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Abstract 

Bone metastases occur in more than 75% of patients with advanced breast 

cancer. Cancer in bone is associated with bone destruction and is responsible for 

high levels of morbidity and mortality but is notoriously difficult to treat. Bone 

destruction is also the primary cause of morbidity in patients with primary bone 

cancer, such as osteosarcoma, with metastatic spread to the lungs correlating with 

poor survival. Therefore, clearly new therapies are desperately required to target 

cancers in the bone. This study explored the therapeutic potential of gamma delta 

(Vγ9Vδ2) T cell based adoptive transfer using animal models of osteolytic breast 

cancer and osteosarcoma. Cytotoxic Vγ9Vδ2 T cells were expanded ex vivo from 

peripheral blood using IL-2 and zoledronic acid (ZOL). In vitro, expanded Vγ9Vδ2 

T cells were cytotoxic against a panel of breast cancer and osteosarcoma cell lines 

and pre-treatment with ZOL sensitised all cancer cells to rapid killing by Vγ9Vδ2 

T cells. Adoptive transfer of fluorescently labelled ex vivo expanded Vγ9Vδ2 T 

cells into NOD/SCID mice localised to cancer lesions in bone. Multiple infusions 

of Vγ9Vδ2 T cells reduced breast cancer growth, but had no effect on osteosarcoma 

growth in the bone marrow. However, in both cases, ZOL pre-treatment potentiated 

the anti-cancer efficacy of Vγ9Vδ2 T cells in bone, protected the bone from cancer-

induced osteolysis and decreased the incidence of pulmonary metastases. 

Collectively these studies suggest this treatment regimen to be an effective 

immunotherapeutic approach for the treatment of primary and metastatic bone 

cancers.  
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Introduction
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1.1 Cancer in the bone 

Primary bone cancer is a heterogeneous group of malignancies which 

originate in the bone. Primary bone malignancies are generally classified into two 

groups; multiple myeloma, a haematological malignancy which affects the bone 

marrow, and sarcoma [1]. Multiple myeloma is the most frequent primary skeletal 

malignancy, followed by osteosarcoma, chondrosarcoma, Ewing’s sarcoma, and 

others [1, 2]. Although these cancers are extremely rare, accounting for 

approximately 0.2% of all neoplasms, osteosarcomas, for example are much more 

common in childhood and adolescence [1, 3]. 

Although primary bone cancer is relatively rare, the bone is considered a 

fertile ‘soil’ for the localisation of disseminated cells from various primary cancers, 

and thus secondary lesions are far more common [reviewed in 4]. Cancer metastasis 

is a complicated process which results in the spread of cancer cells to distant sites. 

Briefly, cancer cells at the primary site undergo complex molecular changes 

resulting in the loss of adherence properties, resulting in EMT (epithelial to 

mesenchymal transition) allowing cells to infiltrate blood or lymphatic circulation 

to disseminate to distant sites where they invade new tissues and re-establish to 

form micro-metastases [reviewed in 5, 6]. The bone is a highly conducive 

environment for secondary lesions from breast, prostate, and lung cancer [7, 8]. 

Lesions from skeletal malignancies can be classed into three phenotypes, 

based on radiographic appearance; osteolytic (abnormal bone degradation) 

osteoblastic/osteosclerotic (abnormal bone formation), or mixed (abnormal bone 

degradation linked to abnormal formation) [9-11]. Abnormal bone destruction 

causes skeletal related events (SREs) including hypercalcaemia, chronic pain, 

pathological fractures, spinal cord compression, and impaired mobility, all of which 
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greatly affect quality of life [1, 8]. Multiple myeloma, bone metastases from breast 

and lung cancer, and a marginal number of osteosarcomas result in osteolytic 

lesions [1, 8] Conversely, the majority of osteosarcomas and bone metastases from 

prostate cancer result in predominately osteoblastic or mixed lesions [1, 8, 12]. To 

discover new treatments for cancers in the bone, it is important to understand how 

these lesions form and how to inhibit them. 

1.1.1 Normal bone metabolism  

Throughout life, bone is being constantly remodelled. Bone homeostasis is 

achieved by coupling the activities of two main cell types, bone degrading 

osteoclasts and bone forming osteoblasts. Pre-osteoclasts, cells from the monocyte-

macrophage lineage, express RANK (receptor activator of nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-κB)) which binds RANKL (RANK 

ligand), released by osteoblasts and stromal cells [13]. Activation of pre-osteoclasts 

by RANKL results in the formation of large multi-nucleated cells called osteoclasts 

which resorb bone [reviewed in 14]. Following bone resorption by osteoclasts, 

factors including TGF-β (transforming growth factor-beta), IGF-I/II (insulin-like 

growth factor I/II), FGF (fibroblast growth factor), and BMPs (bone morphogenetic 

proteins), which are normally sequestered in the bone matrix, are released and 

activated [15, 16, reviewed in 17], resulting in increased osteoclast activity and 

liberation of free Ca2+ (Figure 1.1). Released growth factors act on mesenchymal 

progenitor cells, which differentiate into osteoblasts, producing osteoid to form a 

scaffold for new bone matrix. OPG (osteoprotegerin), a soluble decoy receptor for 

RANKL, also produced by osteoblasts and stromal cells, regulates osteoclast 

activity by sequestering the activity of RANKL and downregulating pre-osteoclast 

differentiation into mature osteoclasts (Figure 1.1).
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Figure 1.1 Normal bone remodelling is a balanced process based on the 

RANKL/RANK/OPG system.  

Osteoblasts and stromal cells release RANKL, which binds its receptor 

RANK on osteoclast precursors, stimulating their differentiation into mature and 

active osteoclasts. During bone resorption, osteoclasts release factors that can 

stimulate osteoblast differentiation from mesenchymal progenitor cells, resulting 

in a coupled increase of bone formation. OPG released by osteoblasts and stromal 

cells binds to and inhibits RANKL, preventing RANKL binding to osteoclast 

precursors, inhibiting osteoclast formation.
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1.2 The ‘vicious cycle’ of cancer in the bone 

Cancer lesions in the bone microenvironment disrupt this tightly regulated 

mechanism and the resulting phenotype depends on factors released by the cancer 

cells. For example, osteolytic breast cancer cells release factors including RANKL, 

M-CSF (macrophage colony stimulating factor), and PTHrP (parathyroid hormone-

related protein) which directly or indirectly increase the number or activity of 

osteoclasts [reviewed in 8, 9]. In contrast, prostate cancer cells can release factors 

including BMP and OPG which promote osteoblasts, as well as RANKL and 

PTHrP [reviewed in 12]. Depending on which factors are released, abnormal bone 

formation can lead to predominately osteoblastic lesions or mixed lesions when 

abnormal bone formation is linked to abnormal bone degradation [reviewed in 8, 

12]. Increased bone degradation results in the release of growth factors normally 

sequestered in the bone matrix, which nourish the cancer cells leading to increased 

proliferation. In turn, as the tumour grows larger, it releases more factors which can 

increase osteoclast mediated resorption, leading to what is termed the ‘vicious 

cycle’ of cancer growth and bone destruction (Figure 1.2) [reviewed in 18, 19]. 

Abnormal osteoclast-mediated bone destruction results in SREs including 

hypercalcaemia, chronic pain, pathological fractures, spinal cord compression, and 

impaired mobility, all which greatly affect quality of life [reviewed in 1, 8, 20].  

Due to the interactions between cancer cells and the bone microenvironment 

resulting in this ‘vicious cycle’ of cancer growth and bone degradation, novel 

therapies need to target both cancer cells to reduce tumour burden, and the bone  

microenvironment to alleviate symptoms associated with abnormal bone 

metabolism.



 

7 

 

Figure 1.2 Osteolytic cancer cells in the bone microenvironment disrupt normal 

bone metabolism. 

When osteolytic cancer cells are present in the bone microenvironment, 

they disrupt normal bone remodelling. Cancer cells can release factors which 

directly and indirectly activate osteoclast precursors, causing an increase in 

osteoclast number and activity, ultimately resulting in abnormal bone degradation. 

Growth factors normally sequestered in the bone are then released, which in turn 

nourish the cancer cells, perpetuating the ‘vicious cycle’ of cancer growth and bone 

degradation
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As cancers that affect the bone are heterogeneous, this thesis will focus primarily 

on osteolytic osteosarcoma and breast cancer bone metastases, examples of a 

primary and secondary bone malignancy that result in osteolytic lesions. 

1.3 Osteosarcoma  

Osteosarcoma is the most frequent primary malignancy of the skeleton in 

children and adolescents, with over 60% of cases occurring in patients under 25 

years old [1]. It most commonly affects the distal femur, proximal tibia, or proximal 

humerus with ~70% localising around the knee or shoulder [1]. Current treatment 

regimens involve neoadjuvant (preoperative) chemotherapy in combination with 

surgery to remove all detectable tumours, resulting in a 10 year overall survival rate 

of 70-80% for patients with localised osteosarcoma [1, 21]. On face value, this 

appears to be an acceptable survival rate, however when the average age of 

diagnosis is taken in account, the outcome is actually quite poor. Additionally, 

metastatic spread, preferentially to the lungs is seen in 15-20% of presenting 

patients, correlating with poor survival rates [21-25].  

Over the past few decades, the mainstay treatment for osteosarcoma has been 

chemotherapy in combination with surgery. Patients are given a cocktail of 

neoadjuvant chemotherapeutic agents including doxorubicin, cisplatin, 

methotrexate, and isosfamide, followed by limb-salvage surgery to remove the 

residual tumour mass and any known metastases [26]. While this treatment regimen 

has greatly improved patient survival compared to surgery alone which was the 

standard treatment prior to the 1970s, survival rates have now plateaued [reviewed 

in 27, 28]. Osteosarcoma is generally considered to be radiotherapy resistant and 

reoccurring lesions can acquire chemotherapy resistance [27, 29]. Lung metastases 

also present a significant hurdle in the treatment of osteosarcoma [21, 22]. To 
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prolong survival rates, especially in patients with pulmonary metastases, it is clear 

that novel therapies are required to target tumour burden in the bone, alleviate 

symptoms associated with bone lysis, and also target pulmonary metastases.  

1.4 Breast cancer bone metastases 

As previously discussed, the bone is also considered a fertile ‘soil’ for the 

localisation of breast cancer cells, with bone metastases occurring in over 75% of 

advanced breast cancer patients [9, 30]. Unlike osteosarcoma which is relatively 

rare, breast cancer is one of the most commonly diagnosed cancers in women 

worldwide, estimated to affect one in eight women during their lifetime [31]. Over 

16,000 Australians were diagnosed with breast cancer in 2016 including more than 

15,900 women and approximately 150 men [32]. Prognosis of patients diagnosed 

with primary breast cancer has improved over the past few years, with overall 

survival at five years exceeding 89% [33]. In contrast, survival of patients 

diagnosed with the advanced disease is much lower, with overall survival at five 

years between 15-40% [34, 35]. This decrease in survival is due to metastatic 

spread, commonly to the bone, lung, liver and brain [30, 36].  

Current treatments for patients with advanced breast cancer include 

chemotherapies, such as doxorubicin, paclitaxel, cisplatin, and depending on HER-

2 status (human epidermal growth factor receptor-2), trastuzumab, either as a 

monotherapy or in combination with chemotherapy [37, 38]. Chemotherapy can 

also be used in combination with hormonal treatments, radiotherapy, and if the 

patient exhibits bone metastases, anti-bone resorptive agents (e.g. 

aminobisphosphonates (nBPs) or denosumab) [39, 40]. Additionally, quality of life 

significantly declines due to disease progression and severe adverse effects can be 

attributed to chemotherapy, such as cardiotoxicity associated with long-term 
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doxorubicin use [reviewed in 41]. Regardless, in advanced breast cancer all of these 

treatment options are only palliative, demonstrating the need for novel therapies. 

1.5 Focus on aminobisphosphonates 

In the last fifteen years, the administration of aminobisphosphonates (nBPs) 

has emerged as a novel strategy to inhibit osteoclast-mediated bone degradation 

and alleviate the symptoms associated with bone loss in patients with primary and 

metastatic skeletal malignancies [42, 43, reviewed in 44]. In the clinic, most 

frequently used are the second and third-generation nBPs including pamidronate, 

alendronate, risedronate, and zoledronate. This thesis is primarily focused on 

zoledronate (zoledronic acid, ZOL), which currently has the most potent anti-

resorptive activity [45]. ZOL is approved by the FDA (Food and Drug 

Administration) and TGA (Therapeutic Goods Administration) under the 

tradename Zometa (Novartis) and is used for the treatment of osteoporosis, Paget’s 

disease of the bone, and skeletal metastases. The structure of ZOL and other nBPs, 

allows preferential localisation and binding to the bone matrix [reviewed in 46]. 

During normal bone resorption osteoclasts internalise nBPs, where they inhibit 

farnesyl pyrophosphate synthase (FPPS), an enzyme in the mevalonate pathway. 

FPPS is responsible for the conversion of isopentenyl pyrophosphate (IPP) and its 

isomer dimethylallyl pyrophosphate (DMPP) to farnesyl pyrophosphate (FPP) 

(Figure 1.3) [reviewed in 46]. The mevalonate pathway in mammalian cells is the 

major pathway involved in the synthesis of cholesterol, and in the generation of 

farnesyl and geranylgeranyl protein prenylation groups. Farnesyl and 

geranylgeranyl are important for the post-translational modification of small 

GTPases, which mediate pathways important in survival, adhesion, and migration 
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Figure 1.3 Inhibition of the mevalonate pathway.  

In mammalian cells, the mevalonate pathway, also known as the isoprenoid 

pathway, is involved in cholesterol synthesis and the production of farnesyl and 

geranylgeranyl (prenylation) groups necessary for the post-translational 

modification of small GTPases. Statins, a class of cholesterol lowering drugs inhibit 

the rate limiting enzyme of the pathway, HMG-CoA reductase. Downstream of 

HMG-CoA reductase, farnesyl pyrophosphate synthase (FPPS) is inhibited by 

aminobisphosphonates, such as ZOL, which results in the accumulation of 

isopentyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). 

Inhibition of FPPS also decreases prenylation of GTPases, resulting in changes to 

the morphology of osteoclasts, eventually leading to osteoclast death. 
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for many cell types, including osteoclasts [46-48]. For example, 

geranylgeranylation of Rac and Rho are required for maintenance of the correct 

cytoskeletal arrangement to produce the osteoclast “ruffled border” which is 

necessary for migration and bone resorption (Figure 1.3 and Figure 1.4) [reviewed 

in 49]. Inhibition of FPPS by nBPs results in the accumulation of IPP and DMPP, 

a decrease in farnesyl pyrophosphate (FPP), and consequently a decrease in 

prenylated proteins. This results in changes to osteoclast cytoskeletal structure, cell 

adhesion and migration properties, and may eventually cause osteoclasts to undergo 

apoptosis due to a lack of adhesion to the bone surface (anoikis) (Figure 1.4) 

[reviewed in 49]. Combined, these outcomes result in the inhibition of bone 

resorption.  

ZOL treatment of patients with primary and metastatic bone cancer inhibits 

tumour-associated bone loss, increases bone density, and as a result reduces SREs 

such as fractures and hypercalcaemia [50-53]. Additionally, in patients with early 

breast cancer, ZOL administration in adjuvant with standard therapies reduces the 

development of bone metastases and improves disease outcomes in post-

menopausal women [54]. However, whether nBP administration in cancer patients 

increases overall survival is still contradictory. 

In addition to the well-characterised ability to inhibit osteoclast-mediated 

bone degradation, nBPs also have reported anti-cancer properties [reviewed in 55, 

56]. ZOL can induce cell death, inhibit proliferation, invasion, and angiogenesis in 

osteosarcoma [57], fibrosarcoma [58], breast [59, 60], prostate [60, 61], and small 

cell lung cancer (SCLC) cell lines [62]. Additionally, using chemotherapies such 

as doxorubicin or etoposide in combination with ZOL further enhances cancer cell 

death [59, 62]. However, the anti-cancer efficacy of ZOL in pre-clinical trials is 
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Figure 1.4 Schematic depicting bone metabolism under normal conditions and 

after zoledronic acid (ZOL) treatment.  

A. During normal bone metabolism, small GTPases such as Rac and Rho 

are actively maintaining adhesions between the bone and the osteoclast to mediate 

maximum resorption. B. Following infusion, ZOL is deposited in the bone and 

internalised during osteoclast resorption, where it acts on cellular targets including 

FPPS. This decreases protein prenylation and disrupts adhesions and survival 

pathways, ultimately decreasing bone resorption and inducing eventual apoptosis  
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contradictory. Several studies show that ZOL administration inhibits tumour 

growth [62, 63], and reduces further lung, liver, and bone metastases [63-66]. In 

contrast, other studies show that ZOL demonstrate no anti-cancer efficacy, and 

increases lung metastases [67, 68]. These studies indicate that although ZOL may 

have some anti-cancer properties in vitro, this does not necessarily translate to in 

vivo anti-cancer efficacy. While no clinical trials have assessed the anti-cancer 

efficacy of ZOL alone, many studies in osteoporosis patients have reported that oral 

nBPs administration may decrease cancer risk and bone metastases [69-71]. 

In the clinic, the most frequently observed adverse side effect of intravenous 

nBPs is a mild fever, which is due to the in vivo expansion of a small population of 

cytotoxic immune cells called gamma delta (γδ) T cells and the associated release 

of pyrogenic cytokines [72]. Interestingly, the most severe side effect, 

bisphosphonate-associated osteonecrosis of the jaw (BAONJ) has been correlated 

to the depletion of γδ T cells in osteoporotic patients [73]. While BAONJ is a very 

rare adverse event, it is more likely to occur in immune compromised patients, such 

as cancer patients undergoing chemotherapy, however poor oral hygiene, or oral 

surgery prior to treatment also appear to be common risk factors [reviewed in 74].  

In the last decade, this ability of ZOL and other nBPs to activate and expand γδ T 

cells has become widely recognised for its exciting potential as novel 

immunotherapeutic strategy for the treatment of various solid and haematological 

malignancies [75-83]. 

1.6 Gamma delta (γδ) T cells 

Since their discovery over 30 years ago, the important role of gamma delta 

(γδ) T cells in immunity has slowly emerged, however less is known about these 

cytotoxic immune cells compared to the well-characterised alpha beta (αβ) T cells. 
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Human γδ T cells comprise a small population (1-10%) of circulating peripheral 

lymphocytes [84] which are stimulated and expanded in response to non-peptic 

antigens, known as phosphoantigens (PAgs). The majority of human peripheral 

blood γδ T cells express the Vδ2 TCR (T cell receptor) usually paired with Vγ9 

(Vγ9Vδ2 T cells), while the Vδ1 TCR, and to a lesser extent Vδ3 TCR subsets are 

primarily found in the gut epithelium, dermis, spleen, and liver [85, 86]. While 

there is some functional overlap between different γδ T cell subtypes, this thesis is 

primarily focussed on the ex vivo expansion of Vγ9Vδ2 T cells from human 

peripheral blood mononuclear cells (PBMC). PAg stimulated Vγ9Vδ2 T cells are 

specific to humans and some primates, and the scope of this thesis does not cover 

γδ T cells from other species (e.g. murine). Therefore, discussion in this thesis will 

focus primarily on human γδ T cells, specifically Vγ9Vδ2, and if subtype is not 

specified or information encompasses all subtypes, then γδ T cell will be used.  

Similarly to the more well-defined αβ T cells, the γδ TCR is co-expressed 

with CD3 (cluster of differentiation 3). In contrast, γδ T cells do not express the αβ 

TCR or MHC (major histocompatibility complex) class I and class II recognition 

molecules, CD8 and CD4 respectively, which are necessary for detecting cells in a 

MHC dependant manner. Instead γδ T cells recognise PAgs produced by target cells 

such as microbial infected, stressed, or transformed (cancer) cells [87]. While the 

exact mechanisms of PAg detection is still largely unclear, it occurs in an MHC un-

restricted manner and has been predicted to occur via the γδ TCR [87]. However, 

more recently, the importance of the butyrophiln (BTN) family (specifically 

BTN3A1, also known as CD277) has been implicated as a co-activator required for 

the activation and expansion of Vγ9Vδ2 T cells, and in the recognition of target 

cells [88]. The mechanism by which BTN contributes to Vγ9Vδ2 T cell activation 
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and recognition is not fully understood and is currently under investigation by 

several research groups. The fact that cancer cells can escape immune surveillance 

by down-regulating MHC molecules makes adoptive transfer of γδ T cells a more 

attractive immunotherapeutic approach compared to CD8+ CTLs (cytotoxic T 

lymphocytes), which require MHC presentation. 

1.7 Activation of Vγ9Vδ2 T cells 

A variety of natural and synthetic molecules can activate Vγ9Vδ2 T cells to 

induce their proliferation and activation. Natural PAgs include HMBPP ((E)-4-

hydroxy-3-methyl-but-2-enyl pyrophosphate), an intermediate of the non-

mevalonate pathway in microbial cells. Host cells infected with pathogenic bacteria 

and parasites such as E. coli, Listeria, Mycobacterium, Pseudomonas, Salmonella, 

Plasmodium, and Toxoplasma produce HMBPP which results in the activation of 

Vγ9Vδ2 T cells, and the destruction of infected target cells [reviewed in 89]. In 

mammalian cells, the first identified naturally occurring PAgs were IPP and its 

isomer DMAPP, intermediates of the mevalonate pathway. Although HMBPP is 

8,000 times more potent at activating Vγ9Vδ2 T-cells than IPP [90], cancer cells 

abnormally accumulate IPP due to up-regulation of the mevalonate pathway [91], 

allowing detection of cancer cells by Vγ9Vδ2 T cells [92]. Statins, a class of drugs 

used to lower cholesterol, inhibit HMG-COA reductase, the rate limiting enzyme 

of the mevalonate pathway. This occurs upstream of FPPS, which prevents 

accumulation of IPP after nBP treatment, preventing activation of γδ T cells [93, 

94]. Due to potential inhibition of Vγ9Vδ2 T cell activation, statin use could have 

negative implications on the efficacy of Vγ9Vδ2 T cell therapy. However, a meta-

analysis of over 20 studies including more than 85,000 participants showed that 

statins had a neutral effect on cancer risk [95]. 
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In addition to naturally occurring PAgs, synthetic compounds including 2-

methyl-3-butenyl-1-pyrophosphate (2M3B1PP) [96, 97] and bromohydrin 

pyrophosphate (BrHPP) [76, 98, 99], are also well-characterised activators of 

Vγ9Vδ2 T cells. BrHPP (IPH 1101, Innate Pharma) is the most potent known 

activator of Vγ9Vδ2 T cells in vitro [90] and has been tested in Phase I/II clinical 

trials against a variety of solid tumours [100]. Unfortunately, these trials have been 

discontinued due to a lack of efficacy, therefore other Vγ9Vδ2 T cell activators 

must be assessed. 

As previously discussed, aminobisphosphonates (nBPs) including 

alendronate [76], pamidronate [77, 78], and ZOL [75, 78-83] are another group of 

compounds that can activate and expand Vγ9Vδ2 T cells [reviewed in 101], usually 

in combination with IL-2 (interleukin-2), a cytokine required for T cell 

proliferation. After internalisation by monocytes, ZOL inhibits the enzyme farnesyl 

pyrophosphate (FPP) synthase in the mevalonate pathway, leading to intracellular 

accumulation of isopentenyl pyrophosphate (IPP), which stimulates and activates 

Vγ9Vδ2 T cells (Figure 1.5) [102]. From the nBPs, ZOL is the most potent FPPS 

inhibitor [45], and is considered the best nBP activator of Vγ9Vδ2 T cells. This 

method for expanding Vγ9Vδ2 T cells ex vivo using a low dose of ZOL in 

combination with IL-2 is well established [83], easily reproducible, and was used 

to expand Vγ9Vδ2 T cells in this study. 

Resembling αβ T cells, Vγ9Vδ2 T cells can be divided into four 

differentiation phenotypes based on CD27 and CD45RA receptor expression. 

Stimulation by PAgs results in the expansion of naïve (Tnaïve CD27+/CD45RA+) and 

central memory (TCM
 CD27+/CD45RA-) Vγ9Vδ2 T cells, which have a high 
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Figure 1.5 Expansion of Vγ9Vδ2 T cells from peripheral blood using ZOL.  

In cell culture with peripheral blood mononuclear cells (PBMCs), ZOL is 

internalised by monocytes, resulting in inhibition of farnesyl pyrophosphate 

synthase (FPPS) of the mevalonate pathway. This results in the accumulation of 

isopentenyl pyrophosphate (IPP), which activate Vγ9Vδ2 T cells via the Vγ9/Vδ2 

TCR (mechanism still unknown, but may occur through BTN3A1 receptors). 

Activated Vγ9Vδ2 T cells can then mediate cytotoxicity towards target cells such 

as microbial infected or cancer cells. Figure adapted from [101].  
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proliferation rate and low effector function, to TEM (effector memory CD27-

/CD45RA-) and eventually TERMA (terminally differentiated CD27-/CD45RA+) 

which have limited proliferation capacity, but high effector function [103, 104]. 

Not only do different subsets have varying proliferation rates in response to PAg 

stimulation and effector functions, they also show differences in chemokine 

secretion and migration [104] (summarised in Figure 1.6). Generally, Tnaïve and TCM 

cells are found in the lymph nodes or peripheral blood, while TEM and TERMA will 

localise to sites of inflammation where they can exhibit their cytotoxic effects 

[104]. Monitoring these subtypes is important as it may help predict clinical 

outcomes. For example, early phase clinical studies showed that cancer patients had 

depleted levels of TEM Vγ9Vδ2 T cells, which could be increased after in vivo 

activation with ZOL, or adoptive transfer with ex vivo expanded Vγ9Vδ2 T cells 

[105, 106]. As TEM Vγ9Vδ2 T cells exhibit high effector functions such as IFN-γ 

(interferon-gamma) secretion, it may be beneficial to increase this subtype in 

patients to maximise anti-cancer efficacy. Also, observations from Noguchi et al., 

suggest that numbers of CD27+ cells (naïve and central memory) Vγ9Vδ2 T cells 

can be used to predict how well a patient will respond to expansion conditions, as 

a larger number of these cells results in a greater Vγ9Vδ2 T cell expansion [105].  

1.8 Mechanisms of Vγ9Vδ2 T cell cytotoxicity 

Activated Vγ9Vδ2 T cells express markers reminiscent of CD8+ CTL and 

NK (natural killer) cells, allowing them to kill target cells via a number of 

mechanisms, including death receptor/ligand interactions with TRAIL (tumour 

necrosis factor (TNF) related apoptosis inducing ligand) [98], FasL (Fas Ligand) 

[79], or via the release of perforin/granzymes resulting in the lysis of target cells 

[75, 98, 104, 107]. Activated Vγ9Vδ2 T cells also release Th1 cytokines, including
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Figure 1.6 Differentiation phenotype of Vγ9Vδ2 T cells.  

Vγ9Vδ2 T cells can be categorised into four differentiation sub-populations 

based on CD27 and CD45RA receptor expression. CD27+/CD45RA+ and 

CD27+/CD45RA- are Tnaïve and TCM
 (central memory) cells respectively, which 

have a high proliferation rate and low effector function and are found in the lymph 

nodes and peripheral blood. These differentiate into CD27-/CD45RA- and CD27-

/CD45RA+ TEM (effector memory) and TERMA (terminally differentiated) cells 

which localise to sites of inflammation, and have a high effector function, but 

limited proliferation capabilities.  
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TNF-α (tumour necrosis factor-alpha) and IFN-γ (interferon-gamma) [104, 107, 

108] enhancing their anti-cancer activity by inhibiting tumour growth, interacting 

with the adaptive immune system (reviewed in [109]) and activating NK cells 

[110]. 

However, one of the main cytotoxic effects of Vγ9Vδ2 T cells is mediated 

by NKG2D (Natural killer group 2, member D) expressed by both CD8+ CTL and 

NK cells. NKG2D on Vγ9Vδ2 T cells can detect the ligands MICA/B (MHC class 

I polypeptide-related sequence A/B) [111, 112], ULBP1 (UL16 binding protein 1) 

[113], and ULBP4 (UL16 binding protein 4) [114] on various solid and 

haematological tumours to mediate killing. Therefore, expression of NKG2D on 

Vγ9Vδ2 T cells can be used as a marker of cytotoxicity.  

Similarly to NK cells, a subpopulation of Vγ9Vδ2 T cells also express 

CD16 (FcγRIIIA/B). CD16 is a low affinity Fc receptor and upon binding to the Fc 

portion of IgG antibodies, can stimulate antibody-dependant cellular cytotoxicity 

(ADCC). CD16 is upregulated on TEM and TERMA Vγ9Vδ2 T cells, following PAg 

stimulation [99]. TERMA effector cells are perforinhigh but do not produce IFN-γ in 

response to PAg stimulation, until after cross-linking with CD16 [99]. Cross-

linking of the antibodies with CD16 on Vγ9Vδ2 T cells was shown to be important 

for Vγ9Vδ2 T cell cytotoxicity against various malignancies [115-118].  

Ultimately, Vγ9Vδ2 T cells use a number of mechanisms which make them 

highly cytotoxic towards a variety of solid and haematological cancers (Figure 1.7), 

including bone [75, 79], breast [82, 111], melanoma [76], lung [78], chronic 

myeloid leukaemia [98], and multiple myeloma [80], both in vitro and in pre-

clinical models.  
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Figure 1.7 Mechanisms of Vγ9Vδ2 T cell mediated killing of cancer cells. 

