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Abstract: This paper presents a new method for determining the third-order elastic constants 

(TOECs) of an isotropic material utilising the acoustoelastic effect associated with Rayleigh 

waves. It is demonstrated that the accuracy of the evaluation of TOECs can be substantially 

improved by supplementing the classical equations of acoustoelasticity, which describe the 

effect of applied stress on bulk wave speeds, with the nonlinear characteristic equation for the 

propagation of Rayleigh waves in pre-stressed media.  

The developed method is applied to the experimental evaluation of the TOECs of an 

Aluminium alloy and the measured values are found to compare favourably with previously 

reported results obtained using bulk waves. The observed discrepancies can be explained by 

the anisotropy and non-homogeneity of the tested sample, specifically near the surface, which 

affect the Rayleigh wave propagation. The developed method can be readily implemented for 

Structural Health Monitoring applications; for example, the measurement of applied stresses 

based on the acoustoelastic effect, or the monitoring of near-surface damage based on the 

change in magnitude of the TOECs.   



Keywords: Acoustoelasticity; Rayleigh waves; Material properties; Murnaghan constants; 

Stress measurement. 

1. Introduction 

In classical linear elasticity, the stress-strain response of an isotropic material is fully described 

by two second-order elastic constants. However, several experimentally observed phenomena, 

such as the variation of wave speeds with applied loading [1-4] or changes in compressibility 

with hydrostatic pressure [5-9], need consideration of the so-called third order elastic constants 

(TOECs). These constants arise in the expansion of the elastic strain energy density function 

and account for the contribution of the third-order products of the strain components. For an 

isotropic material, it can be shown that, in addition to the two second-order elastic constants, 

there are three independent third-order elastic constants corresponding to the third-order terms 

in the power series expansion of the strain energy density [10]. Various definitions of these 

constants were suggested by Brillouin [11], Biot [12,13], Landau & Lifshitz [14] and others 

[15-18].  

TOECs play an important role in various engineering applications; for example, the 

evaluation of applied or residual stresses based on the acoustoelastic theory, which describes 

the propagation of small-amplitude waves in a material subjected to finite deformations 

[19,20]. Another important recent development exploits the much greater sensitivity of TOECs 

as compared with second-order elastic constants to dislocation driven damage (fatigue, creep, 

etc) [21-23]. This effect motivated the development of experimental techniques, such as second 

and higher harmonic generation to evaluate the so-called early damage [24-27], i.e. damage 

accumulated prior to the formation of a propagating crack. However, these experimental 

techniques often require highly accurate measurements of the TOECs to allow for quantitative 

damage identification.  



TOECs are typically evaluated by measuring the change in bulk wave speeds with 

applied stress and fitting the measured values into the analytical equations of the acoustoelastic 

theory [28-30]. However, these measurements are still very challenging, and a large scatter is 

normally reported. A high frequency signal (toneburst) in the MHz range is normally employed 

in conjunction with a high sampling frequency of the data acquisition system to achieve a good 

temporal resolution in the wave speed measurements. However, the excitation frequency is 

restricted by certain natural limitations; for example, the wavelength (or the central frequency 

of the toneburst) is limited by the size of the surface asperities or the material texture, which 

can affect the measurements. However, it seems that spatial resolution has a greater effect on 

the accuracy of the evaluation of TOECs with bulk waves, specifically for slender structures, 

or small measurement gauge lengths. A significant improvement in the accuracy has been 

achieved with non-contact measurement techniques, such as laser interferometry. However, the 

reported values still have a large scatter; this might not be satisfactory for damage evaluation, 

especially in the case of fatigue damage, where the change in the TOECs are expected to be 

within 10 - 20% during the whole fatigue life.  

An improvement in the evaluation of TOECs can be achieved using guided waves, which 

can propagate over large distances without significant attenuation. The advantage of using 

guided waves includes the possibility of an increased gauge length and hence, an expected 

improvement in the spatial resolution [31]. Another advantage is the possibility of utilising 

different types or modes of guided waves, which are known to be more sensitive to applied 

stresses as compared to bulk waves, specifically near the cut-off frequencies [32]. On the other 

hand, the main disadvantage of using guided waves is that it requires complex signal processing 

techniques due to the dependence of the guided wave speeds on the frequency (dispersion) and 

the excitation of multiple modes, which is inevitable in all guided wave excitation methods. 



