limit of detection by calculating cutoff scores to guide sample 

exclusion. In doing so, cross-contamination can also be evaluated, as positive controls from 

DNA extractions should be different from those used in library preparation.  

 

Controls samples often produce libraries of lower quantity and quality, but this should not 

prevent the control samples from being sequencing.  Libraries should be quantified (i.e. using 

a PicoGreen or Qubit assay for amplicon studies or a TapeStation or BioAnalyzer for shotgun 

sequencing) and pooled at equal molarity (e.g. X ng per observed fragment lengths per sample). 

If amplified control samples contain significantly lower amounts of DNA compared to 

biological samples, they should be included in sequencing pools by pooling the controls at a 

certain maximum volume (e.g. 20 µl of each control). In addition, amplified biological samples 

with low amounts of DNA can be pooled at this same maximum volume as controls (e.g. 20 µl)	

[62]. Alternatively, all samples and controls can be pooled at equal volumes; however, this 

approach requires deeper sequencing because the higher-biomass samples will dominate the 

DNA sequencing effort. For highly contentious sample types and claims (e.g. placenta), 

reproducibility across labs is highly recommended. 

 

Minimum guidelines: On average, all negative controls must be included at a ratio of 1:12, 

control to samples for smaller studies, or a minimum of 8 negative controls for studies with 

>100 samples. All positive controls should be included at a ratio of 1:12, control to samples, 

for smaller studies, or a minimum of 12 positive controls for studies that contain >100 samples. 

Controls must be processed alongside samples to account for contamination and should not be 

processed separately. 

 

 

3.) Critically assess and report contributions of contamination during analysis. 

The impacts of contaminant taxa must be assessed in the final analysis and interpretation of the 

data. Three different strategies currently exist to assess the impacts of contamination in 

microbiome datasets: (1) compare controls to biological samples; (2) filter contaminants from 
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biological samples; and (3) use predictive modeling to identify putative contaminants. Each 

method varies in its stringency and application. 

 

(1) Comparisons of biological samples to the controls can be used to assess the limit of detection 

and the variety of contaminant taxa. The first step is to assess the limit of detection in the DNA 

extraction and library preparation methodologies	[62]. For example, the limit of detection for 

an amplicon study can be assessed by comparing the number of DNA sequences in positive and 

negative controls to that in the biological samples to calculate a sample exclusion value (e.g. 

K1/2 value). Samples with fewer reads than the exclusion value should be discarded	[62].  Once 

a limit of detection is established, researchers can then compare the taxa identified in the 

negative controls (sampling blank, extraction blank, and no-template controls) with those from 

the biological samples, as this provides a list of taxa within biological samples that may have 

arisen from contaminant DNA. This is especially important to ensure that the significant 

differences in taxa abundances between sample types or treatments are not driven by 

contaminant taxa. If negative controls were not included in the study, taxa that drive differences 

between samples or treatments should be individually scrutinized and compared to previously 

published contaminant taxa lists (Table 1). We provide the largest, current list of contaminant 

taxa shared across multiple 16S rRNA-based studies within this publication for this purpose 

(Table 1). 

 

(2) A thorough, yet conservative approach can be taken to filter contaminant taxa from 

biological samples, removing all taxa found within negative controls from the biological 

samples or all contaminant taxa from reported sources (Table 1). While an extremely 

conservative approach, it effectively eliminates the effects of contaminant taxa and most cross-

contamination from the downstream data set.  However, DNA present in controls can also arise 

from biological samples via cross-contamination, so this analysis will also likely remove some 

biological signal that corresponds to the highest biomass organisms. While unlikely and 

typically rare, it is also possible that contaminant taxa could be truly present in a biological 

specimen (e.g. in a rare infection in an immunocompromised hospital patient), but this would 

need to be verified using a different approach, such as Fluorescent In-Situ Hybridization (FISH)	

[63,64]. Filtering contaminants from data sets can be a useful tool for rapid, preliminary 

assessment or in specific scenarios that require a very conservative evaluation. 

 

(3) Bioinformatic modeling has been developed to estimate the source and proportions of 

contaminant taxa within biological samples.  For example, SourceTracker analysis uses 
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Bayesian modeling to estimate the proportion of potential contaminant taxa from a data set	[65]. 

To do this, the blank controls can serve as contaminant ‘sources’ and the biological samples as 

‘sinks’ to estimate the origin and abundance of contaminant taxa within biological samples. 

Subsequently, the relative contributions of contaminant DNA within the samples can be 

factored into downstream analysis and data interpretation. However, it should be stressed that 

sufficient cross-contamination can confound SourceTracker analysis.  

 

Minimum guidelines: Biological samples must be compared to blank controls or known 

contaminant resources, and taxa identified as contaminants and biological samples must be 

reported. The approach taken to identify and minimize the effects of contaminant DNA during 

analysis should be clearly reported to enhance reproducibility and allow such approaches to be 

critically evaluated by others. 

 

 
Figure 2: Flowchart of methods to minimize influence of contaminant DNA in low-

biomass samples.  

 

 

Stage	of	experiment: Recommended	practice:

Sampling

DNA	extraction

Library	preparation

Sequencing

Data	analysis

• Wear	cleansuit; fresh	gloves;	face	mask
• Use	sampling	blank	controls

• Wear	cleansuit; fresh	gloves;	face	mask
• Decontaminate	working	area	before	use
• Perform	lab	work	in	a	controlled	environment	(cabinet),	

physically	isolated	from	post-PCR	facilities
• Use	extraction	blank	controls

• Wear	cleansuit; fresh	gloves;	face	mask
• Decontaminate	working	area	before	use
• Perform	lab	work	in	a	controlled	environment	(cabinet)
• Use	no-template	control	

• Ensure	use	of	unique	barcodes

• Comparison	and	reporting	of	taxa	found	in	blank
controls to	those	identified	in	biological	samples

Experimental	design
• Randomize	sample	types	and	treatment	groups

to	prevent	influences	of	batch/day-level	variation	
of	contaminant	DNA	or	other	confounding	variables
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Conclusions 
 

Microbiome research holds great promise for multiple fields, but methodological pitfalls can 

easily undermine the progress and reputation of this developing research area. Therefore, these 

pitfalls must be recognized and explicitly addressed at each phase of the scientific process by 

researchers, reviewers, and editors alike. Here, we present the ‘RIDE’ checklist for 

contaminant assessment to be applied across a wide-range of disciplines interested in exploring 

the microbial communities in low-biomass samples (see Box 1 for our ‘RIDE’ minimum 

standards checklist). Failure to take these caveats into account is likely to waste valuable time 

and money and erode the credibility of microbiome research. The current situation is similar in 

many ways to the methodological issues in ancient DNA research recognized over 20 years 

ago. A series of high-profile publications based on PCR amplification of short sequences were 

used to support remarkable findings, including the reported recovery of DNA more than 40 

million years old	[66–68] – well beyond the theoretical limit of DNA survival of around one 

million years	 [69]. Although these findings were heavily criticized by other ancient DNA 

researchers	 [70–74] and are now recognized as erroneous, these publications nevertheless 

damaged the credibility of the ancient DNA field. As a direct result, a set of ancient DNA 

authentication criteria was formulated and widely adopted	 [60]. These standards, improved 

techniques, and greater attention to the issue of contaminant DNA dramatically improved the 

credibility of ancient DNA research. In microbiome research, similar standards need to be 

established to improve scientific integrity and secure the credibility of such research. It is 

important to note that the minimum set of guidelines and the ‘RIDE’ checklist that we propose 

(Box 1) will not guarantee that all contamination can be accounted for or removed, nor will it 

provide a solution for every contaminant problem. New methodologies will likely only improve 

our ability to detect and quantify contamination in low-biomass samples. As new methods and 

analyses for microbiome analysis are also developed, novel solutions to account for 

contaminant DNA and cross-contamination will need also to be established. In the meantime, 

it is imperative that low-biomass research generates sufficient control data and that researchers 

develop and maintain a critical mindset when dealing with low-biomass microbiome samples. 

In this regard, we hope that the guidelines introduced in this article will help authors, reviewers, 

and editors monitor and protect the future of the microbiome field.  

 

 

 



 

 71 

Declarations 
 

Acknowledgments 

We would like to thank Alan W. Walker, Bastien Llamas, Jessica L. Metcalf, Kieren J. Mitchell, 

and Matilda Handsley-Davis for their feedback and suggestions.  

 

Funding 

LSW and RE were funded from the Australian Research Council grants: DECRA 

(DE150101574) and ARC Centre of Excellence CABAH (CE170100015). 

 

Author contributions 

RE, JJM, and LSW wrote the paper. All authors read, edited, and approved the final manuscript. 

 

Competing interests 

The authors declare that they have no competing interests. 

 

Ethics approval 

Not applicable. 

 

Availability of data and material 

Not applicable. 

 

Consent for publication 

Not applicable.  



 

 72 

Glossary 
 

Contamination: An umbrella term encompassing both contaminant DNA and cross-

contamination (see below). 

 

Contaminant DNA: DNA from sources other than the sample(s) under study (e.g DNA from 

reagents or researchers performing laboratory work).  

 

Cross-contamination: DNA exchange between samples within a study (e.g. accidental 

movement of DNA between different sample tubes during DNA extraction).  

 

DNA extraction blank control: A negative control consisting of an empty tube/well that is 

processed alongside biological samples during DNA extraction and allows for the detection of 

contaminant DNA introduced during DNA extraction.  

 

DNA extraction positive control: A positive control consisting of serially diluted cells of 

known type(s) that is processed alongside biological samples during DNA extraction and allows 

for determination of the limit of detection, monitoring of extraction efficiency, and 

quantification of cross-contamination during DNA extraction.  

 

Microbiome: The microorganisms of a specific habitat, their genomes, and the surrounding 

environmental conditions	[75]. 

 

Microbiota: The assemblage of microorganisms present in a defined environment	[75]. 

 

No-template amplification control: A negative control made by preparing an amplification or 

library preparation reaction without input template (i.e. sample DNA) that is processed 

alongside biological samples and allows for the detection contaminant DNA during library 

preparation/PCR amplification.  

 

Positive amplification control: A positive control consisting of serially diluted DNA from 

known organism type(s) that are processed alongside biological samples during amplification 

or library preparation and allows for determination of the limit of detection, monitoring of 
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library preparation efficiency, and quantification of cross-contamination during library 

preparation. 

 

RIDE: Report methodology, Include controls, Determine the limit of detection, and Explore 

the impacts of contamination in downstream analysis. Minimum standards checklist for low-

biomass microbiome studies. 

 

Sampling blank control: A negative control consisting of an empty tube that is processed 

alongside the collection of biological samples. Allows for the detection of contaminant DNA 

introduced during the sampling procedure (e.g. airborne, swabs, preservatives). 
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Table 1: Contaminant taxa previously identified in negative controls  

  

Taxon Study	found
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Actinomycetaceae;g__Actinomyces 23,24,76
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Corynebacteriaceae;g__Corynebacterium 19,24,
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Arthrobacter 19,24,
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Micrococcaceae;g__Rothia 23,24,
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Actinomycetales;f__Propionibacteriaceae;g__Propionibacterium 23,19,24,
Bacteria;p__Actinobacteria;c__Actinobacteria;o__Coriobacteriales;f__Coriobacteriaceae;g__Atopobium 23,24,
Bacteria;p__Bacteroidetes;c__[Saprospirae];o__[Saprospirales];f__Chitinophagaceae;g__Sediminibacterium 23,76
Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Porphyromonadaceae;g__Porphyromonas 23,24,
Bacteria;p__Bacteroidetes;c__Bacteroidia;o__Bacteroidales;f__Prevotellaceae;g__Prevotella 23,24,
Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__[Weeksellaceae];g__Chryseobacterium 19,76
Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Capnocytophaga 23,24,
Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Chryseobacterium 19,24,
Bacteria;p__Bacteroidetes;c__Flavobacteriia;o__Flavobacteriales;f__Flavobacteriaceae;g__Flavobacterium 23,19,21,76
Bacteria;p__Bacteroidetes;c__Sphingobacteriia;o__Sphingobacteriales;f__Sphingobacteriaceae;g__Pedobacter 19,76
Bacteria;p__Candidate	Phylum	TM7;c__unclassifiedTM7;o__unclassifiedTM7;f__unclassifiedTM7;g__unclassifiedTM7 23,24,
Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Bacillus 19,24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Bacillaceae;g__Geobacillus 24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__Brevibacillus 19,24,
Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Paenibacillaceae;g__Paenibacillus 19,24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Bacillales;f__Staphylococcaceae;g__Staphylococcus 24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Aerococcaceae;g__Abiotrophia 19,24,
Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Carnobacteriaceae;g__Granulicatella 23,24,
Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Enterococcaceae;g__Enterococcus 23,24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Lactobacillaceae;g__Lactobacillus 23,24,76
Bacteria;p__Firmicutes;c__Bacilli;o__Lactobacillales;f__Streptococcaceae;g__Streptococcus 23,19,24,76
Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Clostridiaceae;g__Clostridium 24,76
Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Coprococcus 23,24,
Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Peptoniphilaceae;g__Anaerococcus 23,24,
Bacteria;p__Firmicutes;c__Negativicutes;o__Selenomonadales;f__Veillonellaceae;g__Dialister 23,24,
Bacteria;p__Firmicutes;c__Negativicutes;o__Selenomonadales;f__Veillonellaceae;g__Megasphaera 23,24,
Bacteria;p__Firmicutes;c__Negativicutes;o__Selenomonadales;f__Veillonellaceae;g__Veillonella 23,24,
Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Fusobacteriaceae;g__Fusobacterium 23,24,
Bacteria;p__Fusobacteria;c__Fusobacteriia;o__Fusobacteriales;f__Leptotrichiaceae;g__Leptotrichia 23,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bradyrhizobiaceae;g__Afipia 19,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Bradyrhizobiaceae;g__Bradyrhizobium 19,24,21,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Hyphomicrobiaceae;g__Devosia 19,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Methylobacteriaceae;g__Methylobacterium 23,19,18,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Phyllobacteriaceae;g__Mesorhizobium 19,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Phyllobacteriaceae;g__Phyllobacterium 19,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Methylobacteriaceae;g__Methylobacterium 19,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodobacterales;f__Phyllobacteriaceae;g__Phyllobacterium 19,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Rhodospirillales;f__Acetobacteraceae;g__Roseomonas 19,24,
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Novosphingobium 19,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingobium 19,76
Bacteria;p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingomonas 19,21,18,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Alcaligenaceae;g__Achromobacter 21,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Burkholderiaceae;g__Burkholderia 19,24,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Comamonas 19,24,18,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Curvibacter 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Comamonadaceae;g__Pelomonas 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Cupriavidus 19,18,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Herbaspirillum 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Janthinobacterium 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Massilia 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Oxalobacter 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Burkholderiales;f__Oxalobacteraceae;g__Ralstonia 19,21,18,17,76
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__kingella 19,24,
Bacteria;p__Proteobacteria;c__Betaproteobacteria;o__Neisseriales;f__Neisseriaceae;g__Neisseria 23,24,
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Enterobacteriales;f__Enterobacteriaceae;g__Escherichia 19,24,
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pasteurellales;f__Pasteurellaceae;g__Haemophilus 23,24,
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Acinetobacter 23,19,18,16,76
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Moraxellaceae;g__Enhydrobacter 19,24,76
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Pseudomonadales;f__Pseudomonadaceae;g__Pseudomonas 19,24,21,17,76
Bacteria;p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Xanthomonadaceae;g__Stenotrophomonas 19,24,21,18,17,16,76
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Abstract 
The field of palaeomicrobiology—the study of ancient microorganisms—is rapidly growing 

due to recent methodological and technological advancements. It is now possible to obtain vast 

quantities of DNA data from ancient specimens in a high-throughput manner and use this 

information to investigate the dynamics of past microbial communities. However, knowledge 

is currently limited about how the characteristics of ancient DNA influence our ability to assign 

taxonomy (i.e. determine who’s there) in ancient metagenomic samples. Here, using both 

simulated and published metagenomic data, we investigate how ancient DNA characteristics 

affect alignment-based taxonomic classification. We find that nucleotide-to-protein alignments 

are currently unsuitable for ancient metagenomic data as they are unable to assign reads shorter 

than 60 base pairs, which is the typical length of ancient DNA. We determine that deamination 

(a form of ancient DNA damage) and random sequence substitutions corresponding to 100,000 

years of evolution minimally impact alignment-based classification. We also test four different 

reference databases and find that database choice is an important factor to consider for 

alignment-based taxonomic classification. Finally, we perform a reanalysis of previously 

published ancient dental calculus data, increasing the number of reads assigned taxonomy by 

an average of 64.2-fold, and identifying taxa previously unidentified in the study. Overall, this 

study enhances our understanding and ability to assign taxonomy to ancient microorganisms 

and provides recommendations for future palaeomicrobiological studies.  

 

Introduction 

Palaeomicrobiology—the study of ancient microorganisms—is a rapidly growing field of 

research. Like modern microbiology [1,2], palaeomicrobiology has witnessed a renaissance 

with the development of high-throughput sequencing technology [3,4]. The study of ancient 

microorganisms has the potential to shed light on a range of topics, such as the evolution of the 

human microbiota [5,6], adaptation and spread of ancient pathogens [7–9], the reconstruction 

of human migrations and interactions [10–12], and climate change [13].  
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Palaeomicrobiology is especially challenging because ancient DNA is fragmented, 

damaged, and mixed with the DNA of contaminant microorganisms. Ancient DNA is highly 

fragmented due to the post-mortem cessation of DNA repair, resulting in short fragments of 

lengths typically shorter than 100 bp [14,15]. These short fragments are also subjected to 

chemical modifications (e.g. deamination), which yields an increased rate of observed cytosine 

to thymine, and guanine to adenine substitutions at the 5’ and 3’ ends of the sequenced DNA 

molecules, respectively [15]. Finally, contamination of ancient DNA with modern microbial 

DNA is a serious issue which must be mitigated with expensive ultra-clean laboratories, 

rigorous decontamination, and the extensive use of extraction blank and no-template negative 

controls [16–18]. Collectively, these factors influence the choice of molecular techniques [19] 

and bioinformatic tools used for taxonomic classification of ancient microbial DNA [6]. 

Identifying the microbial species present within an ancient sample, i.e. taxonomic 

classification, is a standard first step in palaeomicrobiology studies [6]. Initially, targeted 

amplification of the 16S ribosomal RNA encoding gene was used to discover which microbes 

were present in ancient samples [5], as is routinely done in modern microbiota studies seeking 

to characterize microbial communities [1,20]. However, these targeted regions are often longer 

than the typical fragment length of ancient DNA and can contain length polymorphisms which 

bias the taxonomic reconstruction of ancient metagenomes [19]. Considering these findings, 

the palaeomicrobiology field has converged on shotgun sequencing as the best-practice 

approach to reproducibly identify microbial species within ancient samples. While more 

expensive than the targeted PCR approach, shotgun sequencing also provides genomic and 

functional information which can be used to reconstruct ancient microbial genomes, observe 

functional changes through time, and identify non-prokaryotic information within samples 

[6,9].  

Methods for analysing shotgun sequencing data broadly fall into two categories: 

assembly-based and alignment-based. Assembly-based techniques involve merging 

overlapping DNA fragments into longer sequences, with the goal of assembling whole 

genomes. Such techniques have been successful in generating new genomes from modern 

metagenomic samples [21,22]. However, the short, damaged nature of ancient DNA renders 

assembly-based techniques intractable for palaeomicrobiology. Alignment-based techniques 

involve the alignment of DNA fragments to previously characterized reference sequences using 

alignment algorithms such as Bowtie2 or the Burrows-Wheeler Aligner (BWA) [23,24]. 

Commonly used alignment-based methods include: MetaPhlAn [25], MG-RAST [26], 

DIAMOND [27], and MALT (MEGAN alignment tool) [28]. A recent study benchmarked 

these tools and found that MALT performed better for short, fragmented DNA [6]. MALT is 
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an alignment-based tool which allows researchers to query DNA sequences against reference 

databases using a method similar to BLAST (Basic Local Alignment Search Tool) [29], albeit 

>100 times faster [28]. MALT can either align nucleotide sequences to nucleotide databases 

(MALTn) or nucleotide to amino acid databases by translating the DNA prior to alignments 

(MALTx). A potential advantage to using amino acid alignments for palaeomicrobiology is the 

greater sequence conservation of peptides due to codon redundancy. This property may help 

smooth over small changes occurring in DNA sequence over time, allowing ancient sequences 

to be more easily aligned to modern references. However, the already short nature of ancient 

DNA yields even shorter amino acid sequences (e.g. 60 bp DNA translated = 20 amino acid 

sequence), which may not provide a sufficiently high alignment score for taxonomic 

classification [30,31]. Additionally, DNA damage can result in errors during in silico 

translation, further lowering alignment scores. To date, there has been no formal testing of 

nucleotide versus amino acid alignments for taxonomically classifying short reads typical of 

ancient DNA.  

Here, using both simulated and published ancient DNA data, we test how characteristics of 

ancient DNA influence alignment-based taxonomic classification. We demonstrate that the 

BLASTx approach is inappropriate for the alignment of ancient DNA and show that 

deamination minimally impacts alignment-based taxonomic classification. We also show that 

reference database choice is an important consideration when attempting to reconstruct ancient 

microbial communities, and perform an extensive reanalysis of previously published shotgun 

DNA sequences from ancient dental calculus.  

 

Methods 

Data used in this study 

To test MALT parameters on real ancient data, collapsed reads from a recent ancient 

metagenomic dataset were downloaded from OAGR (Online Ancient Genome Repository) 

https://www.oagr.org.au/experiment/view/65/ [6]. 

 
Reference sequences and databases 

For the analysis of simulated metagenomes, we downloaded complete bacterial genomes from 

the NCBI Assembly (6,896 total as of 17th May 2017). Additionally, the coding sequences 

(CDS) and translated coding sequences were downloaded for these complete bacterial genomes 

on the same date. These three sources of sequences were used to construct different MALT 

databases: (MALTn-genome — full genomic sequences, MALTn-CDS — nucleotide coding 
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sequencing from these genomes, and MALTx — translated coding sequences from these 

genomes).  

 

For the analysis of previously published dental calculus data, we used sequences from the four 

following databases: 

(1) 2014nr — containing the 2014 protein BLAST database, (downloaded 11th November 

2014), used in [6]. 

(2) 2017nt — the 2017 nucleotide BLAST database (downloaded 6th June 2017). 

(3) HOMD — genomic sequences from the Human Oral Microbiome Database (downloaded 

July 2017 — “All human oral microbial genomes, total: 1,362”). 

(4) RefSeqGCS — RefSeq genomic sequences from bacterial and archaeal entries (Complete-

, Chromosome-, and Scaffold-level assemblies downloaded from NCBI Assembly, Archaeal 

349, Bacterial 47,347, total: 47,696). 

 
Simulated metagenome construction 

Gargammel [32] was used to generate simulated ancient metagenomes. Bacterial genomic 

sequences selected from the NCBI assembly were assigned abundances (representing a typical 

dental plaque community (Table S1)) and then fragmented into five metagenomes containing 

either strict 30, 50, 70, 90 bp (base pair) fragments, or an empirical ancient DNA fragment 

length distribution (--loc 4, --scale 0.3 in Gargammel) (Figure S1) (Figure 1). Each fragmented 

simulated metagenome had 1.5 million sequences. To benchmark the influence of deamination 

on taxonomic classification, these five simulated metagenomes were then deaminated using 

Gargammel with the following [33] parameters: nick frequency=0.03, length of overhanging 

ends (geometric parameter)=0.25, probability of deamination in double-stranded parts=0.01, 

probability of deamination in single-stranded parts=0.1 for light deamination (10% δs), or 0.5 

for heavy deamination (50% δs). Additionally, a real Mapdamage profile from the LaBrana 

sample [32] was simulated using Gargammel for the moderate deamination (~20% δs). Overall, 

this resulted in a total of 20 different simulated metagenomes: (five different fragment lengths, 

30, 50, 70, 90, and empirical) multiplied by (four different deamination magnitudes 0% δs, 10% 

δs, 20% δs, and 50% δs) = 20 (Metagenome 1-20, Table S2). 
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Generation of divergent sequences 

Nucleotide substitution rates are known to differ between different species of bacteria. Proper 

modelling of bacterial genome evolution is a difficult task. Here we apply a simplified approach 

which ignores insertions and deletions and instead focused on creating a worst-case scenario 

for benchmarking the effects of nucleotide substitutions on taxonomic classification. We chose 

a rate of 10-7 substitutions per site per year, representing the mean of known rates for bacterial 

genomes [34]. We assumed an average bacterial genome size of 3 million bp, thus 10-7 * 

3,000,000 = 0.3 substitutions per genome per year. Scaling up for multiple years yielded: 10,000 

years = 3,000 substitutions (0.1% of genome), 30,000 substitutions (1% of genome), and 

300,000 substitutions (10% of genome). We used these numbers to randomly mutate 

(substitutions only) the bacterial genomes using EMBOSS msbar [35]. These ‘mutated’ 

genomes were then used as input for Gargammel as above and deaminated using the heavy 

deamination magnitude (50% δs) (Metagenome 21-23, Table S2).  

 

Data:	6897	bacterial	complete	
genomes	from	RefSeq

Metagenome	construction:

Select	29	genomes	(25	“normal”	dental	
plaque	taxa)	+	(4	common	contaminants)	

Gargammel:

Simulate	taxa	abundances,	fragment	
lengths,	and	deamination

MALT	database	construction:

MALTn-genome database	built	using	
complete	genome	sequences

MALTn-CDS database	built	using	coding	
sequences	from	genomes

MALTx database	built	using	translated	
coding	sequences	from	genomes

MALT-run:
Simulated	metagenomes	run	against	

different	MALT	databases.

MEGAN6-CE:
.rma6	files	opened	in	MEGAN,	LCA	
parameters	set,	data	analysed.

Figure 1 General overview of simulated data construction and analysis.
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MALT/MEGAN analysis 

MALT-build v 0.3.8 was used on the reference sequences mentioned above with the default 

parameters. MALT-run v 0.3.8 was used to align the simulated and real data against the 

different databases using default settings and outputting BLASTtext files. The resulting 

BLASTtext files were converted to RMA6 files using the MEGAN tool blast2rma, and were 

then imported and analyzed in MEGAN CE V6.8.13 [36]. The Weighted LCA algorithm was 

applied to the imported RMA files, as suggested [36]. For analysis of the published ancient 

DNA data, we used default LCA parameters, with the following exceptions: minimum support 

percent filter of 0.1% was applied to remove poorly supported assignments (i.e. taxonomic 

assignments require at least 0.1% of the total reads to be considered), and the minimum 

expected value (E-value) was set to 0.01. Little research has been done regarding the effect of 

LCA parameters on taxonomic classification, and such research deserves its own study. 

Regardless, the parameters chosen for this study represent a conservative approach. PCoA plots 

were generated within MEGAN using Euclidean distances between samples. 

 

Statistical analysis 

Divergence between predicted and simulated abundances was calculated using log-odds scores: 

log odds = log2(predicted abundance/simulated abundance), and the Pearson correlation 

coefficient. 

 

UPGMA tree 

The UPGMA tree was constructed by exporting the distance matrix from MEGAN6 and 

importing it into SplitsTree4 [37]. 

 
Data availability 

Simulated metagenomes and the genomic sequences used to build the metagenomes are 

available here: XXXX.  

 

Results 

Nucleotide-to-nucleotide alignments classify shorter DNA sequences 

To compare the alignment performance of nucleotide-to-nucleotide (MALTn) and nucleotide-

to-protein (MALTx) alignments at different read lengths, we used simulated metagenomes that 

contained DNA fragmented with strict length cut-offs (30bp, 50bp, 70bp, 90bp), as well as a 

log-normal read length distribution commonly found in ancient DNA data (subsequently 
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referred to as “empirical”) (Figure S1). MALTx was unable to align sequences from the 30 and 

50 bp simulated metagenomes and could only align 33% of sequences from the 70 bp simulated 

metagenome (Table 1). Using the empirical fragment length distribution metagenome, 

MALTn-CDS (coding sequences only) classified 5.55-fold more total sequences than MALTx 

(MALTn-CDS vs. MALTx) (Figure 2). Nucleotide alignments including non-coding sequences 

(MALTn-genome) were able to classify 6.25-fold more total sequences than MALTx (6.93 and 

9.93-fold more sequences at the genus and species level, respectively) (Figure 2). 

 

 

Table 1 Percentages of total reads assigned at different taxonomic levels with different read 
length cut-offs Weighted-LCA settings 

Fragment length Reads assigned total Reads assigned genus Reads assigned species
30bp_MALTn-Genome 100 100 97
30bp_MALTn-CDS 86 86 83
30bp_MALTx 0 0 0
50bp_MALTn-Genome 100 100 98
50bp_MALTn-CDS 88 88 86
50bp_MALTx 0 0 0
70bp_MALTn-Genome 100 100 98
70bp_MALTn-CDS 90 90 88
70bp_MALTx 33 31 25
90bp_MALTn-Genome 100 100 98
90bp_MALTn-CDS 91 91 89
90bp_MALTx 82 75 55
Empirical_MALTn-Genome 99 98 97
Empirical_MALTn-CDS 87 87 86
Empirical_MALTx 16 14 10

Figure 2. Percentage of reads assigned taxonomy using simulated 
metagenomes of empirical ancient DNA fragment length against 
different MALT databases.
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We then tested if our findings held true on real ancient dental calculus data using 

previously published samples from [6], and found nucleotide-to-nucleotide alignments resulted 

in 7.43-fold more sequences being assigned than nucleotide-to-protein alignments (MALTn-

CDS vs. MALTx, Table S3; Figure S2). When including non-coding sequences, this 

improvement increased to 8.62-fold (10.74 and 13.07-fold at the genus, and species level, 

respectively) (MALTn-genome vs. MALTx, Table S3; Figure S2), corroborating our simulated 

metagenome findings. These results suggest that nucleotide-to-amino acid alignments are 

inappropriate for the alignment and classification of short DNA fragments typical of ancient 

DNA, and that non-coding sequences in prokaryotic genomes contain information useful for 

taxonomic classification. 

 

MALTn taxonomic classifications are more accurate than MALTx 

While MALTn can classify substantially more sequences than MALTx, the accuracy of these 

assignments has not yet been examined. We tested the accuracy of these assignments by 

comparing them to the “ground truth” (i.e. what was put into the simulated metagenomes). 

Overall, MALTn performed well, almost perfectly recapitulating the input simulated 

metagenome of empirical ancient DNA fragment length (0.998; Pearson correlation; -0.48 sum 

of log-odds scores between MALTn-CDS and actual metagenome) (Figure 3). Even though 

sequences below 50 bp were not classified, MALTx also performed well, albeit with poorer 

abundance predictions (0.943; Pearson correlation and -6.66 sum of log-odds scores between 

MALTx and actual metagenome) (Figure 3). MALTx also misclassified more sequences i.e. 

assigned sequences to taxa not used for constructing the simulated metagenome. At the species 

level, 2.4% of assigned sequences using MALTx were misclassified, resulting in 24 taxa being 

falsely predicted.  Whereas only 0.29% of sequences were misclassified using MALTn-CDS 

with 11 taxa being falsely predicted (Table S4). Additionally, MALTn maintained accuracy 

classifying sequences as short as 30bp (Figures S3 & S4)  
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Lastly, the addition of non-coding sequences to the reference database had very little 

effect on the accuracy of taxonomic classifications, as the MALTn-genome classifications were 

almost identical to MALTn-CDS (0.999; Pearson correlation between MALTn-genome and 

MALTn-CDS) (Figure 3); however, more misclassifications at the species level were identified 

using MALTn-CDS (11 species for MALTn-CDS vs. 2 species for MALTn-genome). Overall, 

these results suggest that MALTn classifications are more accurate than MALTx both in 

providing fewer misclassifications, and better abundance predictions. Additionally, it appears 

that including non-coding information in reference databases (e.g. MALTn-genome) 

substantially reduces misclassifications. 

Deamination minimally affects alignment-based classification 

We next wanted to test the effects of deamination (a commonly observed form of ancient DNA 

damage) on alignment-based taxonomic classification. We tested three scenarios: light 

deamination 10% δs (deamination rate on single-stranded overhangs), moderate deamination 

~20% δs, and heavy deamination 50% δs (Table 2). Heavy deamination did not substantially 

impact the number of sequences assigned for the empirical ancient DNA fragment length 

distribution metagenome when using MALTn (0.9% loss of sequences assigned at the species 

level for and MALTn-genome, 1.1% for MALTn-CDS) (Table 2). As expected, lower 

Figure 3. Species level taxonomic classification of empirical fragment length simulated metagenome. Species 
coloured black were not used as input for constructing the simulated metagenomes, representing misclassifications. 
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Leptotrichia	sp.	oral	taxon	847
Leptotrichia	sp.	oral	taxon	212
Leptotrichia	buccalis
Legionella	pneumophila
Haemophilus	 influenzae
Fusobacterium	nucleatum
Fusobacterium	hwasookii
Capnocytophaga	sp.	oral	taxon	323
Capnocytophaga	ochracea
Capnocytophaga	haemolytica
Bacillus	thuringiensis
Bacillus	subtilis
Agrobacterium	tumefaciens
Agrobacterium	sp.	H13-3
Agrobacterium	rhizogenes
Agrobacterium	fabrum
Aggregatibacter	aphrophilus
Aggregatibacter	actinomycetemcomitans
Actinomyces	sp.	oral	taxon	414
Actinomyces	radicidentis
Actinomyces	oris
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magnitudes of deamination had an even smaller impact (Table 2). We also assessed the impacts 

of heavy deamination on the assignment of DNA sequences of different lengths. Shorter (30bp) 

sequences were more affected for nucleotide alignments (9.53% loss of sequences assigned at 

the species level for MALTn-genome, 8.41% for MALTn-CDS), but this loss was not observed 

for sequences longer than 50bp (Tables S5-S7). Heavy deamination did not substantially 

increase the percentage of misclassifications at the species level (0.06% to 0.07% for MALTn-

genome, 0.29% to 0.30% for MALTn-CDS and 2.42% to 2.48% MALTx). Deamination also 

did not substantially affect taxonomic composition (Figures S5-S7). Overall, these results 

suggest that deamination appears to minimally affect alignment-based taxonomic classification. 

 
 

The influence of sequence divergence on taxonomic classification 

The effects of sequence divergence on alignment-based taxonomic classification have not yet 

been explored. To this end, we created divergent simulated metagenomes by introducing 

random substitution mutations into the same reference genomes used in the above experiments. 

We chose three different divergence magnitudes: 0.1% sequence divergence (equating to 

roughly 10ky (thousand years) of evolution), 1% (100ky), and 10% (1,000ky), allowing us to 

examine the worst-case impacts of sequence divergence on taxonomic classification. Overall, 

MALTn-genome, MALTn-CDS, and MALTx were able to effectively assign taxonomy with 

minimal loss of alignments (~1%) at 0.1% and 1% sequence divergence (Figure 4). At 10% 

divergence, the influence of divergence was more pronounced, as the percentage of sequences 

not assigned taxonomy increased from 2.28% to 25.1% for MALTn-genome, 13.48% to 35.7% 

Table 2. Effects of deamination on taxonomic classification of typical ancient DNA read-length distribution 

Fragment length Reads assigned total (%) Reads assigned genus (%) Reads assigned species (%)

MALTn-genome_0δs 98.6 98.4 96.6

MALTn-genome_10δs 98.4 98.2 96.5

MALTn-genome_20δs 98.5 98.3 96.5

MALTn-genome_50δs 97.7 97.5 95.7

MALTn-CDS_0δs 87.4 87.1 85.5

MALTn-CDS_10δs 87.2 86.9 85.3

MALTn-CDS_20δs 87.2 86.9 85.3

MALTn-CDS_50δs 86.5 86.2 84.6

MALTx_0δs 15.8 14.2 9.7

MALTx_10δs 15.2 13.7 9.4

MALTx_20δs 15.0 13.6 9.2

MALTx_50δs 14.5 13.1 8.9
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for MALTn-CDS, and 85.45% to 95.4% for MALTx. Even with the loss of sequences assigned 

with 10% divergence, the taxonomic classifications and abundances remained relatively stable 

(Figures S8 & S9), although protein alignments were more effected — 0.944 Pearson 

correlation coefficient between 1,000ky composition and actual simulated metagenome 

composition for MALTn-genome, 0.944 for MALTn-CDS, and 0.825 for MALTx. As 

expected, shorter sequences were more affected by sequence divergence and deamination 

(Figure S10). Overall, our simulations suggest that random sequence divergence of up to 

100,000 years may minimally affect alignment-based classification.  

 
 

Reference database choice strongly influences taxonomic classification 

Because alignment-based methods are highly reliant on reference sequences available in 

databases, we next sought to test the influence of database choice on taxonomic classification 

of ancient microbial DNA. To this end, we constructed four different reference databases from 

different sources:  

(1) 2014nr: This contains the 2014 non-redundant protein BLAST database, which was used in 

a recent palaeomicrobiology publication by Weyrich et al. [6], and represents the example of a 

database used with the MALTx method.  

Figure 4. Percentage of reads assigned taxonomy using divergent and deaminated 
simulated metagenomes of typical ancient DNA fragment length.
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(2) 2017nt: The 2017 nucleotide BLAST database, this is the default for BLAST searches on 

the NCBI website, and does not include draft genome assemblies (chromosomes, scaffolds, or 

contigs).  