Target cells are recognised by Vγ9Vδ2 T cells via the Vγ9Vδ2+ TCR and/or 

NKG2D. Vγ9Vδ2 T can then induce cytotoxicity of target cells via a variety of 

mechanisms including through the release of TRAIL and FasL to induce apoptosis, 

ADCC mediated by antibodies binding to CD16, release of cytotoxic granules 

containing perforin and granzymes, and through the release of immune modulatory 

cytokines. Figure adapted from [86] and [119].   
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1.9 Clinical trials with Vγ9Vδ2 T cells 

To date, the potential of γδ T cell immunotherapy has been assessed in more 

than a dozen early phase clinical trials against a variety of haematological and 

advanced solid tumours [reviewed in 120, 121]. In vivo expansion or adoptive 

transfer (illustrated in Figure 1.8) are two methods which are being used for 

Vγ9Vδ2 T cell immunotherapy. The difference between these two methods is 

where Vγ9Vδ2 T cell expansion occurs. As the name suggest, in vivo expansion 

(Figure 1.8 A) occurs within the patient, where ZOL is infused intravenously (i.v), 

either alone or often in combination with IL-2. Conversely, adoptive transfer 

(Figure 1.8 B), involves collecting peripheral blood from the patient, expanding 

Vγ9Vδ2 T cells ex vivo using a variety of culture conditions, then reinfusing 

expanded Vγ9Vδ2 T cells back into the patient. Both approaches can be used as 

monotherapies, or in combination with ZOL, IL-2, or other concurrent cancer 

treatments (e.g. chemotherapy, radiation, hormone therapy etc.). 

1.9.1 In vivo expansion of Vγ9Vδ2 T cells 

In vivo expansion using ZOL and IL-2 has been conducted in several 

clinical trials in patients with metastatic breast cancer [122], hormone-refractory 

prostate cancer (HRPC) [123], and advanced renal cell carcinoma [124]. These 

studies showed patients treated with ZOL and IL-2 had increased numbers of 

circulating TEM Vγ9Vδ2 T cells, while the infusion itself produced minimal and 

transient side effects, such as a mild fever or flu-like symptoms, which were easily 

remedied [122-124]. However, in all studies, Vγ9Vδ2 T cell numbers decreased 

over time. As the treatment cycles progressed, the frequency of highly proliferating 

Tnaïve and TCM Vγ9Vδ2 T cells decreased and did not return to pre-treatment levels, 

resulting in an overall decrease in Vγ9Vδ2 T cells [122-124]. Additionally,
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Figure 1.8 Comparing immunotherapeutic approaches: in vivo expansion vs 

adoptive transfer of Vγ9Vδ2 T cells.  

A. During in vivo expansion, a Vγ9Vδ2 T cell stimulator e.g. ZOL is infused 

into the patients’ blood stream either alone or in combination with IL-2. Expansion 

and activation of Vγ9Vδ2 T cells occurs within the peripheral blood, followed by 

localisation of Vγ9Vδ2 T cells to the tumour. B. Conversely, in adoptive transfer, 

blood from the patient is collected and PBMCs are isolated using a Ficoll gradient. 

Cells are then stimulated for 7-14 days in the presence of ZOL and IL-2, resulting 

in a large scale ex vivo expansion and activation of Vγ9Vδ2 T cells, which are then 

re-infused into the patient, either as a monotherapy or in combination with ZOL. 

Either of these approaches can be used in combination with other treatments such 

as chemotherapy.  



 

31 

 

+ZOL  IL-2

ZOL  IL-2

+ZOL +IL-2

7-14 days
ex vivo culture

Blood collection and 
PBMC isolation

 ZOL 
 IL-2

A

B



 

32 

 

deterioration in health correlated with decreasing Vγ9Vδ2 T cell numbers, while 

patients showing the most robust expansion, had the best prognosis resulting in 

either stable disease or in some cases remission [122, 123]. These studies 

highlighted some disadvantages of in vivo expansion. Firstly, the observed 

depletion of Vγ9Vδ2 T cells over time may relate to repeated administrations of 

nBPs. During chronic exposure to a stimulus, Vγ9Vδ2 T cells can undergo AICD 

(activation induced cell death), a programmed cell death mechanism mediated by 

Fas [125], normally responsible for maintaining immune cell homeostasis to avoid 

over-activation of the immune system which can result in auto-immune disease. 

However, in the case of immunotherapy, constant infusion of ZOL and IL-2 to 

activate Vγ9Vδ2 T cells appears detrimental to clinical outcome, with decreasing 

numbers of Tnaïve and TCM Vγ9Vδ2 T cells, potentially due to AICD. Secondly, 

while most patients show increased numbers of Vγ9Vδ2 T cells, there were high 

levels of interpatient variability, and because Vγ9Vδ2 T cell numbers appeared 

predictive of response to treatment, any successful immunotherapy must aim to 

produce as many Vγ9Vδ2 T cells as possible. Now, after many years of trial and 

error, well-established protocols exist for expanding a large number of Vγ9Vδ2 T 

cells ex vivo [83]. Better and more consistent ex vivo expansion protocols may yield 

greater Vγ9Vδ2 T cell numbers in patients who are poor in vivo expanders, such as 

those undergoing chemotherapy. Together, this suggests that adoptive transfer is a 

more suitable approach which overcomes some of these disadvantages.  

1.9.2 Vγ9Vδ2 T cell adoptive transfer 

Adoptive transfer of Vγ9Vδ2 T cells expanded ex vivo using ZOL and IL-2 

has been examined against a variety of solid and haematological malignancies [105, 

126], including non-small cell lung cancer [127] and chemotherapy resistant 
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malignant ascites from gastric cancer [128]. Apart from mild fever and general 

fatigue, no serious adverse effects related to adoptive transfer of Vγ9Vδ2 T cells 

was observed in any of the studies [126-128]. Prior to expansion, the majority of 

Vγ9Vδ2 T cells from PBMC were Tnaïve and TCM [127]. Although cancer patients 

had less of these highly proliferative Vγ9Vδ2 T cells compared to healthy controls 

[105], they still achieved large expansions, resulting in the majority of adoptively 

transferred Vγ9Vδ2 T cells to be the effector TEM phenotype [105, 127]. 

Additionally, patients with the best outcomes were the ones undergoing concurrent 

treatments with Vγ9Vδ2 T cell adoptive transfer, such as ZOL, chemotherapy, or 

hormonal therapy [105, 126, 127].  

Interestingly, Vδ1+ γδ T cells are considered to have better anti-cancer 

efficacy and greater resistance to AICD compared to Vγ9Vδ2 T cells [129, 130], 

however in terms of clinical application, they are more difficult to harness as an 

immunotherapy. Vδ1+ γδ T cells are more challenging to isolate as they are the 

minor γδ T cell subset found in peripheral blood and treatment with nBPs only 

expands Vγ9Vδ2 T cells. The skin is a greater reservoir of Vδ1+ γδ T cells, however 

additional challenges are involved in isolating substantial numbers of skin resident 

γδ T cells. Recently, two groups (Bruno Silva-Santos, Instituto de Medicina 

Molecular, Lisbon and Adrian Hayday, King's College, London) have developed 

proprietary methods for expanding and activating Vδ1+ γδ T cells from the blood 

and skin respectively, using clinical-grade materials. Excitingly, expanded Vδ1+ γδ 

T cells from the blood, termed Delta One T cells (DOT-Cells®) and from the skin 

produce abundant IFN-γ, TNF-α and are cytotoxic towards a large variety of cancer 

cells [131, 132]. Additionally, DOT-Cells® have been shown to inhibit chronic 

lymphocytic leukagrowth in two xenografts models, and as part of a new company 
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Lymphact, are being assessed against leukaemia, colon, ovarian, and pancreatic 

cancers in vivo [133]. However, as these methods have only been recently 

developed and are patented by the corresponding groups, at the time of writing, all 

published human clinical trials for cancer immunotherapy have been focused solely 

on Vγ9Vδ2 T cells.  

1.10 Combination Therapies 

While it is well established that Vγ9Vδ2 T cells can target many different 

cancer types, some cancers, especially advanced solid tumours, appear more 

resistant. Sensitivity to Vγ9Vδ2 T cell cytotoxicity could depend on several factors, 

including ligand expression on tumour cells that are targeted by Vγ9Vδ2 T cells. 

For example, Vγ9Vδ2 T cells express NKG2D, but low expression of its ligand 

ULBP4 on leukaemia cell lines protected from Vγ9Vδ2 T cell cytotoxicity [114]. 

Additionally, MICA, another ligand recognised by NKG2D, can be shed by tumour 

cells therefore evading recognition and cytolysis by immune cells [134]. To 

overcome resistance and to enhance anti-cancer efficacy, Vγ9Vδ2 T cells can be 

used in adjuvant to other well-established therapies. This has been reported in a 

number of clinical trials, where patients treated with adoptive transfer of Vγ9Vδ2 

T cells in combination with concurrent treatments such as nBPs, chemotherapy, or 

hormonal therapy had the best outcomes [105, 126, 127], suggesting that Vγ9Vδ2 

T cells may be most effective at targeting advanced cancers in combination with 

other treatments. 

1.10.1 Sensitisation with nBPs 

Many cancer types abnormally accumulate PAgs, such as IPP due to up-

regulation of the mevalonate pathway [92]. One method to sensitise cancer cells to  
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killing by Vγ9Vδ2 T cells is to inhibit FPPS in the mevalonate pathway to 

accumulate even higher levels of IPP. As previously discussed, nBPs are potent 

inhibitors of FPPS, and many cell types, including cancer cells, can internalise 

nBPs in vitro. It is well-established that osteosarcoma [135], breast [82], 

glioblastoma [136], lymphoma [81], fibrosarcoma and lung cancer cells [78] are all 

sensitised to killing by Vγ9Vδ2 T cells following pre-treatment with ZOL. 

As well as causing accumulation of IPP to further mediate Vγ9Vδ2 T cell 

cytotoxicity, pre-treatment with nBPs has also been used to sensitise chemotherapy 

resistant cancer cells. For example, ZOL pre-treatment could sensitise imatinib-

sensitive and resistant chronic myelogenous leukaemia cells to killing by Vγ9Vδ2 

T cells in vitro [98]. Also in vitro, TRAIL-resistant osteosarcoma cells could be 

sensitised to TRAIL after pre-treatment with the nBP alendronate and overcoming 

resistance was found to be mediated by the up-regulation of death receptor (DR) 5 

(DR5/Apo2L/TRAIL-R2) on resistant cancer cells [137]. Vγ9Vδ2 T cells can 

release TRAIL, which is a ligand for DR4 and DR5, so upregulation of death 

receptors could be a mechanism of how the cancer cells became sensitised.  

1.10.2 Chemotherapies 

Currently, neoadjuvant chemotherapy is frequently used in treatment for 

osteosarcoma and primary breast cancer. Many chemotherapies have a narrow 

therapeutic range, where too little drug produces no efficacy, and too much can 

result in off target toxicity, resulting in severe side effects. Additionally, recurrent 

and advanced cancers often gain resistance to a range of chemotherapies, making 

them even more difficult to treat. One way to enhance efficacy, minimise off target 

toxicity, and to sensitise chemotherapy-resistant cells, is to combine a low dose of 

chemotherapy with immunotherapy (such as Vγ9Vδ2 T cells), to kill cancer cells 
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in a synergistic manner. For example, the efficacy of cisplatin and etoposide, were 

tested in combination with Vγ9Vδ2 T cells, resulting in additive or synergistic 

cytotoxicity of colorectal, bladder, and prostate cancer cells in an effector: target 

(E:T) ratio-dependant manner [81]. Additionally, doxorubicin and 5-fluorouracil, 

sensitised colon cancer initiating cells to Vγ9Vδ2 T cell mediated cytotoxicity via 

upregulation of DR5 and Fas [138]. Doxorubicin is commonly used for the 

treatment of both osteosarcoma and breast cancer, however to date, it has not been 

assessed against either of these cancers in combination with Vγ9Vδ2 T cells. 

In recent years, using recombinant human proteins against specific targets 

on cancer cells has become an attractive alternative to non-specific treatments such 

as chemotherapies. For example, rhTRAIL (recombinant human TRAIL), a pro-

apoptotic receptor agonist (PARA), binds to DR4 (Apo2L/TRAIL-R1) and DR5 on 

cancer cells, resulting in receptor multimerisation and subsequent recruitment of 

the FADD (Fas-associated death domain protein) complex, initiating caspases and 

ultimately resulting in cell death of many cancer types including osteosarcoma and 

breast cancer [139-141]. Vγ9Vδ2 T cells have the ability to release TRAIL [98] and 

previously our laboratory has shown that TRAIL reduces tumour burden in a model 

of osteolytic breast cancer [141]. TRAIL also protects the bone from tumour-

associated osteolysis, however prolonged treatment regimens to maximise anti-

cancer efficacy result in TRAIL resistance [141]. TRAIL has been previously used 

in combination with other immunotherapeutic approaches to enhance the anti-

cancer efficacy of T cells [142, 143], however it has not been examined in 

combination with Vγ9Vδ2 T cells. 
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1.10.3 Antibodies  

Another way to enhance the anti-cancer efficacy of Vγ9Vδ2 T cells, is to 

exploit their expression of CD16, a low affinity receptor which binds to the Fc 

portion of antibodies [144]. Antibody cross-linking to CD16 mediates antibody-

dependant cell-mediated cytotoxicity (ADCC), causing the release of cytolytic 

granules which result in the eventual apoptosis of target cells via caspase activation 

(Figure 1.9). 

A study by Tokuyama et al. showed that co-treatment of Vγ9Vδ2 T cells 

and rituximab, an antibody targeting a B-cell marker CD20, lead to increased 

specific lysis of Daudi cells compared to treatment with Vγ9Vδ2 T cells alone 

[116]. This study determined that the observed increase in cytotoxicity was due to 

CD20 cross-linking with CD16+ Vγ9Vδ2 T cells [116]. Similarly, trastuzumab, a 

humanised monoclonal antibody against HER-2 which is over-expressed on 20-

30% of breast cancers, can be used in conjunction with Vγ9Vδ2 T cells to induce 

greater anti-cancer efficacy against HER-2+ breast cancer cells [115]. These 

studies, and others [117, 118] provide evidence to suggest that Vγ9Vδ2 T cells can 

be successfully used in combination with antibodies to target cancer cells. 

Drozitumab (Apomab, Genetech), is a humanized IgG1 monoclonal 

antibody directed against DR5 and has been shown to require CD16 cross-linking 

to elicit cytotoxic effects against target cells [145]. Drozitumab binding results in 

the activation of the extrinsic pathway of apoptosis and consequently cell apoptosis, 

via caspase activation. In a mouse model of osteolytic breast cancer, drozitumab 

was shown to decrease tumour burden in the tibia, and reverse osteolysis associated 

with tumour growth [146]. However, the efficacy of drozitumab in combination 

with CD16+ Vγ9Vδ2 T cells has not yet been examined.
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Figure 1.9 Antibody-dependant cell-mediated cytotoxicity of cancer cells. 

Antibodies (e.g. Rituximab) first bind their target receptor on cancer cells 

(e.g. CD20 on B cell lymphomas). CD16+ Vγ9Vδ2 T cells bind the Fc portion of 

receptor-bound antibodies, resulting in activation of Vγ9Vδ2 T cells. Activated 

Vγ9Vδ2 T cells subsequently release perforin and granzymes, indirectly activating 

caspases, and inducing apoptosis of the cancer cell. Figure adapted from [147]. 
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1.11 Role of Vγ9Vδ2 T cells in osteoimmunology 

While it has been shown that osteosarcoma cells can be targeted by Vγ9Vδ2 

T cells in vitro [75, 79, 135], limited studies have investigated the effect Vγ9Vδ2 

T cells have on bone, either in the context of cancer in the bone or normal bone 

homeostasis. The first indication that Vγ9Vδ2 T cells may play an important role 

in osteoimmunology was that BAONJ observed in osteoporotic patients was 

correlated with a depletion of Vγ9Vδ2 T cells [73]. In vitro studies have shown 

activated donor-matched human γδ T cells inhibit osteoclast formation from PBMC 

[148] and Vγ9Vδ2 T cells are cytotoxic towards osteoclasts in co-culture with 

multiple myeloma cells [80]. Additionally, Vγ9Vδ2 T cells, have been shown to 

produce IGF-1, and low levels of FGF-2 following antigen stimulation [149]. 

Under culture conditions, human γδ T cells from peripheral blood have also been 

shown to release other factors important in bone formation and remodelling such 

as connective tissue growth factor (CTGF) [150], and matrix metalloproteinase-7 

(MMP-7) and MMP-9 [151]. IGF and FGF are osteoblast growth factors, and 

CTGF also appears to play a role in the proliferation and differentiation of 

osteoblasts [152, 153] suggesting that if Vγ9Vδ2 T cells are primed to produce 

these factors following localisation to the bone, in addition to their potential 

cytotoxicity against osteoclasts, they could possibly stimulate new bone formation 

or inhibit bone degradation, resulting in a net gain in bone volume. In contrast, 

murine γδ T cells appear to have a contradictory role in mouse models of fracture 

repair, where they have been reported to both impair and promote fracture healing 

[154, 155]. Regardless, these studies overall show that Vγ9Vδ2 T cells have 

potential to contribute to osteoimmunology, however the net effect they have on 

normal bone still needs to be elucidated.  
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1.12 Aims and significance 

Osteosarcoma and breast cancer bone metastases are two osteolytic tumour 

types that result in abnormal osteoclast-mediated bone resorption, causing 

significant bone degradation and a decline in both patient quality of life and overall 

survival. Current treatments, including chemotherapy and anti-resorptive agents are 

only palliative; therefore novel therapies are desperately required.  

Adoptive transfer of ex vivo expanded cytotoxic Vγ9Vδ2 T cells is emerging 

as a novel immunotherapeutic approach for solid and haematological malignancies. 

Based on current knowledge, cytotoxic Vγ9Vδ2 T cells can be successfully 

expanded from human PMBC using ZOL and IL-2, and target a variety of cancer 

cells in vitro and in vivo. However, the anti-cancer efficacy of Vγ9Vδ2 T cells 

requires enhancing and optimisation. It has been well established that nBPs can 

sensitise cancer cells to killing by Vγ9Vδ2 T cells both in vitro and in pre-clinical 

animal trials. As nBPs naturally localise to the bone, an elegant approach for 

targeting cancers in the bone has emerged. A hypothesis has been formed to suggest 

that treatment with nBPs such as ZOL, followed by adoptive transfer of Vγ9Vδ2 T 

cells, will sensitise cancer cells in the bone microenvironment, enhancing the anti-

cancer efficacy of Vγ9Vδ2 T cells [156]. As osteoclasts are the main target of ZOL 

in the bone, this would also inhibit the ‘vicious cycle’ of abnormal osteoclast-

mediated resorption associated with osteolytic tumours. To date, this hypothesis 

has not been examined in an appropriate animal model.  

Therefore, the major aim of this thesis was to explore the feasibility of using 

ex vivo expanded human Vγ9Vδ2 T cells for the purpose of adoptive transfer into 

a xenograft mouse model of osteolytic osteosarcoma and breast cancer, alone and 
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in combination with ZOL. Also these experiments provided an opportunity to 

examine the role Vγ9Vδ2 T cells have on bone in vivo. 

Treatment of advanced cancers is challenging, so multi-therapy approaches 

are often deemed necessary. Early phase clinical trials with adoptive transfer of 

Vγ9Vδ2 T cells have shown patients undergoing concurrent treatments obtained 

the most favourable outcomes. This leads to the secondary aim of this study, which 

is to enhance the anti-cancer efficacy of Vγ9Vδ2 T cells using PARAs (drozitumab 

and TRAIL) or chemotherapy (doxorubicin). TRAIL and doxorubicin will be 

assessed as adjuvant therapies to Vγ9Vδ2 T cells. Drozitumab will be assessed in 

the context of CD16+ Vγ9Vδ2 T cells, as it requires Fc cross-linking to be 

biologically active.  

Overall, these studies will provide new insights into the anti-cancer efficacy 

of Vγ9Vδ2 T cells against cancers in the bone, and provide valuable pre-clinical 

information for the advancement of Vγ9Vδ2 T cell immunotherapy. 

The specific aims of these studies are: 

1. To expand Vγ9Vδ2 T cells ex vivo using ZOL and IL-2, for the purpose of 

assessing their cytotoxicity in vitro. This aim will assess Vγ9Vδ2 T cell 

cytotoxicity against a panel of cancer cell lines, using Vγ9Vδ2 T cells alone 

or in combination with ZOL pre-treatment. 

2. To adoptively transfer Vγ9Vδ2 T cells alone or in combination with ZOL 

in a pre-clinical model of osteolytic osteosarcoma and osteolytic breast 

cancer. Specifically this aim will: 

a. Examine Vγ9Vδ2 T cell in vivo localisation 
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b. Assess the anti-cancer efficacy of Vγ9Vδ2 T cells alone, or in 

combination with ZOL 

c. Assess the treatment effects on tumour-associated bone loss 

d. Examine the effects of Vγ9Vδ2 T cells on normal bone. 

3. To determine if Vγ9Vδ2 T cell cytotoxicity can be enhanced in combination 

with: 

a. Drozitumab cross-linking to CD16+ Vγ9Vδ2 T cells 

b. TRAIL 

c. Doxorubicin.
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Chapter 2 

Materials and Methods
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2.1 Cell Lines 

KHOS, 143B (human osteosarcoma), and ZR-75, T47D (human breast 

cancer) cell lines were obtained from American Type Culture Collection. The 

MDA-MB231 human breast cancer derivative cell line MDA-MB231-TXSA was 

kindly provided by Dr. Toshiyuki Yoneda (University of Texas Health Science 

Centre, San Antonio, Texas). MDA-MB231-TXSA, KHOS, and 143B cells 

expressed GFP and luciferase produced by retroviral expression of the SFG-NES-

TGL vector, as previously described [146, 157]. All cell lines were cultured as 

described in Dulbecco's Modified Eagle's Medium (DMEM, Life Technologies, 

Australia) supplemented with 10% foetal bovine serum (FBS, Life Technologies, 

Australia), 100IU/mL penicillin (Life Technologies, Australia), 100µg/mL 

streptomycin (Life Technologies, Australia), and 25mM HEPES (Life 

Technologies, Australia) at 37°C in a 5% CO2 humidified atmosphere.  

2.2 Antibodies and Reagents  

For flow cytometry, the following antibodies conjugated to PE, PeCy5 or 

PeCy7 were obtained from eBioscience (San Diego, CA, USA): anti-CD3 (clone 

UCHT1), anti-CD314 (NKG2D) (clone 1D11), anti-CD16 (clone B73.1), anti-

CD27 (clone 0323) and anti-CD45RA (clone B73.1). Also for flow cytometry, anti-

Vγ9 TCR conjugated to FITC was obtained from BD Biosciences (San Jose, CA, 

USA). All flow cytometry analysis was performed using the BD FACSCanto II 

Flow Cytometer (San Jose, CA, USA) and images were created in FlowJo LLC 

Data Analysis Software v10.1 (Ashland, OR, USA). Affinity Pure Goat Anti-

Human IgG Fcγ Fragment was purchased from Jackson Immunoresearch 

Laboratories, Inc (West Grove, PA, USA). ZOL was generously provided by 
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Novartis Pharma AG, and Drozitumab and TRAIL were a kind gift from Dr. Avi 

Ashkenazi (Genentech, Inc., CA, USA). 

2.3 Ex vivo expansion of Vγ9Vδ2 T cells 

Informed consent was obtained prior to collection of peripheral blood from 

healthy adult donors. 60-80mL of whole blood was obtained by venipuncture using 

heparin coated collection tubes. PBMC were isolated immediately via density 

gradient centrifugation using LymphoprepTM (Axis Shield, Norway) following 

manufacturer’s instructions. PBMCs were resuspended to 1x106/mL in CTS™ 

OpTmizer™ T Cell Expansion SFM (Life Technologies, Australia) supplemented 

with OpTmizer™ T cell Expansion Supplement (1:38 dilution) (Life Technologies, 

Australia), 10% heat-inactivated FBS (HI-FBS), 100IU/mL penicillin, 100µg/mL 

streptomycin (Life Technologies, Australia), 2mmol L-glutamine (Life 

Technologies, Australia), 25mM HEPES (Life Technologies, Australia), 0.1% β-

mercaptoethanol (Sigma-Aldrich, USA), recombinant human interleukin 2 (rhIL-

2) (100IU/mL) (BD Pharmingen, USA) and 5µM ZOL, then seeded into 6-well 

plates. Cell culture density was maintained at 1-2 x 106 cells/mL and replenished 

with fresh medium containing rhIL-2 (100IU/ml) only (without ZOL) every 2-3 

days, as outlined in [83, 157]. The concentrations of ZOL and IL-2 used to activate 

and expand Vγ9Vδ2 T cells were based on a protocol published by Kondo et al. 

[83] and used in other studies [75, 78]. Following 7-8 days of culture cells were 

collected and enriched as described below or phenotyped using flow cytometric 

analysis.  

2.4 Enrichment of Vγ9Vδ2 T cells 

Ex vivo expanded Vγ9Vδ2 T cells were enriched by negative selection 

MACS using the TCR γ/δ+ T cell Isolation Kit (human) (Miltenyi Biotec, 
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Germany) following manufacture’s instruction. Enriched cells consisted of >97% 

Vγ9+ and CD3+ double positive lymphocytes and cell viability exceed 95% as 

determined by trypan blue exclusion.  

2.5 Enrichment of CD16+ Vγ9Vδ2 T cells 

To test the ability of Vγ9Vδ2 T cells to undergo ADCC with drozitumab 

(Chapter 7), three populations of Vγ9Vδ2 T cells were assessed; impure, CD16-, 

and CD16+ Vγ9Vδ2 T cells. Fresh ex vivo expanded Vγ9Vδ2 T cells were enriched 

by positive selection using CD16 MicroBeads (human) (Miltenyi Biotec, Germany) 

following manufacture’s protocols. Enriched cells consisted of >97% Vγ9+ and 

CD3+ double positive lymphocytes and cell viability exceed 95% as determined by 

trypan blue exclusion.  

2.6 Cell cytotoxicity assay 

Cytotoxicity of Vγ9Vδ2 T cells against cancer cell lines was assessed using 

a standard lactate dehydrogenase (LDH) release assay (CytoTox 96® Non-

Radioactive Cytotoxicity Assay; Promega, USA) according to the manufacturer’s 

directions. Briefly, 1x104 target cells were seeded in triplicate in a 96-well 

microtiter plate and allowed to adhere overnight. Target cells were then treated with 

or without 25µM ZOL for 24 hours, and then co-cultured with Vγ9Vδ2 T cells at 

various Effector: Target (E:T) ratios with Vγ9Vδ2 T cells as the effector cells, and 

cancer cells as the target cells. After incubation for 9 hours at 37°C, 50µL of 

supernatant was assayed for LDH activity following the manufactures protocol. 

The appropriate controls were prepared and cytotoxicity was calculated as: 

% Cytotoxicity = 
experimental release - effector spontaneous release - target spontaneous release

target maximum release − target spontaneous release
 ×  100 
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2.7 Luciferase-based viability assay 

MDA-MB231-TXSA, 143B, and KHOS cells expressed luciferase, which 

was the basis for a luciferase activity viability assay using Dual Luciferase® 

Reporter Assay kit (Promega, Madison, WI, USA). Briefly, 1x104 target cells were 

seeded in triplicate in a 96-well microtiter plate and allowed to adhere overnight. 

Cells were then treated with or without 25µM ZOL for 24 hours, and then co-

cultured with Vγ9Vδ2 T cells at various E:T ratios. After incubation for 24 hours, 

media was removed from the wells and cells were washed in PBS, then lysates were 

prepared and analysed according to the manufacturer’s directions. Viability was 

calculated as: 

% Viability = 
experimental value

untreated control value
  × 100 

 

2.8 Measurement of DEVD-caspase activity 

DEVD-caspase activity was assayed by cleavage of zDEVD-AFC (z-asp-glu-

val-asp-7-amino-4-trifluoro-methyl-coumarin), a fluorogenic substrate based on 

the peptide sequence at the caspase-3 cleavage site of poly (ADP-ribose) 

polymerases (Kamiya Biomedical Company, Seattle, WA, USA). Briefly, cancer 

cells were seeded at 1x104cells/well in triplicate a 96-well microtiter plate and 

allowed to adhere overnight. Cells were then treated with or without 25µM ZOL 

for 18 hours, then co-cultured with Vγ9Vδ2 T cells at a 5:1 E:T ratio. After 2 or 4 

hours, media was removed from the wells and cells were washed in PBS, then lysed 

in caspase lysis buffer containing 5µM EDTA, 5µM TRIS-HCl and 0.5% IGEPAL 

(Sigma-Aldrich, USA). Caspase activation in the lysates was detected using 

DEVD-AFC, as previously described [158]. 
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2.9 Western Blotting 

Detection of unprenylated small GTPases, including RAP1, were used to 

indirectly determine the extent of FPPS inhibition by ZOL, which correlates with 

increased IPP levels, resulting in the increased detection of cancer cells by Vγ9Vδ2 

T cells and greater cytotoxicity. To determine the effect of ZOL on the prenylation 

of small GTPases in the osteosarcoma and breast cancer cells, lysates were analysed 

by Western blotting for total and unprenylated RAP1. Briefly, 1x106 cancer cells 

were seeded in a 25-cm2 flask, allowed to adhere, and then treated with 25µM ZOL 

for 18 hours or over a 24 hour time course. Lysates were prepared and separated as 

previously described [158], and immunodetection was performed overnight at 4oC 

in PBS/blocking reagent containing 0.1% Tween-20, using the following primary 

antibodies at the dilutions suggested by the manufacturer: pAb anti-RAP1 (121) for 

total RAP1 protein, pAB anti-RAP1A (C-17) specifically for unprenylated RAP1 

(Santa Cruz Biotechnology, USA), and anti-actin mAb (Sigma-Aldrich, USA) as a 

loading control. Membranes were then rinsed several times with PBS containing 

0.1% Tween-20 and incubated with 1:5,000 dilution of anti-goat or anti-rabbit 

alkaline phosphatase-conjugated secondary antibodies (Thermo Fisher Scientific, 

USA) for 1 hour. Visualisation of protein bands was performed using the ECF 

substrate reagent kit (GE Healthcare, UK) on a LAS-4000 (GE Healthcare, UK). 