The present paper investigates the use of Rayleigh waves in conjunction with bulk waves 

for the evaluation of TOECs. Rayleigh waves are a type of non-dispersive guided waves that 

propagate near the surface of thick structures. The penetration depth of these surface waves 

depends on the excitation frequency; this phenomenon can potentially be utilised for 

tomography of damage or stress but this is beyond the scope of the current study. The structure 

of this paper is as follows. In the next section, the acoustoelastic theory and the governing 

equations for bulk waves and Rayleigh waves are reviewed. This set of analytical equations 

forms the theoretical foundation for different methods of evaluating the TOECs. The accuracy 

of these methods is investigated using Monte-Carlo simulations, taking into account various 

types of probabilistic distributions of the wave speed measurements. Further, an example of 

actual measurements, including the experimental set-up and signal processing methodology, is 

presented, followed by a discussion of the outcomes of the theoretical study as well as the 

experimental measurements. The main outcomes of this paper are briefly summarised in the 

conclusion.  

2. Review of governing equations of acoustoelasticity 

The governing equations of acoustoelasticity are briefly recapped here following Ogden et al. 

[33]. The equations for incremental motions due to the propagation of small-amplitude elastic 

waves as well as the incremental constitutive equation for a homogeneously deformed medium, 

can be written as: 

 (1) 

and  



 (2)

respectively, where  is the fourth-order tensor of instantaneous elastic moduli,  is the density 

of the material in the deformed configuration,  is the incremental displacement vector 

associated with the wave,  is the position vector in the deformed configuration,  is the time 

and  is the incremental nominal stress tensor. The reader is referred to [34] for the derivation 

of the above equations. 

The strain energy function commonly used to evaluate the acoustoelastic effect in 

engineering materials subjected to a small pre-stress is due to Murnaghan [15] and is given by 

 (3)

where  are the principal invariants of the Green-Lagrange strain tensor , given by 

 and , respectively. The parameters  and  are the classical 

Lamé elastic constants and  are the Murnaghan or third-order elastic constants. Using 

the above strain energy function, the elasticity tensor can be obtained to the first order in the 

strain as [35] 

 

(4)



where  and . 

For the experimental determination of TOECs, the test specimen is generally subjected 

to a static uniaxial stress state due to the simplicity of the loading apparatus. For a small applied 

uniaxial stress  in the  direction, the components of the strain tensor  can be evaluated 

using the linear elasticity theory as follows: 

 (5)

where  is the bulk modulus. The expression for the Jacobian of the deformation 

then reduces to  

 (6)

2.1.   Bulk waves 

Hughes and Kelly [1] first obtained the expressions for the stress-dependent speeds of bulk 

waves propagating along the principal directions, i.e. along the direction  of the uniaxial 

stress, and along the mutually perpendicular directions,  and , which are equivalent by 

symmetry. Following Abiza et al. [36] and Hughes and Kelly [1], the expressions for the speed 

of these principal waves can be written in terms of the components of the elasticity tensor  

as follows: 

 (7)

 (8)



 (9)

 (10)

 (11)

where  is the density of the material in the undeformed or unstressed configuration, 

and the applied uniaxial stress  is positive in tension. The elastic moduli  can be 

evaluated by substituting Eq. (5) into Eq. (4). The speeds  and  in Eqs. (7) and (8) 

correspond to longitudinal and transverse waves respectively, propagating along the direction 

 of the applied uniaxial stress. In Eq. (9),  is the speed of the longitudinal wave 

propagating along the direction , which is perpendicular to the applied uniaxial stress. In 

Eqs. (10) and (11),  and  correspond to the speeds of transverse waves propagating along 

the direction  and polarised in the directions  and , respectively. 

