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Abstract

Oral disease affects an estimated half of all people globally—the most common of
any noncommunicable disease to be contracted throughout an individual’s lifetime.
Yet, despite numerous technological and scientific developments of the past century,
the prevalence of oral disease continues to increase alongside urbanisation and in-
dustrialised lifestyles; a major public health problem marked with inequalities and
ethnic disparities. Critically, oral health is a key indicator of overall systemic health,
and thus, the study of the human oral microbial communities has tangible outcomes
that can improve—both oral and systemic—health and well-being.

Evidence supports a mutually beneficial relationship between humans and their
microbiome (i.e. the microorganisms and their genomic content, living on and within
the human body), evident by the reliance of human physiological function upon the
synergistic interactions with their microbes. Most oral diseases typically stem from a
‘microbial imbalance’, where the disruption of oral microbial ecology no longer sup-
ports a symbiotic or mutually cooperating microbiome optimal for human health.
In this thesis, I investigate, inform, and improve upon our understanding of the hu-
man oral microbiome. I focus predominately on the processes of industrialisation—
principally, the consequential alterations to human sociocultural and environmental
factors—that are known to influence the microbiome and augment oral disease risk,
and by extension, impact human systemic health.

Within this thesis, I synthesise our current understanding of and the research per-
taining to the human microbiome, advocating for the inclusion of human-microbiome
co-evolutionary history within public health and biomedical research. This is espe-
cially important regarding the health inequalities impacting Indigenous populations
globally, wherein evolutionary life history may underscore contemporary population
health. Inclusivity of Indigenous populations within human microbiome research is
needed in order to better understand the influence of industrial processes upon the
microbiome, especially in regard to human health and disease. I analyse the salivary
microbial community of Aboriginal Australian and Torres Strait Islander children,
one of the first studies to investigate whole oral community changes in response
to oral health treatments. Finally, I sought to examine the historical impact of
Industrial Revolution on the European oral microbiome, using novel paleomicrobio-
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Abstract

logical methods that grant access to the preserved microbial communities of calcified
dental plaque (calculus). By analysing the methodological bias of taphonomy—the
biochemical processes of fossilisation—upon calculus microbiomes, I was able to il-
luminate the ecological alterations of the human oral microbiome, consequent of 200
years of industrial development, that has cultivated the contemporary European
oral microbial composition.

My thesis contributes to oral health research by providing context and perspec-
tive of evolutionary medicine, with the application of evolutionary history, to oral
microbiome research to the realm of contemporary public health. Further, I iden-
tify promising and prospective areas for future oral and systemic health research
through the investigation of historical Industrialisation and its impacts on the hu-
man oral microbiome. The genomic understanding of past and present microbial
ecological communities can offer more precise inferences of prevailing sociocultural
and environmental forces regarding the risks, contributions, and development of oral
disease. I hope, in the endeavour to progress our understanding of the human oral
microbiome, this work furthers innovation and technical understanding to improve
global population health.
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The human microbiome and the evolutionary history

of human-associated microorganisms

The rapid expansion of research into human microbiota—the communities of mi-
croorganisms that live on and within the human body—of the 21st century has
dramatically changed how we define and comprehend human health, disease, and
the interconnection of human biology and the environment. From the acquisition
of the microbes moments after birth, the establishment of our microbial community
during the post-natal period is essential for the correct morphological and functional
development of the human immune system [1]. The contribution of gut microbiota
and their derived compounds (nutrients or metabolites) is critical for immune sys-
tem signalling, epithelium homoeostasis, and developmental cell programming [2, 3].
Moreover, microbial signalling is vital in the regulation of energy homoeostasis, fer-
mentation, metabolism, and nutrient utilisation [4, 5]. Studies also implicate the
microbiota in signalling mechanisms crucial for normal brain development and subse-
quent behavioural functions [6, 7], and have found links between the gut microbiota
to mental illness and neuro-degenerative disorders, through gastrointestinal-brain
communication (commonly referred to as the gut-brain axis) [8]. Overall, the fun-
damental functionality of the human microbiota underline the importance of these
microbial communities within the host systemic health and disease.

Until the development of molecular tools, microbiome research was limited to
the minority of bacterial taxa that could be grown within a laboratory (i.e. cul-
tured). Even today, research typically focuses on the bacterial communities that
dominate the microbial consortium [9, 10]. Much of what we understand about
human microbiota is owed to both the advances in and cost-reduction of high-
throughput sequencing technology. However, the significance of microbiota within
the realm of human health was first deliberated in the 1960s by microbiologist
René J. Dubos (1901–1982) [11]. Dubos’ experimental research observed the in-
teractions between microbiota and lifestyle factors (such as nutrition, social inter-
actions, and stress) in germ-free and specific-pathogen-free mice [12]; perceptivity
beyond the contemporary thinking of his time. Dubos spent much of his later ca-
reer discussing interconnections of anthropological and biopsychosocial variables,
which often focused on the epidemiological impacts of technologically-focused and
environmentally-disconnected lifestyles [11]. Today, this disconnect is commonly
discussed with respect to human and microbial co-evolutionary relationships.

Our understanding of the co-evolutionary relationship between microbes and
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humans is still in its infancy, but there is an inferred understanding that the de-
pendence of human physiology upon their microbiota implies a long co-evolutionary
history [13, 14, 15]. Understanding the processes that lead to microorganisms evolv-
ing and adapting to a human host, or insights into the evolution of human biological
dependence upon microbial functionality, has the capacity to improve human health
with conceivable microbiota-assisted medical treatments, personalized therapies, or
disease-preventative medication. The first step towards this future potential is a
broadening our comprehension of the evolutionary history between human and mi-
crobial co-adaption, and those factors that have contributed to such co-dependence.

The current state of the human microbiome—the amalgamation of the ecosys-
tem, with all microorganisms and their genetic material, present within the defined
environment—is largely considered beneficial, until the microbial community is al-
tered [16]. Changes to microbial ecology can affect the functionality of the micro-
biome, and equally that, loss of necessary functional properties can induce changes
to the microbial composition, and these changes can induce disease. The gut micro-
biome, for example, has been linked to a variety of chronic conditions, such as obesity
[17, 18], irritable bowel syndrome [19], inflammatory bowel disease [20, 21], colon
cancer [22], rheumatoid arthritis [23], and surprisingly, even associated with men-
tal health disorders, such as depression and schizophrenia [24, 25]. The complexity
of microbial interactions with human health makes it difficult to unravel causality,
but the breadth of such interconnections suggest microbial relevance in physiolog-
ical disease susceptibility [26]. This susceptibility is linked to the rapid cultural
and technological developments of contemporary industrialised human lifestyles (by
which the definition is still Eurocentric), for which many factors are at odds with
the long evolutionary history shared between humans and their microbiota [16, 27].

Numerous hypotheses have been brought forth by epidemiologists, medical doc-
tors, microbiologists, anthropologists, and even ecologists, to explain the link be-
tween human-microbe co-evolution and so-called ‘Western diseases’ (i.e. chronic
non-communicable diseases associated with industrial development [28]). The famed
‘hygiene hypothesis’ first arose in 1989, proposing the increased hygiene practices,
smaller family sizes, and antibiotic usage were limiting the early-life exposure to en-
vironmental microbes needed to help build a comprehensive immune system, causing
the increased prevalence of allergies [29]. Similarly, the ‘old friends hypothesis’ ar-
gues that limited contact with the environment has promoted a loss of commensal
microorganisms (‘old friends’) required for the induction and regulation of mucosal
immunity [30]. More specifically, the ‘diet hypothesis’ condemns the industriali-
sation of food production and consumption; increased food processing and the re-
duced consumption of fibrous plant products is leading to a deficiency in microbial
by-products (from the fermentation of these fibres), which are essential for numer-
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ous gut metabolic functions and gastrointestinal maintenance [5]. Notably, all these
hypotheses share a common thread of thought; the recent transition to the industri-
alised lifestyle has induced a loss of commensal microorganisms (i.e. a unidirectional
relationship where organism benefits and the other is neutrally impacted). This loss
has structured a microbiome (whenever due to hygiene practices, reduced environ-
mental contact, or dietary-caused extinction) that is discordant with the evolution-
arily physiological co-dependence. In order to understand how and why commensal
microorganisms have been lost, it is essential to study the temporal relationship
between humans and microbes to identify those evolutionary drivers that shape and
define the microbiome.

The study of the evolutionary history of human microbiomes has adhered to pri-
marily to two methods. The first—the phylogenetic approach—uses bioinformatic
techniques to track protein-coding regions of bacterial genomes, assessing diversifi-
cation and congruence between humans and microbiota phylogeny [15]. This tech-
nique has been used to identify changes in microbial diversity from the divergence
of apes and human ancestors, through hominid evolution and cospeciation of mi-
croorganisms with human physiology [31]. While this phylogenetic estimate provides
evidence for reduced microbial diversity through human evolutionary history, it does
not provide details of this ancestral microbiome composition. The second, and more
informative, approach uses ancient DNA to reconstruct the microbial communities
preserved in ancient samples. This method is able to produce real-time snapshots
of the ancestral microbiome, allowing for direct comparisons between the human
microbiome composition and function throughout evolutionary history.