(3) HOMD: genomic sequences from the Human Oral Microbiome Database. This is a curated 

nucleotide database comprised of oral-associated microbial species, and includes all genome 

assembly levels (complete, chromosome, scaffold, and contig).  

(4) RefSeqGCS: Genomic sequences of bacterial and archaeal assemblies from the NCBI 

Assembly. This database includes complete, chromosome, and scaffold level genome assembly 

levels (contigs could not be included due to size/memory constraints). It also contains 

substantially more entries 47,696 vs. 1,362 for HOMD, with a broader diversity of entries (i.e. 

not primarily oral taxa). 

To test the effects of these different databases on the taxonomic classification of real data 

palaeomicrobiological data, we aligned the reads from four previously published, deeply 

sequenced dental calculus samples (three ancient, one modern) [6] against the four databases 

mentioned above. As expected, the MALTx approach using the 2014nr database assigned the 

least number of reads taxonomy (Figure 5; Figure S11), while the MALTn approach using the 

RefSeqGCS database assigned the most sequences. In addition, the highest percentage of 

sequences assigned was from the modern dental calculus sample, with the RefSeqGCS database 

assigning the most reads taxonomy (80.8%) to this sample (Figure 5). In the ancient samples, 

the highest number of species were identified when sequences were aligned to the HOMD 

(Table 3), while higher numbers of genera were classified when comparing ancient sequences 

to the RefSeqGCS and 2017nt databases (Table 3). The higher number of species observed in 

the HOMD could be due to either cross-mapping from environmental taxa (as it contains few 

soil/environmental genomes), or a higher diversity of oral-specific assemblies.  
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Species identified in the analysis were also markedly impacted by the database used 

(Figures S12-S15; Table S8). When assessing the dominant taxa (>1% abundance), important, 

high-abundance oral taxa that have scaffold-level assemblies were not identified using the 

2017nt BLAST database. These include Actinomyces dentalis, Bacteriodetes sp. oral taxon 

274, Capnocytophaga granulosa, Corynebacterium matruchotii, Methanobrevibacter oralis, 

Prevotella sp. oral taxon 317, and Pseudoramibacter alactolyticus. This is a likely reason for 

the 2017nt performing worse regarding the percentage of total reads assigned taxonomy 

(27.3%) when compared to the HOMD (45.1%) and RefSeqGCS (48.9%) (Figure 5), and 

highlights the importance of including scaffold-level assemblies for taxonomic classification.  

Overall, the RefSeqGCS database assigned the most reads taxonomy, and contained the most 

diverse selection of reference genomes. Therefore, we chose the RefSeqGCS for subsequent 

reanalysis of published dental calculus samples.  

 
Reanalysis of published dental calculus data with nucleotide alignment 

To further test the performance of the RefSeqGCS database, we included more ancient dental 

calculus samples (total of n=24) from the same study use above [6]. We found that MALTn 

substantially increased the number of reads assigned taxonomy, especially for samples with 

Figure 5. Percentage of reads assigned taxonomy for deeply sequenced published data from Weyrich 2017 et al. Clustered 
columns represent samples analysed using different reference databases. Colours indicate specificity of assignments.
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short fragment length distributions (Table S9). We found an average 64.2-fold (minimum 1.5, 

maximum 525.5) increase in number of reads successfully assigned taxonomy when using 

MALTn against the RefSeqGCS versus MALTx against the 2014nr (Table S9). Despite the 

increase in reads assigned using MALTn, the average percentage of unassigned reads remained 

relatively high 58.2% (minimum 19.4%, maximum 95.6%), although this was substantially 

lower than MALTx (average 94.2%, minimum 58.3%, maximum 99.8%). Regarding 

taxonomic assignment, species level composition was more affected by database 

choice/alignment method, showing a clearer separation using Principal Component Analysis 

(PCoA) (Figure 6A & 6B). Finally, changes in taxonomic classification appeared to alter the 

grouping of samples originally reported in the original paper [6] (Figure 7). The previously 

reported ‘Forager-gatherers’ and ‘Hunter-gatherers’ clades disappeared and became 

intermixed, whereas the ‘Ancient agriculturalists’ clade remained intact. However, further 

research is needed to confirm this. Overall, these findings suggest that it will be important to 

revisit previously published datasets as reference databases become larger and analytical 

techniques are improved. 

 

Figure 6. PCoA of Euclidean distances of microbial communities between samples. (A) genus level. (B) species level. 
Yellow circles represent communities classified using nucleotide-to-protein alignment against the 2014nr BLAST 
database, and purple squares represent communities classified using nucleotide-to-nucleotide alignment against the 
RefSeqGCS data.
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Discussion 

Studying past microorganisms relies on our ability to reliably assign taxonomy. The field of 

palaeomicrobiology is in its infancy, and to our knowledge, there has not yet been a thorough 

study of how the characteristics of ancient DNA affect taxonomic assignments. To this end, we 

sought to provide such a resource for palaeomicrobiological researchers, and suggestions 

moving forward.  

 

Nucleotide-to-nucleotide versus nucleotide-to-protein alignments for palaeomicrobiology 

We evaluated the performance of both nucleotide-to-nucleotide and nucleotide-to-protein 

alignments for taxonomic classification, and found that sequences shorter than ~60 bp could 

not be aligned using a the nucleotide-to-protein approach. This limits the feasibility of 

nucleotide-to-protein alignments for palaeomicrobiological studies given that ancient DNA 

reads are typically shorter than 60bp. The likely reason for the poorer performance of 

nucleotide-to-protein is that nucleotide translation reduces alignment length by ~66.6% (e.g. a 

0.1

Ancient 
agriculturalists

Figure 7. UPGMA tree constructed using Bray-Curtis dissimilarity of microbial composition between samples 
from Weyrich 2017 et al. Branch scale bar represents Bray-Curtis dissimilarity between samples.  
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60bp nucleotide sequence = a 20 aa protein sequence), yielding a lower bit (alignment) score. 

Given that the default bit-score threshold for MALT is 50, most short reads would struggle to 

obtain a sufficient score to pass filtering. Additionally, amino acid scoring matrices influence 

the final score of the alignment; the default MALTx scoring matrix is BLOSUM62 which 

optimized for longer sequences [31]. The inability to align short reads may also bias taxonomic 

composition towards modern environmental and laboratory contaminant taxa, whose reads are 

typically longer. Additionally, it has been suggested that mycobacterial cell walls may protect 

DNA from hydrolytic damage-induced fragmentation and result in longer average read lengths 

for some mycobacterial taxa [38]. This would result in an overrepresentation of taxa that have 

longer DNA fragments if using protein alignments.   

Despite the 5.55-fold loss of reads assigned using nucleotide-to-protein alignments, the 

taxonomic classifications were relatively similar to the nucleotide alignments for the simulated 

dataset. However, nucleotide-to-nucleotide alignments clearly outperformed nucleotide-to-

protein alignments in terms of number of reads assigned, and the lower rate of 

misclassifications. These misclassifications primarily resulted from the lack of non-coding 

sequences in the protein and CDS nucleotide databases, with misclassifications being supported 

by sequences that were derived from non-coding genes in the simulated inputs (e.g. tRNA, 

rRNA etc.). Recent estimates from 2,671 complete bacterial genomes place the average 

percentage of non-coding DNA at 12% [39], this represents a non-trivial amount of information 

that should be harnessed when using reference-based taxonomic alignment. Finally, we also 

demonstrated nucleotide-to-nucleotide alignments can faithfully recapitulate simulated 

taxonomic composition using reads as short as 30bp, highlighting the applicability of 

nucleotide-to-nucleotide alignments for ultra-short fragments typical of palaeomicrobiological 

studies.  

Pending further optimization to nucleotide-to-protein alignment methods we 

recommend using a nucleotide-to-nucleotide alignment approach for taxonomic classification 

of short length ancient DNA, and the inclusion of non-coding information in reference 

databases to reduce potential misclassification and to increase the amount of information used 

in alignments.  

 

Characteristics of ancient DNA that influence taxonomic classification 

In this study, we tested the impacts of deamination on shotgun metagenomic taxonomic 

classifications. We demonstrated that high levels of cytosine deamination (50% δs) did not 

substantially impact taxonomic classification in longer sequences; however, we observed a loss 

of ~15% of the species level classifications when analyzing 30 bp DNA sequences. This 
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suggests that the use of uracil-DNA-glycosylase (UDG) [40] — an enzyme that cleaves 

deaminated cytosines to reduce the rate of ancient DNA errors — may not be required for 

microbial taxonomic classifications of ancient remains, as this also reduces the total number of 

sequences that can be analyzed. Additionally, treatment with UDG — either full or partial [41] 

— substantially reduces a key source of ancient DNA authentication, which is critical in 

palaeomicrobiological studies to verify ancient taxa from modern contamination. The lack of 

such authentication in palaeomicrobiological research has already led to contentious claims 

[42,16,18]. Given the minimal impact of deamination on alignment-based taxonomic 

classification, and the importance of deamination as a measure of ancient DNA authenticity, 

we recommend against the use of UDG for future palaeomicrobiological studies that focus on 

alignment-based classification.  

Sequence divergence is another characteristic of ancient DNA that can render 

taxonomic classification difficult. We tested three substitution-based sequence divergence 

simulations, and found that rates of sequence divergence corresponding to <100,000 years 

unlikely to alter palaeomicrobiological classifications. A substantial reduction in the number of 

identified sequences was observed for samples with sequence divergence simulated at one 

million years (~20% loss of reads assigned taxonomy). However, this is at the theoretical limit 

of DNA preservation [14], and is thus unlikely to hamper most palaeomicrobiological studies. 

We also found that shorter sequences were more affected by sequence divergence and 

deamination, and this can intuitively be explained by the reduction in raw alignment score due 

to mismatches to the reference. As such, the use of new molecular techniques to obtain even 

shorter DNA fragments (e.g. <25 bp [43]) may prove especially difficult to classify 

taxonomically given the combined effects of sequence divergence and deamination.  

The influence of insertions, deletions, and recombination would have additional impacts 

on sequence divergence that were not tested here but would likely further hinder taxonomic 

classifications. Future simulations accounting for differences in synonymous/non-synonymous 

mutations may give amino acid alignments the upper-hand given the excess synonymous 

mutations observed due to purifying selection [44], although amino acid alignment scoring 

would still have to be optimized to deal with short DNA fragments. Additionally, future studies 

simulating the effects of insertions, deletions, and recombination on taxonomic classification 

are warranted.  

Overall, we found that alignment-based taxonomic classification appears robust against 

magnitudes of random nucleotide substitution that could be observed in ancient DNA <100,000 

years old. We also demonstrated that shorter fragments of DNA are more affected by nucleotide 

sequence divergence and deamination. 
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Reference database strongly influences alignment-based taxonomic classification 

We found that database choice had a major impact on both the number of reads that were 

assigned taxonomy and the taxa classified. The 2017nt BLAST database performed poorly 

compared to the HOMD and RefSeqGCS, assigning on average 33% fewer reads taxonomy 

and lacking numerous key oral taxa. This is likely because the 2017nt BLAST database does 

not contain draft, unfinished bacterial genomes assemblies, which is a major limitation for 

ancient dental calculus research given that some important oral taxa currently have only 

chromosome or scaffold-level assemblies, such as Acintomyces dentalis, Bacteroidetes sp. oral 

taxon 274, Capnocytophaga granulosa, Corynebacterium matruchotii, Eikenella corrodens, 

Lautropia mirabilis, Methanobrevibacter oralis, numerous Prevotella species, 

Pseudoramibacter alactolyticus, Slackia exigua, and Treponema socranskii. While the HOMD 

database contained substantially fewer reference sequences compared to the RefSeqGCS (1,362 

vs. 47,696, respectively), it performed comparably regarding the number of reads assigned from 

ancient dental calculus samples. However, we don’t recommend the HOMD database alone for 

taxonomic classification of ancient dental calculus, as it does not contain many environmental 

or laboratory contaminant taxa that are typically present in ancient samples. These 

environmental and laboratory contaminant taxa allow for the quantification of contamination, 

and competitive alignment — which can prevent false positive assignments. Overall, given the 

larger diversity of the RefSeqGCS database, and its ability to classify the most reads taxonomy, 

we would recommend it over the others tested for future palaeomicrobiological studies. 

However, further work is needed to assess and curate the quality of reference assemblies — 

especially of scaffold-level and below — to ensure reliable and accurate alignment-based 

taxonomic classification [45]. There is also scope for a concerted effort by 

palaeomicrobiological researchers to work together in constructing a curated, regularly updated 

reference database. This could help foster reproducibility and set a standard for future work in 

the field — similar to what has been accomplished by the HOMD for oral microbiome studies 

[46].  

 

Reanalysis of previously published data 

We also performed a reanalysis of previously published ancient dental calculus data from 

Weyrich et al. [6] to test if our in-silico findings were true for real data, explore the proportion 

of sequences currently classifiable, and to see whether the relationships between samples 

changed when using the RefSeqGCS database. Nucleotide alignment against the RefSeqGCS 

database performed considerably better compared to protein alignment against the 2014nr, with 
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an average 64.2-fold increase in the number of reads assigned taxonomy. As expected, this 

increase was higher for samples with shorter mean fragment lengths and highlights the 

importance of using nucleotide-to-nucleotide alignments to allow fair comparisons between 

samples of different mean fragment lengths.  

Despite the substantial increase in the number of reads aligned, the average number of 

reads that did not have any alignment was 58.2%. When compared to the latest extension to the 

human microbiome project where the average number of reads without alignment was ~25% 

for 265 supragingival plaque samples [47], this suggests that reference bias exists for ancient 

calculus samples. This is not likely due to methodological differences between studies, as the 

modern calculus sample we analyzed in this study (European descent) had a similar percentage 

of its reads without alignment (19.4%). One hypothesis for this finding is that modern reference 

databases are missing a large number of oral microorganisms that were present in historical and 

ancient humans. Additionally, given that most modern microbiome studies and microbial 

genomes assembled are from European/American individuals [2,47], current reference 

databases are likely missing oral microbial diversity from other human populations. Another 

possibility for this finding is DNA contamination of the dental calculus samples with ancient 

or modern soil microorganisms that do not currently have reference sequences. While we 

limited our reference database to prokaryotes to save space, the percentage of eukaryotic DNA 

in ancient dental calculus and modern dental plaque is low (<0.3%) [9] and is therefore unlikely 

to be driving this high percentage of unaligned reads. Clearly, further research is needed to 

investigate the large proportion of ‘microbial dark matter’ present in ancient samples, in the 

meantime, we suggest that researchers report the percentage of unaligned reads per sample for 

greater transparency.  

We determined that choice of database and alignment method influenced the resulting 

taxonomic composition of samples, especially at the species level, where the major split on PC1 

was associated with database/alignment method. This could be due to both an increase in the 

diversity captured by the RefSeqGCS, and the ability to align a larger proportion of the data 

using nucleotide-to-nucleotide alignments. Indeed, we were able to identify species not found 

by the previous study, and which could be the subject of future research. Finally, differences 

were also observed in the relationships between samples, with two of the three large groupings 

previously identified disappearing, with the exception of the ‘Ancient agriculturalists’ group. 

However, further research is needed to confirm this finding, as it could be a result of different 

LCA parameters used between studies (default in [6], more stringent in this paper).  

Overall, we demonstrated the importance of revisiting previously published data with new 

reference databases and methods. This will be increasingly important as new genome 
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assemblies are obtained in the future, which could reduce the proportion of microbial ‘dark 

matter’ and yield new insights into previously published datasets. 

 

Future challenges for taxonomic classification of ancient DNA 

The ability to investigate ancient microbial communities can shed valuable insights into 

microbial evolution, climate change, human migration, and the evolution of the human 

microbiota. However, there are analytical challenges that hinder our understanding of ancient 

microbial communities, and we list some below.  

Database sizes are a limitation for the currently implemented algorithms in MALT, as 

MALT uses large amounts of memory (e.g. >1 TB of RAM) when comparing sequences to the 

2017nt and RefSeqGCS databases, and these requirements will increase as more genomes are 

added to databases in the near future. A possible solution may be better database curation, e.g. 

through deduplication of the same strain with multiple entries, which could be accomplished 

using a sequence similarity clustering-based approach. Additionally, future algorithmic 

refinements in database compression may alleviate this issue. Ultimately, database choice is an 

essential facet of alignment-based taxonomic classification, and we urge researchers to 

carefully consider the pros and cons of different databases and how they can affect their 

findings. Additionally, databases are a fluid issue; as more reference sequences are generated, 

reanalysis of palaeomicrobiological datasets will be important to reassess past interpretations 

and findings. 

Our current inability to assign taxonomy to >50% of DNA sequences in ancient dental 

calculus samples is a major issue, and we need new methods to identify these reads. A potential 

approach could be to de-novo assemble genomes from these ancient samples and use these as 

reference sequences for further alignment-based taxonomic classification. Such tools currently 

exist [21], but their performance on short and degraded ancient DNA is yet to be determined. 

An alternative and complementary approach is to obtain more high-quality reference genome 

from modern samples, including from non-European individuals. Until we can comfortably 

assign a higher proportion of ancient DNA reads taxonomy, we recommend that 

palaeomicrobiological researchers report the percentage of unassigned reads when classifying 

taxonomy. 

 Finally, this paper did not investigate eukaryotic or viral classification in ancient 

metagenomes, instead focusing on prokaryotes which account for >99% of DNA in ancient 

dental calculus [3,6]. The inclusion of eukaryotic and viral sequences within the prokaryotic 

RefSeqGCS database was not possible due to size hardware constraints even with a 

sophisticated computer server containing 1.5 TB of RAM. Given that a recent paper identified 



 

 103 

eukaryotic DNA putatively present in ancient dental calculus using the nucleotide-to-protein 

alignment approach [6], a future reanalysis using the more applicable nucleotide-to-nucleotide 

approach is warranted.  

 Overall, we hope that this paper is a useful resource for palaeomicrobiological 

researchers and that future studies will tackle the issues highlighted. Only through the 

development and improvement of analytical techniques will the full potential of 

palaeomicrobiology be realized.   
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Taxon
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filenam
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Abundance
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Table S2. Characteristics of sim
ulated m

etagenom
es used in this study
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ent length (BP)
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Divergence (%

 nucleotides)
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0.1
0

M
etagenom

e7
50

0.5
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Table S3. Com
parisons of fold increases of reads assigned betw

een databases

Com
parison:

Fold increase total
Fold increase genus

Fold increase species

M
ALTn-G

enom
e vs M

ALTn-CDS
1.16

1.15
1.14

M
ALTn-G

enom
e vs M

ALTx
8.62

10.74
13.07

M
ALTn-CDS vs M

ALTx
7.43

9.37
11.42
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Figure S2. Average percentage of reads assigned across all ancient dental 
calculus sam

ples analyzed
using Genom

e, CDS, and Protein databases
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Table S4. False-positive taxa classified using different M
ALT databases
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e
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 fabrum
Capnocytophaga ochracea
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 fabrum
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 hw
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Haem

ophilus influenzae
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 hw
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Legionella pneum

ophila

Leptotrichia sp. oral taxon 212
N

eisseria gonorrhoeae

N
eisseria elongata

N
eisseria lactam

ica

N
eisseria gonorrhoeae

Pseudom
onas putida

N
eisseria lactam

ica
Staphylococcus aureus

N
eisseria w

eaveri
Streptococcus gordonii

O
doribacter splanchnicus

O
ttow

ia sp. oral taxon 894

Prevotella enoeca

Prevotella fusca

Prevotella interm
edia

Prevotella
m

elaninogenica

Pseudopropionibacterium
propionicum

Sphingobium
japonicum

Sphingom
onas sanxanigenens

Streptococcus gordonii

Streptococcus pneum
oniae

Streptococcus suis
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Figure S3. Genus-level taxonom
ic assignm

ents of sim
ulated m

etagenom
es
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Figure S4. Species-level taxonom
ic assignm

ents of sim
ulated m

etagenom
es
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Table S5. Influence of deam
ination on M

ALTn-genom
e alignm

ents

Fragm
ent length

Reads assigned total
Reads assigned genus

Reads assigned species
30bp_M

ALTn-genom
e_0%

D
99.97%

96.04%
74.55%

30bp_M
ALTn-genom

e_10%
D

98.11%
94.65%

74.37%
30bp_M

ALTn-genom
e_50%

D
84.21%

81.55%
65.02%

30bp_M
ALTn-genom

e_20%
98.54%

95.06%
74.78%

50bp_M
ALTn-genom

e_0%
D

99.92%
97.93%

77.97%
50bp_M

ALTn-genom
e_10%

D
99.94%

98.00%
78.51%

50bp_M
ALTn-genom

e_50%
D

99.93%
98.03%

78.98%
50bp_M

ALTn-genom
e_20%

99.93%
98.02%

78.57%
70bp_M

ALTn-genom
e_0%

D
99.95%

98.63%
82.77%

70bp_M
ALTn-genom

e_10%
D

99.96%
98.63%

82.64%
70bp_M

ALTn-genom
e_50%

D
99.97%

98.61%
82.32%

70bp_M
ALTn-genom

e_20%
99.97%

98.64%
82.58%

90bp_M
ALTn-genom

e_0%
D

99.97%
98.75%

82.89%
90bp_M

ALTn-genom
e_10%

D
99.98%

98.74%
82.80%

90bp_M
ALTn-genom

e_50%
D

99.99%
98.74%

82.68%
90bp_M

ALTn-genom
e_20%

99.98%
98.77%

82.93%
Em

p_M
ALTn-genom

e_0%
D

98.62%
96.91%

79.30%
Em

p_M
ALTn-genom

e_10%
D

98.44%
96.70%

79.11%
Em

p_M
ALTn-genom

e_50%
D

97.72%
95.93%

78.33%
Em

p_M
ALTn-genom

e_20%
98.48%

96.72%
79.05%
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Table S6. Influence of deam
ination on M

ALTn-CDS alignm
ents

Fragm
ent length

Reads assigned total
Reads assigned genus

Reads assigned species
30bp_M

ALTn-CDS_0%
D

85.80%
82.66%

63.70%
30bp_M

ALTn-CDS_10%
D

84.19%
81.36%

63.52%
30bp_M

ALTn-CDS_50%
D

71.81%
69.70%

55.29%
30bp_M

ALTn-CDS_20%
84.57%

81.74%
63.90%

50bp_M
ALTn-CDS_0%

D
88.07%

86.48%
68.38%

50bp_M
ALTn-CDS_10%

D
88.01%

86.48%
68.83%

50bp_M
ALTn-CDS_50%

D
87.96%

86.45%
69.23%

50bp_M
ALTn-CDS_20%

88.02%
86.48%

68.88%
70bp_M

ALTn-CDS_0%
D

89.84%
88.67%

73.88%
70bp_M

ALTn-CDS_10%
D

89.79%
88.62%

73.73%
70bp_M

ALTn-CDS_50%
D

89.78%
88.60%

73.45%
70bp_M

ALTn-CDS_20%
89.77%

88.60%
73.66%

90bp_M
ALTn-CDS_0%

D
91.26%

90.07%
75.02%

90bp_M
ALTn-CDS_10%

D
91.22%

90.03%
74.90%

90bp_M
ALTn-CDS_50%

D
91.12%

89.93%
74.71%

90bp_M
ALTn-CDS_20%

91.18%
90.00%

75.01%
Em

p_M
ALTn-CDS_0%

D
87.44%

86.01%
69.95%

Em
p_M

ALTn-CDS_10%
D

87.22%
85.78%

69.75%
Em

p_M
ALTn-CDS_50%

D
86.52%

85.04%
69.01%

Em
p_M

ALTn-CDS_20%
87.21%

85.75%
69.66%



 

 117 

 

  

Table S7. Influence of deam
ination on M

ALTx alignm
ents

Fragm
ent length

Reads assigned total
Reads assigned genus

Reads assigned species
30bp_M

ALTx_0%
D

0.00%
0.00%

0.00%
30bp_M

ALTx_10%
D

0.00%
0.00%

0.00%
30bp_M

ALTx_50%
D

0.00%
0.00%

0.00%
30bp_M

ALTx_20%
0.00%

0.00%
0.00%

50bp_M
ALTx_0%

D
0.00%

0.00%
0.00%

50bp_M
ALTx_10%

D
0.00%

0.00%
0.00%

50bp_M
ALTx_50%

D
0.00%

0.00%
0.00%

50bp_M
ALTx_20%

0.00%
0.00%

0.00%
70bp_M

ALTx_0%
D

33.02%
29.83%

20.51%
70bp_M

ALTx_10%
D

29.94%
27.08%

18.64%
70bp_M

ALTx_50%
D

26.04%
23.58%

16.24%
70bp_M

ALTx_20%
29.21%

26.40%
18.22%

90bp_M
ALTx_0%

D
82.17%

70.68%
40.14%

90bp_M
ALTx_10%

D
81.82%

70.34%
39.94%

90bp_M
ALTx_50%

D
81.70%

70.21%
39.86%

90bp_M
ALTx_20%

81.51%
70.09%

39.80%
Em

p_M
ALTx_0%

D
15.77%

13.84%
8.46%

Em
p_M

ALTx_10%
D

15.23%
13.37%

8.18%
Em

p_M
ALTx_50%

D
14.55%

12.77%
7.80%

Em
p_M

ALTx_20%
15.04%

13.22%
8.06%
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Figure S5. Influence of heavy deam
ination on taxonom

ic assignm
ent at species 

level using em
pirical ancient DN

A fragm
ent length distribution m

etagenom
e
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Figure S6. Influence of deam
ination on taxonom

ic assignm
ent at genus level for all read 
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Figure S7. Influence of deam
ination on taxonom

ic assignm
ent at species level for all read 
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Figure S8. Influence of divergence and heavy deam
ination on taxonom

ic classification at 
genus level on em

pirical ancient DNA fragm
ent length distribution m

etagenom
e
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Figure S9. Influence of divergence and heavy deam
ination on taxonom

ic classification at 
species level on em

pirical ancient DN
A fragm

ent length distribution m
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Figure S10. Read length distribution of sim
ulated m

etagenom
e, M

ALTn-genom
e 

aligned reads, and unaligned reads for1,000ky sim
ulation
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Figure S11. Average percentage of reads assigned bacterial or archaeal 
taxonom

y to four deeply sequenced ancient sam
ples using different databases 
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Figure 12: Species-level classification of the Chimpanzee sample
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Figure 13: Species-level classification of the El Sidron1 Neanderthal
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Treponema	socranskii uncultured	bacterium Variovorax	paradoxus Veillonella	parvula

Veillonella	sp.	AS16
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Figure 14: Species-level classification of the modern sample
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Chart	Title

Abiotrophia	defectiva Actinomyces	hongkongensis Actinomyces	naeslundii
Actinomyces	sp.	oral	taxon	414 Bacteroidetes	bacterium	oral	taxon	274 Bacteroidetes	oral	taxon	274
Barnesiella	viscericola Campylobacter	concisus Campylobacter	curvus
Campylobacter	gracilis Campylobacter	rectus Campylobacter	showae
candidate	division	TM7	single-cell	isolate	TM7a candidate	division	TM7	single-cell	isolate	TM7c Candidatus	Saccharibacteria	oral	taxon	TM7x
Capnocytophaga	canimorsus Capnocytophaga	gingivalis Capnocytophaga	granulosa
Capnocytophaga	haemolytica Capnocytophaga	ochracea Capnocytophaga	sp.	ChDC	OS43
Capnocytophaga	sp.	CM59 Capnocytophaga	sp.	oral	taxon	323 Capnocytophaga	sp.	oral	taxon	326
Capnocytophaga	sp.	oral	taxon	329 Capnocytophaga	sp.	oral	taxon	332 Capnocytophaga	sp.	oral	taxon	336
Capnocytophaga	sp.	oral	taxon	338 Capnocytophaga	sp.	oral	taxon	863 Capnocytophaga	sputigena
Cardiobacterium	hominis Cardiobacterium	valvarum Catonella	morbi
Centipeda	periodontii Corynebacterium	aquilae Corynebacterium	diphtheriae
Corynebacterium	glutamicum Corynebacterium	matruchotii Corynebacterium	mustelae
Corynebacterium	pseudotuberculosis Corynebacterium	ulcerans Corynebacterium	vitaeruminis
Eikenella	corrodens Fretibacterium	fastidiosum Fusobacterium	hwasookii
Fusobacterium	nucleatum Fusobacterium	sp.	oral	taxon	370 Gemella	morbillorum
Gemella	sp.	oral	taxon	928 Haemophilus	parainfluenzae Lautropia	mirabilis
Leptotrichia	buccalis Leptotrichia	goodfellowii Leptotrichia	hofstadii
Leptotrichia	sp.	oral	taxon	212 Leptotrichia	sp.	oral	taxon	215 Leptotrichia	sp.	oral	taxon	225
Leptotrichia	sp.	oral	taxon	847 Leptotrichia	trevisanii Leptotrichia	wadei
Neisseria	elongata Neisseria	meningitidis Neisseria	sicca
Ottowia	sp.	oral	taxon	894 Porphyromonas	asaccharolytica Porphyromonas	catoniae
Porphyromonas	endodontalis Porphyromonas	gingivalis Porphyromonas	sp.	KLE	1280
Porphyromonas	sp.	oral	taxon	278 Porphyromonas	sp.	oral	taxon	279 Prevotella	conceptionensis
Prevotella	dentalis Prevotella	denticola Prevotella	enoeca
Prevotella	fusca Prevotella	intermedia Prevotella	loescheii
Prevotella	melaninogenica Prevotella	micans Prevotella	nigrescens
Prevotella	oris Prevotella	ruminicola Prevotella	saccharolytica
Prevotella	scopos Prevotella	shahii Prevotella	sp.	HMSC073D09
Prevotella	sp.	oral	taxon	299 Prevotella	sp.	oral	taxon	317 Prevotella	sp.	oral	taxon	472
Pseudopropionibacterium	propionicum Selenomonas	artemidis Selenomonas	 infelix
Selenomonas	noxia Selenomonas	sp.	oral	taxon	126 Selenomonas	sp.	oral	taxon	136
Selenomonas	sp.	oral	taxon	137 Selenomonas	sp.	oral	taxon	138 Selenomonas	sp.	oral	taxon	478
Selenomonas	sp.	oral	taxon	892 Selenomonas	sp.	oral	taxon	920 Selenomonas	sputigena
Streptococcus	cristatus Streptococcus	gordonii Streptococcus	mitis
Streptococcus	oralis Streptococcus	pneumoniae Streptococcus	sp.	NPS	308
Tannerella	forsythia Tannerella	sp.	oral	taxon	HOT-286 Treponema	denticola
Treponema	lecithinolyticum Treponema	maltophilum Treponema	medium
Treponema	socranskii Treponema	sp.	OMZ	838 Treponema	vincentii
uncultured	bacterium Veillonella	parvula Veillonella	sp.	oral	taxon	158
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Figure 15: Species-level classification of the Spy II Neanderthal
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Chart	Title

[Clostridium]	cellulolyticum [Eubacterium]	infirmum [Eubacterium]	saphenum [Eubacterium]	siraeum
[Eubacterium]	sulci [Ruminococcus]	torques Abiotrophia	defectiva Abiotrophia	sp.	HMSC24B09
Acetonema	longum Achromobacter	xylosoxidans Acidipropionibacterium	acidipropionici Acinetobacter	baumannii
Acinetobacter	junii Acinetobacter	venetianus Actinomyces	cardiffensis Actinomyces	georgiae
Actinomyces	hongkongensis Actinomyces	johnsonii Actinomyces	massiliensis Actinomyces	meyeri
Actinomyces	naeslundii Actinomyces	odontolyticus Actinomyces	oris Actinomyces	radicidentis
Actinomyces	radingae Actinomyces	sp.	HMSC035G02 Actinomyces	sp.	HPA0247 Actinomyces	sp.	ICM39
Actinomyces	sp.	ICM58 Actinomyces	sp.	Marseille-P2825 Actinomyces	sp.	Marseille-P2985 Actinomyces	sp.	oral	taxon	170
Actinomyces	sp.	oral	taxon	171 Actinomyces	sp.	oral	taxon	172 Actinomyces	sp.	oral	taxon	180 Actinomyces	sp.	oral	taxon	414
Actinomyces	sp.	oral	taxon	448 Actinomyces	sp.	oral	taxon	848 Actinomyces	sp.	oral	taxon	849 Actinomyces	succiniciruminis
Actinomyces	turicensis Adlercreutzia	equolifaciens Aggregatibacter	actinomycetemcomitans Aggregatibacter	aphrophilus
Aggregatibacter	segnis Aggregatibacter	sp.	oral	taxon	458 Anaerolineaceae	bacterium	oral	taxon	439 Arsenicicoccus	sp.	oral	taxon	190
Arthrobacter	 saudimassiliensis Atopobium	rimae Azorhizobium	caulinodans Bacillus	coagulans
Bifidobacterium	thermophilum Brachybacterium	faecium Bradyrhizobium	elkanii Campylobacter	showae
candidate	division	TM7	single-cell	isolate	TM7a candidate	division	TM7	single-cell	isolate	TM7c Candidatus	Koribacter	versatilis Candidatus	Saccharibacteria	oral	taxon	TM7x
Capnocytophaga	sp.	oral	taxon	324 Catonella	morbi Christensenella	massiliensis Chryseobacterium	 indologenes
Clostridium	sp.	BNL1100 Clostridium	sp.	Marseille-P3244 Clostridium	sp.	SY8519 Comamonas	aquatica
Comamonas	testosteroni Coriobacteriaceae	bacterium	68-1-3 Corynebacterium	durum Cryptobacterium	curtum
Cutibacterium	acnes Delftia	acidovorans Denitrobacterium	detoxificans Desulfobulbus	sp.	oral	taxon	041
Desulfomicrobium	baculatum Desulfomicrobium	orale Dialister	succinatiphilus Eggerthella	lenta
Eggerthella	sp.	YY7918 Eggerthellaceae	bacterium	AT8 Eikenella	corrodens Enterobacter	cloacae
Enterococcus	faecalis Enterococcus	faecium Escherichia	coli Ethanoligenens	harbinense
Eubacterium	callanderi Faecalibacterium	prausnitzii Filifactor	alocis Flavonifractor	plautii
Gemella	bergeri Gemella	cuniculi Gemella	haemolysans Gemella	morbillorum
Gemella	sp.	oral	taxon	928 Gemmata	sp.	SH-PL17 Gordonia	polyisoprenivorans Gordonibacter	pamelaeae
Granulicatella	adiacens Haemophilus	haemolyticus Haemophilus	influenzae Helicobacter	pylori
Histophilus	somni Intestinimonas	butyriciproducens Intestinimonas	massiliensis Johnsonella	ignava
Lachnoanaerobaculum	saburreum Lachnoclostridium	phocaeense Lachnospiraceae	bacterium	1_1_57FAA Lachnospiraceae	bacterium	oral	taxon	500
Lautropia	mirabilis Leptotrichia	sp.	oral	taxon	212 Marvinbryantia	 formatexigens Methanobacterium	sp.	Maddingley	MBC34
Methanobrevibacter	arboriphilus Methanobrevibacter	millerae Methanobrevibacter	olleyae Methanobrevibacter	oralis
Methanobrevibacter	 ruminantium Methanobrevibacter	 smithii Methanobrevibacter	wolinii Methylobacterium	nodulans
Mogibacterium	sp.	CM50 Mogibacterium	timidum Neisseria	elongata Neisseria	sicca
Neisseria	sp.	oral	taxon	014 Nitrospira	defluvii Olsenella	sp.	oral	taxon	807 Oribacterium	asaccharolyticum
Oribacterium	sinus Oribacterium	sp.	oral	taxon	078 Oscillibacter	valericigenes Ottowia	sp.	oral	taxon	894
Paenibacillus	polymyxa Parascardovia	denticolens Parvimonas	micra Parvimonas	sp.	oral	taxon	393
Pediococcus	acidilactici Pelosinus	fermentans Peptoanaerobacter	stomatis Peptoniphilus	sp.	oral	taxon	386
Peptostreptococcaceae	bacterium	oral	taxon	113 Peptostreptococcus	anaerobius Peptostreptococcus	stomatis Photorhabdus	 luminescens
Polaromonas	naphthalenivorans Polaromonas	sp.	JS666 Porphyromonas	gingivalis Prevotella	intermedia
Propionibacterium	freudenreichii Propionibacterium	sp.	oral	taxon	192 Propionibacterium	sp.	oral	taxon	193 Pseudoflavonifractor	capillosus
Pseudoflavonifractor	sp.	Marseille-P3106 Pseudomonas	aeruginosa Pseudomonas	fluorescens Pseudomonas	putida
Pseudomonas	tolaasii Pseudopropionibacterium	propionicum Pseudoxanthomonas	suwonensis Ramlibacter	tataouinensis
Riemerella	anatipestifer Roseburia	intestinalis Roseburia	inulinivorans Ruminococcaceae	bacterium	D16
Ruminococcus	flavefaciens Ruminococcus	sp.	SR1/5 Sanguibacter	keddieii Schlesneria	paludicola
Slackia	exigua Slackia	heliotrinireducens Staphylococcus	aureus Stenotrophomonas	maltophilia
Streptococcus	agalactiae Streptococcus	anginosus Streptococcus	constellatus Streptococcus	cristatus
Streptococcus	dysgalactiae Streptococcus	equi Streptococcus	gordonii Streptococcus	infantis
Streptococcus	intermedius Streptococcus	marmotae Streptococcus	mitis Streptococcus	mutans
Streptococcus	oralis Streptococcus	parasanguinis Streptococcus	pneumoniae Streptococcus	pyogenes
Streptococcus	salivarius Streptococcus	sanguinis Streptococcus	sinensis Streptococcus	sp.	2_1_36FAA
Streptococcus	sp.	DD04 Streptococcus	sp.	I-G2 Streptococcus	sp.	NPS	308 Streptococcus	sp.	oral	taxon	056
Streptococcus	sp.	oral	taxon	431 Streptococcus	suis Subdoligranulum	sp.	4_3_54A2FAA Syntrophothermus	 lipocalidus
Tannerella	forsythia Tannerella	sp.	oral	taxon	HOT-286 Thermoanaerobacter	siderophilus Treponema	caldarium
Treponema	phagedenis uncultured	bacterium Variovorax	paradoxus Variovorax	sp.	PAMC	28711
Veillonella	parvula
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Table S8. Species assignments specific to databases 
2014nr-specific	 2017nt-specific	 HOMD-specific	 RefSeqGCS-specific	

