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We present a new formulation of pseudoscalar meson loop corrections to nucleon parton distributions
within a nonlocal covariant chiral effective field theory, including contributions from SU(3) octet and
decuplet baryons. The nonlocal Lagrangian, constrained by requirements of local gauge invariance and
Lorentz-invariant ultraviolet regularization, generates additional interactions associated with gauge links.
We use these to compute the full set of proton— meson + baryon splitting functions, which in general
contain on-shell and off-shell contributions, in addition to §-function terms at zero momentum, along with
nonlocal contributions associated with the finite size of the proton. We illustrate the shapes of the various
local and nonlocal functions numerically using a simple example of a dipole regulator.
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I. INTRODUCTION

The important role played by chiral symmetry in
hadron physics has been documented for many decades.
Traditionally the purview of low-energy hadron and nuclear
physics, more recently the relevance of chiral symmetry in
QCD has become more prominent also in high-energy
reactions, in which the quark and gluon (or parton) sub-
structure of hadrons is manifest. One of the most striking
expressions of the chiral symmetry and its approximate
breaking is in the nonperturbative structure of the sea quark
distributions of the nucleon [1,2]. In particular, the breaking
of chiral SU(3) symmetry was anticipated [3] to generate
unequal strange and (light) nonstrange sea quark distribu-
tions, and, even more dramatically, an excess of d antiquarks
over u. The latter was confirmed in proton-proton and
proton-deuteron Drell-Yan experiments at CERN [4] and
Fermilab [5], following earlier indirect indications from
inclusive [6] and semi-inclusive [7] deep-inelastic scattering
(DIS) data on proton and deuteron targets.

The observation of a large d —u asymmetry has also
served to motivate more challenging searches for other
nonperturbative asymmetries, such as those between strange
and antistrange quarks in the proton, s —5 [8-10], or
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between the helicity dependent light antiquark distributions,
Ad — Au [11]. The phenomenological success in describing
the d — u asymmetry, in particular, in terms of nonpertur-
bative models of the nucleon in which its peripheral structure
is modeled by a pseudoscalar meson cloud suggested that
signatures of chiral symmetry breaking may also be found
in other types of parton distribution functions (PDFs)
[8,12-18].

While considerable experience has been accumulated
with nonperturbative models, a challenge has been to
compute the chiral symmetry breaking effects on the
PDFs in a model-independent way from QCD. An impor-
tant step in establishing a direct connection with QCD was
made with the observation [19] that the leading nonanalytic
(LNA) behavior of moments of the nonsinglet PDFs,
expanded in powers of the pion mass, m,, could be
obtained from chiral effective field theory, which encodes
the same chiral symmetry properties as present in QCD
[20-22]. In addition to demonstrating how lattice QCD
data on PDF moments and other observables simulated at
unphysically large pion masses could be extrapolated to the
physical point [23], the result [19] demonstrated unambig-
uously that a nonzero component of d — % arises as a direct
consequence of the infrared structure of QCD.

Subsequent work [24-29] computed the full set of lowest
order corrections to PDFs arising from pseudoscalar meson
loops, both for the PDF moments and the Bjorken-x
dependence. The LNA behavior of the various contribu-
tions can be established model-independently by consid-
ering the infrared limit; however, the computation of the
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full amplitude requires specific choices for regularizing the
divergences in the loop integrals. In the literature, regu-
larization prescriptions such as transverse momentum cut-
offs, Pauli-Villars, dimensional regularization or infrared
regularization have been used, as well as form factors or
finite-range regulators. The latter take into account the
finite size of hadrons [30,31], while the others are generally
more suitable for theories that treat hadrons as pointlike.

In practice, the extended structure of the nucleon and
other baryons does become important in many traditional
hadronic physics applications. In nonrelativistic calcula-
tions, if the regulators are in three-dimensional momentum
space, such as for finite-range regularization, charge con-
servation, which is related to the time component of the
current, is respected in the presence of form factors. In
relativistic calculations, on the other hand, simply replacing
the nonrelativistic regulator by a covariant one can lead to
violation of local gauge symmetry and charge conservation.

The problem of preserving gauge invariance in theories
with hadronic form factors can be formally alleviated by
introducing nonlocal interactions into the gauge invariant
local Lagrangian, which allows one to consistently generate
a covariant regulator. A method for constructing nonlocal
Lagrangians with gauge fields was described by Terning
[32], based on the path-ordered exponential introduced by
Wilson [33] and earlier by Bloch [34]. Variants of the
method were subsequently used in phenomenological appli-
cations to strange vector form factors and other nucleon
matrix elements by a number of authors [35-37]. The pion
and ¢ meson properties have been studied by gauging
nonlocal meson—quark interactions in relativistic quark
models [38,39]. The nonlocal Lagrangian at the hadron
level was also recently constructed and applied to electro-
magnetic form factors of the nucleon [40-42].

The presence of gauge links in the nonlocal Lagrangian
connecting different spacetime coordinates generates addi-
tional diagrams which are needed to ensure the local gauge
invariance of the theory. This guarantees that the proton
and neutron charges, for example, are unaffected by meson
loops, or that contributions to the strangeness in the
nucleon from diagrams with intermediate state kaons
and hyperons sum to zero. These basic features of the
theory are not guaranteed for a local Lagrangian with a
covariant regulator, but arise automatically in the nonlocal
theory in which the Ward identities and charge conserva-
tion are necessarily satisfied. In fact, a nonlocal formulation
may be preferable on physical grounds, as this more
naturally represents the extended structure of hadrons.

In this paper we describe how the nonlocal formulation
of the chiral SU(3) effective theory can be used to derive the
contributions from pseudoscalar meson loops to PDFs in
the nucleon. We include both the SU(3) octet and decuplet
baryons, using a covariant regulator generated through the
nonlocal Lagrangian that respects Lorentz and gauge
symmetry. In the present paper we focus on the formalism

and the derivation of the proton — baryon 4+ meson split-
ting functions from the nonlocal chiral Lagrangian; a
follow-up paper [43] will report on the results for the
nucleon PDFs, computed through convolutions of the
splitting functions and PDFs in the virtual mesons and
baryons in the loops.

We begin by reviewing in Sec. II the familiar local
effective Lagrangian in the standard chiral SU(3) effective
field theory. The generalization of the effective Lagrangian
to the nonlocal case is described in Sec. III, a procedure
which allows the preservation of gauge invariance in the
presence of covariant vertex functions for the nucleon—
baryon—meson interaction. The main results for the
proton — meson + baryon splitting functions are derived
in Sec. IV for the full set of lowest order diagrams,
including rainbow, bubble, tadpole and Kroll-Ruderman
contributions, as well as additional terms that arise from the
gauge links generated from the nonlocal interactions. Here
we present the model independent results for the nonana-
lytic behavior of the moments of the splitting functions,
and illustrate the relative shapes and magnitudes of the
various functions using a simple example of a covariant
dipole vertex form factor. Finally, in Sec. V we summarize
our results and outline future applications of the new
formalism.

II. LOCAL CHIRAL EFFECTIVE LAGRANGIAN

In this section we review the standard local chiral
effective theory for mesons and baryons. The lowest-
order Lagrangian, consistent with chiral SU(3), x
SU(3), symmetry, describing the interaction of pseudo-
scalar mesons (¢) with octet (B) and decuplet (T),) baryons,
is given by [44,45]

_ D _
£ = T(BD — My)B] - 2 Tr{Br'vs{u,. B)]
r R gk . e v\ ik
- ETF[B}'”rs [w,, B]] + T)" (iy"**D,, — Myy" )T}
C. .. _. )
— S [T () TB" 4 He

H—ijk o it | 1 .
=5 Ty rs(u) T + T, U(DU)'], - (1)

where Mz and M are the octet and decuplet masses, D and
F are the meson—octet baryon coupling constants, C and H
are the meson—octet—decuplet and meson—decuplet—
decuplet baryon couplings, respectively, f =93 MeV is
the pseudoscalar decay constant, and “H.c.” denotes the
Hermitian conjugate. The tensor €”* is the antisymmetric
tensor in flavor space, and we define the tensors y** =
Tlr*.v*] and y** =1{y* y*} in terms of the Dirac y-
matrices. The octet—decuplet transition tensor operator @
is defined as
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where Z is the decuplet off-shell parameter. The SU(3)
baryon octet fields B include the nucleon N (= p, n), A,
>+9 and £ fields, and are given by the matrix

1 50 4 1 +
\/52 +\/6A z p
B - ~E A o | 3)
=- =0 —2
= = \/EA

The baryon decuplet fields T;{ k, which include the A, X*,
* and Q fields, are represented by symmetric tensors
with components

—
=
—

1

1
Tlll:A—H—’ T112:—A+, T122=—A0, TZZZZA_,
V3 V3
1 1 1
T113 :_2*+’ T123 Z—Z*O, T223 Z—Z*_,
V3 6 V3
1 1
Tl’53 ——E*O, T233 ——E*_,
V3 3
8=, 4)

In the meson sector, the operator U in Eq. (1) is defined in
terms of the matrix of pseudoscalar fields ¢,

U=u? with u=exp (i\;;f), (5)

The pseudoscalar mesons couple to the baryon fields
through the vector and axial vector combinations

i

1
Fﬂ = 5 (’/ﬁaﬂu + I/tayuT) 2 (MT/lau + u/lauT)vZ’ (7)

w, = i(u Ou —ud,u’) + (u'A%u — ur*u" g, (8)

where v corresponds to an external vector field, and A*
(a=1,...,8) are the Gell-Mann matrices. The covariant
derivatives of the octet and decuplet baryon fields in the
chiral Lagrangian (1) are defined as [46,47]

D,B = 0,B + [, B] — i(°)’B, 9)

gk - o -
D, T/ =0,T,) + (. T,)"* — i(A%0T/", (10)
where 1)2 denotes an external singlet vector field, 1° is
the unit matrix, and (- --) denotes a trace in flavor space.

