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Artid_e history: Liang Bua, the type locality of Homo floresiensis, is a limestone cave located in the western part of the Indo-
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contains ~275,000 taxonomically identifiable vertebrate skeletal elements, ~80% of which belong to murine
rodent taxa (i.e., rats). Six described genera are present at Liang Bua (Papagomys, Spelaeomys, Hooijeromys,
Komodomys, Paulamys, and Rattus), one of which, Hooijeromys, is newly recorded in the site deposits, being
previously known only from Early to Middle Pleistocene sites in central Flores. Measurements of the proximal
femur (n = 10,212) and distal humerus (n = 1186) indicate five murine body size classes ranging from small
(mouse-sized) to giant (common rabbit-sized) are present. The proportions of these five classes across
successive stratigraphic units reveal two major changes in murine body size distribution due to significant
shifts in the abundances of more open habitat-adapted medium-sized murines versus more closed habitat-
adapted smaller-sized ones. One of these changes suggests a modest increase in available open habitats
occurred ~3 ka, likely the result of anthropogenic changes to the landscape related to farming by modern
human populations. The other and more significant change occurred ~60 ka suggesting a rapid shift from
more open habitats to more closed conditions at this time. The abrupt reduction of medium-sized murines,
along with the disappearance of H. floresiensis, Stegodon florensis insularis (an extinct proboscidean), Varanus
komodoensis (Komodo dragon), Leptoptilos robustus (giant marabou stork), and Trigonoceps sp. (vulture) at
Liang Bua ~60—50Kka, is likely the consequence of these animals preferring and tracking more open habitats to
elsewhere on the island. If correct, then the precise timing and nature of the extinction of H. floresiensis and its

contemporaries must await new discoveries at Liang Bua or other as yet unexcavated sites on Flores.
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding authors.

1. Introduction

Flores, an oceanic island within the Indonesian archipelago
(Fig. 1), lies east of the Wallace Line (Wallace, 1869). For most of the
20th century it was widely accepted that Homo sapiens (modern
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island—probably sometime within the past ~50 kyr—despite
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Figure 1. Location and excavation plan of Liang Bua: a) Location of Flores along the Indonesian Archipelago; b) location of Liang Bua in western Flores; c) excavation plan of sectors

discussed in this study.

evidence suggesting that stone artifacts from central Flores were
about 710 ka (Maringer and Verhoeven, 1970a,b,c; von Koenigswald
and Ghosh, 1973). However, continued archaeological research on
the island has demonstrated that premodern hominins dispersed
to Flores by at least 1 Ma (Brumm et al., 2010). Putative descendants
of this Early Pleistocene hominin dispersal event are represented by
Middle Pleistocene stone artifacts and Homo floresiensis-like
dentognathic fossils at Mata Menge (Morwood et al., 1998; Brumm
etal, 2016; van den Bergh et al., 2016) and Late Pleistocene skeletal
and cultural remains of H. floresiensis at Liang Bua (Brown et al,,
2004; Morwood et al., 2004, 2005; Sutikna et al., 2016a).

At Liang Bua, H. floresiensis is typically found in association with
four other animals that have body masses greater than ~3 kg
(van den Bergh et al., 2008, 2009; Hocknull et al., 2009; Meijer and
Awe Due, 2010; Meijer et al., 2013, 2015): stegodon (Stegodon flor-
ensis insularis, a proboscidean), Komodo dragon (Varanus komo-
doensis), giant marabou stork (Leptoptilos robustus), and vulture
(Trigonoceps sp.). All of these taxa are last observed in situ in the
stratigraphic sequence ~60—50 ka (Sutikna, 2016; Sutikna et al.,
20164a,b, 2018). Most faunal analyses from Liang Bua have focused
primarily on H. floresiensis and these other large-bodied taxa; but
some studies have also centered on smaller animals, such as shrews
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(van den Hoek Ostende et al., 2006b), bats (Ouwendijk et al., 2014),
and birds (Meijer et al., 2013, 2017), as well as murine rodents (i.e.,
rats; van den Bergh et al., 2009; Locatelli, 2011; Locatelli et al., 2012,
2015; Veatch, 2014), which are consistently represented throughout
the ~190 kyr sequence (Sutikna, 2016; Sutikna et al., 2018).

Apart from introduced mice (Mus spp.), there are twelve species
of murine rodents known from Flores (Table 1; Fig. 2; Hooijer, 1957;
Musser, 1981; Musser et al., 1986; Kitchener et al., 1991a,b). Eight of
these species are extant on Flores or on its immediate satellite
islands, including Papagomys armandvillei, Komodomys rintjanus,
Paulamys naso, Rattus rattus, Rattus argentiventer, Rattus norvegicus,
Rattus exulans, and Rattus hainaldi (Musser, 1981; Kitchener et al.,
1991b). All of the species of Rattus on Flores are widely distrib-
uted throughout Southeast Asia and most were likely introduced by
modern humans sometime during the past few thousand years
(Musser, 1981; van den Bergh et al., 2009; Locatelli, 2011; Locatelli
et al,, 2015). However, R. hainaldi is a small native species endemic
to Flores (Kitchener et al., 1991a) and recent genetic evidence
suggests that Rattus exulans may also have been a Flores endemic
prior to ultimately dispersing widely beyond the island (Thomson
et al., 2014), a suggestion previously proposed based on external
morphology (Schwarz and Schwarz, 1967). Thus, both R. hainaldi
and R. exulans are possible descendants of one or more early
non-human-mediated dispersals of small-bodied Rattus to Flores.

The Flores murine fossil record extends from the Early/Middle
Pleistocene to recent times, with material recovered from several
sites within the So'a Basin as well as at Liang Toge and Liang Bua
(Hooijer, 1957, 1967; Musser, 1981; Musser et al., 1986; van den
Bergh et al., 2009; Brumm et al., 2010, 2016; Locatelli, 2011;
Locatelli et al., 2012, 2015). This record preserves evidence of past
populations of a diverse array of extant murines and of other taxa
that are either extinct or at least presumed to be (e.g., Papagomys
theodorverhoeveni, Spelaecomys florensis, and Hooijeromys nusa-
tenggara). In total, there is considerable variation in dental size and
morphology among the extant and extinct murine taxa on Flores
(Fig. 2; Musser, 1981; Musser et al.,, 1986), indicating a fairly

Table 1
The extant and extinct rats found on Flores.

continuous range of murine body sizes, from ~50 g (mouse-sized)
to ~2000 g (common rabbit-sized; Table 1; Fig. 2).