Candidatus	Koribacter	versatilis	 uncultured	bacterium	 Bacteroides	pyogenes	 Porphyromonas	sp.	KLE	1280	

Parabacteroides	merdae	 Bacteroides	cellulosilyticus	 Prevotella	shahii	 Prevotella	conceptionensis	

Capnocytophaga	sp.	CM59	 Bacteroides	fragilis	 Capnocytophaga	 sp.	 oral	

taxon	336	

Prevotella	sp.	HMSC073D09	

Capnocytophaga	 sp.	 oral	 taxon	

324	

Bacteroides	salanitronis	 Capnocytophaga	sputigena	 Phocaeicola	abscessus	

Riemerella	anatipestifer	 Bacteroides	

thetaiotaomicron	

Bacteroidetes	 bacterium	

oral	taxon	274	

Leptotrichia	trevisanii	

Nitrospira	defluvii	 Barnesiella	viscericola	 Fusobacterium	sp.	oral	taxon	

370	

Desulfobulbus	elongatus	

Methylobacterium	nodulans	 Porphyromonas	

asaccharolytica	

Bradyrhizobium	elkanii	 Desulfobulbus	mediterraneus	

Azorhizobium	caulinodans	 Prevotella	dentalis	 Achromobacter	xylosoxidans	 Acinetobacter	venetianus	

Neisseria	sp.	oral	taxon	014	 Prevotella	denticola	 Delftia	acidovorans	 Actinomyces	glycerinitolerans	

Desulfomicrobium	baculatum	 Prevotella	fusca	 Desulfobulbus	sp.	oral	taxon	

041	

Actinomyces	provencensis	

Helicobacter	pylori	 Prevotella	melaninogenica	 Campylobacter	rectus	 Actinomyces	slackii	

Photorhabdus	luminescens	 Prevotella	ruminicola	 Aggregatibacter	 sp.	 oral	

taxon	458	

Actinomyces	sp.	HMSC035G02	

Pseudoxanthomonas	suwonensis	 Prevotella	scopos	 Haemophilus	haemolyticus	 Actinomyces	sp.	HPA0247	

Schlesneria	paludicola	 Prevotella	 sp.	 oral	 taxon	

299	

Pseudomonas	aeruginosa	 Actinomyces	sp.	Marseille-P2825	

Treponema	caldarium	 Capnocytophaga	

canimorsus	

Pseudomonas	fluorescens	 Sanguibacter	keddieii	

Treponema	phagedenis	 Capnocytophaga	

haemolytica	

Stenotrophomonas	

maltophilia	

Atopobium	sp.	HMSC064B08	

Actinomyces	sp.	ICM39	 Chryseobacterium	

indologenes	

Actinomyces	 sp.	 oral	 taxon	

877	

Eggerthellaceae	bacterium	AT8	

Actinomyces	sp.	ICM58	 Fusobacterium	hwasookii	 Parascardovia	denticolens	 Gemella	cuniculi	

Actinomyces	sp.	oral	taxon	848	 Ramlibacter	tataouinensis	 Arsenicicoccus	sp.	oral	taxon	

190	

Abiotrophia	sp.	HMSC24B09	

Actinomyces	turicensis	 Variovorax	 sp.	 PAMC	

28711	

Propionibacterium	

acidifaciens	

Enterococcus	faecalis	

Actinomyces	viscosus	 Neisseria	meningitidis	 Olsenella	profusa	 Enterococcus	faecium	

Bifidobacterium	thermophilum	 Enterobacter	cloacae	 Chloroflexi	 bacterium	 oral	

taxon	439	

Pediococcus	acidilactici	

Corynebacterium	durum	 Haemophilus	influenzae	 Gemella	bergeri	 Streptococcus	sp.	DD04	

Brachybacterium	faecium	 Haemophilus	

parainfluenzae	

Granulicatella	adiacens	 Clostridium	sp.	Marseille-P3244	

Cutibacterium	acnes	 Histophilus	somni	 Streptococcus	infantis	 Eubacterium	callanderi	

Cryptobacterium	curtum	 Gemmata	sp.	SH-PL17	 Streptococcus	sinensis	 Oribacterium	asaccharolyticum	

Slackia	sp.	CM382	 Treponema	putidum	 Mogibacterium	timidum	 Lachnospiraceae	 bacterium	

1_1_57FAA	
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2014nr-specific	 2017nt-specific	 HOMD-specific	 RefSeqGCS-specific	

Anaerolinea	thermophila	 Actinomyces	

hongkongensis	

Johnsonella	ignava	 Peptoanaerobacter	stomatis	

Bacillus	coagulans	 Actinomyces	radingae	 Oribacterium	 sp.	 oral	 taxon	

108	

Peptostreptococcaceae	 bacterium	

oral	taxon	113	

Gemella	haemolysans	 Actinomyces	sp.	Chiba101	 Selenomonas	 sp.	 oral	 taxon	

137	

Ruminococcus	flavefaciens	

Streptococcus	mutans	 Actinomyces	sp.	Marseille-

P2985	

Selenomonas	 sp.	 oral	 taxon	

138	

Intestinimonas	massiliensis	

Streptococcus	sp.	2_1_36FAA	 Actinomyces	sp.	pika_114	 Selenomonas	 sp.	 oral	 taxon	

892	

Pseudoflavonifractor	 sp.	 Marseille-

P3106	

Streptococcus	sp.	oral	taxon	056	 Actinomyces	

succiniciruminis	

Veillonella	sp.	AS16	 Thermoanaerobacter	siderophilus	

Clostridium	sp.	BNL1100	 Corynebacterium	aquilae	 Veillonella	sp.	oral	taxon	158	 Eggerthia	catenaformis	

Mogibacterium	sp.	CM50	 Corynebacterium	

diphtheriae	

Parvimonas	 sp.	 oral	 taxon	

110	

Methanobrevibacter	arboriphilus	

Marvinbryantia	formatexigens	 Corynebacterium	

glutamicum	

Peptoniphilus	 sp.	 oral	 taxon	

836	

Methanobrevibacter	wolinii	

Oribacterium	sinus	 Corynebacterium	mustelae	 	  

Roseburia	intestinalis	 Corynebacterium	

pseudotuberculosis	

	  

Roseburia	inulinivorans	 Corynebacterium	ulcerans	 	  

Ruminococcus	sp.	SR1/5	 Corynebacterium	

vitaeruminis	

	  

Syntrophothermus	lipocalidus	 Gordonia	

polyisoprenivorans	

	  

Pseudoflavonifractor	capillosus	 Lawsonella	clevelandensis	 	  

Faecalitalea	cylindroides	 Arthrobacter	

saudimassiliensis	

	  

Acetonema	longum	 Libanicoccus	massiliensis	 	  

Pelosinus	fermentans	 Olsenella	 sp.	 Marseille-

P2300	

	  

Dialister	succinatiphilus	 Olsenella	umbonata	 	  

candidate	 division	 TM7	

genomosp.	GTL1	

Eggerthella	sp.	YY7918	 	  

candidate	division	TM7	single-cell	

isolate	TM7a	

Gordonibacter	 sp.	

Marseille-P2775	

	  

candidate	division	TM7	single-cell	

isolate	TM7c	

Paenibacillus	polymyxa	 	  

Methanobacterium	paludis	 Staphylococcus	aureus	 	  

Methanobacterium	 sp.	

Maddingley	MBC34	

Streptococcus	dysgalactiae	 	  

 Streptococcus	marmotae	 	  

 Streptococcus	

parasanguinis	

	  

 Streptococcus	pyogenes	 	  

 Streptococcus	sp.	NPS	308	 	  
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2014nr-specific 2017nt-specific	 HOMD-specific	 RefSeqGCS-specific 

 Streptococcus	 sp.	 oral	

taxon	431	

	  

 Christensenella	

massiliensis	

	  

 Eubacterium	limosum	 	  

 Lachnoclostridium	

phocaeense	

	  

 Flavonifractor	plautii	 	  

 Selenomonas	sp.	oral	taxon	

136	

	  

 Selenomonas	sp.	oral	taxon	

478	

	  

 Dialister	pneumosintes	 	  

 Megasphaera	elsdenii	 	  

 Ndongobacter	massiliensis	 	  

 Methanosphaera	

stadtmanae	

	  

 Methanothermus	fervidus	 	  
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Table S9. Sequencing and alignment statistics for the reanalysis of previously 

published ancient dental calculus
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Abstract 
The taxonomic characterisation of ancient microbial communities (microbiota) is a key step in 

the rapidly growing field of palaeomicrobiology. To date, PCR amplification of the 16S rRNA 

gene is the most commonly used technique for taxonomic classification in modern microbiota 

studies, but recent research has found that this method has severe biases when applied to ancient 

microbial DNA. Untargeted amplification methods such as shotgun metagenomic sequencing 

offer a less biased approach for reconstructing ancient microbial communities, allowing for the 

use of 16S rRNA gene fragments within an ancient sample for taxonomic classification. 

However, 16S rRNA gene fragments only make up a small proportion of DNA sequences in a 

metagenome (<0.05%), making it costly to sample the extent of microbial diversity present. 

Additionally, it is not known how the characteristics of ancient DNA influence the quality of 

taxonomic assignment of 16S rRNA gene fragments. Here, we develop, test, and apply a 

hybridisation enrichment technique to selectively target 16S rRNA gene fragments from 

untargeted shotgun libraries. Using this method, we increase the sequencing of 16S rRNA gene 

fragments from ancient metagenomic samples by 334-fold over unenriched libraries, allowing 

us to empirically examine the extent of 16S rRNA gene diversity present in ancient samples. 

Using simulated data, we also investigate the influence of ancient DNA characteristics on the 

taxonomic assignment of 16S rRNA gene fragments. This study validates the use of 16S rRNA 

gene fragments for the reconstruction of ancient microbial communities and offers a method 

that can complement existing approaches for studying ancient microbiota.  
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Introduction 
Research into the microbial communities (microbiota) inhabiting the human body has 

intensified in the past decade due to these communities’ associations with human health and 

disease [1–3]. Given the long-term association and co-evolution of these microbial 

communities with humans throughout evolution [4], understanding past human microbiota and 

how they have changed through time may offer important medical insights [5]. The discovery 

that dental calculus is an excellent source of ancient human-associated microbial DNA [6,7], 

coupled with recent advances in DNA sequencing and laboratory techniques, have made it 

possible study human microbiota through time using ancient DNA [6–8]. These studies also 

have the potential to improve our understanding of microbial evolution [7], the lifeways of our 

ancestors [8], and even past demographic events [9]. Critical to our understanding of these past 

microbial communities are the techniques available for us to classify them (to find out who’s 

there).  

In modern microbiota studies, amplification of hypervariable 16S rRNA gene regions 

is most frequently used for taxonomic classification of microbial communities [10]. This 

marker is present in all prokaryotes, possessing both conserved regions that can be used to 

design broad-specificity primers and hypervariable regions that contain phylogenetic 

information useful in determining relationships between bacteria and archaea [11]. However, 

recent research has found that targeted amplification of the 16S rRNA gene is not a valid 

approach for the taxonomic classification of ancient DNA [8,12]. This is because the regions 

targeted in 16S amplification are longer than the typically short fragment lengths of ancient 

DNA, which can lead to longer modern contaminant DNA being preferentially amplified [8,12]. 

Furthermore, variability in length of the 16S region targeted between taxa can lead to biased 

amplification, confounding microbial composition estimates [8,12]. The alignment-based 

approach of shotgun metagenomic data analysis is less biased for taxonomic classification of 

ancient microbiota compared to the amplicon-based 16S approach [8,12], and is now the 

standard in palaeomicrobiological research. However, this approach is more expensive than the 

amplicon-based 16S approach and requires more computational resources in order to align 

sequences against reference databases containing genomic information. For example, a 

dedicated computer server with 1,500 GB of RAM was required for aligning shotgun 

metagenomic data against a database containing 47,696 prokaryotic reference genomes [13]. It 

has also been demonstrated that the shotgun metagenomic alignment method is strongly 

dependent on the diversity and availability of references genomes in databases, which can limit 

the taxonomic reconstruction of ancient microbial communities [13]. A recent study 

demonstrated that on average ~60% of DNA sequences in ancient dental calculus samples could 
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not be assigned taxonomy when using the shotgun metagenomic alignment approach, 

suggesting incomplete sampling of prokaryotic genome diversity in current reference databases 

[13]. This is a critical issue, as we are potentially missing a large proportion of microbial 

diversity present in ancient samples. 

A possible solution to this issue is to analyse 16S rRNA gene fragments present in 

metagenomic shotgun data [8]. This both avoids the biases inherent in the specific amplification 

of the 16S rRNA gene and could allow for use of the phylogenetic information within the 16S 

rRNA gene to classify sequences even if they do not have direct matches in a reference 

database. This approach could also leverage the greater diversity present in 16S rRNA gene 

databases compared to genome databases. For example, the latest SILVA database SSU (small 

subunit) Ref NR (non-redundant) 132 contains 695,171 16S rRNA gene sequences (even after 

clustering at 99% sequence identity), compared to the 47,696 reference genomes tested in [13]. 

Another advantage to this approach is that it does not require dedicated, RAM-heavy computer 

servers capable of handling the larger genomic reference databases. While this approach has 

been used in previous palaeomicrobiology studies [8,12,14], there has not yet been a robust 

assessment of this technique for reconstructing ancient microbial communities. Given the 

untargeted nature of metagenomic shotgun sequencing, 16S rRNA gene fragments make up 

only a small fraction of the total data generated (<0.05% [15]). Therefore, sequencing a sample 

at a depth of 1,000,000 reads may provide fewer than 1,000 16S rRNA gene fragments, which 

may not represent the total microbial diversity present a sample. Furthermore, the influence of 

ancient DNA characteristics such as short fragment lengths and deamination (a common 

damage-induced substitution) on the ability to assign taxonomy to 16S rRNA gene fragments 

has not been formally investigated.  

Here, we develop a new experimental approach to selectively enrich 16S rRNA gene 

fragments from ancient shotgun metagenomic libraries to obtain high sampling depth suitable 

for empirical determination of the extent of 16S rRNA gene diversity present in an ancient 

metagenomic sample. We create and benchmark a bioinformatic pipeline for the analysis of 

short 16S rRNA gene fragments and investigate the influence of ancient DNA characteristics 

on taxonomic assignments in 16S rRNA data sets. Finally, we compare our new approach to 

the traditional shotgun sequencing and whole-genome alignment method to better verify current 

methods in palaeomicrobiological analysis.  
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Methods 
16S rRNA gene RNA probe design 

Full-length 16S rRNA genes were obtained database from all species identified from a recent 

ancient dental calculus study [8] from the Ribosome Database Project (RDP) [16] n=285. To 

further increase diversity, 16S rRNA genes were also taken from species in the Human Oral 

Microbiome Database (HOMD) [17] if they did not match species identified by Weyrich et al. 

This added an additional 285 sequences, yielding a total of 570 full-length 16S rRNA genes to 

be used for probe design (See supplementary file X for a list of taxa). RepeatMasker [18] was 

used to remove any simple or low complexity repeats from the sequences. 80 bp (base pair) 

RNA baits with 20 bp probe spacing and 4x tiling density were synthesized by Arbor 

Biosciences (formerly MyBaits). Baits were collapsed if they had fewer than 11 mismatches 

between each other, yielding a total of 19,634 80 bp RNA baits (Supplementary file X). While 

the probe design was based on 16S rRNA genes from ancient and modern oral taxa, these probes 

should also capture microbial diversity that was not used as input for the probe sequences.  

 

Hybridization enrichment 

Shotgun libraries generated in a previous study were used for hybridization enrichment [8]. 

Briefly, each library was created by amplifying existing library DNA in four 25 µL PCR 

reactions (each containing: 13.625 µL dH2O, 2.5 µL 10X AmpliTaq Gold Buffer, 2.5 µL of 25 

mM MgCl2, 0.625 µL of 10mM dNTPs, 2.5 µL of 10 µM forward and reverse primer, 0.25 µL 

AmpliTaq Gold, 3 µL template DNA) with the following PCR conditions: denaturing at 94°C 

for 12 minutes before 13 cycles of (30 seconds denaturing at 94°C, 30 seconds annealing at 

60°C, 45 seconds extension at 72°C) followed by a final extension of 10 minutes at 72°C. PCR 

amplifications were pooled and then cleaned using AMPure XP beads to reach 100 ng of DNA 

for input into hybridization enrichment. A modified version 3 of the MyBaits protocol was used 

for hybridization enrichment, whereby the input RNA bait concentration was reduced to 25% 

of the recommended amount, and custom oligonucleotides were used to block the P5/P7 library 

adapters. For the enrichment efficiency test, samples were enriched at either 55°C or 65°C for 

40 hours; otherwise, samples were enriched at 65°C for 40 hours. Post-capture, the streptavidin 

beads were washed three times using Wash Buffer 2 (MyBaits v3 manual) and resuspended in 

PCR mastermix (as above) before amplification with 13 cycles of PCR. Amplified libraries 

were cleaned with AMPure, quantified with an Agilent TapeStation, pooled at equimolar 

concentrations, and sequenced on the Illumina HiSeq X Ten platform (2 x 150 bp).  
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DNA Sequencing and 16S rRNA gene enrichment analysis 

The resulting sequencing data was converted into fastq format using Illumina’s bcl2fastq 

software, before being trimmed and demultiplexed using AdapterRemoval2 based on unique 

P5/P7 barcode combinations [19]. To reduce the computational time of downstream analyses, 

seqtk (https://github.com/lh3/seqtk) was used to randomly subsample libraries to 100,000 reads 

each. To filter 16S rRNA gene fragments from samples, SortMeRNA [20] was used with the 

default SILVA bacterial and archaeal 16S rRNA databases (SILVA 119, 95% clustered). To 

assign taxonomic identifications to the putative 16S rRNA gene fragments, we constructed a 

BLAST database [21] using the SILVA 128 NR99 16S rRNA reference database  [22] and 

aligned the putative 16S rRNA gene fragments to the database using default parameters, with 

the following exceptions: –evalue = 0.01 for added stringency and –outfmt = 0 to allow for 

import into MEGAN. To test the impact of missing reference sequences on taxonomic 

classification, we also created a filtered SILVA database by removing reference sequences 

belonging to members of our simulated dataset using the Filterbyname.sh script from BBtools 

(https://jgi.doe.gov/data-and-tools/bbtools/). Briefly, grep was used to create a list of taxa to 

remove from the reference sequences in the SILVA database using Filterbyname.sh (Table S1). 

Lastly, BLAST outputs were then imported into MEGAN CE 6.10.10 [23] using the “Import 

from BLAST…” option with the synonyms mapping file 

(SSURef_NR99_128_tax_silva_to_NCBI_synonyms.map.gz) obtained from the MEGAN 

community website: (http://ab.inf.uni-tuebingen.de/data/software/megan6/download/). 

 

Generating simulated dataset with ancient DNA characteristics 

To test the 16S rRNA gene fragment analysis pipeline, we created a simulated dataset using 

Gargammel [24]. 16S rRNA genes from 19 phylogenetically diverse prokaryotic species were 

obtained from the SILVA 128 NR99 16S rRNA database [22] and randomly fragmented to 

create 100,000 16S rRNA gene fragments fitting a log-normal ancient DNA fragment-length 

distribution (Figure S1) (gargammel -n 100000 --loc 4 --scale 0.3). Varying levels of cytosine 

deamination (ancient DNA damage) were simulated using deamSim from gargammel on our 

simulated dataset to create three different levels of simulated single-stranded overhang 

deamination: 10% (low) deamination (-damage 0.03,0.25,0.01,0.1); empirical (moderate) 

deamination from a published mapDamage profile [25] (-mapdamage 

examplesMapDamage/results_LaBrana/misincorporation.txt); and 50% (high) deamination (-

damage 0.03,0.25,0.01,0.5). Finally, the resulting simulated 16S rRNA gene datasets were 
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aligned against the SILVA 128 NR99 database and the filtered SILVA database using BLAST 

as described above. 

 

Taxonomic classification of unenriched shotgun metagenomic data 

Unenriched shotgun metagenomic data were aligned against a reference database containing 

47,696 bacterial and archaeal genomes [13] using MALTn [26] with default parameters and 

outputting BLAST text files. The resulting BLAST text files were converted into RMA6 using 

the blast2rma script in MEGAN. 

 

Comparison of 16S rRNA gene and shotgun metagenomics datasets 

The LCA parameters used for the shotgun metagenomic data were: bitscore=50, E-value=0.01, 

minsupp=0.1 (i.e. a taxonomic assignment requires at least 0.1% of reads to pass), and the 

weighted LCA algorithm (80%) as suggested in [23]. LCA parameters used for the 16S 

enrichment method were the same, except that the naïve LCA algorithm (80%) was used since 

the weighted algorithm resulted in false-positive taxonomic assignments of the simulated 16S 

rRNA gene fragments. Genera identified in the extraction blank controls were removed from 

biological samples in MEGAN. Classifications at each taxonomic level were selected in 

MEGAN and exported as a text file, before being collated in an excel spreadsheet. Neighbour 

joining trees were constructed from distance matrices generated in MEGAN. 

 

Statistical analyses 

To compare beta-diversity in the two datasets, Euclidean distances exported from MEGAN 

were ordinated by Principal Components Analysis using STAMP [27]. For QIIME analyses 

[28], genus level assignments in MEGAN were exported as a BIOM table into QIIME v1.9.1 

and rarefied to the sample with the lowest number of genus-level assignments (576 for 16S 

enrichment-temperature tests, 10,715 for the 16S vs. UEWGA comparisons). Alpha diversity 

measures and rarefaction curves were calculated using the core_diversity.py script. Distances 

matrices were created using the beta_diversity.py script and ANOSIM/PERMANOVA tests 

were computed on these distance matrices using the compare_categories.py script with 999 

permutations.  
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Results 
Assessing taxonomic assignment of simulated ancient 16S rRNA gene fragments 

To test if we could accurately classify short 16S rRNA gene fragments, we created a simulated 

dataset containing 19 phylogenetically diverse prokaryotic species (Table S1). The 16S rRNA 

gene from each species was selected and randomly fragmented to fit a commonly observed 

ancient DNA fragment length distribution (e.g. a mean length of 50bp; Figure S1). Taxonomy 

was classified by mapping DNA fragments to the SILVA 16S rRNA database (NR 99, release 

128) using BLAST nucleotide alignment, following by applying the lowest common ancestor 

(LCA) algorithm in MEGAN. We found that 98.4% of the total DNA fragments could be 

assigned taxonomy, and of these, 53.2% were assigned to the genus level, and only 3.5% to the 

species level (Table 1). The resulting genus-level taxonomic composition matched that of the 

input sequences with one exception: Yersinia 16S rRNA gene fragments could not be assigned 

to the genus Yersinia and were pushed up to the order Enterobacterales (Figure 1B). The 1.6% 

of fragments that could not be aligned were extremely short (between 15-30 bp) (Figure S2), 

suggesting that accurate classifications are limited to at least 30bp for 16S rRNA fragments, as 

previously observed for whole-genome alignments [13].  

 

 
 

Table 1. Alignment statistics for simulated data

Percentage of total reads assigned: Total Domain Phylum Class Order Family Genus Species
BLASTN-MEGAN 98.4% 4.5% 3.7% 11.1% 4.8% 17.0% 53.2% 3.5%
BLASTN-MEGAN-SpeciesExclusion 98.3% 4.6% 3.9% 11.1% 4.9% 17.1% 55.4% 0.7%

BLASTN-MEGAN-GenusExclusion 97.7% 9.6% 6.7% 12.0% 7.4% 18.8% 41.2% 0.2%

BLASTN-MEGAN-10%Deamination 97.8% 4.9% 3.8% 11.2% 4.8% 16.9% 52.7% 3.4%

BLASTN-MEGAN-LaBrana-Deamination 97.8% 5.1% 3.8% 11.1% 4.8% 16.9% 52.6% 3.4%

BLASTN-MEGAN-50%Deamination 96.9% 5.5% 3.7% 11.2% 4.9% 16.8% 52.1% 3.4%
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Assessing the impact of missing reference sequences on taxonomic classification 
To test the impact of missing reference sequences on our ability to taxonomically classify 16S 

rRNA gene fragments, we performed a species and genus exclusion experiment whereby we 

removed reference sequences corresponding to species or genera present within the simulated 

dataset from the SILVA database (Table S2), and then repeated BLAST alignments using this 

modified database. Sequences originating from excluded species could be classified to their 

respective genera (Figure 1C, Table 1). Similarly, removal of all reference sequences attributed 

to the Streptococcus genus (which accounts for 25% of the simulated dataset) resulted in a 12% 

reduction in assignments to the genus-level (53.2% vs. 41.2%), and an associated increase in 

sequences at higher taxonomic ranks (Figure 1D, Table 1). Importantly the total number of 

aligned reads did not substantially decrease (97.7% vs. 98.4% for non-exclusion), suggesting 

that sequence conservation and phylogenetic signal within the 16S gene allowed for placement 

of these sequences higher in the taxonomy, rather than discarding them outright.  

 

Influence of DNA damage on short 16S sequence classification 

To test if cytosine deamination (a common form of ancient DNA damage) influences taxonomic 

classification of short 16S rRNA gene fragments, we simulated three levels of sequence 

Legend (Taxa):

Neisseria
Candidatus Moranella
Enterobacter
Escherichia
Yersinia
Thiomargarita
Treponema
Fretibacterium
Corynebacterium
Rothia
Bacillus
Staphylococcus
Enterococcus
Lactococcus
Streptococcus
Johnsonella
Methanobrevibacter

A B C D E F G

Figure 1. Recapitulation of genus-level taxonomic composition from simulated metagenome. (A) Actual abundance and structure of simulated 

Community. (B) Reconstruction of community structure using MALT/MEGAN. (C),(D) Results of genus and species exclusion test. (E)-(G) Results of

different rates of simulated cytosine deamination on metagenomic reconstruction. 
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deamination on our simulated dataset representing low (10%), moderate (simulated from a real 

mapDamage profile from an ancient specimen; ~30% (LaBrana [29]), and high (50%). We 

found that deamination did not have a notable impact on taxonomic classification, as there was 

no loss of taxonomic assignments or misclassifications (Figure 1E-1G). Only a 1.5% loss of 

total reads assigned taxonomy was observed when assessing the highest level of deamination 

(50%) compared to the non-deaminated simulated dataset (Table 1). Overall, these findings 

suggest that deamination does not meaningfully hinder the ability to classify short, ancient 16S 

DNA fragments and that the method developed here could be used to examine taxonomic 

diversity even in highly degraded ancient samples. 

 
Optimising hybridization enrichment efficiency  

We designed RNA baits to capture 16S rRNA gene fragments from a diverse range of microbial 

taxa (see methods). To optimize the hybridization efficiency (proportion of on-target sequences 

vs. non-target sequences) of our RNA bait set, we tested two different hybridization 

temperatures, 55°C and 65°C. We found that enrichment at 65°C yielded the highest on-target 

enrichment of 16S rRNA gene fragments (average 53.42% putative 16S rRNA gene fragments). 

This was more than a two-fold increase over the 55°C enrichment (average 26.17% putative 

16S rRNA gene fragments), and a 334-fold increase over the un-enriched shotgun libraries 

(average 0.16% putative 16S rRNA gene fragments) (Table 2). We found that increasing 

hybridisation temperature selected for longer mean DNA fragment lengths (unenriched = 56 

bp, 55°C = 69 bp, 65°C = 79 bp), but did not find changes in the mean GC content between 

temperatures (Table 2). This enrichment of longer DNA fragments by higher temperatures 

could be explained by shorter DNA fragments not having sufficient Watson-Crick hydrogen 

bonding sites to remain attached to probes at higher temperatures, resulting in the preferential 

binding and enrichment of longer DNA fragments.  
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Given that hybridization temperature was found to select for longer DNA sequences we 

next tested to see if this influenced the taxonomic composition of samples. Due to constraints 

in the alignment speed of BLAST, each sample from each treatment (55°C, 65°C, unenriched) 

was randomly subsampled to 100,000 reads. After alignment and classification using the 

SILVA database, genus level assignments were exported from MEGAN into QIIME 1.9.1 and 

rarefied to the depth of the sample with the fewest genus level assignments (576 assignments). 

There were no significant differences in alpha diversity measures (Shannon; observed-species) 

between treatment types (Figure S2A & S2B; p-values >0.05). Alpha-rarefaction curves 

indicated that most diversity was sampled, with as few as 550 genus level 16S rRNA gene 

fragment assignments for all treatments (Figure S2C & S2D). Differences in microbial 

community composition were also compared using PCA (Principal Components Analysis) of 

Euclidean distances (Figure 2). We found clustering based on sample rather than hybridization 

temperature, suggesting that temperature minimally affected the overall taxonomic 

composition. This was corroborated by statistical analysis using ANOSIM and PERMANOVA 

on different distance metrics (Table 3; Treatment p-values=>0.05). Additionally, taxonomic bar 

plots representing the sum of samples per treatment were nearly identical in both abundance 

and diversity (Figure S4).  

 

Table 2. Enrichment statistics for hybridization temperature test

Sample Total reads Putative 16S reads % putative 16S reads %duplicates %GC avg_sequence_length
A13204_AfrPP2_un-enriched 1,750,000 2,767 0.16% 3.52% 49 54
A13204_AfrPP2_55°C 1,790,862 509,206 28.43% 80.54% 49 69
A13204_AfrPP2_65°C 1,649,694 854,834 51.82% 85.81% 50 77
A13208_AfrSF2_un-enriched 2,000,000 3,531 0.18% 1.34% 49 58
A13208_AfrSF2_55°C 2,105,596 539,978 25.64% 52.98% 48 74
A13208_AfrSF2_65°C 1,897,804 1,114,041 58.70% 71.82% 50 86
A13209_AfrSF3_un-enriched 2,050,000 2,265 0.11% 0.89% 53 51
A13209_AfrSF3_55°C 2,185,137 513,106 23.48% 34.97% 51 62
A13209_AfrSF3_65°C 1,869,330 948,471 50.74% 52.66% 51 68
A13213_AfrPP1_un-enriched 2,350,000 4,361 0.19% 1.84% 50 60
A13213_AfrPP1_55°C 2,725,464 738,998 27.11% 43.60% 49 73
A13213_AfrPP1_65°C 2,015,235 1,056,566 52.43% 55.66% 50 83

Average un-enriched 2,037,500 3,231 0.16% 1.90% 50 56
Average 55°C 2,201,765 575,322 26.17% 53.02% 49 69
Average 65°C 1,858,016 993,478 53.42% 66.49% 50 79
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Figure 2. PCA of Euclidean distances of microbial composition between samples. Principal 
Components 1-2, and 1-3 are shown. Enrichment method is indicated by different coloured shapes.
Circle outlines represent groupings of the same sample.

A13213_frPP1

A13204_frPP2

A13208_frSF2

A13209_frSF3

A13213_frPP1

A13204_frPP2 A13208_frSF2 A13209_frSF3

Table 3. Statistical assessment of beta diversity metrics by treatment method or sample 

Beta-diversity metric Variable Statistical method R F statistic p-value

Binary-Jaccard Treatment ANOSIM -0.202 0.943
Binary-Jaccard Treatment PERMANOVA 0.327 0.962
Binary-Jaccard Sample ANOSIM 0.976 0.001
Binary-Jaccard Sample PERMANOVA 11.658 0.001

Bray-Curtis Treatment ANOSIM -0.218 0.955
Bray-Curtis Treatment PERMANOVA 0.160 0.962
Bray-Curtis Sample ANOSIM 1.000 0.001
Bray-Curtis Sample PERMANOVA 44.460 0.001

Binary-Euclidean Treatment ANOSIM -0.192 0.930
Binary-Euclidean Treatment PERMANOVA 0.431 0.957
Binary-Euclidean Sample ANOSIM 0.959 0.001
Binary-Euclidean Sample PERMANOVA 6.567 0.001
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Regarding taxonomic assignments specific to hybridization temperature, both 

enrichment temperatures allowed for the detection of Corynebacterium (a genus commonly 

found in human dental plaque) that was not identified in the unenriched samples. Additionally, 

the 65°C treatment was the only one to detect Pseudoramibacter (an oral taxon previously 

identified in ancient dental calculus and modern studies [13,30]) (Figure S5). Taxa specific to 

the unenriched treatment include: Bacteroides, Microbacter, Parabacteriodes, Desulfoplanes, 

Pseudomonas, Merismopedia, Blautia, Acholeplasma, and Candidatus Phytoplasma (Figure 

S5). None of these taxa are commonly found in the oral cavity [17] and likely represent 

laboratory or reagent contamination. It is possible that they were identified here because the 

unenriched libraries contain fewer 16S rRNA gene assignments compared to the enriched 

libraries, the minimum percentage of reads needed for taxonomic assignment (minimum 

support percent 0.1%) is lower (e.g. the minimum support percent for 3,000 assignments is 

[3,000*0.001 = 3], versus minimum support percent for 30,000 [30,000*0.001 = 30]). 

Therefore, contaminant DNA present in the library at low levels may have been more likely to 

be assigned taxonomy in the unenriched libraries. 

Overall, these results suggest that a hybridization temperature of 65°C substantially 

increases the on-target enrichment of 16S rRNA gene fragments with minimal observable 

taxonomic dropout or bias. Therefore, a hybridization temperature of 65°C was used for 

subsequent enrichments. 

 
Comparison of 16S enrichment method to shotgun method for taxonomic classification 

We next sought to compare taxonomic classifications of both 16S rRNA gene enrichment and 

unenriched shotgun metagenomic methods using previously published ancient dental calculus 

data. We enriched 11 additional dental calculus samples from [8] at 65°C, bringing the total 

number of samples to 15 (including four samples from the previous section) (Table S2). To 

normalize the number of sequences present in both methods, we randomly subsampled to equal 

sequencing depths prior to any analysis (Table S2 & S3). For the 16S enrichment samples, we 

observed an average of 58% on-target enrichment of 16S rRNA gene fragments, and an increase 

in mean read length from 48 for unenriched to 73 for enriched (Table S2), supporting our 

previous results. 

Because DNA contamination from reagents and the laboratory environment can 

influence taxonomic analyses (especially for ancient samples) we removed genera identified in 

the extraction blank controls (EBCs) (Table S4) from the biological samples. For all 28 

biological samples (14 from each treatment), 0.2% of reads were removed by filtering in the 

shotgun data set, while 3.12% were removed from enriched 16S rRNA gene sequences. This 
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suggests that 16S rRNA gene enriched data is more prone to the impacts of modern contaminant 

DNA.  

We next assessed the specificity of the taxonomic assignments for both methods (Table 

4). As expected, the shotgun method was more specific (average of 64.8% of assigned reads at 

the species level versus 1.8% for the 16S enrichment method). However, on average, the 

shotgun method could not align 59% of reads, whereas only 0.5% could not be aligned for the 

16S enrichment method (Table 4). Given that both methods represent different approaches and 

use different reference databases, we next tested if there were genus identifications specific to 

each method. The 16S enrichment method classified 20 genera that were not present in the 

shotgun method, although these assignments each had a mean abundance <1% (Table 5). The 

shotgun method had 18 genus identifications not present in the 16S enrichment method, and all 

but three of these each had a mean abundance of <1% (Table 5). Comparing these assignments 

to taxa found in the Human Oral Microbiome Database (HOMD), 9/20 were putatively oral for 

the 16S enrichment method, with 14/18 for the shotgun method. Importantly, the 16S 

enrichment method was unable to detect the common oral genus Tannerella, which was present 

at a mean abundance of 3.42% in the shotgun method. Additionally, the putative oral genus 

Olsenella was also not detected in the 16S enrichment method and was at a mean abundance of 

7.85% in the shotgun method.  