For the covariant derivative of the decuplet field, we use the
notation

(T, T,)7% = (T,)iTJ* + (T,)/ 7% + (T, kT (1)

For the pseudoscalar meson fields, the covariant derivarive
1s written

where ¢ includes the 7, K and # mesons, D,U = ,U + (iUa* — i2“U)oe. (12)
Lﬂ-o +L ”+ K+
V2 Vet Expanding the Lagrangian (1) to leading order in the
¢ = - - \757/70 + ﬁn K° (6)  baryon and meson fields, the relevant interaction part for a
_ —0 2 meson and baryon coupling to a proton can be written
K K -7 ..
V6 explicitly as
(D+F) ,_ - (D +3F)_
Liy = “ypd,n’ + V2prynd,nt) — ——=—pr'*y’ A9, K"
Y (Pr'y’ pd,a® + V2py'y*nd,xt) T3y PPN,
(D-F) N — D _
2py'y°E0,K° + prryEl0,KT) — #y3 pd
27 (V2pr'r’L*0,K° + py'y’2P0,K") TR
C
+ WOlT, (2P0 A} 9,20 — V2pO*# YD, + VOpOH AT, nm — pOHEL0, K + V2Pt 9, K" + H.e.)
i - _ B =
+ 4—fzpy"p[(ﬂ+8ﬂ7r -7 d,x")+2(K"9,K~ - K 9,K") + (K°9,K° — K°9,K")]. (13)

The terms involving the coupling H are not present because of the restriction to proton initial states. The current calculations
below also do not involve the terms with the coupling H for the proton initial states.
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From the Lagrangian (1) one can also obtain the form of the electromagnetic current that couples to the external field v,
o 1= + D_ F_ _
Ji = ETr[B}/"[u/V’uT +u'A"u, B] + ETr[B]/”)/S{u/I“uT —u'2%, B}] + ETr[By";g [uAu® — u' 2%, B]]
1 , N C
+ ET,,y”"”(uﬂ”uT +u'2u,T,) + > (T, 0" (ul*u’ — u'2%u)B + H.c.)
I - ,
+ ZTr[@”U(UTM“ — U™ + (Uir* = i2*U)orU"). (14)
For the SU(3) flavor singlet current coupling to the external field 02, one has
Jo = (A°)Tr[By*B] + (A°)T,r** T, (15)

where again 1° is the unit matrix and (- --) denotes a trace in flavor space.
The currents for a given quark flavor are then expressed as combinations of the SU(3) singlet and octet currents,

1 1 1
gt L g 16a
3 0 2 3 2\/5 ( )
gt L 1 (16b)
d 3 0 2 3 2\/§ 8
gt L (16¢)
3 0 \/§ 8

where J’3‘ and J’g are the @ = 3 and 8 components of the octet current, respectively. Using Eqgs. (14), (15) and (16), the
currents JY%, J* and J§ can be written explicitly as

_ _ _ 1 _ _
JU = 2Py p +Tiytn 4+ Ay A + 25T pE et 4 T30 — e (Pripata” +2py*pKTK™) + 305 Ty AT + 28,y A
+ Ay PAY 4+ 255y st 4 Ty M0 +i(am 0 a T — 2t 0 a7) + (KUK — KTOMK)
i(D+F) N i(D + 3F)
V2f VI12f

C
+ — (iV6pO* At + iV2pO At + ipOSIOKT + Hee.), 17a
Niv f( P P p ) (17a)

i(D-F
PrYAKT — ‘D-F) )W‘PZOF

S 1p ot
pyry nr 2f

— — — 1 — — —
Jq=Pr'p +2ay'n + 257 p"E7 + E0pE0 + AprA + o2 (P pm T =y pROKY) o+ Aay A + 280" Ay

+ 3Ry PAG + Ty 0 4 0T 0y T — i at — a0 ) + i(KY0M K — KOOMRO)

i(D+F)_ i(D—F)_ C . _ _
+ Pyt — ————L Py KO — —— (iV3PO A T + ipO Adrt + ip@ it KO + Hoc.),
V2f V2f Vof
(17b)
_ — — ] _ _ _ = S a * 5*0,,0 *
Ji =TT + 00+ AYA 277 (271 PKTKT + Py pROK?) o+ 2oty ey Ty
_ .. ib-F i(D—F
—i(K~O"K* — K*O!K™) — i(K°O"K® — K°OFK) + ’(\fzf)ﬁywzﬂ(o + l(2f)ﬁy"y520K+
i(D+3F) _ C _ _
— Py’ AKT + —ipOSIOKT 4+ i\2pO S tKY + Hee.), 17¢
N T Niv) f( P p ) (17¢)
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where the terms involving the doubly-strange baryons 2%~ and Z*%~ and the triply-strange Q~ are not present because they
cannot couple to the proton initial states.

III. NONLOCAL CHIRAL LAGRANGIAN

In this section we describe the generation of the nonlocal Lagrangian from the local meson—baryon Lagrangian in Sec. II.
Evaluating the traces in Eq. (1) and introducing the minimal substitution for the electromagnetic field A,, the local
Lagrangian density can be rewritten more explicitly in the form

L0040 (x) = B(x) (iy* Dy = Mp)B(x) + % [P(X)r"y° B(x)D,xp(x) + Hec.] + T, (x) (iy"* Doy, = Myy™)T, (x)

+ S [PWIONT, (00D, 5) + H + S H P pOH) Dy () = Dy ()]

+ Dy () (D) () + -+, (18)

where for the interaction part we show only those terms that contribute to a meson—baryon coupling to a proton, and we
keep the dependence on the space-time coordinate x explicitly. The covariant derivatives here are written so as to indicate
the coordinate with respect to which the derivative is taken,

D, B(x) = [0, —ie} A, (x)|B(x), (19a)
D, T"(x) = [0, — ie7 A, (x)]T*(x), (19b)
D,M,.X¢(x) = [8;! - ieZ&-Aﬂ(x)](ﬁ(x)’ (19C)

where e, e and e;’s are the quark flavor charges of the octet baryon B, decuplet baryon T and meson ¢, respectively. For
example, for the proton one has the charges ), = 2e;§ =2, e}, = 0, while for the >+ hyperon ey, =2e5, =2, eg+ =0, and
so forth. For the mesons, the flavor charges for the z™ are er. = —ei‘? =1 but eZO = 0 for all g, and for the K™ these are

e = —ey. =1, e‘;<+ = 0, and similarly for the charge conjugate states. These flavor charges may be read off from the
currents given in Egs. (17a)—(17c). The coefficients Cp, and Cr, in Eq. (18) depend on the coupling constants D, F and C,
and are given explicitly in Table I for the processes discussed in this work.

Using the methods described in Refs. [32,37—42], the nonlocal version of the local Lagrangian (18) can be written as

Lmonoc) (x) = B(x)(iy* D, — Mp)B(x) + T,(x)(iy" Dy — Mry*)T,(x)

+p(x) [% "y B(x) + @G)””Ty(x)] / d*aGj(x,x + a)F(a)Dy vy ap(x + a) + H.e.

f
) [ da [ E0gYa+ b+ F@FD
X (B + @) (Dys®) (5 + b) = Dy + @7 (3 + b)) + Dy (x) (D) (x) + -, (20)

TABLEIL Coupling constants Cpy, Cry and Cy,: for the pBg, pT¢p and p po¢’ interactions, respectively, for the
various allowed flavor channels.

(B¢) (p2°) (nz*) (Z*K?) (Z°K) (AK™)
Cpy I(D+F) %(D%—F) \/%(D—F) N(D-F) —ﬁ(D+3F)
(T¢) (AOIT+) (A+7TO) (A**n") (ZHKO) (Z*OK+)
Cry —Jigc —%C %c %c —ﬁc
(¢9") (zF77) (K°K°) (K*K™)

Copi 3 3 1
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where the gauge link gg is introduced to preserve local
gauge invariance,

Gl (x.) = exp [—ze¢ / Az )} (21)

and the function F(a) is the meson-baryon vertex form
factor in coordinate space. One can verify that the nonlocal
Lagrangian in Eq. (20), as well as local Lagrangian in
Eq. (18), are invariant under the gauge transformations

B(x) — B'(x) = B(x) exp [ieg0(x)],  (22a)
Ty(x) > T, (x) = T,(x) exp [ie76(x)],  (22b)
$(x) = ¢'(x) = p(x) exp [iegH(x)], (22¢)
for the matter fields, and
Ar(x) > A(x) = A'(x) + 0*0(x)  (22d)

for the electromagnetic field, where 6(x) is an arbitrary
function of the space-time coordinate x*.

The nonlocal Lagrangian density in Eq. (20) can be
further decomposed by expanding the gauge link (21) in
powers of the charge ej,

gy(x +b,x+a)

= exp [—ie;(a —b)¥ Al dtA,(x +at +b(1—1))

= 1+8G + (23)

where the O(ey) term is

5G, = —ie)(a — b)" /1 dtA,(x+ar+b(1—1)  (24)

0

and we have used a change of variables 7 — x* + a*r +

b*(1 — t). This allows the Lagrangian £"°) to be written

as a sum of free and interacting parts, where to lowest order

the latter consists of purely hadronic (Chngnk’c

magnetic (Ler,fn o) ), and gauge link (Llr:‘?(nloc ) components.

The higher order terms in Eq. (23) contribute to higher
order electromagnetic corrections, which are in practice
negligible. The higher order terms can also be related to
other processes, such as those involving two or more
photons emitted in the final state.

The hadronic and electromagnetic interaction parts of the
nonlocal Lagrangian arise from the (’)(e;) term in Eq. (23),

), electro-

and are given by

L") (x) = p(x) [% 7"7’B(x) + %@"”Ty(x)] / d*aF(a)d,¢$(x + a) + H.c.

iC
90! “p d*a | d*bF(a
T PO / /

and

LG (x) = €GB B(x) Ay (x) + efT, (x)r" T, (x) Ay (x) + i [0 b ()" (x)

~ielp(x >[CB"’ B +

f f

% OwT

[p(x+ a)0,¢"(x +b) — D,p(x + a)p'(x + b)], (25)

= p(x)0"¢" (x)] A, (x)

D(x)] / d*aF(a)p(x + a)A“(x + a) + H.c.

U () / d*aF (a) / d'bF(b)p(x + a)p* (x + b)[A(x + a) + A(x +b)]. (26

respectively. For the 593, term in Eq. (24), which explicitly depends on the gauge link, the nonlocal interaction with the
external gauge field yields the additional contribution to the Lagrangian density,

C
LZI(S:;(MOC) (x) = —ie;ﬁ(x) [TM Y7’ B(x) + T{/’ T, ( ] / dt/ d*aF(a)a"d,¢(x + a)A,(x + at) + H.c.

. f2 )y p( / dt / d*a / d*bF(a

x A, (x +at+b(1-1)).

—b)[p(x+a)d,¢"(x + b) — 0,p(x + a)p’ (x + b))

(27)
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For the nonlocal theory the quark current has two contributions: the usual electromagnetic current, JZ,em, obtained with

minimal substitution from Eq. (26),

5 [ diyL
5A()

loc)
JZ em( )_ non ocC (y)

= egB(x)y"B(x) + 7 To(x)r™ T, (x) + iey[0"p(x)¢" (x)

= $(x)0"$’ (x)]

te¢/d4aF( )P(x —a) [CT)/” SB(x a)—l—%@””Tb(x—a) ¢(x) +H.c.

- %Copt / d*aF(a) / d*bF (b)[p(x — a)y' p(x — a)p(x)p*(x + b - a)

212
+P(x—b)y'p(x -

and an additional term obtained from the gauge link,

5 [ dyLpe™ (y)
SA ( )

8y (x) =

1 C
= —ie;/ dt/d“aF(a)a"ﬁ(x —at) {TB‘ﬁy/’ySB(x -a

212

x [p(x + (a=b)(1-1))0,¢"(x = (a = b)1)

respectively. Compared with Eqgs. (13) and (17), the non-
local interaction Lagrangian and currents in Egs. (25)—(29)
include the extra regulator function F(a). The local limit
can be obtained by taking F(a) to be a S-function,
F(a) = 8% (a), which is equivalent to taking the form
factor in momentum space to be unity. Since the Fourier
transform of the S-function in position space is a plane
wave in momentum space, the value of the plane wave at
the origin is unity.