DNA from dental calculus reconstructs the ancient

oral microbiome

Ancient DNA (aDNA) is genomic material extracted from archaeological or palaeon-
tological remains, which can be recovered from a broad range of materials, such as
mummified tissues, preserved medical or museum specimens, bones, seeds, hair, and
even ice or permafrost cores [32, 33]. The study of aDNA presents many difficulties
and challenges, stemming from the continuous deterioration of DNA molecules fol-
lowing an organism’s death; post-mortem modification can destabilise, degrade, and
destroy DNA structures [34, 32]. The preservation of aDNA overtime is therefore
highly dependent upon the environment in which it was deposited; DNA biochem-
istry favours low temperatures, dry localised climates, and high salt concentrations
[33]. Even with optimum conditions, difficulties in survival translate to difficulties in
aDNA retrieval; DNA degradation, caused by spontaneous hydrolysis and oxidation,
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is characterised by breakages in the sugar-phosphate backbone, nucleotide modifi-
cations, baseless sites, and intermolecular cross-linkages [35]. Such DNA damage
patterns will interfere with PCR amplification, blocking DNA polymerase or caus-
ing incorrect nucleotide insertions [34]. Technical difficulties and DNA damage make
ancient DNA research extremely vulnerable false positives from exogenous contam-
ination from the environment, humans, reagents, and PCR reactions [32, 33]. Con-
tamination is the unwanted DNA molecules from external sources (e.g. laboratory
reagents, modern human DNA, or even other samples in the processing batch) that
can confound the sample source DNA [36]. Accordingly, aDNA research requires
thorough authentication. Cooper and Poinar (2000) noted “criteria of authentic-
ity” to validate good research practice within the aDNA field [37]. Now, nearly 20
years after Cooper and Poinar’s publication, authentication is commonly dependent
upon computational verification of ’true’ aDNA by studying the damage patterns
within high-throughput sequencing reads. For example, mapDamage2.0 program
quantifies estimates of damage parameters expected of aDNA sequences by statis-
tical modelling of the expected deamination patterns [38]. Despite the difficulties,
aDNA remains advantageous in providing insight into the coevolution of microor-
ganisms and humans. The ability to sample discrete temporal and spatial locations,
throughout historical cultural, social, and environmental transitions provides direct
biological evidence of past microbial ecology in ‘real time’.

From the detection of the pathogenic microorganism Mycobacterium tuberculosis
back in the 1990s using PCR techniques from ancient skeletal remains, the study
of ancient microorganisms—paleomicrobiology—flourished with the development of
molecular techniques [39]. The field of paleomicrobiology chiefly looks to resolve di-
agnostics, epidemiology, and the evolution of past pathogens using targeted sequenc-
ing. But with the advent of high-throughput sequencing technology granting access
to ancient microbial communities, paleomicrobiology now encompasses the study
of ancient microbiomes. In the examination of ancient human microbiota, several
different samples have been utilised, including mummified human remains [40], his-
torical medical specimens [41], and microbial deposits in bone (derived from seepage
from decomposition) [42]. The difficulties of contamination and aDNA authenticity
are twofold in the realm of microbiome metagenomics. Contamination with mod-
ern microbial DNA can inundate the endogenous damaged and fragmented aDNA,
with sequencing technology unable to discriminate between modern or ancient DNA.
Reagent and laboratory contamination notably impacts contemporary microbiome
analyses [43, 44], but this becomes especially problematic in aDNA research wherein
ancient samples are low in both biomass and abundance. Much like the criteria of
aDNA research, there are a number of recommended practices in extracting ancient
microbiota from samples: importantly, specialised clean laboratories and practices,
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positive and negative sampling controls, and downstream contamination analyses
[45]. Computational analyses are often used to track contaminant DNA from ex-
ogenous sources and cross-contamination (unintentional sample-to-sample transfer
during labortory processing), and assess the level and types of contaminants. For
example, the Bayesian model SourceTracker estimates the proportion and origin of
contamination based on sequenced biological samples and their respective laboratory
controls [46]. The more recently developed R package decontam calculates the statis-
tical probability of whether a microorganism is contaminant based on its prevalence
within laboratory controls versus biological samples [47]. These approaches, both
in the laboratory and bioinformatically, offer a means to minimise and distinguish
exogenous contamination from the ancient microbial sample of interest. However,
the burden of contamination can also depend upon the type of sample from which
microbial aDNA is extracted from.

Within paleomicrobiology, there are two prevailing sources of ancient microbiome
samples that are considered analogous to living human microbiota: fossilised fae-
cal material (coprolites) representative of the gut microbiome, or calcified dental
plaque (also known as tartar, or dental calculus) that depicts the oral microbiome.
Coprolites maintain biological information of the ancestral gut microbiome [48, 49].
Analysis of the gut microbiome can provide direct evidence of dietary information—
what was eaten and how it was consumed—in addition to representing broader di-
etary lifestyles, where certain behaviours drive the composition and structure of the
gut microbiome [50, 51]. Coprolites can also be a good indicator of gastrointestinal
health, symptomatic of digestion and metabolic capability, both from dietary input
and microbial taxonomic and gene composition [51, 49]. However, there are number
of disadvantages to using coprolites for ancient microbiome research. Firstly, faeces
are highly biologically active and normally begin to rapidly decompose after de-
position, making the immediate environment critical for biomolecular survival [52].
Furthermore, even if the environmental conditions happen to be optimal for faecal
fossilisation, coprolites are customarily found in communal latrine areas or middens
(i.e. rubbish pits) dissociated from any specific individual, and necessitating any
recovered microbial information to be interpreted on a host-population level [49].
Finally, as an open system, gastrointestinal contents or excreted faecal matter are
incredibly susceptible to environmental microbes, creating difficulties in distinguish-
ing environmental contamination from true biological signal [48]. Many of the issues
regarding coprolite prevalence, survival, and contamination are reasons why dental
calculus is a superior source of ancient microbiomes.

Human dental calculus is formed by the presence of calcium and phosphate salt in
saliva depositing into dental plaque, which mineralises the plaque into a cement-like
(both in terms of physical hardness and adherence strength) form [53]. Microor-
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ganisms that survive on the surface of teeth use specific cell-to-cell recognition and
adherence partnerships to bind both to the tooth surface and to one another, forming
an extracellular matrix known as a biofilm, or dental plaque [54, 55]. As the human
oral cavity is a gateway into the human body, this open system—and the microor-
ganisms that inhabit it—are continuously exposed to exogenous microorganisms
and environmental compounds. The mineralisation processes of dental plaque occur
throughout an individual’s lifetime, such that dental calculus not only fossilises the
oral microbial community but can trap food particles or transient microorganisms
(such as bacterial pathogens, viruses or fungi species), potentially providing evidence
of individual pathological data and personal dietary information [49, 56]. The min-
eralised structure and formation of calculus safeguards the endogenous microbiome
from the contamination pitfalls experienced by coprolites. The calcified matrix pro-
tects microbial aDNA from external contamination even after host decomposition
situated in a contaminate-filled, post-mortem environment [57]. Additionally, the
presence of dental calculus in the archaeological record is far more abundant than co-
prolites, as calculus is ubiquitous in all post-agricultural societies, and documented
within the hominid archaeological record as far back as Australopithecus species, two
million years ago [58, 59]. More often than not, dental calculus is found attached
to human remains, thus has the advantage of providing additional anthropological
data to the study of the ancient oral microbiome [60].

The oral microbiome preserved within dental calculus is a small representation of
the diverse community of microorganisms inhabiting the human mouth. The physio-
chemical properties of the oral cavity drive compositional differences of the microbial
communities inhabiting different niches, in which the tongue, teeth, and different
tissue surfaces (mucosa, palate, and gingiva) all harbour distinctive microbial com-
munities [61]. Despite the oral cavity’s external interactions with the environment,
the microbiota of the mouth is one of the more conserved microbial communities
across the human body (both within and between individuals), with relative ecologi-
cal stability over time [62]. It has been suggested that this homogenous conservation
is likely due to the transient availability of food, limiting the dietary influence on
the microbial community (with the exception of dietary sugars). Saliva and gingival
crevicular fluid (i.e. serum exudate carrying an immune response for the preven-
tion of tissue inflammation to oral bacteria) are therefore considered the primary
nutrient source for oral microorganisms [63, 64]. This relationship advocates for the
tight interconnection between the oral microbiome composition to systemic health,
to which the immune system and salivary biochemical elements are intrinsically
linked. The relationship is recapitulated in the association between dental health
and systemic health; poor oral health has been linked to cardiovascular disease [65],
type 2 diabetes mellitus [66], and inflammatory disorders, such as osteoporosis and
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rheumatoid arthritis [67, 68].
Oral disease is largely caused by the breakdown of microbial homeostatic mecha-

nisms, altering the microbial community composition in a manner that is detrimental
for oral health [69]. For example, dental decay is consequent of an ecological im-
balance in the plaque microbial community, with increased consumption of simple
carbohydrate sugars, shifting the ecosystem towards a more aciduric and acidogenic
functionality [70]. Those microorganisms that can rapidly metabolise dietary sugars
into acid and thrive in acidic conditions will out-compete acid-sensitive microbiota
[69]. Yet, much of our current understanding of oral health and disease is based
on culturing work, omitting the substantial proportion of bacterial taxa that can-
not be cultivated, let alone, the viral, archaeal, fungal components. This produces
a distorted comprehension of microbial composition associated with oral disease,
misguiding development of oral therapies to erroneously target singular ’pathogenic’
species, without anticipating the repercussions of the ecological impact [71, 72]. This
is particularly problematic in that half of the global human population is currently
affected by oral disease [73]. Thus a key component in addressing oral health and
disease is by gaining knowledge of the ecological community as a whole, investigat-
ing the ecological interactions and understanding the alterations to the ecosystem
[74]. By studying the ancient human oral microbiome through dental calculus, I
look to advance our understanding of such evolutionary forces on the ecology of the
oral microbiome and the evolution of microbial stasis.