 

 

Table 4. Mean proportions of taxonomic assignments at given taxonomic ranks for 16S-enrichment and unenriched shotgun approaches

Method Total # reads 
Total reads 

used for 
alignment

# reads 
aligned

# reads 
not 

aligned

% 
unaligned

% assigned 
domain

% 
assigned 
phylum

% 
assigned 

class

% 
assigned 

order

% assigned 
family

% assigned 
genus

% assigned 
species

Average 16S-enrichment 94,019 53,905 52,823 430 0.8% 6.4% 4.6% 9.3% 18.3% 21.0% 35.9% 1.8%

Average Shotgun 94,019 94,019 37,856 56,102 59.0% 1.7% 2.1% 2.7% 3.2% 3.9% 20.8% 64.8%

Table 5. Mean abundance of method-specific taxonomic assignments. Bolded 
Names represent taxa present in the Human Oral Microbiome Database

Taxon specific to 16S Mean abundance Taxon specific to shotgun Mean abundance

Peptococcus 0.90% Olsenella 7.85%
Desulfobulbus 0.85% Tannerella 3.42%
Mogibacterium 0.77% Parvimonas 1.19%
Peptostreptococcus 0.41% Dialister 0.48%
Fastidiosipila 0.39% Eikenella 0.45%
Bergeyella 0.23% Atopobium 0.38%
Brachymonas 0.22% Slackia 0.35%
Fusibacter 0.19% Kingella 0.27%
Pelospora 0.16% Clostridium 0.24%
Flavobacterium 0.15% Peptoniphilus 0.17%
Roseburia 0.14% Anaeroglobus 0.12%
Nocardioides 0.13% Granulicatella 0.08%
Paenibacillus 0.08% Solobacterium 0.06%
Desulfovibrio 0.06% Oribacterium 0.05%
Polaromonas 0.06% Eggerthia 0.05%
Candidatus Tammella 0.05% Stomatobaculum 0.04%
Peptoclostridium 0.04% Chlorobium 0.04%
Acetobacterium 0.04% Peptoanaerobacter 0.02%
Pyramidobacter 0.02%
Verrucomicrobium 0.02%

Sum of mean abundances 4.92% 15.28%
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We next tested to see if these differences in genus level assignments between methods 

influenced the relationships between samples. We found that samples classified by sample were 

more similar to one another than samples classified by method (ANOSIM of Binary Euclidean 

distances R=0.179 for method, and R=0.516 by sample; p-value for both <0.05) (see Table 6 

for other distance metrics and statistical tests). Visualising both non-abundance-weighted and 

abundance-weighted compositional distances between samples on neighbour joining trees, we 

found similar groupings of samples despite the method used (Figure 3; Figure S6). This 

suggests that despite differences in the genera identified in each method, the relationships 

between ancient samples based on microbial composition is similar.  

 

 

Table 6. Statistical assessment of beta-diversity metrics by method or sample 

Beta-diversity metric Variable Statistical test R F statistic p-value

Binary-Jaccard Method ANOSIM 0.442 0.001
Binary-Jaccard Method PERMANOVA 7.519 0.001
Binary-Jaccard Sample ANOSIM 0.236 0.025
Binary-Jaccard Sample PERMANOVA 1.428 0.028

Bray-Curtis Method ANOSIM 0.315 0.001
Bray-Curtis Method PERMANOVA 5.596 0.001
Bray-Curtis Sample ANOSIM 0.589 0.001
Bray-Curtis Sample PERMANOVA 2.800 0.001

Binary-Euclidean Method ANOSIM 0.179 0.005
Binary-Euclidean Method PERMANOVA 3.711 0.015
Binary-Euclidean Sample ANOSIM 0.516 0.001
Binary-Euclidean Sample PERMANOVA 3.274 0.001
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Finally, to compare the cost associated with reconstructing microbial composition, we 

compared the effectiveness of obtaining genus or species level assignments of the aligned 

sequences in both methods given equal sequencing depth. Given equal sequencing depth for 

each method, the 16S enrichment method assigned an average of 21.1% of sequences a 

taxonomic classification to the genus and species level, while the shotgun method assigned 

34.5% of the sequences to a similar level. This represents a 39% increase in the number of reads 

assigned at the genus or species level for shotgun over the 16S enrichment method, despite the 

increase in the percentage of reads assigned for the 16S enrichment method (56% for 16S 

enrichment, 41% for shotgun). This suggests that while the 16S enrichment method can align 

and assign a higher percentage of sequences, these assignments are not as specific as the 

shotgun method, and given the extra costs associated with the enrichment method, the shotgun 

method is currently the most cost-effective means of classifying genus or species level 

taxonomy in highly degraded ancient samples. 
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Discussion 
 

Reconstructing ancient microbial communities is a challenging endeavour. Currently, there is 

a lack of studies comparing different methods for doing so. By using both in-silico data and 

developing a new technique to obtain deep sampling of 16S rRNA fragments from 

metagenomes, this study is the first to assess the influence of ancient DNA characteristics and 

sampling depth on the reconstruction of ancient microbial communities using 16S rRNA gene 

fragments. While we found that this technique was not as efficient at obtaining genus or species 

level resolution as the shotgun metagenomics approach, the overall community composition 

between the methods was similar. Therefore, analysis of 16S rRNA gene fragments could be 

used to complement community reconstruction using the shotgun metagenomics approach.  

Using simulated data, this study was the first to formally test the influence of ancient 

DNA characteristics on the alignment and classification of 16S rRNA gene fragments, a 

technique previously used in the field [8,12,14]. We found that short 16S rRNA gene fragments 

did not contain sufficient information for species-level resolution, limiting their use for species-

level classification of ancient DNA. This supports previous findings in modern microbiome 

research whereby longer lengths of the 16S rRNA can provide more specific taxonomic 

information [31,32]. We could classify 98.4% of all simulated reads, with 53.2% of these being 

placed at the genus level. The resulting taxonomic classifications had no false-positive 

taxonomic assignments, and almost perfectly recapitulated the true community. One exception 

to this was an issue classifying E. coli and Y. pestis 16S rRNA gene fragments, which has been 

noticed before [33–35] and may be due to insufficient resolution of the 16S rRNA gene to 

discriminate between these two species. Regardless, 16S rRNA gene fragments from these 

species were placed at the family level, so not all taxonomic information was lost. By 

performing a reference sequence exclusion experiment, we found that our analytical method 

was robust to missing reference sequences in databases, which is currently a major issue for 

shotgun metagenomic methods [13]. We also demonstrated that deamination does not 

meaningfully impact classification of short 16S rRNA gene fragments and that fragments as 

short as 30 bp could be assigned, supporting a previous assessment of alignment-based methods 

for ancient DNA [13]. Overall, these simulations suggest that the alignment and classification 

of 16S rRNA fragments is robust to the characteristics of ancient DNA, allowing for its use in 

the reconstruction of ancient microbial communities in highly degraded samples. 

To empirically test our simulated findings, we developed a highly efficient hybridisation 

enrichment method to obtain deep sampling of 16S rRNA gene fragments from shotgun 

metagenomic libraries. For the 65°C hybridisation enrichment temperature tested, an average 
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of 58% of sequenced DNA reads were 16S rRNA gene fragments, which represents a 334-fold 

increase over the same unenriched libraries. We also found that enriched libraries had longer 

read lengths than unenriched, which could be explained by shorter DNA fragments not having 

sufficient Watson-Crick hydrogen bonding sites to remain attached to probes at higher 

temperatures. Despite this different in read length, we found no major influence of enrichment 

and enrichment temperature on observed taxonomic composition, suggesting little bias when 

using enriched 16S rRNA gene fragments compared to unenriched libraries.  

Because 16S rRNA gene fragments make up a small fraction of reads obtained by 

untargeted shotgun metagenomic sequencing (~0.1%), the ability to detect rare taxa using this 

method is limited. By developing an unbiased method to provide deep sampling of 16S rRNA 

gene fragments, our hybridisation enrichment technique also allowed us to empirically test the 

extent of 16S rRNA gene diversity in metagenomic samples. While this method allowed for the 

detection of oral taxa not present in unenriched libraries, the overall taxonomic composition 

was similar despite the large difference in the number of putative 16S rRNA gene fragments 

(average of 3,231 for unenriched, 993,478 for enriched). This suggests that most 16S rRNA 

microbial diversity is captured from unenriched shotgun metagenomic sequencing with as few 

as 3,000 16S rRNA gene fragments, corresponding to ~2,000,000 unenriched shotgun 

metagenomic sequences. This empirical verification adds further support to the microbial 

diversity captured in previous palaeomicrobiology studies that used unenriched 16S rRNA gene 

fragments to classify ancient microbial communities [8,12,14].  

To our knowledge, this is also the first study to empirically test the specificity of 

taxonomic classifications derived from 16S rRNA gene fragment alignments and whole-

genome alignments using ancient DNA. We found that the shotgun whole-genome alignment 

method has greater specificity than 16S rRNA gene fragment alignments, supporting in-silico 

findings here and in a previous study [13], as well as in modern microbiome research [34,36]. 

While there were putatively oral taxa identified specific to either method, the shotgun approach 

possessed a higher proportion of oral to contaminant taxa and was uniquely able to detect two 

relatively highly prevalent and abundant oral genera commonly found in dental calculus, 

Tannerella and Olsenella [13]. Our findings, both in-silico and empirical, suggest that the 

shotgun approach is the best suited for future palaeomicrobiological using dental calculus 

seeking to obtain specific microbial classifications. However, the analysis of 16S rRNA gene 

fragments could be advantageous for studying sample types that are less well-characterised 

(e.g. sediment), as higher-level classifications could be obtained using the phylogenetic 

information obtained in the 16S rRNA gene. 
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While we found differences in the specificity of assignments and taxa identified 

between methods, the overall taxonomic compositions classified were similar. It has been 

previously demonstrated that taxonomic composition derived from metagenomic 16S rRNA 

gene fragments is similar to taxonomic composition derived from shotgun libraries [9]. Our 

study validated and expanded on this work by using more samples (14 versus 6) and performing 

in-silico validation of the method used for 16S rRNA gene fragment analysis. We also used 

nucleotide-to-nucleotide alignments for shotgun alignments, which have been demonstrated to 

be more accurate and robust to the characteristics of ancient DNA than nucleotide-to-protein 

alignments [13]. Overall, our findings suggest that while there are differences between ancient 

microbial community reconstruction using either 16S rRNA gene fragments or shotgun whole-

genome alignments, the overall genus-level taxonomic compositions and the resulting 

relationships between samples are similar. This suggests that the analysis of 16S rRNA gene 

fragments from shotgun metagenomic data can be used as a complementary approach to support 

relationships between samples found using shotgun whole-genome alignment methods. 

In summary, using both in-silico and empirical data, this study validates the use of 16S 

rRNA gene fragments for the reconstruction of ancient microbial communities. While less 

specific that the shotgun whole-genome alignment approach, this method could be used to add 

further support to community reconstructions and the relationships between samples. 

Additionally, this method would be suitable for surveying microbial diversity in ancient sample 

types that do not have robust modern sampling of reference genomes. Our findings provide a 

valuable resource for future studies seeking to reconstruct ancient microbial communities.  
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Supplementary figures and tables 

 

  

Figure S1. Read length distribution of simulated metagenome
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Figure S2. Read length distribution of aligned reads at different taxonomic ranks



 

 158 

 
 

 
  

Table. S1. Simulated 16S metagenome composition
Taxon Abundance

Bacillus_anthracis 5.0%
Corynebacterium_matruchotii 2.5%
Corynebacterium_durum 2.5% Removed for species exclusion experiment
Escherichia_coli 2.5%
Fretibacterium_fastidiosum 2.5%
Johnsonella_ignava 2.5% Removed for species exclusion experiment
Methanobrevibacter_oralis 12.5%
Moranella_endobium 2.5%
Neissera_sicca 7.5% Removed for species exclusion experiment
Rothia_aeria 19.5%
Staphylococcus_aureus 0.5%
Streptococcus_mitis 4.0% Removed for genus exclusion experiment
Streptococcus_mutans 1.0% Removed for genus exclusion experiment
Streptococcus_oralis 5.0% Removed for genus exclusion experiment
Streptococcus_sanguinis 5.0% Removed for genus exclusion experiment
Streptococcus_suis 10.0% Removed for species and genus exclusion experiment
Thiomargarita_namibiensis 5.0%
Treponema_denticola 5.0%
Yersinia_pestis 5.0%

A B

Figure S2. Influence of enrichment treatment on microbial alpha diversity. (A) Shannon diversity index. (B) Observed 
genera. (C) Alpha rarefaction curve of Shannon diversity index. (D) same as C, but using the observed genera metric.
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Figure S4. Taxonomic composition of samples collapsed by enrichment treatment type
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Figure S5. Heat m
ap of genus-level assignm

ents collapsed by enrichm
ent treatm

ent

Taxonom
y profile for C

om
parison-Treatm

ent.m
egan

Sam
ples

Bacteroides
M

icrobacter
Parabacteroides
Porphyrom

onas
Tannerella
Prevotella
Bergeyella

C
apnocytophaga

C
hlorobium

C
etobacterium

Fusobacterium
Leptotrichia

Lautropia
Brachym

onas
N

eisseria
D

esulfobacterium
D

esulfobulbus
D

esulfom
icrobium

D
esulfoplanes
D

esulfovibrio
C

am
pylobacter

C
ardiobacterium

Aggregatibacter
H

aem
ophilus

Acinetobacter
Pseudom

onas
Treponem

a
C

andidatus Tam
m

ella
Fretibacterium
Actinom

yces
C

orynebacterium
M

ycobacterium
Propionibacterium

Streptom
yces

M
erism

opedia
G

em
ella

Paenibacillus
Staphylococcus

Streptococcus
Fusibacter

M
ogibacterium
Eubacterium

Pseudoram
ibacter
Blautia

C
atonella

Johnsonella
Lachnoanaerobaculum

Peptococcus
Filifactor

Peptostreptococcus
Fastidiosipila

Pelospora
Selenom

onas
Acholeplasm

a
C

andidatus Phytoplasm
a

C
andidatus Saccharim

onas
M

ethanobrevibacter

C
ount
2,000

100

101

Unenriched
55°C

65°C



 

 161 

 

 
 
 
 
 
 
 

  

Table S2. Enrichment statistics for subsampled, 16S-enriched samples
Sample total sequences putative 16S fragments % putative 16S fragments %duplicates %GC avg_sequence_length

A12014_EuroHG1-16S-Enriched 100,000 68,369 68.4% 91.5% 49% 81
A12017_EuroHG2-16S-Enriched 93,208 64,593 69.3% 65.7% 52% 80
A12826_LBK1-16S-Enriched 100,000 54,794 54.8% 28.3% 52% 67
A12829_LBK2-16S-Enriched 100,000 52,971 53.0% 8.9% 51% 68
A12873_Chimp-16S-Enriched 100,000 47,463 47.5% 91.5% 54% 50
A13204_AfrPP2-16S-Enriched 100,000 52,010 52.0% 43.7% 49% 71
A13208_AfrSF2-16S-Enriched 100,000 59,146 59.1% 20.8% 50% 78
A13209_AfrSF3-16S-Enriched 100,000 51,305 51.3% 10.6% 51% 63
A13210-AfrSF4-16S-Enriched 100,000 56,234 56.2% 87.5% 44% 65
A13213_AfrPP1-16S-Enriched 100,000 52,847 52.8% 10.4% 50% 76
A13232_IndRev1-16S-Enriched 100,000 48,456 48.5% 21.7% 50% 88
A13234_IndRev2-16S-Enriched 100,000 49,201 49.2% 9.3% 52% 70
A8812_JewBury1-16S-Enriched 51,926 36,720 70.7% 21.3% 50% 75
A8824_JewBury2-16S-Enriched 71,125 60,560 85.1% 54.3% 51% 85
AFR8_EBC-16S-Enriched 9,076 5,388 59.4% 97.0% 52% 86

Average all 88,356 50,670 58% 44% 50% 73
Average excluding EBCs 94,019 53,905 57% 40% 50% 73

Sample total_sequences %duplicates %GC avg_sequence_length

A12014_EuroHG1-UnEnriched 100,000 22.1 44 53
A12017_EuroHG2-UnEnriched 93,208 2.0 47 51
A12826_LBK1-UnEnriched 100,000 1.1 51 47
A12829_LBK2-UnEnriched 100,000 0.6 52 47
A12873-Chimpanzee-UnEnriched 100,000 14.9 53 57
A13204_AfrPP2-UnEnriched 100,000 2.3 42 43
A13208_AfrSF2-UnEnriched 100,000 0.1 49 53
A13209_AfrSF3-UnEnriched 100,000 0.2 46 41
A13210-AfrSF4-UnEnriched 100,000 12.3 43 44
A13213_AfrPP1-UnEnriched 100,000 0.2 43 44
A13232_IndRev1-UnEnriched 100,000 1.6 50 49
A13234_IndRev2-UnEnriched 100,000 0.1 56 45
A8812_JewBury1-UnEnriched 51,926 0.8 52 51
A8824_JewBury2-UnEnriched 71,125 1.0 51 50
AFR8-EBC-UnEnriched 9,076 68.2 45 39

Average all 88,356 8.5 48.3 48
Average excluding EBC 94,019 4.2 48.5 48

Table S3. Sequence statistics for subsampled, unenriched shotgun samples
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Table. S4. Number of reads assigned to genera in extraction blank controls

Genus AFR8_EBC-16S AFR8-EBC-Shotgun

Pedobacter 0 89

Paracoccus 99 0

Comamonas 393 25

Enterobacter 7 13

Serratia 0 20

Acinetobacter 4624 559

Pseudomonas 110 85

Stenotrophomonas 10 0

Mycobacterium 0 13

Brachybacterium 0 9

Staphylococcus 0 491

Enterococcus 0 4215

Sample # reads assigned genus in sample # reads removed by filtering % removed

A8812_JewBury1-Shotgun-Unenriched 23,037 0 0.00%
A8824_JewBury2-Shotgun-Unenriched 31,609 0 0.00%
A12014_EuroHG1-Shotgun-Unenriched 28,822 0 0.00%
A12017_EuroHG2-Shotgun-Unenriched 24,780 0 0.00%
A12826_LBK1-Shotgun-Unenriched 27,502 0 0.00%
A12829_LBK2-Shotgun-Unenriched 43,629 0 0.00%
A12873_Chimp-Shotgun-Unenriched 31,218 0 0.00%
A13204_AfrPP2-Shotgun-Unenriched 21,421 0 0.00%
A13208_AfrSF2-Shotgun-Unenriched 13,808 0 0.00%
A13209_AfrSF3-Shotgun-Unenriched 20,463 804 3.93%
A13210-AfrSF4-Shotgun-Unenriched 15,631 0 0.00%
A13213_AfrPP1-Shotgun-Unenriched 24,296 0 0.00%
A13232_IndRev1-Shotgun-Unenriched 45,252 0 0.00%
A13234_IndRev2-Shotgun-Unenriched 47,189 0 0.00%
A8812_JewBury1-16S-Enriched 16,459 455 2.76%
A8824_JewBury2-16S-Enriched 28,868 486 1.68%
A12014_EuroHG1-16S-Enriched 27,346 199 0.73%
A12017_EuroHG2-16S-Enriched 26,710 777 2.91%
A12826_LBK1-16S-Enriched 17,777 829 4.66%
A12829_LBK2-16S-Enriched 20,952 727 3.47%
A12873_Chimp-16S-Enriched 11,654 175 1.50%
A13204_AfrPP2-16S-Enriched 18,018 386 2.14%
A13208_AfrSF2-16S-Enriched 10,556 107 1.01%
A13209_AfrSF3-16S-Enriched 12,359 816 6.60%
A13210-AfrSF4-16S-Enriched 15,648 2,134 13.64%
A13213_AfrPP1-16S-Enriched 21,135 297 1.41%
A13232_IndRev1-16S-Enriched 24,607 464 1.89%
A13234_IndRev2-16S-Enriched 21,030 679 3.23%

Average Shotgun-Unenriched 28,476 57 0.20%
Average 16S-Enriched 19,509 609 3.12%
Average All samples 23,992 333 1.39%

Table S5. Reads filtered from extraction blank controls per sample
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Abstract 
The peopling of the Pacific represents the greatest feat of maritime settlement in human history, 

requiring long-distance seafaring technology to reach thousands of islands spread across 30% 

of the Earth’s surface. While the timing of human settlement in the Pacific is well defined, the 

source populations and the routes taken during the settlement of Polynesia are not. Here, we 

generate and authenticate ancient oral microbial DNA data for 117 ancient and historical human 

dental calculus samples from across the Pacific. Using this data, we develop and test two 

methods for inferring past human movements using ancient microbial DNA preserved in dental 

calculus. We also compare and contrast oral microbial communities (microbiota) from these 

samples to the oral microbiota of modern individuals from the Human Microbiome Project. 

Finally, we explore the influence of oral diseases on the oral microbiota composition of ancient 

humans. This study expands our understanding of global oral microbiota diversity and is the 

first to demonstrate that microbial DNA preserved in ancient dental calculus can be used to 

investigate past human movements.    
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Main text 
Roughly 3,000 years before present (BP) people of the Lapita culture were the first to settle 

Remote Oceania—the previously unoccupied region from Vanuatu eastwards (Figure 1; orange 

and yellow shaded areas) [1,2]. These early Lapita, otherwise known as the First Remote 

Oceanians, derived almost all of their ancestry from East Asian/ISEA (Island South-East Asia) 

populations [3] and maintained fleets of boats capable of long-distance seafaring, rapidly setting 

up colonies as far as Samoa and Tonga (Figure 1) [4]. However, there is no evidence of Lapita 

culture reaching further eastwards than Tonga and Samoa despite their long-term occupation 

and seafaring abilities, raising questions about the last 1,000 years of human movement and 

settlement in Eastern Polynesia. The earliest evidence for the initial settlement of East Polynesia 

is 1,000-800 BP [5,6], but the routes taken to settle these islands are still highly contentious. 

Some argue for eastern movement from Samoa [5,7,8], while others suggest that Eastern 

Polynesia was initially settled via Marquesas from the central northern outliers in the Solomon 

Islands [9–11].  

Our ability to infer rapid, recent past human movements is limited by a variety of 

factors, including resolution (e.g. rate of evolution), modern day or post-settlement admixture 

events that confound past demographic signals, and ethical issues relating to the analysis of 

human DNA from indigenous cultures [12]. A solution to this is to examine human proxies that 

have faster generation times which can yield higher rates of mutation (e.g. chickens [13]; rats 

[14]; or microorganisms [15]). Calcified dental plaque (calculus) is a robust microbial biofilm 

that preserves human-associated oral microorganisms within the archaeological record, 

providing an unprecedented opportunity to study past human diet, health, and culture [16,17]. 

Because oral microorganisms exhibit a strong degree of vertical inheritance [18–22], it could 

be possible to use microbial DNA preserved in ancient dental calculus as a high-resolution 

proxy of past human movement [12]. Here, we sequence microbial DNA preserved within 130 

ancient and historic dental calculus specimens from 16 geographic areas throughout Island 

South East Asia (ISEA) and the Pacific Islands (Figure 1; Table S1) and, for the first time, use 

the evolutionary history of oral microorganisms as a proxy to reconstruct past human 

movements in the Pacific.  
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Historic (n=120) dental calculus samples collected from the Asia Pacific region in the 

1800s (prior to large-scale European interactions in the region) were obtained from museums, 

and 10 ancient dental calculus samples were obtained from archaeological sites in Vanuatu 

(Teouma Lapita; 2,940-2,710 BP [23]) and Palau (Chelechol ra Orrak; 3000-1700 BP [24]). 

We sequenced these ancient and historic calculus samples to an average depth of 2.2 million 

sequences (±1.3 million) and obtained data for 210 modern supragingival plaque samples from 

the human microbiome project (HMP)[25], which we subsampled to 1.5 million sequences 

each. We classified taxonomic composition for all samples using MALTn [26] against a 

database containing 47,696 bacterial/archaeal genome assemblies [27]. We then applied a 

conservative approach and removed any microbial taxa identified in extraction blank controls 

(EBCs) from the dental calculus samples (Supplementary Note 1); post-filtering, 117 of the 

ancient dental calculus and all modern plaque samples exhibited a strong oral microbiome 

signal (Supplementary Note 1 & SI figure 1).  

Given the widespread geographic sampling in study, we focused our taxonomic 

composition analyses on genus level classifications to allow for better comparisons between 

cultures (Supplementary Note 2). Of the 137 microbial genera that we identified in historic and 

ancient dental calculus samples, a set of seven genera were widespread (present in >75% of 

samples) and had the highest mean abundances ranging from 3.7%—23.6% (Figure 2A). These 
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Figure 1. Map of the Pacific ocean illustrating geographic areas and islands where ancient 
dental calculus were obtained. Shaded colours represent broader geographic regions, and 
correspond to colours in the phylogenetic tree in Figure 3.
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seven genera accounted for 73.1% of all taxonomic assignments (Figure 2B) and each 

possessed DNA damage patterns typical of authentic ancient DNA (Figures S3-16). For the 

modern HMP plaque samples, a similar trend was observed, with the top seven genera being 

present in >95% of samples, and having the highest mean abundances ranging from 5.3—20.3% 

(Figure 2A). These genera also accounted for 71.1% of all taxonomic assignments (Figure 2B), 

which is in accord with previous modern plaque studies [28,29]. Interestingly, the only shared 

genus in the top seven genera for both datasets is Actinomyces, which could suggest large 

differences in the abundances potentially due to diet [17], disease, or geographic isolation. 

Additionally, issues with classifying ancient microorganisms due to missing reference genomes 

[27], or unknown taphonomic issues pertaining to ancient DNA degradation (i.e. preferential 

degradation of some taxa over others) could also explain this finding.  

 
 

We hypothesised that the different human cultures sampled would possess distinct oral 

microbiomes due to geographic isolation, diet, or cultural practices. After controlling for tooth 

sampled (e.g. molar, incisor), which is known to influence oral microbiome composition 

[30,31], we were left with 74 molar dental calculus samples (Supplementary Note 2). While we 

did not find statistically significant differences in alpha (within group) diversity between the 

different islands and geographic regions tested, we found small but statistically significant 

Figure 2. Core genera identified in ancient ISEA/Pacific samples. (A) Prevalence and abundance plot of core genera identified in ancient 
dental calculus and modern HMP plaque samples. (B) Total mean abundance of core genera across both datasets. The seven top genera 
account for >70% of the classified sequencing data.

0%

3%

6%

9%

12%

15%

18%

21%

24%

27%

30%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M
ea
n	
ab
un

da
nc
e	
(%

)

Prevalence	(%)

A

B
= Modern HMP

= Ancient samples



 

 171 

differences in community composition by island and geographic region for both abundance-

weighted and unweighted distance metrics (PERMANOVA, ANOSIM p-values <0.005) (Table 

S3) (Supplementary Note 2). This could suggest that individuals and cultures from different 

geographic regions possess distinct oral microbiomes.  

We next explored whether evidence of dental disease (caries, periodontal disease) 

influenced microbial composition in our dataset (Supplementary Note 2). Differences in 

microbial composition between samples grouped by evidence of dental caries or periodontal 

disease were not statistically significant (Supplementary Note 2). However, we found six 

specific oral genera that were only present in the ancient dental calculus samples but not HMP 

plaque samples: Anaerolineaceae, Methanobrevibacter, Pseudoramibacter, 

Desulfomicrobium, Desulfobulbus, and Slackia. These genera are present in the HOMD 

(Human Oral Microbiome Database) and have been associated with periodontal disease [32–

36]. The absence of these periodontal disease-associated taxa in modern HMP plaque samples 

is expected as these samples were collected from healthy individuals [25]. We found that the 

abundance of Methanobrevibacter appeared to correlate with the axis of greatest variation in 

Principal coordinates analysis (PCoA) (Figure S24A) (Supplementary Note 2). This clustering 

was not observed using the unweighted Binary Jaccard metric (Figure S24B), suggesting that 

the abundance of a periodontal-associated Methanobrevibacter alone was enough to influence 

abundance-weighted distance metrics in ancient microbiome analysis. Therefore, periodontal 

disease could be a confounding factor when analysing ancient microbial communities and 

should be evaluated in future studies using larger datasets with more robust and even sampling. 

Given that taxonomic composition is unlikely to be informative regarding past human 

movements, we next focused on genomic analyses of the seven ‘core’ genera we identified in 

ancient samples as these represent the best candidates for vertically inherited microbial 

species—a trait necessary for phylogenetic analysis and inference of past host movements. We 

developed and investigated two approaches. The first methodology involved the hybridization 

enrichment of specific, phylogenetically informative microbial genes to examine phylogenetic 

relationships between samples; many of the relationships identified using this method had poor 

phylogenetic support and are unsupported by current evidence (Supplementary Note 4; Figures 

S36-48). The second approach involved the analysis of low-coverage whole bacterial genomes 

(Supplementary Note 3). Because low coverage phylogenetic reconstruction can be prone to 

the influence of cytosine deamination (an ancient DNA damage-based substitution), we used 

transversions substitutions only. Of these seven genera, Anaerolineaceae sp. oral taxon 439 

produced a robust whole genome phylogeny possessing strong node support values, and 
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phylogenetic relationships that corroborate the available evidence on past human movements 

in the Pacific (Figure 3) [3,37,38].  

We found two major clades, one containing samples from ISEA, China, and the 

Andaman Islands (Figure 3; pink), and the other containing all of the Pacific samples. The first 

split within the Pacific clade is between the ~3,000-year-old Lapita (Teouma) and 3,000-1,700-

year-old Palau samples (Figure 3; blue), and the rest of the Pacific samples (Figure 3; red, 

orange, yellow). The close affinity of the Teouma Lapita sample (~3,000 BP) with the Palau 

samples is in line with current evidence for early occupation of Palau ~3,300-3,000 BP [39,40], 

with archaeological evidence pointing towards ISEA (especially the Philippines) as a likely 

source of settlement [41]. The placement of the Teouma Lapita sample (representing the First 

Remote Oceanians) outside of the Papuan clade (red) supports previous ancient human DNA 

findings that the First Remote Oceanians had little, if any, Papuan ancestry and possessed 

highest affinity to East Asian/Taiwan and populations from the ISEA [3]. Additionally, the 

placement of the Teouma Lapita sample outside of the Vanuatu and Polynesian clade (Figure 

3; orange and yellow) is also supported by recent ancient human DNA and linguistic evidence 

for later waves of Papuan movement and admixture with First Remote Oceanians [37,38]. This 

may explain the observed loss of the ancient First Remote Oceanian Anaerolineaceae lineage 

from the more recent Vanuatu and Polynesian samples (Figure 3).  
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Our data also suggests that Eastern Polynesia was settled by an initial movement from 

the northern Solomon outliers to the Marquesas [9–11], rather than eastwards movement from 

Samoa [5,7,8]. This is supported by the placement of a Solomon Island sample outside of the 

Polynesian clade (yellow), coupled with a major split between the Marquesan and other 

Polynesian samples (Figure 3; yellow). Overall, these relationships are consistent with current 

evidence of human settlement in the region, and future sampling (both spatially and temporally) 

will undoubtedly reveal more about the demographic history of the Pacific. 

While the Anaerolineaceae genome appeared to provide a robust phylogeny, the other 

species tested yielded relationships not currently supported by current evidence (Figure S26-

34). There are numerous potential reasons for this. First, the sequencing effort in our study may 

be too shallow, resulting in missing data and making it difficult to align whole-genome 

sequences (Supplementary Note 3). Indeed, when we attempted to call consensus sequences of 

our Anaerolineaceae genomes with a minimum depth of 3, the resulting whole-genome 

alignments were severely truncated and upon visual inspection, poorly aligned. In contrast, our 

Anaerolineaceae consensus sequences called with no minimum depth cut-off yielded a robust 
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genome alignment and phylogenetic tree, suggesting that missing data was interfering with our 

attempts at phylogenetic reconstruction. While missing data likely contributed, it is insufficient 

to explain why phylogenies produced by species with higher abundance and therefore more 

sequence coverage (Olsenella and Actinomyces — Figure 2) failed to recapitulate past human 

movements. Other factors include cross-mapping of DNA reads due to inappropriate reference 

genome choice, or the biology of the microorganisms used. Given that we could only align an 

average of 51.7% of ancient DNA reads to modern reference genomes (Supplementary Note 2) 

[27], we are potentially unable to identify microbial species in our ancient data. This could be 

an issue for the phylogenetic reconstruction of some microbial species, as we cannot perform 

competitive mapping (Supplementary Note 3) to prevent cross-mapping of reads from other 

species—a situation that would violate phylogenetic inference [42]. The biology of the 

microorganisms used could also explain our findings. For example, some microbial species 

exhibit more homologous recombination and horizontal gene transfer than others [43], which 

would further hamper phylogenetic inference [44,45]. Additionally, differences in the degree 

of heritability and stability through time of microbial species could also influence their use 

phylogenetically. Clearly, further research is needed to understand why some oral species are 

not suitable for inferring past human movements, and to increase the number of species 

available for future studies. Until then, it appears that Anaerolineaceae sp. oral taxon 439 is a 

viable proxy for determining past human movements. 

In conclusion, this study is the first to examine the oral microbial communities of 

ancient and historic ISEA and Pacific peoples. The high-quality and authentic data that we 

generated will be useful for learning more about the history and culture of these regions. We 

are also the first to demonstrate that microbial DNA in ancient dental calculus can be used as a 

proxy for past human demographic history, and our results lend further support to current 

evidence about the peopling of the Pacific. Future studies incorporating deeper sequencing 

depth and greater temporal/spatial sampling should allow new insights into the peopling of East 

Polynesia. Furthermore, the method employed here could also be used to shed light on the past 

demographic histories of other cultures around the world. 

 

Materials and methods 
Sample collection 

Historical dental calculus samples were collected from the Musée de l'Homme in Paris, France, 

and the Natural History Museum of London, U.K. Ancient Lapita samples were obtained from 

the Teouma site in Vanuatu [1], and ancient Palau samples were obtained from the Chelechol 
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ra Orrak site [39]. All samples were collected by individuals wearing face-masks and gloves, 

and dental picks were decontaminated between samples. Samples were stored in sterile plastic 

bags and transported at room temperature to the University of Adelaide, where they were 

refrigerated at 4°C until DNA extraction.  

 

Sample processing and DNA extraction 

All sample processing and molecular biology procedures prior to PCR amplification were 

carried out at the Australian Centre for Ancient DNA facility at the University of Adelaide. 

Experiments were performed within UV-treated, 3% bleach cleaned, still-air hoods located in 

isolated, still-air rooms to limit the introduction of modern contaminant DNA. Dental calculus 

samples were decontaminated to minimise environmental contamination by UV-irradiation for 

15 minutes on each side, following by soaking in 2 ml of 5% bleach for 3 minutes, rinsing in 

90% ethanol for 1 minute, and drying at room temperature for two minutes. Immediately post-

decontamination, dental calculus samples were crushed on the side of plastic tubes with sterile 

tweezers, and DNA extracted using an in-house silica-based method described previously [46]. 

Because of the highly degraded nature of the two Teouma Vanuatu samples (B10B and B10C), 

DNA was extracted using a different method to obtain shorter DNA fragments (Method Y [47]). 

Extraction blank and no-template library controls were included alongside all samples and were 

sequenced.  

 

DNA library preparation and sequencing 

Shotgun metagenomic libraries were constructed as previously described [48], using unique 

combinations of 7-bp forward and reverse barcodes [48]. Thirteen cycles of amplification were 

completed with P5/P7 barcoded adapters, followed by an additional thirteen cycles for the 

addition of GAII-index and sequencing primers. Metagenomic shotgun libraries were cleaned 

using Ampure XP, quantified using an Agilent TapeStation, and pooled at equimolar 

concentrations prior to sequencing on the Illumina HiSeq X Ten platform (2 x 150 bp). Shotgun 

metagenomic libraries were constructed as previously described [48], using unique 

combinations of 7-bp forward and reverse barcodes [48]. Thirteen cycles of amplification were 

completed with P5/P7 barcoded adapters, followed by an additional thirteen cycles for the 

addition of GAII-index and sequencing primers. Metagenomic shotgun libraries were cleaned 

using Ampure XP, quantified using an Agilent TapeStation, and pooled at equimolar 

concentrations prior to sequencing on the Illumina NextSeq and X10 platforms. 

 

Hybridization enrichment 
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Thirty-two samples including an extraction blank control (SI table S9) were chosen for 

hybridization enrichment using custom-designed RNA baits (Supplementary Note 4). All 

samples were amplified in five individual reactions to reduce clonality, cleaned, and pooled to 

obtain 100 ng of DNA for input into enrichments. The MyBaits protocol (v3) was used for 

hybridization enrichment with minor alterations, whereby the input RNA bait concentration 

was reduced to 25% of the recommended amount and custom oligonucleotides were used to 

block the barcoded P5/P7 adapters. Hybridization time was 40 hours with the following 

conditions: 65°C start temperature followed by a lowering of 1°C per hour to 55°C; and 30 

hours at 55°C. Post-capture, the beads were washed three times using Wash Buffer 2 (MyBaits) 

and resuspended in PCR mastermix for on-bead PCR. To further reduce clonality, the number 

of PCR cycles needed for each library to reach plateau was estimated for each sample using 

qPCR with primers targeting the barcoded adapters. Each library was then amplified using the 

determined number of cycles, cleaned, pooled, and sequenced on the Illumina HiSeq X Ten 

platform (2 x 150 bp). 