Note that compared with traditional power counting
schemes in chiral perturbation theory that use dimensional
regularization [48], the introduction of the regulator function
F(a) in the nonlocal interactions (25)—(27) leads to the
generation of higher order terms in m,, with coefficients that
in general will depend on the regulator mass, such as the
large momentum cutoff parameter A (see Sec. IV B below).
This is analogous to a resummation of the standard chiral
perturbation theory, which goes beyond the usual power
counting regime, at the expense of introducing model
dependence into the calculation. An advantage of this
resummed approach is that one can obtain better conver-
gence in my in regions where the usual power counting
schemes would not be applicable (see Refs. [49,50]).

IV. SPLITTING FUNCTIONS

With the nonlocal interaction and current derived in
Sec. III, in this section we will discuss the splitting

b)p(x +a = b)¢' (x)]. (28)

1)+ %@””T,,(x —at)|0,¢(x +a(l —1)) +H.ec.

ed’c""’” / dt/ d*aF(a / d*bF(b)(a = b)'p(x —at = b(1 = 1))y’ p(x — at = b(1 — 1))

= 0pp(x + (@ = b)(1 = 1))¢"(x = (a = b)1)]. (29)

|
functions describing the interaction of the external field
with the proton dressed by the pseudoscalar fields. We
will derive the general expressions for the proton —
pseudoscalar meson + baryon splitting functions for the
full set of SU(3) octet and decuplet states. After giving
the general results for an arbitrary regulating function F(a),
we derive explicit expressions for a specific choice of
regulator in which the momentum dependence is given by a
dipole shape.

A. Model independent results

The interaction of an external probe with a proton dressed
by pseudoscalar mesons at leading order is given in Fig. 1 for
octet intermediate states and in Fig. 1 for decuplet inter-
mediate states. The diagrams in Figs. 1(a)—(c), (e), (f), (h)—()
correspond to those in the local effective theory, while those
in Figs. 1(d), (g) and (k) arise from the new interactions in
the nonlocal theory given by Egs. (25)—(27). The resulting
amplitudes will be expressed in terms of specific meson—
baryon splitting functions convoluted with corresponding
PDFs in the bare or undressed mesons and baryons. These
will be used to compute the contributions from meson loops
to PDFs in the nucleon, the most direct predictions for
which will be for nonsinglet PDF combinations in which
perturbative QCD effects largely cancel. Examples include
the light-antiquark flavor asymmetry d — @ and the strange
asymmetry s —s. In the valence approximation for the

014041-7



SALAMU, JI, MELNITCHOUK, THOMAS, and WANG PHYS. REV. D 99, 014041 (2019)

//®\\ //“\\ //_\\ 2 \\
l/ ) |/ ! 1 . / \
- 1 ® | ®_ + _®—._
(a) (b) ()
s N Ve AN RN
-~ T~ RN { \ ! \ /
// \\ // \\ \ | \ | \ /)
4—._ + _‘— A@— ~ i _;./_
(d) (e) (f) 9
//®\ /—\ /,\\
\
t——-l J—(XT‘ '—&{)_ _®:_
(h) (i) (J)
//—\\ //—\\
/ \ / \
e i _@—

(k)

FIG. 1. Diagrams representing the interaction of an external current (denoted by the crossed circles) with the proton involving SU(3)
octet [(a)—(g)] and decuplet [(h)—(j)] states: (a) and (h) are for meson coupling rainbow diagrams; (b) and (i) are for octet and decuplet
baryon coupling rainbow diagrams; (c) and (k) are for Kroll-Ruderman; (d) and (j) are for Kroll-Ruderman type diagrams generated by
the gauge link (denoted by the filled circle); (e) is for meson tadpole; (f) is for meson bubble; and (g) is for meson tadpole diagram
generated by the gauge link.

undressed hadrons, the former will only receive contributions from the direct meson coupling diagrams in Figs. 1(a), (f)
and (h), while all the diagrams in Fig. 1 will be relevant for the s — 5 asymmetry.

1. SU(3) octet intermediate states
Beginning with the meson rainbow diagram in Fig. 1(a), the vertex function for the nonlocal theory can be written as [51]
. I !
I%,(20)'50(p - p) = (pI? / 'y d* 2 L) (1) e (1)L (2)] )

2 2
T T [ ar@) [ dorip@rr @+

x (—l[fﬁ(y)@”cb*( )= ¢ (v)0*d(»)])B(2)r’r p(2)9,¢"(z + b)|p).

(30)

nonloc)

where L, (B) is the part of the hadronic nonlocal Lagrangian (25) that depends on the octet baryon fields B. (Note also that
we deﬁned the vertex such that the quark flavor charge e o 1s included explicitly in the bare meson and baryon PDFs

discussed in the next section.) Integrating over the space-time coordinates x*, y* and z*, one has

4 i[(p— B i i _
) [ G [ dart@) [ atbre)p) =P G5 ke () explik -

2
W _CB</)
¢B f2

b)l.  (31)

where the Dirac spinor u is normalized such that wu = 1,
and D, and Dy denote the propagator factors for the
intermediate baryon and meson, respectively,

Dy =k — mj + ie, (32a)

Dy =(p — k)* = M3 + ie, (32b)

where my and My are for the meson and octet baryon
masses. Defining the regulator in momentum space as

Flk) = / daexpl—ia- KF(a), (33)

the vertex operator becomes
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C% 4 ~ i - Bi i T
‘s _._}52u(p)b/azgzgz(;75)p(k)-Kfi——gljlfz—l———zkﬂz;;(yjk)F(—k)u(p>

Dy D,
d*k -

Taking the u = 4 component of the integrand ff;)B, we define the splitting function f{(/fgw) (y) in terms of the light-cone

projection of f";B,

oy MO dk Kt
fos (ﬁ—;/m%ﬁ y=o7 ) (35)

where k™ = k” + k% and M is the nucleon mass. From Eq. (34) the splitting function for the meson rainbow diagram is then
given by

Chy [ dk _ il - 8] i i — +
0= [ o MBI ey - opun 2o(5-52). o

Similarly, the splitting functions for the baryon rainbow diagram of Fig. 1(b) and the Kroll-Ruderman (KR) diagram of
Fig. 1(c) can be expressed as

£ )

2 . .
—%f/f%mePﬂw_m+Mﬂw4W_”+Mﬂ

i~ M et
-2 [ - P oo 5 Put) seo(v=15) - 6)

and

KR Cj ko . ij(p— i(p— :
70 = 2 [ St i) D o ) =DM |

i M [ k
“BF <k>u<p>p—+a(y p+), (38)

respectively.

As discussed in Sec. III, the current generated by the gauge link in Eq. (29) produces the additional diagrams in
Fig. 1(d), 1(g) and 1(k). The amplitude for the Kroll-Ruderman additional diagram in Fig. 1(d) can be written as

. nonloc nonloc
8215 (p = p) = (pli / dyd*z( Loy (7)875(2) + 675() Lyt (2)

i 2
= ?2% /0 arlpl / d'yd*z / d*aF(a) / d*bF(b)
X [=ib*P(y)r'r’ B(y)d,¢(y + a)B(z = bt)y’y p(z = bt)d,$" (z + b(1 = 1))

+ ia*p(y — at)y'y’B(y — at)d,¢(y + t(1 — a))B(2)y’r p(2)0,¢" (z+ b)Ip).  (39)

which after Wick contraction and integration over x*, y* and z#, becomes

oty =Wty [ darta) [ vy [ %

f2
il(7—¥) + Mp]

X {_ibﬂ(k}ﬁ) b, i i[(F—K) + Mp]

W) g+ i) - ) ) explite- (a= ). (40

Performing the integrations over the space-time coordinates a* and b*, the vertex can be further simplified to
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Chg ooy [ 4% [_OF(=K) i(p=H) +My) 5
atp) | {20 oy ) LM

W fi B
s = f? 2m) Dy
i[(#7 = §) + Mp] i
o e

OF (k)
ok

F(=k)(kr) u(p). (41)

In analogy with the definition of the splitting function in Eq. (34), the splitting function for the nonlocal Kroll-Ruderman
diagram in Fig. 1(d) induced by the gauge link can be written as

KR 2C3, Yo s il(p - B 1 F’ i
o) == [ et I ) T sy 10) @)

The main additional feature here compared with the splitting functions in the local theory is the dependence on the
derivative of the hadronic form factor F on k™.
For the remaining meson tadpole and bubble diagrams in Figs. 1(e) and 1(f), the splitting functions are given by

t 4 i ~ -
75700 = [ty P 56 -15). @)
and
(bub) . lC¢¢ dk i 2 =) ﬂ _E
) = = [ St () e 2o y-1). (44)

where the coupling constant C,+ is listed in Table I.
Finally, the vertex associated with the nonlocal tadpole diagram in Fig. 1(g), generated by the gauge link, is defined by

o} = ) = (] [ o)) (45)
and can be reduced to
st [ dYk i ~ OF(k) ~,  OF(—k)
ST = ””*/ = u(p)| F(~k Fk . 46
b= | M ) | g + F =5 (46)
The splitting function for the nonlocal tadpole diagram is then given by
Chp [ d*k 20F*(k) M ket
(tad) )
1) =— — —6ly——]|. 47
500 =4 [ oy un 2 o5 ) ()

2. Decuplet intermediate states

For the splitting functions associated with the decuplet intermediate states in Fig. 1, the diagrams in Figs. 1(h), 1(i)
and 1(j) arising from the local Lagrangian are supplemented by the additional nonlocal Kroll-Ruderman diagram in
Fig. 1(k) induced by the gauge link in the nonlocal theory. Similarly to the meson rainbow contribution in Eq. (30), the
vertex function for the meson rainbow diagram in Fig. 1(h) with an intermediate decuplet baryon 7" can be written

T 2m)*3(p = p) = (I [ d'satyad'z Ly () em ()£ (2 )

=0l [ atsatyite [ dar@) [ #0009 0000 + )
X {—l[ ()¢ (v) = " (v) ()} T, (2)©0° p(2)0,4" (z + b)| p). (48)
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(nonloc)
had(T)
operator ®% is given in Eq. (2). Integrating over the space-time coordinates, one finds

i2C3. 4 il AP(p
FI(;T:quﬁ(p)/(jﬂl;/d4bF(b)/d4aF(a)kaG)“ﬂ [(}7 k) +ll)‘j ]P/;' (p k)

x Di¢2kﬂ DL¢®”"kau(p) exp|[—ik - (a — b)]. (49)

where £ is the part of the hadronic nonlocal Lagrangian (25) that depends on the decuplet baryon fields 7', and the

where the decuplet baryon propagator Dy is the same as Dy in Eq. (32b), but with M replaced by decuplet baryon mass
M. The spin-3/2 projection operator P, like the octet—decuplet vertex function ®,4, depends on the off-shell parameter
Z, defined in Eq. (2). However, as physical quantities do not depend on Z, it makes sense to simplify the form of the
spin-3/2 propagator, and hence in our calculation we choose Z = 1/2, following Refs. [52,53], in which case the projector
P4 is written

