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Abstract

This thesis develops a method for examining the role peer effects play in treatment

effect models. We focus on the scenario where peer effects are important in deter-

mining the treatment decision. Identification of both the treatment decision and the

associated marginal treatment effect is explored. In particular, exogenous and en-

dogenous peer effects are used as instruments to identify marginal treatment effects.

A Bayesian estimation procedure is presented, utilising a network formation model to

adjust for unobserved peer effects. The performance of the model and the estimation

procedure is analysed through a Monte Carlo experiment. The proposed method is

then applied to estimate the effect of high school peers on the decision to attend

college, and the return to education associated with such a decision using the Add

Health data-set. Both the Monte Carlo experiment and the empirical application

underscore the importance of accounting for the presence of peer effects in treatment

effects models, and allows us to consider policy implications of peer effects.
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Chapter 1

Marginal Returns to Treatment and

Social Networks

1 Introduction

We live and relate in an increasingly interconnected world. The social networks

we associate in are ever expanding with the advent of globalisation and social me-

dia. Decisions and outcomes are not isolated to an individual, but are spread across

networks and influenced by peers. Peer effects present themselves in a variety of

contexts ranging from alcohol use (Kremer and Levy, 2008; Fletcher, 2012a) and

delinquency (Patacchini and Zenou, 2012) to loan behaviour (Karlan et al., 2005)

and obesity (Christakis and Fowler, 2007). Peer influence can act directly through

conformism effects; as individual decision is swayed by the decisions of friends, or

indirectly through the influence of personality and individual characteristics. Eco-

nomics has begun to recognise the importance social ties play in the outcomes of

individuals and the implications for policy. The influence of networks implies the

existence of a social multiplier (Glaeser et al., 2003), such that the decision of one

individual or the effect of policy on that individual is dispersed across their network.

As a result, the net effect of policy becomes greater than the direct effect usually

intended by policy makers, particularly if the individual is central in their network.

Peer effects are prominent in both the binary decisions made by individuals and

observable continuous outcomes. In the education context, peer effects have been

observed in the decision of an individual to attend college, their choice of major

(Bifulco et al., 2011; Fletcher, 2013, 2012b; Wu, 2015), and resulting wages (Barbone

and Dolton, 2015; Kramarz and Skans, 2014; Black et al., 2013). The structure of

an econometric treatment effects model allows us to measure the returns to binary
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treatment decisions. While peer influence can be expected to play a critical role

in both binary decisions and observed outcomes, little research has focused on the

incorporation of networks within a treatment framework. This thesis develops a

model where peer effects are influential in shaping a binary treatment decision and,

indirectly, observed outcomes and returns to treatment. Manski (2013) examines the

identification of a treatment model where social interactions are important in the

treatment response, i.e., when the treatment of peers affects individual’s outcomes

(e.g., immunisation). This thesis, in contrast, focuses on the role of social interactions

on the treatment itself and the subsequent impact of the treatment on the observed

outcome. We study the identification of such a model and quantify the role peer

effects play in changes to policy.

The model is applied to analyse the critical decision of high school students to

enter college. A common treatment model examines the effect of the binary decision

to attend college on future wages (Carneiro et al., 2011). Returns to education should

optimally be (and commonly are) considered in the decision to attend college. As

a result, heterogeneous returns to education are expected, i.e. those who do attend

college have higher returns, while those who do not attend college would not benefit

greatly from doing so. The treatment effects model can be used to identify the effect

of treatment on the outcome equation, accounting for heterogeneity in the returns

to treatment.

Economic network literature has considered the effect of peers on both the deci-

sion to attend college and labour market outcomes. We bridge these two settings to

analyse the interaction between peer effects and the returns to education.

This paper draws from both the treatment effects and peer effects literature to

identify the effect of peers on the marginal returns to a binary decision. In particular,

we consider the interaction between peer effect models, such as the one proposed by

Goldsmith-Pinkham and Imbens (2013), and the treatment effects model. This is far

from straightforward due to the numerous interrelated avenues through which peer

effects operate.

In his 1993 pioneering research on the identification of peer effects, Manski ex-
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plores the issue of identification in light of the “reflection problem”. The “reflection

problem” refers to the difficulty in isolating two types of peer effect; endogenous and

exogenous effects, which are often strongly correlated.

Endogenous social effects refer to the direct influence of an individual’s outcomes

or decisions on their peers. The decision of one individual often directs the decisions

made by the friends of that individual. Consider a high school student who decides

to take up smoking. The friends of that student have a much higher probability

of smoking than individuals who have no friends that smoke (Mercken et al., 2010;

Christakis and Fowler, 2008).

The second effect, exogenous social effects (or contextual effects), describes the

influence of an individual’s characteristics on his peers’ outcomes. For example, if an

individual is proactive and hard working, he will likely have influence on the decisions

of his friends, particularly in his college decision. Taking another example, Bifulco

et al. (2014) show that having peers with college educated mothers leads to a higher

probability of individuals attending college themselves.

A third non-peer effect, the correlated effect, often confounds identification of the

exogenous and endogenous effects. Correlated effects refer to common factors that

influence the outcomes of all individuals in the same peer group. Moffitt et al. (2001)

segregates correlated effects into homophily and environmental effects. Individuals

are prone to homophily, where friendships are chosen based on similarity in char-

acteristics or personality. These characteristics, like social extroversion or athletic

ability, can be difficult to observe, but lead to similar observed outcomes between

peers. Furthermore, individuals in common environments (high schools, workplaces)

face similar surroundings and influences. Students in the same high school will ex-

perience similarities in teaching style, school resources and socio-economic status,

which lead to similarities in decisions and outcomes. The difficulty lies in determin-

ing the reason the decisions and outcomes of these peers look similar. Is it truly a

peer effect, or is it simply because they face a common environment, or chose their

friendship groups based on similarity in characteristics?

This paper serves as a preliminary investigation of the flexibility of the peer effect
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model and its components and how they interact with existing econometric models.

The model presented in this paper draws on the model in Goldsmith-Pinkham and

Imbens (2013) in the network estimation literature and Carneiro et al. (2011) in the

treatment effects literature. We consider the response of the marginal treatment ef-

fect (MTE) and the marginal policy relevant treatment effect (MPRTE), as presented

in Carneiro et al. (2011), to the presence of peer effects. These measures allow us to

control for heterogeneity in returns and are more robust than traditional measures

(e.g. average treatment effect, treatment effect for the treated). The MTE describes

the effect of treatment for individuals who are at the margin i.e. are indifferent to

receiving treatment. The MPRTE, proposed by Carneiro, Heckman, and Vytlacil

(2010), measures the returns to treatment for those induced into treatment as the

result of a marginal change in policy. Estimation of the MPRTE in this setting

enables us to consider the effect of a change in policy on the returns to a binary

decision, when peer effects are present.

We start by outlining the theoretical model, before presenting identification re-

sults and proposing a Bayesian estimation method. The model is then tested using

simulated data in a Monte Carlo experiment. An application studies the educational

attainment model using the Add-Health dataset, which contains friendship network

data for high school students. This application underscores the importance of con-

trolling for peer effects when estimating the returns to education.

Throughout our analysis, the policy effects on the returns to treatment will also

be considered. In particular, we investigate the implications of changes in peer effects,

network structures and policy initiatives on the returns to treatment.

2 Relevant Literature

Comprehensive network data has only recently begun to emerge due to the complex-

ities in accurately describing and measuring networks. Accompanying several key

datasets, the research on networks and peer effects has expanded in recent years.

Jackson (2013); Jackson et al. (2017) identify several of the challenges many re-
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searchers encounter when measuring peer effects, namely, identification, endogenous

networks and homophily, computation, measurement error and misspecification. In

particular, the identification of peer effects has proven to be a difficult prospect.

Manski’s (1993) infamous “reflection problem” describes the difficulty in sepa-

rately identifying endogenous and exogenous peer effects. When an individual in-

teracts with groups, he is both influenced by and influential in his peer’s groups.

As such the expected outcomes of a peer group (endogenous effects) and the mean

characteristics of the group (exogenous effects) cannot be easily separated.

Traditionally, the peer effects literature has assumed that individuals interact in

groups, with each member having an equal influence on all others in the group. Under

such conditions identification is difficult (Manski, 1993; Moffitt et al., 2001). Lee

(2007) established identification under the condition that the individual is excluded

from their own peer group and peer groups have at least three distinct sizes. Relaxing

the peer group assumption, the structure and non-linearity of social networks is a

useful tool for identification. In the notable paper of Bramoullé, Djebbari, and Fortin

(2009), generalising the models of Manski (1993), Moffitt et al. (2001) and Lee (2007),

the structure of an individual’s network is exploited to allow identification, using

an instrumental variables approach. Consistent estimation, however, can only be

achieved under the exogeneity of the network. This exogeneity assumption does not

hold in the presence of correlated effects; characteristics which are correlated with

both the choice of peers and the outcome variable.

Lee (2007), as in Lin (2010), Bramoullé et al. (2009), addresses the correlated

effect empirically by introducing an unobserved network fixed effect variable into the

model. This approach, while an improvement on existing measures, does not account

for within-network variation which may influence the outcome. As an example, an

unobserved personality characteristic such as social extroversion may influence not

only who an individual becomes friends with, but also whether they attend col-

lege, their place of employment and resulting wage. If this effect is present and not

accounted for, the network will be endogenous, causing bias in the peer effect esti-

mates. Goldsmith-Pinkham and Imbens (2013) propose a network formation model
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to control for this network endogeneity. The network formation model incorporates

unobserved individual characteristics which influence the likelihood of friendship for-

mation and observed outcomes. The model relies on asymptotic network theory to

achieve identification. Hseih and Lee (2016) apply the model of Goldsmith-Pinkham

and Imbens, relaxing some of their identifying assumptions.

The network formation literature holds promise for greater accuracy in the anal-

ysis of peer effects. Jackson et al. (2017) critiques the network formation model of

Goldsmith-Pinkham and Imbens, while confirming the general theoretic approach.

The link-by-link model of Goldsmith-Pinkham and Imbens is, in general, too sim-

plistic to accurately reflect the interconnected network formation process. We use

the original network formation model proposed by Goldsmith-Pinkham and Imbens,

though alternate network formation approaches could also be integrated. Other sim-

pler approaches have been taken, particularly in the applied literature (Patacchini

et al., 2011; Kremer and Levy, 2008; Patacchini and Zenou, 2012), but generally fail

to adequately control for the endogeneity issue. De Paula (2016) and Blume et al.

(2011) offer a detailed overview of the literature concerning peer effect identification.

The linear in means model used in this paper can be derived from the utility

theory setup of Blume et al. (2011). However, other theory approaches can be taken,

specifically integrating the formation of friendships. Badev (2013) proposes one such

network approach, deriving the Nash equilibrium of a friendship network to identify

and decompose peer effects, while Boucher (2015) focuses heavily on the homophily

aspects of friendships. Calvó-Armengol et al. (2009) combine the existing network

formation model framework with network centrality concepts to achieve identification

of peer and network effects.

Introducing non-linearities tends to complicate estimation in the peer effect model

(Blume et al., 2011). In this paper we will examine the role of peers in a binary

decision. This nonlinearity is explored in Soetevent and Kooreman (2007) using the

standard utility theory set-up to derive the reduced form equations and equilibrium

conditions. Similarly Brock and Durlauf (2001), and Blume et al. (2011) present

alternate game theoretic approaches in a group interaction context. Lee, Li, and
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Lin (2014) extend the approach of Brock and Durlauf (2001) from peer groups to

networks. The binary model is applied in several empirical papers using a simple

linear probability model setup (Patacchini and Arduini, 2016; Fletcher, 2012a). In

most binary settings, Blume et al. (2011) and Blume et al. (2015) assert that the

reflection problem is no longer pertinent.

Apart from these, limited research has been conducted on the estimation of an

econometric binary peer model. The likelihood function of such a model requires

an n-dimensional probit likelihood, which is computationally difficult to evaluate.

The problem has, however, been considered in the spatial literature using the spatial

autoregressive model (SAR). The estimation in this paper makes use of the spatial

literature surrounding the estimation of a probit/logit SAR model. A comparison of

the techniques to estimate such a model can be found in Calabrese and Elkink (2014).

The method used in this paper follows that presented in LeSage (2000) and updated

in LeSage and Pace (2009), who use a Bayesian estimation approach. This formalises

and extends the original method of Chib (1992) and Albert and Chib (1993). The

Bayesian approach tends to outperform other estimation methods, particularly under

low spatial autocorrelation. The Bayesian approach can also be adapted to intersect

with the Bayesian estimation of the Goldsmith-Pinkham and Imbens (2013) model.

Therefore, we work to combine the estimation methods of Goldsmith-Pinkham

and Imbens, and Lesage to estimate a binary peer effects model in the first stage. In

the second stage we follow Carneiro et al. (2011) in estimating the marginal returns

to a binary decision.

The treatment model presented by Carneiro et al. (2011) estimates the heteroge-

neous returns to treatment, in the context of education, using the marginal treatment

effect (MTE) measure. The MTE represents the effect of treatment for those who

are indifferent to treatment (i.e. individuals who are at the margin). Björklund and

Moffitt (1987) first proposed the MTE as an alternate measure to traditional estima-

tors such as the average treatment effect (ATE) and average treatment effect of the

treated (ATET) which do not account for heterogeneous treatment effects. Carneiro

et al. (2011) use the MTE to consider the true effect of policy changes, deriving
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the marginal policy relevant treatment effect (MPRTE) first developed by Carneiro

et al. (2010). The MPRTE measures the returns to treatment for those induced into

treatment by a marginal change in policy.

Carneiro et al. (2011) propose both a parametric and non-parametric estimation

of these marginal effects, while Carneiro et al. (2010) examine the properties of these

estimates. The instrumental variables method used to examine policy effects was

first discussed in Heckman and Vytlacil (2007b, 1999, 2005).

3 Model

Let
{

(yi, Xi, Zi, Si) : 1 ≤ i ≤ N
}

be an i.i.d. sample of N observations, where

yi is the i-th observation on an outcome variable, Xi is the i-th observation on

K1 covariates (possibly endogenous), and Zi is a K2-dimensional vector of the i-th

observations on exogenous covariates (instruments). Let S be a treatment variable,

i.e., Si = 1 if individual i is included in the treatment and Si = 0 otherwise. We

assume that the treatment decision is latent, i.e., we observed Si = 1 if S∗i > 0 and

Si = 0 if S∗i ≤ 0, where S∗ represents the net individual benefit of receiving treatment,

which depends on observed exogenous covariates Z and unobserved variables v.