Despite its relative novelty, research into the ancient microbiome using dental cal-
culus has already contributed to a greater understanding of the human microbiome
evolutionary history, and by proxy, the health and environmental experience of the
host, with an unprecedented level of detail. One of the first publications to use den-
tal calculus found evidence that the agricultural revolution—the successive dietary
transition from hunting-and-gathering lifestyles to farming—impacted the compo-
sition the human oral microbiome [75]. The authors argued that this transition to
an agricultural-based lifestyle, lead to an increased abundance of disease-associated
microorganisms [75]. Moreover, the perpetuation of this lifestyle saw a significant
increase in the abundance of dental decay-associated (i.e. acidogenic and aciduric)
microorganisms post-agriculture, observed from the European medieval period (900–
1600CE) into contemporary populations [75]. Discernibly, the contemporary human
oral microbiome appears less diverse than our ancestors’ communities, an ecological
predicament associated with low resilience and productivity [76, 77]. In fact, against
the evidence of oral microbiota’s dependence upon salivary proteins, metagenomic
analyses of ancient hominid Homo neanderthalensis (Neanderthal) dental calculus
revealed distinct microbial composition according to meat-eating behaviour [78].
Presumed low-meat eating or meat-free diets of Neanderthals constructed a mi-
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crobial composition resembling that of the wild forager-gathering chimpanzee oral
microbiome, whereas putative meat-eating individuals had a microbiome relative to
ancient hunter-gatherer Homo sapiens [78]. Both groups were ecologically distinct
from ancient agriculturalists or contemporary populations [78]. However, what these
longitudinal transects do not give credence to are the cultural and environmental
changes that occur in parallel with dietary transitions. Using dental calculus col-
lected from individuals living in the city of London, England, from the medieval
to post-medieval period (1066–1853 CE), Farrer et al. (2018) was able to detect
significant links to microbiota structure and systemic health (inferred from osteo-
logical evidence) that likely reflect the physiological impact of socioeconomic status
upon an individual’s microbiome [79]. These ancient metagenomic studies have pro-
vides insights into past cultural, environmental, and social changes throughout the
evolutionary history of the human microbiome, associating microbial compositional
changes with human health, and embodying what little is known about the origins
and evolutionary history of the human oral microbiome.

The processes of Industrialisation

To enrich our comprehension of oral microbial evolutionary history, conducive to the
understanding of contemporary oral health and disease, it is perhaps more valuable
to assess recent evolutionary alterations. The Industrial Revolution was arguably
the greatest—and most recent—cultural, environmental, and social change to occur
in human history. Originating in Great Britain at the beginning in the 18th cen-
tury, the Industrial Revolution epoch is defined by the rapid technological transition
to automated manufacturing of everyday common products, which were previously
made by human hands [80]. The ensuing process of industrialisation encompasses
the social consequences following such economic development, such as urbanisa-
tion or progressive social services, and thus, the term ‘industrialisation’ embodies
both economic progress and the subsequent social change [81]. These new methods
of production—and the novel commodities developed alongside them—transformed
industrial structures, led to the development of new social classes, advanced pro-
cesses of transportation, migration and urbanisation, and the inadvertently and
irreversibly altering the Earth’s environment [80]. Together, these changes culmi-
nate to the contemporary industrialised societies that we associate with increased
noncommunicable, chronic diseases rates and detrimental alterations to the human
microbiome.

Within this thesis, I focus on three main components hypothesised to have the
greatest impact upon the human microbiome, evident by contemporary research:
diet, culture, and environment. While this obvious simplification of entwined com-
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ponents may understate the complexity of relationships between socio-cultural and
physiological changes, this compartmentalisation facilitates investigations of micro-
bial change associated with industrialisation. The underlying principles of conse-
quential microbial alterations with diet, culture, and the environment is discussed
in detail within Chapter 1; nonetheless, it is important to reiterate that much
of what is theorised to change the human microbiome is based on contemporary
research and understanding. Microbiome research has shown that not only an indi-
vidual’s genetics and biology (including physical age and biological sex) [10, 82, 83]
but their associated lifestyle behaviours can impact their microbial composition;
factors such as physical activity [84], social interaction [85], varying ratios of di-
etary macronutrients [50, 86], or sleep patterns [87]. The potential for these lifestyle
factors to contribute to the composition and structure of the microbiome indicates
that human behaviours and interactions play an important role in shaping the func-
tionality of the microbiome [88]. Therefore, individuals experiencing the greatest
lifestyle alterations—dietary, culturally, or environmentally—during and through-
out the Industrial Revolution, theoretically would have experienced the greatest
ensuing microbial alterations.

In the late 17th century, the increased sophistication of agricultural techniques
and subsequent greater food production instigated a population boom, seemingly
the trigger to the processes leading up to the Industrial Revolution [80]. Up until
then, most pre-Industrial Europeans were primarily consuming, and wholly depen-
dent upon cereal crops, mainly in the form of barley, rye, oats, and wheat [89]. But
with industrialisation, mechanisation of transportation (increasing trade capability)
and agricultural production supplied markets with affordable, formerly luxury food
goods, such as animal proteins, fruits, and vegetables [89, 80]. The increased disper-
sal of wealth among the masses, which provided access to previously limited dietary
goods, was driven by the increasing number of workshops, factories, mills, and mines
requiring a ready supply of mobile and cheap labour [80]. Consequently, the peas-
antry class was no longer tied to a manorial system—which forced dependency of
a peasant to their land or to their lord who owned land—and sought employment
wherever they could find it [80]. This distribution of wealth was fundamental in the
cultural changes of industrialisation, with the establishment a new socioeconomic
division, the middle class, caused by subsequent differing of lifestyles between em-
ployers and the workforce [90]. Socioeconomic class dictated access to resources,
convoluted the gendered division of labour, and mandated behaviour, social inter-
actions, and living standards [91, 80, 90].

While contact with a circumscribed environment was governed by social class,
the processes of industrialisation also radically transformed this environment. Facto-
ries and workshops were built in cities for the advantage of accessible transportation
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and a higher concentration of people, precipitating the massive migration from ru-
ral to urban areas [80]. Rapid urbanisation was often outpaced by the volume of
rural migrants, and housing conditions were overcrowded, poorly constructed, and
lacked basic sanitary facilities [90]. In early industrialised cities, the lack of san-
itation extended into the public sphere, with garbage and bodily waste discarded
in the streets with inadequate sewage and waste facilities [80]. Industrial working
conditions were no better; manufacturing processes produced noxious or toxic by-
products and chemicals polluted the air, with little thought given to ventilation, let
alone to human health [90]. It was not just rapid urbanisation that impacted the
environment; industrialisation inflicted irreversible damage to the planet with the
extraction of elements from the earth (particularly coal and iron ore, the two main
components of industry) and industrial outputs of heavy metals began polluting
the air and water systems [80]. Industrialisation was a turning point in the human
relationship with the environment, a legacy that endured beyond the Industrial
Revolution era [80].

From an ecological perspective, we understand that all these changes, from diver-
sification of nutrients to environmental contamination, would have induced changes
to the human microbiome through the alteration of ecological pressures upon the
physiological niche [14]. For example, reduced dietary fibre consumption within
murine models induced progressive loss in gut microbial diversity, correlating with
a loss of function potential of enzymatic degradation of complex carbohydrates, in
that the host-driven alterations effectively selected for microbial community with the
greatest low-fibre metabolic potential [92, 93]. Conceivably, there was no greater al-
teration than what was experienced by individuals during ‘The Age of Imperialism’;
from around 1760s, Europe began the process of annexing, influencing, and colonis-
ing other countries around the globe [94, 95]. While the discovery of new lands and
the formation of colonies began long before the Industrial Revolution, it was the
industrial production and economic growth that increasingly drove imperialism and
colonialism for the acquisition and control of resources [96, 95]. Within this thesis,
I define colonialism and imperialism as forms of intergroup domination, in which a
culturally heterogeneous group exerts power over another, culturally differentiated,
society [94]. However, the crucial difference between colonialism and imperialism
is the presence or absence, respectively, of permanent settlers migrating from the
dominating power to the colony [94]. For example, Australia and New Zealand
were colonised, in that a number of Europeans migrated from European countries
to these colonies, whereas countries such as India, Zimbabwe (Rhodesia), and Hong
Kong Island of China, were imperialised, i.e. dominated but not extensively settled
by European migrants [94]. Colonies across the world were created and settled for
different political and economic reasons, inviting different socioeconomic resettle-
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ments, formed under distinctly different moral, cultural, and legal circumstances
[97]. Relating to our three overarching components of microbial alterations, culture
and diet in the colonies deferred to and was defined by the environment. Geographic
differences of new countries and continents not only meant contact with an entirely
new consortium of microorganisms [98], but the adaptation of culture and diet to the
available environmental resources dictated alterations to the environmental factors
that originally constructed their microbiome [99, 97, 100].