YaPp = VYpPa _2Palp

. 50
M, (50)

1
Paﬂ(p> = Yap _gya}/ﬂ -

Note that for this choice one then has the operator @% = ¢* — y*y. Performing the integrations over the space-time
coordinates a* and b* then gives

Chsatp) [ 2 v e WO IMIN TR L gk Bt (o1

T, =
¢ Dy D,” D,

(2z)*

The splitting function for the meson rainbow diagram with decuplet intermediate state is therefore given by

fg;w) () = C%/)/ d*k (p)k, 0% —i[(p = ¥) + Mr]|Pp,(p — k)

B f? (2”)4 Dy
i i - M kt
X — 2kt — (—©%k, ) u(p)F*(k 5<y—>. 52
D, D¢( Ju(p)F~( )p+ P (52)

Following similar procedures as for the octet baryon case, the splitting functions for the decuplet baryon rainbow diagram
in Fig. 1(i) and the decuplet Kroll-Ruderman diagram in Fig. 1(j) can be written as

2 .
f(TrZM (y) = oo / d4k4ﬁ(p)k,,®ﬂv_’[(ﬁ — K M1lPra(p = K) oy

2 ) (@ Dy 4
X_i[(ﬂ_k)"’_MT]Pﬁp(p_k)i —0k \ul(p)E2 M kT
o 5 (O k(P65 = 1) (53)
and
wry o Crp [ A o =il = ) A MAPGL(p = K)o,
70 = [ et te) o -k,
,w_i[('p/_k)—i_MT]Pva(p_k) —i a+ L u 2 ﬂ _E
4,0 I (-ie) - hutp) P o0y = 1), (54)

respectively. Finally, the splitting function for the nonlocal Kroll-Ruderman decuplet diagram in Fig. 1(k) induced by the
gauge link is

2 4 —i _ _ i 2 +
5f§-KR)(y) o 2CT¢/ d’k [(}7 k) + MT]Pva(p k)_(_@omka)u(p) OF (k)£5<y — k_) . (55)

- f2 (2”)4 ﬁ(p)(lkO'@ ) DT D¢ ak_ p+ er
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(bub)

The set of functions {f (row) ngW) f%KR) éfB fq,, ,
(tad)

f ¢ ,Of qstad} for the octet baryons, and {f i f Trgw’

f T ,5 f T } for the decuplet baryons, then represent the
complete set of functions that describe the dressing at one
loop of the interaction of an external current with the proton
in the nonlocal meson—baryon field theory.

B. Covariant dipole form factor

To evaluate the splitting functions derived in the previous
section requires a specific choice for the meson—baryon
vertex form factor F (k). Consistency with Lorentz invari-
ance restricts the form factor to in general be a function of
the meson virtuality k%> and the baryon virtuality (p — k).
For illustration, we choose the regulator to have a simple
dipole shape in k*> with a cutoff parameter A [35,36],
independent of the details of the baryon state,

~ A4
Fk) =—5. (56)
D}
where Dy = k> = A? 4 ie and we define A”> = A> —mj.

Other forms, such as Guassian, monopole or sharp cutoff,
have also been used in the literature [49,50], and, with
appropriate choices of regulator mass for the different
regulators, give rise to qualitatively similar results. An
advantage of the dipole form (56) is that it allows a more
direct comparison with previous literature [35,36,54] that
has used the same functional form.

1. Octet splitting functions

With the dipole regulator in Eq. (56), after reduction
of the y matrices in Eq. (36) the splitting function for the
meson rainbow diagram in Fig. 1(a) can be written as

lrow) ) iC%h/;KS / d*k [)’MZ(AZ —my) yM?
y) = -
B 12 (2n)* | D3DgDj D,DyD%
MA —2p -k k*
+w} 5(}’—7), (57)
D¢DA p

where the average mass M and mass difference A are
defined as

It will be convenient to perform the d*k integration in terms
of light-cone momentum components k¥ = k% & k% and
transverse momentum k ;. The first two terms in Eq. (57)
have poles both on the upper and lower half-plane, so
the integration over k~ can be obtained using the residue of
Dy or D,. For the third term, proportional to 1/ D?, when

k™ # 0 both D and D, have poles on same half-plane, so

the integral vanishes. On the other hand, when k™ = 0 the
integral becomes divergent. We can simplify this term using

-k 2p-ky(1-2)2°
el / / P AT
/ DDy 699 (k> - Q—l—te)

), o[
T 600 k2 — Q+18)

where we define

(59)

Q= (1 -z)my + A% (60)

The integration over £k~ in Eq. (59) can be written as [24,55]

oo 1 2
Ak = 2gil
/_oo Q1 ie Og(

where p is a momentum independent constant. After the k™
integration, the splitting function for the meson rainbow
diagram can be expressed as a sum of an on-shell term,

+Q

)5(/(*), (61)

f g"”, and o-function terms, f((;) and o ff;), generated by the
contact interaction,

CpM?
(4nf)?

The on-shell function is given by

(on) - > Ik + (yM + A)?
£ =& /dk . . (63)
? T YD3Di,

£ o) = ")+ £P0) =8P ). (62)

where y=1-y,
notations [29]

and we employed the shorthand

Dyp = — L BT I T o4
y
k3 4 yM3 — yyM? + yA>
Dy = — L YUy = yyM7 A yAT (64b)
y

The 6-function contributions are nonzero only at y = 0,
and arise from the local and nonlocal interactions. The local
o-function term is given by

A3 1 3
) () — 2 / Z
P =—— [ dk dz
f/ (y) M2 L 0

(K2 +Q)*
1 Q,
= di’ |1
M / [ *®a, Qp
A (11QF —7Q,\Q, +29))
6023

5(y)

o). 69

with
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Qy =k +my,  Qy=k] + A% (66)
The logQ, term in Eq. (65) gives rise to the leading
nonanalytic contribution, which is independent of the
regularization method, as we have verified using various
methods, including Pauli-Villars, dimensional regulariza-
tion or a hadronic form factor. In the limit when A — oo,
the second term in Eq. (65) ~A? /Q, becomes a constant.
Within dimensional regularization, the integral of a con-
stant is defined to be zero, in which case the result coincides
with that in Ref. [28],

10,5 [ @ egtan). (@)

The nonlocal §-function contribution, 5f Ef), in Eq. (62) is
given by

KS 1 Z4
)
5fz(/>>(Y) Z—W/dki/ dszs()’)

1
= / dk} {
M?
~ 303 + 139%94, - 50,95 + Q)
303

logQ

5(y). (68)

In the A — oo limit the first term in the integrand of & ft(;)
vanishes, while the second term becomes a constant,
independent of k| . In dimensional regularization the latter
can again be taken to be zero. The local function f f’f), on the
other hand, retains a dependence on k; through the log €2,
term, so that the splitting function for the rainbow diagram
in Eq. (62) will reduce in this limit to the local splitting
function. In the same limit, for the case ¢ = 7 and B = N,
the integrand of Eq. (63) reduces to the familiar on-shell
form found in the literature [1,56,57],

(k3 +y*M?)
kL +y*M? +ymz)

£ ) - / i (69)

for the specific dissociation p — 7" n.
For the baryon coupling rainbow diagram, Fig. 1(b), the
splitting function in Eq. (37) can be reduced to

F ) iC3,A® / d'k [YMP(A° —m}) M
s T | eyt | Djp,DY DDA

Q-y)MA 1 ket
o - . 70
" pep,0% D0t "\ T (70)

Performing the k™ integral, this can then be expressed as a
sum of on-shell, local and nonlocal off-shell, and §-function
terms,

(rbw) C on (off)
15 0) = Gt [fB 0) + 157 )
+a5f5" () = £ 0)]- (7)

Note that the on-shell splitting functions for the baryon and
meson couplings are equivalent, while the J-function

contribution f{(/f) is as in Eq. (65). The off-shell contribu-

tions in Eq. (71) include local and nonlocal terms. The local
off-shell contribution,

' 2A8 M+ A
1500 =2 [ FUD

, (72)

is similar to that derived in Refs. [25,28], while the nonlocal
off-shell term is given by

0 _ 2+ (yM + A)>
Y Uyl pp

In the A — oo limit, the nonlocal term behaves as
A/D3 5 ~ 1/A2, so vanishes, as expected.

For the Kroll-Ruderman diagram in Fig. 1(c), the
splitting function in Eq. (38) for the dipole regulator
becomes

P / &k [(GM+AM 1
B 72 ) G| D,DsDL " D,DY
k+

which after the k™ integration can be written in terms of the
off-shell and J-function terms,

_ CpM?

_ (off) 2 (8) } 75
o [0 200 09
as given in Egs. (65) and (72). (Note that the notation
used here differs slightly from that of Ref. [29], where
for strange octet baryons coupled to kaons the Kroll-

Ruderman function was labelled by f %R); here we drop
the meson label, as for a proton target the choice of
baryon intermediate state uniquely specifies the meson,
and we also label the S-function contribution by the
baryon involved rather than the meson.) For the nonlocal
gauge link contribution in Fig. 1(d), reduction of the
Dirac matrices with the dipole form factor allows

the corresponding splitting function 6fE;KR to be

rearranged as
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B iC%(/,KS d*k

4yM?(A% — m3)

4yM?  4y(MA —2p - k) kT

53 (y) = 7

/( ['

After the k= integration, this reduces to a sum of the
nonlocal off-shell and §-function contributions,

27)*

3, M
(4zf)?
as given in Egs. (68) and (73), respectively. From

Egs. (62), (71), (75) and (77) one can verify that the
splitting functions satisfy the relation

(KR)
B

(off)
B

of

() = (455" () = 6fy ). (77)

rbw rbw KR KR
Fon 0) =15 0) + £ 0) + o0 (), (78)
which generalizes the result in Ref. [28] to the nonlocal

theory. Note that the local and nonlocal off-shell con-

tributions ™ and 8£™ cancel between the three

terms on the right-hand side of Eq. (78). As noted above,

in the A — oo limit each of the functions induced by the

nonlocal gauge link, 5f590ff)

ducing the local result from Ref. [25] that does not

and éff(lf), vanishes, repro-

include the gauge link function § fggKR). Remarkably, the
nonlocal generalization (78) means that gauge invariance
is satisfied even in the presence of a finite form factor
cutoff A.

A similar analysis can be applied to the tadpole and
bubble diagrams in Fig. 1(e)—(g) in the presence of a
hadronic form factor. From Eq. (43), the splitting function
for the tadpole contribution with the dipole form factor can
be written as

DyDyD3

(76)

-5

where f((f) is given in Eq. (65). For the bubble diagram in
Eq. (44) the corresponding splitting function is given by

DD D,DY

_ C¢¢[M2
(4nf)?