2.2. Rayleigh-Lamb waves 

Mohabuth et al. [32] obtained the characteristic equations describing the acoustoelastic effect 

for plane Lamb wave propagation in pre-stressed plates along the principal direction of the 

applied uniaxial stress. The main steps in the derivation of these characteristic equations are 

provided in Appendix A. By considering the limit of the plate-thickness tending to infinity, the 

characteristic equations for Lamb wave propagation can be reduced to the equation governing 

the acoustoelastic effect for Rayleigh waves. This special case was first investigated by 

Dowaikh and Ogden [37] and the form of their original equation can be recovered by 

substituting Eqs. (A8) and (A10) into Eq. (A9), replacing  by  and recalling that , 

as follows: 



 

(12)

The stress-dependent elastic moduli , ,  and  in the above equation 

have been defined previously in Eqs. (7)-(10). The remaining elastic modulus  can be 

obtained from Eq. (4) as 

 (13)

The characteristic Eq. (12) governing the acoustoelastic effect for Rayleigh waves differs from 

Eqs. (7)-(11) for bulk waves in two important respects. Firstly, the governing equation for 

Rayleigh waves contains all three TOECs, whereas the equations for bulk waves contain only 

two out of the three constants. Secondly, the characteristic Eq. (12) for Rayleigh waves contains 

the TOECs raised to exponents as well as terms involving products of the three TOECs. In 

principle, this implies that by substituting  measured values of the Rayleigh wave speed at three 

known stress levels into Eq. (12), a system of three nonlinear equations can be obtained, from 

which all three TOECs can be determined.  

3. Comparison of different methods for the determination of TOECs 

Eqs. (7)-(11) provide a system of five linear equations in three unknown variables, , , and  

for known values of the density , Lamé constants,  and , as well as the experimentally 

determined values of the bulk wave speeds at a known stress level, . The unknown TOECs 

can be determined by solving a system of any three out of five linear equations given by Eqs. 

(7)-(11). The system of Eqs. (9)-(11) is preferred over other combinations since the 



experimental setup for the measurement of bulk wave speeds perpendicular the direction of the 

applied stress is relatively straightforward. As shown in Fig. 1, ultrasonic transducers can be 

placed directly on the lateral surfaces of the specimen and the time of propagation of the bulk 

wave across the specimen thickness can be measured by either using the pulse-echo or pitch-

catch arrangement of the transducers. 

Experimental studies utilising this traditional method have reported a large scatter in the 

obtained values of the constant , relative to the constants  and , despite careful 

measurements of the bulk wave speeds. Some of these reported values for Aluminium alloys 

are summarised in Table 1. The possibility of reducing the standard deviation in the values of 

the TOECs is investigated by considering an alternative system of equations comprising the 

characteristic Eq. (12) for Rayleigh waves and any two out of the three Eqs. (9)-(11). Rayleigh 

waves can be generated along the direction of the applied uniaxial stress by utilising a wedge-

transducer, as shown in Fig. 1. 

 

Fig. 1: Schematic diagram showing the propagation directions of the elastic waves and the direction 

of applied stress. 
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Table 1: Experimentally determined TOECs for Aluminium alloys reported by Smith et al. [29] 

Aluminium 
alloys 

Third order elastic constants (GPa) 

   

2S -311 ± 131 -401 ± 78 -408 ± 34 

B53S M -223 ± 61 -237 ± 12 -276 ± 5 

B53S P -201 ± 22 -305 ± 17 -300 ± 6 

D54S -387 ± 10 -358 ± 10 -320 ± 3 

JH77S -337 ± 32 -395 ± 13 -436 ± 7 

The TOECs can be evaluated from the measurements of three wave speeds using any 

three out of four Eqs. (9)-(12). In this section, a comparative evaluation of the four possible 

combinations of these equations is conducted to identify the best combination which yields the 

smallest overall standard deviation in the obtained values of the TOECs. A numerical 

sensitivity study is conducted based on the various input parameters listed in Table 2. Based 

on the theoretical values of the Lamé constants, density and TOECs, the theoretical speeds of 

the three bulk waves, ,  and  and the Rayleigh wave, , are evaluated at the stress 

level,  using Eqs. (9)-(12). Following that, four datasets of 500 random speed measurements 

are generated with the following statistical distributions: (1) normal distribution with a standard 

deviation of 1 m/s (Fig. 2); (2) normal distribution with a standard deviation of 10 m/s; (3) 

uniform distribution over the interval defined by the theoretical speed ± 1 m/s; and (4) uniform 

distribution over the interval defined by the theoretical speed ± 10 m/s. For all four 

distributions, the mean values are set equal to the theoretical speeds obtained from Eqs. (9)-

(12). For each of the four statistical distributions, the TOECs are evaluated for 5003 = 125 

million combinations of three wave speeds. 