However, the process of industrialisation throughout the 18th and 19th cen-
turies did not end with the Industrial Revolution; the final stages of industrial
advancement—known as the ‘Great Acceleration’—began in the mid-20th century,
after World War II [101]. This post-1950s epoch is characterised by the very rapid
population growth, alongside intense resource consumption, energy use and pollu-
tant output [101]. Subsequently causing global changes in biodiversity, methanogen-
esis, carbon dioxide production, oceanic acidity, climate, and nutrient cycles [101].
These ecological disturbances are not felt solely at macroecological-levels; increased
outputs of heavy metal pollutants and waste chemicals will have long-term conse-
quences upon environmental microbial communities, likely impacting human micro-
bial development [102]. Much of this ecological damage inflicted upon the Earth is
linked to the increased urbanisation; more than half of the Earth’s estimated 7.5
billion people live in cities, a dramatic increase from the five per cent of the 700
million populace in pre-industrial 1750 [103]. However, unlike the urban hubs of
the early industrial era, public health moved to the forefront of city structure and
design during the early 20th century, with the establishment of sanitation, sewage
systems, clean water, and improved housing [103].

Parallel to improvements in structural public health, the corresponding medical
advances radicalised hygiene, childbirth, and antibiotic treatments. For example,
surgical developments and decreased maternal mortality rate lead to a dramatic
increase in caesarean births, which were rare prior to the 1950s, and are now as
common as one in three birthing events [102]. The practice of caesarean births has
been shown to impact the maturation and inheritance of the human microbiome,
suspected to influence later-life disease risk and susceptibility [104, 105]. Equally
so, the adoption of artificial baby formula, another practice which was objectively
non-existent prior to the 18th century, has shown to stimulate changes in the in-
fant gut microbiome [106, 107]. The medical and scientific advancements of the
late Industrial era pushed human disease ecology into the “second epidemiological
transition”; dominance of acute, chronic, and noncommunicable disease [108]. While
this epidemiological disease model links hygiene and antibiotics to a loss of microbial
diversity associated with an increased rate of acute and chronic diseases (e.g. the
aforementioned ‘hygiene hypothesis’), this model also incorporates the industriali-
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sation and commercialisation of food [108, 109].
Diets of the Great Acceleration skewed the balance of three major macronutrients—

carbohydrates, fats, and proteins—as behaviour concerning food and food prepara-
tion changed with urbanisation [110]. Urban populations are entirely dependent
upon imported resources, raising the demand for surplus food production and pre-
cipitating the integration of national and international levels of food distribution,
and subsequently a need for durability (e.g. processing or added preservatives)
through transportation [103, 110]. For instance, sugar consumption and the peri-
odic problems in producing regions drove breakthrough manufacturing techniques
for the exploitation of cheap food surplus, leading to the production of high-fructose
corn syrup in the 1970s [111]. Within 30 years, high-fructose corn syrup consumption
rose to a high of 64.8 lbs (29.4 kg) per capita in the United States alone, engendering
alterations to the gut microbiome associated with inflammation and metabolic dis-
orders [112, 113]. Urban and technological developments from the onset of the Great
Acceleration have driven the adaptations and changes in both human behaviour and
environments that are linked to our altered microbial composition and functional-
ity [16]. However, contemporary analyses isolating specific factors are confounded
by many concurrent factors of industrialisation and their subsequent historical mi-
crobial alterations; research is missing a definitive understanding of prior microbial
compositions and how they were transformed. Understanding our microbial her-
itage positions medical and public health researchers to better grasp the evolution-
ary dissociation between human hosts and their microbiota in order to substantiate
preventative measures and medical treatments for microbiome-associated diseases
[26].

Thesis overview

In this thesis, I explore the use of the oral microbiome and dental calculus to gain
greater insights into the impact of industrialisation processes upon human micro-
biome and systemic health. The sociocultural and environmental alterations of the
past 200 years of human evolutionary history have transformed the relationship
between human hosts and their microbial symbionts in a manner that it is now hy-
pothesised to have adversely affected human health. Nevertheless, the processes of
industrialisation are still occurring to this day, globally, at different rates, in different
populations, with different outcomes. Thus, a greater understanding of these histor-
ical those sociocultural and environmental changes were in the past, and what their
consequential impacts were on the human microbiome, has pertinent application
in contemporary public health. Together, the following manuscripts work towards
the conceptualisation of the human microbiome in the realms of public health and
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dental research, by reconstructing the oral microbial ecologies within contemporary
and historic microbiomes of individuals undergoing and/or experiencing industrial
processes.

Chapter 1: Consequences of Colonialism: A microbial perspec-

tive to contemporary Indigenous health

Within this paper, I hypothesise the historical impact of European colonialism—
specifically focusing upon the three overarching components of diet, culture, and
environment—altered the microbiome of the Indigenous population, with repercus-
sions contributing to contemporary Indigenous health. Colonialism was one of the
most antagonistic alterations that occurred throughout the Industrial Revolution,
yet for some Indigenous populations, these changes were often experienced rapidly,
over a shorter period, and with greater intensity, than that of the colonial settlers.
Incorporating microbial evolutionary history into our understanding of human health
proposes an explanation for the additional ‘unknown’ risk factor that contributes to
the health disparity between Indigenous and non-Indigenous populations.

Chapter 2: Incorporating microbial evolutionary history into

Indigenous public health

This opinion piece is a concise reiteration of Chapter 1, aimed at dissemination
among medical professionals and public health researchers. Chapter 2 emphasises
the importance of microbial evolutionary history as an important consideration for
understanding the human microbiome in contemporary health research, especially
in regard to efforts in closing the global health disparity between Indigenous popu-
lations and their non-Indigenous counterparts.

Chapter 3: Salivary Microbiome Response to Caries Preven-

tative Treatment in Australian Indigenous Children

One of the failings of contemporary microbiome research is the lack of consideration,
and accordingly, the lack of understanding, of ethnic and geographic population
differences within the human microbiome. This ascertainment bias (wherein in-
dustrialised European populations dominate microbiome investigations) is not only
detrimental to understanding past and present microbial relationships but moreover
limits the understanding of microbial contributions to human health and disease. In
this research chapter, I investigate the salivary microbiota of Indigenous Australian
children undergoing a novel oral health treatment for dental decay. This treatment
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was designed and tested based on dental research from industrialised individuals
of predominantly European descent. By investigating the impact of industrialised
medicine upon non-European populations, I endeavour to improve our comprehen-
sion of oral health treatments upon oral microbiota ecology.

Chapter 4: Impacts of Storage Methods Over Time on Recon-

structing Dental Calculus Microbial Communities

In the emerging field of paleo-microbiome research, dental calculus is the superior
material in the investigation of ancient and historic human oral microbiota and their
evolutionary changes through time. However, what has been ignored up until now
is the impact of decay and preservation processes (i.e. taphonomy) upon microbial
communities stored within dental calculus. In Chapter 4, I assess the impact of
two long-term storage conditions on the oral microbiome reconstructed from den-
tal calculus samples. This research contributes to a greater understanding of the
taphonomic processes within dental calculus, illuminating the potential biases in the
reconstruction of ancient oral microbiomes.

Chapter 5: Ancient DNA from dental calculus tracks microbial

changes with the Industrial Revolution

In one of the largest dental calculus meta-analyses to date, I investigate the histor-
ical changes to the oral microbiome throughout the Industrial Revolution and the
Great Acceleration. Through the reconstruction of the oral microbiome of multiple
European individuals across varying geographic locations, I am able to ascertain
particular sociocultural changes that contribute to the differences in the oral mi-
crobial community through time. With the incorporation of expected taphonomic
biases revealed in Chapter 4, I am able to extricate the evolutionary history of the
European oral microbiome, identifying the compositional changes between historic
populations and their contemporary counterparts.
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Nearly all Indigenous populations today suffer from worse health than their non-Indigenous

counterparts, and despite interventions against known factors, this health “gap” has not

improved. The human microbiome—the beneficial, diverse microbial communities that live on

and within the human body—is a crucial component in developing and maintaining normal physi-

ological health. Disrupting this ecosystem has repercussions for microbial functionality, and

thus, human health. In this article, we propose that modern-day Indigenous population health

may suffer from disrupted microbial ecosystems as a consequence of historical colonialism.