 

Data processing and microbiome composition analyses 

The resulting data were converted into fastq format using Illumina’s bcl2fastq software, before 

being trimmed and demultiplexed using AdapterRemoval 2 based on unique P5/P7 barcode 

combinations, (minimum length 25 bp, 1 barcode mismatch, trim Ns) [49]. Taxonomic 

composition was determined using MEGAN Alignment Tool (MALT) [26], whereby DNA 

reads from samples were aligned against a database containing 47,696 archaeal and bacterial 

genome assemblies from the NCBI Assembly database [27]. The resulting BLAST-text files 

were converted into RMA files via the blast2rma script included in the program MEGAN [50], 

with the following Last Common Ancestor (LCA) parameters: Weighted-LCA=80%, minimum 

bitscore=42, minimum E-value=0.01, minimum support percent=0.1. Samples were assessed 

for ancient DNA authenticity by comparison to extraction blank controls and by estimation of 

cytosine deamination using mapDamage [51] (Supplementary Note 1). Samples that passing 

authentication criteria were normalised to equal read depth (187,293) in MEGAN before PCoA 

ordination of Bray-Curtis dissimilarities. Genus level assignments were also exported from 

MEGAN into QIIME 1.9.1 [52] for taxonomic and statistical analyses (Supplementary Note 2). 

PCoA plots were constructed using PhyloToAST [53]. 

 

Genomic and phylogenetic analysis 

We used the previously published El Sidron 1 Neanderthal dental calculus data as an outgroup 

for our phylogenetic analyses [17]. Genomic sequences were assembled by mapping to 
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reference genomes using the PALEOMIX [54] pipeline with the BWA-MEM aligner [55]. The 

resulting BAM files were imported into Geneious (v. 10.2.3) [56], and consensus sequences 

were called using a 75% consensus threshold (Supplementary Note 3; Figure S25). Consensus 

sequences were then aligned using the Mauve Genome aligner with default settings [57]. 

Gblocks [58] with default settings was used to clean alignments before aligned sequences were 

imported into MEGA7 [59]. In MEGA7, phylogenetic reconstruction was performed using the 

Neighbour-Joining method of evolutionary distances computed using the Maximum Composite 

Likelihood method [60]. Trees shown are bootstrap consensus trees from 1,000 replicates. The 

rate variation among sites was modelled with a gamma distribution (shape parameter = 1), and 

the differences in the composition bias among sequences were considered in evolutionary 

comparisons [61]. All positions with less than 75% site coverage were eliminated (e.g. fewer 

than 25% alignment gaps, missing data, and ambiguous bases were allowed at any position). 

Details about the analysis of the hybridization-enriched genes can be found in Supplementary 

Note 4.  

 

 

Supplementary note 1: Subtractive filtering of laboratory 

contaminants and authentication of ancient DNA 
Subtractive filtering of laboratory contaminants 

Samples with low concentrations of DNA are more vulnerable to the effects of DNA 

contamination from the laboratory environment [62–64]. While ancient dental calculus has 

been shown to contain relatively high concentrations of DNA (tens to hundreds of ng mg-1)[65], 

there is variation between samples that are likely due to differences in preservation that results 

from exposure to different microenvironments (e.g. heat, moisture). Therefore, it is expected 

that some ancient dental calculus samples will be more affected by laboratory contamination 

than others. Figure S1 clearly illustrates this concept, with some ancient dental calculus samples 

clustering closer to the laboratory extraction blank controls than others.  

To remove taxa derived from laboratory contamination from ancient dental calculus 

samples, we employed subtractive filtering, whereby genera or species identified in the 

extraction blank controls were removed from our ancient dental calculus samples. While 

conservative, this approach is currently the most effective way of reducing the effects of 

laboratory contamination on microbiome analyses. If the ancient dental calculus samples had 

fewer than 50,000 reads assigned at the genus-level post filtering and had fewer than 20 genus-
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level taxonomic assignments, they were removed from the analysis. These criteria resulted in 

13 of the 130 samples being removed from further analyses (blue circles in Figure S1).  

 

Testing for authentic ancient DNA with mapDamage 

Authentication of ancient DNA is an essential criterion of paleomicrobiology research [66,67]. 

While sample decontamination and subtractive filtering can mitigate DNA contamination 

introduced during sampling and laboratory procedures, respectively, another necessary form of 

authentication is the assessment of ancient DNA damage patterns. Ancient DNA is typically 

short due to post-mortem DNA fragmentation and usually presents as a log-normal distribution 

(Figure S2A). In addition, cytosine deamination of ancient DNA results in an observed increase 

in cytosine to thymine and guanine to adenine substitutions at the 5’ and 3’ ends of ancient 

molecules, respectively (Figure S2B) [68]. Modern DNA does not show this pattern of 

increased cytosine deamination at the termini and is typically longer than ancient molecules. 

To assess the authenticity of our ancient DNA, we used PALEOMIX [54] to map the DNA 

reads from our ancient samples to the reference genomes of the highest abundance species from 

the core genera we identified (Figure 2; Table S2) and to estimate the level of cytosine 

deamination using mapDamage [51]. These figures illustrate damage patterns typical of 

authentic ancient DNA for each of the seven species tested, with increasing levels of 

substitutions for nucleotides closer to the ends of the sequenced molecules (Figures S3-16). The 

percentage of cytosine deamination at the terminal ends ranged from 0.43—46.43% (mean 

8.03%) with an average of 6.5% for the historic and 23.8% for the ~3,000-year-old Palau and 

Teouma samples. This is to be expected, as age has been previously identified as a factor that 

correlates with increased cytosine deamination rate [69,70]. As a control we used mapDamage 

on the 210 modern plaque samples, using Actinomyces sp oral taxon 414 as the reference (as 

of the top seven genera per dataset, this was the only genus shared). As expected, we did not 

observe evidence of ancient DNA cytosine deamination for the modern samples. The average 

rate of observed cytosine deamination at the terminal positions was of 1.58% (Figures S17 & 

S18), and this did not reach above background rate (e.g. Figure S19). We did observe an 

elevated rate of T-to-C substitutions, which could be due to the library preparation technique 

or sequence trimming used in the HMP study (Figure S19). 

Overall, the subtractive filtering of taxa found in EBCs from our samples together with 

the mapDamage analyses support the authenticity of the ancient DNA in our samples. 
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Supplementary note 2: Microbiome composition analysis of 

ISEA-Pacific dental calculus 
The analysis of microbial compositions is a complex problem – especially for ancient 

communities, where detailed information about host health and lifestyle are limited, 

taphonomic processes can alter initial community structure [71], and the problem of missing 

reference genomes is more pronounced [27]. We chose to focus on genus classifications instead 

of species for microbial composition analyses as database bias (due to missing reference 

genomes) can result in most reads being assigned at the genus level [72], which would not be 

used in a species level analysis. This is likely to disproportionately affect the ancient/historical 

samples analysed here as most modern oral microbial reference genomes have been obtained 

from ‘Western’ individuals.  

 

Controlling for tooth type and tooth surface  

Tooth type and surface have been shown to have a small but significant effect on plaque 

microbial composition in modern [30,73] and ancient studies [73]. Failure to account for such 

difference can hinder the ability to detect differences between samples based on other metadata. 

Given that our samples contain a mixture of tooth types (molar=74, incisor=7, canine=11, 

Premolar=22, Unknown=2), and tooth surfaces (buccal=56, lingual=43, interproximal=2, 

distal=4, unknown=13), we tested to see if these factors were driving variation in our dataset.  

We exported genus level assignments from MEGAN into QIIME 1.9.1 [52], and 

rarefied (normalised) the resulting OTU table to a depth of 66,538 genus level assignments per 

sample — corresponding to the depth of the sample with the lowest number of assignments. 

Alpha diversity (within sample) and beta diversity (between sample differences) were 

calculated on the rarefied table using the core_diversity_analyses.py script. To measure alpha 

diversity, we calculated both observed_species (number of genus assignments per sample—

richness), and Shannon’s diversity index, which takes into account both richness and 

abundance. For Beta diversity, we calculated both Bray-Curtis (abundance-weighted), and 

Binary Jaccard (non-abundance-weighted) distance metrics. The resulting distance matrices 

were converted into principal components and were visualised using PhyloToAST [53]. 

Alpha diversity between tooth types were not significantly different (non-parametric t-

test, 999 Monte Carlo permutations; p-values >0.05) (Figure S20). We observed no clustering 

of samples by PCoA of both distance metrics (Figure S21 & S22). To formally test if tooth type 

and tooth surface influence the microbial composition between our samples, we used the 

nonparametric statistical methods PERMANOVA and ANOSIM in QIIME 1.9.1 with 1000 
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permutations. To reduce stochasticity and improve statistical power, metadata groups with <5 

samples were removed from the analyses. We found no statistical significance for difference in 

microbial composition between tooth type and tooth surface (Table S2; p-values >0.05).  

While we observed no statistically significant effect of tooth type or tooth surface on 

our dataset, the studies which found such differences had greater power to detect differences 

both in terms of sample size and measuring individuals from a similar culture/geographic region 

[30,31,73]. Given that our dataset contains small sample sizes of individuals from different 

cultures and geographic regions, tooth type and tooth surface still likely contributes to some 

variation between samples that we could not detect. Therefore, further microbial composition 

analyses were performed on a subset of the data containing just molars (n=74). We chose not 

to further subdivide the dataset based on tooth surface as this would have further depleted our 

statistical power, and it has been demonstrated that tooth type drives more variation than tooth 

surface [30,31,73]. 

Testing for cultural factors that influence microbiome composition 

We hypothesized that each island/region would possess a unique microbial composition 

brought about due to differences in lifestyle practices, diet, and geographic isolation. We first 

tested to see if there were any differences in microbial composition between the different 

islands/regions. Statistical tests were only performed for islands/regions that had five or more 

samples (Andaman=10, China=7, Indonesia=7, Marquesas=14, Papua New Guinea=9, 

Vanuatu=13). We did not find any differences in alpha diversity between island/region 

(observed_species and Shannon p-values >0.05), and did not observe clustering by PCoA of 

beta diversity metrics in the first three axes (Figure S23). However, we found small but 

statistically significant differences in community composition by island/region for both 

abundance-weighted and unweighted distance metrics (PERMANOVA, ANOSIM p-values 

<0.005) (Table S3). To test if differential abundance of specific genera were driving this 

difference we used the non-parametric Kruskal-Wallis test with Bonferroni multiple test 

correction. We found three genera (Desulfomicrobium, Asaccharospora, 

Pseudopropionibacterium) that were differentially abundant between groups (Table S4; 

Bonferroni-corrected p-values <0.05).  

Desulfomicrobium was found to be significantly lower in abundance in the Vanuatu 

samples (Table S4), and is a genus of anaerobic, sulphate-reducing bacteria that have been 

isolated from periodontal pockets and are putatively involved in periodontal disease [32]. 

Desulfomicrobium was not found in the modern HMP (Human Microbiome Project) plaque 

samples.  
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Asaccharospora was only identified in samples from China (Table S4), and is a genus 

of spore-forming bacteria that are unable to ferment sugars which was isolated from the gastro-

intestinal track of a rat [74]. The low mean abundance of this genus (48 reads) combined with 

its unlikely lifestyle for the oral cavity and origin suggest that it is noise or contamination.  

Pseudopropionibacterium was found to be in higher abundance in samples from 

Indonesia (mean 6,580) and lowest in samples from Vanuatu (mean 794) (Table S4). This genus 

is a commonly observed member of the plaque microbiota in modern samples from the HMP 

(mean abundance: 1.36%, mean prevalence 87.6%). This genus is typically anaerobic and 

produces propionic acid from glucose. 

Overall, we found a small, but statistically significant difference in microbial 

community composition between islands/regions. However, only two putative oral genera were 

found to be differentially abundant between groups: Pseudopropionibacterium, which is a 

commonly found member of plaque microbiota, and Desulfomicrobium, which is associated 

with periodontal disease and was not found in HMP plaque samples. These findings suggest 

that there are only minor differences in microbial composition between islands/regions. 

However, given that recent studies have found that inter-personal variation in oral microbiota 

are large [29,72], future studies with larger sample sizes will be needed to verify these findings. 

Testing for influence of oral disease on microbial community composition 

Oral diseases, such as dental caries and periodontal disease can influence the microbial 

composition of plaque samples [75–77]. Therefore, we tested the impacts of classified oral 

disease state on microbial community structure. Evidence of dental caries (Yes=7, No=67) or 

periodontal disease (Yes=24 No=50) were not statistically significant factors for microbial 

composition (ANOSIM/PERMANOVA p-values >0.05; Table S5). This could be explained by 

recent evidence supporting both caries and periodontal disease are polymicrobial, i.e. not 

caused by a handful of pathogens or a specific community type [78,79]. Therefore, different 

microbial assemblages across the different cultures we measured may result in different 

microbial communities for periodontal disease in each culture—something we are unable to 

test due to our sampling effort or reference database bias [27]. Another possibility is that our 

classifications of periodontal disease was wrong, as there are difficulties in making 

paleopathological assessments of periodontal disease for ancient skulls [80,81]. It is also 

possible that some of the ancient individuals measured could have had conditions supporting 

periodontal disease-associated taxa (e.g. gingivitis) [82,83] without reabsorption of the jaw, 

leaving no trace of such disease for classification. Additionally, some of our samples were taken 

from isolated teeth, and could not have their periodontal status classified. 
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Several species present in ancient microbiome studies [84] are linked with periodontal 

disease in modern populations, such as Methanobrevibacter oralis [34,85]. We therefore 

classified each sample based on the percentage of reads assigned to Methanobrevibacter 

(0%=20, 1-5%=35, 5-10%=7, 10-20+%=12), and used these as labels for PCoA plots. We 

found that the abundance of Methanobrevibacter appeared to correlate with the axis of greatest 

variation (Figure S24A). This clustering was not observed using the unweighted Binary Jaccard 

metric (Figure S24B), suggesting that the abundance of a periodontal-associated 

Methanobrevibacter alone was enough to influence abundance-weighted distance metrics in 

ancient microbiome analysis. Therefore, periodontal disease could be a confounding factor 

when analysing ancient microbial communities and should be evaluated in future studies using 

larger datasets with more robust sampling and classification methods. 

Microbial functional analyses 

A recent study has demonstrated that nucleotide-to-protein alignments are currently unable to 

assign short (<60 bp) DNA sequences. Given that current analytical tools for assigning 

functional information rely on nucleotide-to-protein alignments, and the mean fragment lengths 

of our samples vary (42-110 bp), such analysis would be severely biased towards samples with 

longer fragment length distributions and consequently confound results. We therefore decided 

not to explore the functions associated within these samples. Development of software to 

account for this issue will allow future studies to explore the functions associated within these 

samples. 

Paucity of reference genomes may hinder ability to classify and analyse microbial community 

composition 

Finally, alignment-based taxonomic classification of ancient microbial communities suffers 

from missing reference genomes in databases [27], so we tested to see what proportion of reads 

in our samples could be aligned to reference genomes. An average of 51.7% (± 7.1%) of reads 

could be aligned for our dataset, suggesting that we are potentially a missing large proportion 

of microbial community. Future reanalysis of our data with better bioinformatic techniques and 

the addition of more microbial reference genomes may allow for greater discrimination of how 

culture and lifestyle may influence the microbial community composition of these samples. 
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Supplementary note 3: Mapping and whole-genome 

phylogenetic analyses 

Reference-based mapping 

To test if phylogenetic reconstruction of microbial genomes from dental calculus could be used 

to infer the past movements of humans, we reconstructed microbial genomes using a reference-

based mapping approach. All of the genera, except Actinomyces, had most of their reads 

assigned to a single species within that genera (Table S6). Actinomyces is known to contain 

many oral species that can co-occur within the same individual [86]. In our data, we identified 

28 species of Actinomyces, of which the 7 most abundant accounted for 97.4% all reads 

assigned to the genus (Table S7). Phylogenetic reconstruction can be confounded by the 

mapping of reads between closely related species [72], as we use single nucleotide 

polymorphisms (SNPs) in these reads to reconstruct the phylogenetic history of these species. 

If DNA sequences map to multiple genomes due to insufficient stringency of mapping 

algorithms or high sequence similarity (e.g. closely relates species), the phylogenetically 

informative history of a species is confounded by the signatures from mismapped reads. To 

account for such cross-mapping, we used a technique called competitive mapping, whereby 

reference genomes from closely related species are placed in the same fasta file, and the DNA 

reads are mapped against this concatenated file [42]. Using this approach, reads that map to 

multiple Actinomyces species (and are likely shared) will have a lower mapping quality score, 

and the sequences can be discarded from the final alignment. In the case of Actinomyces, we 

merged the reference genomes of the top 7 most abundant Actinomyces species into a single 

file and used PALEOMIX as described in the methods. As only Actinomyces oralis and 

Actinomyces sp. oral taxon 414 have complete genomes (the others being scaffold-level 

assemblies), we merged the scaffolds for a given species in Geneious (adding 250 base pairs of 

N’s between each scaffold) to create pseudo-complete genomes and makes downstream 

genome alignment feasible. Post competitive mapping, only Actinomyces. sp. oral taxon 414, 

Actinomyces dentalis, and Actinomyces israelii (the three most abundant species) had sufficient 

data for consensus calling and phylogenetic reconstruction.  

Consensus calling 

Once all of our reads were mapped to the their specific reference genomes, we called consensus 

sequences from these alignments. Our data has relatively low sequencing effort — average of 

2.2 million reads (± 1.3 million) per sample. Therefore, applying a strict consensus call whereby 
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a minimum read depth of 3 is required for downstream use would result too much missing data 

(N’s) (Figure S25B), making whole-genome alignment extremely challenging—as these 

alignment algorithms were designed for high quality modern data. We instead performed 

consensus calling without a minimum depth requirement, but with a 75% consensus 

requirement (i.e. for genomic regions with multiple reads aligning, a SNP is only called if at 

least 75% of these reads agree with each other — see the illustration in Figure S25). The 75% 

consensus calling requirement accounts for strain-level variation, for which there is strong 

evidence against [87,88], these studies found that typically a single bacterial strain dominates 

through time for a given individual. This consensus requirement also controls for the influence 

of cytosine deamination as this preferentially occurs at the ends of molecules, and therefore 

reduces the probability of deamination influencing the alignments and phylogenetic inference 

(Figure S25A). The consensus requirement only works for regions where adequate read depth 

is obtained and given that some regions of our genomes will only be covered by a single read, 

deamination could influence phylogenetic reconstruction (Figure S25A). Therefore, we chose 

to take a conservative approach by only using transversions for phylogenetic reconstruction 

(see below), which, while lowering phylogenetic resolution, is the more conservative approach. 

Future benchmarking will be useful to determine the influence of cytosine deamination on 

phylogenetic reconstruction. Finally, because missing data is a major issue for genome 

alignments, our BAM files (alignments) were only used if they had a mean coverage >1 (for 

unique reads). Additionally, BAM files were inspected visually to determine the evenness of 

coverage, this is important as a mean coverage of 1 could be observed if only a small region of 

the genome is covered with high depth. 

Whole-genome alignment and trimming 

Once our consensus sequences were obtained, we performed whole-genome alignments using 

the Mauve algorithm [57] with the default settings. Inspection and editing of ambiguous or poor 

alignments by eye is typically done for short alignments (<50,000 nucleotides); however, when 

using whole bacterial genomes (averaging 3,000,000 nucleotides), visual inspection is not 

feasible. Therefore, we used Gblocks [58] to eliminate poorly aligned positions in an automated 

and reproducible fashion. Phylogenetic inference was performed on these ‘cleaned’ alignments 

using transversion substitutions only to account for the influence of cytosine deamination on 

phylogenetic reconstruction. The resulting phylogenies—apart from Anaerolineaceae sp. oral 

taxon 439— (Figures S26-34) do not recapitulate the established relationships and past 

movement patterns between geographical regions, and the potential reasons for this are 

discussed in the main text. 
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Supplementary note 4: Hybridization enrichment of microbial 

phylogenetic markers: design, use, and analyses 

Overview of approach and incentive 

Ancient dental calculus contains many microbial species that results in a lot of genomic 

information, and therefore, obtaining sufficient sequencing coverage and depth for 

phylogenetic reconstruction is expensive. To address this issue, we designed RNA probes that 

are complementary to putatively phylogenetically informative genes from 11 different, highly 

prevalent oral bacterial species (Table S8). These probes allow for selective enrichment of these 

genes, therefore decreasing DNA sequencing effort required and also allowing for the analysis 

of genomic information from highly prevalent species that have low abundance. While these 

species may not be highly abundant, their widespread prevalence across individuals suggests 

that they may be evolutionarily conserved. This would ultimately expand the spectrum of 

microbial species surveyed for their ability to inform us about past human movements.  

RNA probe design 

We chose three different gene types for design of our RNA probes: (1) clade-specific markers 

(CSMs); (2) single-copy core genes (SCCGs); and (3) Multi-Locus Sequencing Typing 

(MLST) loci. 

(1) Clade specific markers: 

Clade-specific markers are coding sequences (CDSs) that are unique to a given clade or species. 

This factor makes them a promising target for enrichment and phylogenetic analysis, as there 

is be expected to be minimal cross-mapping between species. Clade-specific markers have been 

previously identified by comparing thousands of microbial genomes to each other, and these 

markers are used in the popular taxonomic-profiling program MetaPhlAn [89,90], and for 

strain-level analysis in the program StrainPhlAn [87]. Given the limited space on our RNA 

probe set (40,000 unique probes), we randomly selected over 50 clade-specific markers from 

four bacterial species that were found to be highly prevalent in our ancient dental calculus 

samples (Fretibacterium fastidiosum, Pseudopropionibacterium propionicum, 

Pseudoramibacter alactolyticus, and Tannerella forsythia).  

(2) Single-copy core genes: 
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Single-copy core genes are genes that have critical housekeeping functions (transcriptions, 

translation, etc.) and are therefore present in most microbial species. While these genes are 

highly conserved—containing motifs that are under purifying selection—they are sufficiently 

different enough from each other between species to be distinguishable. These genes are 

typically parts of complex interactive networks, and as a result, are thought to be recalcitrant to 

horizontal transfer [91,92], which can confound phylogenetic reconstruction.  

Phylogenetic reconstruction using such genes has been previously demonstrated [93–95], 

highlighting their viability for such an approach. We chose eight single-copy core genes: GyrA 

(DNA gyrase A), GryB (DNA Gyrase B), DnaG (DNA Grimase), SecA (Secretase A), RpoB 

(DNA-directed RNA Polymerase-Beta), DnaN (DNA Polymerase III subunit-beta), RplB 

(Ribosomal protein L2), and RecA (Recombination protein A) from 10 highly prevalent 

bacterial species identified in our dataset. 

(3) MLST loci: 

Multi-Locus Sequencing Typing (MLST) is a technique that was originally developed for 

typing closely related pathogenic bacteria for epidemiological strain tracking [96]. The MLST 

approach uses SNPs or alleles found in multiple hypervariable regions of 5-7 housekeeping 

genes. This technique has been previously used on Helicobacter pylori (a bacterium that lives 

in the stomach) for inferring past human population movements around the world [97,98]. 

Given that MLST schemas are typically only developed for pathogenic bacteria, the only 

bacterium widely prevalent in our dataset that had a MLST schema available was the 

periodontal diseases-associated Porphyromonas gingivalis. Using these three classes of genes, 

we created 325 unique RNA probes targeting genes from 10 different species of bacteria (Table 

S8). These RNA probes were used to enrich 32 ancient dental calculus samples, as described 

in the methods. 

Bioinformatic analysis of enriched data 

To map the reads from our enriched libraries to the genes targeted in our RNA probes, we used 

PALEOMIX as described in the methods. 

We accounted for cross-mapping of reads from different species by using competitive mapping, 

whereby reads were mapped against a fasta file containing all genes used in the probes 

(Supplementary Note 3). For equal sequencing effort of enriched vs unenriched, we obtained 

an average 27.8-fold (± 26.8) enrichment of genes targeted in our probe set (Table S9). The 

average number of raw hits (including PCR duplicates) for unenriched libraries was 4,146 (S.D. 

2,807), and 475,172 (± 245,718) for enriched libraries. The average number of unique hits (with 
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PCR duplicated removed) was 3,814 (± 2,842) for unenriched libraries, and 128,368 (170,674) 

for enriched libraries. Therefore, while the enrichment was successful, there was a substantial 

increase in clonality (PCR duplicates) for enriched libraries (average 71% S.D. 30.2%) versus 

unenriched libraries (12.3% ± 17.3%). Overall, the enrichments were successful in selectively 

capturing the target genes. 

BAM file quality filtering 

To increase the quality of phylogenetic inference, we removed BAM files that had less than 

90% of the gene covered in reads as these likely represent spurious or erroneous mapping, and 

are typically removed from such analyses [87]. Because we had sufficient sequencing depth 

due to enrichment, we also removed BAM files that had a median depth <5 (unique reads) to 

improve the quality of our consensus sequence calls and account for cytosine deamination 

(Supplementary Note 3). Table S10 lists the total number of genes enriched (325), and the 

number of genes that passed quality filtering criteria. Overall, an average of 127 (± 75) genes 

per sample passed these filtering criteria. 

Consensus calling, concatenation, and Phylogenetic inference 

For calling SNPs and sequence consensuses, we required a minimum depth of 5 and 75% 

consensus identity (Supplementary Note 3 and Figure S25). This approach differed to our 

genome analysis because enrichment allowed for greater depth of sequencing. Consensus 

sequences of each locus for a given species was concatenated in Geneious, adding a (250 bp 

stretch of N’s between loci). For example, in sample A, RpoB, DnaN, etc. from species 1 were 

concatenated into a single sequence (Figure S35A). A species was deemed not present in a 

sample and removed from phylogenetic analysis if it did not have all of its enriched loci passing 

the filtering steps mentioned above (90% of the gene covered, minimum median depth 5). 

Concatenated consensus sequences from each species were aligned using MUSCLE [99] with 

default settings (Figure S35B), and phylogenetic reconstruction was done using RAxML [100]. 

Results 

The resulting phylogenies (Figure S36-48) do not recapitulate the established relationships and 

past movement patterns between geographical regions. This could be due to various reasons, 

such as insufficient resolution or cross-mapping between species. The total number of 

nucleotide sites used for this method is substantially less than the whole-genome approach 

(thousands of sites compared to millions), which could lower the phylogenetic resolution. 

Cross-mapping of DNA reads from closely related microorganisms could have also confounded 
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these phylogenetic reconstructions. While we employed competitive mapping for the loci 

enriched in this study, we could not account for other genetic material currently not in reference 

databases, which could have interfered with phylogenetic reconstruction. Overall, it was 

unexpected that these putatively phylogenetically informative genes—which are thought to be 

recalcitrant to horizontal gene transfer—did not yield phylogenies corroborating the available 

evidence for the peopling of the Pacific. 
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Supplementary figures and tables 

Table S1. Sample details 

#SampleID	 Methanobrevibacter-
abundance	

ToothTy
pe	

ToothSurfa
ce	

Peri
o	

Carie
s	

15384_China_2	 5to1	 Molar	 Interproxim
al	

N	 N	

15387_China_3	 20+to10	 Molar	 Lingual	 N	 N	

15388_China_4	 0	 Incisor	 Lingual	 Y	 N	

15389_China	 20+to10	 Molar	 Buccal	 N	 N	

15390_China_5_Hong_Kong	 5to1	 Molar	 Buccal	 N	 N	

15391_China_6	 10to5	 Molar	 Lingual	 Y	 N	

15392_China_7_Tian_Shan	 5to1	 Molar	 Lingual	 N	 N	

15393_China_8	 10to5	 Molar	 Lingual	 N	 Y	

15394_Nicobar_Islands_1	 10to5	 Molar	 Buccal	 N	 N	

15395_Nicobar_Islands_2	 10to5	 Molar	 Lingual	 N	 N	

15396_Andaman_4	 0	 Molar	 Lingual	 N	 N	

15397_Andaman_5	 10to5	 Premolar	 Buccal	 N	 N	

15398_Andaman_6	 5to1	 Molar	 Buccal	 Y	 Y	

15400_Andaman_7	 0	 Molar	 Lingual	 N	 N	

15401_Andaman_8	 0	 Molar	 Buccal	 N	 N	

15402_Andaman_9	 20+to10	 Molar	 Distal	 N	 Y	

15403_Andaman_10	 5to1	 Molar	 Lingual	 N	 N	

15404_Andaman_11	 5to1	 Premolar	 Buccal	 Y	 Y	

15405_Andaman_12	 5to1	 Premolar	 Lingual	 Y	 N	

15406_Andaman_1	 5to1	 Molar	 Buccal	 Y	 Y	

15407_Andaman_13	 5to1	 Molar	 Lingual	 Y	 N	

15408_Andaman_14	 5to1	 Incisor	 Lingual	 Y	 N	

15414_Sumatra_1	 5to1	 Molar	 Buccal	 N	 N	

15415_Sumatra_2	 20+to10	 Premolar	 Lingual	 Y	 N	

15416_Sumatra_3	 5to1	 Molar	 Buccal	 N	 N	

15417_Indonesia_1	 20+to10	 Premolar	 Buccal	 N	 N	

15418_Indonesia_2	 0	 Premolar	 Lingual	 N	 N	

15419_Indonesia_3	 20+to10	 Molar	 Lingual	 N	 N	

15420_Indonesia_4	 20+to10	 Canine	 Buccal	 N	 Y	

15421_Indonesia_5	 5to1	 Premolar	 Lingual	 N	 N	

15422_Indonesia_6	 0	 Canine	 Lingual	 Y	 N	

15423_Indonesia_7	 5to1	 Molar	 Buccal	 N	 N	

15424_Indonesia_8	 5to1	 Premolar	 Buccal	 N	 N	

15425_Indonesia_9	 0	 Molar	 Buccal	 N	 N	

15426_Indonesia_10	 0	 Molar	 Buccal	 Y	 Y	

15427_Indonesia_11	 0	 Molar	 Lingual	 N	 N	
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15429_Fiji_1_Vanua_Balavu_Lomaloma	 20+to10	 Premolar	 Interproxim
al	

N	 N	

15430_Fiji_2_Suva	 10to5	 Molar	 Lingual	 Y	 N	

15432_Marquesas	 5to1	 Molar	 Lingual	 N	 N	

15433_Marquesas_1_Noukahivan	 5to1	 Molar	 Lingual	 N	 N	

15434_Marquesas_2_Worn_Trophy	 5to1	 Molar	 Buccal	 N	 N	

15435_Marquesas_3_Ohivaoan_Tafati	 5to1	 Molar	 Buccal	 N	 N	

15437_Marquesas_5_Ohivaoan_Tafati	 20+to10	 Molar	 Lingual	 N	 N	

15438_Marquesas_6	 5to1	 Molar	 Buccal	 N	 N	

15440_Marquesas_8_Fatuhivan	 20+to10	 Molar	 Buccal	 N	 N	

15441_Marquesas_9_Ohivaoan_Tafati	 5to1	 Molar	 Buccal	 N	 N	

15442_Marquesas_10_Uahugan	 5to1	 Molar	 Lingual	 N	 N	

15443_Marquesas_11_Noukahivan	 5to1	 Molar	 Lingual	 N	 N	

15444_Marquesas_12_Ohivaoan_Tafati	 10to5	 Premolar	 Buccal	 N	 N	

15447_New_Britain_5_Kokopo_NE_part	 0	 Molar	 Buccal	 N	 N	

15448_PNG_1_South_Cape	 5to1	 Molar	 Lingual	 Y	 N	

15450_PNG_4_AdmiraltyIslands_Baluan	 5to1	 Premolar	 Buccal	 N	 N	

15451_New_Britain_9_Kokopo_NE_part	 0	 Molar	 Buccal	 N	 N	

15452_New_Britain_11	 5to1	 Molar	 Lingual	 N	 N	

15453_New_Britain_8_Kokopo_NE_part	 0	 Molar	 Lingual	 N	 N	

15454_New_Britain_10_Kokopo_NE_part	 0	 Canine	 Buccal	 N	 N	

15455_Easter_Island_1	 0	 Canine	 Buccal	 Y	 Y	

15457_Easter_Island	 20+to10	 Premolar	 Buccal	 N	 N	

15458_Easter_Island_3	 0	 Premolar	 Buccal	 N	 N	

15459_Easter_Island_4	 20+to10	 Molar	 Buccal	 N	 N	

15460_Easter_Island_5	 0	 Molar	 Buccal	 N	 N	

15461_Easter_Island_6	 0	 Molar	 Distal	 N	 N	

15462_Vanuatu_1_ErromangoIsland	 0	 Molar	 Buccal	 N	 N	

15463_Vanuatu_13_NewHebrides_Mallicolo
_Island	

20+to10	 Molar	 Lingual	 N	 N	

15464_Vanuatu_14	 5to1	 Molar	 Lingual	 N	 N	

15465_Vanuatu_ErromangoIsland	 0	 Canine	 Buccal	 N	 N	

15467_Society	 10to5	 Canine	 Buccal	 N	 N	

15470_Malaysia_2	 5to1	 Premolar	 Buccal	 N	 N	

15471_Tonga	 10to5	 Incisor	 Lingual	 N	 N	

15472_Solomon_Islands_8	 5to1	 Molar	 Buccal	 N	 N	

15477_Phillipines_1	 20+to10	 Canine	 Buccal	 N	 N	

15481_Manilla_1	 5to1	 Canine	 Buccal	 N	 N	

15732_Fiji_4	 10to5	 Molar	 Lingual	 Y	 Y	

15736_Fiji_8	 20+to10	 Molar	 Buccal	 Y	 N	

15737_Fiji_9	 20+to10	 Molar	 Buccal	 Y	 N	

15748_Marquesas_13	 0	 Molar	 Buccal	 N	 N	

15751_Marquesas_18	 10to5	 Molar	 Buccal	 N	 N	

15752_Marquesas_16	 5to1	 Molar	 Buccal	 N	 Y	

15753_Marquesas_17	 10to5	 Premolar	 Buccal	 Y	 N	
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15754_Marquesas_19	 5to1	 Molar	 Buccal	 N	 N	

15757_New_Britain_2	 5to1	 Molar	 Distal	 Y	 N	

15758_New_Britain_3	 0	 Molar	 Lingual	 Y	 N	

15759_New_Britain_4	 0	 Premolar	 Lingual	 Y	 N	

15761_New_Britain_6	 0	 Molar	 Lingual	 Y	 N	

15763_New_Britain_7	 5to1	 Molar	 Lingual	 Y	 N	

15764_NewCaledonia	 0	 Molar	 Lingual	 N	 N	

15765_New_Caledonia_1	 5to1	 Molar	 Buccal	 Y	 N	

15766_New_Caledonia_2	 5to1	 Molar	 Buccal	 Y	 N	

15777_Solomon_Islands_1	 5to1	 Incisor	 Buccal	 N	 N	

15778_Solomon_Islands_2	 0	 Premolar	 Lingual	 Y	 N	

15781_Solomon_Islands_3	 10to5	 Premolar	 Lingual	 N	 N	

15782_Solomon_Islands_4	 5to1	 Canine	 Buccal	 N	 N	

15783_Solomon_Islands_5	 0	 Molar	 Lingual	 N	 N	

15784_Solomon_Islands_6	 5to1	 Premolar	 Lingual	 N	 N	

15785_Solomon_Islands_7	 10to5	 Incisor	 Unknown	 Y	 N	

15786_Samoa	 5to1	 Molar	 Lingual	 Y	 N	

15791_Tonga_1	 10to5	 Premolar	 Lingual	 Y	 Y	

15793_Vanuatu_3	 20+to10	 Molar	 Buccal	 Y	 N	

15794_Vanuatu_4	 5to1	 Molar	 Buccal	 Y	 N	

15795_Vanuatu_5	 20+to10	 Molar	 Buccal	 Y	 N	

15796_Vanuatu_6	 0	 Molar	 Lingual	 N	 N	

15797_Vanuatu_7	 0	 Molar	 Buccal	 Y	 N	

15799_Vanuatu_9	 5to1	 Molar	 Buccal	 Y	 N	

15800_Vanuatu_15	 0	 Molar	 Buccal	 N	 N	

15802_Vanuatu_11	 5to1	 Molar	 Buccal	 Y	 N	

15803_Vanuatu_12	 5to1	 Molar	 Distal	 Y	 N	

15815_Palau_1	 5to1	 Incisor	 Unknown	 N	 N	

15816_Palau_2	 5to1	 Molar	 Unknown	 N	 N	

15817_Palau_3	 5to1	 Molar	 Unknown	 N	 N	

15818_Palau_4	 5to1	 NA	 Unknown	 N	 N	

15819_Palau_5	 5to1	 Premolar	 Unknown	 N	 N	

15820_Palau_6	 5to1	 Canine	 Unknown	 N	 N	

15821_Palau_7	 5to1	 Incisor	 Unknown	 N	 N	

15822_Palau_8	 5to1	 Canine	 Unknown	 N	 N	

15856_Teouma_T46_B10B	 5to1	 Molar	 Unknown	 N	 N	

15858_Teouma_T48_B10C	 5to1	 Premolar	 Unknown	 N	 N	
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-to-A
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Figure S10. D
am

age profile for M
ethanobrevibacter oralis at the 5’ term

inus. Percentage of C
-to-T substitutions at the five term

inal 

bases of the 5’ end of m
olecules for all 117 sam

ples.  Positions 1-5 represent the bases adjacent to the fragm
entation site from

 hot to 

cold, w
ith  position 1 being im

m
ediately adjacent (red) and position 5 being five bases adjacent (blue). 
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Figure S11. D
am

age profile for O
lsenella sp. oral taxon 807 at 3’ term

inus. Percentage of G
-to-A

 substitutions at the five term
inal bases 

of the 3’ end of m
olecules for all 117 sam

ples.  Positions 1-5 represent the bases adjacent to the fragm
entation site from

 hot to cold, 

w
ith  position 1 being im

m
ediately adjacent (red) and position 5 being five bases adjacent (blue). 
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Figure S12. D
am

age profile for O
lsenella sp. oral taxon 807 at the 5’ term

inus. Percentage of C
-to-T substitutions at the five term

inal 

bases of the 5’ end of m
olecules for all 117 sam

ples.  Positions 1-5 represent the bases adjacent to the fragm
entation site from

 hot to 

cold, w
ith  position 1 being im

m
ediately adjacent (red) and position 5 being five bases adjacent (blue). 
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Figure S13. D
am

age profile for Pseudopropionibacterium
 propionicum

 at 3’ term
inus. Percentage of G

-to-A
 substitutions at the five 

term
inal bases of the 3’ end of m

olecules for all 117 sam
ples.  Positions 1-5 represent the bases adjacent to the fragm

entation site from
 

hot to cold, w
ith  position 1 being im

m
ediately adjacent (red) and position 5 being five bases adjacent (blue). 
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Figure S14. D
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age profile for Pseudopropionibacterium
 propionicum

 at the 5’ term
inus. Percentage of C

-to-T substitutions at the five 

term
inal bases of the 5’ end of m

olecules for all 117 sam
ples.  Positions 1-5 represent the bases adjacent to the fragm

entation site from
 

hot to cold, w
ith  position 1 being im

m
ediately adjacent (red) and position 5 being five bases adjacent (blue). 
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Figure S20. Alpha diversities for tooth type and tooth surface 
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Figure S21. PCoA of Binary Jaccard distances between samples labelled by tooth surface (A) or tooth type (B)
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Figure S22. PCoA of Bray-Curtis distances between samples labelled by tooth surface (A) or tooth type (B)
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B