Small mammals are typically sensitive to shifts in local ecology
and thus small mammal assemblages often provide useful informa-
tion for paleoecological reconstructions, including those that relate
to the human fossil and archaeological record (Andrews, 1990; Avery,
1999, 2001, 2003, 2007; Flannery, 1999; Avenant, 2000; Reed, 2003;
Matthews et al., 2005; van Dam et al., 2006; Herndndez Ferndndez
et al,, 2007; Le Fur et al., 2009; Andrews and O'Brien, 2010; Blois
et al., 2010; Demirel et al., 2011; Armstrong, 2015; Bennasar et al.,
2015; Nel and Henshilwood, 2016; Gomez Cano et al., 2017; Blanco
et al,, 2018; Madern et al., 2018). Although no discernible temporal
trends have ever been observed in murine molar size for any given
taxon on Flores (Musser, 1981; Locatelli, 2011; Locatelli et al., 2012,
2015), there is variation in the types of known preferred habitats
for extant taxa (Table 1). For instance, the preferred habitats of
K. rintjanus (~100—200 g) are primarily open grasslands intermittent
with patches of short forests, but they may also be found in short
palm and deciduous forests (Musser and Boeadi, 1980; Musser, 1981;
Clayton, 2016a). Not surprisingly, this taxon displays morphological
adaptations well suited for living in dry or seasonally dry shrubland
environments such as sandy-colored upperparts, well-furred feet,
and relatively large bullae (Musser and Boeadi, 1980; Musser, 1981),
and is referred to as “a gerbil-like savanna species” (Musser et al.,
1986:9). In contrast, R. hainaldi (a ~40—100 g) prefers more closed,
montane forested habitats (Kitchener et al., 1991a; Suyanto, 1998;
Clayton, 2016b) and P. armandbvillei (~1200—2500 g) also prefers
more closed or semiclosed forested habitats (Table 1; Musser, 1981;
Suyanto, 1998; Gerrie and Kennerley, 2017). Thus, the relative
abundances of these taxa in any given temporal period should
reasonably reflect the degree to which the habitats in the area
surrounding Liang Bua were more open or more closed.

At Liang Bua, approximately 275,000 recovered skeletal ele-
ments have been identified to family rank and ~220,000 of these
belong to murines (Sutikna, 2016; Sutikna et al., 2018). Postcranial
elements clearly dominate the murine assemblage throughout the

Taxon Body mass Flores Extant Known or Known or  Known or presumed Original descriptions
range (g) endemic® presumed diet” presumed habitat preferences”

behaviors”
Papagomys armandvillei 1200—2500° Yes Yes Leaves, fruits, and insects Terrestrial, Closed, semiclosed Jentink (1892), Sody (1941)

burrowing
Papagomys theodorverhoeveni  600—1600¢  Yes Uncertain  Fruits and insects Terrestrial ~ Closed, semiclosed Hooijer (1957b), Musser (1981)
Spelaeomys florensis 600—1600¢  Yes Uncertain Leaves, flowers, buds Arboreal Closed Hooijer (1957b)
Hooijeromys nusatenggara 300-600¢  Yes Uncertain  Unknown Terrestrial  Open, semiopen Musser (1981)
Paulamys naso 100—200°  Yes Yes Fungi, insects, Terrestrial, Closed, semiclosed Musser (1981),

snails, earthworms burrowing Musser et al. (1986)
Komodomys rintjanus 100—200" Yes Yes Unknown Terrestrial  Open, semiopen Sody (1941), Musser
and Boeadi (1980)

Rattus norvegicus 150—-300° No Yes Omnivore Terrestrial Commensal
Rattus rattus/tanezumi 100-230° No Yes Omnivore Terrestrial Commensal
Rattus argentiventer 100-220¢  No Yes Omnivore Terrestrial Commensal Robinson and Kloss (1916)
Rattus hainaldi 40-100"  Yes Yes Unknown Terrestrial, Closed, semiclosed Kitchener et al. (1991a,b)

nesting
Rattus exulans 40-100"  No' Yes Omnivore Terrestrial Commensal Peale (1848)

2 Known only from Flores and/or satellite islands of Komodo, Rinca, and Padar.

b Based on information in Musser (1981), Musser and Boeadi (1980), Kitchener et al. (1991a,b), and Suyanto (1998).
€ Based on data in Musser (1981) and three extant specimens with known body masses (1495—2285 g) in the collections of the Zoological Museum in Bogor, Indonesia.

4 Based on molar sizes and other information in Musser (1981).

¢ Based on molar sizes and other information in Musser (1981) and Musser et al. (1986) and one extant specimen with a known body mass of 120 g (Kitchener et al.,

1991a,b).

f Based on molar sizes and other information in Musser and Boeadi (1980) and Musser (1981).

& Based on recorded body weights of specimens in the collections of the National Museum of Natural History (USNM) in Washington, D.C.
h Based on body weights and other information of Rattus exulans in Tamarin and Malecha (1972), but applies to small Rattus sp. generally.
i Although currently widespread, this taxon may have originally been endemic to Flores (Thomson et al., 2014).
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Figure 2. Right mandibular molar rows (above) and corresponding images of rats (below) endemic to Flores that illustrate the five body size categories defined and used in this
study. From left to right, Rattus hainaldi (a photograph of Rattus exulans is shown), Paulamys naso, Komodomys rintjanus, Hooijeromys nusatenggara, Spelaeomys florensis, Papagomys
theodorverhoeveni, and Papagomys armandvillei. Images modified from Musser (1981) and Kitchener et al. (1991a,b). Sizes of the rat images for Hooijeromys nusatenggara, Spelaeomys
florensis, and Papagomys theodorverhoeveni are estimated based on their respective molar sizes.

entire ~190 kyr-sequence at Liang Bua as crania, jaws, or teeth
comprise less than 10% of this total. As Flores is an oceanic island
with a depauperate fauna, the list of agents potentially responsible
for the accumulation of this murine assemblage is relatively small
but includes birds (common barn owls, eagles, and vultures), rep-
tiles (Komodo dragons and other varanids, snakes), and hominins
(H. floresiensis and modern humans; Morwood et al., 2004, 2005;

Hocknull et al.,, 2009; Meijer et al., 2013; Sutikna et al., 2018).
Komodo dragons, vultures, and snakes have high levels of digestive
acids that typically dissolve bone (Auffenberg, 1981; Housten and
Copsey, 1994) minimizing the likelihood that these taxa contrib-
uted to the accumulation of small mammal remains at this site. The
Flores fossil record also notably lacks any nonhuman mammalian
carnivores, although civets and domestic dogs were introduced to
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the island by modern humans after ~3 ka (van den Bergh et al.,
2009; Sutikna et al., 2018). Thus, for a majority of the strati-
graphic sequence (~190—3 ka), the most likely predators respon-
sible for the murine assemblage were either avian or hominin.