Our goal is to measure the marginal returns to treatment. To achieve this, we

consider the framework of Carneiro et al. (2011) that generalises Roy (1958) and

Quandt (1958, 1972). The model consists of potential outcome equations represented

by

yj = µj(X) + uj, j = 0, 1, (3.1)

where µj(x) = E[yj|X = x]. y1 describes the outcomes for individuals in the treat-

ment group and y0 the outcomes for those not in the treatment group. The observed
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outcome is then given by:

y =: Sy1 + (1− S)y0 (3.2)

= µ0(X) + [µ1(X)− µ0(X)]S + (u1 − u0)S + u0.

Under this model, the return to treatment is defined as y1 − y0 = µ1(X)− µ0(X) +

u1− u0, µ1(x)−µ0(x) represents the average treatment effect conditional on X = x,

and µ1(x)− µ0(x) + E[u1 − u0|S = 1, X = x] is the average treatment effect for the

treated. In the special case of a linear model [i.e., when µj(X) = Xβj], (3.2) can be

written as

y = Xβ0 +X[β1 − β0]S + [(u1 − u0)S + u0] (3.3)

so that δ ≡ δ(x) =: x(β1 − β0) measures the average treatment effect conditional on

X = x.

We suppose that the treatment decision is latent and represents the net individual

benefit of receiving treatment. The standard treatment model1 usually specifies S∗

as the difference between observable variables Z and unobservable factors v, i.e.

S∗ = µS(Z)− v, µS(z) = E[S∗|Z = z], (3.4)

where Z may include exogenous variables in X in addition to other exogenous in-

struments. In this study, we emphasise the possibility that the specification of S∗ in

(3.4) may also include the characteristics of one’s peers.

Let F denote the common distribution2 of the sample (yi, Xi, Zi)
N
i=1 . We assume

EF [(uji, vi)|Zi] = 0 for all i = 1, . . . , N and all j = 0, 1, i.e., Zi is uncorrelated

with uji and vi (orthogonality condition). We also assume that the vi’s are strictly

increasing and continuous r.v. (random variables) with common distribution Fv.

The latter assumption is also used in Carneiro et al. (2011) and implies that the

1e.g., see Carneiro et al. (2011, Eq.(3)).
2Note that F may depend on the sample size N, say FN , but we drop the indexation by N for

convenience.
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probability of undertaking treatment (S∗ > 0 or S = 1) conditional on Z = z can

then be expressed as

P (z) ≡ P[S = 1|Z = z] = Fv(µS(z)). (3.5)

The quantity P (z) in (3.5) is usually referred to as propensity score or probability of

selection. Let US = Fv(v), i.e., US is a uniform r.v. whose values correspond to the

quantiles of v. Therefore, (3.4) holds if and only if P (Z) ≥ US, so P (Z) is interpreted

as the mean scale utility function; see McFadden (1974).

3.1 Social networks and treatment decision

In this section, we explore the inclusion of peer effects in the treatment decision

model (3.4). As in the linear-in-means model of Manski (1993), we assume that the

decision of individuals to undertake treatment is affected by the mean characteristics

of their peers.3

Suppose that individuals belong to m pre-specified groups and let Gg : Ng ×Ng

represent a network associated with each group g = 1, . . . ,m. We consider the

following model for the latent treatment variable S∗g :

S∗g = γ1GgS
∗
g + Zgγ2 +GgZgγ3 + αgιg + γ4ξg − vg

= γ1GgS
∗
g +

K2∑
k=1

(γ2,kINg + γ3,kGg)Zgk + αgιg + γ4ξg − vg, (3.6)

where S∗g : Ng × 1, Zg = [Zg1, . . . , ZgK2 ] : Ng × K2 with Zgk : Ng × 1 for all k =

1, . . . , K2, ιg : Ng × 1 is a vector of ones, ξg : Ng × 1 contains unobserved within

group characteristics affecting both the treatment decision and the formation of the

network, γ4 is the effect of these unobserved characteristics, vg : Ng× 1 is a vector of

disturbances, γ1 : 1×1 represents the endogenous peer effect (the average benefits to

treatment for an individual’s peers in the network Gg), γ3 = (γ3,1, . . . , γ3,K2)
′ : K2×1

describes the exogenous peer effect (the average characteristics of an individual’s

3We apply this to a binary model as done in the spatial literature– e.g., see Anselin (1988).
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peers in the network Gg), γ2 = (γ2,1, . . . , γ2,K2)
′ : K2 × 1 measures the direct impact

of Zg on the treatment decision, and αg : 1 × 1 represents the group fixed effect

that controls for correlated effects. For the remainder of the paper, we define γ =

(γ1, γ
′
2, γ
′
3, γ4)′. The main difference between model (3.6) and the one considered in

Bramoullé et al. (2009, Eq.(1)) and Goldsmith-Pinkham and Imbens (2013, Eq.(4.2))

is the latent nature of S∗g , which introduces additional complexity in estimation of

the parameters as we see later on. Following Goldsmith-Pinkham and Imbens (2013),

the network Gg is constructed as:

Gg = diag(Mg)
−1Dg ≡

[
Gg,ij

]
1≤i,j≤Ng

: Gg,ij = Dg,ij/Mg,i, (3.7)

where Dg =
[
Dg,ij

]
1≤i,j≤Ng

is a symmetric adjacency matrix such that Dg,ii = 0 for

all i, Dg,ij = 1 if individuals i and j are friends and zero otherwise for all i 6= j;

Mg =
(
Mg,i

)
1≤i≤Ng

is an Ng×1 vector with elements Mg,i =
∑Ng

j=1Dg,ij representing

the number of friends of individual i.4 Clearly, the network Gg is a row-normalised

adjacency matrix, and can be used to determine the average friend of an individual.

The network may be observed at multiple time periods but for simplicity, we drop

the dependence over time. Hereinafter, Dg−
and Gg−

denote the non-normalised

and row-normalised adjacency matrices at the previous period, respectively.

By noting that the determinant of the matrix INg − γ1Gg has the form written

as det(INg − γ1Gg) =
∏
j=1

(1− γ1λjg), where λjg, j = 1, . . . , Ng, are the eigenvalues of

Gg satisfying −1 < λjg ≤ 1 [e.g., see Case (1991, footnote 5)], it is straightforward

to see that INg − γ1Gg is invertible as long as |γ1| < 1. Under this condition, the

reduced-form model for S∗g can be expressed using the second equality in (3.6) as:

S∗g = (INg − γ1Gg)
−1αgιg + (INg − γ1Gg)

−1Bqvec(Zg) + (INg − γ1Gg)
−1γ4ξg − ηg, (3.8)

where vec(Zg) is the NgK2 × 1 dimensional column vectorization of Zg, ηg = (INg −
4Individuals with no friends are discounted from the model so that Mg,i > 0.
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γ1Gg)
−1vg ≡ (ηg,1, . . . , ηg,Ng)

′, and Bq is given by

Bq =:
[
γ2,1INg + γ3,1Gg, . . . , γ2,K2INg + γ3,K2Gg

]
: Ng ×NgK2.

In particular if vg ∼ N(0, σ2
vgINg), then we have

ηg ∼ N
(
0,Ση

)
with Ση = σ2

vg

[
(INg − γ1Gg)

′(INg − γ1Gg)]
−1, (3.9)

i.e., ηg,i ∼ N(0, σ2
ηg,i

) where σ2
ηg,i

is the (i, i)th element of Ση. Clearly, the errors ηg,i

of the reduced-form regression (3.8) are heteroskedastic by construction. Let bg,i·,

i = 1, . . . , Ng, denote the ith row of the matrix bg :

bg =: (INg − γ1Gg)
−1
[
αgINg

... Bq
... γ4INg

]
: Ng ×Ng(K2 + 2),

and define Z̃g =: [ι′g
... vec(Zg)

′ ... ξ′g]
′ : Ng(K2 + 2) × 1. Under the assumption

that vg ∼ N(0, σ2
vgINg), the propensity score (probability of treatment decision) of

individual i in network Gg, conditional on Z̃g = z̃g, is given by

Pi(z̃g) =: P[Sg,i = 1|Z̃g = z̃g]

= P[ηg,i ≤ bg,i·z̃g] = Φ
(
γg,i·z̃g

)
, i = 1, . . . , Ng, (3.10)

where Φ(·) is the cdf of N(0, 1) and γg,i· = σ−1
ηg,i
bg,i· : 1×Ng(K2 + 2).

The marginal treatment effect (MTE)5 is defined as the effect of treatment (at-

tending college for example) on those indifferent to undertaking treatment, given the

characteristics Xg and the propensity score P (Z̃g), i.e.

MTE(xg, uSg) = E(y1g − y0g|Xg = xg, USg = uSg), g = 1, . . . ,m. (3.11)

Carneiro et al. (2011, Eqs.(5)-(6)) show that (3.10) along with the definition of the

5This was originally developed by Björklund and Moffitt (1987) and extended in Heckman and
Vytlacil (2005, 1999, 2007b)
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uniform r.v. USg implies MTE(xg, uSg) can be expressed as:

∂E(yg|Xg = xg, P (Z̃g) = pg)

∂pg
= MTE(xg, pg), g = 1, . . . ,m, (3.12)

where yg is the observed outcome in (3.2). As USg has been normalized to be unit

uniform, tracing MTE(xg, uSg) over uSg values shows how the returns to treatment

vary with different quantiles of the unobserved component of the index of the desire

to undertake the treatment. Alternatively, it is the mean return to treatment for

persons indifferent between undertaking treatment or not who have mean scale utility

value P (Z̃g) = uSg . From (3.2), it is easy to see that

E[yg|Xg = Xg, P (Z̃g) = pg] = E[y0g|Xg = xg, P (Z̃g) = pg]

+ E[(y1g − y0g)|Xg = xg, P (Z̃g) = pg]pg, g = 1, . . . ,m. (3.13)

In particular, if Model (3.1) is linear, i.e. if µj(xg) = xgβj for j ∈ {0, 1}, we have:

E[yg|Xg = xg, P (Z̃g) = pg] = xgβ0 + pgxg(β1 − β0) +K(pg) (3.14)

where K(pg) = E[(u1g − u0g|Sg = 1, P (Z̃g) = pg], which can be estimated non-

parametrically, for example, using local polynomial regressions; see Fan and Gijbels

(1996). As outlined in Carneiro et al. (2011), aggregating the instruments Z̃g into

the scalar index P (Z̃g) enlarges the range of values over which we can identify the

MTE in comparison to using each instrument one at a time.

3.2 Network Formation Model

The inclusion of the unobserved within group characteristics, ξg, affecting both the

treatment decision and the formation of the network in (3.6) raises additional difficul-

ties in estimating the marginal treatment effect in (3.12). Studies such as Patacchini

and Zenou (2012) often assume that the inclusion of network and school correlated

effect dummies can help to identify the linear model. In the current context, this
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approach implies dropping ξg out of model (3.6). Patacchini and Zenou (2012) argue

that once the group fixed effect is controlled for, peer group formation is random con-

ditional on the network. Fletcher (2012a), Kremer and Levy (2008) and Patacchini

et al. (2011) also use a similar approach.

Similarly, Bramoullé et al. (2009) partially account for the problematic environ-

mental effects by using network-level unobservable characteristics. They show that

these unobserved characteristics can be partialled out in the estimation process us-

ing a within network transformation of the model. However, this approach does

not account for the within network individual level variations. Controlling for these

variations is important, especially in networks with a high diameter, where linked

individuals share common characteristics, but those further away in the network are

dissimilar in these characteristics. In our model, within-network variations are repre-

sented by ξg. In a network of high school students, these unobserved characteristics

may represent social or communication skills that affect friendships that are made

during high school, but also are important determinants of whether an individual

decides to attend college. Goldsmith-Pinkham and Imbens (2013) allows the inclu-

sion of unobserved terms by utilising a network formation process to determine the

network adjacency matrix. As such, we follow this method in controlling for within

network individual level variations [also, see Hseih and Lee (2016)].

For simplicity, we use the single unobserved factor setting of Goldsmith-Pinkham

and Imbens (2013) for the friendship formation model (i.e., ξg,i is a scalar for each

individual i), but the setup can be generalised to a multiple factor setting as in Hseih

and Lee (2016). Formally, the friendship formation model can be written as:

Ug,ij = θ′1cg,i + θ′2cg,j+θ
′
3cg,ij + θ4Dg− ,ij

+ θ5Fg− ,ij + δ|ξg,i − ξg,j|+ εg,ij

Dg,ij = 1[Ug,ij > 0] · 1[Ug,ji > 0]
(3.15)

where Ug,ij represents the utility of individual i from a friendship link with individ-

ual j in network Dg, cg,i and cg,j represent the observed individual specific variables

which may affect friendship formation, cg,ij represents dyad-specific variables which
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may be either dummy variables indicating the same characteristic between individ-

uals i and j (e.g. race or sex) or the difference between two continuous individual

characteristics (e.g. difference in age, difference in household income),6 and the θ’s

are unknown parameters. Differences in the unobserved characteristics towards every

potential friendship (i, j)(i.e., |ξg,i − ξg,j|) are considered in (3.15) as key factors of

network formation. A low value of |ξg,i − ξg,j| will result in a likely friendship pair

(i, j), while a higher value indicates that i and j will not be friends. As such, the

parameter δ can be viewed as a measure of friendship intensity in this model. Dg−

and Fg− characterize the network in the previous period. In particular, Dg− ,ij
is a

dummy variable indicating whether i and j were friends in the previous period, while

Fg− ,ij is a dummy variable representing whether i and j had friends in common in

the previous period. Clearly, we see that at least two observations (data points) on

the network are required to fully identify the friendship relations from (3.15). Be-

cause of this dynamic aspect, model (3.15) is more general than the one considered,

for example, in Hseih and Lee (2016). Finally, εg,ij represent the error terms which

are uncorrelated with the unobserved characteristics ξg,i and the errors vg,i of the

treatment decision model (3.6).

Specifying a model for network formation is complex for many reasons. First,

misspecification is usually an issue in these types of models. Second, endogeneity is-

sues may introduce bias, so that estimates of these models should be interpreted with

caution (Jackson, 2013). Many factors must be accounted for in order to minimise

these biases. For example, model (3.15) controls for the effect of homophily through

the inclusion of unobserved characteristics (ξg,i) and transitivity in link formation

through the inclusion of Fg− . Graham (2013) points out that a network formation

model should also account for degree heterogeneity, such that some individuals are

naturally “good friends” and thus give greater utility to friendship. Model (3.15)

accounts for this degree heterogeneity by controlling for the observed characteristics

in the network formation (i.e., cg,i, cg,j).

For the remainder of the paper, we define Cg =
{
cg,i, cg,j, cg,ij|(i, j) ∈ Gg

}
and

6These individual characteristics may overlap with those in Zg,i in equation (3.6).
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consider the following assumptions on the model variables and parameters.