Colonialism may have interrupted the established relationships between the environment, tradi-

tional lifeways, and microbiomes, altering the Indigenous microbiome with detrimental health

consequences.

KEYWORDS
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1 | INTRODUCTION

The development of cheap and fast high-throughput sequencing tech-

niques has illuminated the many roles the human microbiota performs

in human health. The term “microbiota” refers to microorganisms inha-

biting a specific environment; these microbes—bacteria, fungi, viruses,

and archaea—along with the microbiota’s genetic material and envi-

ronmental products, comprise the “microbiome” (Marchesi & Ravel,

2015). The human microbiome is essential for vital life functions

within the human body, contributing to nutrient absorption and provi-

sions of energy (Brestoff & Artis, 2013; Kau, Ahern, Griffin, Good-

man, & Gordon, 2011; Tilg & Kaser, 2011), to processes, such as the

normal development of the immune system (Gensollen, Iyer, Kasper, &

Blumberg, 2016; Mazmanian, Liu, Tzianabos, & Kasper, 2005), and

providing a barrier against pathogen invasion (Bäumler & Sperandio,

2016; Cameron & Sperandio, 2015; Hooper, Littman, & Macpherson,

2012). Such a high degree of physiological dependence on the micro-

biome suggests a long co-evolutionary history between human hosts

and their microbiota (Zilber-Rosenberg & Rosenberg, 2008). Despite

these important findings, the functional capacity of these microbes

and how these functions contribute to human health are not well

understood, along with the factors that shape and develop these com-

munities and their functions within the body. Existing work has shown

that diet (David, Maurice, et al., 2014; Zimmer et al., 2012), antibiotics

(Modi, Collins, & Relman, 2014), medical treatment (Le Bastard et al.,

2018), and disease (Duvallet, Gibbons, Gurry, Irizarry, & Alm, 2017)

can impact and modify human microbial communities. Thus, lifestyle

and environmental changes altering the original microbe–host co-

evolutionary systems are likely to have major impacts on microbial

functionality.

As a result, a prominent area of microbiome research focuses on

the impact of urban or industrialized lifestyle factors on the micro-

biome and human health. Several hypotheses (e.g., the “hygiene

hypothesis” (Strachan, 1989; Wold, 1998) or the “old friends hypothe-

sis” (Guarner et al., 2006; Harper & Armelagos, 2013)) have tried to

mechanistically explain how industrialization may have altered the

human microbiome. Recent research emphasizes how two critical

factors—the post-Industrial diet (e.g., low in fiber, high in fat and

sugar) and so-called “Western medicine”—have transformed the

human microbial ecosystem into a state of “dysbiosis”: a disruption of

the normal and healthy dynamic equilibrium, that is maladapted for

human health (Brestoff & Artis, 2013; Frei, Lauener, Crameri, &
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O’Mahony, 2012; Kau et al., 2011). This post-Industrial diet originated

around the 1870s with flour-milling technology pioneering the pro-

duction of refined low-fiber grain, a durable staple food commodity

(Winson, 2013). Today, wide-spread consumption of fiber-depleted

grains is associated with reduced microbial diversity, modified meta-

bolic pathways, and altered bacterial gene expressions (Cordain et al.,

2005; Turnbaugh et al., 2009). These microbial changes are likely due

to the decreased microbial digestion and fermentation of complex

plant polysaccharides, which produce fatty acids (such as butyrate or

propionate) hypothesized to be critical immunoregulators

(Maslowski & Mackay, 2011; Sonnenburg & Sonnenburg, 2014). Simi-

larly, the pervasive use of antibiotics, starting in the early twentieth

century, has been shown to disrupt the human microbiome, especially

early in life during critical periods of immune system and microbiome

development (Blaser, 2016; Larson, 2007). The use of antibiotics

diminishes the diversity of gut microbiota, altering the trajectory and

maturation of the gut microbiome, and consequently, leads to meta-

bolic perturbation and abnormal immunological development

(Bokulich et al., 2016; Cho et al., 2012; Cox et al., 2014). While the

long-term microbial repercussions of antibiotic usage are clear in some

studies (Jakobsson et al., 2010; Jernberg, Löfmark, Edlund, & Jansson,

2007; Wipperman et al., 2017), there are still numerous confounding

factors and unknown variables (e.g., the microbial structure prior to

disturbance (Raymond et al., 2016)) that can influence the dysbiotic

consequences. Further research is needed to fully disentangle and

identify significant factors of industrialized lifestyles that alter the

microbiome.

Microbial dysbiosis is not exclusive to the lifestyle changes in con-

temporary industrialized societies and urban environments. Equally

dramatic sociocultural changes have occurred throughout human his-

tory and over much longer evolutionary time periods. Of these, the

changes inflicted globally on Indigenous populations during the Colo-

nial Period are potentially some of the most drastic and rapid. This

article will explore how historical colonialism may have altered Indige-

nous microbiomes, and subsequently, Indigenous health. First, we dis-

cuss the health disparity between Indigenous and non-Indigenous

populations and the microbiome-linked diseases that underpin this

disparity. Next, we review the co-evolutionary nature of the human

microbiome and why disrupting this relationship could have lasting

implications for health. Last, we explore the potential impacts on

Indigenous microbiomes during the Colonial Period by providing key

examples where diet, environment, and lifestyle were altered irrevers-

ibly. In this article, we explore how microbiome alterations may be a

unique mechanism that underlies the significant health disparity suf-

fered by Indigenous populations worldwide.

2 | INDIGENOUS POPULATION HEALTH

Despite global cultural and historical differences, evidence shows that

the majority of Indigenous people world-wide have poorer health than

their non-Indigenous counterparts (Anderson et al., 2016). However,

the assessment of human health is complicated by multiple determi-

nants enmeshed with socioeconomic, environmental, biological, pol-

icy-making (including public health services), and personal behaviors

(AIHW, 2010; King, Smith, & Gracey, 2009; Woodward & Kawachi,

2000). Measures of health are further complicated by the entangle-

ment of interconnected causal pathways which can attribute or influ-

ence health (Leon & Walt, 2000). The concept of “Indigenous” also

convolutes matters; defining Indigenous status, or what constitutes

indigeneity, within specific settings can confound measurements and

insights into population health (Kuper, 2005; Stephens, Porter, Nettle-

ton, & Willis, 2006). However, accurately measuring health and moni-

toring these determinants are critical to the development and

sustainability of public health measures to prevent disease and pro-

mote health within Indigenous populations (AIHW, 2010, p. 201; Ste-

phens et al., 2006). With an estimated 370 million Indigenous peoples

worldwide, it is critical that accurate assessments of global Indigenous

health are undertaken, and despite the difficulties, all the various

health determinants are explored to improve overall well-being (Hall &

Patrinos, 2012).

Defining the term Indigenous is the first step in assessing Indige-

nous health. “Indigenous” is typically used with recourse to the first

recorded inhabitants in a nation or area at the time of European con-

tact, especially where there is a clear distinction between the Indige-

nous population and the colonial settlers (e.g., Australia, New Zealand,

Canada, and the United States) (Anderson et al., 2006; Montenegro &

Stephens, 2006; Stephens et al., 2006). In other parts of the world,

this distinction is less clear when the colonial history and Indigenous

status is obscured by ethnic or intrapopulation domination, serial con-

quests, or imperialism (Ohenjo et al., 2006; Stephens et al., 2006). For

example, over 100,000 years of colonial history in South Africa con-

voluted with the apartheid, civil wars, intrapopulation domination, and

ethnic genocide have formed a very complex platform for identifying

indigeneity (Ohenjo et al., 2006). Therefore, self-identification is com-

monly the most prominent means for inclusion within Indigenous defi-

nitions, followed by community acceptance: most governments now

include these definitions in national censuses (Stephens et al., 2006).

As the nature of population health data often relies on systematic

analysis of government census data, the discussion and accuracy of

global Indigenous population health is affected by the use and nature

of accepted Indigenous status (Stephens et al., 2006).

With the use of large-scale census data, Anderson et al. (2016)

was able to conduct one of the first global Indigenous population

health studies. However, social and health information was only avail-

able from 23 of the total 90 countries, representing only half of the

total estimated global Indigenous populations (Anderson et al., 2016;

Gill et al., 2006). Despite this limited and incomplete data set, com-

mon themes in Indigenous health still emerged; lower life expectan-

cies, higher infant, child, and maternal mortality rates, greater

infectious and chronic disease loads, increased levels of malnutrition,

and escalating poor mental health, substance abuse, and structural

violence were all higher in Indigenous populations in comparison to

their non-Indigenous counterparts, (Anderson et al., 2016; Gracey &

King, 2009; King et al., 2009; Valeggia & Snodgrass, 2015).

Of all the troubling themes in Indigenous health, the higher rates

of infectious disease than their non-Indigenous counterparts is most

notable (Butler et al., 2001; Carville et al., 2007; Gracey & King, 2009;

Montenegro & Stephens, 2006; Ohenjo et al., 2006). While numerous

socioeconomic, geographic, and health-related factors influence the
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intensity, severity, and frequency of infection, Indigenous populations

are discernibly more vulnerable to infectious diseases than their non-

Indigenous counterparts (Butler et al., 2001; Gracey & King, 2009).