2.10 Labelling Vγ9Vδ2 T cells with DiR  

Vγ9Vδ2 T cells were expanded ex vivo and enriched as described above, 

washed in PBS, and resuspended to 2x106 cells/mL in RPMI-1640 media (Life 

Technologies, Australia) supplemented with 0.1% HI-FBS. XenoLight DiR 

Fluorescent Dye (Perkin Elmer, USA) was reconstituted in ethanol and added to 

cells at a final concentration of 16.6µg/mL. Cells were incubated in the dark for 10-
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15 minutes at 37°C, then collected and washed three times in PBS containing 1% 

HI-FBS. Cell viability was assessed using trypan blue exclusion; labelling efficacy 

was assessed by flow cytometry using the filter corresponding to PeCy7; and 

cytotoxicity against cancer cells was assessed using the DEVD-Caspase assay, as 

outlined above.  

2.11 Animals 

Female four-week-old non-obese diabetic severe combined immunodeficient 

(NOD/SCID) mice were purchased from the Animal Resources Centre (Canning 

Vale, WA, Australia) and housed under pathogen free conditions in The Queen 

Elizabeth Hospital Experimental Surgical Suite (Woodville, SA, Australia). Mice 

were acclimatised to the animal housing facility and the general wellbeing of 

animals was monitored continuously throughout the experiment. All experimental 

procedures were carried out with strict adherence to the rules and guidelines for the 

ethical use of animals in research and were approved by the Animal Ethics 

Committees of the University of Adelaide and the Institute of Medical and 

Veterinary Science, Adelaide, SA, Australia. If pain relief was required during the 

course of the study, animals were administered Rimadyl (carprofen) (Pfizer Animal 

Health, Australia) at 5mg/kg s.c every 24 hours for a maximum of three days.  

2.12 In vivo fluorescence and bioluminescence imaging 

Non-invasive, whole body imaging to monitor DiR-labelled Vγ9Vδ2 T cell 

localisation and luciferase expressing cancer cell growth in vivo was done using the 

IVIS Spectrum in vivo Imaging system (Caliper Life Sciences, Australia). For 

fluorescent imaging, mice were anaesthetised by isoflurane (Veterinary Companies 

of Australia, Australia) and fluorescent images were acquired using the optimised 

settings for DiR dye: f stop: 2, medium binning, ex/em: 745/800nm. Images were 
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taken at multiple time points, up to 120 seconds. For bioluminescent imaging, mice 

were injected s.c with 100µL of D-luciferin solution (Perkin Elmer, USA) to a final 

dose of 3mg/20g mouse body weight and then anaesthetised by isoflurane and 

bioluminescence was acquired between 0.5 and 30 seconds (images shown at 1 

second). Photon emission was quantified as Total Flux measured in 

[photons/second] using Living Image 4.2 (Caliper Life Sciences, Australia). There 

was no interference between the DiR dye and the luciferase expressing cancer cells, 

therefore fluorescent and bioluminescent images could be acquired in succession 

to assess Vγ9Vδ2 T cell localisation to the tumour site.  

2.13 Intratibial injections of cancer cells 

Intratibial (i.t) injection of cancer cells is a reproducible method for 

investigating primary and metastatic cancer in the bone [63, 67, 146, 158]. 

Injections were performed on either four or five-week old female NOD/SCID mice 

as the bone at this age has not fully developed, allowing an easier procedure and 

better tumour inoculation. Animals were anaesthetised by isoflurane (Veterinary 

Companies of Australia, Australia), then the left leg was shaved, wiped with 70% 

ethanol and a 27-guage needle coupled to a Hamilton syringe was used to inject 

luciferase expressing MDA-MB231-TXSA or 143B cells (1 x 105) resuspended in 

10µL PBS, through the tibial plateau into the marrow space. The contralateral tibia 

was not injected.  

2.14 In vivo localisation 

I.t injections were performed as described above for the MDA-MB231-

TXSA and 143B cells. Once tumours were established, mice were injected 5x106 

DiR-labelled Vγ9Vδ2 T cells i.v (n=3-5). Fluorescence and bioluminescence 
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images were acquired as described above at the time points outlined in the 

corresponding figures.  

2.15 Assessing the in vivo anti-cancer efficacy of a single administration of 

ZOL and Vγ9Vδ2 T cells  

I.t injections were performed as described above for the MDA-MB231-

TXSA cells. When tumours were established, mice were assigned into four 

treatment groups (n=2-3): untreated, ZOL alone (100µg/kg s.c), Vγ9Vδ2 T cells 

alone (5x106 γδ T cells injected i.v via the tail vein), and ZOL in combination with 

Vγ9Vδ2 T cells (infusion of γδ T cells 24 hours after ZOL, treatments as above). 

Treatments were administered once and tumour growth was assessed over three 

weeks, by bioluminescent imaging using the IVIS Spectrum. 

2.16 Assessing the in vivo anti-cancer efficacy Vγ9Vδ2 T cells in 

combination with metronomic ZOL  

I.t injections were performed as described above for the MDA-MB231-

TXSA cells. When tumours were established, mice were assigned into four 

treatment groups (n=6-8): untreated, ZOL-M alone (treatment 1: 25µg/kg s.c, 

treatment 2 and 3: 50µg/kg s.c), Vγ9Vδ2 T cells alone (5x106 γδ T cells injected 

i.v via the tail vein), and ZOL-M in combination with Vγ9Vδ2 T cells (infusion of 

Vγ9Vδ2 T cells 24 hours after ZOL-M, treatments as above). Treatments were 

repeated three times over a period of 25 days. Tumour growth was assessed by 

bioluminescent imaging using the IVIS Spectrum and at the conclusion of the 

study, mice were sacrificed and the tumour bearing and control tibias from each 

animal were removed for micro-computed tomography, as described below. 
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2.17 In vivo anti-cancer efficacy of ZOL and Vγ9Vδ2 T cells 

I.t injections were performed as described above, with MDA-MB231-TXSA 

cells, and in a second study, with 143B cells. When tumours were established, mice 

were assigned into four treatment groups (n=5-8): untreated, ZOL alone (100µg/kg 

s.c), Vγ9Vδ2 T cells alone (1x107 γδ T cells injected i.v via the tail vein), and ZOL 

in combination with Vγ9Vδ2 T cells (infusion of Vγ9Vδ2 T cells 24 hours after 

ZOL, treatments as above). Treatments were repeated three times over a period of 

three weeks. Tumour growth was assessed by bioluminescent imaging using the 

IVIS Spectrum and at the conclusion of the study, mice were sacrificed and the 

tumour bearing and control tibias from each animal were removed for micro-

computed tomography, as described below. 

2.18 Ex vivo micro-computed tomography (µCT) analysis 

Tibias for µCT analysis were surgically resected and scanned using the 

SkyScan-1076 high-resolution µCT Scanner (Bruker). The scanner was operated at 

50kV, 110μA, rotation step of 0.5, 0.5-mm aluminium filter, and scan resolution of 

7.8μm/pixel. Cross-sections were reconstructed using a cone-beam algorithm in 

NRecon (V1.6.9.8, Bruker). Images were then realigned in DataViewer (1.5.1.2, 

Bruker) and imported into CT Analyser (CTAn) (V1.14.4.1+, Bruker, Skyscan). 

Using the two-dimensional images obtained from the CTAn, the growth plate was 

identified and 600 sections starting from the growth plate/tibial interface and 

moving down the tibia were selected for quantification of total bone morphometric 

parameters and 200 sections starting 25 sections down from the growth plate, were 

selected for trabecular bone morphometric parameters. Representative three-

dimensional images were generated in CTvox (V2.7.0, Bruker). 
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2.19 Histology 

Tibias were fixed in 10% buffered formalin, followed by 6 weeks 

decalcification in 0.5 M EDTA/0.5% paraformaldehyde in PBS, pH 8.0 at room 

temperature. Complete decalcification was confirmed by radiography and tibias 

were then paraffin embedded and sectioned longitudinally at 6μm. Osteoclast-

specific tartrate-resistant acid phosphatase (TRAP) staining was conducted 

following the manufacturer's protocol (386A, Sigma Aldrich). Slides were then 

imaged using Nanozoomer-HT Digital Pathology (NDP, Hamamatsu) and photos 

were acquired at 4x and 40x magnification using Nanozoomer software NDP.view 

(V1.2.33, Hamamatsu). Osteoclast number was determined by counting TRAP 

positive multi-nucleated (≥3 nuclei) cells in a 1mm2 area below the growth plate. 

2.20 Data analysis and statistics 

In vitro experiments were conducted at least twice using biological 

triplicates, and data presented is mean ± SEM, unless otherwise specified. A 

representative experiment is shown for western immunoblot data. A two-tailed 

unpaired Student's t-test was used to analyse all in vitro data and ex vivo bone 

volume analysis. In vivo, tumour growth was analysed using a linear mixed effects 

model with animal treated as a random factor. The data were log transformed prior 

to analysis. Statistical analysis was done with SAS v9.3 (SAS Institute Inc., USA). 

All other statistical analysis was done using SigmaPlot v12.5 (Systat Software, Inc). 

In all cases p-values <0.05 were considered statistically significant.
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Chapter 3 

Optimising adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells
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3.1 Introduction 

Bone metastases occur in over 75% of patients with advanced breast cancer, 

however treatment remains palliative. Breast cancer cells in the bone release factors 

that increase osteoclast number and activity, resulting in cancer-associated 

osteolysis. During bone degradation there is further release of factors that enhances 

tumour growth, resulting in what is known as the ‘vicious cycle’ of metastatic 

disease [reviewed in 18, 19]. Bone loss contributes to the morbidity of the disease, 

with patients suffering SREs including fractures, chronic pain, and symptoms 

associated with hypercalcemia [1, 8]. It is clear that novel therapies developed for 

the treatment of bone metastases need to target the ‘vicious cycle’ of cancer growth 

and bone degradation. 

In recent years, the anti-tumour capacity of human Vγ9Vδ2 T cells has 

become widely recognised [159] and as immunotherapy becomes common, it 

presents a novel approach for the treatment of advanced breast cancer. Human 

Vγ9Vδ2 T cells recognise PAgs, metabolites of the mammalian mevalonate 

pathway, which are accumulated in transformed (cancer), stressed, or infected cells 

[92]. Recognition of PAgs by Vγ9Vδ2 T cells leads to their activation and results 

in the release of cytolytic, apoptotic, and immunogenic proteins including perforin, 

granzyme B [75, 98, 104, 107], TRAIL [98], FasL [79], IFN-γ, and TNF-α [104, 

107, 108], which all contribute to cytotoxic potential. 

In early phase clinical trials, Vγ9Vδ2 T cell-based immunotherapy has 

produced encouraging results in terms of good tolerance and safety [reviewed 

in120, 121]. However the observed anti-cancer efficacy has been relatively 

underwhelming, especially against advanced solid tumours [122-124, 126-128]. 
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This suggests that Vγ9Vδ2 T cell therapy requires optimisation, potentially in 

combination with other therapies. 

It is well established that treatment of cancer cells with PAg sensitises them 

to killing by Vγ9Vδ2 T cells [76, 96-99]. nBPs, are a class of FDA approved drugs 

which inhibit osteoclast mediated bone degradation and increase PAg expression 

via inhibition of the mevalonate pathway [102]. ZOL is a third generation nBP 

currently used in the clinic for the treatment of osteoporosis, Paget’s disease of the 

bone, and bone metastases. It is well established that nBPs including ZOL, sensitise 

cancer cells to killing by Vγ9Vδ2 T cells in vitro and in vivo [78, 81, 82, 135, 136]. 

nBPs rapidly localise to the skeleton, where they may be readily available for uptake 

by cells in the tumour microenvironment, resulting in enhanced Vγ9Vδ2 T cell anti-

cancer efficacy. 

Additionally, in vitro ZOL demonstrates anti-cancer properties and was 

shown to induce cell death, inhibit proliferation, invasion, and angiogenesis in a 

variety of cancer cell lines [57-62]. However, studies examining the anti-cancer 

efficacy of ZOL in pre-clinical models have delivered contradictory outcomes [62-

65, 67, 68]. This may be due to ZOL having the highest affinity for bone mineral 

compared to other nBPs [48], allowing rapid localisation to the bone, potentially 

limiting any anti-cancer effects it may exert in other tissues. 

In the context of breast cancer bone metastases, ZOL in combination with 

Vγ9Vδ2 T cells would be an ideal two-pronged approach as it has potential to 

sensitise cancer cells to killing by Vγ9Vδ2 T cells, and inhibit osteoclast mediated 

bone degradation, a major contributing factor to the morbidity of the disease. While 

targeting cancer in the bone using Vγ9Vδ2 T cells alone or in combination with 
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ZOL has been discussed in the literature [156, 160], to date no studies have 

examined this treatment regimen in a well-characterised pre-clinical model.  

Therefore, the aim of this chapter was firstly to optimise and characterise the 

ex vivo expansion of Vγ9Vδ2 T cells from human PBMC using ZOL and IL-2, then 

to assess the in vitro and in vivo efficacy of ex vivo expanded Vγ9Vδ2 T cells alone 

and in combination with ZOL in a model of osteolytic breast cancer. This study 

confirmed that ZOL and IL-2 could be used for large scale ex vivo expansions of 

Vγ9Vδ2 T cells, and that ZOL sensitises breast cancer cells to killing by Vγ9Vδ2 

T cells. Pre-clinical studies then examined the efficacy of single and multiple 

administrations of Vγ9Vδ2 T cells alone, and in combination with ZOL. A single 

administration of Vγ9Vδ2 T cells transiently decreased tumour growth while 

multiple infusions were required to prolong this effect. However, in contrast to the 

in vitro observations, when used in vivo, ZOL failed to potentiate the anti-cancer 

efficacy of Vγ9Vδ2 T cells, suggesting that further in vivo optimisation is required.  

3.2 Results 

3.2.1 Ex vivo expansion and phenotyping of Vγ9Vδ2 T cells 

Numerous reports have shown that Vγ9Vδ2 T cells can be activated and 

expanded using nBPs including alendronate [76], pamidronate [77, 78], and ZOL 

[75, 78-83]. The studies in this thesis used 5µM ZOL and 100IU/mL IL-2 to activate 

and expand Vγ9Vδ2 T cells, based on a protocol published by Kondo et al. [83] and 

used in numerous other studies [75, 78].  

PBMCs were isolated from the blood of healthy donors, then cultured in 

media containing 5µM ZOL and 100 IU/mL IL-2 for seven days. Flow cytometric 

analysis was used to phenotype cells immediately following PBMC isolation and 
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after expansion (Figure 2.1). In total, thirty-seven expansions were carried out to 

provide sufficient Vγ9Vδ2 T cells for all the experiments conducted in this thesis. 

The success of Vγ9Vδ2 T cell expansions was assessed by comparing the 

percentage of CD3+/Vγ9+ cells immediately following PBMC isolation and after 

expansion. Data was pooled from several expansions to demonstrate a typical 

analysis. Immediately following PBMC isolation on Day 0, an average of 6% of the 

viable lymphocytes were CD3+/Vγ9+ cells (Figure 3.1 A). By Day 7, this number 

had increased significantly to approximately 80%. (Figure 3.1 A).  

Surface expression of NKG2D and CD16 was assessed using flow 

cytometry. NKG2D can detect the ligands MICA/B (MHC class I polypeptide-

related sequence A/B) [111, 112], ULBP1 (UL16 binding protein 1) [113], and 

ULBP4 (UL16 binding protein 4) [114] on various solid and haematological 

tumours to mediate killing by Vγ9Vδ2 T cells. Furthermore, a subpopulation of 

Vγ9Vδ2 T cells also express CD16 (FcγRIIIA/B), which can stimulate ADCC upon 

binding [99]. Therefore, NKG2D and CD16 expression on Vγ9Vδ2 T cells can be 

used as markers of cytotoxicity. Expression of these receptors was measured on the 

gated CD3+/Vγ9+ population immediately following PBMC isolation and after 

expansion. By Day 7, 99% of Vγ9Vδ2 T cells expressed NKG2D, compared to 82% 

measured on Day 0 (Figure 3.1 B). In contrast, 25% of Vγ9Vδ2 T cells expressed 

CD16 on Day 7, compared to 43% measured on Day 0 (Figure 3.1 C). 

Based on CD27 and CD45RA receptor expression, flow cytometric analysis 

was used to assess the differentiation phenotype of Vγ9Vδ2 T cells. Vγ9Vδ2 T cells 

expressing CD27+/CD45RA+ and CD27+/CD45RA- are Tnaïve and TCM
 cells 

respectively, which have a high proliferation rate and low effector function and are 
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found in the lymph nodes and peripheral blood [103, 104]. These differentiate into 

TEM (CD27-/CD45RA-) and TERMA (CD27-/CD45RA+), which localise to sites of 

inflammation, and have a high effector function, but limited proliferation 

capabilities [103, 104]. Prior to expansion, the majority of cells (76%) were either 

Tnaïve or TCM (Figure 3.1 D), suggesting that many cells had potential to become 

activated and expand in response to stimulation with ZOL and IL-2. By Day 7, Tnaïve 

and TERMA cells had decreased to 11% of the total cells, and there was an enrichment 

of TCM and TEM cells (Figure 3.1 D). This suggests that by Day 7, Vγ9Vδ2 T cells 

were activated and would exhibit cytotoxic activity, while also retaining some 

proliferative capability. 

To evaluate the expansion rate of Vγ9Vδ2 T cells, the number of viable T 

cells was counted during the expansion period and the fold change compared to Day 

0 was calculated. Repeated observations showed that after three days of culture, 

there was a small decrease in total T cell numbers, followed by a rapid increase 

between Day 5 and 7, with maximum T cell numbers observed on Day 7 (Figure 

3.1 E). The initial decrease in total T cell numbers is due to the death of other cell 

types for which the Vγ9Vδ2 T cell culture conditions are unsuitable. Following the 

death of other cells, Vγ9Vδ2 T cells then expand which is reflected by the rapid 

increase in total T cell numbers between Day 5 and 7. By Day 8, total T cell numbers 

had greatly decreased and plateaued until Day 11 (Figure 3.1 E). This decrease in 

total T cells accounts for the exhaustion and subsequent death of the Vγ9Vδ2 T 

cells. 

While the maximum fold change of total T cell numbers showed variation 

between expansions, on average there was a 4.5-fold increase of T cells by Day 7 

(Figure 3.1 E).
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Figure 3.1 Expansion of Vγ9Vδ2 T cells from PBMC stimulated with ZOL and IL-2. 

PBMC from normal donors were phenotyped immediately following 

isolation and after 7-8 days ex vivo culture with 5µM ZOL and 100IU/mL IL-2. 

Flow cytometric analysis was conducted to examine expression of A. Vγ9/CD3, B. 

NKG2D, C. CD16 and D. CD27/CD45RA to examine differentiation phenotype. 

For greater robustness, flow cytometric analysis was pooled from Day 7 and Day 8 

expansions as these cells were phenotypically identical. Columns represent the 

mean of n=4-10, expressed as the percentage of cells from the lymphocyte or 

Vγ9+/CD3+ population. Error bars indicate SD. E. Total T cell counts over the 

expansion culture period were normalised to Day 0 for that expansion and a fold 

change was calculated. The tabulated data shows the average fold-change increase 

and SD for fourteen independent expansion.  
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3.2.2 ZOL sensitises cancer cells to Vγ9Vδ2 T cell cytotoxicity 

It is well established that pre-treatment of cancer cells with ZOL enhances 

Vγ9Vδ2 T cell cytotoxicity against a wide variety of cancer cell lines [78, 81, 82, 

135, 136]. MDA-MB231-TXSA osteolytic breast cancer cells expressing luciferase 

were pre-treated with 25µM ZOL overnight, followed by co-culture with various 

E:T (5:1, 10:1, 20:1) of Vγ9Vδ2 T cells (Figure 3.2). After 4 hours, luciferase 

activity was measured to determine cancer cell viability. Vγ9Vδ2 T cells alone had 

no effect on cancer cell viability when compared to untreated control (Figure 3.2 

A). While ZOL treatment alone showed a small decrease in cancer cell viability, 

this was significantly enhanced in combination with Vγ9Vδ2 T cells, showing an 

E:T dependant decrease in viability, reaching a maximum of 45% viable cancer 

cells after 4 hours co-culture with Vγ9Vδ2 T cells (Figure 3.2 A). Interestingly, 

after 24 hours, Vγ9Vδ2 T cells alone did show an E:T dependant decrease in cancer 

cell viability (Figure 4.2). This suggests that 4 hours incubation with Vγ9Vδ2 T 

cells in not sufficient to completely kill cancer cells, but requires longer incubation 

periods.  

To assess if Vγ9Vδ2 T cells begin apoptosis induction at earlier time points, 

caspase-3 activation and DAPI staining were assessed after 4 hours induction. 

Caspase-3 activation was measured in cancer cells that were pre-treated with or 

without 25µM ZOL overnight, followed by co-culture with Vγ9Vδ2 T cells at 5:1 

E:T for 4 hours. ZOL pre-treatment alone did not induce caspase-3 activation 

compared to untreated (Figure 3.2 B). Caspase-3 activation was significantly 

increased following treatment with Vγ9Vδ2 T cells alone, and there was a further 

increase following ZOL pre-treatment in combination with Vγ9Vδ2 T cells (Figure 

3.2 B). DAPI staining revealed no differences in cancer cell morphology between 
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untreated and ZOL pre-treated cells (Figure 3.2 C). Following 4 hours co-culture 

with Vγ9Vδ2 T cells, some Vγ9Vδ2 T cells were in contact with cancer cells which 

displayed evidence of apoptosis induction (Figure 3.2 C). Furthermore, cancer cells 

that were pre-treated with ZOL and Vγ9Vδ2 T cells showed nuclear fragmentation 

and chromosomes condensation which are typical hallmarks of apoptosis (Figure 

3.2 C). Additionally, less cancer cells were observed in the combination treatment 

overall due to the detachment and loss of dead cancer cells during DAPI staining. 

This suggests that 4 hours co-culture with Vγ9Vδ2 T cells alone could initiate 

apoptosis in cancer cells, but this did not yet translate to a decrease in cancer cell 

viability, however at this time point, ZOL significantly sensitised cancer cells to 

killing by Vγ9Vδ2 T cells. 

3.2.3 A single infusion of Vγ9Vδ2 T cells transiently inhibits tumour growth 

Once it was established that ZOL sensitised MDA-MB231-TXSA osteolytic 

breast cancer cells to Vγ9Vδ2 T cell cytotoxicity in vitro, a pilot study was 

performed to assess this treatment regimen in a pre-clinical model of osteolytic 

breast cancer. Luciferase tagged MDA-MB231-TXSA osteolytic breast cancer cells 

were injected directly into the tibial marrow cavity of NOD/SCID mice (n=2-

3/group) and treatments were commenced once tumours were established. In the 

pilot study, ZOL was injected subcutaneously at the conventional dose (ZOL-C) of 

100µg/kg. ZOL was administered 24 hours prior to Vγ9Vδ2 T cell infusion in all 

the studies outlined in this thesis. As nBPs distribute to the skeleton within 24 hours, 

the rationale for this strategy was to allow ZOL localisation to the bone where it 

would be made available for uptake by cells in the tumour microenvironment to 

potentially enhance Vγ9Vδ2 T cell anti-cancer efficacy. Untreated and ZOL-C 

alone treated animals showed an exponential increase in bioluminescence over 21  
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Figure 3.2 ZOL sensitises cancer cells to killing by Vγ9Vδ2 T cells in vitro.  

MDA-MB-231-TXSA were pre-treated with 25μM ZOL overnight at 37°C, 

then co-cultured with ex vivo expanded Vγ9Vδ2 T cells at the outlined E:T for 4 

hours at 37°C. Cytotoxicity was measured as A. overall viability measured using a 

luciferase based assay, B. caspase-3 activation and C. DAPI staining. Arrows 

indicate Vγ9Vδ2 T cells, arrow heads indicate apoptotic cancer cells. Columns, 

mean; bars, ±SEM of n=3. *p<0.05, **p<0.01). 
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Figure 3.3 A single administration of Vγ9Vδ2 T cells shows a trend to transiently 

inhibit cancer growth. 

Luciferase expressing MDA-MB231-TXSA osteolytic breast cancer cells 

were injected directly into the tibia of 5-week old female NOD/SCID mice. 

Tumours grew for 12 days, then animals were assigned into four treatment groups. 

Animals remained untreated (n=2) or were given ZOL-C (100µg/kg s.c) (n=2), 

5x106 Vγ9Vδ2 T cells i.v (n=3), or the combination of ZOL-C and Vγ9Vδ2 T cells 

(same dose as the monotherapy, n=3). ZOL treatment was given on Day 13 and 

Vγ9Vδ2 T cells supplement with 10IU rhIL-2 were infused 24 hours later. Whole 

body bioluminescence images were acquired on the IVIS Spectrum in vivo imaging 

system and bioluminescence signal was quantified as Total Radiant Efficiency 

[p/s]/[µW/cm²]. Images and graphs are shown for one animal per group.  
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days (Figure 3.3). In contrast, a single infusion of Vγ9Vδ2 T cells on Day 14 

resulted in a small decrease in tumour bioluminescence the following day (Figure 

3.3). ZOL-C in combination with Vγ9Vδ2 T also showed a slowing of tumour 

growth evidenced by the bioluminescence signal on Day 15 (Figure 3.3). However, 

any effect Vγ9Vδ2 T cells had on tumour growth was only transient and tumour 

bioluminescence increased thereafter, showing no difference compared to untreated 

control. This transient effect seen after a single infusion of Vγ9Vδ2 T cells has been 

previously observed [161], and it has been established that multiple administrations 

of Vγ9Vδ2 T cells alone or in combination with nBPs are required for sustained 

anti-cancer efficacy [76, 77, 162]. 

3.2.4 Metronomic ZOL dosing does not potentiate the anti-cancer efficacy 

of Vγ9Vδ2 T cells 

As sustained tumour inhibition was not observed in the pilot study, a larger 

study was conducted to assess the anti-cancer efficacy of multiple administrations 

of Vγ9Vδ2 T cells and when ZOL is administered at metronomic doses. As ZOL 

was administered more frequently, a lower dose was used (metronomic dosing, 

ZOL-M), which has been shown previously by our laboratory to reduce tumour 

burden in nude mice [163]. NOD/SCID mice in this case were inoculated with 

luciferase tagged MDA-MB231-TXSA osteolytic breast cancer cells and treatments 

were commenced once tumours were established (n=6-8/group). In this study, 

animals treated with ZOL-M alone had no effect on tumour burden and tumour 

bioluminescence increased over the duration of the study similarly to what was seen 

in the untreated controls (Figure 3.4). Animals treated with multiple infusions of 

Vγ9Vδ2 T cells showed a trend towards lower tumour bioluminescence at Day 21 

and 25 (Figure 3.4). Multiple administrations of ZOL-M followed by Vγ9Vδ2 T 
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Figure 3.4 Multiple infusions of Vγ9Vδ2 T cells inhibit cancer growth in the tibia.  

Luciferase expressing MDA-MB231-TXSA osteolytic breast cancer cells 

were injected directly into the tibia of 5-week old female NOD/SCID mice. 

Tumours grew for 8 days, then animals were assigned into four treatment groups. 

Animals remained untreated (n=6), or were given 25µg/kg (treatment 1) or 50µg/kg 

(treatment 2 and 3) ZOL-M s.c (n=8), 5x106 Vγ9Vδ2 T cells i.v (n=8), or the 

combination of ZOL-M and Vγ9Vδ2 T cells (same dose as the monotherapy, n=7). 

ZOL was administered on Days 8, 14, and 20, and Vγ9Vδ2 T cells were infused 24 

hours following each ZOL administration. Whole body bioluminescence images 

were acquired on the IVIS Spectrum in vivo imaging system and bioluminescence 

signal was quantified as Total Radiant Efficiency [p/s]/[µW/cm²]. A representative 

bioluminescence image of one animal is shown per group, and lines represent mean 

bioluminescence and bars indicate ±SEM.  
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cells also showed a trend to towards lower bioluminescence at Day 21 and 25, 

following the same trend as that seen with Vγ9Vδ2 T cells alone (Figure 3.4), 

however these treatments did not reach statistical significance due to a large amount 

of variability between the groups. 

3.2.5 ZOL-M shows a trend towards decreasing cancer induced osteolysis 

MDA-MB231-TXSA breast cancer cells inoculated directly into the tibia 

are highly osteolytic [63, 146]. In the literature, it is well established that ZOL 

inhibits osteoclast activity resulting in reduced bone resorption and an increase in 

bone volume, however the effect Vγ9Vδ2 T cells have on bone is still unknown. 

After the study, tibias were surgically resected and bone morphometric parameters 

were assessed using µCT. Values were expressed as the bone loss percentage, 

measuring the percentage difference in bone volume between the tumour bearing 

and non-tumour bearing tibias (Figure 3.5). Animals treated with ZOL-M showed 

a trend towards smaller bone loss percentage compared to untreated animals (-8% 

compared to -21%). Vγ9Vδ2 T cells also showed a trend in more bone loss 

compared to untreated animals, however this difference was small (-25% in 

Vγ9Vδ2 T cell treated animals compared to -21% in untreated animals). A trend 

towards less bone loss was also observed in animals treated with ZOL-M + Vγ9Vδ2 

T cells compared to untreated (-11% compared to -21%), however it did not differ 

from treatment with ZOL-M alone (-11% compared to -8%). Trabecular bone loss 

showed an identical trend. Compared to untreated, which showed -96% trabecular 

bone loss, ZOL-M alone decreased trabecular bone loss to -67%, while Vγ9Vδ2 T 

cells alone showed no effect (-93%). Once again, ZOL-M + Vγ9Vδ2 T cells had 

less trabecular bone loss compared to untreated (-67% compared to -96%), however 

there was no difference between the combination treatment and ZOL-M alone 
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 Figure 3.5 ZOL-M alone shows a trend towards decreased tumour-associated bone 

loss.  

At the time of sacrifice, the tumour and non-tumour bearing tibias from each 

mouse were removed and ex vivo µCT analysis was performed. A. Total bone 

volume and B. trabecular bone volume were measured and the difference between 

in volume between the tumour bearing and non-tumour was calculated and 

expressed as percentage bone loss for each treatment group.   
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(-67% compared to -67%). None of the differences observed were statistically 

significant, however a clear trend showed that compared to untreated animals, ZOL-

M alone reduce bone loss, while Vγ9Vδ2 T cells had no effect. 