Assumption 3.1 Given Dg−
, Cg, and ξg, each link of network Dg is (conditionally)

independent of other links.

Assumption 3.2 The errors εg,ij of the regression (3.15) are i.i.d. and follow a

standard logistic distribution given Dg−
, Cg, and ξg.

Assumption 3.3 (vg,i, ξg,i)
′ |Dg−

,Cg
i.i.d.∼ N

(
0,

[
σ2
vg

0

0 1

])
for all g = 1, . . . ,m.

Assumptions 3.1–3.3 are commonly used in the literature on social networks–

e.g., see Goldsmith-Pinkham and Imbens (2013) and Hseih and Lee (2016). Three

features often observed from network data are homophily, transitivity of relations

and clustering (Wasserman and Faust, 1994; Jackson, 2008), and all suggest that

link decisions in networks tend to be dependent. Assumption 3.1 states that link

decisions in networks are independent after controlling for homophily, transitivity of

relations, and clustering, i.e., the links of Dg can be dependent unconditionally.

If we define Wg,ij = {cg,i, cg,j, cg,ij, cg,ji, Dg− ,ij
, Dg− ,ji

, Fg− ,ij, Fg− ,ji, ξg,i, ξg,j}, the

probability of friendship givenWg,ij (i.e., given the exogenous covariates and the net-

work of the previous period) can be expressed under Assumption 3.2, [see Goldsmith-

Pinkham and Imbens (2013)] as:

qg
(
Dg,ij|Wg,ij; θ, δ

)
=: P[Dg,ij = 1|Dg−

, Z̃g] = P[Ug,ij > 0, Ug,ji > 0|Dg−
, Z̃g]

= Λ
(
ψg,ij(θ, δ)

)
Λ
(
ψg,ji(θ, δ)

)
, (3.16)

where θ = (θ′1, θ
′
2, θ
′
3, θ4, θ5)′, Λ(·) is the cdf of the standard logistic random variable,

and

ψg,ij(θ, δ) = θ′1cg,i + θ′2cg,j + θ′3cg,ij + θ4Dg− ,ij
+ θ5Fg− ,ij + δ|ξg,i − ξg,j|.

Assumption 3.3, along with the definition of ηg in (3.8) implies (3.9). Note that

ξg may be correlated with Xg in the potential outcome equation (3.1) under this
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assumption, although exploring cases where ξg is independent of Xg is a reasonable

case to consider. Therefore, Assumption 3.3 allows for a possible dependence between

ξg and the errors uj (j = 0, 1) in (3.1), in which case we refer to Xg as an endogenous

regressor in (3.1). The variance of ξg,i is normalised to 1 in Assumption 3.3 because

it is not identified in either the treatment model (3.6) nor in the friendship formation

model (3.15); see Hseih and Lee (2016). In particular, this normalisation implies that

θ and γ can only be identified up to σ2
ξ in (3.15).

Under Assumptions 3.1 & 3.2, the likelihood function of network Dg, conditional

on Wg, is given by

Lξgnet
(
Dg|Wg; θ, δ

)
=

∏
i 6=j

[
qg
(
Dg,ij |Wg,ij ; θ, δ

)]Dg,ij[
1− qg

(
Dg,ij |Wg,ij ; θ, δ

)]1−Dg,ij
(3.17)

where qg
(
Dg,ij|Wg,ij; θ, δ

)
is defined by (3.16). Therefore, the likelihood function of

network Gg, conditional on Wg, is obtained by integrating over ξg, i.e.

Lnet
(
Dg|Wg; θ, δ

)
=

∫
ξg

Lξgnet
(
Dg|Wg; θ, δ

)
φ(ξg)dξg, (3.18)

where Lξgnet
(
Dg|Wg; θ, δ

)
is the conditional likelihood function in (3.17) and φ(ξg) is

the density of ξg ∼ N(0, INg) under Assumption 3.1.

Similarly, we can use Bayes rule to express the joint likelihood function of the

latent treatment decision S∗g and the network Gg, conditional on Zg and Wg, as:

Lξg
(
S∗g ,Gg|Zg,Wg; γ, αg, σ

2
vg , θ, δ

)
= Lξgtreat

(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
× Lξgnet

(
Dg|Wg; θ, δ

)
(3.19)

where Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
is the joint likelihood function of S∗g conditional

on Zg and Wg. Therefore, the joint likelihood function of S∗g and Gg, conditional on

observables Zg Cg, and Dg−
, is obtained by integrating (3.19) over ξg, i.e.

L
(
S∗g ,Gg|Zg,Wg; γ, αg, σ

2
vg , θ, δ

)
=

∫
ξg

Lξg
(
S∗g ,Gg|Zg,Wg; γ, αg, σ

2
vg , θ, δ

)
φ(ξg)dξg (3.20)

=

∫
ξg

Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
× Lξgnet

(
Dg|Wg; θ, δ

)
φ(ξg)dξg.

17



As S∗g is not observed, but we rather observe Sg = 1 when S∗g > 0 and Sg = 0 oth-

erwise, the usual probit method could be used to compute Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
from the reduced-form equation (3.8), along with Assumption 3.3. However, identifi-

cation in standard probit models requires normalising the variances of the errors ηg,i

(i.e., σ2
ηg,i

) to 1, as it cannot be jointly identified with the remaining parameters in

(3.8). This means that the standard probit estimation can only identify the param-

eters of the treatment equation (3.6) up to σ2
ηg,i

(i = 1, . . . , Ng) at best. Although

this may be a reasonable assumption to consider, and usually is the case in binary

outcome models, we employ an alternative approach that consists of simulating the

latent outcome variable S∗g from a multivariate truncated normal (TMVN) distri-

bution using the Gibbs sampling technique proposed by Geweke (1991), and then

applying the truncated regression methods to derive Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
.

This also allows us to estimate the model within the Bayesian setting, controlling for

the ξg terms without having to numerically integrate them out.

Indeed, it is well known that sampling from S∗g ∼ TMV N(µ,Ση)
7 subject to the

inequality constraints a ≤ S∗g ≤ b is equivalent to sampling from τg ∼ N(0,Ση) under

the linear constraints b ≤ τg ≤ b̄, where b = a− µ, b̄ = b− µ, and then constructing

the sample for S∗g as S∗g = µ+ τg. Following Geweke (1991), we build up the sample

for τg from the conditional distribution of τg,i given τg,−i for all i = 1, . . . , Ng, where

τg,−i = τg \ τg,i denotes the vector formed with the components of τg other than τg,i.

Geweke (1991) shows that

E(τg,i|τg,−i) = γg,−iτg,−i, (3.21)

where γg,−i = −ω−1
g,iiωg,−i, ωg,ij is the (i, j)th element of Σ−1

η and ωg,−i is the ith row

of Σ−1
η excluding the ith element. Therefore, we can model τg,i as:

τg,i = γg,−iτg,−i + hg,iνg,i, (3.22)

where hg,i = ω
−1/2
g,ii and νg,i ∼ N(0, 1) for all i and g. As b ≤ τg ≤ b̄, it follows from

7Note that Ση = σ2
vg

[
(INg

− γ1Gg)
′(INg

− γ1Gg)]
−1 from (3.8).
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(3.22) that νg,i satisfies the constraints:

h−1
g,i (bi − γg,−iτg,−i) < νg,i < h−1

g,i (b̄i − γg,−iτg,−i), (3.23)

where bi = −∞, b̄i = −µi if Sg,i = 0 (i.e., if S∗g,i ≤ 0) and bi = −µi, b̄i = +∞ if

Sg,i = 1 (i.e., if S∗g,i > 0). νg,i ∼ N(0, 1) can be simulated with the restrictions in

(3.23) and τg,i can be generated following (3.22). Thus the sample for S∗g = µ + τg

can be built up using this method.

Applying the above results to model (3.8) gives the following conditional trun-

cated normal distribution of the latent variable S∗g given Z̃g = z̃g [similar to Geweke

(1991)]:

S∗g,i|Z̃g,Wg ∼


N
(
bg,i·z̃g, σ

2
ηg ,i

)
, truncated at the left by 0 if Sg,i = 1

N
(
bg,i·z̃g, σ

2
ηg ,i

)
, truncated at the right by 0 if Sg,i = 0,

(3.24)

for all i = 1, . . . , Ng and all g = 1, . . . ,m, where bg,i· is the ith row of bg defined

in (3.8) and σ2
ηg ,i is the (i, i)th element of Ση. Let φ(·) and Φ(·) denote the pdf and

cdf of the standard normal random variable, respectively. The conditional density of

S∗g,i, given Z̃g and Wg, can be expressed from (3.24) as:

f(s∗g,i|Z̃g,Wg; γ, αg, σ
2
vg) =



φ
(
s̃∗g,i−γg,i·z̃g

)
σηg,iΦ(γg,i·z̃g) truncated from above at 0 if Sg,i = 1

φ
(
s̃∗g,i−γg,i·z̃g

)
σηg,i

(
1−Φ(γg,i·z̃g)

) truncated from below at 0 if Sg,i = 0,

(3.25)

where σ−1
ηg,i
γg,i· = bg,i·, s̃

∗
g,i = σ−1

ηg,i
s∗g,i. We can therefore express the likelihood function
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Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
as:

Lξgtreat
(
S∗g |Zg,Wg; γ, αg, σ

2
vg

)
=

Ng∏
i=1

f(s∗g,i|Z̃g,Wg; γ, αg, σ
2
vg) (3.26)

=
∏

{i: sg,i=1}

φ
(
s̃∗g,i − γg,i·z̃g

)
σηg,iΦ(γg,i·z̃g)

∏
{i: sg,i=0}

φ
(
s̃∗g,i − γg,i·z̃g

)
σηg,i

(
1− Φ(γg,i·z̃g)

) .

4 Model identification

The marginal treatment effect (MTE) given in (3.14) can only be identified if both

the treatment decision equation (3.6) and the outcome equation (3.1) are identified.

In this section, we provide the conditions under which both equations are identified.

For simplicity, we shall focus on the case where the outcome (3.1) is linear, i.e.

µj(xg) = xgβjg for j ∈ {0, 1}. Since the identification of the MTEs depends on that

of the treatment decision model (3.6), it will be useful to investigate the latter first.

Various sources are threats to identifying the treatment model (3.6). First, the

inclusion of direct endogenous peer effects (i.e., GgS
∗
g ) as explanatory variables is

a threat to identification because these endogenous effects are subject to Manski’s

(1993) reflection problem. Bramoullé et al. (2009) propose to employ an instrumental

variable (IV) method, where friends’ decision to undertake treatment (i.e., GgS
∗
g ) is

instrumented with friends of friends’ characteristics (i.e., G2
gZg). So, as long as

G2
gZg is a valid and strong matrix of IVs, the reflection problem can be solved

by using, for example, a two-stage least squares (2SLS) estimation. Second, the

inclusion of the friendship network unobserved characteristic ξg in (3.6) is vital for

achieving identification. If ξg is not controlled for, the error of this regression will

incorporate the unobserved network effects and will thus be correlated with GgZg,

GgS
∗
g and possibly Zg. We identify the treatment model (3.6) following a two-step

approach. Firstly, the network Gg is formed using the model (3.15). And secondly,

the parameters of the treatment model (3.6) are identified, given the constructed

network Gg, using 2SLS estimation. We summarize in Proposition 4.1 the conditions

under which equations (3.6) and (3.15) are identified.
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Proposition 4.1 Suppose that Assumptions 3.1–3.3 are satisfied. Then the following

two statements are true.

(a) Conditional on Wg, θ and δ are identified in (3.15).

(b) If (a) is satisfied and |γ1| < 1, γ2γ1 + γ3 6= 0, G2
g 6= 0, then γ = (γ1, γ

′
2, γ
′
3, γ4)′

and αg are identified in (3.6) for all g = 1, . . . ,m.

Proof of Proposition 4.1 :

The proof of (a) follows straightforwardly from the logistic distributional assumption

of εg,ij in Assumption 3.2 along with Assumption 3.1, therefore it is omitted. The

proof of (b) follows identical steps as that of Proposition 3 of Bramoullé et al. (2009),

hence is also omitted to simplify the exposition.

While the inclusion of a network formation process allows us to estimate the

effect of unobservables in the treatment decision equation, the nonlinearity of the

outcome equation does not allow an equivalent approach using the proposed esti-

mation method. We can include observed variables in the outcome equation in an

attempt to control for any network correlated characteristics which also influence the

outcome. While an imperfect approach, if network effects are minimal as in our em-

pirical setting, endogenous effects are not a problem. We assume that the outcome

of one individual is independent from their peers, controlling for the effect of peers

directly on the treatment, i.e. there are no factors outside of the treatment through

which an individual may influence a peer.

5 Estimation

We follow the networks and spatial literature (e.g., see Goldsmith-Pinkham and

Imbens (2013) and LeSage and Pace (2009)) to estimate the networks and treatment

models simultaneously using a Bayesian method. To do this, we define the following

prior distributions for the parameters θ, δ, γ̄, the unobserved characteristics ξ, and
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the latent variable S∗g :

(θ′, δ)′ ∼ N(φ0,Φ0), ξi,g ∼ N(0, 1),

γ̄ = (γ′2 γ
′
3 γ4 α

′
g)
′ ∼ N(γ0,Γ0), γ1 ∼ U [−1, 1], (5.1)

where φ0 : (q + 3) × 1, Φ0 : (q + 3) × (q + 3), γ0 : (2k + m + 1) × 1, and Γ0 :

(2k+m+1)×(2k+m+1) are fixed. These prior distributions in (5.1) are commonly

used in Bayesian literature (Hseih and Lee, 2016; LeSage and Pace, 2009). The

prior distribution for γ1 is restricted to the interval [−1, 1] to ensure the matrix

(INg − γ1Gg) is non-singular, and we use the normalization σv = 1. The posterior

distributions needed to estimate the model are constructed as follows.

1. First, we construct the posterior distribution of ξi,g as:

P (ξi,g|S∗g ,Gg, ξ−i,g, γ̄, θ, δ, σv, αg) ∼ π(ξi,g) · P (S∗g ,Gg|ξg, γ̄, θ, δ, σv, αg), (5.2)

where P (S∗g ,Gg|ξg, γ̄, θ, δ, σv, αg) is given by the likelihood in (3.19).

2. The conditional posterior for (θ′, δ)′ can be simplified to

P (θ, δ|Gg, ξg) ∝ π(θ, δ) ·
m∏
g=1

P (Gg|ξg, θ, δ). (5.3)

3. The posterior for γ1 is constructed as

P (γ1|S∗g ,Gg, ξg, γ̄, σv, αg) ∼
m∏
g=1

P (S∗g |Gg, ξg, γ1, γ̄, σv, αg). (5.4)

4. Following Albert and Chib (1993), the posterior of γ̄ = (γ′2 γ
′
3 γ4 α

′
g)
′ is con-
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structed as:

P (γ̄|S∗g ,Gg, ξg, γ1, σv) ∝ N(γ̄; γ0,Γ0) ·
m∏
g=1

P (S∗g |Gg, ξg, γ1, γ̄, σv, αg).