The impact of colonization and accompanying introduction of novel

pathogens to new continents is well known; so-called “virgin soil” epi-

demics decimated multiple Indigenous populations who had no

immune defense to these unfamiliar pathogens (Crosby, 1976; Kunitz,

1996). However, the risks of such epidemics continues today with

both the vulnerability of Indigenous populations to infection and the

repercussions of globalization on isolated Indigenous tribes, bringing

them into proximity with unfamiliar infections (Hurtado et al., 2005;

Valeggia & Snodgrass, 2015).

While chronic diseases are largely burdensome within industrial-

ized societies, these diseases appear to have a greater debilitating

effect on health and mortality of Indigenous populations (Gracey &

King, 2009; King et al., 2009; Marmot, Friel, Bell, Houweling, & Taylor,

2008). For example, the prevalence of diabetes is three to five times

higher in Aboriginal Australians and Torres Strait Islander populations

relative to Australia’s non-Indigenous population (Australian Bureau of

Statistics, 2013). In Aboriginal Canadians, while diabetes prevalence in

an age-standardized population was similar to non-Aboriginals, diabe-

tes prevalence in Aboriginal children was far greater than their non-

Aboriginal counterparts (e.g., 20-fold higher in Aboriginal children in

Manitoba, Canada) (Amed et al., 2010; Public Health Agency of

Canada, 2011). Notable chronic diseases within Indigenous popula-

tions, especially cardiovascular disease and diabetes, are often attrib-

uted to the impacts of urbanization and industrialization, which have

emerged more recently for the majority of Indigenous populations

compared to their non-Indigenous counterparts (Gracey, 2014;

Gracey & King, 2009; Popkin, 1999). Today, chronic health problems

and risks associated with urbanization are especially felt within

remote and rural Indigenous communities, usually concomitant with

the loss of ancestral land, depletion, or dispossession of traditional

resources, or the overall the abandonment of traditional lifestyles,

which impacts dietary composition, physical activity, and psycho-

emotional health (Kirmayer, Brass, & Tait, 2000; Kirmayer, Dande-

neau, Marshall, Phillips, & Williamson, 2011; Kuhnlein, Receveur,

Soueida, & Egeland, 2004; Snodgrass, 2013; Valeggia & Snodgrass,

2015). Chronic diseases are a worldwide health problem in which pre-

ventable risk factors are heightened by environmental and social

change; it is an epidemic that is only worsening, for which Indigenous

populations are disproportionately suffering (Anderson et al., 2016;

Gracey & King, 2009; Strong, Mathers, Leeder, & Beaglehole, 2005).

The limited public health data available on Indigenous health

largely preclude our understanding of the underlying causes of the

gap between Indigenous and non-Indigenous populations. Many of

these disparities are entrenched within social inequalities; poor health

is aggravated by low socioeconomic standing and social marginaliza-

tion (Evans & Kantrowitz, 2002; Frohlich & Potvin, 2008; Woodward &

Kawachi, 2000). Yet, despite efforts of government programs engaged

in closing the health gap and providing strategies and programs

administering clinical services and health education, the Indigenous

health disparity has shown little improvement, and in some cases,

worsened (Marmot et al., 2008; Mitrou et al., 2014). Strikingly, some

studies even suggest that the health of Indigenous populations is

worse than that of other populations of similar socioeconomic stand-

ing (Valeggia & Snodgrass, 2015; Williams, Mohammed, Leavell, &

Collins, 2010). Therefore, while socioeconomics is a vital component

in the discussion of population health, the limited progress in bridging

the socioeconomic gap to improve Indigenous health disparities calls

for an exploration of all potential contributors to health and disease.

3 | THE HUMAN MICROBIOME

The number of microbes hosted by a human body rivals the number

of human cells of that individual, and the microbial genomic capabili-

ties outnumber the human genome 100:1 (Sender, Fuchs, & Milo,

2016; The Human Microbiome Jumpstart Reference Strains Consor-

tium, 2010; Yang, Xie, Li, & Wei, 2009). Human-associated microbes

are predominantly bacteria (estimates between 88% and 99%) (Qin

et al., 2010; Xie et al., 2010; Zhernakova et al., 2016); therefore,

microbiome research typically focuses on the bacterial communities

that constitute the microbiome. Human-associated microbes are often

described as beneficial or “commensal”; that is, a biological relation-

ship between humans and the microorganisms for which their interac-

tions are typically either benign (of neither detriment nor benefit) or

symbiotic (with mutual benefit) (Blaser & Falkow, 2009; Brucker &

Bordenstein, 2012). Until the development of molecular tools,

research was limited to the minority of bacteria taxa that could be

grown within a laboratory (i.e., cultured). Now with culture-

independent and high-throughput DNA sequencing technology, the

study of microorganisms has moved past single isolates into

community-based analyses, which serve as the foundation of the

human microbiome research.

The human microbiome is initially established during an infant’s

postnatal period and is essential for the correct morphological and

functional development of their immune system (Gensollen et al.,

2016; Mazmanian et al., 2005). The human microbiome continues to

develop over the first 3 years of life and eventually becomes largely

partitioned into five major sites across the human body: the oral cav-

ity, respiratory tract, gastrointestinal tract, skin, and vaginal sites. Each

of these body sites has specific environmental conditions that form

distinct microbial communities. This intrapersonal variation in the

microbiome is characteristic of both environmental and physical fac-

tors, such as temperature, pH, and available nutrients, that influence

which microorganisms can inhabit a particular niche (Costello et al.,

2009; Fisher, Mora, & Walczak, 2017; The Human Microbiome Pro-

ject Consortium, 2012). Despite these diverse site differences, these

communities across the human body are interrelated (Costello, Staga-

man, Dethlefsen, Bohannan, & Relman, 2012); alterations in a single

microbial community can impact other communities across the body.

In rheumatoid arthritis patients, Zhang et al. (2015) found that both

the oral and gut microbiomes were in an associated state of dysbiosis

compared to healthy individuals. The concordance of oral and gut

microbiomes was reiterated when these same patients were treated

with anti-inflammatory disease-modifying antirheumatic drugs; both

oral and gut microbiome dysbiosis were partially relieved (Zhang et al.,

2015). Hence, site-specific microbiomes are not disconnected from

one another.
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Understanding microbial ecosystems and their functions, net-

works, and development is fundamental for health research, as the

functions of the human microbiome are imperative for human physio-

logical well-being and development. For example, the microbiome and

microbial-derived compounds (nutrients or metabolites) in the gut

contribute to the education of the immune system, influence epithe-

lium homeostasis, and guide developmental cell programming (Aidy,

Hooiveld, Tremaroli, Bäckhed, & Kleerebezem, 2013; Brestoff & Artis,

2013; Hooper et al., 2012; Kau et al., 2011; Maslowski & Mackay,

2011). The gut microbiome is also vital in the regulation of energy

homeostasis, fermentation, metabolism, and nutrient utilization

(Brestoff & Artis, 2013; Cheesman & Guillemin, 2007; Sonnenburg &

Sonnenburg, 2014; Tremaroli & Bäckhed, 2012) and is crucial to

develop the signaling mechanisms required for normal brain develop-

ment, the hypothalamic–pituitary–adrenal axis programming, central

nervous system function, and subsequent behavioral functions

(e.g., stress reactivity) (Cryan & Dinan, 2012; J. A. Foster & McVey

Neufeld, 2013; Heijtz et al., 2011). There is surmounting evidence for

the role of the microbiome in normal physiological development, yet

there is much to be explored regarding the effect of microbiome com-

positional change or variation.