3.3 Discussion 

In accordance with previous studies, ZOL and IL-2 expanded and activated 

Vγ9Vδ2 T cells from PBMC, resulting in mostly TCM and TEM Vγ9Vδ2 T cells, 

which have proliferative capacity and cytotoxic properties respectively [104]. 

Longer expansions are reported to produce more cytotoxic TEM Vγ9Vδ2 T cells 

[83], which have been the predominate Vγ9Vδ2 T cells transferred into patients 

with advanced cancers in a previous early phase clinical trial [105]. However, one 

of the current obstacles limiting Vγ9Vδ2 T cell therapy in pre-clinical studies is the 

lack of sustained Vγ9Vδ2 T cell viability which is correlated with a deterioration 

in health [122-124]. Therefore, this study adoptively transferred a combination of 

TCM and TEM Vγ9Vδ2 T cells with IL-2 to potentially produce a more sustained 

anti-cancer efficacy in vivo. 

This study confirmed that ex vivo expanded Vγ9Vδ2 T cells alone were 

cytotoxic towards breast cancer cells in vitro, and cytotoxicity increased following 

ZOL pre-treatment. This study also showed that a single infusion of Vγ9Vδ2 T cells 

was not sufficient to inhibit cancer growth and multiple infusions were required for 

greater efficacy [161]. However, in contrast to previous studies [77, 78], ZOL did 

not potentiate the anti-cancer efficacy of Vγ9Vδ2 T cells in vivo. The lack of ZOL 

enhancing Vγ9Vδ2 T cell efficacy in this current study may be because the other 

studies transferred more Vγ9Vδ2 T cells or administrated a higher nBP dose 

compared to the ZOL-M dosing schedule used in this study [77, 78]. These 

differences were taken into consideration and the number of Vγ9Vδ2 T cells and 
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ZOL dose was optimised and increased in the subsequent pre-clinical studies 

performed in this thesis (Chapter 4 and 5). 

Cancer-associated osteolysis contributes to the morbidity of breast cancer 

bone metastases, hence this study examined the effect each treatment regimen had 

on bone loss. ZOL alone and in combination with Vγ9Vδ2 T cells showed 

decreased bone loss, however as the combination showed no additive effect, this 

increase in bone volume is due to ZOL treatment alone, with Vγ9Vδ2 T cells having 

no effect on bone. Vγ9Vδ2 T cells alone also had no effect on bone, which was 

unexpected since previous in vitro studies have shown that they can inhibit 

osteoclast formation [148] and are cytotoxic towards osteoclasts when co-cultured 

with cancer cells [80]. Additionally, following stimulation with IL-15 and TGF-β, 

which would be released from the bone matrix during bone degradation, human γδ 

T cells can produce osteoblast growth factors such as IGF, FGF [149], and CTGF 

[150]. Overall this suggests that Vγ9Vδ2 T cells have the potential to both inhibit 

osteoclasts and stimulate osteoblasts, resulting in a net gain in bone volume. No 

increase in bone volume was observed in this study, potentially due to a lack of 

supplementation with additional factors, or due to insufficient Vγ9Vδ2 T cells 

localising to the tumour microenvironment. Therefore, further studies are required 

to examine the sensitivity of osteoclasts and osteoblasts to Vγ9Vδ2 T cell 

cytotoxicity, both in vitro and in vivo.  

In conclusion, multiple infusions of Vγ9Vδ2 T cells are required for sustained anti-

cancer efficacy, and while ZOL does not exhibit anti-cancer efficacy alone, it protects 

the bone from cancer-induced osteolysis. Although administration of ZOL and Vγ9Vδ2 

T cells requires further optimisation, this treatment regimen shows potential as novel 

immunotherapy for the treatment of breast cancer bone metastases. 



 

77 

 

 

Chapter 4 

Adoptive transfer of ex vivo expanded Vγ9Vδ2 T cells in combination with 

zoledronic acid inhibits cancer growth and limits osteolysis in a murine 

model of osteolytic breast cancer 
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4.1 Chapter Introduction 

In Chapter 3 it was established that neither a single infusion of Vγ9Vδ2 T 

cells in combination with ZOL nor multiple administrations of Vγ9Vδ2 T cells in 

combination with metronomic ZOL dosing could significantly decrease tumour 

burden in a model of osteolytic breast cancer.  The following manuscript depicts 

the experimental results of multiple infusions of Vγ9Vδ2 T cells in combination 

with a conventional ZOL dose in the same animal model. To provide sufficient in 

vitro justification for the in vivo studies conducted for the manuscript, Figure 3.2 

from the previous chapter was expanded upon, adapted, and used in the manuscript. 
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a b s t r a c t

Bone metastases occur in over 75% of patients with advanced breast cancer and are responsible for high
levels of morbidity and mortality. In this study, ex vivo expanded cytotoxic Vg9Vd2 T cells isolated from
human peripheral blood were tested for their anti-cancer efficacy in combination with zoledronic acid
(ZOL), using a mouse model of osteolytic breast cancer. In vitro, expanded Vg9Vd2 T cells were cytotoxic
against a panel of human breast cancer cell lines, and ZOL pre-treatment further sensitised breast cancer
cells to killing by Vg9Vd2 T cells. Vg9Vd2 T cells adoptively transferred into NOD/SCID mice localised to
osteolytic breast cancer lesions in the bone, and multiple infusions of Vg9Vd2 T cells reduced tumour
growth in the bone. ZOL pre-treatment potentiated the anti-cancer efficacy of Vg9Vd2 T cells, with mice
showing further reductions in tumour burden. Mice treated with the combination also had reduced
tumour burden of secondary pulmonary metastases, and decreased bone degradation. Our data suggests
that adoptive transfer of Vg9Vd2 T cell in combination with ZOL may prove an effective immunothera-
peutic approach for the treatment of breast cancer bone metastases.

© 2016 Published by Elsevier Ireland Ltd.
Introduction

Breast cancer is one of the most commonly diagnosed cancers in
women worldwide. Patients diagnosed with primary breast cancer
have higher survival rates compared to those diagnosed with the
advanced disease, primarily due to cancer metastases [1]. Bone
metastases occur in over 75% of patients with advanced breast
cancer, resulting in extensive bone degradation leading to skeletal-
related events (SREs) such as hypercalcemia, chronic pain, fracture,
spinal cord compression, and impaired mobility, all which greatly
Unit, Level 1, Basil Hetzel
d, Woodville, South Australia,

(A. Evdokiou).
affect quality of life [2,3]. Breast cancer bone metastases are pre-
dominately osteolytic due to factors secreted by disseminated
tumour cells that stimulate osteoclasts [4]. Activated osteoclasts
degrade bone and release growth factors from the matrix that
further promote tumour growth and bone destruction, perpetu-
ating the ‘vicious cycle’ of cancer growth and bone destruction [5].
Nitrogen-containing bisphosphonates (nBPs), a class of anti-
resorptive drugs, are currently used to inhibit osteoclast-
mediated bone degradation in patients with skeletal malig-
nancies, including advanced breast cancer, however, this treatment
is only palliative and new therapeutic approaches are required
[6,7].

Within the past decade, immunotherapy of cytotoxic gamma
delta (gd) T cells has been gaining momentum as a potential ther-
apeutic approach for targeting cancer. Human gd T cells comprise a
small population (1e10%) of circulating peripheral blood
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lymphocytes [8]. These primarily consist of the Vd2 chain in com-
bination with Vg9 (Vg9Vd2) which are stimulated and expanded in
response of phosphoantigens (PAgs).

Activated Vg9Vd2 Tcells have the ability to recognise target cells
in an MHC-unrestricted manner [9] via detection of PAgs, including
isopentenyl pyrophosphate (IPP), an intermediate of the mamma-
lian mevalonate pathway. nBPs, including zoledronic acid (ZOL)
inhibit the mevalonate pathway resulting in IPP accumulation
which activate and expand Vg9Vd2 T cells [10e16].

Due to abnormal upregulation of the mevalonate pathway,
tumour cells accumulate PAgs resulting in recognition by Vg9Vd2 T
cells [17]. Activated Vg9Vd2 T cells can then kill cancer cells by
releasing Th1 cytokines, including TNF-a (tumour necrosis factor-
alpha) and IFN-g (interferon-gamma) [18e20] and cytolytic gran-
ules [10,19e21]. Vg9Vd2 T cells also induce target cell death by
death receptor/ligand interactions with TRAIL (Apo2L) [21], and
FASL (Fas ligand) [11]. As a result, expanded Vg9Vd2 T cells exert
potent cytotoxicity against a variety of solid and haematological
malignancies, in vitro and in vivo [10e12,15,22,23].

Vg9Vd2 T cell immunotherapy has been assessed against a va-
riety of solid and haematological malignancies in early phase
clinical trials (reviewed in Ref. [24]). While these trials have
deemed Vg9Vd2 T cell therapy safe, as a monotherapy the anti-
cancer efficacy, especially against advanced tumours has been
underwhelming and requires further improvement. In addition to
activating Vg9Vd2 T cells, ZOL can also sensitise cancer cells to
killing by Vg9Vd2 T cells both in vitro and in vivo [13e15,21,25].
Additionally, clinical evidence demonstrates the potential of using
Vg9Vd2 T cell adoptive transfer in combination with ZOL for the
treatment of advanced renal cell carcinoma (RCC), malignant asci-
tes from gastric cancer, and other metastatic tumours [26e28].

As ZOL preferentially localises to the bone, an elegant approach
for targeting cancer lesions in the bone has emerged. Discussion in
the literature have suggested that nBP administration followed by
adoptive transfer of Vg9Vd2 T cells would be an ideal two-pronged
approach for targeting cancers in the bone [29]. This immuno-
therapy would allow simultaneous reduction of tumour-associated
bone loss in addition to sensitising cancer cells to Vg9Vd2 T cell
mediated cytotoxicity, inhibiting the vicious cycle of bone
destruction and cancer growth. To date, adoptive transfer of
Vg9Vd2 T cells alone or in combination with ZOL to specifically
% Cytotoxicity ¼ experimental release � effector spontaneous release � target spontaneous release
targetmaximumrelease� targetspontaneousrelease

� 100
target cancers in the bone has not been fully investigated. In this
study, we used a murine model of osteolytic breast cancer, where
breast cancer cells were implanted directly into the tibia in NOD/
SCID mice. We showed for the first time, that Vg9Vd2 T cells
localised to osteolytic breast cancer lesions growing in the bone and
that multiple infusions of Vg9Vd2 T cells slowed tumour growth.
We also showed that ZOL potentiated the anti-cancer efficacy of
Vg9Vd2 T cells, decreased tumour burden in the bone, inhibited
tumour-associated osteolysis, and decreased lung metastases
tumour burden.

Materials and methods

Cells and reagents

ZR75 and T47D human breast cancer cell lines were obtained from American
Type Culture Collection. The MDA-MB231 human breast cancer derivative cell line
MDA-MB231-TXSAwas kindly provided by Dr. Toshiyuki Yoneda (University of Texas
Health Science Centre, San Antonio, Texas). MDA-MB231-TXSA expressed GFP and
luciferase produced by retroviral expression of the SFG-NES-TGL vector, as previ-
ously described [30]. All cell lines were cultured in DMEM (Life Technologies,
Australia) supplemented with 10% foetal bovine serum (FBS, Life Technologies,
Australia), 100 IU/mL penicillin (Life Technologies, Australia), 100 mg/mL strepto-
mycin (Life Technologies, Australia), and 25 mMHEPES (Life Technologies, Australia)
at 37 �C in a 5% CO2 humidified atmosphere. ZOL was generously provided by
Novartis Pharma AG.

Ex vivo expansion of Vg9Vd2 T cells

Informed consent was obtained prior to collection of peripheral blood from
healthy adult donors. PBMC were isolated immediately via density gradient
centrifugation using Lymphoprep™ (Axis Shield, Norway) following manufacturer's
instructions. PBMCs were resuspended to 1 � 106/mL in CTS™ OpTmizer™ T Cell
Expansion SFM (Life Technologies, Australia) supplemented with OpTmizer™ T cell
Expansion Supplement (1:38 dilution) (Life Technologies, Australia), 10% heat-
inactivated FBS (HI-FBS), 100 IU/mL penicillin, 100 mg/mL streptomycin, 2 mmol L-
glutamine (Life Technologies, Australia), 25 mM HEPES, 0.1% b-mercaptoethanol
(SigmaeAldrich, USA), 100 IU/mL recombinant human interleukin 2 (rhIL-2) (BD
Pharmingen, USA) and activated with 5 mM ZOL, and seeded into 6-well plates. Cell
culture density was maintained at 1e2 � 106 cells/mL and replenished with fresh
medium containing 100 IU/mL rhIL-2 only (without ZOL) every 2e3 days. Following
7e8 days of culture cells were collected and enriched as described below.

Enrichment of Vg9Vd2 T cells

Ex vivo expanded Vg9Vd2 T cells were enriched prior to in vitro and in vivo ex-
periments using negative selection MACS with the TCR g/dþ T cell Isolation Kit
(human) (Miltenyi Biotec, Germany). Cell viability and total cells numbers after
enrichment were assessed using trypan blue exclusion. Percentage of Vg9Vd2 T cells
were determined by flow cytometry using PeCy5 conjugated anti-CD3 (clone
UCHT1) (eBioscience, San Diego, CA, USA) and FITC conjugated anti-Vg9 TCR from
BD Biosciences (San Jose, CA, USA). Analysis was performed on the BD FACSCanto II
Flow Cytometer (San Jose, CA, USA). Percentages of Vg9Vd2 Tcells were identified by
gating on the lymphocyte population using forward scatter/side scatter then on
Vg9þ CD3þ double positive cells. After enrichment, Vg9Vd2 Tcell viability was >95%,
and the percentage of Vg9Vd2 T cells was consistently >97%.

Cell cytotoxicity assay

Cytotoxicity of Vg9Vd2 T cells against breast cancer cell lines was assessed using
a standard lactate dehydrogenase (LDH) release assay (CytoTox 96®Non-Radioactive
Cytotoxicity Assay; Promega, USA). Briefly, 1 � 104 target cells were seeded in
triplicate in a 96-well microtiter plate and allowed to adhere overnight. Target cells
were then treated with or without 25 mM ZOL for 24 h, and then co-cultured with
Vg9Vd2 T cells at 1:1, 5:1 and 10:1 effector:target (E:T) ratio, with Vg9Vd2 T cells as
the effector, and cancer cells as the target. After incubation for 9 h at 37 �C, 50 mL of
supernatant was assayed for LDH activity following the manufactures protocol. The
appropriate controls were prepared and cytotoxicity was calculated as:
Cell viability assay

MDA-MB231-TXSA cells expressed luciferase, which was the basis for a lucif-
erase activity viability assay using Dual Luciferase® Reporter Assay kit (Promega,
Madison, WI, USA). Briefly, 1 � 104 luciferase-tagged target cells were seeded in
triplicate in a 96-well microtiter plate and allowed to adhere overnight. Cells were
then treated with or without 25 mM ZOL for 24 h, and then co-cultured with Vg9Vd2
T cells at 1:1, 5:1 and 10:1 E:T ratios. After 24 h incubation, media was removed and
cells were washed in PBS, then lysates were prepared and analysed following the
manufacturers protocol. Viability was calculated as:

% Viability ¼ experimental value
untreated control value

� 100

Measurement of DEVD-caspase activity

DEVD-caspase activity was assayed by cleavage of zDEVD-AFC (z-asp-glu-val-
asp-7-amino-4-trifluoro-methyl-coumarin), a fluorogenic substrate based on the
peptide sequence at the caspase-3 cleavage site of poly (ADP-ribose) polymerases



A. Zysk et al. / Cancer Letters 386 (2017) 141e150 143
(Kamiya Biomedical Company, Seattle, WA, USA). Breast cancer cells were seeded at
1 � 104 cells/well in triplicate a 96-well microtiter plate and allowed to adhere
overnight. Cells were then treated with or without 25 mM ZOL for 18 h, then co-
cultured with Vg9Vd2 T cells at a 5:1 E:T ratio for 2 h. Caspase activation was
detected using DEVD-AFC, as previously described in [31].

Western immunoblotting

Detection of unprenylated small GTPases, including RAP1, were used to indi-
rectly determine the extent of FPPS inhibition by ZOL, which correlates with
increased IPP levels, resulting in the increased detection of cancer cells by Vg9Vd2 T
cells and greater cytotoxicity. To determine the effect of ZOL on the prenylation of
small GTPases in the breast cancer cells, lysates were analysed by Western immu-
noblotting for total and unprenylated RAP1. Briefly, 1 � 106 breast cancer cells were
seeded in a 25-cm2

flask, allowed to adhere, and then treated with 25 mM ZOL for
18 h or over a 24 h time course. Lysates were prepared and separated as previously
described [31] and immunodetection was performed overnight at 4 �C in PBS/
blocking reagent containing 0.1% Tween-20, using the following primary antibodies
at the dilutions suggested by the manufacturer: pAb anti-RAP1 (121) for total RAP1
protein, pAB anti-RAP1A (C-17) specifically for unprenylated RAP1 (Santa Cruz
Biotechnology, USA), and anti-actin mAb (SigmaeAldrich, USA) as a loading control.
Membranes were then rinsed several times with PBS containing 0.1% Tween-20 and
incubated with 1:5000 dilution of anti-goat or anti-rabbit alkaline phosphatase-
conjugated secondary antibodies (Thermo Fisher Scientific, USA) for 1 h. Visual-
isation of protein bands was performed using the ECF substrate reagent kit (GE
Healthcare, UK) on a LAS-4000 (GE Healthcare, UK).

Labelling Vg9Vd2 T cells with DiR

Vg9Vd2 T cells were expanded ex vivo and enriched as described above, washed
in PBS, and resuspended to 2 � 106 cells/mL in RPMI-1640 media (Life Technologies,
Australia) supplemented with 0.1% HI-FBS. XenoLight DiR Fluorescent Dye (Perkin
Elmer, USA) was reconstituted in ethanol and added to cells at a final concentration
of 16.6 mg/mL. Cells were incubated in the dark for 10e15min at 37 �C, then collected
and washed three times in PBS containing 1% HI-FBS. Cell viability was assessed
using trypan blue exclusion; labelling efficacy was assessed by flow cytometry using
the filter corresponding to PeCy7; and cytotoxicity was assessed using the DEVD-
Caspase assay, as outlined above.

Animals

Female four-week-old non-obese diabetic severe combined immunodeficient
(NOD/SCID) mice were purchased from the Animal Resources Centre (Canning Vale,
WA, Australia) and housed under pathogen free conditions in The Queen Elizabeth
Hospital Experimental Surgical Suite (Woodville, SA, Australia). Mice were accli-
matised to the animal housing facility and the general wellbeing of animals was
monitored continuously throughout the experiment. All experimental procedures
were carried out with strict adherence to the rules and guidelines for the ethical use
of animals in research and were approved by the Animal Ethics Committees of the
University of Adelaide and the Institute of Medical and Veterinary Science, Adelaide,
SA, Australia.

In vivo fluorescence and bioluminescence imaging

Non-invasive, whole body imaging to monitor DiR-labelled Vg9Vd2 T cell
localisation and luciferase-tagged MDA-MB231-TXSA cancer cell growth in vivowas
performed on the IVIS Spectrum in vivo Imaging system (Caliper Life Sciences,
Australia). For fluorescence imaging, mice were anaesthetised by isoflurane (Vet-
erinary Companies of Australia, Australia) and fluorescence images were acquired
using the optimised settings for DiR dye: f stop: 2, medium binning, ex/em: 745/
800 nm. Imageswere taken at multiple time points, up to 120 s. For bioluminescence
imaging, mice were injected s.c with 100 mL D-luciferin solution (Perkin Elmer, USA)
to a final dose of 3 mg/20 g mouse body weight and then anaesthetised by iso-
flurane. Bioluminescence was acquired between 0.5 and 30 s (representative images
shown at 1 s). Photon emission was quantified as Total Flux measured in [photons/
second] using Living Image 4.2 (Caliper Life Sciences, Australia). There was no
interference between the DiR dye and the luciferase-tagged cancer cells, therefore
fluorescence and bioluminescence images could be acquired in succession to assess
Vg9Vd2 T cell localisation.

Intratibial injections of breast cancer cells

Intratibial (i.t) injections were performed as previously described [30]. Briefly,
five-week old female NOD/SCID mice were anaesthetised by isoflurane (Veterinary
Companies of Australia, Australia). The left leg was shaved, then wiped with 70%
ethanol and a 27-guage needle coupled to a Hamilton syringe was used to inject
luciferase-tagged MDA-MB231-TXSA (1 � 105 cells) resuspended in 10 mL PBS
through the tibial plateau into the marrow space. The contralateral tibia was not
injected.
In vivo localisation

I.t injections were performed as described above, and once tumour were
established, mice were injected 5 � 106 DiR-labelled Vg9Vd2 T cells i.v (n ¼ 5).
Fluorescence and bioluminescence images were acquired as described above after
20 min, 1 h, 24 h and 6 days.

In vivo anti-cancer efficacy of ZOL and Vg9Vd2 T cells

I.t injections were performed as described above and two days post inoculation,
tumour growth was assessed by bioluminescence imaging using the IVIS Spectrum.
When tumours were established, mice were assigned into four treatment groups
(n¼ 4e6): control, ZOL alone (100 mg/kg s.c), Vg9Vd2 Tcells alone (1� 107 Vg9Vd2 T
cells injected i.v via the tail vein), and ZOL in combination with Vg9Vd2 T cells
(infusion of Vg9Vd2 T cells 24 h after ZOL, treatments as above). If pain relief was
required, Rimadyl (carprofen) (Pfizer Animal Health, Australia) was administered at
5 mg/kg s.c every 24 h for a maximum of three days. After 3 weeks treatment, mice
were sacrificed and the tumour bearing and non-tumour bearing tibia from each
animal were surgically resected for micro-computed tomography (mCT).

Ex vivo micro-computed tomography (mCT) analysis

Tibias for mCT analysis were scanned using the SkyScan-1076 high-resolution
mCT Scanner (Bruker). The scanner was operated at 50 kV,110 mA, rotation step of 0.5,
0.5-mm aluminium filter, and scan resolution of 7.8 mm/pixel. Cross-sections were
reconstructed using the cone-beam algorithm in NRecon (V1.6.9.8, Bruker). Images
were then realigned in DataViewer (1.5.1.2, Bruker) and imported into CT Analyser
(CTAn) (V1.14.4.1þ, Bruker, Skyscan). Using the two-dimensional images obtained
from the CTAn, the growth plate was identified and 600 sections starting from the
growth plate/tibial interface and moving down the tibia were selected for quanti-
fication of total bone morphometric parameters and 200 sections starting 25 sec-
tions down from the growth plate, were selected for trabecular bone morphometric
parameters. Representative three-dimensional images were generated in CTvox
(V2.7.0, Bruker).

Histology

Tibias were fixed in 10% buffered formalin, followed by 6 weeks decalcification
in 0.5M EDTA/0.5% paraformaldehyde in PBS, pH 8.0 at room temperature. Complete
decalcification was confirmed by radiography and tibias were then paraffin
embedded and sectioned longitudinally at 6 mm. Osteoclast-specific tartrate-resis-
tant acid phosphatase (TRAP) staining was conducted following the manufacturer's
protocol (386A, Sigma Aldrich). Slides were then imaged using Nanozoomer-HT
Digital Pathology (NDP, Hamamatsu) and photos were acquired at 4� and 40�
magnification using Nanozoomer software NDP.view (V1.2.33, Hamamatsu). Oste-
oclast number was determined by counting TRAP positive multi-nucleated (�3
nuclei) cells in a 1 mm2 area below the growth plate.

Data analysis and statistics

In vitro experiments were conducted at least twice using biological triplicates,
and data presented is mean ± SEM, unless otherwise specified. A representative
experiment is shown for Western immunoblot data. Two-tailed unpaired Student's
t-test was used and in all cases p-values <0.05 were considered statistically signif-
icant. All statistical analysis was conducted using SigmaPlot v12.5 (Systat Software
Inc., USA).

Results

ZOL sensitises breast cancer cells to Vg9Vd2 T cell cytotoxicity
in vitro

The cytotoxicity of purified ex vivo expanded Vg9Vd2 T cells
alone and in combination with ZOL was first evaluated against a
panel of human breast cancer cell lines. MDA-MB231-TXSA showed
cytotoxicity in an E:T dependent manner after 9 h co-culture with
Vg9Vd2 T cells alone (maximum 28% specific lysis), while T47D and
ZR75 cells were relatively resistant. However, after 24 h pre-
treatment with ZOL followed by 9 h co-culture with Vg9Vd2 T
cells, there was a significant increase in cytotoxicity in each cell line
which occurred in an E:T dependent manner, resulting in a
maximum of 18% (ZR75), 50% (T47D) and 80% (MDA-MB231-TXSA)
specific lysis (Fig. 1A). Co-culture of each cell line with Vg9Vd2
showed a small but statistically significant increase in caspase-3
activation, with the MDA-MB231-TXSA cells showing a 2-fold in-
crease in caspase-3 activation after Vg9Vd2 T cells alone (Fig. 1B).
However, after 24 h pre-treatment with ZOL then 2 h co-culture



Fig. 1. ZOL sensitises breast cancer cells to Vg9Vd2 T cell cytotoxicity in vitro. A. ZR75, T47D, and MDA-MB231-TXSA breast cancer cell lines were pre-treated with 25 mM ZOL or left
untreated for 24 h. Cancer cells were then co-cultured with ex vivo expanded Vg9Vd2 T cells (E:T, 1:1, 5:1, 10:1). After 9 h, LDH release was measured and expressed as percentage
cytotoxicity compared to untreated cells. B. Caspase-3 activation of the same cell lines was measured after 24 h pre-treatment with or without 25 mM ZOL, followed by 2 h co-
culture with ex vivo expanded Vg9Vd2 T cells (E:T, 5:1). Caspase-3 activation was expressed as a fold increase over untreated control. For the LDH and Caspase-3 activity assay,
data was pooled and normalised from two separate experiments (n ¼ 6). C. Western immunoblot analysis showing inhibition of prenylation in breast cancer cell lines after
treatment with or without 25 mM ZOL for 24 h, showing unprenylated RAP1A (uRap1A), total RAP1 protein, and b-actin as loading control. D. Western immunoblot analysis showing
inhibition of prenylation in MDA-MB231-TXSA treated with 25 mM ZOL over a 24 h time course (0, 1, 4, 12, 24 h). Images representative of n ¼ 2e3. *p < 0.05, **p < 0.005,
***p < 0.001, ns ¼ non-significant (two-tailed student's t-test, data represent mean ± SEM, n ¼ 3, unless otherwise indicated).
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with Vg9Vd2 T cells, each cell line except ZR75, showed signifi-
cantly higher caspase-3 activation compared to Vg9Vd2 T cells
alone. T47D and MDA-MB231-TXSA showed a 1.7 and 5.3-fold in-
crease in caspase-3 activation respectively (Fig. 1B).

To determine possible reasons for the differential sensitivity
to Vg9Vd2 T cells after ZOL pre-treatment between the three
breast cancer cell lines, we examined inhibition of RAP1 pre-
nylation (a surrogate marker for inhibition of the mevalonate
pathway) after 18 h of ZOL treatment using Western immunoblot
analysis. This method was used to indirectly determine the
extent of FPPS inhibition by ZOL, which leads to increased IPP
levels, potentially resulting in the increased detection of cancer
cells by Vg9Vd2 T cells and greater cytotoxicity. After 18 h pre-
treatment with 25 mM ZOL, MDA-MB231-TXSA showed an in-
crease in unprenylated RAP1 compared to untreated control
(Fig. 1C), while ZR75 and T47D showed no detectable unpreny-
lated RAP1 compared to untreated. A time course analysis of
MDA-MB231-TXSA treated with 25 mM ZOL, showed unpreny-
lated RAP1 was detectable as early as one hour post treatment
and peaked at 24 h (Fig. 1D).