(bub)

() = P =87y ). (80)

where the nonlocal function § ff) is given by Eq. (68).

Finally, the splitting function for the nonlocal tadpole
gauge link diagram in Fig. 1(g) from Eq. (47) with a
dipole regulator is

112

5f((/)tad) (9)

(arf® '

). (81)

Combining Egs. (79)—(81), one finds that the tadpole and
bubble diagrams satisfy the generalized relation

(bub)

Fy

(tad)

Ty

(v) + &y

() (), (82)

which confirms the gauge invariance of the nonlocal theory.

2. Decuplet splitting functions

Turning now to the splitting functions for the decuplet
baryon intermediate states in Fig. 1(h)-1(k), the contribu-
tion from the rainbow diagram with coupling to the

 M?

fS,fad) (y) = _%7'1”2 ff;) (v), (79) pseudoscalar meson in Eq. (52) for the covariant dipole

(4rf) form factor (56) is given by

|
O () iChyA° / d*k [y(M7 —my)*(AF —m)  y(M7 —m3) (M7 + 247 = 3m3)
o1 Tz | a)? D} D;D D,D; D,
y(2M3 + A2 —k? — 2m§5) y —
A(p - k)2 =2(M2 = k2 ok M2 — k2)2
DTD‘}\ +D§5Df\( (p-k) (M7 )p-k+ (M7 )

k
+ MQM3 — M3 = 2M*M ) — 2MK*(2M + MT))] 5<y - p—+> .

. (83)

where the coupling constants Cr, for the decuplet intermediate states are listed in Table I, and the masses M and A; here

are defined in analogy with Eq. (58),

MT:M—’_MT?
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After performing the k™ integration, the splitting function
can be decomposed in terms of on-shell decuplet, end
point, and local and nonlocal J-function terms,

CT¢_T (on) on end) 1

+ -

e |00+ 1 0) 1
W28 = )
6M7M7

D)

o) =

FP0) =8P )| (85)

As for the octet case, the first term in Eq. (85) is the on-shell
splitting function for the meson rainbow with a decuplet
spectator,

on KS y(ﬁz—nﬂ)
10 = g [ @

6M2M?>
) [(H% - m3)(8F = m3)
D(2/;TD?\T
_ 3(AF —my) + 4MMT] (36)
DtﬁTD?\T ’

where Dy and D,y are defined analogously to Egs. (64)

kK 4+ yM% — yyM? + ym?
Dy — KL IMr Z M A ymy
¢
y
k2 MZ M2 —A2
Dyr = - Ty Z I A (87b)
y

Since A®/D?%; — 1inthe A — oo limit, the decuplet on-
shell function (86) reduces to the pointlike result found
in Ref. [27].

The function f° TO mend) in Eq. (85) is finite for finite values
of A,
plonend) 1y KS_ / a2 2
! oMMz ¥ Dy
x [k +y*M? = 2y(M7 — MA7)
— 2ymj + 3M7 — 4MM7], (88)

but in the A — oo limit corresponds to the endpoint
function in Ref. [27], with a singularity at y = 1. To see
this, first note that D,r in Eq. (87b) can be written in the
form yD,; = —(X7 +7Q,), where X; = yQp — yyM?
and Q; = k% + M7. In the A — oo limit, one can then
write the factor

—4yA3
_4 — — lim 3
D 7 A=o0 Qoo Jo yt — yyM + yQA)
A6 A%y 303 K2_3Q3
=553 Jim ( —And —4)1) 4A> ) (39)
Y Qoo Dy A 2 N

where yD; = — (X, + yQ,), with Xy = yQ, — yyM? and
Q, is a A-independent constant. At finite A, the term
involving D vanishes; however, care must be taken when
evaluating this for A — oco. Replacing yQ, in the first
and second terms in Eq. (89) by (=yD,r — X7) and
(—=yD, — X)), respectively, one obtains

A—o0

A8 A° A? A?
e N —3 lim | { = -z
y DAT A—o0 Q Qy— o0 yDAT yDO

A2 Xy A*X, A’X2 A’X3
+3 2 D2 _—2D2 3 B D3 _—3D3
Y Orr Y Y Uxr YLy
AX3 AX
W - —4D4 . (90)
Y Uxr Y Uy/) A>0

Since in the A — oo limit one has YDj; —
—-A*(y+ X7/Q,), the first term in parentheses in

Eq. (90) can be written

(pip0) = Grxmsrm)
YDAr YDo) pvseo V+X7/Qn Y+X0/Q%) pooo
(91)

where we have taken Q) < A2. The right-hand side of
Eq. (91) has the properties that it vanishes if y # 0, is
divergent if y = 0, and becomes log(X;/X,) when inte-
grated over y, so that it can be represented by a & function,

A2 A2
= - =06(y)log—. 92
<yDAT yD0> Ao ) ©2)

Similarly, for the 1/(¥D,r)" terms in Eq. (89) with n > 2,
one can write in the A — oo limit

AT X!
(=¥)"Diir

o (X7/N2)"!
C(V+Xp/Q)"

5()

T n-1

, n>2.

A—oo A—o0

(93)

Since the same result is obtained when X is replaced by
Xy, the 1/(¥Dp7)" and 1/(3Dy)" terms cancel for n > 2,

and one obtains
1 Q _
-5 <log—2T - 1)5(y),
y JZ

(94)

A8 1 Q
e o ot aly) =
y4D?\T A—oo y3 QO
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where p is defined such that log(Qg/u?) =log(Q;/Q) + 1. With this result, one can finally write the endpoint splitting
function in the A — oo limit as

f(on end) )

Q;
{ / dki{[QT—z(Az m3) — 6MMy]log -~ 7 —Qp +2(A% - mf/))+6MMT}5(y). (95)

—_
A—co 6MEM3

This expression is identical to that for the endpoint term in Ref. [27], except for the k| -independent terms in (95). For
dimensional regularization, however, these are again defined to be zero, so that the result does indeed match that in [27].

Note also that at finite values of A the sum of the on-shell function f ? " in Eq. (86) and the on-shell endpoint function

f ? nend) i Eq. (88) gives the usual result found in the literature by taking the pole contribution alone [1,2,27,54,57],

(on end) A8 /dzy[k 14 (A +yM)?)[K3 + (My yM)z]z’ (96)

(on
f ( )+fT ( ) 6M%~M% _4D§;TD?\T

for 0 < y < 1. Separately, however, the on-shell and endpoint functions are not guaranteed to be positive definite for large
values of m,, since the individual functions do not correspond to physical processes [58]. The combined contribution in
Eq. (96) is, however, positive for any combination of masses and kinematics.

For the o-function contributions at y = 0, there are three distinct terms in the decuplet rainbow function f ((/)?W). The new
decuplet §-function term in Eq. (85) for the nonlocal case is given by

9 M2M2 / a2 / dz—— k2 +6(y)
1 2 2 Q 2 2
= dklm2 6Q Q¢log—Q +(Q) — Q) (9] - 5Q,Q, —293)|8(y), (97)
TT

where € and Q, are as in Eq. (66). In the A — oo limit, only the first term in the integrand of Eq. (97) survives, so that the

local limit of the function f 555 Vs
(9) 3 2 £
10 2 s [ 42 | to2 2 -0, ), 8

where the constant x here is defined by log(Q,/u?) = log(Q,/Q,) + 17/6.
The remaining §-function terms in Eq. (85), namely, the local f ((;) and nonlocal 6 ff;) functions, are given in Egs. (65) and

(68), respectively. The combined contribution of the s-function terms to ff/f?w) in the local limit is then

1 BMP(M7=m3) 5 ) 1 — Q,
— | }—>7_/dk2 [g + (M3 —m2 — Q) log—2| 5(y). (99)
18| MMz T [ aes oMaMy ) R T T e

Note that this expression differs from the total local §(y) contribution in Ref. [27], which was computed using the projector
P in Eq. (50) but with Z = —1/2 for the interaction ®" in Eq. (2). As discussed in Ref. [27], for values of the off-shell
parameter Z # —1/2, the additional interaction term ~y,y, in @ contributes only to the 5(y) contribution. The result here
supercedes that in Ref. [27].
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For the decuplet baryon coupling rainbow diagram in Fig. 1(i), reduction of the y-matrices in Eq. (53) yields

f¥;W>(y) _ ic§§Kj/ &k F(m —m3)* (A7 —m3) N Y[(K* + m3)(2M7 + A7 — m3) — M7 = 2M7A7 — k']
6M2f? | (2x) D;D}DA DiD4
(M7= md)[(y = 2)M7 = 2yMM 7 + (y + 2)(M? — mj)] N (v +2)(2M? —mj — k%) + (YM7 + 2M)2M7
DyD 4D Dy DA
+M%+2yMTM—42yp'k+3k2]5(y_ﬁ>' (100)
DyDy P’

Integrating over k~, the splitting function for the decuplet coupling rainbow diagram can be written analogously to the
function fip" in Eq. (85),

C2 T on on en off) off en (off)
F570) = TR 00 + 157 0) =27 0) 4 £ ) = 2077 3)

1
18

M?*(M3 + 3m3)

) ()
— . 101
6M2M> 6 0) (101)

+

(D 0) =36 () -

The first term in Eq. (101) is the on-shell splitting function for the decuplet baryon rainbow, and is identical to that for the
meson coupling rainbow in Eq. (85). The second term is the same as the endpoint function contribution in Eq. (88).

The off-shell decuplet contributions to f (Trgw) appear as three individual terms—a local off-shell piece, f ? n>, an off-shell

(off end) (off)

endpoint contribution, fT , and a purely nonlocal term, § f 7 . The local off-shell function is given by

FOm ) = A8 / , (M7 —mg)[F(M? —my) — (1 + y)M3] (102)
! 6M7M7 + quﬁTDj‘\T ’
which in the A — oo limit reduces to
(off) 1 , (M7 = mg)[F(M* —mg) — (1 + y)Mz]
fT ( )A_) 6M2M2 dk vD (103)
- M7 Ylyr

In addition to the endpoint function for the on-shell contribution in Eq. (88), a separate endpoint contribution exists for

(off end)

the off-shell case, fT , and is given by

ten A8 K3+ y*M? + y(M% — m?) — M?
(off end) / L[ y ( 3~ ] (104)

Sfr (Y):—m DL

Using the relation in Eq. (94), one can show that in the A — oo limit this term is proportional to a é function at y = 1,

(off end) 1 Qr
70 = e [ 4] 10 = 23] o - 1 o). (105)

As for the octet case in Eq. (73), the decuplet splitting function also includes a nonlocal decuplet off-shell term, given by

R g YL M PP+ M+ )"

5 () = 2= — : (106)
! 6M3 M3 7'DyrD3y

The presence of the 1/D3; in the integrand of (106) ensures that in the A — co limit the nonlocal function

(off)
vanishes, 5f"" — 0.
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For the §-function contributions at y = 0, the local terms f((;) and f<T's )in Eq. (101) are given above in Egs. (65) and (68),

respectively, while the new nonlocal J-function term, &f gfs ), is given by

A8 1
3P 0) = e | A g 90 (107)