∴ P (γ̄|S∗g ,Gg, ξg, γ1, σv) ∝ N(γ̄; γ∗0 ,Γ
∗
0),

γ∗0 = (
1

σ2
v

m∑
g=1

Z̃ ′gZ̃g + Γ−1
0 )−1(

1

σ2
v

m∑
g=1

Z̃ ′gAgS
∗
g + Γ−1

0 γ0),

Γ∗0 = (
1

σ2
v

m∑
g=1

Z̃ ′gZ̃g + Γ−1
0 )−1,

Ag = INg − γ1Gg.

(5.5)

Initial values for all parameters and unknowns are chosen by the user. We set all

initial values to zero for simplicity. Parameters and unknowns are updated sequen-

tially using an MCMC approach. Given the likelihood in (3.26), we draw samples

from the posterior distributions given above at each stage of the MCMC. We run the

algorithm for T = 30000 iterations, where the first 20000 iterations are discarded.

At the tth iteration, the following steps are taken:

1. The Metropolis-Hastings algorithm is used to draw samples ξ
(t)
i,g from the pos-

terior distribution P (ξi,g|S∗(t−1)
g ,Gg, ξ

(t−1)
−i,g , γ̄

(t−1), θ(t−1), δ(t−1), σv, α
(t−1)
g ) given

in (5.2), where ξ
(t−1)
−i,g = (ξ

(t)
1,g, . . . , ξ

(t)
i−1,g, ξ

(t−1)
i+1,g , . . . , ξ

(t−1)
Ng ,g

). This occurs for every

individual i = 1, . . . , Ng and network g = 1, . . . ,m. The M-H procedure is as

follows:

(1) Propose ξ̃i,g ∼ N(ξ
(t−1)
i,g , κ2

ξ), where κ2
ξ is chosen by the user, and let

ξ̃g = (ξ
(t−1)
1,g , . . . , ξ

(t−1)
i−1,g , ξ̃i,g, ξ

(t−1)
i+1,g , . . . , ξ

(t−1)
Ng ,g

). The value of κ2
ξ is adjusted

to achieve an acceptance rate between 20% and 40%.

(2) With probability equal to a(ξ
(t−1)
i,g ; ξ̃i,g) =

min

{
P (S∗g ,Gg|ξ̃g, γ̄(t−1), θ(t−1), δ(t−1), σv, α

(t−1)
g )

P (S∗g ,Gg|ξ(t−1)
g , γ̄(t−1), θ(t−1), δ(t−1), σv, α

(t−1)
g )

· N(ξ̃i,g; 0, 1)

N(ξ
(t−1)
i,g ; 0, 1)

, 1

}
,
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set ξ
(t)
i,g equal to ξ̃i,g, otherwise, set it to ξ

(t−1)
i,g .

2. The M-H procedure is used to sample (θ(t)′ , δ(t))′ from P (θ, δ|Gg, ξ
(t)
g ) given in

(5.3):

(1) Propose (θ̃′, δ̃)′ ∼ Nq+3

(
(θ(t−1)′ , δ(t−1)′), κ2

θ,δIq+3

)
, where κ2

θ,δ is chosen by

the user.

(2) With probability equal to a(θ(t−1), δ(t−1); θ̃, δ̃) =

min

{
m∏
g=1

P (Gg|ξ(t)
g , θ̃, δ̃)

P (Gg|ξ(t)
g , θ(t−1), δ(t−1))

· Nq+3(θ̃, δ̃;φ0,Φ0)

Nq+3(θ(t−1), δ(t−1);φ0,Φ0)
, 1

}
,

set (θ(t)′ , δ(t))′ equal to (θ̃′, δ̃)′, otherwise, set it to (θ(t−1)′ , δ(t−1))′.

3. γ1 is sampled from the distribution P (γ1|S∗(t−1)
g ,Gg, ξ

(t)
g , γ̄(t−1), σv, α

(t−1)
g ) in

(5.4) using the M-H algorithm, proceeding as follows:

(1) Propose γ̃1 ∼ N(γ
(t−1)
1 , κ2

γ1
), where κ2

γ1
is chosen by the user.

(2) Let A = [−1, 1], with probability equal to a(γ
(t−1)
1 ; γ̃1) =

min

{
m∏
g=1

(
P (S∗g |Gg, ξ

(t)
g , γ̄(t−1), γ̃1, σv, α

(t−1)
g )

P (S∗g |Gg, ξ
(t)
g , γ̄(t−1), γ

(t−1)
1 , σv, α

(t−1)
g )

)
· I(γ̃1 ∈ A)

I(γ
(t−1)
1 ∈ A)

, 1

}
,

set γ
(t)
1 to γ̃1. Otherwise, set it to γ

(t−1)
1 .

4. The Gibbs sampling method is used to draw samples for γ̄(t) =
(
γ

(t)′

2 , γ
(t)′

3 , γ
(t)
4 , α

(t)′
g

)′
from the posterior distribution P (γ̄|S∗(t−1)

g ,Gg, ξ
(t)
g , γ

(t)
1 , σv) in (5.5). The sign

of γ4 will not be determined, as |ξg,i − ξg,j| is not affected by a change in the

signs of ξg,i, ξg,j. To address this, we fix γ4 to be positive using the acceptance-

rejection algorithm.

5. Following LeSage and Pace (2009); Geweke (1991), S
∗(t)
g is sampled from the

truncated multivariate normal distribution, P (S∗g |Gg, ξ
(t)
g , γ

(t)
1 , γ̄(t), σv, α

(t)
g ) given

in (3.24).
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6. The propensity scores are calculated using the definition in (3.10). For simplic-

ity, we initially assume that (Xg, Zg) are independent of (u0g, u1g, vg). Then we

obtain the propensity scores as follows:

(a) The Peter M. Robinson (1998) method for estimating partially linear equa-

tions is used to obtain estimates of β0 and β1 − β0:

i. The difference between the outcome equation and its expected value

is taken to remove the non-linear component in P :

yg−E
(
yg|P (Z̃g)

)
=
[
xg−E

(
xg|P (Z̃g)

)]
β0+pg

[
xg−E

(
xg|P (Z̃g)

)]
(β1−β0).

(5.6)

ii. Kernel regressions of the dependent variable and each of the regressors

are run on Pg in order to estimate the expected values in equation

(5.6).

iii. The residuals from these kernel regressions are regressed on each other

to determine β0 and β1 − β0.

(b) Following (3.14), a local polynomial regression of yg−xgβ̂0−P (Z̃g)xg(β̂1−

β̂0) is run on P (Z̃g) to estimate the function K(P (Z̃g)) and its partial

derivative with respect to P (Z̃g)
8. Adding the partial derivative to xg(β̂1−

β̂0) results in an estimate for the MTE:

MTE = xg(β̂1 − β̂0) +
dK
(
P (Z̃g)

)
dP (Z̃g)

.

(c) To estimate the marginal policy relevant treatment effect (MPRTE), a

weighted average of the MTE is taken across the support of P (Zg). The

relevant weight is expressed conditional on the value of Xg and must be

integrated over the distribution of Xg.
9 We can measure different forms

8Fan and Gijbels (1996) recommend using a local quadratic estimator for fitting a first order
derivative. We therefore use a local quadratic estimator with a bandwidth that minimises the
residual square criterion proposed by Fan and Gijbels.

9Since conditioning on Xg is computationally demanding due to the possible high dimension of
Xg, as in Carneiro et al. (2011) we condition on the index Xg(β1 − β0) as an approximation.
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of the MPRTE using different weighting functions and definitions of the

policy change. In particular we consider the following three scenarios: (1)

a policy change that directly increases the probability of treatment equally

for all individuals, i.e., Pα = Pg + α; (2) a policy that proportionally

increases the probability of treatment, i.e., Pα = Pg(1 + α); and (3) a

policy that affects one of the instruments used in the treatment equation,

i.e., Zα = Zg + α.

7. Relaxing the assumption of exogeneity, identification of the model is considered

under the new assumption that Zg is independent of (u0g, u1g, vg) given Xg. The

MTE is identified over the support of P (Z̃g) holding the values of Xg constant.

The process of identification of the MTE is as follows:

(a) The value of (INg−γ1Gg)
−1Xg is calculated at the 25th and 75th percentile

of the distribution of (INg − γ1Gg)
−1Xg(β1 − β0).

(b) Holding (INg − γ1Gg)
−1Xg constant at this point, the instruments are

allowed to vary.

(c) The MTE is calculated over the sections of P (Z̃g) that are supported as

the instruments are allowed to vary.

The MPRTE is a weighted average of the MTE, placing weights only on those

sections of the MTE that are identified. This MPRTE is calculated condi-

tional on the value of Xg so that the MPRTE is still identified even under the

endogeneity of Xg.

6 Monte Carlo Simulations

We simulate data in order to study the performance of the model. The MCMC

algorithm is iterated 30000 times, with the first 20000 samples discarded to obtain

estimates of the parameters to be estimated. This is repeated for R = 30 different

data samples to obtain estimates of the standard error. The data is simulated as
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follows:

[u1g, u0g, vg, Xg, Z
∗
g,1, Zg,2, ξg, cg,1] ∼ N(µ,Σ),

where,

µ = (0, 0, 0, 1, 0.8, 0, 0.5, 0.2)′,

and Σ is an 8 × 8 matrix with ones along the diagonal. The correlations between

variables are set to zero except for:

E(X ′gZ
∗
1g) = E(X ′gZ2g) = 0.2, E(Z ′1gξ) = 0.1, E(Z ′2gξ) = −0.2

E(u′0gu1g) = 0.3, E(u′0gvg) = 0.3, E(u′1gvg) = −0.5.

Zg,1i is a binary variable, such that Zg,1i = 1[Z∗g,1i≥0]. We assume that ξg is exogenous

in this setting. εg is generated according to a logistic distribution with mean 0 and

standard deviation 1. The network formation variables are constructed as:

cg,i = cg,1i, cg,j = ∅, cg,ij =
[
|Zg,2i − Zg,2j|, 1[Zg,1i=Zg,1j=1], 1[Zg,1i=Zg,1j=0]

]
.

Two networks of size 250, D1,D2, are constructed using the network formation

model in (3.15) at two time periods. Individuals with no friends are removed from

the sample. The network formation process is calibrated to ensure the number of

individuals with no friends is less than 20% of the original sample and the average

number of friends is greater than 10. We set

θ0 = 0.2, θ1 = 0.2, θ3 = (−0.9, 0.4, 0.5)′, θ4 = 0.2, θ5 = 0.1, δ = −1.2.

On average, 7 individuals with no friends are removed from the network, and the

remaining individuals have an average of 13.65 friendship connections. The average

dynamics of the network are given in Table 1.2. If individuals are friends in period 0,

they are likely to remain friends in period 1 (2.5% of possible friendships). Similarly,

if individuals are not friends in period 0, they are unlikely to form a new friendship

in period 1 (3.2% of possible friendships). Due to the large number of possible
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friendships (23100), we see more new friendships in period 1 than existing ones

carried from period 0.

Some network statistics are included in Table 1.1. An example of a generated

network can be seen in Figure 1.1. We see that the generated network is relatively

dense for the size of the network, due to the high number of average friendships.

We use this high degree in order to establish stronger results for the peer effects.

Average path length and diameter are low, with the average distance between any

two individuals being 2.62. On average, one large component is generated by the

network formation process. There is some evidence of clustering with 15% of possi-

ble triplets closed. Connections occur mostly on the same side of the network, with

fewer cross network links. This aligns with the homophily constructed in the model

such that an individual is likely to connect with their friend’s friends who are also

close in homophilic characteristics. This clustering would be more pronounced with

greater correlation between these variables in the network formation. As the gen-

erated variables are relatively uncorrelated, homophily occurs independently across

the characteristics.

One potential drawback of the proposed network model is the lack of dependence

on the number of friends. As a result, we observe a high variance in the number of

friends. While some individuals only have one network connection, others have very

many (the maximum in the plotted network is 32).

The outcome variables Sg and yg are constructed using equations (3.6) and (3.2)

respectively, with the coefficients:

γ1 = 0.05, γ2 = (1, 1, 0.5)′, γ3 = (0.5, 0.5, 0.2)′, γ4 = 0.8, α = (−2.8,−2.8)′,

β0 = (0, 0.8)′, β1 = (0.5, 1)′.

Under this construction an average of 55% of individuals undertake treatment and

the average value of Yg is 1.48, with a standard deviation of 2.01.
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Figure 1.1: Generated network using (3.15)

Table 1.1: Networks Summary

Property Mean S.D.
Number of Nodes 242.74 2.97
Number of Friendships 1659 140.42
Link Density 0.06 0.005
Average Degree 13.67 1.16
Clustering Coefficient 0.15 0.01
Number of Components 1.08 0.27
Average Path Length (of largest component) 2.62 0.08
Diameter (of largest component) 6.56 0.79
Number of Networks = 2

6.1 Exogeniety of Xg

As described in the estimation section above, we begin with the assumption that

Xg is strictly exogenous, i.e. E[X ′gu1g] = E[X ′gu0g] = 0 for all g. We present results

for the full model (model I), the model with no unobserved ξg term (model II) and

the model with no network effects (model III). Table 1.3 displays the estimates of

the network formation process for the full model. All estimates except θ4 in the

network formation are highly significant with the correct signs. θ1 and θ3 appear to

be overestimated, while θ4 and θ5 are underestimated. We would expect the network

in the previous period Dg−
to be highly correlated with the characteristics Cg, so this

result is not surprising, and should not affect the estimation of the ξg parameters.

We note that the coefficients in the network formation and treatment equation (δ, γ4)
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Table 1.2: Dynamic Friendships

Period 1
Friends Not Friends

P
er

io
d

0

Friends 614 (2.48%) 249 (1.01%)

Not Friends 790 (3.19%) 23100 (93.32%)

Table 1.3: Estimation in Network Formation

Variable Estimate Variable Estimate
θ1 0.2422*** θ4 0.1416*

(0.0180) (0.0810)
θ3,1 −0.8344*** θ5 0.0768***

(0.0207) (0.0228)
θ3,2 0.5470*** δ −0.7922***

(0.0417) (0.0486)
θ3,3 0.6744***

(0.0370)

* p < 0.1, ** p < 0.05, *** p < 0.01.

absorb σξ (normalised to one in this construction).