Fig. 2. Vg9Vd2 T cell cytotoxicity against breast cancer cells in vitro occurs in a time dependent manner. Luciferase-tagged MDA-MB231-TXSA breast cancer cells were treated with
or without 25 mM ZOL for 24 h. Cancer cells were then co-cultured with ex vivo expanded Vg9Vd2 T cells (E:T, 5:1, 10:1, 20:1) for A. 4 or B. 24 h, and luciferase activity measured and
expressed as percentage viability compared to untreated control. Representative data shown from three experiments.*p < 0.05, **p < 0.005, ***p < 0.001, ns ¼ non-significant (two-
tailed student's t-test, data represent mean ± SEM, n ¼ 3, unless otherwise indicated).
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Since MDA-MB231-TXSA were consistently the most sensitive
breast cancer cell line to Vg9Vd2 T cell cytotoxicity, further exper-
iments were conducted to establish an optimal time course for
Vg9Vd2 T cell cytotoxicity after ZOL pre-treatment. A luciferase-
based activity assay was used to determine the viability of cancer
cells after 24 h pre-treatment with or without 25 mM ZOL followed
by co-cultured with Vg9Vd2 T cells for 4 or 24 h. After a 4 h co-
culture, Vg9Vd2 T cells alone did not reduce MDA-MB231-TXSA
viability, however, pre-treatment with ZOL greatly enhanced
Vg9Vd2 T cell cytotoxicity, resulting in a significant decrease MDA-
MB23-TXSA viability in an E:T dependent manner (maximum 46%
viable) (Fig. 2A). In contrast, after a 24 h co-culture with Vg9Vd2 T
cells in the absence of ZOL, an E:T dependent decrease in cancer cell
viability (maximum 60% viable) was observed (Fig. 2B). Pre-
treatment of MDA-MB231-TXSA with ZOL further potentiated the
cytotoxicity of Vg9Vd2 T cells resulting in almost 100% death of
cancer cells at all E:T tested (Fig. 2B).
Adoptively transfered Vg9Vd2 T cells localise to breast cancer lesions
in the bone

To date, no studies have demonstrated localisation of Vg9Vd2 T
cells to tumours in the bone. To examine the potential for Vg9Vd2 T
cells to co-localise with tumours in the bone microenvironment, a
near infrared dye (DiR) was used to fluorescently label Vg9Vd2 T
cells for live in vivo imaging. We established a protocol that allowed
consistent labelling of Vg9Vd2 T cells, with a labelling efficiency of
>80% as analysed by flow cytometry (Fig. 3A). Labelling Vg9Vd2 T
cells with the fluorescent dye had no effect on the viability of
Vg9Vd2 T cells (data not shown), or on their ability to induce cell
death of MDA-MB231-TXSA cancer cells, compared to unlabelled
Vg9Vd2 T cells (Fig. 3B). For localisation studies, mice were inocu-
lated with luciferase-tagged MDA-MB231-TXSA cancer cells
directly into the bone marrow cavity of the left tibia. After one
week, tumours were established as measured by bioluminescence
signal from the tibia. Fluorescently labelled Vg9Vd2 T cells were
injected intravenously into the animals. Within 20 min of infusion,
fluorescence signal was detected only in the lungs and liver (data
not shown). However, after 24 h, a strong fluorescence signal was
also detected in the tumour bearing tibia, corresponding to areas of
tumour bioluminescence (Fig. 3C). At this time, fluorescence in the
lungs diminished, whereas the fluorescence signal persisted in the
liver until the end of the study, six days later. Overall, the fluores-
cence signal progressively declined over the next six days, at which
point, mice were sacrificed and tibias were imaged ex vivo. Mice
showed fluorescence which corresponded to areas of tumour
bioluminescence in the tumour bearing tibias (Fig. 3D), as well as
fluorescence in the liver and spleen, which has been previously
reported with adoptive transfer of Vg9Vd2 T cells [23,32].
ZOL potentiates the anti-cancer efficacy of Vg9Vd2 T cells against
osteolytic breast cancer and reduces tumour burden of lung
metastases

We next examined the in vivo efficacy of ex vivo expanded
Vg9Vd2 T cells in a model of osteolytic breast cancer. Mice were
inoculated with luciferase-tagged MDA-MB231-TXSA cells directly
into the left tibia of mice. Treatments were initiated once tumours
had established, asmeasured by bioluminescence imaging. Animals
were pre-treated with ZOL 24 h prior to Vg9Vd2 T cell adoptive
transfer. This treatment regime was repeated three times over two
weeks. Animals treated with ZOL alone had no effect on tumour
burden when compared to untreated animals (Fig. 4). A trend
showing decreased tumour growth, which did not reach statistical
significance, was observed in animals adoptively transferred with
Vg9Vd2 T cells alone compared to untreated control or ZOL alone
treated animals. In contrast, pre-treatment with ZOL, followed by
adoptive transfer of Vg9Vd2 T cells, potentiated the anti-cancer
efficacy of Vg9Vd2 T cells. These animals showed the smallest tu-
mours of all treatment groups, which was evident after the third
infusion dose of Vg9Vd2 T cells. Additionally, Vg9Vd2 T cells in
combinationwith ZOL reduced pulmonary tumour burden in those
animals that developed lung metastases, compared to animals in
the untreated control or ZOL alone treated groups (Fig. 5).
ZOL in combination with Vg9Vd2 T cells reduces tumour-induced
osteolysis

MDA-MB231-TXSA breast cancer cells growing within the bone
give rise to predominantly osteolytic lesions [30,33]. To evaluate
the ability of Vg9Vd2 T cells alone or in combination with ZOL to
protect the bone from tumour-induced osteolysis, tibias were
analysed using three-dimensional (3D) mCT imaging and TRAP
staining of bone sections was used to visualise and quantify TRAPþ

osteoclasts.
Osteolysis was measured as a net loss of total bone volume

(T.BV) and trabecular bone volume (Tb.BV) by comparing the
tumour bearing tibia to the contralateral non-tumour bearing tibia
of the same animal. Qualitative and quantitative mCT showed bone
loss in all groups, but with notable differences in the extent of



Fig. 3. Fluorescently labelled Vg9Vd2 T cells localise to breast cancer lesions in the bone. Ex vivo expanded Vg9Vd2 T cells were labelled using DiR dye as outlined in the methods. A.
Flow cytometric analysis of Vg9Vd2 T cell DiR labelling efficacy. B. Cytotoxicity of DiR-labelled and unlabelled Vg9Vd2 T cells against MDA-MB231-TXSA cancer cells (E:T, 5:1) as
shown by caspase-3 activation. C. In vivo localisation of DiR-labelled Vg9Vd2 T cells injected via the tail vein into 5-week old female NOD/SCID mice bearing luciferase-tagged
osteolytic breast cancer cells (MDA-MB231-TXSA) in the left tibia. Bioluminescence and fluorescence images were acquired on the IVIS Spectrum in vivo imaging system 24 h
after infusion and D. ex vivo, 6 days after infusion (representative images of n ¼ 5). UL ¼ unlabelled, BL ¼ bioluminescence, FL ¼ fluorescence. Percentages shown indicate numbers
from lymphocyte population. ns ¼ non-significant (Student's t-test, data represent mean ± SEM, n ¼ 3).
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Fig. 4. ZOL potentiates the anti-cancer efficacy of Vg9Vd2 T cells against osteolytic breast cancer. Luciferase-tagged MDA-MB231-TXSA breast cancer cells were injected directly into
the left tibial cavity of 5-week old NOD/SCID mice. Once tumours were established, treatments were commenced as outlined in the methods. Whole body bioluminescence images
were acquired on the IVIS Spectrum in vivo imaging system over the course of the study. A. A representative bioluminescence image showing a single mouse from each treatment
group over the duration of the study. B. The line graph shows the quantification of bioluminescence signal over the course of the study and is expressed as total flux [photons/
second] (n ¼ 4e6 mice per group).
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Fig. 5. Vg9Vd2 T cells reduce tumour burden of lung metastases. At the time of sac-
rifice, lungs were removed for bioluminescence quantification of tumour burden.
Bioluminescence signal was detected on the IVIS Spectrum in vivo imaging system and
is expressed as total flux [photons/second]. A representative bioluminescence image of
the lungs from each treatment group is shown.
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osteolysis (Fig. 6A). Animals that remained untreated showed the
greatest osteolysis, with a net loss T.BV of 16% compared to the
contralateral non-tumour bearing tibia. As expected, ZOL treatment
reduced the extent of osteolysis, to 7% T.BV. Vg9Vd2 T cells alone
only marginally reduced the T.BV from 16% to 11%. In contrast,
treatment with ZOL in combination with Vg9Vd2 T cells showed an
additive effect in reducing osteolysis, with total BV loss of only 4%.
Tb.BV loss was more profound in all treatment groups (Fig. 6B).
Animals in the untreated group had a Tb.BV loss of 87%, Vg9Vd2 T
cells alone increased Tb.BV loss to 65% and ZOL treatment alone
increased Tb.BV loss to 49%. ZOL in combinationwith Vg9Vd2 Tcells
had the least Tb.BV loss at 27%.

Untreated animals showed abundant TRAPþ osteoclasts lining
the bone surface, in contrast to animals treated with ZOL alone or
ZOL in combination with Vg9Vd2 T cells (Fig. 6C). Animals treated
with ZOL alone showed a significant decrease in TRAPþ osteoclasts
compared to untreated animals (Fig. 6D). A trend showing reduced
osteoclast number was observed in the Vg9Vd2 T cell alone treated
group, however this did not reach statistical significance (Fig. 6D).
Furthermore, there were no significant differences in osteoclast
number between animals treated with ZOL alone and ZOL in
combination with Vg9Vd2 T cells (Fig. 6D), suggesting that ZOL
alone was responsible for the observed decrease in osteoclasts in
the combination treatment group.
Discussion

In this study, we used a well-established murine model of
osteolytic breast cancer to examine the anti-cancer efficacy of
adoptively transferred ex vivo expanded Vg9Vd2 Tcells alone and in
combination with ZOL. The MDA-MB231 derivative cell line, MDA-
MB231-TXSA, is a highly osteolytic breast cancer cell line which
mimics abnormal osteoclast-mediated bone degradation
commonly seen in breast cancer bone metastases [30,33]. In vitro
pre-treatment of MDA-MB231-TXSA with ZOL lead to a significant
augmentation of Vg9Vd2 T cell mediated cytotoxicity, which was
associated with a time-dependent inhibition of RAP1 prenylation, a
surrogate marker of the mevalonate pathway. However, not all
breast cancer cell lines were sensitised to Vg9Vd2 T cells following
ZOL pre-treatment. Observed differences may arise from the ability
of cells to uptake nBPs, which varies depending on cell type, and on
mevalonate pathway activity [15,34]. Following ZOL pre-treatment,
MDA-MB231-TXSA showed the greatest inhibition of RAP1 pre-
nylation, suggesting the sensitivity of cancer cells to killing by
Vg9Vd2 T cells after ZOL pre-treatment correlated with the accu-
mulation of intracellular PAgs after exposure to ZOL.

In vivo, we have demonstrated for the first time that adoptively
transferred Vg9Vd2 T cells localised to tumours in the tibia and
persisted for up to 6 days following infusion. This is consistent with
previous findings in other soft tissue tumours including breast and
prostate cancer demonstrating the ability of Vg9Vd2 T to localise to
tumour lesions [23,32]. Adoptively transferred Vg9Vd2 T cells were
also observed in the liver. When a substance is injected intrave-
nously via the tail vein, it is directly delivered to the liver, which
accounts for this observation.

When Vg9Vd2 T cells were infused alone, there was minimal
reduction in tumour burden in the bone. However, pre-treatment
of mice with ZOL greatly potentiated the anti-cancer efficacy of
adoptively transferred Vg9Vd2 T cells against tumour growth in
bone and also considerably reduced pulmonary metastases burden.
This decrease in lung metastases is consistent with similar obser-
vations in both pre-clinical studies in prostate cancer [35] and early
phase clinical trials in patients with advanced renal cell carcinoma
[26].

Given the well-characterised effects of ZOL on the mevalonate
pathway and our in vitro observations showing inhibition of RAP1
prenylation, our data suggest that cellular accumulation of IPP
caused by inhibition of FPPS establishes greater recognition and
targeting of cancer cells by Vg9Vd2 T cells. Benzaid et al. demon-
strated that mice treated with ZOL showed IPP accumulation in
mammary fat pad tumours [15]. Additionally, mice that were
infused with human PBMC in combination with ZOL and IL-2
showed in vivo expansion of Vg9Vd2 T cells, and treatment
inhibited tumour growth, compared to untreated animals and
those treated with ZOL alone or PBMC þ IL-2, with the authors'
suggesting cancer cells could internalise ZOL in vivo [15]. However,
following ZOL administration there is a transient peak followed by
rapid clearance of ZOL with its permanent retention in bone, thus it
is not available for internalisation by cancer cells resident in the
bone marrow. Additionally, using real-time intravital imaging
within mammary fat pad tumours, Junankar et al. recently showed
that fluorescently labelled nBPs were not internalise by cancer cells,
but rather by tumour associated macrophages (TAMs) [36], sug-
gesting IPP accumulationwithin the tumour mass would arise from
the TAM population. Macrophages and osteoclasts are derived from
the same lineage and both internalise ZOL via fluid-phase endo-
cytosis [37]. Within the bone, osteoclasts and monocytes uptake
nBPs [38], therefore it is reasonable to suggest that within the bone
tumour microenvironment, these cells uptake ZOL and cancer cells
do not. Previously, Ferrero et al. reported that mycobacterium
tuberculosis pulsed macrophages produce monocyte chemo-
attractant protein-1 (MCP-1) and IL-8, which promote chemotaxis
of gd Tcells in vitro [39]. CCR2, a receptor for MCP-1, is expressed on
activated Vg9Vd2 T cells [20] suggesting that macrophages and/or
osteoclasts which have internalised ZOL may attract activated
Vg9Vd2 T cells to the tumour microenvironment resulting in
greater anti-cancer efficacy. However, further studies are required
to examine the underlying mechanisms of ZOL sensitisation in vivo.

nBPs are well-characterised anti-bone resorptive agents, addi-
tionally, they are reported to induce cancer cell death, inhibit
proliferation, invasion, and angiogenesis in vitro [40e45]. However,
the current literature surrounding ZOL in vivo anti-cancer efficacy is
still contradictory [46e51]. In this current study, frequent ZOL ad-
ministrations inhibited cancer-associated bone loss, however there



Fig. 6. Vg9Vd2 T cells in combination with ZOL reduce tumour-associated osteolysis in total and trabecular bone. The osteolytic nature of MDA-MB231-TXSA breast cancer cells
can be seen in the representative qualitative mCT 3D images and in the quantitative assessment of A. total and B. trabecular bone. Bone loss percentage is calculated as the
percentage difference in bone volume between the tumour bearing and contralateral non-tumour bearing control tibia. C. Representative histological sections at 4� and 40�
magnification showing decalcified tibias from each treatment group stained with TRAP for the detection of osteoclasts. D. Quantitative assessment of the number of TRAPþ

osteoclasts.
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was no effect on tumour burden. These findings are consistent with
previous studies from our laboratory using an intratibial model of
orthotropic osteosarcoma [50,51]. Interestingly, more frequent ZOL
administrations at a lower dose (metronomic dosing), were previ-
ously shown to inhibit both tumour growth and protect the bone
from tumour-associated osteolysis [48] indicating further in vivo
optimisation to reduce tumour growth in this model may be
required.

In contrast to the well-known anti-bone resorptive effects of
ZOL, the effect Vg9Vd2 T cells have on bone is still unclear. The first
indication that Vg9Vd2 T cells may contribute to osteoimmunology
was the correlation observed between Vg9Vd2 T cell depletion and
the incidence of bisphosphonate-associated osteonecrosis of the
jaw in osteoporotic patients treated with intravenous nBPs [52]. In
this current study, Vg9Vd2 T cells alone marginally inhibited
tumour-associated bone loss; however, the mechanisms by which
this occurs is still unclear. Previous in vitro studies demonstrated
that activated donor-matched human gd T cells inhibit osteoclast
formation from PBMC [53] and Vg9Vd2 Tcells are cytotoxic towards
osteoclasts in co-culture with multiple myeloma cells [12]. Tar-
geting osteoclasts would result in increased bone volume, as
observed in this current study. Vg9Vd2 T cells also have the po-
tential to produce IGF-1 and low levels of FGF-2 following antigen
stimulation [54]. IGF and FGF are osteoblast growth factors, sug-
gesting that if Vg9Vd2 T cells are primed to produce these factors
following localisation to the bone, in addition to their potential
cytotoxicity against osteoclasts, they could stimulate new bone
resulting in a net gain in bone volume. As Vg9Vd2 T cells also target
cancer cells, they may have an indirect effect on bone loss by
reducing tumour growth and subsequently inhibiting the ‘vicious
cycle’.

Collectively, this study demonstrates that ex vivo expanded
Vg9Vd2 T cells readily localise to osteolytic breast cancer lesions in
the bone and exhibit some anti-cancer efficacy, which is enhanced
following ZOL pre-treatment. Our data suggests that adoptive
transfer of Vg9Vd2 T cells in combination with ZOL would be
beneficial in reducing tumour growth in bone and tumour-
associated osteolysis, while also limiting the potential for meta-
static spread in patients with advanced breast cancer, greatly
reducing the morbidity of the disease. However, further studies are
required to understand the interactions between the bone micro-
environment, cancer cells, and in vivo ZOL uptake to optimise a
treatment regimen that achieves maximal anti-cancer efficacy.
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Chapter 5 

Adoptive transfer of Vγ9Vδ2 T cells in combination with zoledronic acid 

treatment inhibits tumour growth and lung metastases in a murine model of 

osteolytic osteosarcoma
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5.1 Chapter Introduction 

In Chapter 4 it was established that Vγ9Vδ2 T cells in combination with ZOL 

are shown to decrease osteolytic breast cancer in the bone. To examine that this 

immunotherapeutic strategy is also viable for other osteolytic cancers, a study was 

performed using human osteosarcoma cell lines including the osteolytic 

osteosarcoma cell line 143B, in combination with ZOL and Vγ9Vδ2 T cells. This 

chapter is presented in manuscript format and will be submitted to Cancer 

Immunology, Immunotherapy in July 2017. 
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5.3 Abstract 

Osteosarcoma is the most frequent primary malignancy of the bone in children and 

adolescents. Localised osteosarcoma can be readily treated with the use of pre-

operative chemotherapy in combination with surgery, but drug resistance and toxic 

off-target side effects can occur. Metastatic spread to the lungs occurs in 15-20% 

of presenting patients, correlating with poor survival. This study examined the anti-

cancer efficacy of ex vivo expanded human gamma delta (Vγ9Vδ2) T cells, in 

combination with zoledronic acid (ZOL), using a mouse model of orthotropic 

osteosarcoma. In vitro, Vγ9Vδ2 T cells had low cytotoxicity against osteosarcoma 

cell lines, however pre-treatment with ZOL enhanced Vγ9Vδ2 T cells mediated 

killing of osteosarcoma cells. Vγ9Vδ2 T cells adoptively transferred into 

NOD/SCID mice localised with osteosarcoma lesions in the tibia and also within 

the developing secondary lung metastases. Multiple infusions of Vγ9Vδ2 T cells 

alone were not sufficient to reduce tumour burden, however ZOL pre-treatment 

improved the anti-cancer efficacy of Vγ9Vδ2T cells. The combination treatment 

also inhibited tumour induced osteolysis, and Vγ9Vδ2T cells alone reduce both the 

incidence and burden of lung metastases. Our data provides evidence that Vγ9Vδ2 

in combination with ZOL may provide a novel immunotherapeutic approach for 

the treatment of osteolytic osteosarcoma.  

5.4 Introduction 

Osteosarcoma is the most frequent primary malignancy of the skeleton in 

children and adolescents [1]. Lesions can be classed into three phenotypes, based 

on radiographic appearance; osteolytic (abnormal bone degradation) 

osteoblastic/osteosclerotic (abnormal bone formation), or mixed (abnormal bone 

degradation linked to abnormal formation). Current treatments including 
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neoadjuvant chemotherapy followed by tumour resection result in a 10 year overall 

survival rate of 70-80% for patients with localised osteosarcoma [21]. However, 

off-target toxicity and the emergence of drug resistance with the use of 

conventional chemotherapeutics can limit treatment efficacy and impact patient’s 

quality of life. Additionally, metastatic spread, preferentially to the lungs is seen in 

15-20% of presenting patients, correlating with poor survival [21-25]. To prolong 

survival rates, especially in patients with pulmonary metastases, it is clear that 

novel therapies are required to target tumour burden in the bone, alleviate 

symptoms associated with bone lysis, and also target pulmonary metastases.  

In recent years, adoptive transfer of cytotoxic gamma delta (γδ) T cells has 

gained momentum as a potential new immunotherapeutic approach for targeting 

various solid and haematological malignancies [76-79]. The majority of γδ T cells 

in human peripheral blood are of the Vγ9+/Vδ2+ (Vγ9Vδ2) phenotype but constitute 

only 1-10% of circulating lymphocytes [84]. They detect target cells, including 

microbial infected or transformed (tumour) cells in an MHC-unrestricted manner, 

by recognition of non-peptic antigens, known as phosphoantigens (PAgs). 

Following target cell recognition, Vγ9Vδ2 T cells kill via a number of mechanisms, 

including death receptor/ligand interactions with TRAIL and FASL [79, 98], the 

release of cytolytic granules [98, 104, 107], and Th1 cytokines such as IFN-γ and 

TNF-α [104, 107, 108]. It is well documented that Vγ9Vδ2 T cells can be activated 

and expanded by nitrogen-containing bisphosphonates (nBPs), including 

zoledronic acid (ZOL) [75, 78-81]. nBPs localise specifically to the bone, where 

they are internalised by osteoclasts during bone resorption. nBPs inhibit a key 

enzyme in the mevalonate pathway, causing a loss of osteoclast function and 

subsequently increased bone volume. Inhibition of the mevalonate pathway also 
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results in the accumulation of the PAg, isopentenyl pyrophosphate (IPP). Extensive 

evidence has shown that ZOL pre-treatment sensitises various cancer cells, 

including osteosarcoma [135], breast [82], glioblastoma [136], lymphoma [81], 

fibrosarcoma and lung cancer cells [78] to Vγ9Vδ2 T cell cytotoxicity. Several 

early phase clinical trials demonstrate the potential this treatment regimen has 

against a variety of advanced cancers [126, 128, 181], however, to date, no studies 

have examined efficacy against osteosarcoma. Recently, we demonstrated that 

adoptive transfer of Vγ9Vδ2 T cells in combination with ZOL reduced tumour 

burden, tumour-associated bone destruction, and lung metastases in a model of 

osteolytic breast cancer [157]. In this current study, we examined if this treatment 

regimen would produce a similar outcome in a mouse model of osteolytic 

osteosarcoma. We confirmed that osteosarcoma cells lines were sensitised to 

Vγ9Vδ2 T cells following ZOL pre-treatment in vitro and that when adoptively 

transferred to osteosarcoma bearing mice, Vγ9Vδ2 T cells readily localised to 

osteosarcoma lesions in the bone and within the secondary metastases in the lungs. 

Although multiple infusions of Vγ9Vδ2 T cells alone had no significant impact on 

tumour burden in the bone, in vivo ZOL pre-treatment enhanced the anti-cancer 

efficacy of Vγ9Vδ2 T cells. Additionally, Vγ9Vδ2 T cells reduced both the 

incidence and tumour burden of lung metastases, and in combination with ZOL, 

greatly inhibited tumour-associated bone destruction. Overall, this study 

demonstrates that adoptive transfer of Vγ9Vδ2 T cells in combination with ZOL 

has great potential as a novel immunotherapeutic approach for the treatment of 

osteosarcoma. 
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5.5 Materials and Methods 

5.5.1 Cells and reagents 

143B and KHOS human osteosarcoma cancer cell lines were obtained from 

ATCC (Manassas, VA, USA). Both cell lines expressed GFP and firefly luciferase 

produced by retroviral expression of the SFG-NES-TGL vector, as previously 

described [158]. Cancer cells were cultured in Dulbecco's Modified Eagle's 

Medium (DMEM, Life Technologies, Australia) supplemented with 10% foetal 

bovine serum (FBS, Life Technologies, Australia), 100IU/mL penicillin (Life 

Technologies, Australia), 100µg/mL streptomycin (Life Technologies, Australia), 

and 25mM HEPES (Life Technologies, Australia) at 37°C in a 5% CO2 humidified 

atmosphere. ZOL was generously provided by Novartis Pharma AG. 

5.5.2 Ex vivo expansion and enrichment of Vγ9Vδ2 T cells  

Vγ9Vδ2 T cells were expanded as previously described [157]. Informed 

consent was obtained prior to the collection of peripheral blood from healthy adult 

donors. Peripheral blood mononuclear cells (PBMC) were isolated by density 

gradient centrifugation using LymphoprepTM (Axis Shield, Norway). PBMC were 

resuspended to 1x106/mL in CTS™ OpTmizer™ T Cell Expansion SFM (Life 

Technologies, Australia) supplemented with OpTmizer™ T cell Expansion 

Supplement  (1:38 dilution) (Life Technologies, Australia), 10% heat inactivated 

FBS (HI-FBS), 100IU/mL penicillin, 100µg/mL streptomycin, 2mmol L-glutamine 

(Life Technologies, Australia), 25mM HEPES (Life Technologies, Australia), 

0.1% β-mercaptoethanol (Sigma-Aldrich, USA), recombinant human interleukin 1 

(rhIL-2) (100IU/mL) (BD Pharmingen, USA) and activated with 5µM ZOL, then 

seeded into 6-well plates. Cell culture density was maintained at 1-2 x 106 cells/mL 

and replenished with fresh medium containing rhIL-2 (100IU/ml) only (without 
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ZOL) every 2-3 days. Following 7-8 days of culture, ex vivo expanded Vγ9Vδ2 T 

cells were enriched prior to in vitro and in vivo experiments using magnetic 

activated cell sorting (MACS) system using negative selection with the TCR γ/δ+ 

T cell Isolation Kit (human) (Miltenyi Biotec, Germany). Cell viability and total 

cells numbers after enrichment were assessed using trypan blue exclusion and 

Vγ9Vδ2 T cell percentages were determined by flow cytometry using PeCy5 

conjugated anti-CD3 (clone UCHT1) (eBioscience, San Diego, CA, USA) and 

FITC conjugated anti-Vγ9 TCR from BD Biosciences (San Jose, CA, USA). 

Analysis was performed on the BD FACSCanto II Flow Cytometer (San Jose, CA, 

USA). After enrichment, the percentage of Vγ9Vδ2 T cells was consistently <97% 

(data not shown) and enriched cells were frozen then thawed for future in vitro and 

in vivo experiments. 

5.5.3 Cell cytotoxicity assay 

Cytotoxicity of Vγ9Vδ2 T cells against osteosarcoma cell lines was 

assessed using a standard lactate dehydrogenase (LDH) release assay (CytoTox 

96® Non-Radioactive Cytotoxicity Assay; Promega, USA). Briefly, 1x104 target 

cells (KHOS or 143B) were seeded in a 96-well microtiter plate and allowed to 

adhere overnight. Target cells were then treated with or without 25µM ZOL for 24 

hours, and then co-cultured with effector cells (Vγ9Vδ2 T cells) at 1:1, 5:1 and 10:1 

E:T (effector: target) ratios. After incubation for 9 hours at 37°C, 50µL of 

supernatant was assayed for LDH activity following the manufactures protocol. 

The appropriate controls were prepared and cytotoxicity was calculated as: 

% Cytotoxicity = 
experimental release - effector spontaneous release - target spontaneous release

target maximum release−target spontaneous release
 x 100  
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5.5.4 Cell viability assay 

Both osteosarcoma cell lines were luciferase-tagged, which was the basis 

for a luciferase activity viability assay using Dual Luciferase® Reporter Assay kit 

(Promega, Madison, WI, USA). Briefly, 1x104 target cells were seeded in a 96-well 

microtiter plate and allowed to adhere overnight. Cells were then treated with or 

without 25µM ZOL for 24 hours, and then co-cultured with Vγ9Vδ2 T cells at 1:1, 

5:1 and 10:1 E:T ratios. After incubation for 24 hours, media was removed from 

the wells and cells were washed in 1x PBS, then lysates were prepared and analysed 

following the manufacturers protocol. Viability was calculated as:  

% Viability = 
experimental value

untreated control value
 x 100 

5.5.5 Western Blotting 

Detection of unprenylated small GTPases, including RAP1, are used to 

indirectly determine the extent of FPPS inhibition by ZOL, which correlates with 

increased IPP levels, resulting in the increased detection of cancer cells by Vγ9Vδ2 

T cells and greater cytotoxicity. To determine the effect of ZOL on the prenylation 

of small GTPases in osteosarcoma cells, lysates were analysed by Western blotting 

for total and unprenylated RAP1. Briefly, 1x106 osteosarcoma cells were seeded in 

a 25cm2 flask, allowed to adhere overnight, and then treated with 25µM ZOL for 

0, 4, 8, 12 and 24 hours. Lysates were prepared as previously described [158] and 

immunodetection was performed overnight at 4oC in PBS/blocking reagent 

containing 0.1% Tween-20, using the following primary antibodies at the dilutions 

suggested by the manufacturer: pAb anti-RAP1 (121) for total RAP1 protein, pAB 

anti-RAP1A (C-17) specifically for unprenylated RAP1 (Santa Cruz 

Biotechnology, USA), and anti-actin mAb (Sigma-Aldrich, USA) as a loading 
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control. Membranes were then rinsed several times with PBS containing 0.1% 

Tween-20 and incubated with 1:5,000 dilution of anti-goat or anti-rabbit alkaline 

phosphatase-conjugated secondary antibodies (Thermo Fisher Scientific, USA) for 

1 hour. Visualisation of protein bands was performed using the ECF substrate 

reagent kit (GE Healthcare, UK) on a LAS-4000 (GE Healthcare, UK). 

5.5.6 Labelling Vγ9Vδ2 T cells with fluorescent DiR dye 

Vγ9Vδ2 T cells were expanded and enriched as described above, then 

labelled with XenoLight DiR Fluorescent Dye (Perkin Elmer, USA) as previously 

described [157]. Briefly, DiR dye was added to cells at a final concentration of 

16.6µg/mL. Cells were incubated in the dark for 10-15 minutes at 37°C, washed 

three times in DPBS containing 10% HI-FBS, and resuspended to 5x107/mL 

(5x106/100µL). Cell viability of labelled cells did not differ to unlabelled cells, as 

assessed by trypan blue exclusion and labelling efficacy was >90% as assessed by 

flow cytometry using the filter corresponding to PeCy7. 

5.5.7 Animals 

Female four-week-old non-obese diabetic severe combined 

immunodeficient (NOD/SCID) mice were purchased from the Animal Resources 

Centre (Canning Vale, WA, Australia) and housed under pathogen free conditions 

in The Queen Elizabeth Hospital Experimental Surgical Suite (Woodville, SA, 

Australia). Mice were acclimatised to the animal housing facility and the general 

wellbeing of animals was monitored continuously throughout the experiment. All 

experimental procedures were carried out with adherence to the rules and 

guidelines for the ethical use of animals in research and were approved by the 

Animal Ethics Committees of the University of Adelaide and the Institute of 

Medical and Veterinary Science, Adelaide, SA, Australia.  
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5.5.8 In vivo localisation 

To examine in vivo localisation of Vγ9Vδ2 T cells to osteosarcoma lesions, 

intratibial (i.t) injections were performed as previously described [146, 158]. 

Briefly, five-week old female NOD/SCID mice were anaesthetised by isoflurane 

(Veterinary Companies of Australia, Australia). The left leg was shaved, wiped 

with 70% ethanol, then a 27-guage needle coupled to a Hamilton syringe was used 

to inject 1 x 105 luciferase-tagged 143B osteosarcoma cells resuspended in 10µL 

PBS, directly through the tibial plateau into the bone marrow space. The 

contralateral tibia was not injected. Once tumours were established, mice were 

injected with 5x106 DiR labelled Vγ9Vδ2 T cells i.v, prepared as described above. 