 

Fig. 2: Normal distribution of bulk and Rayleigh wave speeds with a standard deviation of 1 m/s. The 

sample means are equal to the theoretical wave speeds calculated using the input parameters listed in 

Table 2.  

Table 2: Input parameters for the sensitivity study 

 Parameter Value 

 (GPa) 54.308 

 (GPa) 27.174 

 (GPa) -281.5 

 (GPa) -339.0 

 (GPa) -416.0 

 (kg/m3) 2704 

 (MPa) 100 
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The results of the sensitivity study are summarised in Tables 3-5. In these tables, the 

numerical values of the TOECs obtained using the four combinations of Eqs. (9)-(12) are 

presented for the various statistical distributions of wave speeds described previously. It can 

be observed that the mean values of the TOECs presented in Tables 3-5 are within a few percent 

of the exact values listed in Table 2, regardless of the choice of the statistical distribution or 

the system of equations used. This is in accordance with the law of large numbers, which states 

that the sample mean converges to the expected value as the number of repeat measurements 

tends to infinity. However, the standard deviation in the numerical values of all three constants 

is strongly linked to the scatter in the randomly generated wave speed distributions. 

The best combination of three out of four Eqs. (9)-(12) can be identified by comparing 

the standard deviations in the numerically-evaluated values of the TOECs, presented in Tables 

3-5. It is evident from the observation of Table 3 as well as Fig. 3 that the standard deviation 

in the numerical values of the constant  can be reduced substantially by utilising the 

characteristic Eq. (12) for Rayleigh waves in conjunction with any two out of three Eqs. (9)-

(11), i.e. by utilising one of the proposed methods 2-4 rather than the traditionally utilised 

method 1. The standard deviation in the numerical values of the remaining constants,  and  

is relatively insensitive to the choice of the method of solution, i.e. the combination of Eqs. (9)-

(12) used. Overall, method 2 appears to be most suitable for the evaluation of the TOECs since 

it minimises the standard deviation for the constants  and , while providing marginally greater 

standard deviation for the constant , when compared to other methods.  

 

 

 



Table 3: Comparison of the exact value of  -281.5 GPa against numerical values obtained using the 

four combinations of wave speed measurements.  

Wave speed 
distribution about 
theoretical value 

Numerical value of  (mean ± std. dev.) in GPa 

Method 1 
, ,  

Method 2 
, ,  

Method 3 
, ,  

Method 4 
, ,  

Normal distribution 
(std. dev. = 1 m/s) 

-278.9 ± 67.8 -281.3 ± 17.5 -281.0 ± 26.8 -281.0 ± 26.0 

Normal distribution 
(std. dev. = 10 m/s) 

-282 ± 280 -282.0 ± 23 -282 ± 37 -282 ± 30 

Uniform distribution 
(Resolution = 1 m/s) 

-284.5 ± 39.3 -280.6 ± 16.2 -281.0 ± 21.8 -281.0 ± 24.8 

Uniform distribution 
(Resolution = 10 m/s) 

-282 ± 280 -282 ± 23 -282 ± 30 -282 ± 30 

 

Table 4: Comparison of the exact value of  -339 GPa against numerical values obtained using the 

four combinations of wave speed measurements.  

Wave speed 
distribution about 
theoretical value 

Numerical value of  (mean ± std. dev.) in GPa 

Method 1 
, ,  

Method 2 
, ,  

Method 3 
, ,  

Method 4 
, ,  

Normal distribution 
(std. dev. = 1 m/s) 

-338.1 ± 28.5 -338.4 ± 34.2 -337.3 ± 36.2 -338.8 ± 29.6 

Normal distribution 
(std. dev. = 10 m/s) 

-341 ± 164 -340 ± 269 -333 ± 275 -331 ± 274 

Uniform distribution 
(Resolution = 1 m/s) 

-340.3 ± 16.5 -337.7 ± 21.9 -338.7 ± 16.4 -339.0 ± 16.9 

Uniform distribution 
(Resolution = 10 m/s) 

-340 ± 164 -340 ± 269 -333 ± 275 -331 ± 274 

 

 

 



Table 5: Comparison of the exact value of  -416 GPa against numerical values obtained using the 

four combinations of wave speed measurements.  