As with the other nonlocal contributions, this term also vanishes in the A — oo limit.
The final diagram in Fig. 1 is that for the Kroll-Ruderman contribution with a decuplet intermediate state, Fig. 1(j). The
splitting function corresponding to this diagram, after reducing the y-matrices in Eq. (54), can be written

FR ) = = S / o [W% = mg)[(1+ y)M7 — (M — mj)]
3Mmif? | (2x)* DyDrD}
(- =201+ y)p-k+y2M* + M3) + M} 2yM7 + Y(K* + myj — 2MMT):| 5<y _ E) (108)
D,D, DD} rt)

After integrating over k~, the splitting function for the decuplet KR diagram can be expressed in terms of local and nonlocal
off-shell and é-function terms,

2 72
_ CpyMy

M (M7 +m3) 5
A = —
(4zf)?

i 0] o)

205700+ £ ) =5 (00) - 5P ) +

each of which has been defined previously. Finally, the splitting function for the additional decuplet diagram induced by the
gauge link, Fig. 1(k), is obtained from Eq. (55),

SPKR Y o CoN° [ d*k [(M7—m3) (A —mg) (K2 +m3)(2M7 + A —my) — (M7 — 207)M7 — k'
fT (y) = -2i (

3maf? ] o)t D,D;D;, DD,
1 _ _ _
+ ooy 4 k)% + 3m — (32 + 303 + A} — My Ag)md — (4K — 6m3 + 2V3) (p - k)
A
2072 73 4 1 2 2 2 k+
R+ M Ay ) = e (M. + M2+ 4MMy =3 = 6p 1) |6y = ). (110)

With integration over k~, the splitting function for the nonlocal KR gauge link diagram can be simplified to a sum of
nonlocal off-shell and é-function contributions,

Cc2 M3 1 M*(M% —m?)
(KR) Ty T (off) () T #/ ¢ (8)
1) = —45 —6 -5 . 111
fr () anf) f1 )+ 10 ) VT Iy (y)] (111)
|
From Egs. (85), (100), (109) and (111), one can then C. Leading nonanalytic behavior

explicitly verify that gauge invariance for the decuplet

e . > ; Having derived the complete set of splitting functions for
baryon contributions is satisfied through the relation

the one-loop diagrams in Fig. 1 for the dissociation of a
proton to a pseudoscalar meson (¢) and an SU(3) octet (B)

(tbw), \ _ Arbw) (KR) (KR) or decuplet (T) baryon, in the rest of this section we discuss
f oT ) =7 T¢ W)+ fr ) +ofr (). (112) the characteristics of each of the functions and illustrate
their relative shapes and magnitudes numerically. The

This generalizes the result from Ref. [29] to nonlocal full set of functions includes 8 basis functions that are

; - . - ; . s (on) ,(off) ,(on) ,(on end)
interactions in the presence of vertex functions parametriz- ~ nonzero in the local limit, {5 " f5 " S1 ' fr ,
ing the extended nature of the proton. f (TO ff), f (TO " C"d), f<Tés ), f((/f)}, and 4 nonlocal functions,
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{81y, 6" 6f 6f})}, that vanish for pointlike par-
ticles. All of the diagrams in Fig. 1 are then represented by
splitting functions that can be written as linear combina-
tions of these basis functions.

Before presenting the numerical results for the splitting
functions for the case of the covariant dipole form factor in
Eq. (56), we first identify some features of the basis
functions that do not depend on details of the regularization
method, but are entirely determined by the infrared behav-
ior of the chiral loops. Namely, expanding the lowest
moments (f;) of the basis splitting functions,

() = /) "dvfi). (113)

(4mg — 6A%) log mj + 6RA log

M2<fgm)>|NA =

- A
(4m3 — 6A%) log mj + 6RA (n’ - Zarctanﬁ), A < my,

where R = /A*> —mj and R = |/mj — A*. This agrees

with the result found in Ref. [29] for strange octet
contributions. In particular, for the latter case, when
A < my, the mass difference A approaches zero first in
the chiral limit, mj, — 0. The resulting LNA term is then
simply 4mj log mj, consistent with Refs. [20-24,27]. For
the case A > my, expanding R as R = A —mj/2A +
O(mj,) one finds that the A®log my, terms cancel, leaving
behind the same LNA behavior ~m; log my,

as a series in the pseudoscalar meson mass mgy, the
coefficients of terms that are nonanalytic (NA) in mé (either
odd powers of m, or logarithms of m,) are determined by
the low-energy properties of the nucleon and do not depend
on the ultraviolet behavior of the functions [19-23]. In
particular, the moments of the on-shell and off-shell func-

tions £, £l plon) £l 4nd the 5-function terms fff)
and fgs ) all receive NA contributions, while the purely
nonlocal functions and the decuplet endpoint contributions

Fionend) and £ are entirely analytic.
For the octet intermediate states, we find the NA

contribution to the on-shell moment ( fgm)) is given by

A+ R’

A > m(/,,
(114)

I
MFEY | = (4m3 — 6A%) log mj + 6A* log m
— 3my log my,

=mjlogmy, A >my (115)

but with a coefficient that is now 4 times smaller than for
the A < my case.

(off)

For the off-shell moment (f '), the NA contribution is

2R A-R
—2mj log mg — ——log———, A>my,
M*(fg ") na = R3 A (116)
—2mj log my, + W, (ﬂ' - 2arctanﬁ>, A <my.
The LNA behavior of the moment, ( f[(;)), of the §-function term is
52/ (6
Mz(f((p)>|LNA = —milogmé. (117)
These results generalize the LNA expressions given for hyperons and kaons in Ref. [29].
For the decuplet intermediate states, the NA term for the on-shell moment (f ? ") ) is
8m? — 12A2 Ar—R
Mlog m’ + 4RyArlog—— Ap > my,
772/ £lon) 3 Ar + Ry
M7 (f7 ") Na = (118)

8m2 — 1242 _ A
(¢3—T)10g m}, + 4Ry A (7; - 2arctanF—T), Ar < my,
T
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where Ry = /A7 —my and Ry = | /mj — A7. For the case Ap < m,, one finds in the Ay — 0 limit the LNA behavior
$mglogmj. For Ay > m,, one may again expand Ry as Ry = A —mg/2A7 + O(my), and note that the LNA term

: 2 2 : : 2 2
remains ~my, log my due to a cancellation of the terms proportional to A7 logmy,

(8m3 — 1247)

M%<f(Ton)>|LNA = 3

2
= gmi log mé

AT > m,/,

log my, + 4A7 log my, — 2m log mj

(119)

In both cases, therefore, the LNA term is given by mé log mi, although the coefficient for Ay > my, is 4 times smaller than

that for Ay < my in the chiral limit.

The NA contribution to the moment of the decuplet off-shell function (f’ (To ff)) is given by

7 off
M%<f<T )> NA —

gmé log m3, —

The decuplet §-function moment does not have an LNA
term, but has contributions at higher order in m,,

M2(F ) ixa = 0. (121)

The decuplet results for the total LNA behavior coincide
with those for the zA intermediate states in Ref. [27],
arising from the f(Ton) and ff:) terms in Eq. (85), if the
zNA coupling constant g,ya in [27] is related to the
meson—octet—decuplet coupling constant C in Eq. (1) by
9721:NA =C*/(2f%).

We stress that these results are completely general,
depending only on the infrared properties of pseudoscalar
meson loops, following directly from the symmetries of the
chiral Lagrangian. They are independent of short-distance
contributions, which are model dependent, and so provide
us with a powerful tool that can be used to verify whether
any model is consistent with the chiral symmetry properties
of QCD.

D. Phenomenology of meson—baryon
splitting functions

In this section we explore the features of the meson—
baryon splitting functions for the various octet and decuplet
contributions that are nonzero at y > 0, for a finite dipole
cutoff parameter A in Eq. (56). For illustration, we consider
the nucleon and lightest A hyperon states for the octet
baryons, and the A and X* for the decuplet states. Unless
otherwise indicated, we will use a typical value for the
cutoff mass of A =1 GeV.

In Fig. 2 we show the basis splitting functions for the on-

shell f }(;;) off-shell f i?o,fo)> and nonlocal off-shell Jf l(sz,fo)

contributions, as well as the on-shell and off-shell endpoint

2
gmé log m3, +

4R3 Ar —R
r log r r s Ar > mg,

3MT AT + RT

R (120)
T

A
(zr - Zarctan_—T), Ar < my.

3M; Ry

functions £\ ™ and £\ for the decuplet A and X
states. For all baryon intermediate states, the on-shell

functions f g“}) are positive at all y values and peak at
around y = 0.1-0.2, depending on the mass of the baryon.
The main difference between the on-shell functions for the
different baryons is the magnitude: for the strange baryons
the functions are approximately an order of magnitude
smaller than for the nonstrange.

The oft-shell functions fg).th) for the octet baryons are
negative, with magnitude comparable to the on-shell
functions. For decuplet baryons, the off-shell functions
increase as y — 0, and in fact dominate the small-y region.

The nonlocal oft-shell functions f gffo) have the same sign as
the on-shell contributions, but are somewhat smaller in
magnitude. The additional on-shell and off-shell endpoint

contributions fg) ") and fg) end) for the decuplet inter-
mediate states in Eqs. (88) and (104) are positive and
negative, respectively, with the former vanishing at y =0
and the latter increasing in magnitude as y — 0.

Interestingly, both the on-shell and off-shell endpoint
functions at A = 1 GeV peak at rather small values of y,
while formally they become &-functions at y =1 for
A — o0. The dramatic change in the shape of the endpoint
functions with increasing A is illustrated in Fig. 3, which
shows the on-shell and off-shell endpoint terms as a
function of y for a range of A values from 1 GeV to
1 TeV. Of course, in practical calculations relevant for
phenomenological applications, the relevant values of A
would typically be of the order of hadronic scales, ~1 GeV;
the results for the larger A values shown in Fig. 3 are simply
to track numerically the evolution of the nonlocal results to
the local limit.
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FIG. 2. Splitting functions versus meson momentum fraction y for the proton dissociations into (a) N + z, (b) A + K, (c) A + z, and
(d) =* + K state, for the on-shell £ (red solid curves), off-shell f©°) (blue dashed), and nonlocal off-shell 57 (black dotted)
contributions. For the decuplet A and Z* states, additional contributions from on-shell endpoint £ ¢d) (red dot-dashed) and off-shell
endpoint £ end) (blye dot-dot-dashed) are included. All results correspond to the covariant dipole form factor in Eq. (56) with cutoff

mass A =1 GeV.