Non-invasive, whole body imaging to monitor Vγ9Vδ2 T cell localisation and 

tumour growth was done using the IVIS Spectrum in vivo imaging system (Caliper 

Life Sciences, Australia). For fluorescence imaging, mice were anaesthetised by 

isoflurane (Veterinary Companies of Australia, Australia) and images were 

acquired using the optimised settings for DiR dye: f stop: 2, medium binning, 

ex/em: 745/800nm. Images were taken at multiple time points, up to 120 seconds. 

For bioluminescence imaging, mice were injected s.c with 100µL of D-luciferin 

solution (Perkin Elmer, USA) to a final dose of 3mg/20g mouse body weight. Mice 

were then anaesthetised by isoflurane and bioluminescence was acquired between 

0.5 and 30 seconds (images shown at 1 second). Photon emission was quantified as 

Total Flux measured in [photons/sec] using Living Image 4.2 (Caliper Life 

Sciences, Australia) software. There was no interference between the DiR dye and 

the luciferase-tagged cancer cells, therefore fluorescence and bioluminescence 

images could be acquired in succession to form a composite image to assess 

Vγ9Vδ2 T cell localisation to tumour lesions. After Vγ9Vδ2 T cell infusion, in vivo 
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images were acquired at 20 minutes, 24 hours, 48 hours, and ex vivo images were 

acquired after 3 days.  

5.5.9 In vivo anti-tumour efficacy of ZOL and Vγ9Vδ2 T cells  

I.t injections were performed as described above and once tumours were 

established, mice were assigned into four treatment groups: control (no treatment, 

n=5), ZOL alone (100µg/kg s.c, n=6), Vγ9Vδ2 T cells alone (1x107/100µL injected 

via the tail vein, n=7), and ZOL + Vγ9Vδ2 T cells (infusion of Vγ9Vδ2 T cells 

24hrs after ZOL, treatments as above, n=8). Treatments were given a total of three 

times. Tumour bioluminescence was monitored over the study period, using the 

IVIS Spectrum in vivo imaging system as outlined above. If pain relief was 

required, mice were given Rimadyl (carprofen) (Pfizer Animal Health, Australia) 

at 5mg/kg s.c every 24hr for a maximum of three days. After 3 weeks, mice were 

sacrificed, and lungs were imaged for ex vivo bioluminescence to quantify lung 

metastases, and tumour bearing and non-tumour bearing control tibia from each 

animal were surgically resected for micro-computed tomography. 

5.5.10 Ex vivo micro-computed tomography (µCT) analysis 

Tibias for µCT analysis were scanned using the SkyScan-1076 high-

resolution µCT Scanner (Bruker). The scanner was operated at 50kV, 110μA, 

rotation step of 0.5, 0.5-mm aluminium filter, and scan resolution of 7.8μm/pixel. 

Cross-sections were reconstructed using the cone-beam algorithm in NRecon 

(V1.6.9.8, Bruker). Images were then realigned in DataViewer (1.5.1.2, Bruker) 

and imported into CT Analyser (CTAn) (V1.14.4.1+, Bruker, Skyscan). Using the 

two-dimensional images obtained from the CTAn, the growth plate was identified 

and 650 sections starting from the growth plate/tibial interface and moving down 

the tibia were selected for quantification of total bone morphometric parameters 
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and 250 sections starting 35 sections down from the growth plate, were selected for 

trabecular bone morphometric parameters. Representative three-dimensional 

images of total bone were generated in CTvox (V2.7.0, Bruker). 

5.5.11 Data analysis and statistics 

In vitro experiments were conducted at least twice using biological 

triplicates, and data presented is mean ± SEM, unless otherwise specified. A 

representative experiment is shown for Western immunoblot data. Two-tailed 

unpaired Student's t-test was used, unless otherwise specified and in all cases p-

values <0.05 were considered statistically significant. All statistical analysis was 

conducted using SigmaPlot v12.5 (Systat Software Inc., USA).  

5.6 Results 

5.6.1 ZOL sensitises osteosarcoma cells to Vγ9Vδ2 T cell cytotoxicity in 

vitro  

The in vitro cytotoxicity of purified ex vivo expanded Vγ9Vδ2 T cells in 

combination with ZOL was evaluated against two human osteosarcoma cell lines, 

143B and KHOS. After 9 hours, both cell lines showed a maximum of 10% specific 

lysis when cultured with Vγ9Vδ2 T cells alone, and there was no E:T (effector 

target) dependent increase in lysis (Figure 5.1 A). However, ZOL pre-treatment for 

24 hours, followed by co-culture with Vγ9Vδ2 T cells for 9 hours, resulted in a 

significant increase in cytotoxicity in both cell lines and occurred in an E:T
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Figure 5.1 ZOL sensitises osteosarcoma cells to Vγ9Vδ2 T cell cytotoxicity in 

vitro.  

Luciferase-tagged 143B and KHOS osteosarcoma cells were pre-treated with 

25μM ZOL ( ) or left untreated (□) for 24 hours. Cancer cells were then co-

cultured with ex vivo expanded Vγ9Vδ2 T cells (E:T, 1:1, 5:1, 10:1) for 9 or 24 

hours. A. After 9 hours co-culture, LDH release was measured and expressed as 

percentage cytotoxicity using the calculation outlined in the methods. B. After 24 

hours co-culture, overall cancer cell viability was measured using a luciferase based 

activity assay. Luciferase activity was measured and expressed as percentage 

viability using the calculation outlined in the methods. LDH and viability data was 

pooled and normalised from two separate experiments (n=6). C. Western 

immunoblot analysis showing inhibition of prenylation in 143B and KHOS 

osteosarcoma cells treated with 25μM ZOL over a 24 hour time course (0, 4, 8, 12, 

24 hours). Images representative of n=2-3. Unpaired two-tailed Student’s t-test was 

performed comparing each treatment group to untreated (*p<0.05, **p<0.005, 

***p<0.001, non-significant values not shown). Columns and error bars represent 

mean and ± %SEM 
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dependent manner, resulting in a maximum of 40% and 56% lysis of 143B and 

KHOS cells respectively (Figure 5.1 A). Additionally, osteosarcoma cell viability 

was assessed using a luciferase based assay following a 24 hour co-culture with 

Vγ9Vδ2 T cells. After 24 hours treatment with Vγ9Vδ2 T cells, both osteosarcoma 

cell lines showed a maximum of 10% cell death, which was E:T independent 

(Figure 5.1 B). However, following 24 hour ZOL pre-treatment and 24 hour co-

culture with Vγ9Vδ2 T cells, there was a significant increase in cytotoxicity in both 

cell lines which occurred in an E:T dependent manner, resulting in a maximum of 

95% and 80% cell death of 143B and KHOS cells respectively (Figure 5.1 B). 

These data indicate ZOL potentiates the cytotoxicity of Vγ9Vδ2 T cells in vitro. 

Both cell lines were sensitive to Vγ9Vδ2 T cells, so we examined inhibition of 

RAP1 prenylation over 24hr of ZOL treatment. This method was used to indirectly 

measure the extent of FPPS inhibition by ZOL, which leads to IPP accumulation 

allowing sensitization of cancer cells to Vγ9Vδ2 T cell cytotoxicity in vitro. 143B 

and KHOS osteosarcoma cells both showed a time dependent increase in 

unprenylated RAP1A (Figure 5.1 C). Of these two osteosarcoma cell lines, 143B 

was observed to inhibit FPPS at a faster rate, with unprenylated RAP1 clearly 

evident after just 4 hours. Greater proliferation or protein synthesis rates of the 

143B cell line could account for faster accumulation of unprenylated RAP1A 

observed, however this was not further investigated. 

5.7 Ex vivo expanded Vγ9Vδ2 T cells localise to tumours in the bone 

We next examined the ability of Vγ9Vδ2 T cells to co-localise to tumour 

lesions in a model of osteolytic osteosarcoma. We have previously shown that 

Vγ9Vδ2 T cells can labelled with the DiR fluorescent dye, with >90% labelling 

efficiency as analysed by flow cytometry, without effecting Vγ9Vδ2 T cell viability 
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or cytotoxicity [157]. For localisation studies, mice were inoculated with 

luciferase-tagged 143B cancer cells injected directly into the tibia, and after several 

days bioluminescence could be detected. Mice were pre-treated with or without 

100μg/kg ZOL s.c and 24 hours later, mice were infused with DiR labelled Vγ9Vδ2 

T cells via the tail vein. Within 20 minutes of infusion, fluorescence could be 

detected in the liver and lungs, and in the tibia of mice pre-treated with ZOL (Figure 

5.2 A). After 24 and 48 hours, fluorescence was observed in the liver, spleen and 

tumour-bearing tibia of all mice. Consistently, more fluorescence was observed in 

the tumour-bearing tibia of mice pre-treated with ZOL (Figure 5.2 A). A composite 

image overlaying fluorescence and bioluminescence showed fluorescence 

produced by the Vγ9Vδ2 T cells correlate with bioluminescence produced by 

tumour cells (Figure 5.2 D). Three days following Vγ9Vδ2 T cell infusion, mice 

were sacrificed and the legs, liver, lungs, and spleen were imaged ex vivo. Strong 

fluorescence was observed in the imaged organs (Figure 5.2 D). Additionally, 

fluorescence that was observed in the tibia and lungs corresponded with 

bioluminescence signal of the tumour bearing tibia and lung, suggesting co-

localisation of Vγ9Vδ2 T cells with tumour cells at these sites (Figure 5.2 D).  

5.7.1 ZOL potentiates the anti-cancer efficacy of Vγ9Vδ2 T cells against 

osteosarcoma 

To examine the in vivo anti-cancer efficacy of Vγ9Vδ2 T cells in a model 

of osteolytic osteosarcoma, NOD/SCID mice were inoculated with luciferase-

tagged 143B cells directly into the left tibia. Once tumours were established as 

measured by an increase of bioluminescence signal, treatments were commenced. 

ZOL was administered 24 hours prior to each Vγ9Vδ2 T cell infusion. This 

treatment regime was repeated three times over two weeks. After three treatments,
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Figure 5.2 Fluorescently labelled Vγ9Vδ2 T cells localise to osteosarcoma lesions 

in vivo.  

5-week old female NOD/SCID mice were inoculated with luciferase-tagged 

human osteolytic osteosarcoma cells (143B) directly into the left tibia. Mice were 

injected with ZOL (100µg/kg s.c) or left untreated. 24 hours later, DiR labelled 

Vγ9Vδ2 T cells were infused via the tail vein. Fluorescence images were acquired 

on the IVIS Spectrum in vivo imaging system A. 20 minutes, B. 24 hours, and 48 

hours after infusion. Fluorescence and bioluminescence images were acquired to 

create a composite image after C. 24 hours in vivo, and D. ex vivo, 3 days after 

infusion. Ex vivo images show lungs from two mice in the ZOL treated group, one 

with metastases and one without. BL= bioluminescence, FL= fluorescence. 
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there was no difference in tumour burden between the untreated, ZOL alone, or 

Vγ9Vδ2 T cell alone treated groups (Figure 5.3). In contrast, animals treated with 

ZOL in combination with Vγ9Vδ2 T cells showed a strong trend towards a decrease 

in tumour bioluminescence (Figure 5.3).  

5.7.2 Vγ9Vδ2 T cells reduce the incidence and tumour burden of lung 

metastases 

Lung metastases are frequently seen in patients with osteosarcoma, 

correlating with poor survival. Analogous to human disease, animals inoculated 

with the 143B cells develop lung metastases three to four weeks after cancer cell 

inoculation. To examine the efficacy of Vγ9Vδ2 T cells alone and in combination 

with ZOL on the incidence and tumour burden of lung metastases, tumour 

bioluminescence in the lungs was assessed (Figure 5.4). Sixty percent of mice in 

the untreated group exhibited lung metastases, which was comparable to ZOL 

treatment alone (66%), however, ZOL reduced tumour burden by approximately 

half compared to untreated (Figure 5.4). Vγ9Vδ2 T cells alone and in combination 

with ZOL further reduced tumour incidence to 29% and 25% respectively, and 

tumour burden was almost undetectable in these treatment groups (Figure 5.4). 

5.7.3 ZOL in combination with Vγ9Vδ2 T cells inhibits bone degradation 

Orthotropic inoculation of 143B osteosarcoma cells into the tibia results in 

predominantly osteolytic lesions [158]. Therefore, to evaluate the efficacy of 

Vγ9Vδ2 T cells alone or in combination with ZOL to protect the bone from tumour-

induced osteolysis, tibias were analysed using three-dimensional (3D) µCT 

imaging (Figure 5.5). Osteolysis was measured as the percentage difference in bone 

volume between the tumour bearing and non-tumour bearing tibia. Qualitative and 

quantitative µCT showed bone loss in the untreated, ZOL alone, and Vγ9Vδ2 T cell
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Figure 5.3 ZOL enhances the anti-cancer efficacy of Vγ9Vδ2 T cells against 

osteolytic osteosarcoma.  

Luciferase-tagged 143B cells were injected directly into the left tibial cavity 

of 5-week old female NOD/SCID mice. Once tumours were established, treatments 

were commenced as outlined in the methods (n=5-8 mice per group). Animals 

remained untreated (△) or were administered with ZOL alone (◇), Vγ9Vδ2 T cells 

alone (□) or ZOL in combination with Vγ9Vδ2 T cells (●). Whole body 

bioluminescence images were acquired on the IVIS Spectrum in vivo imaging 

system over the course of the study. A representative bioluminescence image of a 

single mouse from each treatment group is shown. The line graph shows the 

quantification of bioluminescence signal over the course of the study and is 

expressed as the fold change in total flux [photons/second] from Day 8. 

  



 

116 

 

 

  

Untreated

Vγ9Vδ2 T

ZOL

ZOL +

Vγ9Vδ2 T

10 14 17 days198
0

10

20

30

40

50

60

70

T
o
ta

l 
F
lu

x
 [
p
/s

] 

(F
o
ld

 C
h
a
n
g
e
) Untreated

ZOL 

ZOL +

Vγ9Vδ2 T

10 14 17 days19

ZOL 

100µg/kg s.c

Vγ9Vδ2 T

1x107/100µL i.v

8

Vγ9Vδ2 T



 

117 

 

Figure 5.4 Vγ9Vδ2 T cells reduce the incidence and tumour burden of lung 

metastases.  

At the time of sacrifice, lungs were removed for ex vivo bioluminescence 

quantification of tumour burden. Incidence rate was calculated as the percentage of 

mice exhibiting pulmonary metastases by observing bioluminescence signal 

detected on the IVIS Spectrum in vivo imaging system. Tumour burden is shown 

as the average bioluminescence intensity detected for each treatment group 

expressed as total flux [photons/second]. A corresponding representative 

bioluminescence image of the lungs from each treatment group is shown. Columns 

and error bars represent median values and SEM. 
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Figure 5.5 Vγ9Vδ2 T cells in combination with ZOL reduce tumour-associated 

osteolysis in total and trabecular bone.  

A. The osteolytic nature of 143B osteosarcoma cell line can be seen in the 

representative qualitative µCT 3D images. Quantitative assessment of B. total bone 

and C. trabecular bone volume is expressed as a percentage difference between the 

tumour bearing tibia and non-tumour bearing tibia. A one-tailed student’s t-test was 

performed comparing each treatment group to untreated (*p<0.05, **p<0.005, 

***p<0.001, ns= non-significant). Columns and error bars represent mean 

and %SEM. 
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alone treated groups, but with differences in the extent of osteolysis. Untreated 

animals showed the greatest osteolysis with 19.2% total bone volume (T.BV) loss 

and 43.6% trabecular bone volume (Tb.BV) loss. In contrast, ZOL treatment alone 

increased bone volume and showed 7.3% T.BV loss and 36.2% Tb.BV loss. 

Animals treated with Vγ9Vδ2 T cells alone showed similar T.BV loss compared 

with untreated animals (23.7% compared to 19.2%), but greater Tb.BV loss (69.0% 

compared with 43.6%). However, animals treated with ZOL in combination with 

Vγ9Vδ2 T cells had the least amount of bone loss, showing a 1.5% gain in T.BV, 

and only 8.4% Tb.BV loss. 

5.8 Discussion 

To date, the anti-cancer efficacy of Vγ9Vδ2 T cells in combination with ZOL 

has not been investigated for the treatment of osteosarcoma. In this study, we used 

a well-established murine model of osteosarcoma that resembles the human disease 

[158] and assessed the anti-cancer efficacy of adoptive transfer of Vγ9Vδ2 T cells 

alone and in combination with ZOL in the context of primary tumour growth in 

bone and the subsequent lung metastases. We also investigated the effect these 

treatments had on osteosarcoma induced bone destruction.  

Vγ9Vδ2 T cells alone exhibited limited cytotoxicity against both 

osteosarcoma cell lines in vitro. However, pre-treatment with ZOL significantly 

sensitised cancer cells to Vγ9Vδ2 T cells mediated killing in vitro, while in vivo 

ZOL showed a trend towards enhanced anti-cancer efficacy, consistent with 

previous studies [77, 78, 157]. Currently, the mechanism of in vivo ZOL 

sensitization is unclear, however it is unlikely that cancer cells directly uptake ZOL 

in vivo. It is known that nBPs are preferentially internalised by tumour associated 

macrophages (TAMs) and not by cancer cells in vivo [179]. Under certain 
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conditions, macrophages have the ability to produce chemotactic factors including 

monocyte chemoattractant protein-1 (MCP-1) and IL-8 which recruit γδ T cells in 

vitro [180]. We previously proposed that ZOL internalisation by TAMs may result 

in the recruitment of Vγ9Vδ2 T cells to the tumour microenvironment, thereby 

enhancing anti-cancer efficacy [157]. In line with our hypothesis, in this study ZOL 

pre-treated animals were observed to have more Vγ9Vδ2 T cells localisation to the 

tumour mass compared with untreated animals. However, this data was purely 

observational, therefore further in vitro and in vivo studies will be required to fully 

understand the interactions between TAMs and Vγ9Vδ2 T cells, and potential 

mechanisms resulting in migration to the tumour microenvironment. 

Patients with osteosarcoma frequently experience lung metastases, which 

contributes to poor survival. This study showed that Vγ9Vδ2 T cells reduced the 

incidence and tumour burden of lung metastases, consistent with previous findings 

[157, 178]. Additionally, in two early-phase clinical trials, patients exhibiting 

metastatic lung lesions from advanced renal cell carcinoma showed decreased 

growth rate of these lesions and no new lesions detected following Vγ9Vδ2 T cell 

treatment [97, 181]. Here, we demonstrated that Vγ9Vδ2 T cells are readily 

detected in the lungs of mice for up to three days following infusion, showing co-

localisation with lung tumour lesions. Although Vγ9Vδ2 T cells localise to the 

lungs, it is still unclear if decreased lung metastases are due to Vγ9Vδ2 T cells 

directly targeting cancer cells in the lung or circulating Vγ9Vδ2 T cells targeting 

disseminated cancer cells prior to establishing in the lung, or both. It is also 

interesting to note that ZOL does not enhance the anti-metastatic effect, suggesting 

it is due to Vγ9Vδ2 T cells alone.  
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ZOL is a well-characterised anti-bone resorptive agent approved for the 

treatment of osteoporosis, Paget’s disease of the bone, and skeletal metastases. ZOL 

administration in patients with primary and metastatic bone cancer inhibits tumour-

associated bone loss, increases bone density, and as a result, reduces skeletal related 

events such as fractures and hypercalcemia [50, 52, 53]. In addition to these anti-

bone resorptive effects, studies also suggest ZOL possesses a wide range of anti-

cancer properties by inducing cell death, inhibiting proliferation, invasion, and 

angiogenesis [57-62]. However, the anti-cancer efficacy reported in preclinical 

models appears to be contradictory 62-65, 67, 68]. This study showed that ZOL 

alone inhibited tumour-associated bone loss and this is consistent with the well-

established role of ZOL on osteoclastic bone resorption. ZOL in combination with 

Vγ9Vδ2 T cells showed the greatest protection from osteosarcoma induced bone 

loss, such that the tumour-bearing tibia resembled the non-tumour bearing tibia. 

However, ZOL alone showed no effect on primary tumour burden, consistent with 

previous studies in orthotropic osteosarcoma models [67, 68]. 

In this study, ZOL in combination with Vγ9Vδ2 T cell adoptive transfer 

showed some anti-cancer efficacy reducing lung metastases, and protecting the 

bone from osteolysis, however, this treatment regimen did not fully eradicate the 

primary tumour. Chemotherapy or antibodies in combination with Vγ9Vδ2 T cells 

have been previously shown to enhance Vγ9Vδ2 T cell cytotoxicity [81, 115, 116, 

138]. Pre-clinical studies examining the effects of pro-apoptotic receptor agonists 

such as recombinant human TRAIL and drozitumab, a monoclonal antibody against 

DR5, or the hypoxia activated drug, TH-302 (evofosfamide) have shown anti-

cancer efficacy against osteosarcoma and osteolytic breast cancer [141, 146, 158]. 

The efficacy of these compounds in combination with Vγ9Vδ2 T cell adoptive 
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transfer has not yet been tested, however these combinations could provide new 

treatment opportunities for osteosarcoma and other cancers that affect the bone. 

Overall, this study demonstrates that adoptive transfer of Vγ9Vδ2 T cells in 

combination with ZOL reduces tumour growth, inhibits tumour-associated bone 

loss, and limits further lung metastases in a murine model of orthotropic 

osteosarcoma. Therefore, this two-pronged approach may be appropriate at 

reducing disease severity in patients with osteosarcoma. However, further studies 

are required to optimise anti-cancer efficacy, potentially in combination with other 

therapies.  
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Chapter 6 

Adoptive transfer of Vγ9Vδ2 T cells has a neutral effect on normal bone 

homeostasis
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6.1 Introduction 

The preceding chapters have examined the anti-cancer efficacy of Vγ9Vδ2 T 

cells, either alone or in combination with ZOL, and the effect these treatments have 

on bone homeostasis in the tumour bearing tibia. By examining the contralateral 

tibia from these studies, the effect these treatments have on normal bone 

homeostasis can also be assessed. 

Vγ9Vδ2 T cells can target and kill osteosarcoma cells in vitro and in vivo [75, 

79, 135], however little is currently known about the role Vγ9Vδ2 T cells have on 

the cells responsible for normal bone homeostasis. As discussed in the introduction, 

in vitro studies have shown that human γδ T cells can inhibit osteoclast formation 

[148] and are cytotoxic towards osteoclasts when co-cultured with multiple 

myeloma cells [80]. Human γδ T cells are known to express factors such as IGF, 

FGF [149], and CTGF [150], which are important osteoblast growth factors. 

Additionally, in osteoporotic patients, Vγ9Vδ2 T cells are important in protecting 

the bone, based on the observation that patients who experienced BAONJ following 

treatment with intravenous nBPs were severely deficient in Vγ9Vδ2 T cells [73]. 

Apart from this clinical observation, most in vivo studies examining the role of γδ 

T cells in bone have been conducted using murine γδ T cells, which differ from 

human Vγ9Vδ2 T cells. Unlike Vγ9Vδ2 T cells, murine γδ T cells do not respond 

to PAgs and have been reported to both impair and promote bone fracture healing 

[154, 155]. As more clinical trials are studying Vγ9Vδ2 T cell immunotherapy, it 

is important to examine their effect on normal bone homeostasis following adoptive 

transfer. 

In addition to examining the effect of Vγ9Vδ2 T cells, the current study also 

compared two different ZOL dosing schedules and their effect on normal bone 
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homeostasis. For the treatment of osteoporosis, ZOL is generally administrated as 

a single yearly infusion of 4mg, equivalent to 100µg/kg in pre-clinical models. 

However, administrations become more frequent for the treatment for SREs arising 

from cancerous bone lesions and in Vγ9Vδ2 T cell immunotherapy trials [50, 51, 

122-124] Previous pre-clinical studies of osteolytic osteosarcoma and osteolytic 

breast cancer have shown that multiple ZOL administrations result in increased 

bone volume to tissue ratio (BV/TV) in both the tumour bearing and non-tumour 

bearing tibias, compared to a single conventional ZOL administration (ZOL-C; 

single administration of 100µg/kg) [63, 67]. Pre-clinical studies have shown that 

multiple nBP administrations are required to potentiate the anti-cancer efficacy of 

Vγ9Vδ2 T cells [77, Chapters 3-5] and two different ZOL administration schedules 

were used in these studies: metronomic dosing (ZOL-M, 1st treatment, 25µg/kg, 

following treatments, 50µg/kg, every 3-5 days) and multiple conventional (ZOL-

XC, 100µg/kg every 3-5 days). The effect these two ZOL dosing schedules have 

on normal bone homeostasis, alone and in combination with Vγ9Vδ2 T cells, has 

yet to be examined.  

As more evidence emerges that ZOL potentiates the anti-cancer efficacy of 

Vγ9Vδ2 T cell immunotherapy, the aim of this study was to examine the effect 

these treatments have on normal bone homeostasis. This was achieved by 

examining and comparing bone morphometric parameters from the contralateral 

non-tumour bearing tibia of NOD/SCID mice, from three independent pre-clinical 

studies included in this thesis (summarised in Table 1). Tibias were assessed using 

quantitative µCT to compare total bone volume (TBV), trabecular bone volume 

(Tb.BV), trabecular pattern factor (Tb.Pf), trabecular thickness (Tb.Th), trabecular 

number (Tb.N) and trabecular spacing (Tb.S). The values were then compared
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between appropriate treatment groups to determine the effect Vγ9Vδ2 T cells alone, 

ZOL alone, and the combination treatment have on normal bone homeostasis. 

6.2 Results 

6.2.1 Vγ9Vδ2 T cells alone have minimal impact on bone morphometric 

parameters 

To examine the effect Vγ9Vδ2 T cells have on normal bone homeostasis, 

quantitative µCT analysis was conducted on the contralateral non-tumour bearing 

tibia of untreated animals and Vγ9Vδ2 T cell treated animals (Table 2). In Study 1 

and Study 3, no statistically significant differences were observed when comparing 

untreated mice with Vγ9Vδ2 T cell treatment alone. Interestingly, Study 2 showed 

mice treated with Vγ9Vδ2 T cells alone had a modest but statistically significant 

increase in total bone volume compared to untreated (3.9 mm3 compared to 3.6 

mm3). These mice also showed a trend towards increased trabecular bone volume 

compared to untreated mice (0.36 mm3 compared to 0.23 mm3), however this did 

not reach statistical significance. Additionally, there was a significant decrease in 

the trabecular pattern factor value when comparing these two treatment groups 

(17.50 mm-1 compared to 22.71 mm-1). 

6.2.2 ZOL alone has a positive effect on bone morphometric parameters 

ZOL is a well-characterised and widely used bone anti-resorptive agent for 

the treatment of osteoporosis, Paget’s disease of the bone, and reversing SREs in 

patients with cancerous bone lesions [42, 43, reviewed in 44]. To confirm the bone 

sparing effects of ZOL in these studies, quantitative µCT analysis was conducted 

on the contralateral non-tumour bearing tibia of mice (Table 3). In all studies, ZOL 

alone significantly increased total bone volume and trabecular bone volume while 

significantly decreasing trabecular pattern factor compared to untreated mice. Mice
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treated with ZOL in Study 1 showed a significant increase in trabecular number 

(0.19 mm-1 compared to 0.11 mm-1 in untreated mice). Trabecular thickness was 

significantly increased in Study 2 in the ZOL treatment group compared to 

untreated (0.12 mm compared to 0.06 mm). Study 3 showed an increase in 

trabecular thickness (0.11 mm compared to 0.01 mm), trabecular number (0.95  

mm-1 compared to 0.36 mm-1) and a decrease in trabecular separation (0.67 mm-1 

compared to 0.77 mm-1) in the ZOL treatment groups compared to untreated 

animals.  

Consistent with the literature, ZOL treated animals had significantly great 

bone volume compared to untreated animals in each study. While previous studies 

have shown that multiple ZOL administrations are superior at increasing bone 

volume compared to a single ZOL dose [63, 67], no studies have examined the 

difference between metronomic dosing (ZOL-M) and multiple conventional doses 

(ZOL-XC). To examine the difference in bone volume between metronomic doses 

(ZOL-M) in Study 1 and multiple conventional doses (ZOL-XC) in Study 2 and 3, 

the fold change between the untreated and ZOL treated groups for each study were 

compared (Table 4). Differences between ZOL-M and ZOL-XC were observed in 

all parameters, but were most noticeable in the trabecular bone parameters. The 

increase in trabecular bone volume in the ZOL-M treated group in Study 1 was 1.9-

fold compared to 2.9-fold and nearly 6-fold in the ZOL-XC treatment in Study 2 

and Study 3 respectively. Trabecular thickness in Study 2 and 3 were increased 2-

fold compared to a 1-fold increase in Study 1. Interestingly, no differences in 

trabecular bone pattern factor or trabecular separation were observed between 

Study 1 and 2, however the values were significantly smaller in Study 3. 

Additionally, trabecular number was comparable between Study 1 and 2 (1.7 and 
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1.3-fold increase respectively) compared to a 2.6-fold increase for Study 3. Overall, 

multiple infusions of ZOL at a higher dose result in a greater bone volume and 

thicker and well-structured trabecular bone compared with ZOL metronomic 

dosing. 

6.2.3 Vγ9Vδ2 T cells in combination with ZOL have no effect on bone 

morphometric parameters compared to ZOL alone 

To investigate the effect ZOL in combination with Vγ9Vδ2 T cells have on 

bone homeostasis compared to ZOL alone, quantitative µCT analysis was 

conducted on the contralateral non-tumour bearing tibia of mice and compared 

between these two treatment groups (Table 5). In Study 2, no statistically 

significant differences were observed when comparing mice treated with ZOL 

alone and ZOL in combination with Vγ9Vδ2 T cells. Study 1 showed that the 

combination resulted in a greater trabecular volume (0.50 mm3 compared to 0.37 

mm3) and trabecular number (0.26 mm-1 compared to 0.19 mm-1) compared to ZOL 

alone. In contrast, Study 3 showed that the combination significantly decreased 

trabecular volume compared to ZOL alone (0.95 mm3 compared to 1.03 mm3) 

however, the trabecular bone volume in the combination was still significantly 

greater than untreated or Vγ9Vδ2 T cells alone (0.95 mm3 compared to 0.17 mm3 

and 0.14 mm3 respectively). The combination also showed a strong trend towards 

a decrease in trabecular pattern factor (-1.08 mm-1 compared to 0.35 mm-1) and an 

trend towards increased trabecular number (0.99 mm-1 compared to 0.95 mm-1) 

compared to ZOL alone, however these values did not reach statistical significance. 
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6.3 Discussion 

Adoptive transfer of Vγ9Vδ2 T cells in combination with ZOL is gaining 

momentum as a novel anti-cancer immunotherapy, therefore it is important to 

examine the effect this treatment has on normal bone homeostasis. This study 

assessed the non-tumour bearing contralateral tibia of NOD/SCID mice and 

examined bone morphometric parameters to determine the effect adoptive transfer 

of Vγ9Vδ2 T cells, ZOL administration and the combination have on bone 

homeostasis. 