Previous studies of small mammal assemblages accumulated by
avian predators indicate a bias to preserve the proximal femur and
distal humerus (Andrews, 1990), and these are indeed the most
frequent murine elements recovered at Liang Bua. Although sys-
tematic taphonomic analyses are underway to assess the specific
processes involved in the accumulation of murine remains at Liang
Bua, ~75% of 1576 humeri from smaller murines (body mass < 300 g)
show low levels of digestion suggesting that a majority of this
assemblage undoubtedly derives from owl and other raptor pellets
(Veatch, 2014). The larger murines (body mass > 300 g), however, are
beyond the typical size range of owl prey (~25—160 g; Table 1;
Morris, 1979; Gubanyi et al., 1992). Thus, these larger murine taxa at
Liang Bua were likely accumulated by a combination of non-avian
predators (i.e., hominins) and natural deaths (Meijer et al., 2013;
Veatch, 2014).

In this study, size variation in the murine assemblage is explored
using measurements of the proximal femur and distal humerus as
proxies for body mass. Species identification is not possible based
solely on postcranial element size, given the likely overlapping
ranges in body mass among some of these taxa, as well as overall
similarities in their postcranial skeletons (Musser, 1981). Instead, the
goal is to accurately identify different size classes of murine—which
provide a useful combination of taxonomic and ecological informa-
tion—and quantify their abundances at Liang Bua. These abundances
are then examined relative to the most recent stratigraphic and
chronological interpretations of the site (Sutikna et al., 20164, 2018;
Morley et al., 2017) as a means to identify shifts or stases in the
distributions of murine body-size classes throughout the past ~190
kyr sequence that may have paleoecological and/or anthropogenic
implications.

Previous paleoclimate and paleoenvironment reconstructions of
Flores based on analyses of speleothems from Java and Flores
inferred six main climatic/environmental periods spanning 49—5
ka (Westaway et al., 2009a). Between 49 and 17 ka, regional con-
ditions shifted from being wet and organically rich (49—39 ka) to
dry and organically poor (36—17 ka) with rainfall levels decreasing
during the intervening 3 kyr period (Westaway et al., 2009a). These
data suggest closed woodlands and montane forests may have been
more prevalent in the area surrounding Liang Bua between 49 and
39 ka—and especially between 44 and 41 ka, during which time the
sampled stalagmites grew particularly quickly—before shifting to
more open habitats between 36 and 17 ka (Westaway et al., 2009a).

If these regional interpretations accurately reflect the local
conditions surrounding Liang Bua, then we should expect to see
changes in the distributions of murine body sizes at the site during
these two respective temporal intervals, with taxa that prefer more
forested habitats (e.g., Papagomys spp., R. hainaldi) being more
prevalent during the earlier period and those that prefer more open
habitats (e.g., Komodomys) being more prevalent during the later
period. After the last glacial maximum, which occurred between
26.5 and 19.0 ka (Clark et al., 2009), conditions rapidly become
increasingly wetter (17—15 ka), followed by the return of the
monsoon (15—11 ka), ultimately returning to a stable period (11-5
ka) that was wet and organically rich (Westaway et al., 2009a).
With these greater amounts of rainfall, open habitats would have
given way to more closed woodland and montane forested ones
(Westaway et al., 2009a), and we should once again expect to see a
shift from more open habitat-adapted murines to more closed
habitat-adapted ones.

An additional and longer paleoclimate record based on speleo-
thems from Liang Luar, another cave ~800 m southeast of Liang Bua,

spans the past ~92 kyr and suggests a substantial reduction of
vegetation cover and switch to C4 grasses occurred in this area
between ~69 and 62 ka (Scroxton et al., 2013, 2015; Scroxton, 2014).
If this local interpretation is accurate, then during this interval we
should expect to observe greater abundances of open habitat-
adapted murines in comparison to those that prefer closed habi-
tats. In contrast, this paleoclimate record suggests that during the
temporal intervals before and after ~69—62 ka there was likely a
mix of closed and open habitats available surrounding Liang Bua,
but with the former much more common than the latter (Scroxton
et al., 2013, 2015; Scroxton, 2014). Thus, we should expect to
observe greater abundances of closed habitat-adapted murines
during both of these periods.

2. Materials and methods
2.1. Stratigraphic units

The Liang Bua stratigraphy is currently divided into eight main
stratigraphic units (Units 1-8), based on the eight tephras identi-
fied within the Liang Bua depositional sequence. The oldest and
youngest units are further divided into five subunits (Sutikna, 2016;
Sutikna et al., 2018, Tables 2 and 3; Fig. 4). Unit 1 consists of
the oldest deposits at Liang Bua and is divided into two subunits
(1A = ~190—120 ka; 1B = ~120—60 ka), whereas Unit 8 consists of
Holocene sediments and is divided into three subunits (8A = 12—5
ka; 8B = 5—3 ka; 8C = < 3 ka).

The murine skeletal material examined here was the result of
excavations of multiple 2 x 2 m areas (referred to as Sectors) at
Liang Bua (Fig. 1). The excavations proceeded in 10 cm intervals
(referred to as spits) while following all observable sedimentary
layers (Sutikna et al., 2018). Almost all of the murine remains were
recovered during wet-sieving of sediments from each excavated
interval (i.e., recorded by spit and sedimentary layer) using 2 mm
mesh.

2.2. Faunal analysis

We surveyed murine dentognathic remains from Liang Bua to
confirm the presence of taxa identified by previous studies and
to explore whether additional taxa are also present within the
assemblage. Taxonomic identifications were based on diagnostic
features, including molar size and morphology (Sody, 1941; Hooijer,
1957; Musser and Boeadi, 1980; Musser, 1981; Musser et al., 1986;
Kitchener et al., 1991a,b). Molar sizes, in combination with known
body masses for extant taxa, suggest a relatively wide range of
murine body sizes are present in the Liang Bua assemblage (Table 1;
Fig. 2).

Femoral head diameters (FHD) and articular breadths of the
distal humerus (DAB) were measured using digital hand calipers
from a comparative sample of 31 specimens with known body
masses (representing 19 extant murine species) and 35 specimens
without specimen-specific body mass data (representing an addi-
tional 15 murine taxa; Fig. 3; Supplementary Online Material [SOM|
Fig. S1). All of these taxa are native to the Indo-Australian region
and derive from the collections of the American Museum of Natural
History and the Smithsonian Institution's National Museum of
Natural History. This sample includes murine rodents that range in
body mass from tiny shrew mice such as Microhydromys richardsoni
from New Guinea (~11 g) to giant murines like Phloeomys cumingi
from the Philippines (~1820 g). Both measurements show a
reasonably consistent relationship with body mass based on these
comparative data (SOM Fig. S1). Approximately non-overlapping
ranges of FHD and DAB values were then used to define measure-
ment ranges for five reasonably distinct body size categories
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Table 2

Summary of measured femoral head diameters by stratigraphic unit?, approximate age range, and body size category.
Unit Age range (ka) Unit description NISPP

Small Medium Large Huge Giant Total
8C 3-0 Neolithic to Present 258 283 23 13 4 581
8B 5-3 Neolithic transition 128 25 14 15 8 190
8A 12-5 Above T8 to Neolithic transition 302 43 18 29 11 403
7 13—-12 T7 to T8 7 0 0 1 0 8
6 18—13 Above T6 to beneath T7 235 101 20 21 5 382
5 46—-18 Above T5-capping flowstone to T6 147 35 14 17 3 216
4 47—-46 Above T3 to flowstone above T5 17 3 0 1 1 22
3 50—47 T3 0 0 0 0 0 0
2 60—-50 Between T2 and T3 118 14 3 7 5 147
1B 120-60 H. floresiensis-bearing sediments 2131 4431 139 22 15 6738
1A 190-120 Underlying gravel-rich layer 307 1176 39 2 1 1525
Total NISP 3650 6111 270 128 53 10,212

@ Stratigraphic units and approximate age ranges as defined and described by Sutikna (2016) and Sutikna et al. (2018).

b NISP = number of identified specimens.