Table 1.4 contains the estimates for the coefficients in the treatment equation.

As we are assuming a probit type specification, the variance is not identified. The

model with no network components, Model (III), performs poorly, especially when

identifying γ2,1. In general, the simplistic model underestimates the parameters.

Standard errors are relatively small, and all estimates are significant.

The intermediate model that does not include the unobserved ξg (Model II) of-

fers an improvement in the estimated coefficients, coupled with an increase in the

standard errors. In this case, only the coefficients on individuals’ characteristics and

the fixed effects are significant. None of the peer effect terms are significant due to

to high standard error estimates.

Moving to the full model (Model I) that now accounts for the presence of un-

observable peer effects in the estimation, we see some improvements. Firstly, the

endogenous effect estimate (γ1) has doubled in size compared to Model II and is

significant. The individual characteristic coefficient (α’s) estimates are relatively
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unchanged, while the peer effects estimates (γ’s) have reduced in magnitude. The

standard error estimates have also decreased both set of variables, but the accuracy

of the estimates themselves seems close to Model II. In particular, the same individ-

ual characteristics are significant in both Model I and Model II. Endogenous effects

are significant at the 5% level, though exogenous effects remain insignificant. We

may be concerned with the coefficient of the unobserved terms, γ4, which in this

setup is positive, but not statistically significant to high standard error estimated,

probably due to a relatively small number of simulations.

Computational limits impede the ability to run the estimation with more iter-

ations or with a greater sample size. We run the 30 simulations in parallel on the

University of Adelaide’s Phoenix High Performance Computing service. The simu-

lations with two networks of size 250 recorded an average running time of 1 day, 14

hours. We note that while the results are reasonable, larger sample size and number

of iterations will improve the accuracy of the estimation.

The MTE for each model is plotted in Figure 1.2. The MTE curve in these figures

is calculated at the mean value of Xg (note that Xg is exogenous in this subsection).

The MTE is identified over the support of Pg which can be seen in Figure 1.3. We

see that low values of Xg are associated with low values of Pg. The more complex

models increasingly polarise the predicted propensities, so that propensities become

more highly correlated with the observed treatment. We identify the MTE at areas

where we have common support for Pg, i.e. when we observe values of Pg for both

S = 0 and S = 1. On average, Model (III) has support on the interval (0.0237,

0.8796), Model (II) has support on (0.0443,0.9633) and Model (I) has support over

(0.0536,0.9568). We see that the introduction of peer effects gives us a fairer spread

of propensities, allowing us to identify a greater portion of the MTE. The regions

of the MTE that are not identified are those areas of higher variance, corresponding

to the extreme values of the propensity scores. Estimation of traditional treatment

measures such as the average treatment effect (ATE) or treatment effect for the

treated (TT), require support over the entire [0,1] interval. As such, these measures

cannot be identified in the model (and rarely are: Carneiro et al. (2011)), making
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Table 1.4: Estimation of the Treatment Paramaters, Xg exogenous

Variable (I) (II) (III)
γ1 0.3624** 0.1893 -

(0.1810) (0.2422)
γ2,1 0.6262*** 0.6142*** 0.3773***

(0.0669) (0.0666) (0.0505)
γ2,2 0.6630*** 0.6642*** 0.4382***

(0.1809) (0.2114) (0.1251)
γ2,3 0.3127** 0.6918*** 0.3012***

(0.1405) (0.2145) (0.0551)
γ3,1 0.0553 0.2939 -

(0.1769) (0.2144)
γ3,2 −0.1306 0.2004 -

(0.2650) (0.5007)
γ3,3 −0.0090 0.1116 -

(0.2234) (0.3548)
γ4 0.1022 - -

(0.0810)
α1 −1.1579*** −1.7283*** −1.3130***

(0.2669) (0.3629) (0.1755)
α2 −1.1541*** −1.7146*** −1.3198***

(0.2773) (0.3781) (0.1594)

* p < 0.1, ** p < 0.05, *** p < 0.01.

Note: Model (I) - full model with network formation process
Model (II) - excludes ξ and the network formation process
Model (III) - excludes all network terms.

the MTE and MPRTE more practical and relevant measures of the true treatment

effect.

The MTE is traced across values of US, corresponding to the quantiles of vg. A

high value of US corresponds to a low probability of treatment, while a low value of

US corresponds to a high probability of treatment. At a high value of US, individuals

at the margin have a corresponding high propensity score Pg. The MTE at this point

is defined as the expected increase in the outcome variable Yg when Pg is varied so

the individual is induced into treatment, starting at a high value of Pg. The converse

is true for a low value of US. In this construction of the model, we clearly see that a

high probability of treatment is associated with a high return to treatment (around

90% in each model), with the opposite observed for a low probability of treatment
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Model (III) Model (II)

Model (I)

Figure 1.2: MTE curve with 90% confidence bands

(around -90%).

MTE estimates in each model appear relatively similar. The model with the full

estimation appears to estimate slightly more extreme results for high and low values

of US, with the intermediate model splitting the results of the other two models.

Under the full model, the marginal treatment effect ranges from 0.89 for low US to

-1.1 for high US, compared to 0.8 and -0.7 for model (III). The shape of the curve

also differs, with model (I) showing a steeper, more convex curve. Most notably,

there is a progressive improvement in the width of the 90% confidence bands moving

towards the more robust model. In this case, there is evidence that the full network

model enables more precise identification of the true returns to treatment.

The mean line in the three plots in figure 1.2 are clearly downwards sloping so that
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(a) Model (III) (b) Model (III)

(c) Model (II) (d) Model (II)

(e) Model (I) (f) Model (I)

Figure 1.3: Support of Pg given Xg, support of Pg for S = 0 and S = 1

individuals self select into treatment. We can test the MTE curve for zero slope at

each point, as well as running a joint p-test for an overall constant slope as described

by Carneiro et al. (2011). The results of these tests are given in appendix table
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2.1. The MTE curve is statistically downwards sloping for the middle sections of the

MTE, from around 0.25 to 0.75. There is more variation at the ends of the MTE,

and we cannot statistically determine a negative slope. The p-value for a constant

slope across the whole MTE is 0.1333, so we cannot reject at the 90% level that

the overall slope of the MTE curve is non-constant. For the more simplistic models,

these p-values are clearly higher, and it is difficult to conclude a non-constant trend.

Table 1.5 reports the estimates of the MPRTE for the three different changes in

policy. The models involving network effects appear to estimate a higher marginal

policy effect for those induced into treatment. Using the more complex models we

have greater significance, with models (I) and (II) displaying lower standard errors

and achieving positive significance.

Table 1.5: MPRTE, Xg exogenous

Policy Change (I) (II) (III)
Zk
α = Zk + α 0.6797*** 0.6293** 0.4880

(0.2630) (0.2848) (0.3707)
Pα = P + α 0.6680** 0.6185** 0.4823

(0.2637) (0.2858) (0.3373)
Pα = (1 + α)P 0.5561*** 0.5219** 0.4209

(0.2083) (0.2303) (0.2940)

* p < 0.1, ** p < 0.05, *** p < 0.01.

6.2 Endogeniety of Xg

The tables and figures discussed thus far rely on the strong assumption that Xg and

Zg are both exogenous of the error terms (u0g, u1g, vg). This assumption would not

hold, for example, in a wage equation, where Xg represents educational achievement

or GPA. If unobserved ability is also important, Xg will not be exogenous.

Relaxing the assumption of the exogeneity of Xg, we examine the model un-

der weak endogeneity (corr(Xg, u1g) = corr(Xg, u0g) = 0.3) and strong endogeneity

(corr(Xg, u1g) = corr(Xg, u0g) = 0.75). Results in both cases reflect those in the case

where Xg is exogenous. In this case all coefficients are still exogenous of the treat-
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corr(Xg, U) = 0 corr(Xg, U) = 0.3

corr(Xg, U) = 0.75

Figure 1.4: MTE support, Model (I)

ment error vg, so endogeneity in the outcome will not have an effect. The estimation

of the MTE, however, will be affected. The MTE is plotted in appendix figures 2.1

and 2.2. Under this model the MTE curves will not be identified, and clearly in 2.1

and 2.2, the plotted MTE is not stable. Stronger endogeneity has greater effects on

the shape of the MTE, and completely removes the downwards slope we would like

to see.

In figures 1.4-1.6 we present the identification of the MTE when Xg is endogenous.

Identification is displayed in each of the models (I)-(III) respectively. When Xg is

held constant, we rely on the variation of the instruments Zg to achieve identification.

(INg−γ1Gg)
−1Xg is held constant at its 25th and 75th percentile with each instrument

varied collectively and individually to produce the figures below. As in the MTE,
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corr(Xg, U) = 0 corr(Xg, U) = 0.3

corr(Xg, U) = 0.75

Figure 1.5: MTE support, Model (II)

we condition on (INg − γ1Gg)
−1Xg(β1 − β0) as an approximation. The black lines

represent the portion of the MTE that is identified when Xg is endogenous and held

constant at its 25th and 75th percentile.

The dashed green line represents the sections of the MTE we do not identify.

The MTE is identified over the support of Pg when the instruments are varied. The

red line corresponds to this interval of Pg that is identified when all instruments are

allowed to vary. The lines above this correspond to the portion of the MTE identified

when a single instrument is allowed to vary and all other instruments are held at

their mean values. As Z1 is a binary variable, the support associated with varying Z1

are only single points in the black circles. The blue lines correspond to the portion

of the MTE identified when Z2 is allowed to vary.
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corr(Xg, U) = 0 corr(Xg, U) = 0.3

corr(Xg, U) = 0.75

Figure 1.6: MTE support, Model (III)

The higher order models gift us additional instruments for identification. The

exogenous network effects (GgZg) and unobserved effects (ξg) now act as instruments,

allowing greater variation in the collective instruments and achieving a greater region

of identification for the MTE. Of course, this relies on the assumption that Gg and

ξg are independent of (u0g, u1g). The shape of the MTE also appears to be affected.

The slope of the MTE under model (III) increases as the endogeneity increases.

This seems to indicate the inability of this simplistic model to identify the true MTE

once endogeneity is introduced. In the full model, however, the MTE maintains its

negative slope. The full model not only gives a more precise identification, but it

extends the range of identification as more instruments are added.
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7 Discussion

The results of the network formation process are encouraging. All terms, except θ4

are highly significant. The model generally performs well in estimating most of these

coefficients. We note that all coefficients attain the correct sign, particularly the

coefficient of the unobserved characteristics.

Comparing the results of the treatment equation, we see that the simple model

with no peer effects (model (III)), while having the lowest standard errors, is subject

to bias in its estimates. The simplistic model is problematic for two reasons. Firstly,

individual characteristics are correlated with the characteristics of their peers. By

omitting peer effects, these individual characteristics become endogenous. Secondly,

the simplistic model assumes standard normality of the error term. If the endogenous

effect is truly significant, then in the reduced form the error term will have variance

given by [(INg − γ1Gg)
′(INg − γ1Gg)]

−1. This will result in misidentification in the

simpler model, reflected in the underestimation of the coefficients in the treatment

equation.

While the increase in standard error moving to the peer effect models (models

(I) and (II)) may be initially concerning, we note that 1. standard errors are not

identified in this treatment equation and, 2. variance is dependent on the estimation

of the γ1 term, which also varies between samples. Another source of of variation

is generated in the addition of the N new parameters that must be estimated, ξg.

Each individual ξg is randomly generated, introducing considerable variation in each

sample, but reducing endogeneity bias. It is therefore surprising that moving from

model (II) to model (I), we observe a reduction in the standard error. Clearly

adequately controlling for endogeneity in unobserved characteristics is important in

improving the precision of the treatment estimation.

The introduction of peer effects and the network formation process allows us to

control for homophilic tendencies between individuals. The effect of homophily in the

network model is to polarise the sample. There are both direct and indirect effects

working here. Firstly, if individuals choose friendships based on a characteristic which
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also influences the probability of treatment; then the decision of these individuals

are likely to be correlated. Friends with shared characteristics will make similar

decisions. Thus, independent of any peer effect, the decisions of these individuals will

look similar. Exogenous and endogenous peer effects reinforce this. If an individual

has similar characteristics to their friends, then the exogenous effect of a friend

will reinforce the effect of the characteristic itself. Taking parental education as an

example; if an individual has college educated parents, they may choose friends who

also have college educated parents. Their friends will be more likely to enter college

due to the college education of their parents, influencing the individual directly

through the endogenous effect of similar decisions. The individual is also influenced

by the average characteristics of their peers, i.e. by the college education of their

friend’s parents. This exogenous effect will work in parallel, reinforcing the decision

of the individual to attend college. Thus the network model predicts more extreme

propensities as the peer effects reinforce individual characteristics.

Individuals who were initially likely to enter treatment, now are further incen-

tivised by the similarity of their friends, while those unlikely are further dissuaded.

We see evidence of this polarisation in both the MTE plots 1.2, and in the support

plots 1.3. We observe more extreme propensities in the support plots, as the pre-

dicted probabilities are emphasised by peer effects. As a result, the higher and lower

values of US will be more extreme, and we would expect more extreme returns at

the highest and lowest quantiles of vg. The fuller model more accurately accounts

for the reinforcement effects of peers, and predicts more polarised propensity scores

for individuals entering treatment. The model that does not account for ξg, while an

improvement on the basic model, does not adequately control for endogeneity in the

network and still underestimates the true effect. Thus introducing network effects

and adequately controlling for endogeneity in the network is critical when estimating

such a model.

The clear downwards slope in each of the MTE curves implies that the individual

selects into treatment based on their expected return, i.e. if you observe a low ex-

pected return to treatment, you will be unlikely to choose to enter into the treatment

40



group. The improvement in the confidence bands is most notable. Even with the

greater standard errors in the treatment equation, the fuller models have narrower

confidence bands when we estimate the MTE and MPRTE.

While the full model improves the confidence interval for the MTE, the width

still may be of concern. This can partly be attributed to the difficulties in using

non-parametric estimation for smaller datasets (we would expect these to narrow

with sufficient sample size). The fuller model does, however, cause estimation of the

MTE to become both more accurate and more extreme.

The positive MPRTE in the estimation implies that individuals induced into

treatment would attain positive returns from doing so. This holds for all types of

marginal policy changes, whether a direct increase in propensity or an increase in

the instruments, although increasing propensities multiplicatively appears to result

in the smallest return. The peer effect model estimates a higher return to these

marginal policy changes. The model predicts that those at the margin are now more

likely to attain higher returns. Homophily appears to work positively in this case,

such that those who should obtain treatment have already done so, and those with

negative returns are dissuaded from entering treatment. Those at the margin have

more moderate characteristics and are therefore likely to receive higher returns from

entering treatment than that predicted by a non-peer effect model.