Vγ9Vδ2 T cells alone showed minimal impact on bone parameters with only 

a slight increase in TBV compared to untreated animals observed in one study. 

Similarly, bone parameters of animals treated with ZOL in combination with 

Vγ9Vδ2 T cells showed little difference to those treated with ZOL alone. In 

Chapters 4 and 5, it was shown that following adoptive transfer, fluorescently 

labelled Vγ9Vδ2 T cells predominately localise to the liver, spleen, and most 

importantly, the tumour bearing tibia. As Vγ9Vδ2 T cells did not localise to the 

non-tumour bearing tibia of animals in these studies, it is unlikely they would exert 

a local effect on normal bone. Vγ9Vδ2 T cells which have localised to the tumour 

mass however, have the ability to release factors such as IFN-γ in response to cancer 

cell recognition, which may a have systemic effect on bone homeostasis. IFN-γ is 

known to interfere with RANK-RANKL signalling resulting in decreased 

osteoclastogenesis [164] and may be the reason a small bone sparing effect was 

observed in the non-tumour bearing tibia following Vγ9Vδ2 T cell adoptive 

transfer. Immunocompromised mice were used in this study, therefore any potential 

systemic effect may have been dampened, however, this would be comparable to 

examining the effect Vγ9Vδ2 T cell adoptive transfer has on normal bone 
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homeostasis in immunocompromised cancer patients. Overall, as the increase in 

bone volume in the non-tumour bearing tibia is quite subtle, it is difficult to make 

any inferences until further studies are undertaken and µCT is used to examine bone 

parameters in patients undertaking Vγ9Vδ2 T cell adoptive transfer.  

As multiple nBP administrations are required to potentiate the anti-cancer 

efficacy of Vγ9Vδ2 T cells [77, Chapters 3-5], this study examined the effect 

multiple ZOL administrations have on normal bone homeostasis. Consistent with 

the literature ZOL treatment increased bone volume in the non-tumour bearing 

tibia, regardless of frequency or dose [63, 67]. Additionally, ZOL-XC had greater 

bone sparing properties in the non-tumour bearing tibia compared to ZOL-M. It has 

been previously shown that monthly and weekly administration of 100µg/kg ZOL 

in ovariectomised mice resulted in increased BV/TV compared to untreated, but the 

weekly treatment was less effective compared to the monthly treatment [165]. As 

adoptive transfer of Vγ9Vδ2 T cells in combination with ZOL may be used in post-

menopausal women with advanced breast cancer, this suggests frequent ZOL 

administrations may be less effective than the current ZOL treatment schedule at 

reducing SREs, however, this has yet to be investigated. Interestingly, ZOL-XC 

resulted in more bone in the osteosarcoma model (Study 3) compared to the same 

dosing schedule in the osteolytic breast cancer model (Study 2). As ZOL-M was 

not examined in the osteosarcoma model, it is difficult to determine if this 

difference is purely due to the ZOL dosing schedule, or the cell line used, which 

could have implications on ZOL-XC dosing schedule in different cancer types.  

Although increased bone density in the tumour bearing tibia of cancer patients 

is beneficial for the reduction of SREs, conversely, overall high bone mineral 

density can be problematic. As observed in osteosclerosis and other high bone 
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density diseases, disordered bone can be weak, resulting in fractures and other 

complications [166]. This study observed ZOL-XC predominately increased 

trabecular bone, implying this is dense, well-structured bone which would be 

beneficial for patients as it is less likely to fracture.  

More concerning is the observation that repeated ZOL administration may 

led to a greater incidence of BAONJ in immunocompromised patients, which was 

linked to a decline in Vγ9Vδ2 T cells [73]. Initially the cause was thought to be 

AICD of Vγ9Vδ2 T cells, until it was discovered that nBP uptake by neutrophils 

produces reactive oxygen species (ROS) which inhibits Vγ9Vδ2 T cells 

proliferation and decreases viability [167]. This poses an additional challenge when 

using frequent ZOL administrations prior to Vγ9Vδ2 T cell adoptive transfer and 

may be one possible reason why Vγ9Vδ2 T cell clinical trials have shown 

variability in efficacy. 

In conclusion, the data presented here suggests that adoptive transfer of 

Vγ9Vδ2 T cells may protect bone, however any effect is minor compared to ZOL. 

Clearly, further clinical studies examining bone parameters are required to fully 

understand the effects Vγ9Vδ2 T cells and multiple ZOL infusions have in patients 

receiving this novel immunotherapy.
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Chapter 7 

Vγ9Vδ2 T cells in combination with pro-apoptotic receptor agonists (PARAs) 

or chemotherapy enhance killing of breast cancer cells 



 

140 

 

7.1 Introduction 

In the preceding chapters, it was demonstrated that ZOL enhanced the anti-

cancer efficacy of Vγ9Vδ2 T cells against osteosarcoma and breast cancer, both in 

vitro and in vivo. This treatment regimen also reduced pulmonary metastases, and 

inhibited tumour-associated osteolysis in pre-clinical models. While decreased 

tumour burden was observed in the tibia, the tumour was not fully eradicated. This 

chapter explores the potential of using a combinatorial approach with pro-apoptotic 

receptor agonists (PARAs) and chemotherapy to enhance the anti-cancer efficacy 

of Vγ9Vδ2 T cells.  

Vγ9Vδ2 T cells recognise PAgs abnormally accumulated in cancer cells [92], 

resulting in the release of cytolytic granules and T-helper 1 (Th1) cytokines 

including IFN-γ and TNF-α, causing target cell lysis and immune activation [75, 

98, 104, 107, 108]. Activated Vγ9Vδ2 T cells also induce apoptosis by releasing 

PARAs such as FasL and TRAIL (also called Apo2 ligand) [79, 98]. PARAs bind 

to death receptors (DR), resulting in receptor multimerisation and subsequent 

recruitment of the FADD (Fas-associated death domain protein) complex, initiating 

caspases and ultimately resulting in cell death.  

PARAs such as recombinant human TRAIL (rhTRAIL) or drozitumab 

(Apomab, Genetech), have in recent years become attractive anti-cancer 

therapeutics because of their high potency and lack of toxicity. TRAIL targets both 

DR4 (Apo2L/TRAIL-R1) and DR5 (Apo2L/TRAIL-R2), while drozitumab, a 

humanised monoclonal IgG1 antibody targets DR5 for apoptosis induction. This 

laboratory has shown these PARAs reduce tumour burden in models of osteolytic 

breast cancer and can protect the bone from tumour-associated osteolysis [141, 

146]. TRAIL has a short serum half-life, and prolonged treatment regimens to 
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maximise anti-cancer efficacy result in TRAIL resistance [141]. To overcome these 

disadvantages, TRAIL was also used in combination with other immunotherapeutic 

approaches to enhance the anti-cancer efficacy of T cells [142, 143], however it was 

not examined in combination with Vγ9Vδ2 T cells. 

For drozitumab to exert its biological effect, it requires Fc-cross linking [145]. 

A sub-population of Vγ9Vδ2 T cells express CD16 (FcγRIII) a low affinity Fc 

receptor which binds antibodies of the IgG isotype [144]. Cross-linking of 

antibodies with CD16 can activate antibody dependant cellular cytotoxicity 

(ADCC), resulting in the release of perforin and granzymes, subsequently 

activating caspases that result in target cell death. Previous studies have shown 

CD16+ Vγ9Vδ2 T cells cross-linked to rituximab and trastuzumab enhance 

cytotoxicity against solid and haematological malignancies [115, 116], however the 

ability of drozitumab to cross-link CD16 on Vγ9Vδ2 T cells has not been examined. 

In addition to PARAs, commonly used chemotherapeutic drugs including 

cisplatin, etoposide, and 5-flurouracil were shown to enhance the anti-cancer 

efficacy of Vγ9Vδ2 T cells [81, 138, 168]. The anthracycline compound 

doxorubicin is a commonly used chemotherapeutic drug which intercalates DNA, 

resulting in DNA damage and subsequent activation of the mitochondrial mediated 

(intrinsic) pathway of apoptosis. Doxorubicin is currently used for the treatment of 

various cancers, including advanced breast cancer, however high doses or long term 

use are associated with off-target side-effects including cardiotoxicity [reviewed in 

41]. These toxic side effects could be avoided by combining low dose 

chemotherapy in combination with immunotherapy. Indeed, in several early-phase 

clinical trials, patients with advanced cancers that were treated with adoptive 

transfer of Vγ9Vδ2 T cells in combination with nBPs, chemotherapy, or hormonal 
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therapy had the best outcomes [105, 126, 127]. This suggests that using PARAs or 

conventional chemotherapeutic agents in an adjuvant setting to Vγ9Vδ2 T cell 

immunotherapy may prove effective in targeting advanced cancers.  

This study examined the efficacy of Vγ9Vδ2 T cells in combination with 

three anti-cancer compounds, drozitumab, TRAIL, and doxorubicin against breast 

cancer cells in vitro. CD16+ Vγ9Vδ2 T cells were assessed for their ability to cross-

link drozitumab for apoptosis induction. Although it was shown that drozitumab 

did not cross-link CD16+ Vγ9Vδ2 T cells, nonetheless, pre-treatment of cancer cells 

with each of the compounds, including activated Fc cross-linked drozitumab, an 

additive decrease in breast cancer cell viability was evident. This suggests that 

Vγ9Vδ2 T cells used in combination with PARAs or chemotherapy represent a 

favourable treatment regimen to enhance Vγ9Vδ2 T cell immunotherapy.  

7.2 Results 

7.2.1 Phenotypic analysis of impure, CD16 depleted, and CD16 enriched 

cells 

Prior to examining the ability of CD16+ Vγ9Vδ2 T cells to undergo ADCC 

with drozitumab, it was required to phenotypically characterise the cell populations. 

Contrary to previous studies [169], a decline of CD16 expression was observed on 

the Vγ9+/CD3+population following 7 days culture (Figure 3.1 C). Therefore, fresh 

ex vivo expanded Vγ9Vδ2 T cells, which were enriched for CD16 prior to ADCC 

were used for subsequent experiments with drozitumab. Three populations were 

examined; the whole population of cells prior to purification (impure cells), CD16 

enriched cells (CD16+), and CD16 depleted cells (CD16-). CD16 enriched cells had 

significantly higher levels of CD16 expression, compared to CD16 depleted and 

impure cells (Figure 7.1 A). There were no differences in the number of Vγ9+/CD3+ 
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cells, or NKG2D expression between the three populations (Figure 7.1 A). The 

majority of the cells in the CD16 enriched population were determined to be 

Vγ9Vδ2 T cells, with a minor population being Vγ9-/CD3-/CD16+. 

When examining the differentiation phenotype based on CD27 and CD45RA 

expression, there were no significant differences in the Tnaïve (CD27+/CD45RA+) 

and TERMA (CD27-/CD45RA+) populations between the three groups. In contrast, 

there was an enrichment of TEM (CD27-/CD45RA-) and depletion of TCM 

(CD27+/CD45RA-) cells in the CD16 enriched population (Figure 7.1 B), contrary 

to previous reports which showed the majority of CD16 enriched Vγ9Vδ2 T cells 

were TERMA and TEM cells [99]. 

It is common practice to expand, enrich, and cryogenically store 

lymphocytes for later use. To verify that thawing frozen cells would have no effect 

on the three populations of Vγ9Vδ2 T cells, a matched sample was analysed before 

and after cryogenic freezing. Fresh samples were assessed immediately following 

MACs isolation using flow cytometric analysis. Cells were cryogenically frozen, 

thawed after 1 week storage at -80°C, then analysed immediately using flow 

cytometric analysis.  

After thawing, no differences were observed in cell viability, numbers of 

Vγ9+/CD3+ cells (Figure 7.2 B), NKG2D expression (Figure 7.2 C), or 

differentiation phenotypes (Figure 7.2 D). There was however, a large decline in 

the percentage of lymphocytes expressing CD16 in the CD16 enriched population, 

going from >88% of lymphocytes expressing CD16 to <40% (Figure 7.2 A). 

Thawed cells were therefore deemed unusable for ADCC experiments with 

drozitumab, and all subsequent experiments were conducted using freshly isolated 

cells. 



 

144 

 

Figure 7.1 CD16 enriched cells are effector memory cells with increased CD16 

receptor expression.  

After 7-8 days expansion, fresh Vγ9Vδ2 T cells were collected and enriched 

based on expression of CD16. Flow cytometric analysis was performed on three 

groups of cells, ex vivo expanded Vγ9Vδ2 T cells prior to MACS isolation (impure), 

CD16 depleted cells (CD16-), and CD16 enriched cells (CD16+). A. CD16+, 

Vγ9+/CD3+, and NKG2D+ receptor expression for each of the three populations. B. 

The differentiation phenotype of the cells from each of the three populations, based 

on CD27/CD45RA. Data was pooled from three independent experiments. 

Columns represent the mean of n=3, expressed as the percentage of cells from the 

lymphocyte population. Error bars indicate SEM.  



 

145 

 

 

0

50

100

Differentiation PhenotypeD

population

Tnaϊve

%
 o

f 
to

ta
l 
ly

m
p
h
o
c
y
te

s

TCM TEM TERMA

Impure

CD16-

CD16+

0

50

100

CD16+A

population

impure

%
 o

f 
V

γ
9
V

δ
2

T
 c

e
ll
s

CD16- CD16+

0

50

100

Vγ9+/CD3+B

population

impure

%
 o

f 
to

ta
l 

ly
m

p
h
o
c
yt

e
s

CD16- CD16+

0

50

100

NKG2D+C

population

impure

%
 o

f 
V

γ
9
V

δ
2

T
 c

e
ll
s

CD16- CD16+



 

146 

 

Figure 7.2 CD16 expression on CD16 enriched cells is lost following cryogenic 

storage.  

After 7 days expansion, fresh Vγ9Vδ2 T cells were collected and enriched 

based on expression of CD16. Cells were then cryogenically frozen and thawed one 

week later. Flow cytometric analysis was performed on fresh and thawed cells from 

three groups, ex vivo expanded Vγ9Vδ2 T cells prior to MACS isolation (impure), 

CD16 depleted cells (CD16-), and CD16 enriched cells (CD16+). Fresh and thawed 

cells were compared based on A. CD16+ B. Vγ9+/CD3+ C. NKG2D+ expression, 

and D. differentiation phenotype, based on CD27/CD45RA expression. Data was 

from one paired biological sample. Columns represent the percentage of cells from 

the lymphocyte population expressing the specified receptor/s and no error bars are 

indicated as n=1.  
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7.2.2 Drozitumab does not cross-link with CD16 on Vγ9Vδ2 T cells to elicit 

ADCC against cancer cells 

MDA-MB231-TXSA cells are sensitive to drozitumab, which has been 

cross-linked with an anti-Fc Ab (drozitumab + anti-Fc) [146]. Pre-treatment of 

MDA-MB231-TXSA with 50ng/mL drozitumab + anti-Fc for 15 minutes could 

induce caspase-3 activation and reduce cancer cell viability after 24 hours to 85% 

[146]. However, pre-treatment with 50ng/mL drozitumab alone did not induce 

caspase-3 activation or reduce cancer cell viability (Figure 7.2). To examine the 

ability of CD16+ enriched cells to induce ADCC by cross-linking CD16 with 

drozitumab, cancer cells were pre-treated with or without drozitumab alone, 

followed by co-culture with impure, CD16-, or CD16+ Vγ9Vδ2 T cells. After 24 

hours, there were no differences in caspase-3 activation of cancer cells that were 

treated with 50ng/mL drozitumab alone or in those that remained untreated, at none 

of the Vγ9Vδ2 T cell E:T tested (Figure 7.3 A-C). In fact, a mild inhibitory effect 

was observed with CD16- cell co-culture in combination with drozitumab alone 

(Figure 7.3 B) 

At the same time point, a luciferase activity-based viability assay was used 

to determine cancer cell viability. Similar to caspsase-3 activation, there was no 

difference in the viability of cancer cells that were pre-treated with or without 

drozitumab alone, between the impure, CD16-, or CD16+ Vγ9Vδ2 T cells (Figure 

7.3 D-F). As there were no significant differences between the three populations of 

cells, further studies were conducted using impure Vγ9Vδ2 T cells.
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Figure 7.3 Drozitumab does not cross-link with CD16+ Vγ9Vδ2 T cells to elicit 

ADCC against breast cancer cells.  

Drozitumab-sensitive MDA-MB231-TXSA were pre-incubated with or 

without 50ng/mL drozitumab (alone or cross-linked with anti-Fc) for 15 minutes, 

followed by 24 hours co-culture with ex vivo expanded Vγ9Vδ2 T cells prior to 

MACS isolation (impure), CD16 depleted cells (CD16-), and CD16 enriched cells 

(CD16+), at a 1:1 and 5:1 E:T. After 24 hours co-culture with these cell populations, 

caspase-3 activation (A-C) and luciferase activity (D-F) to determine viable cells 

was measured. The equation used to calcuate cell viability is found in the Materials 

and Methods chapter. Data points represent a mean of n=3, and error bars indicate 

± SEM (A) or  %SEM (B).   
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7.2.3 Concurrent treatment of Vγ9Vδ2 T cells in combination with PARAs 

or chemotherapy enhances killing of cancer cells  

To determine if drozitumab could be used as an adjuvant agent with Vγ9Vδ2 

T cells, MDA-MB231-TXSA cancer cells were treated with drozitumab with or 

without anti-Fc crosslinking for 4 or 24 hours, followed by 24 hours culture with 

Vγ9Vδ2 T cells. Cells treated with drozitumab without Vγ9Vδ2 T cells did not 

show a significant decrease in cancer cell viability compared to untreated cells at 

both time points. After 4 hours, Vγ9Vδ2 T cells alone decreased viability of cancer 

cells to 76% and drozitumab showed a trend towards a slight additive effect with 

Vγ9Vδ2 T cells (66% viability) (Figure 7.4 A). In contrast, cancer cells that were 

pre-treated with drozitumab + anti-Fc had 40% viability, and this decreased further 

to 25% after culture with Vγ9Vδ2 T cells (Figure 7.4 A). After 24 hours, a similar 

trend was observed and there was a slight additive effect using the combination of 

drozitumab and Vγ9Vδ2 T cells, and after treatment with drozitumab + anti-Fc 

alone or in combination with Vγ9Vδ2 T cells, nearly 100% of cancer cells were 

killed (Figure 7.4 B). At both time points, the anti-cancer efficacy of drozitumab + 

anti-Fc in combination with Vγ9Vδ2 T cells was additive rather than synergistic.  

To determine if TRAIL could also be used as an adjuvant therapy with 

Vγ9Vδ2 T cells, MDA-MB231-TXSA cancer cells were treated with TRAIL for 4 

or 24 hours, followed by 24 hours co-culture with Vγ9Vδ2 T cells. After 4 hours 

treatment with 5ng/mL or 10ng/mL TRAIL alone, cancer cell viability was reduced 

to 91% and 79% respectively (Figure 7.4 C). Vγ9Vδ2 T cells alone reduced viability 

to 76%, however in combination with 5ng/mL or 10ng/mL TRAIL, cancer viability 

decreased to 67% and 56% respectively (Figure 7.4 C). Following 24 hours 

treatment 
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Figure 7.4 Concurrent treatment of drozitumab or TRAIL in combination with 

Vγ9Vδ2 T cells enhances killing of breast cancer cells.  

MDA-MB231-TXSA, sensitive to both TRAIL and drozitumab, were 

treated with or without 25ng/mL drozitumab (alone or cross-linked with anti-Fc) 

for A. 4 hours, or B. 24 hours, or with or without TRAIL (5 or 10ng/mL) for C. 4 

hours, or D. 24 hours. Luciferase activity to determine viable cells was measured 

after a further 24 hours co-culture with or without Vγ9Vδ2 T cells at a 5:1 E:T. The 

equation used to calculate cell viability is found in the Materials and Methods 

chapter. Unpaired two-tailed Student’s t-test was performed comparing each 

treatment group to untreated (*p<0.05, **p<0.005, ***p<0.001, non-significant 

values not shown). Data points represent a mean of n=3, and error bars indicate 

± %SEM. 
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 with 5ng/mL or 10ng/mL TRAIL, cancer cell viability was significantly reduced 

to 18% and 2% respectively (Figure 7.4 D). When cancer cells were treated with 

TRAIL then co-cultured with Vγ9Vδ2 T cells, cancer cell viability was <10% for 

both TRAIL concentrations (Figure 7.4 D). At the time points and TRAIL 

concentrations examined, the observed decrease in cancer cell viability following 

TRAIL treatment in combination with Vγ9Vδ2 T cells was purely additive. 

Doxorubicin, a chemotherapeutic drug often used to treat breast cancer can 

result in off target side effects, including cardiotoxicity [reviewed in 41]. Reducing 

the concentration of doxorubicin is one way to limit its side effects, however, this 

also decreases the therapeutic efficacy of the drug. Using low-dose chemotherapy 

in combination with immunotherapy could be a potential method of limiting 

toxicity, while maximising anti-cancer efficacy. To determine if doxorubicin could 

be used as an adjuvant therapy with Vγ9Vδ2 T cells, MDA-MB231-TXSA cancer 

cells were treated with low-dose doxorubicin for 24 hours, followed by co-culture 

with Vγ9Vδ2 T cells for 24 hours. Doxorubicin alone killed cancer cells in a dose-

dependent manner, with 23% viability at the highest dose (Figure 7.5). Vγ9Vδ2 T 

cells alone reduced cancer cell viability to 37%, but in combination with 

doxorubicin, there was an even greater decrease in cancer cell viability (Figure 7.5). 

At the highest dose of 125nM doxorubicin in combination with Vγ9Vδ2 T cells, 

<4% remained viable (Figure 7.5). However, as previously observed in 

combination with the PARAs, the anti-cancer efficacy of Vγ9Vδ2 T cells in 

combination with doxorubicin cells was only additive. 

7.3 Discussion  

Vγ9Vδ2 T cell-based immunotherapy in combination with other treatments 

is being explored as a novel approach for targeting advanced cancers. Several in
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Figure 7.5 Concurrent treatment of doxorubicin in combination with Vγ9Vδ2 T 

cells enhances killing of breast cancer cells. 

Doxorubicin-sensitive MDA-MB231-TXSA breast cancer cells were 

treated with or without doxorubicin (31, 63 and 125nM) for 24 hours, in low serum 

(0.5% FCS) media. Luciferase activity to determine viable cells was measured after 

a further 24 hours co-culture with or without Vγ9Vδ2 T cells at a 10:1 E:T. The 

equation used to calculate cell viability is found in the Materials and Methods 

chapter. Unpaired two-tailed Student’s t-test was performed comparing each 

treatment group to untreated (***p<0.001, non-significant values not shown). Data 

points represent a mean of n=3, and error bars indicate ± %SEM. 
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vitro studies have demonstrated the therapeutic potential of monoclonal antibodies 

cross-linked to CD16 on Vγ9Vδ2 T cells to elicit ADCC against solid and 

haematological malignancies [115-117]. Additionally, in clinical studies, patients 

treated with adoptive transfer of Vγ9Vδ2 T cells in combination with nBPs, 

chemotherapy, or hormonal therapy had the best outcomes [105, 126, 127], 

suggesting a multi-pronged approach is likely to be most beneficial. This study 

examined the anti-cancer efficacy of Vγ9Vδ2 T cells in combination with three 

different anti-cancer compounds; drozitumab, TRAIL, and doxorubicin. 

Drozitumab, a humanised monoclonal antibody directed against DR5, 

requires Fc cross-linking with CD16 (FcγRIIIA) to elicit ADCC against target cells 

[145]. This study has shown that drozitumab does not enhance the anti-cancer 

efficacy of CD16 enriched Vγ9Vδ2 T cells, suggesting a lack of cross-linking and 

subsequent ADCC activation. CD16 has two subtypes, FcγRIIIA and FcγRIIIB, 

which have different roles. FcγRIIIA results in activation, while the role of 

FcγRIIIB is still unclear, but may act as a decoy receptor [170]. When phenotyping 

Vγ9Vδ2 T cells in this study, a pan-specific CD16 antibody was used, therefore it 

was not possible to determine the actual levels of FcγRIIIA and FcγRIIIB. 

Additionally, pan-specific CD16 microbeads were used to enrich Vγ9Vδ2 T cells. 

If FcγRIIIB was expressed at higher levels on CD16 enriched Vγ9Vδ2 T cells, 

drozitumab binding would not induce ADCC to enhance Vγ9Vδ2 T cell 

cytotoxicity. Since no differences in the cytotoxicity between the impure, CD16 

depleted, and CD16 enriched Vγ9Vδ2 T cells were observed, this may be one 

possible reason why drozitumab did not elicit ADCC against breast cancer cells in 

these studies. Alternatively, the enrichment of TEM Vγ9Vδ2 T cells in the CD16+ 

population, which was previously described as less cytotoxic than CD16+ TERMA 
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Vγ9Vδ2 T cells [99], suggests the predominance of these cells may have 

contributed to a lack of ADCC with drozitumab. In contrast to previous studies 

which showed great success using antibodies to cross-link to Vγ9Vδ2 T cells [115-

117], this study demonstrated that attempting to cross-link drozitumab with CD16, 

a highly specialised receptor on Vγ9Vδ2 T cells to enhance cytotoxicity is unlikely 

a viable option. Several groups have also arrived at this conclusion and have 

attempted to circumvent this issue by generating antibodies with the ability to cross-

link common receptors such as CD3 or Vγ9 [171, 172]. 

To overcome the problem of using CD16 to cross-link drozitumab in this 

study, the cytotoxicity of Vγ9Vδ2 T cells as an adjuvant therapy in combination 

with anti-Fc cross-linked drozitumab was evaluated in further experiments. 

Treatment of cancer cells with drozitumab + anti-Fc, TRAIL, or doxorubicin 

followed by Vγ9Vδ2 T cells, is analogous to using chemotherapy followed by 

adoptive transfer with Vγ9Vδ2 T cells in a clinical setting. In this study, all of the 

therapies used in adjuvant with Vγ9Vδ2 T cells showed additive, but not synergistic 

anti-cancer efficacy. Previous in vitro and in vivo studies using Vγ9Vδ2 T cells in 

combination with chemotherapies had similar observations [81, 168]. In regards to 

the lack of synergy with chemotherapy, Kang et al. suggested this was due to the 

chemotherapy being toxic to Vγ9Vδ2 T cells [168]. This has implications for the 

treatment regimens to be used in pre-clinical studies. To minimise off-target 

toxicity to Vγ9Vδ2 T cells, chemotherapy and immunotherapy would need to be 

infused in separate cycles. However, the need for this would be overcome with the 

use of PARAs in combination with Vγ9Vδ2 T cells, as ex vivo expanded Vγ9Vδ2 

T cells do not express DR4 or DR5 (Supplementary Figure S1), resulting in 
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potential resistance to TRAIL and drozitumab, and a reduction in off-target toxicity 

of Vγ9Vδ2 T cells. 

Additive cytotoxicity is still of benefit as it reduces treatment dose and may 

limit adverse effects, however this is in contrast to using other compounds such as 

ZOL which can sensitises breast [82], osteosarcoma [135], glioblastoma [136], 

lymphoma [81], fibrosarcoma and lung cancer cells [78] in a synergistic manner. 

The therapies tested in this study are PARAs which target the same or converging 

apoptotic pathways as Vγ9Vδ2 T cells, possibly explaining why no synergy is 

observed. For example, PARAs target death receptors and Vγ9Vδ2 T cells 

themselves can release TRAIL and other related molecules, all which result in 

activation of the same pathways. 

For adjuvant therapies to produce a synergistic response in combination 

with Vγ9Vδ2 T cells, compounds need to increase cancer cell recognition by 

Vγ9Vδ2 T cells or sensitise therapy resistant cancer cells. For example, colon 

cancer initiating cells were sensitised to Vγ9Vδ2 T cells following chemotherapy 

pre-treatment by upregulation of death receptors (DR5 and Fas) [138], and nBPs 

sensitise cancer cells by inhibiting FPPS, resulting in IPP accumulation and 

enhanced detection by Vγ9Vδ2 T cells. Exploring other novel FPPS inhibitors may 

provide additional compounds that produce a synergistic anti-cancer response in 

combination with Vγ9Vδ2 T cells. One such compound that has been examined is 

N6-isopentenyladenosine (iPA), a novel FPPS inhibitor [173]. iPA was shown to 

inhibit growth of various cancer cells [174-176], however pre-treatment of breast 

cancer or osteosarcoma cells with iPA followed by Vγ9Vδ2 T cell co-culture did 

not result in a synergistic anti-cancer response (Supplementary Figure S2). This 
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suggests that an additive anti-cancer response remains one of the best possible 

outcomes. 

In conclusion, this in vitro study has shown that Vγ9Vδ2 T cells may 

potentially be used as an adjuvant therapy with PARAs or chemotherapy, resulting 

in significant additive anti-cancer efficacy. However, further studies are required to 

fully validate the potential of these treatment regimens in establishing protocols to 

overcome drug resistance. 
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7.4 Supplementary Figures 

Figure S1 Expanded Vγ9Vδ2 T cells do not express death receptors.  