(in increasing order): small (<~100 g), medium (~100—300 g), large
(~300—-600 g), huge (~600—1100 g), and giant (>~1100 g; Fig. 3;
SOM Fig. S1). For instance, FHD values less than 2.5 mm most likely
represent small-sized taxa (e.g., R. exulans-size, < ~100 g) whereas
FHD values between 2.5 and 3.75 mm most likely represent
medium-sized taxa (e.g., R. rattus-size, ~100—300 g).

Using digital hand calipers, FHD and DAB were measured from a
sample of 10,212 murine femora and 1186 humeri (minimum
number of individuals = 5197 and 622, respectively) recovered
from excavations at Liang Bua. The femoral sample represents a
majority of identifiable proximal bone ends retaining femoral
heads deriving from multiple Sectors (IV, VII, XI, XII, XV, XVI, XVII,
XXI, and XXV) whereas the humeral sample represents all identi-
fiable distal bone ends retaining articular surfaces deriving solely
from Sector XXI (Fig. 1). Each bone was then assigned to a body size
category based on its measurement and the abundances of all size
classes across all stratigraphic units were tabulated (Tables 2 and 3).

Statistical analyses were conducted using RStudio version 1.0.143
(RStudio Team, 2016) and PAST version 3.15 (Hammer et al., 2001).
Chord distance (CD) analyses were used to measure similarity in the
distribution of murine body sizes at Liang Bua through time. Strati-
graphic units with similar abundances of each body size category will
have CD values equal or close to 0, while those with completely
dissimilar abundances will have CD values ~14, i.e., y/2 (Ludwig and
Reynolds, 1988). Unweighted pair group method with arithmetic
mean (UPGMA) cluster analyses of all pairwise CD values were used
to compare all stratigraphic units based on their respective compo-
sitions of murine body size categories (Legendre and Legendre,
1998). Evenness through the stratigraphic sequence was measured
using the unbiased Simpson index (1 — D’), which here represents
the probability that two randomly sampled specimens will belong to
different body size categories, in order to further explore temporal

changes in murine body size distribution. Although this index is
sometimes sensitive to changes in richness, it does not vary sys-
tematically as a function of sample size (Faith and Du, 2017).
An unbiased Simpson index value near to O indicates that a given
stratigraphic unit is dominated by a single murine body size category,
whereas values ~0.8 (1—1/5, where 5 is the number of body size
categories) indicate all body size categories are equally abundant.

Finally, the relationships between stratigraphic units based
on their respective taxonomic abundances were examined
using correspondence analysis, which is a multivariate statistical
technique that provides an overall measure of variation across all
units at once. Differences between all adjacent stratigraphic units
in the abundance of a specific size class were evaluated for sta-
tistical significance using adjusted residuals derived from con-
tingency table analysis (e.g., Grayson and Delpech, 2003; Lyman,
2008) in order to facilitate the interpretation of the multivariate
results. The adjusted residuals are equal to standard normal
deviates, in which absolute values greater than 1.96 are signifi-
cant at a = 0.05.

3. Results

Our survey of murine dentognathic remains (n = 817) focused
on three stratigraphic units (1B, 2, and 8C) and confirmed the
presence of all taxa previously identified at Liang Bua (Musser,
1981; Musser et al., 1986; van den Bergh et al., 2009; Locatelli,
2011; Locatelli et al., 2012, 2015; Thomson et al., 2014). We also
identified murine teeth and jaws that clearly belong to three other
taxa, all of which fall into the large-bodied size class (~300—600 g)
based on molar and jaw size relative to the comparative and Liang
Bua samples (Fig. 2). Similar body size ranges were also obtained for
the femoral and humeral samples, suggesting that the absolute

Table 3

Summary of measured femoral head diameters (FHD) and distal humeral articular breadths (DAB) by stratigraphic unit?, approximate age range, and body size category from

Sector XXI.
Unit Age range (ka) Unit description NISP” (FHD | DAB)

Small Medium Large Huge Giant Total
8C 3-0 Neolithic to Present 5111 5|10 112 2|5 21 15129
8B—5 46-3 above T5-capping flowstone to Neolithic transition 36|28 816 314 314 3]0 53142
4 47—-46 Above T3 to flowstone above T5 117 2|5 01 0|2 o]0 3|15
2 60—50 Between T2 and T3 59110 10|22 2|10 5|6 1)1 77 | 149
1B 120-60 H. floresiensis-bearing sediments 309 | 227 495 | 675 21|38 319 112 829 | 951
Total NISP 410|383 520 | 718 2755 13|26 714 977 | 1186

@ Stratigraphic units and approximate age ranges as defined and described by Sutikna (2016) and Sutikna et al. (2018).

b NISP = number of identified specimens.
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Figure 3. Body size categories based on the humeral distal articular breadth (DAB; a) and femoral head diameter (FHD; b) of extant murine species. Liang Bua FHD and DAB values
are jittered below the respective x axis and compared with those of extant taxa with known body masses. The comparative sample consists of murine rodents of small (<~100 g;
dark blue; such as Rattus exulans), medium (~100—300 g; light blue; such as Rattus rattus), large (~300—600 g; green; such as Parahydromys asper), huge (~600—1100 g; yellow; such
as Hyomys goliath), and giant (>~1100 g; red; such as Papagomys armandvillei, represented as a triangle). (For interpretation of the references to color in this figure legend, the reader

is referred to the Web version of this article.)

sizes of the femoral head and distal humerus reasonably track the
expected differences in body mass among these Flores taxa (Figs. 2
and 3; SOM Fig. S1; Musser, 1981). Of the Flores taxa that are also
included in the comparative sample, R. exulans (~40—100 g) and
R. rattus (~100—230 g) show discrete body size ranges that corre-
spond with the small and medium-sized clusters from the Liang
Bua murines (Fig. 3). Larger taxa—comparable in size to species
such as Parahydromys asper (~400 g), the waterside rat from New
Guinea, Hyomys goliath (~1000 g), the eastern white-eared rat from
New Guinea, and P. cumingi (~1800 g), the southern giant slender-
tailed cloud rat from the Philippines—are also well-represented at
Liang Bua but occur at lower relative abundances. Nonetheless, the

postcranial measurements demonstrate that a reasonable contin-
uum of large, huge, and giant-sized murines are present in the
Liang Bua assemblage (Fig. 3).