We also note that as the peer effects are functioning as instruments in the model,

these MPRTE values indicate that an increase in peer effects would also result in

positive returns for those induced into treatment by this change. Peer effects can

be used as a tool in this case by policy makers to encourage treatment, leading to

positive returns.

Turning to the results of the endogenous estimation, we see that the proposed

model performs well in comparison to models (II) and (III). In this setting (holding

Xg fixed and creating identification through the variation in instruments), the net-

work paramaters act as additional instruments. Exogenous peer effect terms are less

useful than the non-peer instruments. Exogenous peer effects are simply averages of

the original individual characteristics and therefore exhibit less variation than the
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characteristics themselves (Xg has an average standard deviation of approximately

1.4, while GgXg has an average standard deviation of of 0.6). The parameter which

is of some use is the unobserved peer characteristics. In particular, these charac-

teristics generally do not have a high correlation with the other variables, and vary

considerably between individuals, independent of the outcome. As a result, these

unobserved characteristics are particularly effective instruments.

We must acknowledge the limitations in the specification of the proposed network

model. It is unlikely that the network model accurately reflects the network formation

process, though it should be sufficient to identify most of the unobserved component

and it certainly offers an improvement on neglecting these effects. The assumption

that individuals are either close in observed or unobserved characteristics is a strong

one. In reality, friendship formation is difficult to model and is reliant on many

unobserved, intangible factors, including significant randomness which is unlikely to

adhere to any normality assumptions.

In our model we assume that peer effects only influence the binary treatment

decision, exogenous of the outcome. It is trivial to include exogenous peer effects

in the outcome equation, as long as these terms are truly exogenous. Introducing

endogenous and unobserved effects is a more complex process. The non-linearity of

the outcome equation complicates the Bayesian estimation, and while theoretically

possible, we do not include such an extension here.

In conclusion, the addition of peer effects is important in correcting for potential

endogeneity in the model. The introduction of the network formation process allows

us to correct for homophily in characteristics and as a result, we observe more po-

larised estimates in the MTE, and larger estimates for the returns to policy changes.

Estimates of the MTE and MPRTE become more accurate and more precise. Fur-

thermore, the peer effect components can act as additional instruments, which is

particularly useful when the Xg terms are endogenous, and lead to a greater region

of identification.
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Chapter 2

Application to High-School Networks

and College Attainment Decision

1 Introduction

High schools act as incubators of peer effects; creating an environment where strong

friendship connections are established, and social norms are firmly enforced. Sig-

nificant spillovers in achievement and other outcomes are easily observable between

students. As a result, the classroom has become a popular area for peer effect anal-

ysis. Sacerdote et al. (2011) summarises the burgeoning literature on peer effects

in education. The literature demonstrates strong evidence of the importance and

strength of peer effects, especially regarding social outcomes such as delinquent be-

haviour. When considering peer effects in achievement, the exogenous effect of peer

background is moderate. Estimates of the endogenous effect are mixed, but are

generally moderate to large.

In this application, we are concerned with the peer effect of high school students

on the decision to attend college, and the indirect effect this has on wages. The liter-

ature generally supports the hypothesis of positive peer effects on college attendance

and future wages.

Even in high school, the networks an individual finds themselves in are likely

to influence future wages. The common adage that getting a job is more about

This research uses data from Add Health, a program project directed by Kathleen Mullan Harris
and designed by J. Richard Udry, Peter S. Bearman, and Kathleen Mullan Harris at the University
of North Carolina at Chapel Hill, and funded by grant P01-HD31921 from the Eunice Kennedy
Shriver National Institute of Child Health and Human Development, with cooperative funding from
23 other federal agencies and foundations. Special acknowledgment is due Ronald R. Rindfuss and
Barbara Entwisle for assistance in the original design. Information on how to obtain the Add Health
data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct
support was received from grant P01-HD31921 for this analysis.
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who you know than what you know seems to hold elements of truth. Considering

peer effects, Kramarz and Skans (2014) find that the parents of classmates are an

important determinant of where an individual finds employment. Similarly, Black

et al. (2013) find that the average paternal income of one’s high school peers has a

small exogenous peer effect on the future wage of the individual. In contrast, Bifulco

et al. (2014) find little evidence of persistent peer effects on wages, but suggest that

the exogenous effect of having peers with college educated mothers is positive and

significant. Furthermore, they find that the delay in college education due to the

decision of peers not to attend college has a temporary effect on wages. Taking

networks as a proxy for social adeptness, Galeotti and Mueller (2005) and Barbone

and Dolton (2015) find that the social skills associated with network position in high

school lead to a significant increase in future earnings.

Evidence of the influence of peers on the decision to attend college is more wide-

spread. Bifulco et al. (2011) find that peers with college educated mothers create a

positive exogenous peer effect on the probability of attending college and reduce the

likelihood of dropping out of high school. Fletcher (2012b) and Wu (2015) focus on

the exogenous peer effect of college decisions, both finding strong social influence of

friendship networks on the likelihood of college enrolment and college preferences.

Fletcher (2013) finds that an increase in classmates attending college by 10% leads to

an increase in the probability of an individual attending college by a significant 2-3%.

De Giorgi et al. (2010) find a significant peer effect on the college major decided by

students when at college, which influence both academic achievement outcomes and

entry wages.

College educated individuals earn significantly more than those with only high

school education. According to the OECD (2016), the increase in earnings in 25

OECD countries from a bachelors level degree is around 48%. As we have already

explored, both endogenous and exogenous peer effects play an important role in

determining the decision to attend college. Clearly, if peers are playing an important

role in determining which students are attending college, there will be a corresponding

influence on wage outcomes. The result mentioned of Bifulco et al. (2014), provides
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positive evidence for this indirect college effect. Following a similar intuition, we

utilise the model presented in chapter 1 to estimate the role of high school peers in

the returns to education.

High school networks hold significant potential in the dissemination of knowledge

and the effectiveness of policy. In addition to the obvious impacts of networks (such

as social multiplier effects), other more subtle network-based phenomena may be

pertinent to education policy changes. For example, changes in social norms have

been shown to significantly affect student achievement through intra-school networks

and the learning of these social norms. Del Bello et al. (2015) argue that policies that

utilise the networks within a school, particularly focused on social norms, are highly

effective compared to neighbourhood based policy changes. As evidence, Kremer

et al. (2009) show that the introduction of scholarships for some high school students

can affect all students in the school, even those ineligible or unlikely to attain the

scholarship. Therefore, the effect of networks and peer groups should be considered

when education policy is enacted. As such, we use the approach of Carneiro et al.

(2011) to estimate the potential effect of networks on policy changes in our model

and in the Add-Health data set.

In what follows, we apply the model presented in chapter 1 to a dataset containing

the networks of high school students. We measure the marginal returns to education

these individuals receive, when networks influence the decision of students to attend

college. We examine the role these networks play in the treatment decision and on

the marginal returns to education. We then demonstrate and discuss the influence

these networks hold on changes to policy in the education setting.

2 Data Description

The Add Health Dataset is a longitudinal study across high schools in the US. Surveys

were conducted for 90,118 individuals in school years 7-12 in representative high

schools during the 1994-1995 school year. A core sample of 20,745 students were

selected to take part in a detailed in-home survey across four waves; wave I: 1994-
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1995, wave II: 1996, wave III: 2001-2002 and wave IV: 2008. A saturated sample

comprised 16 schools, where all students in the school were selected were selected for

this core sample. These 16 heterogeneous schools included two large schools (total

enrolment in excess of 3100) and 14 smaller school (enrolment fewer than 300 each).

One of the large schools is located in a mid-sized town with a predominantly white

enrolment, while the other is located in a metropolitan area and is ethnically diverse.

The smaller schools are a mix of public and private schools located in rural and urban

areas. In waves I and II, students were asked to name up to 10 of their closest friends

(5 male, 5 female). We use these friendship rosters to construct high school networks

in waves I and II. Friendships named outside of the selected school are excluded, as

these individuals are not in the sample.

Wave II responses are used to construct most variables for the treatment and out-

come equations, while observed wages and some contextual variables are collected

from wave IV. Individuals who did not take part in all of waves I, II and IV are

removed from the sample. We also remove individuals with no friendship nomina-

tions (409 individuals) as they experience no measurable peer effect. After removing

individuals with incomplete data or no friends we have a total sample of N = 1696

observations across g = 15 schools. Due to the high computational capacity required

for estimation of large networks, we limit estimation to the 13 smaller schools with a

total sample size of N = 631. Using the University of Adelaide’s Phoenix High Per-

formance Computing service, estimation of these 13 networks takes approximately 23

hours. The larger networks take over a week to estimate, so results are not reported

here. It is difficult to obtain many iterations across such a time horizon, so standard

errors cannot be estimated without greater computational capacity.

Summary statistics are given in table 2.3. Descriptions of the variables can be

found in figure 2.4. Network properties are given in table 2.1. Figure 2.1 displays

the networks of two schools in our sample. On average, individuals in the network

have 3.85 friends. Only two networks are completely connected, but most have a

large component dominating the network. The network statistics reflect the small

size of the schools; link density is comparatively high while average path length and
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diameter are smaller. Each individual is on average 3.68 links away from anyone

in their network, with a maximum distance of 9.08 per network. Friends tend to

cluster together, with few connections across the network. The clustering coefficient

indicates that just over a third of possible triplets are closed, i.e. you are likely to

be connected with your friend’s friends. This pattern is clear in the second graph in

figure 2.1, with evidence of three distinct groups. Table 2.2 gives a transition matrix

of friendships from period 0 to period 1. Less than half of friendships in period 0

are still present in the next period. In fact, the number of new friendships is not far

below the number of existing friendships transferred from period 0.

Figure 2.1: School networks

Table 2.1: Networks Summary

Property Mean S.D.
Number of Nodes 48.54 26.19
Number of Friendships 93.77 58.08
Link Density 0.11 0.08
Average Degree 3.85 1.02
Clustering Coefficient 0.35 0.14
Number of Components 2.30 1.55
Average Path Length (of largest component) 3.68 0.91
Diameter (of largest component) 9.08 2.63
Number of Networks = 13

As with most survey data, we must be careful when interpreting the results due

to the potential effect of measurement error. In particular, self reported variables

such as wage and subject grade are liable to misreporting or unconscious bias. How-

ever, most variables we are concerned with are easily verifiable (race, gender, college
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Table 2.2: Transition of friendships from period 0 to period 1

Period 1
Friends Not Friends

P
er

io
d

0

Friends 661 (3.52%) 726 (3.86%)

Not Friends 558 (2.97%) 16860 (89.66%)

decision). We assume that the sample covers the majority of in-school friendships.

While the survey restricts students to naming 10 close friends, only one student in

our sample reaches this limit.

As in chapter 1, we treat friendships as a binary relation and normalise the

network so that the average peer effect is equal for every individual regardless of the

number of friends. Each of an individual’s friends are given equal weight. These

are necessary and reasonable simplifications of the true friendship network, but as a

result, estimates may underestimate the true influence of peer effects.

The variables Xg, Yg and Zg are defined in table 2.4. We take the levels of all

variables, except wage and local income, for which logs are taken. We use terms of

order one, without interactions in each variable for simplicity. The instruments in

the treatment equation are number of siblings, innovations in local labour market

variables and the proportion of college education in the local area. As in Carneiro

et al. (2011), we utilise innovations in labour market area statistics. Specifically

we use local income in 1990 and local unemployment in 1993, observed around the

time of the first wave. If unemployment is higher than normal and wages are lower,

the individual will be more likely to pursue further education rather than enter the

labour force directly. Xg contains local income and unemployment in 2008, when

wage is observed, to control for long term labour market conditions in the area. The

use of these instruments is discussed in Cameron and Heckman (1998), Cameron and

Heckman (2001) and Cameron and Taber (2004), who follow a similar procedure in

estimating the returns to education. Independent of local labour market conditions,

the proportion of college education in the local area will clearly affect the decision

to attend college, but should not impact on resulting wages. Similarly, we expect
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number of siblings to influence the likelihood of attending college, but not observed

wage in the long run.

Table 2.3: Data Summary

Variable Name Min Max Mean SD
Wage Yg ($) 0 300000 30386 27531
College Attendance S 0 1 0.71 0.45
Age (months) 130 222 162.1 18.92
Male 0 1 0.47 0.50
Female 0 1 0.53 0.50
Race:
White 0 1 0.84 0.36
Black 0 1 0.14 0.35
Other race 0 1 0.05 0.22
Mother’s education:
High School 0 1 0.46 0.50
College 0 1 0.39 0.49
Less than High School 0 1 0.10 0.30
Father’s education:
High School 0 1 0.33 0.48
College 0 1 0.35 0.47
Less than High School 0 1 0.11 0.31
Grade in Maths 0 4 2.54 1.34
Grade in English 0 4 2.84 1.14
Appearance 1 5 3.65 0.78
Shy 1 5 3.31 1.26
Independent 1 5 1.80 0.76
Instruments:
Number of siblings 0 14 2.59 1.99
Local income 1990 3817 28501 11155 4090
Local unem. 1993 0.02 0.15 0.07 0.02
College ed. 1990 0.03 0.48 0.18 0.11
Variables in Xg only:

Local income 2008 8500 94950 23419 10230
Local unem. 2008 0 0.35 0.07 0.04
Married 0 1 0.55 0.50
Number of Children 0 5 0.90 1.08
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Table 2.4: Description of Variables

Variable Name Description

Outcome variable Yg,
wage

Earnings reported at wave IV (Individuals who do not
report exact earnings are asked to report earnings within
a range of values. We take the mid-value of this range.)

Treatment variable Sg,
college attendance

Dummy variable indicating education level is at least
some college

Variables in Xg and Zg

Age Age of participant at the time of the first wave (1993)

Female Dummy variable indicating female, male

Race Dummy variables indicating white, black or other race

School Dummy variable indicating the school of the respondent

Mother’s Education Dummy variables indicating the respondent’s mother 1.
graduated high school and 2. attended college

Father’s Education Dummy variables indicating the respondent’s father 1.
graduated high school and 2. attended college

GPA Sum of reported grades in Mathematics and English;
A=4, B=3, C=2, D=1, no grade=0

Appearance Response from the surveyor on a Likert scale to the
question “How physically attractive is the respondent?”

Personality variables

Variables on a Likert scale for Shyness and Indepen-
dence (E.g. Response to the question “How much do
you agree with the statement ‘You are Shy.’”