Wave speed 
distribution about 
theoretical value 

Numerical value of  (mean ± std. dev.) in GPa 

Method 1 
, ,  

Method 2 
, ,  

Method 3 
, ,  

Method 4 
, ,  

Normal distribution 
(std. dev. = 1 m/s) 

-414.7 ± 25.9 -416.4 ± 14.3 -414.7 ± 32.0 -416.0 ± 12.6 

Normal distribution 
(std. dev. = 10 m/s) 

-417 ± 210 -415 ± 105 -412 ± 117 -412 ± 113 

Uniform distribution 
(Resolution = 1 m/s) 

-416 ± 15.1 -416.1 ± 12.9 -415.7 ± 12.6 -416.1 ± 7.5 

Uniform distribution 
(Resolution = 10 m/s) 

-409 ± 147 -416 ± 64.3 -409 ± 77 -419 ± 71 

 

 

Fig. 3: The distribution of numerical values of the constant  obtained for the wave speed distributions 

shown in Fig. 2.  
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4. Linearisation of the governing equations of acoustoelasticity 

One of the inherent shortcomings in the evaluation of TOECs based on wave speed 

measurements is the propagation of errors during the calculations. As demonstrated in the 

previous section, one way to improve the robustness of the calculations is to perform a large 

number of repeat measurements at a single stress level. Alternatively, one can take advantage 

of the approximately linear dependence of the wave speed on the applied stress within the 

elastic region of the stress-strain curve, i.e. for . Rather than making several repeat 

measurements at a single stress level, the wave speed can also be measured at several 

increments of the applied stress. The slope of the wave speed vs. applied stress plot can then 

be evaluated using the method of least squares and the TOECs can be obtained from the 

linearised form of Eqs. (9)-(11). The linearised equations can be expressed solely in terms of 

the experimentally determined slope, , , and the known material 

constants, ,  and , as follows: 

 (14)

 (15)

 (16)

In the above equations, the bulk wave speeds in the unstressed configuration are 

 and . The nonlinear governing equation (12) for 

Rayleigh waves can also be linearised and written in terms of the experimentally determined 

slope . The resulting equation is quite lengthy and is presented in Appendix B. The 

correctness of the linearised Eqs. (14)-(16), (B1) can be verified by attempting to recalculate 



the known values of TOECs listed in Table 2 based on theoretical obtained slopes  , 

 and .  

Table 6: Comparison of known and calculated values of TOECs obtained from linearised equations    

TOEC Exact value 
Method 1 

, ,  
Method 2 

, ,  
Method 3 

, ,  

Method 4 
, ,  

 (GPa) -281.5 -281.5 -274.2 -286.3 -204.3 

 (GPa) -339.0 -339.0 -335.4 -341.4 -339.0 

 (GPa) -416.0 - 416.0 -423.3 -417.6 -416.0 

The obtained values of the TOECs using various combinations of linearised equations 

are presented in Table 6. As expected, the system of linear equations (14)-(16) exactly recovers 

the known values of the TOECs. Methods 2 and 3, which utilise Eq. (14) and Eq. (B1) along 

with either Eq. (15) or Eq. (16) provide approximate values for the TOECs within 2.5%. This 

indicates a small error associated with the linearisation of the nonlinear Eq. (12). Method 4, 

which utilises Eqs. (15),(16) and (B1) must be avoided for the experimental evaluation of the 

TOECs since it yields a large error of roughly 27% in the value of the constant . 

5. Experimental measurement of TOECs  

5.1.   Experimental setup 

The bulk wave speeds were measured in an Aluminium specimen with dimensions 

416.5×183.5mm×47.6mm, and density 2741 kg/m3. The Lamé constants were evaluated using 

bulk wave speed measurements in the unstressed specimen as GPa and 

GPa. Measurements of the bulk wave speeds were achieved by using a pair of identical 

transducers on opposite sides of the specimen in a pitch-catch arrangement, as shown in Fig. 