The number of identified femoral and humeral specimens
(NISP) are summarized in Tables 2 and 3 by body size category and
stratigraphic unit. Only a small number of specimens were recov-
ered from Units 3 and 7, which primarily consist of tephras T3, and
T7 and T8, respectively. As these bones most likely represent
elements reworked into these units during the deposition of these
respective tephra, they and any other bones that could not confi-
dently be assigned to one of the defined stratigraphic units were
excluded from further analyses.
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Murine femora and humeri show similar patterns of size-class
distribution throughout all stratigraphic units sampled in Sector
XXI (Table 3; SOM Fig. S2; SOM Table S1), indicating that these fore-
and hind limb elements are preserved in relatively similar pro-
portions to each other in the Liang Bua assemblage. Medium-sized
murines are most abundant within Units 1B (note Unit 1A has not
been excavated in this Sector) and 8C, but they are noticeably less
abundant in the intervening units. This temporal pattern in murine
size-class distribution closely resembles the murine femoral data
obtained from the eight other Sectors sampled suggesting that the
smaller sample sizes of single Sectors are still sufficient to capture
the overall murine postcrania accumulation patterns (Fig. 4).
However, given the large femora sample that includes all eleven
stratigraphic units, we focus our attention on reporting and
discussing the results using this more comprehensive dataset.

The CD values for the assemblages across successive pairs of
assigned depositional units are shown in Figure 4. Of all successive
pairs, the greatest changes occur from Units 1B to 2 (CD = 0.96),
which represents before and after the deposition of tephras T1 and
T2 (~60 ka), and from Units 8B to 8C (CD = 0.63), which represents
before and after the introduction of pottery at Liang Bua (~3 ka).
Medium-sized murines dominate Units 1A and 1B (77.1% and 65.7%
of NISP, respectively)—these are almost exclusively Komodomys
based on the results of our dental survey (Table 4)—with relatively
fewer large to giant-sized murines compared to more recent units. In
Unit 2, which is above T2 but beneath T3 (~60—50 ka), small-sized
murines (e.g., R. hainaldi) dominate (80.3% of NISP) with signifi-
cantly fewer medium-sized murines compared to Units 1A and 1B
(see also Table 4). Units 4—8B, all of which occur stratigraphically
above tephra T3 (~50—47 ka) and together extend from the Late
Pleistocene until ~3 ka, show small, gradual changes in the murine
composition (CD = 0.08—0.26). Finally, in Unit 8C, murines of me-
dium size are once again frequent but not to the same degree as they
were in Units 1A and 1B (see also Table 4).

Cluster analysis of all pairwise chord distances between units
results in two main clusters, with Units 1A, 1B and 8C forming one
cluster and all other units forming the other (Fig. 5). Within the first
cluster, Units 1A and 1B are more similar to each other than either is
to Unit 8C. Within the second cluster, Unit 6 is most unlike all of the
remaining units, which form two additional clusters. The first of
these includes Units 2, 4, and 8A, while the second includes Units 5
and 8B. In the former cluster, Units 2 and 8A are more similar to one
another than either is to Unit 4.

Analysis of evenness in murine body size categories throughout
the stratigraphic sequence, using the unbiased Simpson index, also
indicates some major differences between the assemblages (Fig. 6).
The most marked shifts in evenness occur between Units 1A and 1B
(increase), 1B and 2, and 6 and 8A (decreases). An overall trend

Table 4
Number of identified specimens (NISP) of murine mandibular and maxillary
dentaries from Sectors XXI and XII.

Taxon Size Stratigraphic units

1B 2 8C Total
Rattus hainaldi and R. exulans Small 17 21 12 50
Komodomys cf. rintjanus Medium 680 12 14 706
Paulamys naso Medium 1 0 0 1
Rattus rattus Medium 0 0 15 15
shrew rat Large 0 0 2 2
Hooijeromys cf. nusatenggara Large 4 0 2 6
Papagomys sp. Large 0 2 1 3
Spelaeomys florensis Huge 1 0 0 1
Papagomys theodorverhoeveni Huge 7 9 2 18
Papagomys armandvillei Giant 11 0 4 15

721 44 52 817

toward increasing evenness (i.e., all murine body size categories are
more similarly abundant) is observed from the base to the top of
the sequence but is not statistically significant (Spearman's rho
[rs] = 0.17, p < 0.67).

Axes 1 and 2 of the correspondence analysis explain 96.0% and
2.6% of the variance in the abundances of murine body size cate-
gories, respectively (Fig. 7). Units 1A and 1B show the most negative
scores along axis 1; these deposits are dominated by medium-sized
murines (77.1% and 65.7% of NISP, respectively) followed by small-
sized murines (20.1% and 31.6% of NISP, respectively) and low
numbers of the other body size categories (<2.6% of NISP; Table 2).
Units 2 through 8B show the most positive scores along axis 1;
these deposits are dominated by small-sized murines (61.5—87.5%
of NISP) followed by medium-sized murines (9.5—26.4% of NISP) in
all except Unit 7, where 1 of 8 femora (12.5%) is from a large-sized
murine. Finally, Unit 8C falls in the middle of axis 1 due to its more
equal numbers of medium and small-sized murines (48.7% and
44.4% of NISP, respectively). Overall, the observed changes are
mostly driven by shifts in the abundances of medium-sized mu-
rines relative to all other sizes, and relative to small-sized murines
especially, as indicated by the statistically significant adjusted re-
siduals derived from contingency table analysis of murine body size
class abundances across all adjacent stratigraphic units (Table 5).

4. Discussion
4.1. Murine body size classes and taxonomy at Liang Bua

Previous studies of murine dentognathic remains from Liang Bua,
along with the results of our dental survey, suggest murines of small
(R. hainaldi and R. exulans), medium (Komodomys cf. rintjanus, P. naso,
and R. rattus), huge (P. theodorverhoeveni and S. florensis), and giant
body size (P. armandvillei) are present (Musser, 1981; Musser et al.,
1986; van den Bergh et al., 2009; Locatelli, 2011; Locatelli et al.,
2012, 2015; Thomson et al., 2014). There have also been reports of
what is probably a third species of Papagomys (Musser et al., 1986; de
Vos et al., 2007) as well as a ‘shrew rat’ (see also Musser et al., 1986;
van den Bergh et al., 2009; van den Hoek Ostende et al., 2011). We
also observed molars and jaws of these as yet undescribed species,
although they are rare in the assemblage overall, and both likely
belong to our large-bodied size class. Based on molar size, the third
species of Papagomys would have been slightly smaller in body size
than P. theodorverhoeveni (Fig. 8). Although the molars of the shrew
rat at Liang Bua are markedly reduced in size, as is typical for shrew
rats (a label applied to various specialized but non-monophyletic
animalivorous murines from Sulawesi, the Philippines, and New
Guinea; e.g., Helgen and Helgen, 2009), the mandible is relatively
large and suggests a body mass comparable to that of Anisomys
imitator, the uneven-toothed rat of New Guinea (400—600 g).