Variables in Zg, not Xg

Number of Siblings Variable of the number of reported siblings

Local income at wave II Income per capita at the local tract area level in 1990

Local unemployment at
wave II Unemployment at the local tract area level in 1990

Local proportion with a
college degree at wave II

Proportion of residents over 25 who hold a bachelor de-
gree or higher, taken at the local tract area level

Variables in Xg, not Zg

Married Dummy variable indicating if the respondent has ever
been married

Number of Kids Variable of the number of reported children

Local income at wave
IV Income per capita at the local tract area level in 2008

Local unemployment at
wave IV Unemployment at the local tract area level in 2008
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3 Results

We follow the model and estimation method proposed in chapter 1 to estimate the

treatment, outcome and returns to education (Model I). We run the MCMC pro-

cedure t = 30000 times, discarding the first 20000 iterations. To obtain standard

errors, we repeat this process R = 30 times. We compare these results to those

derived from the model with no network components (Model III). In this case we

bootstrap the sample to obtain standard errors.

Table 2.5 presents the results of the network formation process for the full model.

Most terms, except those in Cg,i are significant. Characteristics such as shyness or

independence do not statistically determine the number of friends an individual has.

The homophily effects all prove to be important in the model. In particular, individ-

uals select friendships based on similarity in age, race, gender, parent’s education,

GPA and even appearance. Having been friends in the previous period, or having

friends in common in the previous period are particularly strong determinants of

friendship formation. Similarity in unobserved characteristics has a negative effect

on friendship choices. While this effect is reasonably large, it is not highly significant

in this estimation.

Table 2.6 presents the results of the estimation of the treatment equation. Again

most terms are significant. Individual effects are all highly significant, with race, gen-

der and parent’s education relatively important. Most of the corresponding exoge-

nous effects are significant, particularly having college educated parents and having

friends with a higher GPA. Although being black has a positive effect on treatment,

having black friends appears to negatively impact the decision to attend college.

The effect of unobserved characteristics, ξg is small but significant. Three of our

instruments are significant; number of siblings and proportion of college education

positively influence the college decision. Local income has a strong negative effect,

as we would predict.

The results of the model with no peer effects are in table 2.7. Most estimates for

the coefficients of Xg are comparable, with some appearing to absorb the peer effects
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Table 2.5: High School Network Estimation

Variable Estimate Variable Estimate
Cg,i Father: College 0.1661***
Shy −0.0578 (0.0330)

(0.0732) Male 0.1671***
Independent −0.1373 (0.0390)

(0.1089) Female 0.0381***
No. of Siblings −0.0189 (0.0142)

(0.0224) White 0.4123***
Cg,ij (0.1179)
|Ageg,i − Ageg,j| −0.4687*** Black 0.4494***

(0.0076) (0.0836)
|GPAg,i −GPAg,j| −0.0641*** Gg−

2.0982***
(0.0038) (0.1251)

|APERg,i − APERg,j| −0.0665*** Fg− 0.3973***
(0.0159) (0.0394)

Father: No School −0.2923*** |ξg,i − ξg,j| −1.1199*
(0.1117) (0.6533)

Father: High School −0.0540***
(0.0197)

* p < 0.1, ** p < 0.05, *** p < 0.01.

of the full model. However, estimates of the instruments are considerably reduced,

while the fixed effects are much lower. The variances in the base model are high,

particularly for the fixed effects.

As in Carneiro et al. (2011), we divide the MTE by four to obtain annualised

estimates. The result in figure 2.2 is quite striking. Those with low values of US

(and a high probability of attending college) have a high return (49.5%), while those

with high values of US have a negative return (−72%). A 49.5% return indicates

that these individuals would expect to have a wage 49.5% higher if they attended

college than if they didn’t attend college. The MTE is identified over the range

(0.1063,0.9695), where it has common support, while the base model is identified

over the region (0.1435,0.9729). The two models are comparable at low values of US,

although neither are identified in this region. At high US, the full model predicts

a less negative return. The confidence bands for the MTE are much wider for the

basic model, as we saw in chapter 1. We test the difference in LATE’s for a negative

slope. The p-values in table 2.2 demonstrate an undeniably downwards slope at each
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Table 2.6: High School Treatment Estimation

Variable Estimate Variable Estimate
Endogenous effect −0.0271** GPA 0.0830***

(0.0124) (0.0028)
Female 0.3779*** ξg 0.0593***

(0.0043) (0.0136)
White 0.1695*** Fixed Effects

(0.0104) School 1 −0.1640***
Black 0.3422*** (0.0069)

(0.0124) School 2 0.0129***
Parents: High School 0.0450*** (0.0058)

(0.0046) School 3 −0.4094***
Parents: College 0.7959*** (0.0077)

(0.0041) School 4 −0.4111***
GPA 0.1225*** (0.0090)

(0.0009) School 5 0.3157***
No. of Siblings 0.0027*** (0.0095)

(0.0012) School 6 −0.0263***
Income 1990 −0.2027*** (0.0086)

(0.0033) School 7 −0.4915***
Unemployment 1993 0.0044*** (0.0088)

(0.0086) School 8 −0.0773***
College Prop 1990 0.5045*** (0.0169)

(0.0108) School 9 0.0920***
Exogenous Effects (0.0106)
Female 0.0496*** School 10 0.2663***

(0.0094) (0.0065)
White 0.1161*** School 11 0.2387***

(0.0127) (0.0115)
Black −0.2448*** School 12 0.1207***

(0.0220) (0.0124)
Parents: High School 0.0908*** School 13 0.3465***

(0.0100) (0.0083)
Parents: College 0.5521***

(0.0142)

* p < 0.1, ** p < 0.05, *** p < 0.01.

point of the MTE. Clearly individuals are self-selecting into college in this model,

with those who are likely to attend college receiving much higher returns.

The support for the propensity scores, Pg, can be seen in figure 2.3. As expected,

we see that at low values of Xg, we observe most support at low values of Pg.

Conversely, high values of Xg are associated with high propensity scores. In figure

2.3b we see that, largely, the model correctly assigns high propensity scores to those

who attend college. Those who don’t attend college have a more diverse spread of
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Table 2.7: High School Treatment Estimation: No Networks

Variable Estimate Variable Estimate
Female 0.3537** School 4 −2.2977

(0.1568) (5.0353)
White 0.3126 School 5 −1.4049

(0.5606) (5.0171)
Black 0.2732 School 6 −1.7360

(0.5572) (5.0526)
Parents: High School 0.1084 School 7 −2.4233

(0.1569) (5.0636)
Parents: College 0.7982*** School 8 −1.7595

(0.1685) (4.7392)
GPA 0.1267*** School 9 −1.8119

(0.0321) (5.0316)
No. of Siblings 0.0090 School 10 −1.6826

(0.0384) (5.0952)
Income 1990 0.0979 School 11 −1.5257

(0.5652) (5.1571)
College Prop 1990 0.0486 School 12 −1.6394

(1.5111) (5.1949)
Fixed Effects School 13 −1.3898
School 1 −1.8591 (5.1689)

(4.9976)
School 2 −1.8531

(5.0886)
School 3 −2.3501

(5.0971)

* p < 0.1, ** p < 0.05, *** p < 0.01.

propensities, but most weight is given under 0.5.

We see similar results for the base model. The base model generally assigns low

Pg values to low Xg values, but in figure 2.3c, we see a tendency to assign high Pg

values across a range of Xg values. Figure 2.3d shows that the base model is slightly

worse at separating those who attend college and those who do not, with fewer low

propensities assigned.

Table 2.8 describes the results of the MPRTE for the high school networks. As

in the MTE, we observe high returns in each case. Those induced into treatment

by a small change in policy, receive a return of around 35%. This is similar for

both the case when we increase the instruments or increase propensity additively.

The return is slightly reduced if propensity is multiplicatively increased. As our

exogenous effects are effectively used as instruments, we can conclude that a marginal
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(a) Full Model (b) Base Model

Figure 2.2: MTE for the returns to college education

(a) Support of Pg given Xg (b) Support of Pg given S = 1, 0

(c) Support of Pg given Xg - no networks
(d) Support of Pg given S = 1, 0 - no net-
works

Figure 2.3: Support for high school network data

increase in the exogenous peer effect will lead to a positive return to those induced

into attending college. The base model policy effects are more muted. Those induced

to attend college by a change in policy are predicted to receive a 20% increase in
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wage, although the standard error of this estimate is reasonably high.

Table 2.8: MPRTE in High School Networks

Policy Change Model with Networks Model without networks
Zk
α = Zk + α 0.3503*** 0.2095

(0.0606) (0.2663)
Pα = P + α 0.3519*** 0.1956

(0.0610) (0.2579)
Pα = (1 + α)P 0.2764*** 0.0828

(0.0531) (0.2057)

* p < 0.1, ** p < 0.05, *** p < 0.01.

We can also directly measure the effect of other changes in our model. In particu-

lar, we can measure the effect of an increase or decrease in particular characteristics.

For example, if we increase the college education of every 5th student’s parents by

10%, we observe a treatment effect of 34.64% with a standard error of 21.68%.

Relaxing the assumption of the exogeniety of Xg we obtain figure 2.4. The three

labour market variables and ξg, functioning as instruments are allowed to vary as Xg

is held constant. In this case, it appears the strength of the instruments in identifying

the MTE is low. We identify the black portion of the MTE curve only. We see in

figure 2.3 that most propensities are clustered around 0.8. This corresponds to the

portion of the MTE identified in the model when Xg is endogenous. The MTE is still

downwards sloping in these regions. The MTE has drastically different intercepts

depending on the value we hold Xg at. This is to be expected, given the number

of variables in Xg in comparison to the number of instruments included. Including

exogenous peer effects as instruments gives us the result in 2.4a.

In comparison, the base model has fewer instruments and as a result identifies a

slightly smaller region for identification in this endogenous setting. The ξg variable

and the exogenous peer effects offer greater variation in instruments, though this

improvement is not dramatic in this case.
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(a) Full Model (b) No Networks

Figure 2.4: College Network Under Endogeneity

4 Discussion

Comparing the two models presented above, we see, in general, that the peer effect

model produces results with a smaller variance and greater identification. In the

treatment equation, most individual effects have similar estimates. It appears that

in the base model some of the exogenous effects are absorbed into the individual

characteristics. The greatest difference in the treatment estimates lies in the fixed

effects. The basic model predicts lower fixed effects than the full model. The standard

errors in the full model are considerably smaller, particularly for the fixed effect

terms.

Results in the MTE are similar between the models, with the full model displaying

a less negative return for higher values of US. The confidence bands for the full model

are much smaller, as in chapter 1. The most notable difference is in the MPRTE.

The full model predicts a significantly higher return for those affected by changes in

policy. This may be due to the prediction of propensities clustered largely above 0.5,

corresponding to the region where the full model predicts higher returns to education.

Thus most individuals at the margin will experience a higher predicted return under

the peer effect model. In addition, we observe a lower MPRTE variance in the peer

effect model.

In addition to the changes noted above, introducing peer effects allows us to
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achieve a greater range of identification in both the case when Xg is exogenous and

when Xg is endogenous. In the exogenous case, we identify the MTE at slightly

lower values of US, according to figure 2.3. In the endogenous case, the addition of

peer effects allows us additional instruments for identification. As in figure 2.4, we

identify a greater range across the MTE, as the additional instruments allow more

variation when Xg is held constant.

The proposed peer effect model is unique in its ability to control for homophily

in observed and unobserved characteristics. In the network model, we note strong

homophily in several dimensions including age, GPA, appearance, parental educa-

tion, gender and race. High school students appear to select strongest across age and

race. While the age affect is unsurprising (students are grouped into classes by age),

the lack of racial crossover may be more concerning. We find modest but significant

effects for GPA and appearance i.e. students select friends based on similarity in ap-

pearance and achievement. Males are more likely to nominate friendships with other

males, while the homophily of females is somewhat weaker. Students with fathers

who did not finish high school are less likely to become friends with similar students.

This may, however, just be an indication that these students make less friends in

general. Students with college educated fathers do tend to cluster together.

Homophily, by definition, groups individuals together so that we observe similar

outcomes and similar decisions across segments of the population. While homophily

often works against those on the negative side of the distribution, in our setting the

effect of homophily is largely positive. In fact, it may be possible for policy mak-

ers to use homophily as an instrument to achieve positive outcomes. Many of the

characteristics in which homophily is displayed; gender, race, parental education and

GPA, strongly influence the probability that a student decides to enrol in college.

The result of such homophily is to reinforce the decision of the student. As discussed

in chapter 1, this reinforcement occurs through both endogenous and exogenous peer

effects. As students select friends based on similarity in characteristics, characteris-

tics encouraging college attendance will be reinforced by positive exogenous effects

and the increased likelihood that their friend will also attend college (endogenous
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effects).

Given the evidence that individuals self-select into college based on their returns,

homophily assists in allocating students to the decision which results in the highest

return. Those who should attend college (who would obtain a positive return) are

now encouraged to do so, while those unlikely to attend college (who would experience

negative returns) are further dissuaded. This does, however, leave some individuals

somewhat entrenched. If a student is surrounded by other students unlikely to attend

college, the probability they will separate from their friends in the college decision is

low, even if positive returns are possible.

From a policy standpoint, homophily makes it easier to target certain groups of

individuals. If policy makers want to assist one particular racial group, homophily

and peer effects can work in tandem to magnify these policy effects, and spread

them across the peer group. Changing the social norms in a large group, however, is

usually a difficult prospect and requires a critical mass to shift the direction of the

peer effect.

Turning to the results of the treatment equation, we note that most coefficients

are significant. Race, gender and parental education all prove to be especially im-

portant in determining the likelihood of attending college. GPA is less important

but still significant. Each of our instruments are significant, though number of sib-

lings is a weak determinant of attendance in college. As expected, lower income

and higher college attendance in the local area positively influence the likelihood of

college enrolment. Most of our exogenous effects are also significant. Considering

exogenous effects, having white friends and having female friends positively influence

the probability of treatment. Similarly if friends have a higher GPA, or have college

educated parents they will be more likely to attend college. Having black friends ap-

pears to reduce the probability of college attendance, though being black is a strong

positive influence on the probability of treatment. This may be a product of multi-

collinearity between individual and peer characteristics, given the racial homophily

we have already noted. The base model predicts a similar positive result of black

students on college attendance. In this sample, black and white students dominate
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the sample and are more likely to attend college than those of other races (mostly

Hispanic and Asian in our sample). The much investigated disparity between black

and white students is not prevalent in our sample. In fact, black students appear to

have higher college attendance and higher average wage than white students (French

et al. (2015) find and discuss a similar result in the Add-Health data). Being female

significantly increases the probability of attending college, a result which has been

well documented. Much research has discussed the factors underlying this reversal

of the gender gap including the effects of childhood neighbourhood and environment

(Chetty et al., 2016), teaching style (Dee, 2005) and school quality (Figlio et al.,

2016). The effect of GPA on college attendance is only small, although the effects

are accompanied by an associated small exogenous effect of peer GPA.