Table S2. Statistical analysis of beta diversity metrics by tooth type and surface

Distance metric Metadata category Statistical test R2 Test statistic p-value

Binary Jaccard Tooth Surface PERMANOVA 0.926 0.531
Bray-Curtis Tooth Surface PERMANOVA 1.338 0.232
Binary Jaccard Tooth Type PERMANOVA 1.066 0.379
Bray-Curtis Tooth Type PERMANOVA 0.781 0.735
Binary Jaccard Tooth Surface ANOSIM 0.010 0.265
Bray-Curtis Tooth Surface ANOSIM -0.004 0.499
Binary Jaccard Tooth Type ANOSIM 0.003 0.443
Bray-Curtis Tooth Type ANOSIM 0.078 0.089
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Figure S23. PCoA ordination of beta diversity labelled by Island
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Table S3. Statistical analysis of beta diversity metrics by tooth type and surface

Distance metric Metadata category Statistical test R2 Test statistic p-value

Binary Jaccard Tooth Surface PERMANOVA 1.695 0.003

Bray-Curtis Tooth Surface PERMANOVA 2.463 0.001

Binary Jaccard Tooth Surface ANOSIM 0.122 0.004

Bray-Curtis Tooth Surface ANOSIM 0.130 0.004

Table S4. Statistically significant genera detected between islands/regions

Test-Statistic P FDR_P Bonferroni_P Indonesia_mean Papua New Guinea_mean Marquesas_mean China_mean Andaman Islands_mean Vanuatu_mean taxonomy

23.771 0.000 0.013 0.027 1250 1505 1215 1449 1244 82 Desulfomicrobium

23.493 0.000 0.013 0.030 0 0 0 48 0 0 Asaccharospora

22.873 0.000 0.013 0.040 6580 1181 3148 1638 2168 794 Pseudopropionibacterium
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Table S5. Statistical analysis of beta diversity in relation to disease state

Distance metric Metadata category Statistical test R2 Test statistic p-value

Binary Jaccard Caries PERMANOVA 0.927 0.532
Bray-Curtis Caries PERMANOVA 0.483 0.869
Binary Jaccard Periodontal disease PERMANOVA 1.504 0.109
Bray-Curtis Periodontal disease PERMANOVA 1.799 0.070
Binary Jaccard Caries ANOSIM -0.010 0.770
Bray-Curtis Caries ANOSIM -0.135 0.877
Binary Jaccard Periodontal disease ANOSIM -0.010 0.531
Bray-Curtis Periodontal disease ANOSIM -0.008 0.518

Figure S24. PCoA ordination of beta-diversity metrics labelled by abundance of 
Methanobrevibacter

A

B
Binary 
Jaccard

Bray-
Curtis
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Table S6. Genomes used for mapping and phylogenetic reconstruction

Genus Species Genome Assembly

Actinomyces cardiffensis F0333 

Actinomyces dentalis DSM 19115

Actinomyces gerencseriae DSM 6844

Actinomyces israelii DSM 43320

Actinomyces massiliensis 4401292

Actinomyces oris ASM155393v1

Actinomyces sp. oral taxon 414 F0588

Anaerolineaceae sp. oral taxon 439 ASM27771v1

Fretibacterium fastidiosum ASM21071v1

Methanobrevibacter oralis JMR01

Olsenella sp. oral taxon 807 F0089

Pseudopropionibacterium propionicum F0230a

Tannerella forsythia ASM23821v1

Genome Mean abundance (%)
Actinomyces sp. oral taxon 414 48.174
Actinomyces israelii 21.846
Actinomyces dentalis 18.571
Actinomyces cardiffensis 3.577
Actinomyces oris 2.307
Actinomyces gerencseriae 1.497
Actinomyces massiliensis 1.381
Actinomyces naeslundii 0.655
Actinomyces odontolyticus 0.448
Actinomyces meyeri 0.272
Actinomyces glycerinitolerans 0.187
Actinomyces georgiae 0.177
Actinomyces sp. oral taxon 170 0.132
Actinomyces provencensis 0.131
Actinomyces slackii 0.125
Actinomyces radicidentis 0.125
Actinomyces turicensis 0.100
Actinomyces sp. oral taxon 849 0.068
Actinomyces sp. oral taxon 180 0.053
Actinomyces sp. oral taxon 848 0.047
Actinomyces sp. HPA0247 0.040
Actinomyces sp. oral taxon 448 0.033
Actinomyces timonensis 0.028
Actinomyces johnsonii 0.008
Actinomyces sp. oral taxon 877 0.006
Actinomyces sp. oral taxon 178 0.005
Actinomyces urogenitalis 0.004
Actinomyces sp. pika_114 0.003

Table S7. Mean abundance of Actinomyces species identified in MALT analysis
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Figure S25. Illustration of consensus sequence call procedure
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Figure S26. Actinomyces sp. oral taxon 414, no competitive mapping
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Figure S27. Actinomyces sp. oral taxon 414, competitive mapping
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Figure S28. Actinomyces dentalis, competitive mapping
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Figure S29. Actinomyces israelii, competitive mapping
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Figure S30. Fretibacterium fastidiosum
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Figure S31. Methanobrevibacter oralis
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Figure S32. Olsenella sp. oral taxon 807
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Figure S33. Pseudopropionibacterium propionicum
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Figure S34. Tannerella forsythia
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Species Clade-specific markers Single-copy core genes MLST loci

Actinomyces massiliensis 8
Bacteriodetes oral taxon 274 8
Corynebacterium matchurotii 8
Eubacterium saphenum 8
Fretibacterium fastidiosum 62 8
Pseudoramibacter alactolyticus 72 8
Porphyromonas gingivalis 8 7
Pseudopropionibacterium propionicum 51 8
Treponema denticola 8
Tannerella forsythia 53 8

Table S8. Number of RNA probes per species

Sample hits_raw hits_unique hits_clonality fold-enrichment
A15389_China_1_UnEnriched 3,591 3,504 2.4%
A15389_China_1-Enriched 174,454 56,227 67.8% 16.0
A15402_Andaman_1_UnEnriched 2,332 2,052 12.0%
A15402_Andaman_1-Enriched 621,877 19,606 96.8% 9.6
A15406_Andaman_2_UnEnriched 3,484 3,379 3.0%
A15406_Andaman_2-Enriched 389,548 80,586 79.3% 23.8
A15435_Marquesas_1_UnEnriched 3,908 3,722 4.8%
A15435_Marquesas_1-Enriched 355,873 68,949 80.6% 18.5
A15450_New_Guinea_1_UnEnriched 2,422 2,313 4.5%
A15450_New_Guinea_1-Enriched 337,581 36,376 89.2% 15.7
A15451_New_Guinea_2_UnEnriched 9,151 8,973 1.9%
A15451_New_Guinea_2-Enriched 830,465 647,932 22.0% 72.2
A15454_New_Guinea_3_UnEnriched 9,853 9,671 1.8%
A15454_New_Guinea_3-Enriched 427,667 363,153 15.1% 37.6
A15458_Easter_Island_1_UnEnriched 2,956 2,278 22.9%
A15458_Easter_Island_1-Enriched 895,407 10,958 98.8% 4.8
A15460_Easter_Island_2_UnEnriched 6,086 5,876 3.5%
A15460_Easter_Island_2-Enriched 739,296 202,156 72.7% 34.4
A15462_Vanuatu_1_UnEnriched 2,415 1,955 19.0%
A15462_Vanuatu_1-Enriched 874,348 15,055 98.3% 7.7
A15465_Vanuatu_3_UnEnriched 9,703 9,557 1.5%
A15465_Vanuatu_3-Enriched 317,235 264,139 16.7% 27.6
A15467_Society_Islands_1_UnEnriched 6,944 6,438 7.3%
A15467_Society_Islands_1-Enriched 751,524 54,765 92.7% 8.5
A15471_Tonga_2_UnEnriched 6,266 6,173 1.5%
A15471_Tonga_2-Enriched 652,352 572,205 12.3% 92.7
A15732_Fiji_1_UnEnriched 1,083 797 26.4%
A15732_Fiji_1-Enriched 62,881 3,168 95.0% 4.0
A15737_Fiji_2_UnEnriched 1,821 1,614 11.4%
A15737_Fiji_2-Enriched 630,211 19,356 96.9% 12.0
A15753_Marquesas_2_UnEnriched 1,371 1,327 3.2%

Table S9. Enrichment statistics
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Table S10. Enriched loci passing criteria
Sample Number of loci enriched Number of loci passing filtering

A15389_China 325 161
A15402_Andaman 325 76
A15406_Andaman 325 155
A15435_Marquesas 325 188
A15450_New_Guinea 325 170
A15451_New_Guinea 325 153
A15454_New_Guinea 325 193
A15458_Easter_Island 325 76
A15460_Easter_Island 325 194
A15462_Vanuatu 325 71
A15465_Vanuatu 325 143
A15467_Society_Islands 325 87
A15471_Tonga 325 246
A15732_Fiji 325 0
A15737_Fiji 325 50
A15753_Marquesas 325 109
A15758_New_Britain 325 233
A15761_New_Britain 325 0
A15764_New_Caledonia 325 154
A15765_New_Caledonia 325 65
A15778_Solomon_Islands 325 55
A15783_Solomon_Islands 325 191
A15786_Samoa 325 133
A15791_Tonga 325 247
A15793_Vanuatu 325 80
A15811_English_Oakington 325 101
A15817_Palau 325 148
A15818_Palau 325 220
A15856_Teouma 325 0
A15858_Teouma 325 0
A17839_EBC_1_10 325 0
A8338_English_Raunds 325 224

AVERAGE 325 127
S.D. 75
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ACTGACTG ACTGACTG ACTGACTG ACTGACTG-NN- -NN- -NN-

(A) Concatenation of species 1 consensus sequences

DnaN DnaG GyrA GyrB

(B)

ACTGACTG ACTGACTG ACTGACTG ACTGACTG-NN- -NN- -NN-

ACTGACTG ACTGACTG ACTGACTG ACTGACTG-NN- -NN- -NN-

ACTGACTG ACTGACTG ACTGACTG ACTGACTG-NN- -NN- -NN-

ACTGACTG ACTGACTG ACTGACTG ACTGACTG-NN- -NN- -NN-

Multiple sequence alignment of concatenated consensus 
sequences of species 1 from different samples 

Figure S35. Illustration of consensus sequence concatenation (A) and multiple sequence alignment (B)

Figure S36. Fretibacterium fastidiosum clade-specific markers
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Figure S37. Pseudoramibacter alactolyticus clade-specific markers

Figure S38. Pseudopropionibacterium propionicum clade-specific markers

Figure S39. Tannerella forsythia clade-specific markers
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Figure S40. Porphyromonas gingivalis MLST loci

Figure S41. Bacteriodetes sp oral taxon 274 single-copy core genes

Figure S42. Eubacterium saphenum single-copy core genes
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Figure S43. Fretibacterium fastidiosum single-copy core genes

Figure S44. Psuedoramibacter alactolyticus single-copy core genes

Figure S45. Porphyromonas gingivalis single-copy core genes
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Figure S46. Pseudopropionibacterium propionicum single-copy core genes

Figure S47. Treponema denticola single-copy core genes

Figure S48. Tannerella forsythia single-copy core genes
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Abstract 
Communities of microorganisms have been coevolving with humans throughout history. 

Studying how these communities of microorganisms that inhabit humans (human microbiota) 

have changed through time could lead to new medically-relevant insights, and expand our 

understanding of history. Recently, research has demonstrated that it is possible to study past 

human microbiota through the analysis of ancient microbial DNA preserved in calcified dental 

plaque (calculus). Here, using ancient dental calculus samples from two major cultural time 

periods in Japan: the Jomon period hunter-gatherers from ~3,000 BP (years before present), 

and the Edo period agriculturalists 400-150 BP, we investigate how human oral microbiota 

have changed in Japan through time. We also explore the presence and of oral diseases 

(periodontal disease, dental caries) in ancient Japan, and examine how these diseases influence 

community-level microbiota analyses. Finally, we perform phylogenetic analyses of ancient 

bacterial genomes and find support for bacterial lineage replacement potentially due to past 

human population replacement by migrants from mainland Asian populations. This research 

represents the first study of ancient oral microbiota from Japan and illustrates that the analysis 

of ancient bacterial genomes preserved in dental calculus can be used to learn about past human 

demographic events.  
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Introduction 
Communities of microorganisms (microbiota) inhabit the human body [1] and encode functions 

that influence the development, physiology, behaviour, and the health of their hosts, 

collectively referred to as the human microbiome [2–9]. Disruptions to the human microbiome 

(dysbiosis) can compromise the health of the host [10,11]. Dysbiosis can occur due to a range 

of factors, such as the use of antibiotics [12,13], changes in diet [14], infection by pathogens 

[15,16], and the adoption of lifestyles associated with Industrialization [17]. Evidence suggests 

that many members of these microbial communities can be vertically inherited [18–21] and 

some have been co-evolving with humans over deep evolutionary time [22,23].  

Different human populations have been observed to possess distinct microbiomes 

resulting from specific diets, exposure to unique environments, pathogens, and specific lifestyle 

traits [17,24–26]. However, little is known about how the human microbiome adapts and 

evolves when two cultures with distinct microbiomes meet and mix (e.g. when Europeans first 

met the peoples of the Americas). Such cultural admixtures could disrupt long-term 

evolutionary relationships between microbiota and host and potentially contribute to dysbiosis, 

and the resulting changes in lifestyle and diet could select for unique microbial communities 

[27]. Additionally, microbial replacement due to cultural admixture could also shape the 

microbiome in unique ways; for example, ‘signatures’ of past human interaction and population 

replacement (e.g. loss of particular species or strains) could be used to learn more about the 

demographic history of past human populations [28].  

Recently, ancient human calcified dental plaque (calculus) has been identified as a 

robust source of ancient human-associated microbial DNA [29–31]. Dental calculus is a 

microbial biofilm that grows on teeth and undergoes periodic mineralisation events that locks 

oral microorganisms in place within a robust calcium phosphate matrix [32]. The direct 

association of dental calculus on human teeth, coupled with its robust nature, provide an 

unprecedented opportunity to examine the bioarchaeological record of past human oral 

microbiome, allowing researchers to identify past factors that have altered the oral microbiome 

through time [29–31]. For example, dental calculus research revealed that large shifts in the 

European microbiome were concordant with large-scale dietary and lifestyle changes (from 

hunting-gathering to an agricultural lifestyle) [29]. Dental calculus is, therefore, a tool that can 

be used to sample the oral microbiome of past human populations and explore how the 

microbiome adapts and evolves following major cultural and demographic shifts.  

Ancient Japan is one such area where large-scale demographic changes occurred in the 

recent past. The Japanese Archipelago was largely inhabited by the Jomon culture from ~16,000 

to 2,500 years before present (BP) [33,34]. Archaeological evidence suggests that Jomon 
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hunter-gatherers relied on both terrestrial and marine resources, including nuts, deer, boar, 

marine fish, and shellfish [35]. Carbon isotope ratios of human teeth also suggest that C3 plants 

and terrestrial mammals were major dietary resources for the Jomon people [36]. Agriculture-

bearing migrants from continental Asia came to the Japanese Archipelago and admixed with 

Jomon during the early Yayoi period around 2,500 BP [37–39]. Both modern and ancient DNA 

studies suggest that the admixture was weighted towards migrants, with modern estimates of 

Jomon contribution to mainland Japanese populations being less than 20% [39]. Prior to this 

admixture, the mitochondrial divergence estimates suggesting that over 22,000 years of 

separation existed between the Jomon and continental Asian populations [40], which, coupled 

with their putatively disparate lifestyles (hunter-gatherer vs. agriculturalist), may have resulted 

in divergent co-evolution of their microbiome. This past demographic scenario provides an 

ideal testbed to measure the potential impacts of population admixtures on the human oral 

microbiome using ancient dental calculus. Here, we examine bacterial DNA preserved within 

ancient dental calculus from the Jomon (~3,000 BP) and Edo periods (400-150 BP) in Japan to 

examine the evolutionary history and the impacts of cultural admixture on the oral microbiome.  

 

Methods 
Ancient dental calculus samples 

Ethics approval for this study was obtained from the University of Adelaide Human Research 

Ethics Committee (H-2012-108). Ancient dental calculus samples (5=Jomon, ~3,000 BP [41]), 

(10=Edo, 400-150 BP [42]) were collected from the Natural Museum of Nature and Science in 

Tsukuba, Ibaraki, Japan. Dental calculus was removed from specimens as previously described 

[43]. Briefly, a sterile dental pick was used to carefully remove dental calculus from one side 

of one tooth, and the specimen was placed in a sterile plastic bag for transport at room 

temperature to the Australian Centre for Ancient DNA at the University of Adelaide. 

Accompanying metadata was also collected at this time (Table S1).  

 
DNA extraction and library preparation 

All sample processing and molecular biology procedures prior to PCR amplification were 

carried out at the Australian Centre for Ancient DNA facility at the University of Adelaide. 

Experiments were performed within a specialised ancient DNA laboratory, which includes, 

positive air pressure, UV-treatment, regular 3% bleach cleanings, and still-air hoods located in 

isolated, still-air rooms to limit the introduction of modern contaminant DNA. All technicians 

entered the facility using a dedicated entry room and wore full-body clean suits, gloves, and 
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face-masks. Dental calculus samples were decontaminated to minimize environmental 

contamination by UV-irradiation for 15 minutes on each side, following by soaking in 2 ml of 

5% sodium hypochlorite for 3 minutes, rinsing in 90% ethanol for 1 minute, and drying at room 

temperature for 2 minutes. Immediately post-decontamination, dental calculus samples were 

crushed on the side of plastic tubes with sterile tweezers, and DNA was extracted using an in-

house silica-based method described previously [44]. 

Shotgun metagenomic libraries were constructed as previously described [2], using 

unique combinations of 7-bp forward and reverse barcodes. Thirteen cycles of PCR were used 

for the first amplification with P5/P7 barcoded adapters, followed by an additional 13 cycles 

for the addition of GAII-index and sequencing primers. Metagenomic shotgun libraries were 

cleaned using Ampure XP, quantified using an Agilent TapeStation, and pooled at equimolar 

concentrations prior to sequencing on the Illumina NextSeq platform (2 x 150 bp). 

 
Data used from other previously published studied 

Seventeen randomly selected modern dental plaque samples from the Human Microbiome 

Project [1] were downloaded (SRS076926, SRS078431, SRS058730, SRS077104, 

SRS075353, SRS023964, SRS024087, SRS063485, SRS024021, SRS077861, SRS078677, 

SRS074682, SRS058261, SRS075090,  SRS075959, SRS077520, SRS078738). The paired 

reads (R1, R2) were concatenated into a single FASTQ file, then randomly subsampled to a 

depth of 1,500,000 sequences using SeqTK https://github.com/lh3/seqtk. Raw DNA sequences 

from ancient Chinese dental calculus data (Eisenhofer et al. Chapter VI) and the modern and 

ancient dental calculus sample data (https://www.oagr.org.au/experiment/view/65/) were 

obtained from previous studies [31].  

 

Data processing and taxonomic composition analyses 

The resulting data converted into FASTQ format using Illumina’s bcl2fastq software, before 

being trimmed and demultiplexed using AdapterRemoval 2 based on unique P5/P7 barcodes 

[46]. Taxonomic composition was determined using MEGAN Alignment Tool (MALT) v 0.3.8 

[47], whereby DNA reads from samples were aligned against a database created in-house that 

contains 47,696 archaeal and bacterial genome assemblies from the NCBI Assembly database 

[48]. The resulting blast-text files were converted into RMA files via the blast2rma script 

included in the program MEGAN v 6.11.1 [49], with the following Last Common Ancestor 

(LCA) parameters: Weighted-LCA=80%, minimum bitscore=42, minimum E-value=0.01, 

minimum support percent=0.1.  
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Samples were assessed for ancient DNA authenticity by comparison to extraction blank 

controls and by estimation of cytosine deamination using MapDamage [50]. Subtractive 

filtering was used to remove species found in the extraction blank controls from ancient dental 

calculus samples. The filtered samples were then normalised to equal sequencing depth in 

MEGAN before further analyses. Filtered, species-level taxonomic composition was exported 

from MEGAN into STAMP [51] for statistical analyses. For analysis in QIIME [52], filtered, 

species-level taxonomic composition was exported from MEGAN into BIOM format, and 

imported into QIIME 1.9.1. ANOSIM was used to test for statistical significance in composition 

between groups using the compare_categories.py script with 999 permutations. Differential 

abundance of species between groups was tested using the Kruskal-Wallis test with Bonferroni-

correction in the group_significance.py script. 

 
Whole-genome phylogenetic analysis 

Genomic sequences were assembled by mapping to reference genomes using PALEOMIX [53] 

with the BWA-MEM aligner [54]. The resulting BAM files were imported into Geneious v. 

10.2.3 [55], and consensus sequences called with the following parameters: call N if minimum 

depth <3, and 75% consensus threshold. Consensus sequences were then aligned using the 

Mauve Genome aligner with default settings [56]. Gblocks [57] with default settings was used 

to clean alignments. Phylogenetic reconstruction of transition and transversion substitutions 

was performed using RAxML [58], with the GTR-GAMMA substitution model and 1,000 

bootstrap replicates. Phylogenetic reconstruction of only transversion substitutions was 

performed in MEGA v7.0 [59] using the Neighbour Joining method with evolutionary distances 

computed using Maximum Composite Likelihood [60] and 1,000 bootstrap replicates. The rate 

variation among sites was modelled with a gamma distribution (shape parameter = 1), and the 

differences in the composition bias among sequences were considered in evolutionary 

comparisons [61]. All positions with less than 75% site coverage were eliminated. That is, fewer 

than 25% alignment gaps, missing data, and ambiguous bases were allowed at any position. 

 

Results 
 

Authentic ancient microbial DNA was isolated from dental calculus 

We applied metagenomic shotgun sequencing to 15 ancient Japanese dental calculus samples: 

5 male Jomon period (~3000 BP) and 10 (5 male; 5 female) from the Edo period 400-150 BP). 

An average of 1,552,410 reads per sample was obtained (±716,139), with the fragment length 
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distributions being as expected for ancient DNA (average size 82 bp; Table S2). We used 

MALT (MEGAN Alignment Tool) to align DNA reads to a reference database containing 

47,696 archaeal and bacterial genome assemblies, and as expected for ancient dental calculus 

studies [48], an average of 49.8% (±10.1%) of DNA reads in each sample could be assigned 

taxonomy. The ancient Japanese calculus samples looked similar to previously published 

ancient calculus samples (Figure 1) and are clearly distinct from extraction blank controls 

(EBCs) that were processed at the same time as the samples (Figure 1). Phyla present in the 

ancient calculus samples but not modern plaque samples from the Human Microbiome Project 

(HMP) include Synergistetes, Chloroflexi, Candidatus Sacchararibacteria, and Euryarchaeota 

(Figure 1). These phyla contain species that are associated with periodontal disease and were 

identified in the ancient calculus samples: (Synergistetes; Fretibacterium fastidiosum [62], 

Chloroflexi; Anaerolineaceae sp. oral taxon 439 [63], Candidatus Sacchararibacteria; TM7x 

[64], and Euryarchaeota; Methanobrevibacter oralis [65]). Therefore, the absence of these 

phyla from the modern plaque samples could be explained by disease-state, as all HMP samples 

were taken from healthy individuals [1]. 
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As background DNA contamination can influence ancient microbiome studies [66,67], we next 

assessed oral and contaminant DNA levels in the samples by ordinating Bray Curtis 

dissimilarity in a Principal Coordinates Analysis (PCoA) (Figure 2), which included EBCs, 

ancient Japanese and Chinese calculus samples, previously published ancient calculus 

specimens [31], and modern healthy plaque samples from the HMP [1]. Ancient Japanese 

calculus specimens clustered with published ancient calculus specimens and were dissimilar to 

EBCs, as expected (Figure 2). Except for one Edo calculus specimen, ancient Japanese samples 

were different from modern plaque samples from the HMP (Figure 2). Lastly, we took a 

conservative approach and removed any species found in the EBCs from the Japanese calculus 

samples to help eliminate the contributions of contaminant DNA [68]; an average of 94.9% 

(±7.1%) reads remained at the species level after filtering (Table S2), highlighting the great 

preservation of the specimens. To our knowledge, this is the oldest human-associated oral 

microbial DNA obtained from Asia to date (3,000 years old for the Jomon period calculus).  
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Figure 2. PCoA ordination of species-level Bray-Curtis distances. Extraction blank controls 

(EBCs, grey crosses), cluster separately from the rest of the ancient and modern oral samples. 

Ancient Japanese dental calculus samples (black circles) cluster with ancient dental calculus 

samples from China (orange diamonds) and the El Sidron 1 Neanderthal (orange square). 

Modern dental plaque samples from the Human Microbiome Project (blue triangles), and a 

modern dental calculus sample (orange square) cluster separately from ancient dental calculus 

samples, with the exception of one Edo period Japanese sample. 
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entries in the Human Oral Microbiome Database (HOMD) [70]. We observed inter-individual 

variation in microbiome composition within groups (Jomon, Edo males, Edo females), 

especially for abundances of taxa (Figure 3). Such inter-individual variation has been observed 

previously in modern plaque microbiome studies [71,72]. 

 

  

Jomon Edo Males Edo Females

Figure 3. Species-level taxonomic composition of EBC-filtered ancient Japanese calculus samples
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Endomicrobium proavitum Bacteroides pyogenes Proteiniphilum acetatigenes

Proteiniphilum saccharofermentans Petrimonas mucosa Porphyromonas gingivalis

Porphyromonas sp. KLE 1280 Prevotella saccharolytica Prevotella sp. oral taxon 472

Tannerella forsythia Phocaeicola abscessus Capnocytophaga granulosa

Capnocytophaga ochracea Capnocytophaga sp. ChDC OS43 Capnocytophaga sp. oral taxon 329

Bacteroidetes oral taxon 274 Fusobacterium hwasookii Fusobacterium nucleatum

Leptotrichia buccalis Leptotrichia sp. oral taxon 212 Lautropia mirabilis

Brachymonas chironomi Ottowia sp. oral taxon 894 Herminiimonas arsenicoxydans

Eikenella corrodens Kingella denitrificans Neisseria elongata

Neisseria meningitidis Neisseria sicca Neisseria sp. HMSC072F04

Neisseria sp. oral taxon 014 Desulfobulbus elongatus Desulfobulbus propionicus

Desulfomicrobium orale Campylobacter gracilis Cardiobacterium hominis

Cardiobacterium valvarum Aggregatibacter aphrophilus Aggregatibacter segnis

Haemophilus parainfluenzae Treponema denticola Treponema lecithinolyticum

Treponema maltophilum Treponema pedis Treponema socranskii

Aminomonas paucivorans Cloacibacillus porcorum Fretibacterium fastidiosum

Jonquetella anthropi Actinomyces cardiffensis Actinomyces dentalis

Actinomyces georgiae Actinomyces gerencseriae Actinomyces glycerinitolerans

Actinomyces israelii Actinomyces johnsonii Actinomyces massiliensis

Actinomyces naeslundii Actinomyces odontolyticus Actinomyces oris

Actinomyces radicidentis Actinomyces slackii Actinomyces sp. HPA0247

Actinomyces sp. oral taxon 170 Actinomyces sp. oral taxon 414 Actinomyces sp. oral taxon 849

Actinomyces sp. oral taxon 877 Gardnerella vaginalis Corynebacterium durum

Corynebacterium matruchotii Rothia aeria Propionibacterium acidifaciens

Propionibacterium freudenreichii Propionibacterium sp. oral taxon 192 Atopobium sp. oral taxon 810

Olsenella sp. kh2p3 Olsenella sp. Marseille-P2300 Olsenella sp. oral taxon 807

Olsenella uli Coriobacteriaceae bacterium 68-1-3 Slackia exigua

Anaerolineaceae bacterium oral taxon 439 Gemella morbillorum Abiotrophia defectiva

Abiotrophia sp. HMSC24B09 Granulicatella adiacens Streptococcus anginosus

Streptococcus constellatus Streptococcus intermedius Streptococcus cristatus

Streptococcus gordonii Streptococcus oralis Streptococcus sanguinis

Streptococcus sp. DD04 Streptococcus sp. HMSC061D01 Clostridium botulinum

Clostridium sp. ATCC BAA-442 Clostridium sp. BNL1100 Clostridium sp. SY8519

Geosporobacter ferrireducens Inediibacterium massiliense Anaerovorax odorimutans

Anaerofustis stercorihominis Eubacterium limosum Pseudoramibacter alactolyticus

Blautia producta Catonella morbi Johnsonella ignava

Lachnoanaerobaculum saburreum Lachnoanaerobaculum sp. OBRC5-5 Oribacterium sp. oral taxon 078

Shuttleworthia satelles Lachnospiraceae bacterium oral taxon 500 Filifactor alocis

Peptoanaerobacter stomatis Peptostreptococcaceae bacterium oral taxon 113 Angelakisella massiliensis

Ruminiclostridium thermocellum Ruminococcus albus Ruminococcus flavefaciens

Ruminococcaceae bacterium CPB6 Eggerthia catenaformis Selenomonas noxia

Selenomonas ruminantium Selenomonas sp. oral taxon 138 Selenomonas sp. oral taxon 892

Selenomonas sputigena Murdochiella vaginalis Parvimonas micra

Peptoniphilus indolicus Peptoniphilus sp. oral taxon 386 Dethiosulfatibacter aminovorans

Tissierellia bacterium KA00581 Candidatus Saccharibacteria oral taxon TM7x Methanobrevibacter arboriphilus

Methanobrevibacter millerae Methanobrevibacter olleyae Methanobrevibacter oralis

Methanobrevibacter ruminantium Methanobrevibacter smithii Methanobrevibacter sp. AbM4

Methanobrevibacter sp. YE315 Methanobrevibacter wolinii Candidatus Methanomethylophilus alvus

Thermoplasmatales archaeon BRNA1 archaeon
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As the Jomon and Edo cultures evolved in different locations and were associated with 

distinct diets, we wanted to explore the similarities and differences between the microbiomes 

found in both cultures. Jomon individuals tended to cluster separately from Edo period 

specimens based on microbiome composition (Clade 1; Figure 4); however, this difference was 

not statistically significant (ANOSIM R2 = 0.226, p-value = 0.07), as several Edo individuals 

fell within the Jomon cluster (Clade 1; Figure 2). We found no species that were differentially 

abundant between Edo period or Jomon samples (Kruskal-Wallis test with Bonferroni-

correction p-values >0.05) and no species that were specific to either culture.  

 
Figure 4. UPGMA tree of Bray-Curtis distances between samples. All Jomon period 

individuals fall in Clade 1, and Clade 2 contains strictly Edo period individuals, with further 

separation of male and females. Edo_3_Male is different from all other samples and is the 

same individual that clustered with Modern Human Microbiome Project plaque samples in 

Figure 1.  
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Exploring oral disease in Edo period Japan 

Within the Edo period clade (Clade 2; Figure 4) we found that the female individuals tended to 

cluster together, and this difference was statistically significant (ANOSIM R2 = 0.28, p-value 

= 0.043). All females had evidence of periodontal disease, and all had their teeth dyed black 

which was a common cultural practice of the Edo period. We found no species that were 

differentially abundant between Edo period males and females (Kruskal-Wallis test with 

Bonferroni-correction p-values >0.05), and no species that were specific to either gender.  

As all Edo females had signs of periodontal disease, which has been previously shown 

to influence microbiome composition in modern studies [73–75], we next tested for signatures 

of periodontal disease in our dataset. Within Edo individuals, no species were significantly 

associated with caries prevalence or periodontitis (Kruskal-Wallis test with Bonferroni-

correction p-values >0.05), including members of the periodontitis-associated “red-complex” 

(Treponema denticola, Tannerella forsythia, Porphyromonas gingivalis) [76]. However, the 

abundance of the periodontitis-associated archaeon, Methanobrevibacter oralis [65], was 

substantially higher in the females (mean abundance in females=32%, mean abundance in 

males=5%) (Figure 5), though this difference was not statistically significant when controlling 

for multiple comparisons (Kruskal-Wallis uncorrected p-value = 0.028, Bonferroni-corrected 

p-value 3.795), potentially due to the small sample size and large degree of inter-individual 

variation observed (Figure 3). 
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Figure 5. Box-plot of Methanobrevibacter oralis abundance in Edo period individuals. Females 

n=5 (blue) versus males n=5 (orange). Kruskal-Wallis test uncorrected p-value = 0.028, 

Bonferroni-corrected p-value 3.795. 
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Potential lineage replacement of bacteria during Jomon-Yayoi interaction 

To test if the transition of Jomon to Yayoi culture in Japan resulted in a loss of Jomon microbial 

lineages, we focused on the specific genomes of microorganisms found in dental calculus. 

Given that the putative source of Yayoi culture into ancient Japan was mainland Asia, we added 

three Chinese dental calculus samples (circa 1800’s) to test if mainland Asia was the potential 

source of any lineage replacement. These samples also clustered separately from EBCs (Figure 

2) and had fragment length distributions and terminal deamination rates consistent with ancient 

DNA (Figures S1 & S2). To find suitable candidates for phylogenetic analysis, we determined 

the core oral microbiome in ancient Japan (i.e. species present in every sample). We found 

Actinomyces sp. oral taxon 414, Actinomyces dentalis, Anaerolineaceae sp. oral taxon 439, and 

Olsenella sp. oral taxon 807 to be present in all samples. The oral bacterium Anaerolineaceae 

sp. oral taxon 439 was chosen for phylogenetic analysis due to its high mean abundance within 

calculus samples (17.25%) which yielded a greater depth of coverage and higher quality variant 

calls. This bacterium is present at low abundance in healthy human plaque and higher 

abundance in individuals with periodontal disease [63]. Reads mapped against the 

Anaerolineaceae sp. oral taxon 439 genome had terminal cytosine deamination typical of 

ancient DNA (Figures S1 & S2), with the Jomon and El Sidron Neanderthal samples having 

higher levels of cytosine deamination at terminal ends (13.9%) compared to the more recent 

(400-150-year-old) Chinese and Edo samples (6%), as expected with increasing age of sample 

[77]. Phylogenetic reconstruction found strong support for a distinct Jomon clade (Figure 6; 

yellow), while the Anaerolineaceae sequences in Edo calculus samples clustered with those 

from mainland China (Figure 6; orange). These findings were reproduced when restricting the 

analysis to transversions only to account for the potential influence of cytosine deamination on 

phylogenetic reconstruction (Figure S3).  
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Figure 6. Maximum likelihood phylogenetic tree of reconstructed Anaerolineaceae sp. oral 

taxon 439 genomes. Node labels represent percentage support of 1,000 bootstrap replicates. 