We also found dentognathic remains of Hooijeromys, another
large-bodied taxon known only from fossils recovered in central
Flores at Early/Middle Pleistocene sites within the So'a Basin
(Musser, 1981; Brumm et al., 2016). In the Liang Bua murine
assemblage, teeth and jaws similar in size and morphology to that
described by Musser (1981) for the holotype of H. nusatenggara are
present (Fig. 8; Table 4). We tentatively refer these specimens to
Hooijeromys cf. nusatenggara until more detailed taxonomic com-
parisons can be made with the holotype and referred material,
which consists of a maxillary fragment with three molars and two
mandibular molars, respectively (Musser, 1981).

In total, the postcranial and dentognathic remains at Liang Bua
and our extant comparative sample indicate that a relatively wide
but continuous range of murine body sizes were present at the site
throughout the past ~190 kyr. Approximately 95% of the femora and
humeri analyzed are from small (<~100 g) and medium-sized
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Figure 5. Chord distance (CD; left) and cluster (right) analyses of murine body size composition across stratigraphic units based on femoral head diameter data from nine sectors.
Asterisks indicate significant CD values (diamonds) transitioning from Units 1B to 2 and from Units 8B to 8C. Note Units 1A, 1B, and 8C cluster together.

(~100—300 g) murines, while only ~5% are from larger ones
(>~300 g; Tables 2 and 3).

4.2. Taphonomy

Small mammal cave assemblages are often the result of owl
pellets accumulating over time (Dodson and Wexlar, 1979; Morris,
1979; Andrews, 1990; Gubanyi et al., 1992). At Liang Bua, barn owls
(Tyto sp.) are well represented throughout the entire stratigraphic
sequence and are the most abundant roosting raptor identified
from the Late Pleistocene units (Meijer et al., 2013, 2015). Based on
the low levels of digestion observed on the non-passerine avian
assemblage (Meijer et al., 2013) and a sample (n = 1576) of murine
humeri (Veatch, 2014), the abundant small and medium-sized
murines at Liang Bua were mostly accumulated by barn owls
(Tyto sp.).

Barn owls are small mammal specialists roosting and hunting in
predominantly more open landscapes (e.g., shrubland, savanna,
grassland) and often use caves as nesting sites (Andrews, 1990;
Bruce et al., 2014). Unlike some raptors that hunt and roost in
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Figure 6. Unbiased Simpson evenness index of murine body size abundances through
time. Upper and lower margins represent 95% confidence intervals.

separate habitats and prey upon specific type of small rodents
(Fernandez-Jalvo et al., 2016), barn owls are less selective and will
spend both activities in similar habitats consuming non-specific
prey types (i.e.,, whichever species is available)—making their
pellet accumulations more representative of local ecologies than
predatorial bias (Glue, 1967; Andrews, 1990). Compared to most
other raptors, barn owls also tend to leave minimal bone damage in
the form of low digestion, postcranial breakage, and bone loss
(Dodson and Wexlar, 1979; Andrews, 1990). While most behavioral
and environmental data collected from barn owls derive from Eu-
ropean and North American localities, many Late Pleistocene
Southeast Asian archaeological sites report frequent barn owl ac-
tivity with low degrees of bone damage (Hawkins et al., 2017a,b,
2018). However, vultures (Trigonoceps sp.), eagles (Aquila sp.),
Brahminy kites (Haliastur cf. indus), and goshawks (Accipiter sp.) are
also represented at Liang Bua (Meijer et al., 2013, 2015) and may
also have contributed to the murine assemblage.

Conversely, the accumulation of larger-sized murines
(~300—2500 g) at Liang Bua is likely due to hominins and/or natural
deaths. While some depictions have suggested that H. floresiensis
was hunting these larger-sized murines (Fig. 9), there is not yet any
taphonomic evidence that supports such an interpretation. A sys-
tematic taphonomic study of the Liang Bua murine assemblage is
underway to determine whether there is reasonable evidence (e.g.,
burning, cut marks, and tooth marks) to ascertain the degree to
which hominins were responsible for parts of the total murine
assemblage. While such taphonomic data are required to evaluate
all of the likely sources of the murine accumulation at Liang Bua,
owls (Tyto sp.) are almost certainly the major accumulator of the
small and medium-sized murines (~95% of the total murine
assemblage) found within the cave deposits, and thereby, these
remains should reasonably reflect changes in local ecology through
time.

4.3. Abundances of murine body size classes through time

All stratigraphic units at Liang Bua contain postcranial evidence
of murines from each of the five body sizes classes used in this
study (Tables 2 and 3), except Units 3 and 7, which consist mostly of
volcanic tephra deposits. Element frequencies within each unit vary
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Table 5

Adjusted residuals (ARs) derived from contingency table analysis of rat body size class abundances in adjacent stratigraphic units. ARs to be read as standard normal deviates
(values > |1.96] are statistically significant at o = 0.05 and are shown in bold). Positive values indicate an increase in abundance relative to the preceding stratigraphic unit
whereas negative values indicate a decrease in abundance.

Size class Stratigraphic unit

1A to 1B 1B to 2 2to4 4t05 5t06 6—8A 8A to 8B 8B to 8C
Small 8.89 1244 -0.33 —-0.89 -1.60 4.04 -1.93 —5.50
Medium —8.57 —14.10 0.60 0.31 2.87 -5.71 0.89 8.69
Large -1.20 —0.02 —0.68 1.23 -0.63 -0.50 1.46 -1.91
Huge 1.28 8.21 —0.04 0.56 -1.14 0.97 0.30 —3.62
Giant 1.26 7.08 0.27 -1.10 —-0.08 141 0.96 —3.40

1 cm

Figure 8. Left maxillary first molars of murines from Liang Bua. a) Papagomys armandvillei;b) Papagomys theodorverhoeveni (image flipped); c) Spelaeomys florensis; d) probable
third species of Papagomys (image flipped); e) Hooijeromys cf. nusatenggara; and f) Komodomys rintjanus. Images of Papagomys armandvillei (RMNH, 18301; holotype), Spelaeomys
florensis (LT 205), and Komodomys rintjanus (MZB 9016) are modified from Musser (1981), whereas the other images are from specimens recovered during excavations at Liang Bua.
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Figure 9. a) One of the authors (M.W.T.) and Bonefasius Sagut measure a modern giant rat (Papagomys armandvillei) at Liang Bua. b) A reconstruction of Homo floresiensis carrying a
giant rat over the left shoulder by paleoartist Peter Schouten (image is modified from its original form).

but reasonably match the frequencies of total bones recovered
from each unit (e.g., Sutikna et al., 2018), which are likely due to a
combination of the amount of time represented within each unit
and variation in the rates of sedimentation and bone deposition.
Interestingly, the relative abundances of these size classes across
successive stratigraphic units reveal two major changes in murine
body size distribution among the Liang Bua taxa that likely indicate
concomitant ecological events as well as longer periods of general
stability in between.