The presence of college educated parents is the strongest indicator of college

education, accompanied by a strong exogenous peer effect of having college edu-

cated parents. A social norm effect can be asserted: students who are accustomed

to interacting with those who have previously attended college, whether their par-

ents, or friend’s parents, are themselves likely to enter college. Being surrounded

by highly educated individuals creates expectations for the individual of their col-

lege enrolment. Students who only have experience with college education conclude

that further education is the required norm, while those who interact only with non-

college educated individuals are less likely to anticipate a college future. We do not,

however, find evidence of a positive endogenous effect. The direct effect of friend’s

intentions to attend college is irrelevant, having controlled for all other individual

and peer factors. Thus having friend’s with college educated parents is much more

important than having friends who plan on attending college themselves. These find-

ings may be particularly pertinent in a policy setting. Students must view college

education as a viable option. Interaction with people who have attended college

allows college education to appear more realistic, or more normal, with the benefits

of college education more directly observable. Social norms are a strong mechanism

to encourage certain individual decisions and behaviours. Policies that exploit social

norms can be particularly effective (Del Bello et al., 2015). One other possible ex-
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planation for the insignificance of peer effects is that the endogenous effect is simply

absorbed by several of the exogenous effects, which influence the likelihood that both

the individual and the peer will attend college.

Given the significance of the peer effect terms (particularly exogenous peer effects)

in the treatment model, and the positive returns associated with policy changes,

consideration of peer effects is likely to enhance education policy strategies. If policy

works to increase any of the discussed characteristics within a school, then benefits

may spread across the network through the social multiplier effect. Peer effects can

be used as an instrument to implement change or to improve the effectiveness of

policy.

The MTE curve demonstrates strong evidence of self selection into college. Those

with high probability of attending college benefit greatly from doing so, while those

unlikely to attend would achieve a very low return if they did. The data in this case

may represent an extreme sample. Taking simple averages, those who attend college

have a mean observed wage 93.29% higher than those who do not attend college.

Thus, those along the extremes would expect to achieve a dramatic differential in

wage depending on their choice to attend college. It is worth asking the question why

returns are lower for individuals who are unlikely to attend college. Choice of college

or college major may be one factor, so that even if these individuals do attend college,

they are either unable or unlikely to enrol in college courses which would increase

their returns. If this were indeed the key issue, then encouraging college attendance

for all students would not be enough to increase their returns; selection of college

and college major, and the probability of success within this degree would be an

important consideration.

Endogeneity in the Xg variables proves difficult to manage when estimating the

MTE. We only identify a small section of the MTE curve, when Xg is held con-

stant. This problem would be mitigated under the presence of stronger instruments,

uncorrelated with the regressors in the outcome equation. As noted, however, peer

effects do afford additional variation, particularly in the unobserved ξg effects. The

estimation in this case is limited by the small sample size. Only 13 smaller schools
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are available here, and may not be representative of the true population of schools in

the US. A larger sample size would allow more accurate estimation of the nonlinear

outcome equation, and would provide increased variation in parameters for greater

identification.

The MPRTE in each case is positive, such that those influenced by policy changes

would receive positive returns from attending college. Thus any change in policy is

generally constructive, including changes in the peer effect. Given the importance

of peer effects in the college decision, peer effects provide a useful tool to encourage

college attendance.

The estimation is potentially distorted by the structure of the data. Due to the

limitations of the survey, we cannot map friendships outside of the school. This

means that modelled friendships are only a subset of the true friendships and our

estimates of peer effects are likely to underestimate the true peer effect. We have

already discussed the important role of parents and friend’s parents in the peer effect,

so we would expect other individuals outside the school to also contribute to the peer

effect. In addition, removing individuals with no named friends from the sample may

also affect the results. It is difficult to know the net impact of this omission without

further investigation. We would still expect friendless students to be subject to some

peer effect, whether in relationships outside of the school, or with unlisted classmates.

It is likely this peer effect would be weaker than the one measured within the school.

Those deleted from the sample went to college less often and received a lower wage

on average, although returns to college were higher for these individuals. Of those

deleted from the sample, 62.6% went to college, receiving an average wage of $31942

and a return to education of 1.58 (compared to 69.34%, $34159 and 1.29 for those

in sample). We may conclude, therefore, that removing these individuals from the

sample causes returns to be underestimated.

We noted that friendships were generally transient in the data sample. Almost

50% of friendships from one period were not transferred to the next. We can either

attribute this high number to measurement error, such that individuals were not

complete in their recording of friendships from one period to the next, or conclude
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that most friendships are generally short-lived at this stage of high school. This is

surprising given the significance of the peer effects we have found in the decision

to attend college. One explanation may be that friendships observed in the first

period are observed earlier in high school, when students are adjusting to the new

environment of high school and making many new friends. By the time we record

period 1 friendships, these friendships may carry a greater weight and be more stable

over time. This may also lead to the conclusion that the peer effect is not equally

weighted over a student’s friends. More stable, deeper friendships may hold a greater

weight in the decision making processes of students. The peer effect we found may be

distributed more heavily over a closer group of friends rather than being an average

of the reported friendship roster of the individual. One could place weights on the

order of the friendship roster to test this hypothesis.

5 Conclusion

This paper proposes a model to enable the incorporation of peer effects into a stan-

dard treatment effects framework. We explore identification within this model and

present a Bayesian estimation method. The model is tested using a Monte Carlo

experiment and applied to a data-set of high school students.

We find that the inclusion of peer effects allows wider identification and greater

accuracy in estimation. Without controlling for peer effects in a model where peer

effects are important, estimates will be biased. The inclusion of peer effect terms

provides us with useful instruments for estimation and allows a greater range of

identification when Xg is both exogenous and endogenous. Our model obtains more

accurate measures of the marginal treatment effect and reduces the associated stan-

dard error.

We adjust for unobserved peer effect terms by including a network formation

model. The proposed network formation model relies on homophily, where individ-

uals select friendships based on similarity in characteristics for identification. Ho-

mophily plays a strong role in the estimation, increasing the size of propensity scores
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in the model, increasing returns at each quantile and allowing stronger identification.

In our data section, we find that peer effects are significant in the treatment equa-

tion. There is evidence that peers play an important role in the decision to attend

college. Homophily in friendship selection is strong and prevalent, and controlling

for unobserved characteristics is important in preventing the problems associated

with homophily. The inclusion of peer effects is important from a policy analysis

perspective. Peer effects can either distort policy intentions or promote the diffu-

sion of the benefits of a policy across the network. Peer effects can be directly used

as a policy instrument. We find that when peer effects are increased in the college

decision process, those students induced to attend college benefit from doing so. Fur-

thermore, when we increase some characteristic in a school, such as the proportion

of college educated parents, the student benefits not only from the increase in their

own parent’s education, but also from the increase in friend’s parents education, and

the increase in probability that their friends will now attend college.

The proposed model can be used in settings where peers affect the binary treat-

ment decision of an individual, independent of a continuous outcome. We have

explored the setting where peers influence the decision of an individual to attend

college, independent of an observed future wage outcome. Other possible settings

could explore binary decisions such as the decision to smoke, the decision to en-

gage in delinquent behaviour or the decision to marry. Associated outcomes may

be continuous health or economic related outcomes, independent of the original peer

effect.

The peer effect treatment model presented here, allows us to adjust for and con-

duct measurement of important peer effects in econometric settings. The proposed

method adequately controls for potential biases and addresses many of the complica-

tions in network estimation. Wider acceptance and use of peer effect models within

econometrics will allow us to more widely contemplate and exploit the potential

role of networks in enacting and dispersing economic and social policy in numerous

settings, and may allow significant improvements in the effectiveness of community

based initiatives.
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Appendix

1 Identification in the College Decision Equation

Identification as in Goldsmith-Pinkham and Imbens (2013) is achieved in the net-

work formation model through asymptotic theory, particularly in the case when few

networks are present. Homophily in observed characteristics, such that individuals

who are very dissimilar are unlikely to become friends, allows us to assume a level

of independence in the network. A summary of the theory can be found in Chan-

drasekhar (2016) and is expounded in Leung (2014). This theory derives a law of

large numbers and central limit theorem that can be applied to the network model.

The argument is repeated below in the context of this paper. The link formation

model can be expressed as

Dg,ij = 1[Ug,ij(Dg,Wg; θ, δ) > 0] · 1[Ug,ji(Dg,Wg; θ, δ) > 0] (1.1)

such that,

Wg = {cg,i, cg,j, cg,ij, Dg− ij
, Fg− ij, ξg,i, ξg,j, εij; i, j ∈ Nn

}
,

where Nn is the set of all nodes. Leung defines the node statistic of node i,

ψi(Dg), such that ψi(Dg) is a function that depends only on the network Dg through

the set of links between all nodes connected to node i (the component of node i). We

would like to prove that a law of large numbers and central limit theorem exists for

corresponding network moments, which can be written as 1
Ng

∑Ng
i=1 ψi(Dg). In our

model we are interested in the network moments corresponding to the probability

of linkage i.e. P (Dg,ij = 1). Under certain conditions, {ψi(Dg); i ∈ Nn} forms an

α-mixing field, such that the linking decisions of individuals in the network are

sufficiently uncorrelated. This α-mixing field allows the establishment of a law of

large numbers and central limit theorem for network moments.

As laid out by Leung (2014) and Chandrasekhar (2016) the assumptions required
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for an α-mixing field to exist are as follows:

1. No coordination: Under θ, δ and for a given Wg, sets of nodes that aren’t

connected under any equilibrium make friendship linkage decisions indepen-

dently. i.e. isolated friendship networks have no incentive to coordinate on

their friendship decisions.

2. Homophily: Irrespective of endogenous network effects on utility, it is typically

not worthwhile to link directly to someone who is very far away in homophilic

characteristics.

Let d(i, j) be a matrix representing the difference in characteristics in which in-

dividuals display homophily. For example, in our model d(i, j) could contain the

difference in age or observed GPA for individuals i and j: d(i, j) =
[
|AGEg,i −

AGEg,j|, |GPAg,i − GPAg, j|
]
. As long as individuals are typically unlikely to link

with those far away in these characteristics, the homophily condition will hold. We

can express

Ug,ij(Dg, w; θ, δ) = Uij( d(i, j)︸ ︷︷ ︸
distance

, z(D,w)︸ ︷︷ ︸
endogenous

, f(w)︸ ︷︷ ︸
exogenous

; θ, δ) (1.2)

so that z represents non-homophilic endogenous network effects (which may depend

on the network D) and f represents non-homophilic exogenous network effects. As

such the homophily assumption says:

lim
d(i,j)→∞

Uij(d(i, j), z̄, f(w); θ̄, δ̄) < 0 (1.3)

for f(w) ≤ f̄ , and the probability of f(w) > f̄ is sufficiently low, such that the

exogenous and endogenous effects are generally bounded.

3. Thin Tails: The distribution of εij has thin tails such that P (εij > r) ≤ Ce−κr

for some C,κ > 0. This condition is satisfied if εij is normally distributed as in

our model.
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4. Increasing Domain: supn maxi∈Nn(#j ∈ Nn : |d(i, j) < r0|) < ∞, for some

r0 > 0. This says that the largest number of individuals that are at most a

distance r0 away from any other individual is finite. Communities are small

relative to the overall network.

5. Diversity: For any individual i and distance r, there exists a set of nodes S

containing i such that any k ∈ S satisfies d(i, k) < r and d(k, l) ≥ 9κ−1 log r

for l /∈ S and κ−1 given in condition 3.

This condition ensures that there is sufficient diversity in the distance characteristics.

Diversity ensures that α(i, j) decays at a sufficiently fast rate for a CLT. This is a

sufficient condition to prove that P (Di,j = 1) → 0 as d(i, j) → ∞. In our case, we

use several homophilic indicators; parents education, personality variables, School

achievement, age, race and gender to ensure sufficient diversity.

2 Additional tables and figures

2.1 Chapter 1

Table 2.1: Test of Equality of LATEs over different intervals

Ranges of US for LATEj (0,0.04) (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44)

Ranges of US for LATEj+1 (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44) (0.48,0.52)

Difference in LATEs 0.0502 0.0723 0.0937 0.1145 0.1346 0.1542

p-value 0.5333 0.3000 0.2333 0.1333 0.0667 0.0667

Ranges of US for LATEj (0.48,0.52) (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92)

Ranges of US for LATEj+1 (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92) (0.96,1)

Difference in LATEs 0.1731 0.1915 0.2093 0.2264 0.2430 0.2589

p-value 0.1333 0.1333 0.1667 0.1667 0.1333 0.1333

joint p-value 0.13333
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No Networks No ξg Full Model

Figure 2.1: MTE with corr(Xg, U) = 0.3

No Networks No ξg Full Model

Figure 2.2: MTE with corr(Xg, U) = 0.75
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(a) θ1 (b) θ3,1 (c) θ3,2 (d) θ3,3

(e) θ4 (f) θ5 (g) δ

(h) ξ43 (i) ξ101 (j) ξ151

Figure 2.3: Network Formation MCMC plots
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(a) γ1 (b) γ0 (c) γ2,1 (d) γ2,2

(e) γ2,3 (f) γ3,1 (g) γ3,2 (h) γ3,3

(i) α1 (j) α2

Figure 2.4: Treatment Equation MCMC plots

70



2.2 Chapter 2

Table 2.2: Test of Equality of LATEs over different intervals for high school networks

Ranges of US for LATEj (0,0.04) (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44)

Ranges of US for LATEj+1 (0.08,0.12) (0.16,0.20) (0.24,0.28) (0.32,0.36) (0.40,0.44) (0.48,0.52)

Difference in LATEs 0.2325 0.2497 0.2698 0.2929 0.3194 0.3496

p-value 0 0 0 0 0 0

Ranges of US for LATEj (0.48,0.52) (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92)

Ranges of US for LATEj+1 (0.56,0.60) (0.64,0.68) (0.72,0.76) (0.80,0.84) (0.88,0.92) (0.96,1)

Difference in LATEs 0.3838 0.4222 0.4650 0.5124 0.5646 0.6216

p-value 0 0 0 0 0 0

joint p-value 0
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(a) Shy (b) Independent (c) Ageg,i −Ageg,j (d) GPAg,i −GPAg,j

(e) Father College (f) Female (g) Gg− (h) Fg−

(i) δ (j) ξ43 (k) ξ101 (l) ξ151

Figure 2.5: Network formation MCMC plots for high school networks
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(a) Endogenous (b) Female (c) Parents: College
(d) Exogenous: Fe-
male

(e) Exogenous: GPA (f) Income 1990
(g) College Propor-
tion 1990

(h) ξg

(i) α3 (j) α5

Figure 2.6: Treatment Equation MCMC plots for high school networks
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