Note that the derivation of the local limit of the endpoint
splitting functions, as in Eq. (89), includes the D, term.
There, it was assumed that the constant Q in D, is very
large, although in the local limit it also satisfies Q, < A?
[see Eq. (91)]. In order to observe the D contribution to
Eq. (90) in practice, we fix the parameter € to a very large
value, Q, = 100 GeV>. As shown in Fig. 3, when A is
small, the contribution of Dy is negligible, and the on-shell
and off-shell endpoint distributions coincide with those in
Fig. 2(c) for A = 1 GeV. (The endpoint functions decrease
in magnitude at y < 1 with increasing A, so for clarity these
are normalized by their integrals, (f;), over all y. This then
renders the ratio for the off-shell end point function in

Fig. 3(b) positive, whereas the unnormalized distribution
in Fig. 2(c) is negative.) The D, term can therefore be
dropped when considering the contribution of the nonlocal
endpoint functions for finite values of A. On the other hand,
Fig. 3 clearly indicates that as A — oo the peaks of the
endpoint functions migrate to higher values of y, approach-
ing a shape that resembles a §-function, (1 —y), in the
local limit.

The combinations of the various basis functions corre-
sponding to the rainbow and KR diagrams in Fig. 1 are
illustrated in Fig. 4 for the same intermediate states as in
Fig. 2. Again the main difference between the nonstrange
and strange baryon contributions is the magnitude of the

(a) (b)
1 _
5f [ A=1 GeV fA(onend)(y) ; 5 . f (off end)(y) ....... A=1 GeV
——= A=5GeV / - —= A=5 GeV
S 41|22 A=20 GeV / g 4 : --- A=20 GeV
L 3} |— A=1Tev / ~ 3¢ — A=1TeV
= )/ =
< 2 - il <2 ‘
1} - " / - “\‘ 1 ,'/
0.' L—"" ____/’ T e N 0 —
0.2 04 0.6 0.8 1.0
y y

FIG. 3.

Normalized splitting functions f;(y)/{f;) for the (a) on-shell endpoint and (b) off-shell endpoint contributions for the A + x

intermediate state, for different values of the dipole cutoff mass A (1 GeV to 1 TeV) and a fixed value of the constant Q, = 100 GeV?>.
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FIG. 4. Splitting functions versus y for proton dissociations into various meson—baryon intermediate states as in Fig. 2, but for the total
contributions to the meson-coupling rainbow diagrams in Fig. 1(a) and (h) (red solid curves), baryon-coupling rainbow diagrams in
Fig. 1(b) and (i) (blue dashed), KR diagrams in Fig. 1(c) and (j) (green dot-dashed), and nonlocal KR diagrams in Fig. 1(d) and (k) (black
dotted). Contributions from the tadpole and bubble diagrams in Fig. 1(e)—(g) at y = 0 are not shown here.

functions, with the strange being an order of magnitude or

more suppressed. The total meson-coupling rainbow func-
tions, fggw) and fg?w
the corresponding on-shell functions in Fig. 2. The baryon-

coupling rainbow functions, fg;w)

), generally have very similar shape to

and f (Tr;w) , have similar
magnitude and are generally positive at intermediate y, but
become more negative as y — 0. The latter behavior is
canceled by the KR functions fg? " at small v, especially
for the decuplet contributions, such that the sum of the
baryon-coupling rainbow and KR diagrams satisfies
Egs. (78) and (112). The nonlocal KR functions, 5f5y ,

at nonzero y values are proportional to —4 times the
nonlocal off-shell functions [Eqs. (77) and (111)], and
hence are negative at y > 0. Some degree of cancelation

therefore takes place between the local f g?ﬁ ) and nonlocal

0 fgff ) functions at intermediate and large values of y.
The pattern of cancelations between the various con-
tributions from the basis functions to particular diagrams in
Fig. 1 is further explored in Fig. 5, which shows the
decomposition of the splitting function for the nucleon-

coupling rainbow diagram, fg?,w). For the case of the
covariant dipole form factor with A =1 GeV, Fig. 5(a),
one observes very strong cancelation between the positive

(2) (b)
10 10
— (om) — (on)
- --- (off)
- 0.5 / = -\,..\ _______ S(off) - 0.5 . - -~ (off)
e R — total e .- Tt~ —-—(total)
El: 00,'_‘/ \‘\_ o Ek OO _/ T T
= Y - = - = -
i \ -7 =~ \ - -
\ Pid \ _-"
_ - N
0.3 \\ - 7 dipole A=1GeV 03 ~-=" PV A=034 GeV
0.0 0.2 04 0.6 0.8 10 00 0.2 04 0.6 0.8 10
y y

FIG. 5. Decomposition of the splitting function for the nucleon-coupling rainbow diagram in Fig. 1(b) for (a) the nonlocal chiral
theory with dipole regulator, and (b) the local chiral theory with a symmetry preserving Pauli-Villars regulator. The value of the
Pauli-Villars mass parameters A is determined by normalizing to the momentum carried by the interacting nucleon, (y) = fol dyyf(y),
for the dipole regulator with A =1 GeV.
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Integrals of splitting functions (f) versus A, for (a) N + z, (b) A + K, (¢c) A + = and (d) =* + K intermediates states, for the

on-shell (red solid curves), off-shell (blue dashed), nonlocal off-shell (blue dotted), local -function (green dot-dashed), and nonlocal 6-
function (green dotted) contributions. The decuplet states include additional contributions from on-shell endpoint (red dot-dot-dashed)
and off-shell end point (blue dot-dot-dashed) terms. All results correspond to the covariant dipole form factor in Eq. (56).

on-shell and negative off-shell contributions, with the total
closely resembling the purely nonlocal off-shell function
SO At first sight this may be perplexing, if one
interprets the result to suggest that the total nucleon-
coupling rainbow function may be very small in the
pointlike limit, where §£°") vanishes. In practice, however,
the on-shell and off-shell functions vary differently with A,
so that the degree of cancelation depends on the cutoff.
This is illustrated in Fig. 5(b), which shows the decom-

position of f gzw) for the case of a local theory with a Pauli-
Villars regulator, which preserves the necessary symmetries
of the theory [28,29]. In this case there is no nonlocal
contribution, and the total is given by the sum of the on-
shell and off-shell terms. For the on-shell splitting function

f[(\;m) the Pauli-Villars regulating function takes the form
Djpy

2
DAPV

Flon

PV (k) =1- ) (122)

while for the off-shell splitting function f Sf,’ff) the regulator
is given by

R (123)

In order to compare the shapes more directly, we choose the
Pauli-Villars regulator to give the same total momentum

(y) = [ dyyf(y) carried by the interacting nucleon in

fgzw), which yields Apy = 0.34 GeV. These have similar
general features as the functions for the nonlocal theory
with covariant dipole regulator, with the small differences
in magnitude for the on-shell and off-shell contributions for
the dipole and Pauli-Villars regulators allowing a sizeable
nonzero total to remain.

While the contributions of the various splitting functions
at y > 0 are illustrated in Figs. 2 and 4, the relative
importance of the S-functions terms at y = 0 is demon-
strated in Fig. 6 by the integrated values of the basis
functions, (f) as a function of the covariant dipole form
factor cutoff mass A. As expected, the magnitude of each of
the integrated functions increases with A, as more short-
distance contributions are included. For the nominal A =
1 GeV used in Figs. 2 and 4 the zN intermediate states
dominate, with the hyperon and decuplet contributions an
order of magnitude smaller. The picture changes for larger
cutoff values, and for A > 1.2 GeV some of the zA
contributions become as large as the zN. Of course, the
validity of a one-loop calculation for larger cutoffs is more
questionable, as contributions from higher-order terms
become increasingly more important. Interestingly, for
the octet baryons, the on-shell and nonlocal off-shell
contributions are positive, while the local off-shell and
both the (local and nonlocal) é-function contributions are
negative. In contrast, for the decuplet states, all contribu-
tions are positive, with the exception of the off-shell end
point terms, as already indicated in Fig. 2.
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V. CONCLUSION

In this paper we have for the first time used a nonlocal
covariant formulation of SU(3) chiral effective theory to
construct the framework necessary for systematically
computing the contributions from pseudoscalar meson
loops to parton distributions in the nucleon. The main
result of the present work has been the derivation from the
nonlocal theory of the lowest order proton — meson +
baryon splitting functions arising from transitions of the
initial state to intermediate states involving octet and
decuplet baryons, as well as those involving contact
interactions at zero momentum.

Since the contributions from the loop diagrams are
ultraviolet divergent, care must be taken to ensure that the
integrals are regularized in a way that preserves the under-
lying symmetries of the effective theory, such as gauge
invariance, Lorentz invariance, and chiral symmetry. A
common approach adopted in the literature involves the
use of local interactions with regulators that explicitly
depend on the 3-momentum of the meson. While this does
take into account the extended nature of hadrons and renders
finite results, this approach is in practice ad hoc and destroys
the local gauge and Lorentz invariance of the theory.

The virtue of the nonlocal formulation, on the other
hand, is that it allows the use of a 4-dimensional regulator
while preserving the gauge and Lorentz symmetries. In
this case the regulator is generated directly from the
nonlocal Lagrangian, and gives rise to additional diagrams
that appear from the expansion of the gauge link [see
Fig. 1(d), (g) and (k)].

To illustrate the characteristic features of the new non-
local splitting functions, we have used a simple dipole
function for the 4-dimensional regulator. The approach is
analogous to a resummation of chiral perturbation theory
using dimensional regularization, which is known to
provide better convergence at larger momenta, at the
expense of losing the power counting of the traditional
chiral perturbation theory. Our results reveal some novel
patters of cancelations among the local and nonlocal
functions in the rainbow and Kroll-Ruderman diagrams,
and illustrate the importance of nonlocal contributions for

finite values of the regulator mass A. For the decuplet
intermediate states, our analysis is able to study numeri-
cally the transition from the case of a finite A to the
pointlike limit, which is realized most dramatically for the
on-shell and off-shell end point contributions to the baryon-
coupling rainbow and Kroll-Ruderman diagrams. We
verify explicitly that in the A — oo limit the nonlocal
generalization does indeed reproduce the results of the local
theory.

The results derived here will serve as a basis for future
applications of the formalism to computing meson loop
contributions to parton distributions in the nucleon. Within
the effective theory, these can be computed by matching
twist-two quark level and effective hadronic level operators,
which leads to a convolution representation for the PDFs,

=3 [ Crea). s

where f;(y) are the meson—baryon splitting functions, and
gj 1s the valence distribution for the quark flavor ¢ in the
hadronic configuration j. In a forthcoming paper [43], we
will use this formalism to study flavor asymmetries in the
nucleon generated through meson loops, such as in the light
antiquark sea (d — %) or for strange quarks (s —5), con-
sistently within the 4-dimensional chiral effective theory
framework.

ACKNOWLEDGMENTS

We thank Xuangong Wang for helpful discussions. This
work is supported by NSFC under Grant No. 11475186, the
Sino-German CRC 110 “Symmetries and the Emergence of
Structure in QCD” project by NSFC under the Grant
No. 11621131001, the DOE Contract No. DE-ACO5-
060R23177, under which Jefferson Science Associates,
LLC operates Jefferson Lab; DOE Contract No. DE-
FGO02-03ER41260; the Australian Research Council through
the ARC Centre of Excellence for Particle Physics at the
Terascale (CE110001104); and an ARC Discovery Project
No. DP151103101.