Elsidron 1 Neanderthal falls basal as an outgroup, with two separate clades containing Jomon 

(yellow), or a mixture of Chinese/Edo period Japanese samples (orange).  
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This study is the first to explore the oral microbiome from ancient Japan. We found the DNA 

to be well-preserved and with minimal modern/ancient DNA contamination. The DNA also 

possessed characteristics of authentic ancient DNA, such as short fragment length distributions 

and terminal cytosine deamination [78]. We did not observe major differences between Jomon 
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 It has previously been reported that diet (hunter-gatherer vs. agricultural) may influence 

oral microbiome composition [31]. Here we reported a minor, but non-statistically significant 

difference in microbiome composition between Jomon (hunter-gatherer) and Edo (agricultural) 

period Japanese. No microbial species were found to be unique or differentially abundant 

between cultures, which could suggest that the classifiable oral microbiome composition has 

not changed drastically in Japan from Jomon to Edo period. This supports findings that oral 

microbiota are highly stable through time [71,79] and may be minimally influenced by certain 

dietary changes [80,81]. An alternate explanation for this finding is that the limited sample size 

of our study (5 Jomon and 10 Edo period) prevented the detection of such differences, as the 

large degree of inter-individual variation we observed (and which has been previously observed 

[71,72]) could have masked cultural/dietary signatures. Additionally, given that most modern 

oral reference genomes are generated from European and American isolates, the species that 

we classified may be biased towards core oral taxa that are stable through time [71,72,79,82]. 

Furthermore, we were unable to classify ~50% of reads from the ancient Japanese samples, and 

might, therefore, have missed microbial diversity present in these ancient samples which were 

unique to each culture or labile to dietary changes. Future improvements of analytical tools and 

further sampling of oral microbial genomes from broader human populations could allow for 

classification of the unclassified portion of our data, potentially providing enhanced bio-

archaeological information from ancient dental calculus.  

 We found a significant difference between the microbiome composition of female and 

male Edo period Japanese—greater than the difference between Jomon and Edo cultures. This 

difference is not likely due to diet, as previously reported isotope data from the skeletons found 

no significant differences in dietary intake between male and female samples [42]. One 

potential driver of this difference is oral disease status, as all female samples had evidence of 

periodontal disease, which has been demonstrated in modern populations to impact microbiome 

composition [73,75,83]. In particular, we found the periodontal disease-associated archaeon 

Methanobrevibacter oralis [65,84] to be substantially more abundant in females versus males 

Edo period Japanese. Members of the periodontitis-associated “red-complex” were not found 

to be differentially abundant in females versus males [76]. However, this is unsurprising given 

recent recognition that periodontal disease is of complex aetiology, not the result of a handful 

of periopathogens [85]. Future studies with larger sample sizes including both periodontal-

positive and negative individuals are needed to determine the influence of periodontal disease 

on the male/female split we observed in Edo period Japanese. Further studies controlling for 

periodontal disease could also test for influences of other cultural practices, such as teeth 

painting, which was common in Japan prior to the 20th century, and observed in the samples we 
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analysed. Overall, our findings suggest that periodontal disease is an important factor to control 

for when comparing microbial composition in ancient dental calculus studies, and future studies 

should aim to control for periodontal disease when making cultural comparisons.  

 We also explored the demographic history of Japan using whole bacterial genomes. The 

species we used for this analysis, Anaerolineaceae sp. oral taxon 439, is present in modern 

periodontally-healthy human plaque at low abundance, with increasing abundance observed in 

individuals with periodontal disease [63]. This bacterium was not identified in the extraction 

blank controls, and reads mapped against the genome were both short and possessed age-

associated patterns of cytosine deamination typical of ancient DNA.  

It is widely accepted that the modern Japanese population is the result of admixture 

between indigenous Jomon and later migrants from continental Asia during and after the Yayoi 

period [39]. We found evidence for a bacterial lineage replacement of Jomon associated 

Anaerolineaceae lineages. The Edo-associated Anaerolineaceae lineages appear were more 

closely related to historic Chinese strains than ancient Jomon. This could be interpreted as a 

microbial replacement event, whereby the continental Asian Anaerolineaceae lineage/s were 

brought by migrants to Japan and replaced the Jomon lineage. This is a plausible scenario if the 

continental Asian contribution to modern Japanese was larger than the Jomon, resulting in the 

loss of the lineage in a fashion analogous to genetic drift. Current estimates of Jomon genetic 

contribution to modern Japanese is <20%, supporting this scenario [39]. Another possibility is 

that the Jomon lineage has survived to this day, but that we did not detect it due to the relatively 

small sample size of our study. Future studies investigating modern individuals from across 

Japan could test for the survival of the Jomon Anaerolineaceae lineage. Spatially diverse 

sampling will be important, as it has been shown that genetic contribution from Jomon varied 

among populations across the Japanese Archipelago [37–39,86]. Further studies using ancient 

dental calculus could also assist in learning more about the source/s of Yayoi admixture, which 

remains undetermined. Future sequencing efforts will allow for the phylogenetic reconstruction 

of other human-associated microorganisms and permit investigations into how these genomes 

have changed through time—potentially yielding insights into their co-evolutionary history 

with humans. 

 In conclusion, we have reported the first ancient oral microbiome data from Asia. We 

also identified periodontal disease as being an important factor to control for when comparing 

microbial composition in ancient dental calculus studies. Finally, this study was the first to use 

ancient oral microbial genomes to investigate relationships between prehistoric populations, 

revealing insights into the demographic history of Japan.  

  



 

 260 

References 
 1. Consortium THMP. Structure, function and diversity of the healthy human microbiome. 

Nature. 2012;486:207–14.  

2. Agüero MG de, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The 

maternal microbiota drives early postnatal innate immune development. Science. 

2016;351:1296–302.  

3. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early 

life shapes the immune system. Science. 2016;352:539–44.  

4. Belkaid Y, Hand TW. Role of the Microbiota in Immunity and Inflammation. Cell. 

2014;157:121–41.  

5. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota 

functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.  

6. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous Bacteria from 

the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell. 2015;161:264–76.  

7. Sampson TR, Mazmanian SK. Control of Brain Development, Function, and Behavior by 

the Microbiome. Cell Host Microbe. 2015;17:565–76.  

8. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-

associated gut microbiome with increased capacity for energy harvest. Nature. 

2006;444:1027–131.  

9. Ravussin Y, Koren O, Spor A, LeDuc C, Gutman R, Stombaugh J, et al. Responses of Gut 

Microbiota to Diet Composition and Weight Loss in Lean and Obese Mice. Obesity. 

2012;20:738–47.  

10. Tamboli CP, Neut C, Desreumaux P, Colombel JF. Dysbiosis in inflammatory bowel 

disease. Gut. 2004;53:1–4.  



 

 261 

11. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota 

in disease. Microb Ecol Health Dis [Internet]. 2015 [cited 2018 Mar 18];26. Available from: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4315779/ 

12. Croswell A, Amir E, Teggatz P, Barman M, Salzman NH. Prolonged Impact of 

Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric Salmonella 

Infection. Infect Immun. 2009;77:2741–53.  

13. Blaser MJ. Antibiotic use and its consequences for the normal microbiome. Science. 

2016;352:544–5.  

14. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-Induced Dysbiosis of the Intestinal 

Microbiota and the Effects on Immunity and Disease. Nutrients. 2012;4:1095–119.  

15. Pham TAN, Lawley TD. Emerging insights on intestinal dysbiosis during bacterial 

infections. Curr Opin Microbiol. 2014;17:67–74.  

16. Beatty JK, Akierman SV, Motta J-P, Muise S, Workentine ML, Harrison JJ, et al. Giardia 

duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int J 

Parasitol. 2017;47:311–26.  

17. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B, et al. The microbiome 

of uncontacted Amerindians. Sci Adv. 2015;1:e1500183–e1500183.  

18. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. 

Delivery mode shapes the acquisition and structure of the initial microbiota across multiple 

body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107:11971–5.  

19. Stahringer SS, Clemente JC, Corley RP, Hewitt J, Knights D, Walters WA, et al. Nurture 

trumps nature in a longitudinal survey of salivary bacterial communities in twins from early 

adolescence to early adulthood. Genome Res. 2012;22:2146–52.  

20. Shaw L, Ribeiro ALR, Levine AP, Pontikos N, Balloux F, Segal AW, et al. The Human 

Salivary Microbiome Is Shaped by Shared Environment Rather than Genetics: Evidence from 

a Large Family of Closely Related Individuals. mBio. 2017;8:e01237-17.  



 

 262 

21. Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. 

Selective maternal seeding and environment shape the human gut microbiome. Genome Res 

[Internet]. 2018 [cited 2018 Mar 26]; Available from: 

http://genome.cshlp.org/content/early/2018/03/14/gr.233940.117 

22. Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, Kidd M, et al. Traces of Human 

Migrations in Helicobacter pylori Populations. Science. 2003;299:1582–5.  

23. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. 

Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.  

24. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. 

Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.  

25. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut 

microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.  

26. Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C, et al. 

Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Curr Biol. 

2015;25:1682–93.  

27. Blaser MJ. Who are we? Indigenous microbes and the ecology of human diseases. EMBO 

Rep. 2006;7:956–60.  

28. Eisenhofer R, Anderson A, Dobney K, Cooper A, Weyrich LS. Ancient Microbial DNA 

in Dental Calculus: A New method for Studying Rapid Human Migration Events. J Isl Coast 

Archaeol. 2017;0:1–14.  

29. Adler CJ, Dobney K, Weyrich LS, Kaidonis J, Walker AW, Haak W, et al. Sequencing 

ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the 

Neolithic and Industrial revolutions. Nat Genet. 2013;45:450–5.  

30. Warinner C, Rodrigues JFM, Vyas R, Trachsel C, Shved N, Grossmann J, et al. Pathogens 

and host immunity in the ancient human oral cavity. Nat Genet. 2014;46:336–44.  



 

 263 

31. Weyrich LS, Duchene S, Soubrier J, Arriola L, Llamas B, Breen J, et al. Neanderthal 

behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature. 

2017;544:357–61.  

32. Schroeder HE, Shanley D. Formation and Inhibition of Dental Calculus. J Periodontol. 

1969;40:643–6.  

33. Habu J. Ancient Jomon of Japan (Vol. 4). Cambridge University Press; 2004.  

34. Imamura K. Prehistoric Japan: new perspectives on insular East Asia. Routledge; 2016.  

35. Tomioka N. Animal resources and subsistence range during the Jomon period. Jomon 

archaeology, Vol. 4, Relationship between humans and animals [In Japanese]. 2010.  

36. Kusaka S, Uno KT, Nakano T, Nakatsukasa M, Cerling TE. Carbon isotope ratios of 

human tooth enamel record the evidence of terrestrial resource consumption during the Jomon 

period, Japan. Am J Phys Anthropol. 2015;158:300–11.  

37. Japanese Archipelago Human Population Genetics Consortium, Jinam T, Nishida N, Hirai 

M, Kawamura S, Oota H, et al. The history of human populations in the Japanese Archipelago 

inferred from genome-wide SNP data with a special reference to the Ainu and the Ryukyuan 

populations. J Hum Genet. 2012;57:787–95.  

38. Jinam TA, Kanzawa-Kiriyama H, Inoue I, Tokunaga K, Omoto K, Saitou N. Unique 

characteristics of the Ainu population in Northern Japan. J Hum Genet. 2015;60:565–71.  

39. Kanzawa-Kiriyama H, Kryukov K, Jinam TA, Hosomichi K, Saso A, Suwa G, et al. A 

partial nuclear genome of the Jomons who lived 3000 years ago in Fukushima, Japan. J Hum 

Genet. 2017;62:213.  

40. Adachi Noboru, Shinoda Ken-ichi, Umetsu Kazuo, Kitano Takashi, Matsumura Hirofumi, 

Fujiyama Ryuzo, et al. Mitochondrial DNA analysis of Hokkaido Jomon skeletons: Remnants 

of archaic maternal lineages at the southwestern edge of former Beringia. Am J Phys 

Anthropol. 2011;146:346–60.  



 

 264 

41. Hayashi K, Yamaguchi B, Dodo Y, Hiramoto Y. The middle of middle Jomon to the end 

of final Jomon: A Preliminary Report of the Survey of Localities B and C in the Miyano 

shell-mound: With Reference to the Human Skeletal Remains. Report of the research 

supported by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science 

and Culture, Japan (In Japanese). 1981;  

42. Tsutaya T, Nagaoka T, Kakinuma Y, Kondo O, Yoneda M. The diet of townspeople in the 

city of Edo: carbon and nitrogen stable isotope analyses of human skeletons from the 

Ikenohata-Shichikencho site. Anthropol Sci. 2016;124:17–27.  

43. Weyrich LS, Dobney K, Cooper A. Ancient DNA analysis of dental calculus. J Hum 

Evol. 2015;79:119–24.  

44. Brotherton P, Haak W, Templeton J, Brandt G, Soubrier J, Jane Adler C, et al. Neolithic 

mitochondrial haplogroup H genomes and the genetic origins of Europeans. Nat Commun. 

2013;4:1764.  

45. Meyer M, Kircher M. Illumina Sequencing Library Preparation for Highly Multiplexed 

Target Capture and Sequencing. Cold Spring Harb Protoc. 2010;2010:pdb.prot5448.  

46. Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, 

identification, and read merging. BMC Res Notes [Internet]. 2016 [cited 2018 Feb 26];9. 

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751634/ 

47. Herbig A, Maixner F, Bos KI, Zink A, Krause J, Huson DH. MALT: Fast alignment and 

analysis of metagenomic DNA sequence data applied to the Tyrolean Iceman. bioRxiv. 

2016;050559.  

48. Eisenhofer R, Weyrich LS. Assessing alignment-based taxonomic classification of ancient 

microbial DNA. (Chapter III) in preparation. 2018;  

49. Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN Community 

Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data. 

PLOS Comput Biol. 2016;12:e1004957.  



 

 265 

50. Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast 

approximate Bayesian estimates of ancient DNA damage parameters. Bioinforma Oxf Engl. 

2013;29:1682–4.  

51. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of 

taxonomic and functional profiles. Bioinformatics. 2014;30:3123–4.  

52. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 

QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 

2010;7:335–6.  

53. Schubert M, Ermini L, Sarkissian CD, Jónsson H, Ginolhac A, Schaefer R, et al. 

Characterization of ancient and modern genomes by SNP detection and phylogenomic and 

metagenomic analysis using PALEOMIX. Nat Protoc. 2014;9:1056.  

54. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. 

Bioinformatics. 2009;25:1754–60.  

55. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious 

Basic: an integrated and extendable desktop software platform for the organization and 

analysis of sequence data. Bioinforma Oxf Engl. 2012;28:1647–9.  

56. Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: Multiple Alignment of Conserved 

Genomic Sequence With Rearrangements. Genome Res. 2004;14:1394–403.  

57. Castresana J. Selection of conserved blocks from multiple alignments for their use in 

phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.  

58. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of 

large phylogenies. Bioinformatics. 2014;30:1312–3.  

59. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis 

Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33:1870–4.  

60. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the 

neighbor-joining method. Proc Natl Acad Sci. 2004;101:11030–5.  



 

 266 

61. Tamura K, Kumar S. Evolutionary distance estimation under heterogeneous substitution 

pattern among lineages. Mol Biol Evol. 2002;19:1727–36.  

62. Marchesan JT, Morelli T, Moss K, Barros SP, Ward M, Jenkins W, et al. Association of 

Synergistetes and Cyclodipeptides with Periodontitis. J Dent Res. 2015;94:1425–31.  

63. Campbell AG, Schwientek P, Vishnivetskaya T, Woyke T, Levy S, Beall CJ, et al. 

Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. 

Environ Microbiol. 2014;16:2635–43.  

64. Brinig MM, Lepp PW, Ouverney CC, Armitage GC, Relman DA. Prevalence of bacteria 

of division TM7 in human subgingival plaque and their association with disease. Appl 

Environ Microbiol. 2003;69:1687–94.  

65. Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA. Methanogenic 

Archaea and human periodontal disease. Proc Natl Acad Sci U S A. 2004;101:6176–81.  

66. Eisenhofer R, Cooper A, Weyrich LS. Reply to Santiago-Rodriguez et al.: proper 

authentication of ancient DNA is essential. FEMS Microbiol Ecol [Internet]. 2017 [cited 2017 

Jun 27];93. Available from: 

https://academic.oup.com/femsec/article/93/5/fix042/3089752/Reply-to-Santiago-Rodriguez-

et-al-proper 

67. Eisenhofer R, Weyrich LS. Proper Authentication of Ancient DNA Is Still Essential. 

Genes. 2018;9:122.  

68. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and 

laboratory contamination can critically impact sequence-based microbiome analyses. BMC 

Biol. 2014;12:87.  

69. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, et al. The Human Oral 

Microbiome. J Bacteriol. 2010;192:5002–17.  

70. Chen T, Yu W-H, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral 

Microbiome Database: a web accessible resource for investigating oral microbe taxonomic 



 

 267 

and genomic information. Database [Internet]. 2010 [cited 2018 Feb 9];2010. Available from: 

https://academic.oup.com/database/article/doi/10.1093/database/baq013/405450 

71. Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB, Tenenbaum HC, et al. Inter-personal 

diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral 

cavity. Npj Biofilms Microbiomes. 2017;3:2.  

72. Proctor DM, Fukuyama JA, Loomer PM, Armitage GC, Lee SA, Davis NM, et al. A 

spatial gradient of bacterial diversity in the human oral cavity shaped by salivary flow. Nat 

Commun. 2018;9:681.  

73. Li Y, He J, He Z, Zhou Y, Yuan M, Xu X, et al. Phylogenetic and functional gene 

structure shifts of the oral microbiomes in periodontitis patients. ISME J. 2014;8:1879–91.  

74. Camelo-Castillo AJ, Mira A, Pico A, Nibali L, Henderson B, Donos N, et al. Subgingival 

microbiota in health compared to periodontitis and the influence of smoking. Front Microbiol 

[Internet]. 2015 [cited 2017 Nov 29];6. Available from: 

https://www.frontiersin.org/articles/10.3389/fmicb.2015.00119/full 

75. Boutin S, Hagenfeld D, Zimmermann H, El Sayed N, Höpker T, Greiser HK, et al. 

Clustering of Subgingival Microbiota Reveals Microbial Disease Ecotypes Associated with 

Clinical Stages of Periodontitis in a Cross-Sectional Study. Front Microbiol [Internet]. 2017 

[cited 2018 Apr 18];8. Available from: 

https://www.frontiersin.org/articles/10.3389/fmicb.2017.00340/full#h13 

76. Socransky S s., Haffajee A d., Cugini M a., Smith C, Kent RL. Microbial complexes in 

subgingival plaque. J Clin Periodontol. 1998;25:134–44.  

77. Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. Temporal Patterns of 

Nucleotide Misincorporations and DNA Fragmentation in Ancient DNA. PLOS ONE. 

2012;7:e34131.  

78. Dabney J, Meyer M, Pääbo S. Ancient DNA Damage. Cold Spring Harb Perspect Biol. 

2013;a012567.  



 

 268 

79. Utter DR, Mark Welch JL, Borisy GG. Individuality, Stability, and Variability of the 

Plaque Microbiome. Front Microbiol [Internet]. 2016 [cited 2016 Jul 8];7. Available from: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4840391/ 

80. Belstrøm D, Holmstrup P, Nielsen CH, Kirkby N, Twetman S, Heitmann BL, et al. 

Bacterial profiles of saliva in relation to diet, lifestyle factors, and socioeconomic status. J 

Oral Microbiol. 2014;6.  

81. Keller MK, Kressirer CA, Belstrøm D, Twetman S, Tanner ACR. Oral microbial profiles 

of individuals with different levels of sugar intake. J Oral Microbiol [Internet]. 2017 [cited 

2017 Dec 22];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5560414/ 

82. Cameron SJS, Huws S, Hegarty MJ, Smith DPM, Mur LAJ. The human salivary 

microbiome exhibits temporal stability in bacterial diversity. FEMS Microbiol Ecol. 

2015;fiv091.  

83. Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral 

microbiome – an update for oral healthcare professionals. Br Dent J. 2016;221:657.  

84. Horz H-P, Conrads G. Methanogenic Archaea and oral infections — ways to unravel the 

black box. J Oral Microbiol [Internet]. 2011 [cited 2017 Sep 29];3. Available from: 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086593/ 

85. Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the 

polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol Oral 

Microbiol. 2012;27:409–19.  

86. Nakagome S, Sato T, Ishida H, Hanihara T, Yamaguchi T, Kimura R, et al. Model-Based 

Verification of Hypotheses on the Origin of Modern Japanese Revisited by Bayesian 

Inference Based on Genome-Wide SNP Data. Mol Biol Evol. 2015;32:1533–43.  

 

  



 

 269 

 

Supplementary figures and tables 
 

  



 270

Table S2. Sequencing statistics for Japanese samples used in this study

Figure S1. D
am

age profile for Anaerolineaceae sp. oral taxon 439 at 5’ term
inus. Percentage of C

-to-

T substitutions at the five term
inal bases of the 5’ end of m

olecules.  Positions 1-5 represent the bases 

adjacent to the fragm
entation site from

 hot to cold, w
ith  position 1 being im

m
ediately adjacent (red). 

and position 5 being five bases adjacent (blue).



271

Figure S2. D
am

age profile for Anaerolineaceae sp. oral taxon 439 at 3’ term
inus. Percentage of G

-to-

A
 substitutions at the five term

inal bases of the 3’ end of m
olecules.  Positions 1-5 represent the bases 

adjacent to the fragm
entation site from

 hot to cold, w
ith  position 1 being im

m
ediately adjacent (red). 

and position 5 being five bases adjacent (blue).



 

 272 

 

 
 

  



273

Discussion 

Palaeomicrobiological research can allow us to learn more about the lifeways, culture, and 

demographic history of our ancestors [1,2]. Such research can also help us understand how 

microbial communities have changed with humans throughout history, further adding to our 

understanding of the human microbiome in health and disease [3–5], and potentially informing 

and developing modern medical practices and therapies [5]. Critical to the realisation of these 

goals is the development and assessment of techniques for analysing ancient microbial 

communities, which is currently lacking due to the infancy of the field. This thesis develops 

new analytical techniques and refines existing ones to expand the scope, quality, and 

reproducibility of palaeomicrobiological research. In this discussion, I first highlight the major 

findings and contributions of this thesis and discuss their significance in a broader scientific 

and societal context. I then focus in on what this thesis means for the field of 

palaeomicrobiology, highlighting my key contributions, and identifying important issues 

moving forward while providing future directions for resolving them. 

Broader significance of this thesis to science and society 

Ancient dental calculus can be used to learn about past human migrations and 

demographic histories  

Our ability to learn about and stitch together the rich tapestry of human history relies on 

studying the past. Such knowledge can help inform medical research [6–9], increase empathy 

and understanding for diverse human cultures [10,11], and help people (especially indigenous 

individuals) by connecting them with their culture/s [12,13]. This thesis demonstrated that 

ancient dental calculus can be used to learn about past human migrations and demographic 

histories, which could improve our understanding of human history. 

In Chapter I [1], I investigated and proposed the use of ancient microbial DNA in dental 

calculus as a tool for inferring past human migration and demographic events. I also reviewed 

the archaeological, linguistic, and genetic data for human settlement in the Pacific, and 

highlighted reasons why ancient dental calculus may be the best (or sometimes only) approach 
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for understanding some past human migrations and demographic histories [1]. In Chapter V, I 

was the first to demonstrate that ancient dental calculus can be used to infer past human 

migrations and in doing so, added to our understanding of Pacific history. This chapter paves 

the way for future unprecedented discoveries about human history not just in the Pacific, but 

around the world. This thesis also demonstrated that it may be possible to use ancient dental 

calculus to learn about human demographic history. In chapter VI, I used ancient dental calculus 

from two cultural periods in Japan and found evidence for a potential bacterial lineage 

replacement event, supporting previous genetic and archaeological evidence for past population 

replacement in Japan. 

Future developments to the work presented in this thesis could see ancient dental 

calculus used for familial or geographical and cultural identification. This could help efforts to 

repatriate museum skeletal remains, and the remains of individuals killed in conflicts or past 

wars, an issue important to people who have lost relatives in such situations [14]. While the 

analysis of human DNA is ideal for these purposes in most situations, the analysis of ancient 

dental calculus could be the best or only solution for repatriation of remains in geographic areas 

with poor DNA preservation and human populations with limited human genetic diversity 

(Chapter I). Because of the non-destructive nature of sampling dental calculus from human 

remains, its use can preserve skeletal remains, something that the analysis of human DNA 

cannot currently do. A further extension to the work presented in this thesis is to use microbial 

genomes in ancient dental calculus to add estimates of dates to archaeological and 

palaeontological contexts. Temporal estimates are essential for calibrating our understanding 

of history, and the analysis of biomolecular information using molecular clocks [15] has been 

used to add temporal context to diverse topics such as plant domestication [16], 

palaeontological estimates [17], human evolution [18], and archaeological sites [19]. Future 

analysis of ancient dental calculus could add temporal estimates to these contexts, with the 

advantages highlighted above and in Chapter I. In summary, this thesis unlocked ancient dental 

calculus as a tool for inferring past human migrations and demographic histories, and I look 

forward to future studies using ancient dental calculus to add new (and strengthen existing) 

threads of evidence to the complex tapestry of human history. 

Refining methods for reconstructing ancient microbiomes 

Recent research has demonstrated that the human microbiome is important for human health 

and disease [20–23]. Given the long association and coevolution of humans with microbial 

communities [24,25], understanding how the human microbiome has changed through time 

may be crucial to treating modern diseases and improving wellbeing [5,26–28]. Here, the 
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analysis of ancient microbial DNA in preserved dental calculus is poised to help [5,29,30]. 

However, critical to realising this potential is the accurate reconstruction of ancient 

microbiomes to better study them, compare them to modern microbiomes, and ultimately learn 

about how they have changed throughout history and contribute to modern health and disease. 

By developing new and refining current methods for reconstructing ancient microbiomes, this 

thesis lays the groundwork to aid in the reconstruction of ancient microbial communities. 

 In Chapter III, I performed an in-depth assessment of how the characteristics of ancient 

DNA influence alignment-based taxonomic classification of microbial communities. By using 

both simulated and real data, I demonstrated that the nucleotide-to-protein alignment method—

which has been used previously in the field [2]—struggles to classify short DNA sequences 

that are typical of ancient DNA. Given that ancient samples vary in their DNA fragment length 

distributions, this represents an important source of bias for both taxonomic and functional 

comparisons in paleomicrobiological datasets. Therefore, I advocate against the use of 

nucleotide-to-protein alignments in favour of nucleotide-to-nucleotide alignments. 

Additionally, I highlighted the importance of reference database choice for alignment-based 

taxonomic classification, and stressed the importance for researchers (in modern and ancient 

microbiology) to carefully consider database choice when reconstructing microbiomes. In 

Chapter IV, I developed a new method for reconstructing ancient microbial communities using 

custom designed RNA probes to selectively enrich 16S rRNA gene fragments from ancient 

metagenomes. I demonstrated that this approach can be used to complement and add 

verification to other methods of reconstructing ancient microbiomes. While the use of 16S 

rRNA gene fragments from metagenomes has been previously used to reconstruct ancient 

microbial communities [2,31,32], there was yet to be a robust assessment of its applicability for 

doing so. This chapter also provided an in-depth assessment of the influence of ancient DNA 

characteristics on the ability to reconstruct ancient microbial communities using 16S rRNA 

gene fragments. Collectively, these chapters provide important findings and guidelines to 

improve future studies of ancient microbial communities. 

These contributions will help future research using ancient microbiomes to inform 

modern medicine. Such research could identify health-associated microbial communities that 

could advise probiotic and prebiotic therapy, investigate important genomic changes in 

microbiomes relevant the human health and disease, and identify factors contributing to health 

and dysbiosis of human microbiomes to inform medical and societal interventions. While the 

reconstruction of ancient microbiomes is important for learning about past human health and 

disease, there are other fields of research where the work done in this thesis can contribute. For 

example, ancient microbial DNA locked in subglacial ice can be used to learn more about past 
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climatic changes [33,34]. Such research could assist in palaeoclimate reconstructions and 

explore microbial drivers of and responses to climate change. Another potential avenue of 

future research is the reconstruction of the ancient microbiomes from non-human animals, as 

other animals can form dental calculus [35–38]. Such research could shed light on diverse topics 

such as animal domestication, past interactions of animals with humans, the dietary habits of 

extinct animals, the taxonomic relationships between animals, and a greater understanding of 

host-microbiome coevolution throughout mammalian evolution. In summary, this thesis 

improves our ability to reconstruct ancient microbiomes, and in doing so, paves the way for 

future discoveries relevant to science and society.  

 

Providing guidelines to improve the quality and reproducibility of future modern and 

ancient microbiome research 

Scientific progress relies on findings that are well supported by robust evidence. Like building 

a house, knowledge built on faulty foundations can come crashing down, wasting valuable time 

and taxpayer money, and can potentially cause harm to society. For example, links between 

vaccinations and autism were found to be erroneous and subsequently retracted [39]. However, 

the impact this science had on the public’s perception of vaccination led to a public health crisis 

resulting in many deaths that could have been prevented, and the echoes of this research are 

still being felt today [40]. Research suggests that science is undergoing a reproducibility crisis 

[41,42], and the rate of paper retraction has been found to correlate with journal impact factor 

[43]. Scientific misconduct accounts for the majority of article retractions [44], and the rate of 

fraud-induced retraction has increased ~10-fold since the 1970s [44]. This wastes valuable time 

and money, hinders the progress of medical research [45], and can erode public trust in science 

which could lead to the adoption of ‘alternate facts’ that are harmful to society [46].  

 The field of palaeomicrobiology is in its infancy, and there is still much to learn about 

confounding factors that can mislead scientific findings. As a result, there have been numerous 

claims made that have been challenged by other researchers [47–58]. Whether these 

controversial conclusions were made by honest mistakes or were the result of misconduct 

remains to be determined. However, to prevent future research from making mistakes, it is 

critical to identify and highlight pitfalls that could lead to poorly supported research and provide 

guidelines to improve future research. In Appendix Chapters I-III [47–49], I critically reviewed 

and responded to published paleomicrobiology studies that failed to include appropriate 

controls, used flawed methodology, and therefore produced conclusions that were 

unsubstantiated by sufficient evidence. This thesis, therefore, raises awareness of the pitfalls of 
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paleomicrobiological research and highlights key authentication criteria that must be met to 

ensure future reliable studies in the field.  

On a similar note, I reviewed the state of modern low-biomass microbiome research in 

Chapter II, which shares similar challenges with paleomicrobiological research and also 

contains studies that have failed to meet sufficient authentication criteria [59–61]. Such research 

is typically done by individuals who have the best intentions, but who lack the required training 

and background knowledge to implement sufficient experimental controls and avoid 

confounding factors. By collaborating with leaders of low-biomass microbiome research, I used 

what I learned from the field of paleomicrobiology to help develop and put forth guidelines and 

a minimum set of criteria for future low-biomass microbiome research. Collectively, this thesis 

underscores the importance of a critical mindset when assessing ancient and low-biomass 

microbiome studies, and provides key examples and guidelines to help future researchers, 

reviewers, and editors safeguard the scientific rigour and replicability of coming research. 

 

Contributions of this thesis to the field of palaeomicrobiology, 

limitations identified, and future directions to resolve them 
Throughout my candidature, I identified numerous limitations inherent to the field of 

palaeomicrobiology. While I addressed some of these directly, some of them were beyond the 

scope of my given time and resources. By highlighting these limitations and providing potential 

solutions it is hoped that future work will be able to overcome them, and in doing so, offer new 

fundamental insights into microbiome research and human history.  

 

1. Classification of ‘microbial dark matter’ 

We are currently far from characterising the vast extent of microbial diversity on Earth [62,63]. 

The uncharacterised proportion of microbial communities often referred to as ‘microbial dark 

matter’, hinders the accurate reconstruction of microbial communities as alignment-based 

methods rely on prior genomic characterisation and representation in reference databases [64–

67]. For example, Rinke et al. applied single-cell genomics to nine diverse microbial habitats 

and assembled 201 new microbial genomes [64]. These genomes allowed the authors to further 

classify up to 20% more of the metagenomic sequences from their samples, which allowed for 

further insights into community ecosystem structure and interactions. Given that alignment-

based methods of taxonomic classification are currently the only tractable means of determining 

microbial composition in ancient samples (for reasons that I highlighted in Chapter III), the 

ability to study past microbial communities is limited by what is currently characterised in 



 

 278 

modern reference databases. In Chapters III, V, and VI, I examined the current degree of this 

issue by analysing 157 ancient dental calculus samples from a broad range of geographic sites 

and time periods using to my knowledge, the largest MALT reference database built to date 

(47,696 microbial genome assemblies). Alarmingly, I found that an average of ~50% DNA 

sequences from ancient dental calculus samples could not be aligned and assigned taxonomy. 

This major limitation likely hindered my ability to detect and explore cultural differences 

between Jomon and Edo-period Japanese microbiomes in Chapter VI, and in the 16 different 

geographic regions across Asia-Pacific that I surveyed in Chapter V. In addition to hampering 

community-level analyses, this problem also limits genome-level analyses, as we are unable to 

detect species to study and are missing genomic regions that were lost from currently 

characterised species and are not present in modern reference genomes. Overall, this finding 

suggests that we are currently unable to characterise half of the DNA sequences within ancient 

dental calculus samples. Future paleomicrobiological research must recognise and report this 

limitation, and work towards addressing this critical issue. 

 Future directions for solving this problem include a larger effort to generate reference 

genomes from geographically diverse modern oral samples, and the de novo assembly of 

genomes from ancient samples. The latest Human Microbiome Project (HMP) study reported 

that for modern supragingival plaque samples from 265 individuals, an average of 75% reads 

could be aligned and assigned taxonomy ([68]; extended data figure 7). This number is close to 

the 80% I observed for the modern dental calculus sample analysed in Chapter III and suggests 

that further genomic characterisation is still required even for modern plaque microbiome 

studies. It should be noted that this number likely represents a best-case scenario for modern 

studies, as the HMP study used samples from healthy European/American individuals that have 

received the most attention in scientific research and from which the bulk of oral microbial 

genomes have been isolated and characterised from [69,70]. Therefore, it is likely that attempts 

to characterise modern oral microbiomes from other cultures (e.g. Asia, Africa) will yield lower 

percentages of classifiable DNA sequences. This same sampling bias towards healthy 

individuals of American and European descent may also hinder our ability to characterise the 

oral microbiomes of ancient cultures, such as the Pacific and Asian ones that I explored in 

Chapters V and VI. One approach to solving this problem is to further characterise the oral 

microbiomes of modern individuals on a global scale to improve representation in reference 

databases. This approach is becoming more feasible due to technological improvements in 

single-cell genomics [64,71] the culturing of fastidious microorganisms [72–74] (which allows 

for easier genome assembly), and bioinformatic techniques for de novo assembling of genomes 

from metagenomes [75,76].  
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  While further characterisation of modern oral microbiome diversity is needed, this 

approach will be unable to characterise human-associated oral microorganisms that have 

become extinct throughout human history. Such microbial extinctions could arise due to the 

death or replacement of past human cultures e.g. the extensive mortality of historical South 

American populations due to disease brought by Europeans in the 15th century [77], or through 

population replacement of Japanese Jomon culture by Mainland Asian populations that I found 

evidence for in Chapter VI. Microbial extinctions could also have occurred in more recent times 

due to the adoption of ‘Western’ lifestyles/diets or the widespread use of antibiotics—both of 

which have been shown to change microbiome composition [78–81], and can lead to the loss 

of microbiome diversity [82]. To characterise ‘extinct’ microorganisms, de novo assembly of 

genomes from ancient metagenomes would be the only approach. Such analytical techniques 

already exist [75,76], and while a paleomicrobiological study found their performance on short 

and damaged DNA sequences was poor [23], further research is needed. Ideally, the first step 

would be to perform simulations (as done in Chapter III) to assess the tractability of de novo 

assembly in an ancient metagenome context. Such findings could also inform algorithmic 

improvements for de novo assembly tools to better cope with the characteristics of ancient 

DNA. Additionally, through the analysis of the 157 ancient dental calculus samples used in this 

thesis, I identified a large range of mean DNA fragment length distributions (e.g. 42-137 bp). 

Therefore, samples with longer mean fragment lengths could be preferentially targeted to make 

de novo assembly easier.  

 In summary, our current inability to characterise half of the DNA sequences from 

ancient dental calculus samples is a critical issue for the field. I believe that this problem is also 

directly related to the other limitations I describe below and must be addressed in order to 

expand the scope of future paleomicrobiological research. 

 

2. Computational constraints for searching ever-expanding reference databases 

While increasing the representation of microbial genomes in databases will help with 

characterising ‘microbial dark matter’, such expansion will also stress our ability to analyse 

them computationally. The development of MALT (MEGAN Alignment Tool) [83] made the 

alignment and assignment of millions of DNA reads against large reference databases feasible 

in a timely manner. MALT accomplishes this is by loading the hash table (database containing 

reference sequences) into RAM (Random Access Memory) to drastically improve runtime 

performance. Larger reference databases will, therefore, require larger quantities of RAM, 

which are only currently obtainable through expensive and sophisticated high-powered 

computer servers. For example, a standard desktop computer typically contains between 4-16 
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GB of RAM, whereas the computer server I used to load 47,696 genome assemblies had 1,500 

GB of RAM. Such hardware constraints are beyond the reach of many researchers, and the 

addition of new reference genomes will push hardware requirements even further. I constructed 

a MALT database containing the sum of complete, chromosome, and scaffold-level genome 

assemblies (47,696) available as of July of 2017, and found that this number of references was 

the limit of what I could include in the within 1,500 GB of RAM. As of writing this discussion, 

the NCBI Assembly has expanded, and now contains 74,061 complete, chromosome, and 

scaffold-level bacterial genome assemblies. Clearly, computational and algorithmic advances 

must be developed to harness the growing number and diversity of reference genomes, 

especially if we are to reduce the proportion of ‘microbial dark matter’ mentioned in the 

previous section. 