Units 1A to 2: ~190—50 ka Earlier studies linked the intensive use of
the cave by H. floresiensis to wet, forested conditions (e.g.,
Westaway et al., 2009b), but it is important to note that this
interpretation was based on the fact that most of the skeletal re-
mains of H. floresiensis were originally but erroneously thought to
be ~18—13 ka old (Brown et al., 2004; Morwood et al., 2004, 2005;
Roberts et al., 2009). As H. floresiensis and the large-bodied taxa
associated with it have yet to be discovered in situ at Liang Bua after
~50 ka (Sutikna et al., 2018), the paleoclimate and paleoenviron-
ment reconstructions of Flores during the past 50,000 years
(Westaway et al., 2009a,b) more aptly detail the environmental
context surrounding the probable Late Pleistocene arrivals of
modern humans to the island (Morley et al., 2017; Sutikna et al.,
2018).

Small and medium-sized murines dominate Units 1A and 1B
(~190-60 ka), but in Unit 2 (~60—50 ka) the numbers of medium-
sized murines noticeably drop resulting in relatively larger abun-
dances of smaller and larger-sized murines (Tables 2—4). This
distributional change in murine body size classes from Units 1B to 2
resulted in the largest chord distance we observed in our analyses
(CD = 0.96; Fig. 5). Based on a combination of dentognathic and
postcranial evidence, the significant decrease in medium-sized
murines from Units 1 to 2 is almost certainly due to reduced
numbers of Komodomys relative to increased numbers of R. hainaldi
(Table 4). Stratigraphically, these units are separated from each
other by two volcanic tephras (T1 and T2) that were deposited ~60
ka (Sutikna et al., 2016a). These two tephras also directly overlie the

sediments from which all skeletal remains thus far attributed to
H. floresiensis have been recovered (Sutikna et al., 2016a). Thus, the
observed shifts in Komodomys and R. hainaldi abundances may have
important implications for understanding why skeletal evidence of
this hominin species has yet to be found above T1.

Examination of only the three largest murine size categories
(large, huge, and giant) results in a similar pattern as that observed
for the entire sample (Table 6). Units 1A, 1B, and 8C are distin-
guishable from the other units based on their greater abundances of
large-sized murines, which we suspect mostly represent Hooijer-
omys cf. nusatenggara, because dental remains of this taxon were
identified in these units more often than the other two large-sized
murines were (i.e., the shrew rat and Papagomys sp.; Table 4).

The observed decline in Komodomys and probably Hooijeromys
as well in Unit 2 (Table 4), however, is consistent with the paleo-
climate record for this region of Flores that spans the past ~92 ka
based on speleothems from Liang Luar, which is located ~800 m
southeast of Liang Bua (Scroxton et al., 2013, 2015; Scroxton, 2014).
This paleoclimate record suggests a substantial reduction of vege-
tation cover and a switch to C4 grasses occurred in this area be-
tween ~69 and 62 ka (Scroxton et al., 2013, 2015; Scroxton, 2014).
Stable isotope analyses of remains from sites ~880—650 ka in the
So'a Basin (central Flores) of Hooijeromys and the proboscidean
Stegodon florensis (the putative ancestor of the stegodon repre-
sented at Liang Bua; van den Bergh et al., 2008, 2009) show that
these animals were grazers, primarily consuming C4 grasses and
preferring open habitats (Brumm et al., 2016). Assuming Stegodon
florensis insularis at Liang Bua was also a grazer, the reduced
number of stegodon remains recovered from Unit 2 compared to
Unit 1B (Sutikna, 2016; Sutikna et al., 2018) most likely suggests a
major shift in available C4 grasses in the habitats surrounding Liang
Bua after ~60 ka. We suspect that the large numbers of medium-
sized murines (primarily Komodomys) and Stegodon as well as the
relative higher proportions of large-sized murines (mainly
Hooijeromys) in Unit 1B, which spans ~120—60 ka, were mostly
accumulated during the ~69—62 ka open period and also during
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Table 6

Adjusted residuals (ARs) derived from contingency table analysis of rat body size class (large, huge, and giant only) abundances in adjacent stratigraphic units. ARs to be read as
standard normal deviates (values > |1.96] are statistically significant at o = 0.05 and are shown in bold). Positive values indicate an increase in abundance relative to the

preceding stratigraphic unit whereas negative values indicate a decrease in abundance.

Size class Stratigraphic unit

1A to 1B 1Bto 2 2to4 4t05 5to6 6—8A 8A to 8B 8B to 8C
Large —2.09 —5.02 -0.70 1.16 0.21 -1.31 0.68 1.73
Huge 1.44 3.54 0.09 0.00 -0.38 0.44 -0.90 -0.73
Giant 1.37 3.01 0.46 —-1.80 0.30 1.14 0.32 —1.40

possible preceding C4-dominated intervals prior to 92 ka (and thus
not recorded in the Liang Luar speleothem record) in Units 1A and
1B. Unfortunately, difficulties in precisely dating these sediments
preclude refining these units into shorter temporal intervals at
present.

If our interpretation of these data is correct, then it helps explain

why there is such a density of these C4-adapted animals, as well as
predators and/or scavengers of Stegodon (i.e., Komodo dragon, giant
marabou stork, vulture, and H. floresiensis) in Unit 1 compared to all
other subsequent units (Sutikna et al., 2018). In other words, as
more open habitats shifted away from the areas surrounding Liang
Bua by ~60 ka, so did H. floresiensis and these associated taxa, and
thus the likelihood of their remains ending up in the cave's sedi-
ments diminished.
Units 4 to 8B: ~47—3 ka Almost no change in murine body size dis-
tribution was observed from Units 2 to 4 (CD = 0.06). This suggests
that the major volcanic eruption that resulted in the deposition of
tephra T3 (Unit 3) at Liang Bua, although likely initially devastating to
the surrounding ecosystem, ultimately had little effect on the local
murine populations and the habitats available to them. This is an
interesting result relative to patterns observed for the entire faunal
and stone artifact assemblages, wherein the transition from Units 2
to 4 marks the disappearance of Stegodon, Komodo dragon, giant
marabou stork, and vulture from Liang Bua, as well as a marked shift
to chert as a preferred raw material for hominin stone tool manu-
facture (Sutikna, 2016; Sutikna et al., 2018). If this megafaunal
disappearance and the shift in raw material preference does, in fact,
indicate the earliest presence of modern humans at Liang Bua and on
Flores (Sutikna, 2016; Sutikna et al., 2018), then it appears their initial
impact on the local murine fauna was minimal.