Intra- and interpersonal variation within the human microbiome is

driven by numerous, sometimes linked factors, including host genetics

and physiology (Blekhman et al., 2015; Bonder et al., 2016; Mariat

et al., 2009; Yatsunenko et al., 2012), and lifestyle factors, such as,

physical activity (Clarke et al., 2014), medication (Blaser, 2014; Modi

et al., 2014), diet (David, Maurice, et al., 2014; Zimmer et al., 2012),

and interactions with the physical environment (Broussard & Devkota,

2016; David, Materna, et al., 2014). Human genetics and physiological

differences shape microbial communities in the human body through

aforementioned abiotic factors and biotic components, such as host-

to-microbes interactions that control microbial inhabitants; environ-

mental compartmentalization through epithelial barriers; or microbial

monitoring through Toll-like receptor proteins (Rakoff-Nahoum,

Paglino, Eslami-Varzaneh, Edberg, & Medzhitov, 2004; Slack et al.,

2009; The Human Microbiome Project Consortium, 2012). These host

factors have matured through selection pressures on the host genome

for a beneficial (or neutral) microbiome (K. R. Foster, Schluter, Coyte, &

Rakoff-Nahoum, 2017; Ley, Peterson, & Gordon, 2006) and are most

commonly immune-related functions (Blekhman et al., 2015; Bonder

et al., 2016; Zhernakova et al., 2016). However, the contribution of

human genetics in microbial heritability (i.e., the variation of microbial

composition attributable to human genetics) is only estimated

between 1.9% and 8.1%, suggesting that lifestyle and environmental

factors largely drive intra- and interpersonal variations (Rothschild

et al., 2018). For example, diet has been shown to be a major driving

force in microbiome diversity (Falony et al., 2016). Dietary research

has typically concentrated on variations in macronutrient consump-

tion; high-fat and high-sugar versus low-fat and high-fiber diets

embody the main differences between industrialized societies and tra-

ditional hunter-gatherer ones (Obregon-Tito et al., 2015; Rampelli

et al., 2015; Schnorr et al., 2014). Yet, these diet-induced changes of

the microbiome have shown a range of plasticity, from repetitive

reversible dysbiosis (Davenport et al., 2014; David, Maurice, et al.,

2014; Turnbaugh, Backhed, Fulton, & Gordon, 2008) to unrecoverable

microbial species extinctions and permanent transitions (Sonnenburg

et al., 2016). These irresolute results point to a hysteresis of the gut

microbiome, wherein the state of complex microbial system is depen-

dent upon historical exposures, not just the current circumstances

(Carmody et al., 2015; Griffin et al., 2017). Other factors, such as soci-

ality, may play smaller roles in guiding microbiome diversity, but are

no less important (Lax et al., 2014). For example, household sharing

contributes to microbial similarities between family members

(Rothschild et al., 2018; Song et al., 2013), with shared environments

driving analogous microbial compositions and functionality (Chu et al.,

2017; Korpela et al., 2018; Rothschild et al., 2018).

Collective studies on the factors that shape the composition and

structure of the microbiome community highlight how population level

differences in microbiota can arise; genetic factors, alongside lifestyle

and environmental exposures, both early and later in life, each play key

roles (Dehingia et al., 2015; Strickland, Lauber, Fierer, & Bradford, 2009).

As there is little evidence of a core microbiome across individuals—as

yet, no single taxon has been found universally shared across all

humans—this, therefore, limits the current theoretical framework in

understanding how compositional differences impact the microbial func-

tions in different human populations (Shade & Handelsman, 2012). Thus,

the significance of external factors on the microbiome composition and

structure must be explored to fully understand how changes in microbial

function may subsequently impact human physiology and health

(McFall-Ngai et al., 2013), especially within unique human populations.

Dysbiosis, or alteration of the microbiome in a negative capacity to

support disease, has already been linked to nearly all chronic diseases,

such as cardiovascular health (Ettinger, MacDonald, Reid, & Burton,

2014), cancer (Ou et al., 2013; Sears & Garrett, 2014), respiratory dis-

eases (Fujimura et al., 2014; Riedler et al., 2001; Ruokolainen et al.,

2015), obesity (Ley, Turnbaugh, Klein, & Gordon, 2006; Tilg & Kaser,

2011; Turnbaugh et al., 2008), and diabetes (Qin et al., 2012), as well as

mental illness (for example, schizophrenia (Liu et al., 2014) and depres-

sion (J. A. Foster & McVey Neufeld, 2013)), immunity disorders (Kau

et al., 2011; Mathis & Benoist, 2011; Nikoopour & Singh, 2014; Zhang

et al., 2015), and the rise in allergies and asthma prevalence

(Armelagos & Barnes, 1999; Haahtela et al., 2013). However, these find-

ings have been largely conducted in populations of European descent,

which have all undergone similar sociocultural changes over time. These

findings bias the predictive accuracy of microbiome related diseases in

non-European populations (Lewis, Obregón-Tito, Tito, Foster, & Spicer,

2012). Alterations to microbiomes in other populations may lead to dif-

ferent diseases or different manifestations of disease in separate human

populations. For example, some ethnic populations have greater risk

factors for disease than others, even accounting for socioeconomic sta-

tus (Ward et al., 2004); while this can sometimes be attributed to genet-

ics, the concomitant contributions of the microbiome remain

unexplored.

4 | CO-EVOLUTION OF HUMANS AND THE
MICROBIOME

Several features of the human microbiome imply that humans and

their microbes are co-evolved and have co-adapted; these microbes
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are (1) specifically conserved within human hosts, (2) persistent

through generations of familial inheritance, and (3) defined by envi-

ronmental exposures and lifestyle factors (Blaser & Falkow, 2009;

Zilber-Rosenberg & Rosenberg, 2008). This co-evolutionary relation-

ship is mutually dependent; humans cannot live without their micro-

biome any more than human-established microbes can survive

without a human host. Indeed, the human microbiome is so crucially

beneficial to physiological health that the microbiome and human

genome may be considered a “human supraorganism” (Turnbaugh

et al., 2007). Through the analysis of three predominant gut taxa and

their evolutionary relationships, Moeller et al. (2016) traced the evolu-

tionary diversification from modern ape species and modern humans

and found these specific bacterial species were maintained through-

out hominid evolution (microbial divergence dated to 15 million years

ago from gorilla-hominid split), suggesting that this symbiotic associa-

tion that has persisted over evolutionary time. While the composition

and structure of the microbiome have developed in response to exter-

nal environmental factors, it is also importantly influenced by its evo-

lutionary history, which has shaped and constructed its present

structure.

Human evolutionary history indicates that groups of human

populations diverged and remained isolated from one another for

thousands of years, imprinting geographical signatures on the human

and mitochondrial genomes (Rosenberg et al., 2002). Human popula-

tions in the Americas, Australia, and the Pacific Islands remained iso-

lated by oceans (Bonatto & Salzano, 1997; Duggan et al., 2014; Tobler

et al., 2017). Likewise, populations throughout Europe, Asia, and

Africa—while not geographically disconnected—inhabited distinct ter-

ritories for tens of thousands of years (Barbujani & Sokal, 1990; Mel-

ton, Clifford, Martinson, Batzer, & Stoneking, 1998; Tishkoff et al.,

2007). Thus, the microbiomes associated with each isolated human

population have genomes that are divergent from any other popula-

tion (e.g., Helicobacter pylori (Falush et al., 2003; Wirth, Meyer, &

Achtman, 2005)). Research into contemporary populations’ microbial

differences has shown that these different geographical and sociocul-

tural populations maintain distinct microbial community configura-

tions and diverse functional potential (Rampelli et al., 2015;

Yatsunenko et al., 2012). For example, the Indigenous ethnic group of

hunter-gatherers, the Hadza, living in north-central Tanzania have a

microbiome that is compositionally unique from both urban/industrial-

ized individuals and to that of other hunter-gatherer groups (Dehingia

et al., 2015). The Hadza microbiome has distinguishable and unique

metabolic functions that are adapted to the consumption of complex

polysaccharides (Rampelli et al., 2015), including the unusual presence

of Treponema bacterium in healthy Hadza gut. The gut Treponema

strain provide a beneficial metabolic role in carbohydrate digestion,

challenging the common perception of Treponema as solely a patho-

genic microorganism (Obregon-Tito et al., 2015). Human adaptation

to a unique physical and cultural environments over evolutionary time

suggests that the microbiome similarly adapts to that environment

and is therefore likely shaped by the available dietary resources,

established human customs and behaviors, and the physical climate

and environment.

Understanding the potential health consequences arising from

changes in dissimilar Indigenous microbiomes requires an

understanding of how these different microbiomes had previously

adapted throughout their evolutionary life history, and how severely

these co-evolutionary processes between the microbiome and host

were disrupted. The majority of Indigenous populations globally have

experienced extreme and rapid lifestyle changes throughout their

recent evolutionary history, when many of their non-Indigenous coun-

terparts did not. These recent changes were constituted through his-

torical colonialism—one of the most influential sociocultural

transitions throughout human history.

5 | COLONIALISM AND THE IMPACTS
UPON THE HUMAN MICROBIOME

Colonialism, within this article, is defined as a form of intergroup dom-

ination (i.e., between culturally heterogeneous societies) where a sub-

stantial number of settlers permanently migrated to a colony from a

colonizing power (Horvath, 1972). There were differing motives for

long-term or permanent changes during colonialism (e.g., exploration,

the conquest of nations, or riches) that often determined the subse-

quent interactions with native populations and their land, hence the

nature of the colonial transitions manifested in a variety of different

ways. However, there are numerous shared processes that occurred

cross-culturally; colonialism transformed Indigenous populations’ die-

tary lifeways (i.e., the cultural behaviors or customs surrounding diet,

including particular foods consumed), adjusted their social networks

and behaviors, and impacted their physiological health. These changes

occurred rapidly, prompting drastic adaptations within a single individ-

ual’s lifetime, and collectively demanded both humans and their

microbes to adapt (Whittaker, 1972; Zilber-Rosenberg & Rosenberg,

2008). We will explore three overarching transformative changes that

colonists often enforced upon Indigenous populations, directly or indi-

rectly, which have been documented in current research to signifi-

cantly impact the human microbiome. Specifically, through

colonialism, Indigenous populations experienced (1) pronounced

changes to their established dietary lifeways, (2) rapid adjustments in

behaviors, rituals, and social dynamics, and ultimately, and (3) were

introduced to novel, destructive agents of infectious disease. While it

can be challenging to discuss these interconnected factors exclusively,

the following examples of combined historical documentation and

recent corroborating microbial research support our hypothesis: Indig-

enous populations underwent alterations to their microbiomes

because of the lasting lifeway changes inflicted upon them during the

Colonial Period.