4. A pair of Olympus X1055 transducers were used for the excitation and sensing of 

longitudinal waves at a central frequency of 2.25 MHz. The longitudinal wave transducers were 



coupled to the surface of the specimen using ISO68 hydraulic oil. A pair of Olympus V153-

RM transducers were used for the excitation and sensing of transverse waves at a central 

frequency of 1 MHz. The transverse wave transducers were coupled to the surface of the 

specimen using a shear couplant with a high viscosity. The direction of polarisation of the 

transverse waves was controlled using an alignment fixture shown in Fig. 4. The excitation 

frequencies of the longitudinal and transverse waves were selected to match the central 

frequencies of the available transducers but different excitation frequencies may equivalently 

be used. 

 

Fig. 4: (a) Experimental setup, (b) alignment fixture for generation and measurement of transverse 

waves, (c) wedge transducer for generation of Rayleigh waves.  

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 



The excitation toneburst signal was generated using a Tektronix AFG 3021B arbitrary 

function generator and amplified by 40 dB using a RITEC GA-2500A gated amplifier. A data 

acquisition system with a sampling rate of 102.4MHz was used, giving a temporal resolution 

of approximately 10ns. The signal was averaged 1000 times and a band pass filter was 

implemented between 500kHz and 20MHz to increase the signal-to-noise ratio. The changes 

in bulk wave speeds were recorded at 19 evenly-spaced increments of compressive uniaxial 

stress in the range 0MPa to 104.7MPa. The measurements were repeated five times at each 

load level to evaluate the consistency. Two strain gauges were bonded to the specimen to 

measure the axial and lateral strains corresponding to the applied uniaxial compressive stress. 

The lateral strain measurement was used to determine the change in the thickness of the 

specimen during loading, i.e. the change in the propagation distance of the bulk waves. The 

Rayleigh wave speed measurements for the same specimen were obtained from Hughes et al. 

[38] and the experimental setup and signal processing approach are described in the latter 

publication. 

5.2.   Signal processing 

Fig. 5 (a)-(c) show the typical time domain signals for the three principal bulk waves travelling 

perpendicular to the applied stress. All the recorded signals show the arrival of the primary 

wave followed by multiple echoes, resulting from the reflection of the wave between the 

parallel surfaces of the specimen. A small wave packet can be identified prior to the arrival of 

the primary wave, which is a result of electromagnetic interference or cross-talk. The time of 

flight is evaluated using the cross-correlation method. The measured values of the change in 

bulk wave speeds with stress increment are shown in Fig. 5 (d)-(f). The observed trends are 

consistent with the theoretical predictions of Eqs. (14)-(16). The slopes of the lines of best fit 

as well as the upper and lower 95% confidence intervals for Fig. 5 (d)-(f) are recorded in Table 



7. The corresponding values for Rayleigh waves are obtained from the analysis of the 

experimental data collected by Hughes et al. [38]. These are also included in Table 7. 

The observed scatter in the measurement of the longitudinal wave speed is found to be 

much greater than the scatter observed in the measurement of transverse wave speeds. The 

larger scatter can be attributed to two main reasons: (1) the time of flight of the longitudinal 

waves is approximately half of the time of flight of the transverse waves, thereby increasing 

the relative error in the measurements, and (2) the longitudinal waves undergo a phase shift 

upon reflection, thereby complicating the calculation of the time of flight. 

Table 7: Slopes of the wave speed vs. applied stress plots and the 95% confidence intervals obtained 

using the nonlinear least-squares method    

 
    

Units: (m/s)/Pa (Fig. 5d) (Fig. 5e) (Fig. 5f) 
Hughes et al. 