The observed changes in murine body size distribution from
Units 4 to 5 and 5 to 6 remain modest (CD = 0.12 and 0.19,
respectively) but reveal small increases in medium and large-sized
murines (again, most likely Komodomys and Hooijeromys, respec-
tively), probably reflecting a return of some open habitats in the
greater area surrounding Liang Bua, particularly during Unit 6
(~18—13 ka). However, larger areas of closed habitat surrounding
Liang Bua during this interval are suggested by the huge-sized
murines, which are found in their greatest abundances in Units 5
through 8B (5.5—7.9% of NISP; 46—3 ka). Huge-sized murines are
represented at Liang Bua by P. theodorverhoeveni and S. florensis,
both of which are considered extinct, forest-adapted taxa (Musser,
1981). These results only partially correspond with the paleo-
climate reconstruction of Westaway et al. (2009a), which predicted
more open habitats during the 36—17 ka period. The observed
discrepancy is most likely due to the broader, regional nature of
these paleoclimate data and reconstruction relative to the local
signal from the Liang Bua murines. Indeed, the Liang Bua murine
signal more closely matches the speleothem record of stable carbon
isotopes from nearby Liang Luar, which provides a local vegetation
signal rather than a regional climate signal (Scroxton, 2014).

A relatively greater change is observed from Units 6—8A
(CD = 0.26) and this, once again, is driven by a decrease in the
medium-sized murines (Figs. 4 and 5). Unit 8A samples the early

Holocene from ~12 to 5 ka and the change in murine body size
distribution is consistent with predictions of greater amounts of
rainfall during this period following the return of the monsoon
15—11 ka (Westaway et al., 2009a; Scroxton, 2014). In other words,
the change in murine body size distribution appears to have been
driven by ecological shifts wherein open habitats were replaced by
more closed woodland and montane forested ones (Westaway
et al., 2009a; Scroxton, 2014). Almost no change in murine body
size distribution occurs between Units 8A to 8B. Indeed, the
observed CD value (0.08) is the second smallest in the entire sample
and suggests that the surrounding paleoecology during this ~2 kyr
interval remained largely similar to that of Unit 8A.

Units 8B to 8C: ~3 ka to the present The transition between Units 8B
and 8C reveals another major shift (CD = 0.63), as medium-sized
murines show their largest increase observed across the entire
sequence and large-sized murines are more frequent than both
huge and giant-sized ones. A pattern where medium-and large-
sized murines are more abundant than small- and both huge and
giant-sized ones, respectively, is only observed in Units 1A, 1B, and
8C (Table 2).

Previous research suggests that modern humans were tran-
sitioning to a more sedentary lifestyle in the area surrounding Liang
Bua between ~5 and 3 ka (Unit 8B), wherein pottery appears for the
first time (~3 ka) and the proportions of introduced large mammals
(e.g., pigs) noticeably increase, which is a pattern that continues
into Unit 8C (Morwood et al., 2009; Sutikna, 2016; Sutikna et al.,
2018). Moreover, several intentional modern human burials
accompanied with pottery, pig tusks, and stone adzes as grave
goods appear in Unit 8C as well (Morwood et al., 2009; Sutikna,
2016; Sutikna et al., 2018). In combination, these data suggest
that there was a shift to sedentism from the mid-Holocene onward
that is probably associated with the adoption and subsequent
intensification of agricultural practices (Morwood et al., 2009;
Sutikna, 2016; Sutikna et al., 2018). This interpretation is further
supported by the results of the current study as Unit 8C marks the
first time in ~57 millennia that medium-sized murines increase
beyond 30% of NISP (from 13.2% in Unit 8B to 48.7% in Unit 8C) and
come nearest to their previous dominant abundances in Units 1A
and 1B (77.1% and 65.7%, respectively).

The return of medium-sized murines is likely due in part to an
increase in Komodomys (Table 4) but also to the appearance of
introduced Rattus such as R. rattus, as evidenced by dentognathic
remains (Table 4; Locatelli et al., 2015). The speleothem record from
Liang Luar does not suggest that any substantial reduction of
vegetation cover and/or switch to C4 grasses occurred in this area at
any time during the past ~15 Kkyr, but a slight trend toward more
enriched '3C isotope values is observed during the past ~5 kyr
(Scroxton et al., 2013, 2015; Scroxton, 2014). This suggests that
modern human populations may have been clearing forests in the
area to provide suitable spaces for living and/or farming as well as,
in turn, unintentionally providing new opportunities for the more
open habitat-adapted medium-sized murines to flourish. However,
these modern human subsistence behaviors did not cause native Cy4
grasses to return to the area in any major way. Farming activities




58 E.G. Veatch et al. / Journal of Human Evolution 130 (2019) 45—60

during this period likely involved a combination of domesticated Cs3
and C4 plants such as rice and foxtail millet, respectively (Bellwood,
2005), and this could possibly explain why the local speleothem
record does not shift more dramatically during this period to more
enriched 3C isotope values. In other words, the human-mediated
shift in Unit 8C to a greater availability of more open habitats
surrounding Liang Bua is distinct from the climate-mediated shift
in Unit 1B that almost completely reduced the availability of more
closed habitats.

5. Conclusions

The results of this study on murine body size variation through
time demonstrates that the Liang Bua murine assemblage encodes
significant details about the paleoecology of the area immediately
surrounding the cave. Most importantly, the major relative reduc-
tion in medium-sized murines and concomitant rise in small-sized
murines observed immediately after ~60 ka reasonably corre-
sponds with the disappearance of H. floresiensis, the proboscidean
Stegodon florensis insularis, and other associated large-bodied taxa
(i.e., body mass > ~3 kg) from Liang Bua ~60—50 ka. These shifts are
also consistent with the local 13C speleothem record indicating a
sudden decrease in available C4 vegetation and a return to more
closed, forested conditions after ~62 ka (Scroxton et al., 2013, 2015;
Scroxton, 2014). Thus, the disappearance of H. floresiensis and these
other large-bodied taxa at Liang Bua may simply be the conse-
quence of them tracking their preferred, more open habitats to
elsewhere on the island, as is likely the case with the medium-sized
murine Komodomys. If this explanation is correct, then the precise
timing of the extinction of H. floresiensis, Stegodon, giant marabou
stork, and vulture must await new discoveries at Liang Bua or other
as yet unexcavated sites on Flores.
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