Due to computational constraints highlighted above, I could not include eukaryotic or 

viral genome assemblies, which, while only account for <1% of DNA sequences in ancient 

dental calculus [2,23] could potentially allow for the detection of additional health, dietary, and 

cultural information [2,23]. While I could have constructed a database containing only 

eukaryotic or viral genomes for such analysis, this is not recommended due to the potential for 

misclassification due to missing information and reference genome contamination. 

Misclassification of DNA sequences due to missing reference information is a problem that I 

identified in Chapter III. I found that by aligning simulated metagenomes that contained non-

coding regions against a reference database that did not have non-coding sequences resulted in 

misclassification of these non-coding regions to taxa not present in my simulated community. 

Such an issue is likely to yield false-positive assignments if aligning data against a reference 

database containing only eukaryotic or viral assemblies (R Eisenhofer, unpublished data). This 

issue is also why I chose to use competitive mapping [84] for the phylogenetic analysis of 

microbial genes and genomes in Chapters V and VI. Another source of misclassification is 

contaminated genome assemblies [85–87]. A 2014 study found that a complete Neisseria 

gonorrhoeae genome assembly contained portions of DNA derived from cow and sheep 

genomes [85]. Another study in 2016 identified 154 genome assemblies that contained 

contamination from human DNA [86]. Recently, it was found that for 245 eukaryotic pathogen 

genome assemblies, an average of 11% of each genome contained contamination or low-

complexity regions [87]. Therefore, a major issue moving forward is the identification and 

removal of contamination from genome assemblies prior to metagenomic classification, which 

could be accomplished using the tool developed in [87]. In summary, there are currently 

computational challenges that hinder the reconstruction of ancient microbial communities, and 
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future collaboration with computer scientists and bioinformaticists is needed to address these 

issues. 

 

3. Whole-genome analysis of ancient microorganisms 

In this thesis, I was the first to demonstrate that ancient microbial DNA in dental calculus could 

be used as a proxy for past human movements and interactions. Specifically, in Chapter V, I 

identified the bacterium Anaerolineaceae sp. oral taxon 439 as a viable candidate for 

phylogenetic analysis, being both highly prevalent and abundant and recapitulating prior 

evidence for the peopling of the Pacific. While this finding expands the scope of ancient dental 

calculus research, there is more work to be done in further validating and extending this method 

to other microbial species. A major limitation I faced in this thesis was the relatively shallow 

depth of sequencing per sample (~2 million reads). This limited my phylogenetic analysis to 

the seven most abundant and prevalent taxa identified in Chapter V, and the reduced the quality 

of the whole-genome alignments. Current whole-genome alignment methods were designed to 

work on high-depth and coverage modern data [88,89], and it is possible that the issues I 

observed with other microbial taxa are due to poorly aligned genomes resulting from 

insufficient sequencing coverage. Future simulations (using the techniques applied in Chapter 

III) are needed to empirically test the minimum depth of sequencing required for ancient dental 

calculus data to ensure high-quality whole-genome alignments. These simulations would also 

benefit from testing for the influence of DNA fragment length, cytosine deamination, and 

competitive mapping on the quality of such alignments, which could help inform potential 

improvements to alignment algorithms for use with ancient DNA. 

 Once the issue of insufficient sequencing coverage is resolved, research is needed to 

determine if some oral microorganisms act as better proxies for past human movements than 

others. There are many reasons that could potentially explain why I found that Anaerolineaceae 

sp. oral taxon 439 recapitulated past human movements in the Pacific, while the other species 

tested did not. Possible reasons for this include the biology of the microorganism tested, such 

as generation time, mutation rate, and/or degree of horizontal gene transfer. Different microbial 

species are known to have different generation times, ranging from minutes to weeks, and this 

variation corresponds to factors including metabolism, the availability of substrates, and 

temperature [90]. Faster generation times are expected to increase the frequency of mutations 

[91], and faster generation time has been empirically shown to increase the rate of neutral 

mutations [92]. Therefore, variation in the mutation rate between different species within dental 

plaque communities is likely, and future studies could identify microorganisms with different 

rates for use in different demographic scenarios. For example, a microorganism with a faster 
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mutation rate might be useful for inferring human movements that rapidly (e.g. settlement of 

East Polynesia), but may saturate and be ineffective at measuring deeper demographic events 

(e.g. out of Africa). Another factor that could violate clonal phylogenetic analysis of microbial 

genomes is horizontal gene transfer [93,94]. Some oral genera are known to have elevated rates 

of homologous recombination between related species (e.g. Streptococcus [95], Neisseria [96], 

and Porphyromonas [97]). Therefore, some oral taxa may be better suited for phylogenetic 

analysis than others, and future studies are needed to identify such microorganisms. One 

approach would be a time-series analysis of modern plaque microbiota from individuals, 

whereby individuals are sampled at multiple time points. Additionally, the degree of a 

microorganism’s rate of recombination could be estimated in current ancient dental calculus 

datasets through the use of existing analytical techniques [98,99]. Ultimately, the discovery of 

other phylogenetically-informative oral species will further improve our confidence in and the 

resolution of inferring past human demographic events from ancient dental calculus. To 

summarise, the era of genomic exploration into past human microbiota is here, and future 

improvements in analytical techniques will undoubtedly expand our understanding of past 

human demographic history and microbial evolution. 

 

4. Identifying confounders of microbial community analyses 

A goal of the bulk of current ancient dental calculus research is to study the composition of oral 

microbiota through time, making comparisons between different cultures and periods 

throughout human existence. However, there are factors, both known and unknown, that can 

confound such community-level analyses. For example, recent research on both modern and 

ancient populations has shown that both tooth type (e.g. molar, incisor) and tooth surface (e.g. 

buccal and lingual) influence microbial community composition [100,101]. These findings 

forced me to control for tooth type in Chapter V and likely reduced my power to detect 

differences between cultures in both Chapters V and VI. Future studies with a focus on 

characterising and comparing microbial composition need to account for these findings by 

preferentially sampling a specific tooth/surface. Ideally, the field should agree upon a specific 

tooth/surface to allow better comparisons between datasets as they become publicly available. 

Another factor that could confound comparisons of microbiota between cultures is the 

presence of oral disease, especially periodontal disease. Modern oral microbiome research has 

found that host periodontal disease state is a major driver of microbial composition [102–107]. 

Research prior to next-generation sequencing technology supported the idea that complexes of 

specific microbial species (e.g. the red complex) are signatures of periodontal disease [108]. 

While modern high-throughput studies have corroborated a shift in oral microbiota linked to 
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periodontal disease (e.g. increases in the abundance and diversity of anaerobic 

microorganisms), a reproducible, characteristic set of microorganisms present in disease has 

not been found. As such, it is increasingly recognised that periodontitis is a complex 

polymicrobial disease that can result from different community assemblages [109–112]. Such 

changes in community structure due to periodontal disease will make comparisons between 

cultures and time points difficult, as the disease phenotype could confound intra- and inter 

cultural comparisons. Additionally, disease-associated communities between different cultures 

or time points that share common trends (such as the increase in anaerobic 

membership/abundance) could hinder our ability to detect culture-specific microbiota. While 

future sampling efforts towards periodontally healthy samples could alleviate this issue, the 

classification of periodontal disease in ancient skulls is currently difficult due to taphonomic 

issues, such as post-mortem tooth loss, natural erosion, and skeletal preservation. Additionally, 

passive tooth eruption due to tooth wear can also lead to the loss of periodontal attachment over 

time — which is a primary paleopathological assessment of periodontal disease [113–115]. 

Furthermore, paleopathological assessments can only measure hard-tissue, and current modern 

medical diagnoses require the presence of soft gingival tissue, making accurate diagnoses 

difficult [116]. In addition, gingivitis could result in a disease-associated community structure 

without leaving evidence of periodontal disease [117–119]. Therefore, greater characterisation 

of microbial community trends pertaining to periodontal disease are needed in future modern 

and ancient studies, and given that different cultures likely possess distinct microbial 

assemblages, such assessments may be needed on a culture-by-culture basis.  

While there may not be microorganisms that are universal in periodontal disease, some 

species are highly correlated to the disease [120,121]. In Chapters V and VI, the abundance of 

the periodontal disease-associated archaeon Methanobrevibacter oralis was a major correlate 

with microbial community differences between samples. Methanobrevibacter oralis is a 

methane-producing anaerobe that is associated with periodontal disease [122,120]. A 2004 

study that examined 205 subgingival plaque samples from healthy and periodontally diseased 

individuals from the United States detected Methanobrevibacter oralis in 36% of diseased 

individuals and not in healthy controls [123]. Additionally, the severity of periodontitis 

correlated with increasing abundance of Methanobrevibacter oralis [123]. Another study of 

individuals from Japan corroborated these findings by only finding Methanobrevibacter oralis 

in periodontally diseased individuals and not in healthy controls [124]. These findings suggest 

that Methanobrevibacter oralis is potentially an important indicator of periodontal disease in 

some individuals. The absence of Methanobrevibacter oralis from some periodontally diseased 

individuals also lends support to the polymicrobial nature of periodontal disease that I 
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highlighted above. Additionally, the detection of Methanobrevibacter oralis in people from the 

United States and Japan suggests that this archaeon is present in diverse human populations. 

The widespread detection of Methanobrevibacter oralis in my dataset (prevalence of 75% from 

the 132 samples analysed in Chapters V and VI) suggest that this archaeon been with humans 

for a long time. This idea is supported by the detection of Methanobrevibacter oralis in a 

~50,000-year-old Neanderthal individuals [23], and it will be interesting to see how far back 

this association goes in future studies. Practically speaking, the presence and abundance of 

Methanobrevibacter oralis in my datasets may have hindered my ability to detect community 

differences both within and between cultures. For example, in Chapter VI I found that the 

proportion of Methanobrevibacter oralis was the major distinguishing factor between Edo-

period male and female individuals, and this appeared to be associated with a difference is 

periodontal health. Additionally, the higher prevalence and abundance of Methanobrevibacter 

oralis in Edo-period individuals likely hindered the identification of cultural-specific species 

differences between individuals within the Jomon and Edo-periods. Overall, my findings 

suggest that periodontal disease is a confounding factor for ancient microbiota comparisons 

both within and between cultures and that the presence of Methanobrevibacter oralis could be 

used as an indicator for past periodontal disease state. 

Another potentially confounding factor that deserves future research is taphonomic 

biases, or determining whether DNA from some microbial taxa preserves better through time. 

If this is the case, the differential ages between samples could be misinterpreted as increasing 

or decreasing the abundance of certain taxa. Potential causes for such a phenomenon include 

differences in microbial cell walls, metabolism, the presence of proteins protecting DNA (e.g. 

histones), and GC-content. It was originally hypothesised that differences in cell walls may 

influence DNA fragmentation and damage patterns observed in ancient samples [66]. Such an 

influence of cell wall was reported for ancient Mycobacterium [125], but not in subsequent 

studies [2,31], suggesting that factors other than cell walls may contribute to the differential 

preservation of microbial DNA through time. Future studies should test for microbial 

metabolism as a potential contributor to differential preservation, as differences in microbial 

metabolism (e.g. redox states, pH) could promote/inhibit hydrolytic depurination. In addition, 

the presence of proteins in direct contact with DNA could lead to the differential preservation 

of microbial DNA; for example, it has been demonstrated that the observed periodicity in 

ancient human DNA fragment lengths is due its association with histones [126]. While it is 

generally accepted that most bacteria lack histones, archaea are known to possess them [127–

129]. Given the high prevalence of the archaeon Methanobrevibacter oralis I observed in 

Chapters V and VI, it will be interesting to test if the presence of histones in 
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Methanobrevibacter oralis offer enhanced DNA preservation for this archaeon. Finally, 

differences in base composition between taxa, such as GC-content (e.g. 28% for 

Methanobrevibacter oralis vs. 73% for Actinomyces dentalis), will be another factor to test 

when comparing differential DNA preservation between microbial species through time. Future 

studies leveraging the growing number of ancient dental calculus samples with statistical 

modelling could identify and correct for such a bias.  

Key to identifying and robustly reporting the confounding factors highlighted above 

will be obtaining larger sample sizes for future studies. Modern microbiota research has found 

that inter-individual differences in plaque microbiota can be large [101,130]. Corroborating 

these studies, in chapter VI I found that inter-individual variability was high in Jomon and Edo 

period Japanese samples. Such inter-individual differences likely reduced my power to detect 

potentially culture-specific microbiota and may limit future attempts at identifying confounding 

factors of ancient microbiota compositions. Future studies leveraging larger sample sizes will 

be key in identifying confounding factors and allow robust classifications of culture-specific 

microbiota. To summarise, factors both known and unknown can confound the study of past 

microbial composition. Future research is needed to characterise and potentially correct for 

such factors so that false conclusions are not made. Larger sample sizes will also be needed to 

help identify these confounding factors, and improve our ability to identify culture-specific 

microbiota.  

 

5. Functional analysis of ancient microbial DNA 

Most modern microbiome studies to date have focused on classifying taxonomic composition. 

However, it is becoming increasingly recognised that the functions of these communities are 

critical for understanding their roles in human health and disease [131,132]. The currently 

available tools used to characterise functional information from metagenomic datasets were 

designed for use with modern DNA and involve the translation of nucleotide sequences into 

amino acid sequences for search against a protein database [133,134]. In Chapter III, I 

demonstrated that there are issues with using nucleotide-to-protein alignments for ancient 

DNA, as short (<60 bp) DNA sequences are unable to be aligned once converted into amino 

acids. Given the large range of mean DNA fragment lengths for samples identified in Chapters 

V and VI (42-137 bp), such functional analyses would be severely biased. For example, samples 

obtained from a site with poor DNA preservation could be interpreted lacking specific functions 

when compared to better-preserved samples. While one could control for this by using samples 

with longer, uniform mean fragment lengths, this would severely reduce the number of samples 

available for analysis and the power of the statistical tests used. Therefore, there is an urgent 



 

 286 

need for the development of new tools or adaptation of current ones to allow for the 

characterisation of functional information in paleomicrobiological studies. A promising 

direction will be the customisation of MALT to allow for the mapping of functional information 

to nucleotide-to-nucleotide alignments, which I demonstrated were robust to the characteristics 

of ancient DNA. 

Once we can analyse functional information using ancient DNA, consensus must be 

reached on how best to analyse such data. Estimates for the number of genes in the human 

microbiome are in the millions [135], and the ability to analyse and make sense of this data will 

be challenging. For example, statistical analysis of the differential abundance of 

genes/functions between samples may be difficult, as multiple test corrections such as the 

Bonferroni-correction become harder to reach significance as more comparisons are made. 

Furthermore, simulations are needed to determine the depth of sequencing required to assess 

the full functional diversity present in a sample. In addition to functions identified with ancient 

DNA, future improvements in palaeoproteomics [136,137] could be used alongside DNA 

functional analysis to corroborate and enhance findings. 

Further challenges to the functional analysis of ancient microbial DNA include the large 

proportion of ‘microbial dark matter’ present in ancient microbial datasets highlighted above, 

which will preclude the assignment of functions. Additionally, there are still many microbial 

genomes that have hypothetical proteins with uncharacterised functions [138]. Computational 

limitations such as those discussed earlier will also further hamper future functional analyses. 

Furthermore, identifying additional factors that bias community composition such as those 

discussed above are needed to ensure functional analyses are unbiased. Future work towards 

resolving these issues will allow for robust exploration of functional information in past 

microbial communities, which will be useful in determining how potential changes in these 

functions through human history may have contributed to oral health and disease.  

 

6. The paucity of comparative modern experiments and data 

Critical to our interpretations of ancient dental calculus data is a greater characterisation of the 

factors that influence oral microbiota in modern populations. The study of ancient dental 

calculus precludes manipulatable experiments for teasing apart such factors. Therefore, further 

modern dental plaque and calculus microbiota studies are needed to provide context to findings 

in ancient samples. Firstly, it will be important to further examine if there are notable 

differences between dental plaque and dental calculus microbiota, as dental plaque is easier to 

sample in modern individuals. Modern research suggests that plaque biofilm stage influences 

microbial composition [139]; therefore, it could be expected that dental calculus (which is 
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thought to form from late-stage biofilms [140]) may contain different microbial assemblages to 

early-stage dental plaque. Adler et al. compared modern dental plaque and calculus from the 

same tooth in six individuals and found small to moderate differences in community 

composition [66]. However, this study did not control for tooth type, tooth surface, or plaque 

biofilm stage, factors that have been recently found to influence plaque microbiota composition 

[100,101,139,141]. Future studies will larger sample sizes will allow for determination of 

whether dental plaque is a suitable proxy for dental calculus microbiota, which will inform 

experimental design for studies seeking to identify factors influencing plaque and calculus 

microbiota. 

Future modern research should also seek to determine the influence of host dietary 

intake on plaque microbiota composition. This is yet to be fully determined in a modern context 

and would enhance our ability to infer dietary signals in past human populations, as well as 

corroborate previous paleomicrobiological studies on the topic [2,66]. The fermentation of 

dietary sugars by bacterial species (especially Streptococci) is a known risk factor for dental 

caries [142]. These dietary sugars give microorganisms able to exploit them an advantage over 

other members of the community both nutritionally, and by changing the chemistry of the local 

environment (i.e. reducing pH) [143]. However, such changes in plaque biofilms typically 

occur on the occlusal surfaces of teeth [144] which typically do not form calculus due to 

mastication- or dental hygiene-induced abrasion, and are therefore not sampled in ancient 

specimens. To my knowledge, the only modern study using dental plaque to test if host dietary 

intake influences microbiota composition is a recent study by Keller et al., which found that 

different levels of sugar intake had minimal influence on buccal and interdental plaque 

microbiota composition [145]. Future experiments testing for the influence of diet on plaque 

microbiota should also take tooth type and surface into account, as differential salivary flow 

rates for different teeth/surfaces could impact plaque microbiota response to dietary intake 

[101,146,147].  

While there is currently little support for host diet influencing plaque microbiota in 

modern studies, palaeomicrobiological studies have found evidence [2,66]. Adler et al. 

analysed 34 ancient dental calculus samples from different geographic sites and temporal 

periods in Europe. They found support for putatively dietary induced shifts in oral microbiota 

from pre-agriculture to agriculture times, and from medieval times to the Industrial Revolution. 

However, this study used amplification of the 16S rRNA gene to reconstruct ancient microbial 

communities, which was later demonstrated to be severely biased by the characteristics of 

ancient DNA [2,31] and could confound this conclusion. Weyrich et al. used the less biased 

shotgun metagenomic sequencing to taxonomically classify 19 ancient dental calculus samples 
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from different geographies and time periods (2 African gatherers, 2 African pastoralists, 2 

European hunter-gatherers, 7 European farmers, 2 Europeans from the Industrial Revolution, 3 

Neanderthals, and 1 wild chimpanzee). They identified three distinct groupings of samples by 

microbial composition relating to host dietary intake. However, they used nucleotide-to-protein 

alignments for taxonomic reconstruction which cannot align DNA fragments shorter than 60 

bp (Chapter III), which, coupled with the range of different mean fragment lengths in the study, 

could potentially bias these groupings. Further reanalysis of this dataset with nucleotide-to-

nucleotide alignments will be needed to confirm these host diet-induced groupings of ancient 

microbial communities.  

 Recent studies have found that host genetics can influence oral microbiota composition 

[148,149] (though see [150]). Future modern research characterising host genetic influences—

especially for plaque microbiota—will be important to consider for interpreting changes in 

ancient dental calculus datasets. Furthermore, future ancient studies pairing host/microbiota 

samples from the same individuals could be used to directly test these potential influences and 

how they have changed throughout human history. In addition to teasing apart factors that 

influence oral microbiota composition, modern studies are desperately needed to act as points 

of reference for how these microbial communities have changed through time. Currently, the 

bulk of oral microbiome research is undertaken in the United States and Europe [69,70], and 

comparisons between these data and the data I generated in Chapters V and VI are not directly 

comparable for observing such changes. To address this issue, further modern sampling 

focusing on greater geographical and cultural representation is needed. This will potentially 

have the added benefit of improving the characterisation of ‘microbial dark matter’ highlighted 

above. Further extensive modern sampling could also tease apart global trends in plaque 

microbiota such as the identification of keystone species [151], or similarities/dissimilarities in 

dysbiotic microbial consortia. The history and inception of such global trends could then be 

tested using the temporal reach of ancient dental calculus.  

 Overall, the current paucity of comparative modern plaque microbiota studies limits our 

ability to interpret ancient dental calculus data. Future modern experiments and greater global 

sampling will enhance our ability to use ancient dental calculus data to its potential.  

 

Conclusion 
Ancient DNA analysis of past human microbiota in dental calculus has the potential to shape 

our understanding of how hosts and oral microbiota have evolved through time. Such findings 

may lead to improved medical insights and therapies for treating modern oral diseases and could 
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enhance our knowledge of human history and culture. Through the development, assessment, 

and improvement of analytical techniques, this thesis expands the scope of what we can learn 

from ancient microbial DNA. Additionally, this thesis provides 132 new and authenticated 

ancient dental calculus samples that have added to our understanding of global oral microbiota 

diversity and will act as a resource for further studies. Furthermore, by exploring and 

characterising pitfalls inherent in low-biomass and ancient DNA research, this thesis provides 

guidelines for researchers to improve the quality and reproducibility of future modern and 

ancient microbiome research.  
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Isolating Viable Ancient Bacteria: What You Put In Is What You
Get Out

Raphael Eisenhofer, Alan Cooper, Laura S. Weyrich

Australian Centre for Ancient DNA, University of Adelaide, Adelaide, Australia

In the recent publication “Draft Genome Sequence of Enterococ-
cus faecium Strain 58m, Isolated from Intestinal Tract Content

of a Woolly Mammoth, Mammuthus primigenius” in Genome An-
nouncements (1), Goncharov et al. claim to have isolated and
grown in pure culture a 28,000-year-old Enterococcus faecium
strain. However, the authors ignored a breadth of literature about
the authentication of ancient DNA, failed to adhere to recom-
mended guidelines (2), and did not provide the appropriate ex-
perimental controls and analyses required to substantiate such a
claim. Here, we present a subsequent reanalysis of the Goncharov
et al. isolate and demonstrate by multilocus sequence typing
(MLST) that this strain likely represents a modern contaminant.

Previous efforts aimed at isolating viable ancient bacteria have
been consistently controversial (3). Viable bacteria have been re-
ported from a 250 million-year-old salt crystal (4) and 25- to 40
million-year-old amber (5). These unlikely findings have not been
independently replicated, and failed molecular phylogenetic tests
(6–8). In light of such dubious claims, a set of rigorous authenti-
cation criteria have been proposed (2). These include evolutionary
rates tests, whereby phylogenetic comparisons of the ancient or-
ganism with its modern counterparts are expected to show sub-
stantial genetic differences, accumulated through time.

In the Goncharov et al. study, the authors admit that E. faecium is
a common member of the human gut community and can be found
from numerous environmental sources, yet strangely they did noth-
ing to prevent or control for modern contamination at various stages
of their experiment. Modern contaminants can enter during the sam-
pling procedure (2) or during laboratory analysis (i.e., culturing or
DNA sequencing). Contamination during laboratory analysis is es-
pecially probable when the isolate is cultured using broad-spectrum
media (2), as used by the authors. Clearly, the authors should have
considered these factors and demonstrated or minimally investigated
to determine that their isolate did not represent a modern human or
environmental contaminant, something they failed to do.

To test the authenticity of the authors’ claims, we queried the
genome assembly of the “ancient” E. faecium isolate against pub-
lished sequences in the E. faecium MLST database (http://pubmlst
.org/efaecium/), which contains !2,800 modern E. faecium iso-
lates. The MLST sequence from the putatively ancient E. faecium
isolate matches the previously identified sequence type 32 (ST32)
with 100% sequence homology; this is unexpected if the genome is
ancient. Modern isolates of ST32 are known from the Russian
Federation, where this study took place. If the bacterium was an
ancient resident of the mammoth gut, it should not be identical to
a modern human isolate, given that many gut microorganisms
coevolved with their hosts and that humans and mammoths di-

verged over 100 million years ago (9). The lack of even a single
nucleotide difference within seven genetic loci, coupled with the
fact that this bacterium is commonly found in the modern human
gut community and other environmental sources, is damning ev-
idence that the authors’ isolate represents a modern contaminant.

The authors’ “ancient” E. faecium isolate is highly similar to
modern human isolates and is therefore almost certainly not an
ancient mammoth strain.
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Santiago-Rodriguez et al. (2016) attempt to characterize the gut
microbiome from pre-Columbian Andean mummies. However,
they fail to properly use basic standards required for the authen-
tication of ancient bacterial DNA, compromising the authentic-
ity of their results and setting an unacceptable standard for fu-
ture work.

Authentic ancient DNA research is extremely difficult. This
is especially true when studying ancient microorganisms, as
their damaged and fragmented DNA is in low abundance rel-
ative to modern microorganisms which coat virtually every
surface. Reagent and laboratory DNA contamination has been
demonstrated to routinely impact microbiome analyses (Salter
et al. 2014; Glassing et al. 2016; Lauder et al. 2016), and is espe-
cially problematic for samples with low biomass or endogenous
DNA—such as ancient microbial samples. To identify and con-
trol for such contamination, multiple extraction blank controls
and PCR-negatives need to be performed and sequenced, and
any detected taxa should be subtracted from the sample results.
Additionally, the lattermust be screened against the growing list
of common laboratory and reagent contaminants (Salter et al.
2014; Glassing et al.2016; Lauder et al.2016). Santiago-Rodriguez
et al. (2016) fail to follow such precautions, improperly use a
method of ancient DNA authentication (MapDamage, discussed
below) and apply flawed methodologies, invalidating their re-
sults and potentially encouraging further problematic analyses.

Issues with 16S rRNA methodology

The authors state that their extraction controls did not show
bands on agarose gels (with no supporting images in SI); how-
ever, this ignores the fact that bacterial contaminants are of-

ten present at levels not visible on relatively insensitive agarose
gels. The sensitivity of 16S rRNA PCR (especially after 30 cycles
of amplification) will nearly always result in the detection of
contaminants, even if below visible levels. Such controls must
be sequenced in the same way as the biological samples. The
absence of sequenced extraction blank and negative PCR con-
trols is a critical oversight given that the reported results in-
clude common contaminants of laboratory environments and
reagents (Salter et al.2014; Glassing et al.2016; Lauder et al.2016).
These include: Bacillaceae Bradyrhizobiacea, Clostridiaceae, Sphin-
gobacteriaceae, Streptococcus. To authenticate their results, the au-
thors applied SourceTracker analysis to determine whether por-
tions of the microbial community originate from the gut or from
other sources, and conclude: ‘Themajority of the 16S rRNA gene
sequences in mummy FI3 matched modern gut microbiomes,
and those of mummies FI9 and FI12 did not match any of the
sources included in the analysis, suggesting that no modern
sources of contamination contributed to the findings presented
in our study’. This is clearly an unjustified conclusion, as only
four sources were tested (human skin, gut, oral and soil sam-
ples), and therefore cannot account for other common sources
of modern contamination (e.g. laboratory, reagents, air). An-
other critical issue is the use of 16S ribosomal RNA sequencing
to describe these samples, despite the recent recommendation
against using this method to reconstruct ancient microbiomes
due to known taphonomic biases (Ziesemer et al. 2015). The au-
thors state that the V4 region of the 16S rRNA gene is fine for
ancient DNA as it is ‘within the recommended length for an-
cient DNA analyses’. This is clearly incorrect given that the V4
region is ∼290bp, and that the mean length of authentic an-
cient DNA typically ranges between 50 and 160 bp (Knapp and
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Figure 1. (a) Characteristic base substitution pattern of ancient DNA: increase of C→T and G→A substitutions at the 5′ and 3′ regions of the sequencedDNA, respectively
(figure taken from Ziesemer et al. 2015). (b) Santiago-Rodriguez et al.’s MapDamage plot, showing no signs of substitutions at the DNA termini.

Hofreiter 2010). Targeting 16S rRNAmarkers that are longer than
the expected fragment size can preferentially amplify modern
contaminant sequences, increasing the representation of con-
taminant taxa over endogenous ones.

Issues with shotgun sequencing methodology

Again, the authors failed to control for modern DNA contam-
ination by not making libraries of and sequencing their ex-
traction blank controls. The authors then attempt to validate
some of their ‘ancient’ microorganisms by performing Map-
Damage analyses (Ginolhac et al. 2011)—a standard in the field
of ancient DNA. The authors state ‘MapDamage analyses were
performed with the contigs as described previously’ citing
the original MapDamage paper but providing no details of
how the analyses were performed, such as what reference se-
quences were used. MapDamage requires DNA reads, a refer-
ence genome, and adequate coverage in order to quantify the
C→T and G→A substitutions typical of ancient DNA damage.
WhenMapDamage is used correctly on ancient DNA, an increase
of C→T and G→A substitutions is observed at the 5′ and 3′ re-
gions, respectively, of the sequenced DNA fragment (Fig. 1a).
The authors do not observe such pattern, likely due to improper
use of the software, or the fact that the species of interest are
modern contaminants (Fig. 1b). The authors admit that no such
damage patterns were detected in their metagenomes, but jus-
tify this by asserting that MapDamage is not useful in ancient
microbiome studies. They incorrectly claim that this was pre-
viously identified by Ziesemer et al. (2015), when the latter do
not state this and actually used MapDamage to authenticate
ancient microbial DNA (Ziesemer et al. 2015). It appears that
neither the authors nor reviewers understand the basis of us-
ing DNA damage to authenticate ancient DNA, and the lack of

such damage patterns severely undermines the credibility of the
results.

Conclusions

This is not the first time that the authors have failed to properly
control an ancient DNA study. A contentious claim of the isola-
tion of luxS from 25- to 40-million-year-old bacteria (Santiago-
Rodriguez et al. 2014) also failed to provide sufficient controls
to substantiate such a claim (Weyrich et al. 2014). Proper an-
cient DNAauthentication is essential to the integrity of this field.
Within the broader field of ancient DNA, a series of high-profile
publications from the 1990’s (of which a co-author of this study
was part of) failed to provide adequate controls or authentica-
tion, and are now widely discredited. These studies damaged
the credibility of the field, and wasted valuable time andmoney.
We hope that history does not continue to repeat itself, and that
editors, reviewers and researchers learn from this example to
prevent this from happening again.
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Santiago-Rodriguez et al. [1] report on the putative gut microbiome and resistome of Inca and
Italian mummies, and find that Italian mummies exhibit higher bacterial diversity compared to the Inca
mummies. However, contaminant taxa in their negative control account for most of the biological signal
observed. In addition, they fail to properly apply field-standard ancient DNA authentication techniques
to their data and self-plagiarize a previously published figure. Poor standards in paleomicrobiological
research are currently plaguing the field, despite numerous warnings [2–4] and reviews [5–8] on
best practice.

DNA contamination from museums, curators, scientists, soil, and even the laboratory can drive
signals present in modern and ancient metagenomics data sets [3,7,9–16]. Therefore, explicit rules
and standards to avoid falsely reporting contaminants in metagenomics datasets have been put
forth [3,4,6–8,17]. These standards typically include sampling and extraction blank controls (e.g., tubes
processed without the addition of biological samples) to monitor contaminant DNA and correctly
attribute its contribution in subsequent analyses. In the study by Santiago-Rodriquez et al. [1],
a non-template or blank control was included in their 16S analysis. However, the authors
failed to explore the contaminant species within this control during their analysis of differences
between Incan and Italian mummies. We explored the taxa present within their blank control
(Supplementary_Dataset_2.txt from their publication) and compared it to those identified within
the mummies. We found that laboratory contaminants present within their blank control are driving
the differences between Incan and Italian mummies (Figure 1). For example, the five most abundant
taxa identified in the Italian mummies (Sphingomonadales, Pseudomonadales, Rhizobiales, Bacillales,
and Clostridiales species) are all found in the blank control. It is also worth noting that these
taxa have previously been identified as common laboratory or reagent contaminants in numerous
studies [3,14,15]. This strongly suggests that the cultural differences reported by the authors are likely
the result of laboratory contamination and calls into question the validity of their subsequent analyses.
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Figure 1. An altered reproduction of Figure 1A from Santiago-Rodriguez et al. [1] where taxa identified 
in the 16S rRNA blank control are identified in the mummy samples by red stars. The highest-abundance 
taxa identified in the 16S rRNA data are also present in the 16S rRNA blank control. 

The authors then attempt to use MapDamage to assess the authenticity of their shotgun 
metagenomic ancient DNA; this tool is widely used within the paleomicrobiological field for detecting 
patterns of cytosine deamination that are characteristic of authentic ancient DNA [18]. Critically, the 
authors did not provide details as to how they ran the analysis; MapDamage calculates the deamination 
rate by comparing a reference genome to the mapped target sequences present in a given biological 
sample (i.e., the reference and target species are typically reported for the analysis). Despite this lack of 
information, the MapDamage plot provided by the authors in their supplementary information (Figure 
2A) is identical to one in a previous publication by the team [4] (Figure 2B), suggesting that the authors 
self-plagiarized this figure and did not in fact run the analysis.  

Figure 1. An altered reproduction of Figure 1A from Santiago-Rodriguez et al. [1] where taxa identified
in the 16S rRNA blank control are identified in the mummy samples by red stars. The highest-abundance
taxa identified in the 16S rRNA data are also present in the 16S rRNA blank control.

The authors then attempt to use MapDamage to assess the authenticity of their shotgun
metagenomic ancient DNA; this tool is widely used within the paleomicrobiological field for detecting
patterns of cytosine deamination that are characteristic of authentic ancient DNA [18]. Critically,
the authors did not provide details as to how they ran the analysis; MapDamage calculates the
deamination rate by comparing a reference genome to the mapped target sequences present in
a given biological sample (i.e., the reference and target species are typically reported for the analysis).
Despite this lack of information, the MapDamage plot provided by the authors in their supplementary
information (Figure 2A) is identical to one in a previous publication by the team [4] (Figure 2B),
suggesting that the authors self-plagiarized this figure and did not in fact run the analysis.
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Figure 2. (A) MapDamage plot provided by the authors in their latest paper [1]. (B) MapDamage
plot provided by authors in their previous publication [19]. Both plots are identical, and both show
the absence of damage characteristic of authentic ancient DNA. (C) MapDamage plot obtained by
using reads aligned from Italian mummy NASD14 from Santiago-Rodriquez et al. [1] against the
Sphingomonas sp. DC-6 genome (ASM71517v2). (D) Same as (C), except using Vibrio parahaemolyticus
(ASM19609v1), a taxon not found in the authors’ negative control. The lack of nucleotide misincorporation
is indicative of modern DNA.

Despite this, the figure provided also does not support the authenticity of ancient DNA, as the
expected C to T at the 50 and G to A substitutions at 30 ends of the DNA fragments are not present.
The authors defend their lack of authentic ancient DNA signal by stating: “Damage-based ancient
DNA authentication tools, such as mapDamage, may be incompatible with ancient microbiome
studies unless a high sequencing coverage is reached”. However, simulations and empirical data
show that only a few thousand sequences from the genome of interest are required to assess the
presence of cytosine deamination [6], and MapDamage has been successfully applied in several
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paleomicrobiological studies [20–23]. To investigate if MapDamage could be appropriately applied to
the Santiago-Rodriquez et al. data set [1], we downloaded the metagenomic reads from a mummy
present within their study (NASD14) and identified species present in the sample using MALT
and MEGAN [24,25] against a reference database containing >50-thousand bacterial and archaeal
genomes obtained from NCBI Assembly. Similar to the authors’ shotgun results, we identified
⇡1.2 million reads assigned to Sphingomonas sp. DC-6 (Sphingomonadales), and 33,730 reads assigned
to Vibrio parahaemolyticus (Vibrionales). We then mapped the metagenomic reads against these reference
genomes with the BWA-backtrack (ALN) aligner [26]. The outputs were converted into SAM files
then used as input for MapDamage, comparing the “ancient” Sphingomonas and Vibrio species to their
respective reference genome. The resulting plots (Figure 2C,D) clearly illustrate no characteristic
ancient DNA damage and are as expected for modern, likely contaminant, DNA. Given that
Sphingomonas is one of the most abundant taxa in their data and is a known contaminant species,
our reanalysis further strengthens the likelihood that contaminant DNA is driving their findings.

To conclude, a reanalysis of Santiago-Rodriquez et al.’s [1] findings strongly suggest that
the observed signal is due to laboratory contamination of modern bacterial species. The authors
also failed to compare their data to their extraction blanks controls, did not include shotgun
metagenomic extraction blanks, and did not authenticate their ancient DNA using MapDamage.
Paleomicrobiology is a new and rapidly growing field of research, with little room for plagiarized
figures and blatant disregard for best-practice methods. In light of these findings, we suggest either
heavy corrections or retraction of the article to prevent further erosion of the scientific integrity of
paleomicrobiological research.

Author Contributions: R.E. analyzed the data, created the figures, and wrote the manuscript. L.S.W. provided
feedback on the manuscript.

Conflicts of Interest: The authors work in the field of paleomicrobiology and want science published in this space
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