[38] 

Best fit 3.562e-8 -9.009e-8 3.706e-8 -3.534e-8 

Lower 95% CI 3.211e-8 -9.132e-8 3.604e-8 -3.184e-8 

Upper 95% CI 3.912e-8 -8.886e-8 3.809e-8 -3.884e-8 

In addition to the measurement presented in Fig. 5, the absolute values of the bulk and 

Rayleigh wave speeds were also measured in the stress-free or unloaded configuration. The 

transverse wave speeds polarised in the mutually orthogonal  and  directions (see Fig. 4) 

were calculated to be  = 3069 m/s and  3101 m/s in the unloaded specimen, i.e. a 

difference of 32 m/s was observed. The speed of Rayleigh wave propagating in the unloaded 

specimen along the  and  directions were obtained as  2812 m/s and  2836 m/s, 

respectively. The latter speeds differed by 24 m/s. These differences indicate the directional 

dependence of wave speed, i.e. anisotropy of the unloaded specimen. 



 

Fig. 5: (a)-(c) Time domain signal for three bulk waves propagating perpendicular to the applied 

stress recorded using a pair of ultrasonic transducers in pitch-catch arrangement. (d)-(f): Change in 

wave speed with incremental compressive loading  the circles represent the experimentally measured 

values, the solid lines represent the lines of best fit, and the broken lines represent 95% prediction 

intervals. 

The TOECs can be determined from the experimentally measured slopes (Table 7) by 

using any three out of four linearised Eqs. (14)-(16), (B1). In accordance with the outcomes of 
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the validation test, which are summarised in Table 6, Method 4, i.e. the combination of Eqs. 

(15),(16) and (B1) is not used for the determination of the TOECs. The values of the TOECs 

calculated based on the remaining three methods are presented in Table 8. The values 

determined using all three methods lie within the broad range of previously published values 

for Aluminium alloys, some of which are summarised in Table 1. However, the values of the 

TOECs obtained using the three methods are not consistent with one another and the largest 

deviation is observed for the constant .  

The agreement between TOECs values using the three methods when using experimental 

data is not as good when compared against the outcomes of numerical study presented in 

Section 3, as well as the outcomes of the validation test of the linearised system of equations 

presented in Table 6. The discrepancies are attributed to the anisotropy of the tested specimen, 

which was ascertained from the unequal transverse wave speeds  and  in the unloaded 

specimen, as well as the unequal Rayleigh wave speed,  and  propagating along two 

mutually orthogonal directions. The difference in wave speed in the unloaded specimen was 

found to be 32 m/s for transverse waves polarised in orthogonal directions and 24 m/s of 

Rayleigh waves propagating in orthogonal directions. This initial difference, attributed to 

specimen anisotropy is significantly greater than the change in wave speed due to the 

acoustoelastic effect, as reported in Fig. 5 and Table 7. Hence, it may be argued that the 

erroneous results are due to the substitution of experimental data obtained for an anisotropic 

specimen into the equations of acoustoelasticity theory derived for isotropic materials. A better 

correspondence between the three methods for the experimental determination of TOECs can 

be achieved by taking into account the specimen anisotropy. 

 It is well known that the values of the TOECs can be affected by the changes in 

microstructure and accumulation of plastic deformations, which are expected to be quite 



significant near the surface of the test specimen due to the fabrication process. Therefore, the 

obtained values can be interpreted as different parameters, which are related to the mechanical 

properties of an anisotropic and non-homogeneous material.  

Table 8: TOECs determined from experimental measurements of bulk and Rayleigh wave speeds    

TOEC 

Mean (GPa) 

Method 1 
, ,  

Method 2 
, ,  

Method 3 
, ,  

 -193.2 -106.1 -249.5 

 -264.9 -222.4 -292.4 

 -333.4 -416.4 -351.4 

6. Conclusion 

In this paper, a new method for the evaluation of TOECs is presented. This method utilises 

measurements of the change in Rayleigh and bulk wave speeds with an applied stress. This 

method is applicable to homogeneous isotropic materials only as the theoretical equations are 

based on the same underlying assumptions. It was demonstrated via numerical simulations that 

the incorporation of Rayleigh wave speed measurements allows for a significant improvement 

in the accuracy of the evaluation of TOECs. While it is also theoretically possible to determine 

the TOECs solely from measurements of the Rayleigh wave speed due to the inherent non-

linearity of the characteristic equation, such an evaluation requires highly accurate 

measurements as the non-linearity is relatively small. 