[1] J. Speth and A.W. Thomas, Adv. Nucl. Phys. 24, 83
(1997).

[2] S. Kumano, Phys. Rep. 303, 183 (1998).

[3] A. W. Thomas, Phys. Lett. 126B, 97 (1983).

[4] A. Baldit er al., Phys. Lett. B 332, 244 (1994).

[5] R.S. Towell et al., Phys. Rev. D 64, 052002 (2001).

[6] M. Arneodo et al., Phys. Rev. D 50, R1 (1994).

[7]1 K. Ackerstaff et al., Phys. Rev. Lett. 81, 5519 (1998).

[8] A.I Signal and A. W. Thomas, Phys. Lett. B 191, 205 (1987).
[9] D. Mason et al., Phys. Rev. Lett. 99, 192001 (2007).
[10] S. Alekhin, S. A. Kulagin, and R. Petti, Phys. Lett. B 675,
433 (2009).
[11] J.J. Ethier, N. Sato, and W. Melnitchouk, Phys. Rev. Lett.
119, 132001 (2017).
[12] A. W. Schreiber, A. L. Signal, and A. W. Thomas, Phys. Rev.
D 44, 2653 (1991).

014041-24


https://doi.org/10.1007/b115010
https://doi.org/10.1007/b115010
https://doi.org/10.1016/S0370-1573(98)00016-7
https://doi.org/10.1016/0370-2693(83)90026-6
https://doi.org/10.1016/0370-2693(94)90884-2
https://doi.org/10.1103/PhysRevD.64.052002
https://doi.org/10.1103/PhysRevD.50.R1
https://doi.org/10.1103/PhysRevLett.81.5519
https://doi.org/10.1016/0370-2693(87)91348-7
https://doi.org/10.1103/PhysRevLett.99.192001
https://doi.org/10.1016/j.physletb.2009.04.033
https://doi.org/10.1016/j.physletb.2009.04.033
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevLett.119.132001
https://doi.org/10.1103/PhysRevD.44.2653
https://doi.org/10.1103/PhysRevD.44.2653

PARTON DISTRIBUTIONS FROM NONLOCAL CHIRAL ...

PHYS. REV. D 99, 014041 (2019)

[13] W. Melnitchouk and A. W. Thomas, Z. Phys. A 353, 311
(1995).

[14] F. M. Steffens, H. Holtmann, and A. W. Thomas, Phys. Lett.
B 358, 139 (1995).

[15] D. Diakonov, V. Petrov, P. Pobylitsa, M. V. Polyakov, and
C. Weiss, Nucl. Phys. B480, 341 (1996).

[16] W. Melnitchouk and M. Malheiro, Phys. Rev. C 55, 431
(1997).

[17] W. Melnitchouk and M. Malheiro, Phys. Lett. B 451, 224
(1999).

[18] F. Myhrer and A.W. Thomas, Phys. Lett. B 663, 302
(2008).

[19] A.W. Thomas, W. Melnitchouk, and F. M. Steffens, Phys.
Rev. Lett. 85, 2892 (2000).

[20] D. Arndt and M.J. Savage, Nucl. Phys. A697, 429
(2002).

[21] J. W. Chen and X. Ji, Phys. Lett. B 523, 107 (2001).

[22] J.-W. Chen and X. Ji, Phys. Rev. Lett. 87, 152002 (2001);
88, 249901(E) (2002).

[23] W. Detmold, W. Melnitchouk, J. W. Negele, D. B. Renner,
and A. W. Thomas, Phys. Rev. Lett. 87, 172001 (2001).

[24] M. Burkardt, K. S. Hendricks, C.-R. Ji, W. Melnitchouk,
and A. W. Thomas, Phys. Rev. D 87, 056009 (2013).

[25] C.-R. Ji, W. Melnitchouk, and A. W. Thomas, Phys. Rev. D
88, 076005 (2013).

[26] A.M. Moiseeva and A. A. Vladimirov, Eur. Phys. J. A 49,
23 (2013).

[27] Y. Salamu, C.-R. Ji, W. Melnitchouk, and P. Wang, Phys.
Rev. Lett. 114, 122001 (2015).

[28] X.G. Wang, C.-R. Ji, W. Melnitchouk, Y. Salamu, A. W.
Thomas, and P. Wang, Phys. Lett. B 762, 52 (2016).

[29] X.G. Wang, C.-R. Ji, W. Melnitchouk, Y. Salamu, A. W.
Thomas, and P. Wang, Phys. Rev. D 94, 094035 (2016).

[30] A.W. Thomas, Nucl. Phys. B, Proc. Suppl. 119, 50 (2003).

[31] A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).

[32] J. Terning, Phys. Rev. D 44, 887 (1991).

[33] K. Wilson, Phys. Rev. D 10, 2445 (1974).

[34] C. Bloch, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 26, 1
(1950).

[35] H. Forkel, M. Nielsen, X.-M. Jin, and T. D. Cohen, Phys.
Rev. C 50, 3108 (1994).

[36] M. J. Musolf and M. Burkardt, Z. Phys. C 61, 433 (1994).

[37] S. Wang and M. K. Banerjee, Phys. Rev. C 54, 2883
(1996).

[38] B. Holdom, Phys. Rev. D 45, 2534 (1992).

[39] A. Faessler, T. Gutsche, M. A. Ivanov, V. E. Lyubovitskij,
and P. Wang, Phys. Rev. D 68, 014011 (2003).

[40] P. Wang, Eur. Phys. J. A 50, 172 (2014).

[41] F. C. He and P. Wang, Phys. Rev. D 97, 036007 (2018).

[42] F.C. He and P. Wang, Phys. Rev. D 98, 036007 (2018).

[43] Y. Salamu, C.-R. Ji, W. Melnitchouk, A.W. Thomas, P.
Wang, and X. Wang (to be published).

[44] E.E. Jenkins, Nucl. Phys. B368, 190 (1992).

[45] T. Ledwig, J. Martin Camalich, L.S. Geng, and M.J.
Vicente Vacas, Phys. Rev. D 90, 054502 (2014).

[46] T.R. Hemmert, B. Kubis, and U.-G. Meissner, Phys. Rev. C
60, 045501 (1999).

[47] T.R. Hemmert, U.-G. Meissner, and S. Steininger, Phys.
Lett. B 437, 184 (1998).

[48] A.V. Manohar, Lect. Notes Phys. 479, 311 (1997).

[49] R.D. Young, D.B. Leinweber, and A. W. Thomas, Prog.
Part. Nucl. Phys. 50, 399 (2003).

[50] J.M. M. Hall, D.B. Leinweber, and R.D. Young, Phys.
Rev. D 82, 034010 (2010).

[51] R. Tegen and W. Weise, Z. Phys. A 314, 357 (1983).

[52] C. Hacker, N. Wies, J. Gegelia, and S. Scherer, Phys. Rev. C
72, 055203 (2005).

[53] L. M. Nath, B. Etemadi, and J. D. Kimel, Phys. Rev. D 3,
2153 (1971).

[54] W. Melnitchouk, A. W. Thomas, and A. I. Signal, Z. Phys. A
340, 85 (1991).

[55] M. Burkardt and Y. Koike, Nucl. Phys. B632, 311 (2002).

[56] H. Holtmann, A. Szczurek, and J. Speth, Nucl. Phys. A596,
631 (1996).

[57] W. Melnitchouk, J. Speth, and A. W. Thomas, Phys. Rev. D
59, 014033 (1998).

[58] X. Wang (private communication).

014041-25


https://doi.org/10.1007/BF01292337
https://doi.org/10.1007/BF01292337
https://doi.org/10.1016/0370-2693(95)00923-9
https://doi.org/10.1016/0370-2693(95)00923-9
https://doi.org/10.1016/S0550-3213(96)00486-5
https://doi.org/10.1103/PhysRevC.55.431
https://doi.org/10.1103/PhysRevC.55.431
https://doi.org/10.1016/S0370-2693(99)00182-3
https://doi.org/10.1016/S0370-2693(99)00182-3
https://doi.org/10.1016/j.physletb.2008.04.034
https://doi.org/10.1016/j.physletb.2008.04.034
https://doi.org/10.1103/PhysRevLett.85.2892
https://doi.org/10.1103/PhysRevLett.85.2892
https://doi.org/10.1016/S0375-9474(01)01223-4
https://doi.org/10.1016/S0375-9474(01)01223-4
https://doi.org/10.1016/S0370-2693(01)01337-5
https://doi.org/10.1103/PhysRevLett.87.152002
https://doi.org/10.1103/PhysRevLett.88.249901
https://doi.org/10.1103/PhysRevLett.87.172001
https://doi.org/10.1103/PhysRevD.87.056009
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1103/PhysRevD.88.076005
https://doi.org/10.1140/epja/i2013-13023-x
https://doi.org/10.1140/epja/i2013-13023-x
https://doi.org/10.1103/PhysRevLett.114.122001
https://doi.org/10.1103/PhysRevLett.114.122001
https://doi.org/10.1016/j.physletb.2016.09.014
https://doi.org/10.1103/PhysRevD.94.094035
https://doi.org/10.1016/S0920-5632(03)01492-0
https://doi.org/10.1103/PhysRevD.44.887
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevC.50.3108
https://doi.org/10.1103/PhysRevC.50.3108
https://doi.org/10.1007/BF01413182
https://doi.org/10.1103/PhysRevC.54.2883
https://doi.org/10.1103/PhysRevC.54.2883
https://doi.org/10.1103/PhysRevD.45.2534
https://doi.org/10.1103/PhysRevD.68.014011
https://doi.org/10.1140/epja/i2014-14172-0
https://doi.org/10.1103/PhysRevD.97.036007
https://doi.org/10.1103/PhysRevD.98.036007
https://doi.org/10.1016/0550-3213(92)90203-N
https://doi.org/10.1103/PhysRevD.90.054502
https://doi.org/10.1103/PhysRevC.60.045501
https://doi.org/10.1103/PhysRevC.60.045501
https://doi.org/10.1016/S0370-2693(98)00889-2
https://doi.org/10.1016/S0370-2693(98)00889-2
https://doi.org/10.1007/BFb0104287
https://doi.org/10.1016/S0146-6410(03)00034-6
https://doi.org/10.1016/S0146-6410(03)00034-6
https://doi.org/10.1103/PhysRevD.82.034010
https://doi.org/10.1103/PhysRevD.82.034010
https://doi.org/10.1007/BF01412932
https://doi.org/10.1103/PhysRevC.72.055203
https://doi.org/10.1103/PhysRevC.72.055203
https://doi.org/10.1103/PhysRevD.3.2153
https://doi.org/10.1103/PhysRevD.3.2153
https://doi.org/10.1007/BF01284484
https://doi.org/10.1007/BF01284484
https://doi.org/10.1016/S0550-3213(02)00263-8
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1016/0375-9474(95)00448-3
https://doi.org/10.1103/PhysRevD.59.014033
https://doi.org/10.1103/PhysRevD.59.014033