After 7 days expansion, flow cytometric analysis was performed on fresh 

Vγ9Vδ2 T cells to examine death receptor expression. Histograms show DR4 and 

DR5 expression on the Vγ9+/CD3+ lymphocyte population, compared to an isotype 

control and MDA-MB231-TXSA breast cancer cells as a positive control. n=1.  
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Figure S2 Pre-treatment with FPPS inhibitiors sensitises cancer cells to killing by 

Vγ9Vδ2 T cells.  

A. MDA-MB231-TXSA breast cancer cells B. 143B and C. KHOS 

osteosarcoma cells were pre-treated with iPA (0, 1, 5,10 or 20µM) or ZOL (0, 10 

or 25µM) for 24 hours. Luciferase activity to determine viable cells was measured 

after co-culture with or without Vγ9Vδ2 T cells for a further 24 hours (E:T 5:1). 

The equation used to calculate cell viability is found in the Materials and Methods 

chapter. Data points represent a mean of n=3, and error bars indicate ± %SEM.  
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Chapter 8 

Discussion, Future Directions and Conclusion
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8.1 Discussion 

In recent years, adoptive transfer of ex vivo expanded cytotoxic Vγ9Vδ2 T 

cells has emerged as a novel immunotherapeutic approach for the treatment of solid 

and haematological malignancies. However, its clinical utility has been limited due 

to the wide variation in anti-cancer efficacy, especially in early phase clinical trials 

for the treatment of advanced tumours. This suggests that combinatorial approaches 

which provide additive or synergistic actions require optimisation for increased 

efficacy.  

It is well established that nBPs potentiate the anti-cancer efficacy of Vγ9Vδ2 

T cells both in vitro and in pre-clinical settings. Since nBPs preferentially localise 

to the bone, an elegant approach for targeting cancers in the bone has emerged. It 

has been hypothesised that treatment with nBPs such as ZOL followed by adoptive 

transfer of Vγ9Vδ2 T cells, may potentially sensitise cancer cells in the bone 

microenvironment to Vγ9Vδ2 T cell cytotoxicity [156]. Using ZOL as a means to 

sensitise cancer cells in the bone to Vγ9Vδ2 T cells may prove a more amicable 

approach compared to targeting soft-tissue tumours due to the preferential 

pharmacological distribution of ZOL to the bone. Additionally, as osteoclasts are 

the primary target of ZOL in the bone, this treatment regimen would also inhibit 

the ‘vicious cycle’ of abnormal osteoclast-mediated bone resorption associated 

with osteolytic tumours. However, this hypothesis has not yet been examined in an 

appropriate pre-clinical model.  

To test this hypothesis, two cancer models were studied. Osteolytic 

osteosarcoma and breast cancer bone metastases are two cancers that affect the 

bone, resulting in abnormal osteoclast-mediated bone resorption that perpetuates 

the ‘vicious cycle’ of cancer growth and bone degradation. In the last few decades, 
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survival rates for osteosarcoma have plateaued, while patients with advanced breast 

cancer only have palliative care available. This indicates an urgent need for novel 

therapies which target both tumour growth in the bone and tumour-associated bone 

degradation. For the first time, the studies in this thesis have examined the anti-

cancer efficacy of Vγ9Vδ2 T cells in combination with ZOL against osteolytic 

cancers using clinically relevant animal models of osteosarcoma and metastatic 

breast cancer. These studies also examined the potential benefit of combinatorial 

approaches of using Vγ9Vδ2 T cell adoptive transfer with other adjuvant treatments 

including drozitumab, TRAIL, and doxorubicin. 

Vγ9Vδ2 T cells are cytotoxic against a wide variety of cancer types; however 

efficacy can be variable [75, 76, 78-80, 82, 98, 111, 157]. In this study, ex vivo 

expanded Vγ9Vδ2 T cells alone induced cell death in the osteolytic breast cancer 

cell line MDA-MB231-TXSA, but showed limited cytotoxicity against other 

cancer cell lines (Chapters 3, 4 and 5). Differences in sensitivity to Vγ9Vδ2 T cell 

mediated cytotoxicity was previously reported [82, 112]. Although this current 

study does not explore potential mechanisms of resistance, it must be noted that 

Vγ9Vδ2 T cells engage various mechanisms to kill target cells, and resistance can 

therefore be multi-faceted. For example, downregulation of MICA/B, the ligand for 

NKG2D, only partially contributes to cancer cell resistance to Vγ9Vδ2 T cell 

cytotoxicity [112]. Other mechanisms may include down-regulation of DR4/DR5 

expression, which may also inhibit cell death induced by TRAIL produced by 

Vγ9Vδ2 T cells [98]. Additionally, as further studies explore the role of BTN 

receptors in the recognition of target cells by Vγ9Vδ2 T cells [88], endogenous 

levels of BTN receptor expression, downregulation, or mutation of BTN on target 

cells may also play a role in the differential sensitivity to Vγ9Vδ2 T cells. 
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While early phase clinical trials have shown Vγ9Vδ2 T cell therapy to be 

safe, as a monotherapy, the anti-cancer efficacy of this approach, especially against 

advanced tumours has been underwhelming and due to its limited clinical utility, 

requires further improvement. Several factors contribute to the failure of Vγ9Vδ2 

T cell immunotherapy in clinic. These include the rapid depletion of Vγ9Vδ2 T 

cells following chronic intravenous nBP treatment, which potentially results in a 

decrease of Vγ9Vδ2 T cells available for localisation to the tumour site. Therefore, 

current studies are focused on enhancing Vγ9Vδ2 T cell cytotoxicity and currently, 

nBP pre-treatment is one approach proven to sensitise various cancer cells to killing 

by Vγ9Vδ2 T cells [78, 81, 82, 135, 136]. In this current study, most of the cancer 

cell lines examined, including the osteolytic osteosarcoma (143B) and breast cancer 

(MDA-MB231-TXSA) cell lines, were highly sensitised to Vγ9Vδ2 T cells 

following ZOL pre-treatment (Chapters 3, 4 and 5). Interestingly, there were 

differences in sensitivity to Vγ9Vδ2 T cell cytotoxicity following ZOL pre-

treatment. These observed differences may be related to differences in cellular 

uptake of nBPs and thus differences in the inhibition of the mevalonate pathway 

and the subsequent accumulation of PAgs [82, 177]. 

Exploiting the anti-cancer efficacy of Vγ9Vδ2 T cells and the anti-bone 

resorptive effects of ZOL may be an elegant two-pronged approach to sensitise 

cancers in the bone to Vγ9Vδ2 T cells [156]. For the first time, the studies outlined 

in this thesis examined this treatment approach in pre-clinical models of osteolytic 

osteosarcoma and breast cancer. 

For Vγ9Vδ2 T cells to exhibit anti-cancer efficacy, they must first localise to 

the tumour site. Previous studies have shown that Vγ9Vδ2 T cells localise to solid 

tumours in soft tissues [77, 162, 178], however none have examined localisation to 
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lesions in the bone. For the first time, the studies in this thesis demonstrated that 

intravenously infused Vγ9Vδ2 T cells rapidly co-localised within established 

tumour lesions in bone (Chapters 4 and 5). The pilot studies using the osteolytic 

breast cancer model described in this thesis revealed that a single infusion of 

Vγ9Vδ2 T cells alone transiently decreased tumour burden in the tibia (Chapter 3), 

however multiple administrations of Vγ9Vδ2 T cells were required to produce 

sustained anti-cancer efficacy (Chapter 3 and 4). These observations are consistent 

with the pre-clinical studies assessing Vγ9Vδ2 T cell anti-cancer efficacy against 

solid tumours [76-78, 111, 161, 162] 

Multiple infusions of Vγ9Vδ2 T cells were therefore examined in both the 

osteolytic osteosarcoma and breast cancer models. Interestingly, while multiple 

infusions of Vγ9Vδ2 T cells alone reduced tumour burden in the osteolytic breast 

cancer model, they had no effect on tumour burden in the osteosarcoma model. 

Intrinsic differences between these two cancers may account for this observation. 

Indeed, and as previously discussed, the osteosarcoma cell line was less sensitive 

to Vγ9Vδ2 T cell mediated killing compared to the osteolytic breast cancer cell line 

when tested in vitro.  

As shown in vitro, ZOL sensitised both osteosarcoma and breast cancer cells 

to Vγ9Vδ2 T cell cytotoxicity, therefore the pilot study assessed the anti-cancer 

efficacy of Vγ9Vδ2 T cells in combination with metronomic doses of ZOL (ZOL-

M). In contrast to in vitro observations, ZOL-M failed to potentiate Vγ9Vδ2 T cell 

anti-cancer efficacy (Chapter 3). This observation was also contrary to other pre-

clinical studies which showed enhanced Vγ9Vδ2 T cell anti-cancer efficacy 

following nBP treatment in other solid tumour models [76-78] Although different 

nBPs were used in these studies, they were administrated at the conventional dose, 
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compared to the metronomic dosing regimen used for ZOL in this pilot study 

(Chapter 3). Therefore, to examine if a higher ZOL dose could enhance Vγ9Vδ2 T 

cell in vivo efficacy, further studies in this thesis examined multiple administrations 

of ZOL at the conventional dose (ZOL-XC) in combination with Vγ9Vδ2 T cells. 

Multiple administrations of Vγ9Vδ2 T cells in combination with ZOL given 

at the conventional dose potentiated the anti-cancer efficacy of Vγ9Vδ2 T cells in 

both the osteolytic breast cancer and osteosarcoma model (Chapter 4 and 5). While 

this is an important finding, the mechanism of how ZOL sensitises cancer cells to 

Vγ9Vδ2 T cells in vivo is currently unclear. While it was proposed that circulating 

nBPs may be internalised by cancer cells, resulting in IPP accumulation thereby 

leading to increased cancer cell recognition by Vγ9Vδ2 T cells, to-date no such 

evidence exists.  Although many cell types readily uptake nBPs in vitro, including 

osteoclasts and cancer cells [177], in vivo observations by Junankar et al showed 

that in the mammary fat pad, fluorescently labelled nBPs were elegantly shown to 

be internalised by TAMs and not by cancer cells [179]. From the in vivo 

observations in this study a new hypothesis was proposed stating that following 

ZOL internalisation by TAMs, there is a release of chemotactic factors which may 

increase Vγ9Vδ2 T cell recruitment to the tumour microenvironment, thereby 

increasing Vγ9Vδ2 T cell availability at the tumour site while enhancing anti-

cancer efficacy. In this context, it was shown that Mycobacterium Tuberculosis 

pulsed macrophages (which would produce IPP), release monocyte 

chemoattractant protein-1 (MCP-1) and IL-8 which promotes chemotaxis of γδ T 

cells in vitro [180]. Additionally, activated TEM Vγ9Vδ2 T cells express many 

chemokine receptors necessary for migration, including CCR2, the receptor for 

MCP-1 [104]. This current study showed that in ZOL pre-treated animals, 
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adoptively transferred Vγ9Vδ2 T cells (predominately TCM and TEM) localised to 

the tumour mass within 20 minutes, compared to untreated animals which showed 

no Vγ9Vδ2 T cell localisation at this time point (Chapter 5). Additionally, ZOL 

pre-treated animals showed a higher signal of fluorescently labelled Vγ9Vδ2 T cells 

localising to the tumour mass after 24 hours (Chapter 5). Although this data is 

purely observational, it supports the proposed hypothesis. Nonetheless, further 

studies are required to determine if ZOL is sufficient for TAMs to enhance the anti-

cancer efficacy of Vγ9Vδ2 T cells in vivo, and to fully examine the in vitro and in 

vivo migration of Vγ9Vδ2 T cells to ZOL pulsed macrophages and to identify 

potential chemokines and receptors responsible.  

In addition to exhibiting anti-cancer efficacy against tumours in the bone, 

Vγ9Vδ2 T cells also reduced the incidence and tumour burden of lung metastases 

in both cancer models (Chapter 4 and 5). This observed decrease in lung metastases 

is consistent with similar observations in both pre-clinical and early phase clinical 

trials [97, 178, 181]. In a study by Liu et al. spontaneous lung metastases in a 

murine model of prostate cancer were reduced with γδ T cell treatment [178]. 

Additionally, in two early phase clinical trials, some patients exhibiting metastatic 

lung lesions from advanced renal cell carcinoma showed decreased growth rate of 

these lesions and no new lesions detected following Vγ9Vδ2 T cell treatment [97, 

181]. It is currently unknown whether Vγ9Vδ2 T cells can directly target cancer 

cells in the lung, or if infused Vγ9Vδ2 T cells instead target disseminated cancer 

cells prior to lodging in the lung. This study showed that fluorescently labelled 

Vγ9Vδ2 T cells can be detected in the lungs up to three days following adoptive 

transfer (Chapter 5), suggesting they are present in the lungs. However, as Vγ9Vδ2 

T cells can undergo AICD following FasL engagement [79], which is constitutively 
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expressed in the lungs [182], this could limit their cytotoxicity at this site. 

Therefore, it may be more likely that circulating Vγ9Vδ2 T cells are targeting 

disseminated cancer cells prior to lodging instead. However, as exact mechanisms 

are still unclear, further studies are necessary to interrogate this process.  

While ZOL enhanced Vγ9Vδ2 T cell anti-cancer efficacy against tumours 

in the bone, the combination had no additive effect on lung metastases, suggesting 

the reduction in the incidence and tumour burden was due to Vγ9Vδ2 T cells alone. 

Since nBPs predominately localise to the bone and are rapidly cleared from soft 

tissue [183], it is unlikely that ZOL would accumulate in the lungs to potentiate the 

anti-cancer efficacy of Vγ9Vδ2 T cells in that environment.  

ZOL is a well-characterised anti-bone resorptive agent, however in vitro it 

is also reported to exhibit a range of anti-cancer effects by inducing cell death, 

inhibiting proliferation, invasion, and angiogenesis in a variety of cancer cell lines 

[57-62]. While pre-clinical studies have been numerous, they are often 

contradictory, therefore the in vivo anti-cancer efficacy of ZOL remains unclear. 

For example, some pre-clinical studies have found ZOL treatment reduced primary 

tumour growth and inhibited further metastases [63-66], in contrast to other studies 

where ZOL had no effect [67, 68]. Multiple mechanisms have been proposed by 

which ZOL may exert anti-cancer efficacy in vivo, including direct induction of 

cancer cell death, indirectly, by inhibiting modulating processes such as 

angiogenesis, interfering with the ‘vicious cycle’, and by targeting other cell types 

that may either enhance or inhibit tumour growth [57-62]. However, in this current 

study ZOL had no effect on tumour growth in either the osteolytic osteosarcoma or 

breast cancer model (Chapter 3, 4, 5). Although ZOL alone did not demonstrate 

anti-cancer efficacy, it did fulfil its role as a bone anti-resorptive agent and reduced 
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tumour-associated osteolysis in both cancer models. This did not translate to a 

decrease in tumour burden, suggesting that in these models osteoclast inhibition 

alone is not sufficient to inhibit cancer cell growth. These findings are in line with 

previous observations from this laboratory [67, 68].  

Although the anti-cancer efficacy of Vγ9Vδ2 T cell adoptive transfer has 

been examined in early-phase clinical trials for the treatment of advanced cancer, 

little is known about the role Vγ9Vδ2 T cells may play on bone. Previous studies 

have implicated the depletion of γδ T cells in osteoporotic patients to be associated 

with BAONJ [73]. Therefore, to examine the potential effect Vγ9Vδ2 T cell 

immunotherapy may have on bone, the bone volume of tumour-bearing and non-

tumour bearing tibias were compared between untreated animals and those treated 

with Vγ9Vδ2 T cells. In the osteolytic breast cancer model, there was a small trend 

showing increased total and trabecular bone volume, in both the tumour and non-

tumour bearing tibias (Chapter 6). In contrast, both tibias in the osteosarcoma 

model showed decreased total and trabecular bone volume (Chapter 6). In both 

cancer models, localisation studies revealed that Vγ9Vδ2 T cells did not migrate to 

the non-tumour bearing tibia, therefore the bone modulating effect observed on 

control bone is unexpected. However, as Vγ9Vδ2 T cells changed bone volume in 

both the tumour bearing and non-tumour bearing tibias, this suggests that 

systematic factors may be responsible for modulating bone homeostasis at distant 

sites. Although the differences in bone volume between untreated animals and those 

infused with Vγ9Vδ2 T cells was subtle, contrasting effects on net bone volume 

were observed between the two cancer models. Under certain conditions, γδ T cells 

are able to produce factors which may either promote bone remodelling or bone 

formation [150-153]. Potentially, the observed differences between the two cancer 
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models may arise from the types of factors produced by Vγ9Vδ2 T cells in the 

tumour microenvironment. This suggests that that cross-talk between different 

types of cancer cells, the bone microenvironment, and Vγ9Vδ2 T cells will 

ultimately play a role in determining the effect Vγ9Vδ2 T cell adoptive transfer will 

have on net bone volume.  

These studies are some of the first to examine the effect of Vγ9Vδ2 T cells 

on bone. However, the limitation here is that human Vγ9Vδ2 T cells were infused 

into a mouse system, and therefore difficult to assess the translatability in human 

patients. Until bone parameters are measured in human clinical studies, it will be 

difficult to definitively conclude the effect Vγ9Vδ2 T cell adoptive transfer will 

have on bone homeostasis in humans. 

While it has been well-established that ZOL sensitises a variety of cancer 

cells to killing by Vγ9Vδ2 T cells, the effect this treatment has on normal bone cells 

and overall bone homeostasis is currently unclear. To assess the effect Vγ9Vδ2 T 

cell immunotherapy in combination with ZOL would have on bone, in the context 

of osteolytic cancer, the tumour-bearing tibias from all treatment groups were 

compared to determine which treatment regimen provided the best protection from 

osteolytic lesions. In the osteolytic breast cancer model, ZOL in combination with 

Vγ9Vδ2 T cells resulted in the greatest total and trabecular bone volume from all 

treatment groups, however the observed effects were purely additive of ZOL and 

Vγ9Vδ2 T cell treatments alone (Chapter 4). Similarly, in the osteosarcoma model, 

the combination treatment resulted in the greatest total and trabecular bone volume, 

to the extent where the bone parameters of the tumour-bearing tibia in this treatment 

group did not differ from the contralateral normal control tibia (Chapter 5). This 
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was a significant finding as it implies that the combination treatment has a two-

pronged effect: it reduces tumour-burden and protects the bone from osteolysis.  

The studies outlined in this thesis have shown that ZOL potentiates the anti-

cancer efficacy of Vγ9Vδ2 T cells against osteolytic cancers. However, as this 

treatment regimen does not completely eradicate the tumour, combinatorial 

approaches are required. To address this need, this current study also briefly 

examined the use of PARAs (drozitumab and TRAIL) and chemotherapy 

(doxorubicin) as adjuvant therapies with Vγ9Vδ2 T cells in vitro. Vγ9Vδ2 T cells 

are known to express CD16, an Fc receptor which mediates ADCC. While previous 

studies have shown that antibodies can enhance the anti-cancer efficacy CD16+ 

Vγ9Vδ2 T cells [115, 116], drozitumab failed to increase Vγ9Vδ2 T cell 

cytotoxicity, suggesting cross-linking did not occur. While cross-linked 

drozitumab, TRAIL, and doxorubicin in combination with Vγ9Vδ2 T cells all 

showed enhanced cytotoxicity against cancer cells in vitro, this was purely additive. 

Regardless, an additive increase in cytotoxicity may be clinically relevant, therefore 

further studies are required to assess the anti-cancer efficacy of drozitumab, 

TRAIL, and doxorubicin in pre-clinical studies. 

8.2 Future Directions 

While the studies outlined in this thesis provide new insights in the field of 

Vγ9Vδ2 T cell immunotherapy, further studies are required to optimise treatment 

that will be clinically beneficial. 

8.2.1 Vγ9Vδ2 T cell immunotherapy for other cancers in the bone 

Osteolytic osteosarcoma and bone metastases arising from breast cancer are 

not the only cancer types that affect the bone. Multiple myeloma is the most 
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frequent primary malignancy of the skeleton, forming osteolytic lesions [1]. 

Conversely, the majority of osteosarcomas and bone metastases from prostate 

cancer result in predominately osteoblastic or mixed lesions [1, 12] Studies have 

shown that all of these cancers are sensitised to Vγ9Vδ2 T cell cytotoxicity 

following ZOL pre-treatment in vitro [77, 80, 135, 184]. Vγ9Vδ2 T cell 

immunotherapy appears more efficacious in patients with haematological 

malignancies [185, 186], and nBPs reduce SREs in multiple myeloma patients [187, 

188]. It is therefore reasonable to suggest that in a pre-clinical model of multiple 

myeloma, ZOL in combination with Vγ9Vδ2 T cells would respond in a similar 

fashion to osteolytic osteosarcoma and osteolytic breast cancer lesions, and may 

reduce tumour burden and inhibit bone degradation. Conversely, as osteoblastic 

and mixed lesions behave differently in vivo compared to osteolytic lesions it may 

be more difficult to predict the effect ZOL in combination with Vγ9Vδ2 T cells 

may have on these tumour types. Previous studies have shown that nBPs inhibits 

SREs in osteosarcoma and inhibit both osteoblastic and osteolytic lesions in 

metastatic hormone-refectory prostate cancer (HRPC) patients [50, 51, 189]. 

Vγ9Vδ2 T cell therapy has also been assessed in patients with HRPC [123], and 

although clinical trials are yet to be conducted in osteosarcoma patients, many have 

examined solid tumour patients with bone metastases [105, 126]. Additionally, this 

current study has demonstrated that multiple infusions of Vγ9Vδ2 T cells in 

combination with multiple administrations of ZOL are effective at reducing tumour 

burden and bone degradation in an osteolytic osteosarcoma model (Chapter 5) and 

a previous study has shown that a similar treatment regimen is effective at reducing 

tumour burden in a pre-clinical model of prostate cancer [77]. Together, this 

suggests that ZOL would potentiate the anti-cancer efficacy of Vγ9Vδ2 T cells 
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against other cancers in the bone. However, further pre-clinical studies are still 

required to confirm this and to examine the effect treatments have on abnormal 

bone remodelling and disease progression. 

8.2.2 Improving pre-clinical models 

It is well established that Vγ9Vδ2 T cell cytotoxicity is partially dependent 

on immune system activation as demonstrated by their ability to produce potent 

cytokines such as IFN-γ and TNF-α. Therefore, it is important to study the anti-

cancer efficacy of Vγ9Vδ2 T cells within the context of an intact immune system. 

Currently in the literature the majority of studies assessing adoptive transfer of 

Vγ9Vδ2 T cells use athymic (nude), NOD/SCID, or NOD/SCID gamma (NSG) 

pre-clinical models. The studies in this thesis used NOD/SCID mice as they are 

superior to nude mice due to impaired murine T cell (including γδ T cell) and B 

cell development, and NK cell deficiency. Normally NOD/SCID mice are highly 

suitable for studying tumour biology as they lack an intact immune system and will 

not reject tumour xenografts, however they are not ideal for examining the 

downstream immune-modulating effects of Vγ9Vδ2 T cells. An ideal pre-clinical 

model for Vγ9Vδ2 T cell immunotherapy would be to use humanised mouse model, 

such as NOD/SCD gamma (NSG) inoculated with cancer cells and human 

peripheral blood (with appropriate growth factors) to mimic an intact human 

immune system. Future experiments using pre-clinical models with an intact 

immune system could provide a better understanding of the anti-cancer efficacy of 

Vγ9Vδ2 T cells in these bone cancer models 

8.2.3 Enhancing Vγ9Vδ2 T cell adoptive transfer 

Although the studies in this thesis have shown that ZOL potentiates the anti-

cancer efficacy of Vγ9Vδ2 T cells, some limitations exist. Currently, one of the 
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major obstacles contributing to the failure of Vγ9Vδ2 T cell immunotherapy in 

clinic has been the in vivo depletion of Vγ9Vδ2 T cells following intravenous nBP 

treatment of osteoporotic and cancer patients [73, 122-124, 128]. As a potential 

method to overcome this, short culture periods were used in this study to ensure a 

combination of proliferative TCM and cytotoxic TEM Vγ9Vδ2 T cells would be 

available for infusion following ZOL administration in the pre-clinical models of 

osteolytic cancer. This would allow TEM Vγ9Vδ2 T cells to immediately target 

cancer cells and for the TCM Vγ9Vδ2 T cells to undergo further in vivo proliferation 

in response to exogenous rhIL-2 supplementation to prolong anti-cancer efficacy. 

While this study showed promise in the pre-clinical models, due to the depletion of 

Vγ9Vδ2 T cells in some early phase clinical trials, this treatment regimen may still 

not show clinical efficacy. Until recently, it was believed that depletion of Vγ9Vδ2 

T cells was due to AICD and while this may partially be the case, Kalyan et al. 

suggested an alternative theory [167]. The authors showed that in culture, 

neutrophils uptake nBPs resulting in the release of reactive oxygen species (ROS) 

which inhibit Vγ9Vδ2 T cell proliferation and activation [167]. This could be 

reversed following treatment with enzymes which deplete hydrogen peroxide 

[167]. While this has yet to be examined in vivo, in a small clinical study in patients 

with gastric ascites, the authors observed neutrophil recruitment to the peritoneal 

cavity following ZOL administration [128]. Interestingly, the majority of patients 

showed a decrease in Vγ9Vδ2 T cells 7 days after adoptive transfer [128]. While 

the authors did not propose a link between neutrophil recruitment and a decline in 

Vγ9Vδ2 T cells, this observation provides some evidence that neutrophils may 

indeed regulate Vγ9Vδ2 T cells in vivo. This suggests that targeting ROS produced 

by neutrophils with antioxidant drugs such as N-acetylcysteine [190, 191], may 
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allow further in vivo proliferation of transferred TCM Vγ9Vδ2 T cells and as a result, 

enhanced Vγ9Vδ2 T cell anti-cancer efficacy. 

8.2.4 Localised delivery  

Another alternative method to improve Vγ9Vδ2 T cell anti-cancer efficacy 

is to use directed localised delivery to increase the number of Vγ9Vδ2 T cells 

available directly at the tumour site. Recently, Stephan et al. elegantly demonstrated 

that scaffolds loaded with tumour reactive T cells were more effective at reducing 

tumour reoccurrence, compared to adoptive transfer of the same T cells [192]. 

Scaffolds can also contain growth factors that prolong Vγ9Vδ2 T cell viability and 

proliferation, such as IL-2, IL-15 [193], and IL-33[194], and are biodegradable, 

eliminating the need to remove them following treatment. In addition to delivering 

cells, scaffolds can be engineered to interact strongly with some drugs, and weakly 

with others, to allow successive drug release. This could be used for the localised 

release of ZOL to sensitise cancer cells to Vγ9Vδ2 T cells or the successive release 

of chemotherapeutic drugs as an adjuvant therapy following Vγ9Vδ2 T cell release. 

A potential application of this system could be for the treatment of brain 

tumours, such as glioblastoma multiform (GBM), which is notoriously difficult to 

treat using conventional chemotherapies as drugs typically cannot pass the blood-

brain barrier (BBB). Also, tumour resection surgery is difficult as small margins 

are required to minimise damage to normal brain tissue, but this can increase the 

likelihood of leaving behind residual tumour cells. For this reason, biodegradable 

carmustine-loaded wafers (Gliadel®) have been FDA approved for use following 

brain tumour resection, so the adjuvant chemotherapy bypasses the BBB and acts 

directly on residual tumour cells [reviwed in 195]. Vγ9Vδ2 T cells in combination 

with ZOL have been shown to kill glioblastoma cells in vitro [136], and in vivo 
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[196] when injected directly into the tumour site. Combining these approaches with 

Vγ9Vδ2 T cell loaded scaffolds could be used in a similar manner to eliminate 

residual cancer cells, while bypassing the BBB. This system could also be used for 

the treatment of osteosarcoma and primary breast cancer, which are also commonly 

treated using surgery. Chemotherapy and Vγ9Vδ2 T cell loaded scaffolds could be 

used following tumour resection with narrower margins, which would minimise the 

need for limb amputation or mastectomy, while potentially improving efficacy. At 

the time of writing this thesis, this laboratory has conducted preliminary 

experiments using Vγ9Vδ2 T cells in hydrogels and others scaffolds for the 

localised cancer therapy. Results from these preliminary studies have shown that 

Vγ9Vδ2 T cells are released from hydrogels and scaffolds, and they are as cytotoxic 

as free Vγ9Vδ2 T cells against breast cancer cells in vitro (Kaur and Zysk, 

unpublished data). Preclinical studies evaluating the potential use of Vγ9Vδ2 T 

cells embedded in injectable hydrogels for the treatment of localised cancer are well 

in progress and showing great promise. 

8.2.5 Novel antibodies to enhance anti-cancer efficacy 

Recently, novel bispecific and tribody antibodies have been designed to 

enhance Vγ9Vδ2 T cell cytotoxicity. A bispecific antibody which has been 

developed binds Her-2, commonly over-expressed on a variety of cancer cells 

including breast and pancreatic cancer, and CD3 or Vγ9, allowing binding to 

Vγ9Vδ2 T cells or CD8+ CTLs [171]. This bispecific antibody has been shown to 

enhance the anti-cancer efficacy of Vγ9Vδ2 T cells against pancreatic ductal 

adenocarcinoma cells in vitro and in vivo [171]. In addition to targeting Her-2, the 

tribody also has two additional Vγ9 TCR binding sites, further enhancing 

cytotoxicity [172]. By modifying existing antibodies such as trastuzumab, 
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rixitumab, or drozitumab to include CD3 or Vγ9 portions could significantly improve 

the cytotoxicity of antibodies. 

8.3 Conclusion 

Collectively, the studies presented in this thesis demonstrate that adoptive 

transfer of ex vivo expanded Vγ9Vδ2 T cells in combination with ZOL is an 

effective two-pronged approach for targeting osteolytic cancer. These studies 

suggest this treatment regimen would be beneficial in reducing tumour growth in 

bone and tumour-associated osteolysis, while also limiting the potential for 

metastatic spread in osteosarcoma and advanced breast cancer patients. While these 

new insights into the field of Vγ9Vδ2 T cell immunotherapy have been highly 

encouraging, further studies particularly those focused on localised Vγ9Vδ2 T cell 

delivery and combinational therapies, are required to optimise a treatment regimen 

that achieves maximal anti-cancer efficacy. 
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