In practical situations, the near surface material properties of the tested samples or 

structures are often different to the bulk. The inhomogeneity, anisotropy, accumulation of 

plastic deformation and damage associated with fabrication processes can affect the 

measurements of the elastic wave speed. In this case, the evaluation of the TOECs using these 



measurements does not seem to be appropriate, as the constants obtained do not represent the 

bulk material properties. However, the actual changes in the wave speed can still be utilised 

for stress measurement purposes or for the characterisation of near surface mechanical damage. 

In addition, the near surface propagation nature of Rayleigh waves can be utilised for 

measurements of the change in stress, material properties and damage with depth. However, it 

would be very difficult to separate all these effects from one another in practical situations.  
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Appendix A: Lamb wave dispersion equations 

In this section, the derivation of the dispersion equations governing the acoustoelastic effect 

for Lamb waves is briefly recapped. The results presented in this Appendix were obtained 

previously in [32,39] and are included here for the sake of completeness. Consider an infinite, 

isotropic plate of thickness , with the reference Cartesian coordinates  and  aligned with 

the mid-plane of the plate and the coordinate  aligned with the outward normal from the mid-

plane. The plate is subjected to a uniaxial stress state, with Cauchy stress  along the  axis. 

The finite deformation can be expressed as 

 (A1)



where the principal stretches  can be written in terms of the applied stress  using 

Eq. (5). Now, consider the propagation of a small-amplitude plane wave confined to the 

 plane, travelling with phase velocity  in the  direction. The general solution to the 

governing equation for incremental motions, Eq. (1), is of the form: 

 (A2)

where  is the particle displacement and  is the amplitude along the  coordinate,  is the 

wavenumber along the  direction,  is time and  is the unknown ratio of the wavenumbers 

in the  and  directions. The solution must satisfy the incremental traction-free boundary 

conditions at the upper and lower surfaces of the plate, i.e. the corresponding incremental 

nominal stresses must be zero at the free surfaces: 

 (A3)

After substituting Eq. (A2) into Eq. (1), a system of linear homogeneous equations is obtained. 

Following the procedure outlined in Mohabuth et al. [32], the requirement for obtaining a non-

trivial solution to this system of equations can be expressed as:  

 

(A4) 

The lack of odd powers in the fourth-order Eq. (A4) implies that the four roots for , denoted 

by  are related according to  and . Using this relation 

and the identity , the solutions for  and  in Eq. (A2) can be 



rewritten as a linear combination of the four independent solutions associated with the roots of 

Eq. (A4) as follows [39]: 

 

 

(A5)

where the constants  are functions of the displacement amplitudes  in 

Eq. (A2).  

The incremental stress components corresponding to (A5) can be obtained from the 

incremental stress-displacement relations given by Eq. (2). Satisfying the boundary conditions 

(A3) with the obtained incremental stress components yields a homogenous system of four 

equations in four unknowns, . Using the method presented in Mohabuth et al. [32], two 

characteristic equations which ensure non-trivial solutions to this system of equations are 

obtained as: 

 (A6)

 (A7)

which correspond to the anti-symmetric and symmetric Lamb wave modes, respectively, with 

.  The constants  and  are defined as [39] 



 

 

(A8)

The characteristic equation governing the acoustoelastic effect for Rayleigh waves propagating 

in an infinite half-space can be obtained by setting  in equation (A6) or (A7) 

and recalling that , as follows 

 (A9)

Since Eq. (A4) is quadratic in , the product  can be readily expressed as 

 (A10)

Appendix B: Linearised Rayleigh wave characteristic equation 

The characteristic Eq. (12) governing the propagation of Rayleigh waves along the direction of 

the applied uniaxial stress can be linearised for  as follows: 

 (B1)

where the terms 

 

(B2) 



 (B3) 

 (B4) 

 (B5) 

 

(B6) 

 (B7) 

In Eqs. (B2)-(B6),  is the Rayleigh wave speed in the unstressed configuration, which can 

be determined in terms of the known material constants, ,  and , by setting 

, , and  in Eq. (12). The dimensionless 

constants  are closely related to the stress-dependent elastic moduli , and are defined 

as follows: 

 (B8) 

 (B9) 

 (B10) 

 (B11) 



 (B12) 

 