5.1 | Postcontact modifications to dietary lifeways

European colonists reduced Indigenous access to resources required

for diverse subsistence farming, indirectly or directly eliminated tradi-

tional dietary sources, and often demanded tributes for missionaries

and government administrators, which impacted both socioeconomic

status and the food available for consumption (Earle, 2010; Klaus &

Tam, 2010; Larsen, 1994; Nunn & Qian, 2010). Frequently, Indigenous

agriculture was also fully replaced by European crops to maintain a

traditional European diet, or for exportation and trade (Franke, 1987).
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Novel additions to dietary lifeways were more often an indirect con-

sequence of global trade networks created by the dominant colonizing

power (i.e., the importation of European food stuffs, such as wheat,

wine, olive oil, and livestock; (Earle, 2010)). In South America, ethno-

historic evidence suggest colonists emphasized the proliferation of

specific crops for trade, giving priority to foods, such as tomatoes or

cacao, for exportation back to Europe (Nunn & Qian, 2010). Food was

also a tool used in “civilizing” Indigenous populations; eating European

foods was thought to make them more like the colonizers

(Earle, 2010).

The impact of diet upon the gut microbiome is one of the better

studied areas in contemporary microbiome research, as alterations to

diet have the greatest potential for therapeutic self-regulation of

microbiome-associated conditions (Brown, DeCoffe, Molcan, & Gib-

son, 2012; Cotillard et al., 2013; Ercolini et al., 2015). More specifi-

cally, one of the largest areas of dietary research relates to the

consumption of microbiota-accessible carbohydrates (MACs), defined

as carbohydrates which the human host is unable to digest and absorb

nutrients without the prior metabolism by members of their gut

microbiome (Sonnenburg & Sonnenburg, 2014). MAC intake has been

linked to greater microbial diversity, broader carbohydrate metabolic

capabilities (Rampelli et al., 2015), short-chain fatty acid production

(Campbell, Fahey, & Wolf, 1997), and increased clinical markers for

health (Sonnenburg & Sonnenburg, 2014). Research looking at

“humanized” gut microbiome in mouse models (i.e., a previously germ-

free mouse colonized by human fecal microbes) showed that a low-

MAC diet induces microbial extinction, successively reducing the

microbial diversity of the gut over multiple generations (Sonnenburg

et al., 2016). Although this loss could be recovered if a high-MAC diet

was reintroduced within a single generation, the damage was irrevers-

ible and microbial diversity never returned to its original state after

several generations (Sonnenburg et al., 2016). While the underlying

mechanisms of the link between microbial diversity and health are still

unknown, increased species diversity within a community is thought

to develop greater ecosystem stability, promote sharing of resources,

and lower host invasibility, thus supporting greater metabolic and

colonic health (Cardinale, Palmer, & Collins, 2002; Cotillard et al.,

2013; Gonzalez et al., 2011; Tilman, 2004).

A population in the small town of Mórrope, Peru, provides a

definitive example of dietary change and a case study to examine the

impact of colonialism on Indigenous Andean foodways (Klaus & Tam,

2010). Anthropologists, Klaus and Tam (2010), used both regional eth-

nohistoric evidence and skeletal remains from both late pre- and post-

contact periods to examine changes in diet and health. After the

Spanish colonization, the people of Mórrope became increasingly reli-

ant on starchy carbohydrate consumption, as evident by increased

prevalence of dental caries and tooth loss (due to poor oral health)

and heightened accumulation of calculus (symptomatic of greater pla-

que progression, which can extend to additional oral problems)

(Hillson, 1996; Klaus & Tam, 2010). It was suggested that the elevated

consumption of starchy carbohydrates would have helped buffer

against malnutrition from restricted access to traditional food sources,

after being resettled in a resource-poor area due to European exploi-

tation of arable land for cash crops (Franke, 1987; Klaus & Tam,

2010). However, a carbohydrate-based diet not only stimulates oral

disease, but also leads to growth retardation and impaired skeletal

development from nutrient deficiency (Larsen, 1995). The metabolic

stress within the Mórrope postcontact population was great enough

to leave skeletal lesions, such as cribra orbitalia and porotic hyperos-

tosis (i.e., localized areas of spongy porous bone tissue caused by ane-

mia) (Klaus & Tam, 2010).

From Sonnenburg et al. (2016), it could be inferred that the peo-

ple of Mórrope would have experienced microbial extinctions over

several generations caused by a reliance on starchy carbohydrates

and limited access to complex carbohydrates (i.e., a low-MAC diet).

Ancient DNA research in ancient European populations also suggests

that the switch to starchy carbohydrates had marked impacts on com-

position of the microbiome (Adler et al., 2013; Weyrich et al., 2017).

However, carbohydrates are not the sole cause of alterations in micro-

bial ecosystems. Many additional dietary modifications have been

shown to induce changes in the gut microbiome composition and

function, such as the switch from a plant-based diets and to that of

animals (David, Maurice, et al., 2014; Zimmer et al., 2012), seasonal

dietary variation (Davenport et al., 2014; Zhang et al., 2014), and con-

sumption of fermented products (Veiga et al., 2014). Probable unex-

plored consequences include individuals consuming a novel

introduced dietary source for which they have little to no evolutionary

experience, or inversely, consequent adaptation to the indefinite

removal of a dietary food source.

5.2 | Influence of colonialism on social structures
and behaviors

Historically, the enforcement of “European ways” on Indigenous

populations represents one of the most direct cases of sociocultural

change, established through colonial settlers and governing authori-

ties, most commonly in the form of missionization (Earle, 2010; Lar-

sen, 1994; Van Buren, 2009). “Missionization” is the process of

Christian proselytism, and its corresponding acculturation programs

instituted at formal bases, known as “missions” (Van Buren, 2009).

The consequences of missionization varied regionally; however, it

almost always resulted in significant and cumulative changes to Indig-

enous lifeways. For example, the historical colony “New Spain”

enforced Indigenous acculturation through the reducción (Van Buren,

2009). As part of this process, Indigenous populations were forced

from their villages and homes and were bound to reside within mis-

sion centers (Larsen, 1994). The spatial organization of missions

imposed close living conditions on diverse multiethnic populations,

with no organizational attention to linguistic barriers or tribal animosi-

ties, which fractured families and impeded traditional courtship cus-

toms and practices (Panich & Schneider, 2015; Van Buren, 2009).

Even in the absence of aggressive missionization, exposure to

European customs and behaviors prompted far-reaching cultural

adaptations.

Cultural alterations in behavior or customs are the most erratic

and variable of any postcontact colonial change, and therefore,

impacts of any Indigenous sociocultural behavioral alteration should

be explored within the local background and history of the

Indigenous–colonist relationship. However, this makes the exploration

of microbial alterations difficult; accordingly, this article focuses on
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how the transmission of microbes may have been impacted by socio-

cultural changes. As the human microbiome is inherited by social

transmission, then matures throughout growth and development by

the surrounding environment (especially through contact between

household members), differences in kinship structures and social net-

works will impact the vertical transmission of microorganisms

between individuals (Moeller, Foerster, et al., 2016; Tung et al., 2015;

Yatsunenko et al., 2012). Microbiome research has shown, despite

direct maternal microbial exposure at birth, fathers share as many

microbial similarities with their children, as does the mother

(Yatsunenko et al., 2012). While not yet explored in humans, social

interactions and relationships within a community of baboons

imprinted explicit patterns of exchange within their microbiome,

highlighting the importance of social interactions in structure and

composition of the microbiome (Tung et al., 2015). This research sug-

gests that the differences in cultural behavior and social networks

impact microbial dispersal and transmission routes in defining micro-

biome structure and community development (Martínez et al., 2015).

Whether the colonists goal was to exterminate, assimilate, or remain

in relative equilibrium with the Indigenous population (neither exter-

mination nor assimilation), changes certainly occurred to Indigenous

kinship structures, social networks, and cultural lifestyle alterations

(Horvath, 1972).

The breakdown of the historic Hawaiian Kapu system is a good

example of microbial change through sociocultural restructuring. The

Kapu system dictated Hawaiian daily life through religious rules and

regulations, governing social stratification, the interactions between

social classes, and gender roles and relationships (Else, 2004). How-

ever, the acceptance of the European cash economy led to the break-

down of traditional subsistence farming, directly impacting and

eroding the relationships between social classes (Else, 2004; Fried-

man, 1985). The deterioration of the Kapu system lead to greater

enduring cultural changes, such as economic distributions of food

encouraging the immigration of foreigner laborers or the adoption of

the colonial religion, as a result of missionaries and subsequent estab-

lishment of missions, or the creation of a mercantile economy, induc-

ing the revaluation of sex for commerce (Buck, 2010; Else, 2004).

As social networks influence microbial transfer between individ-

uals, changes within social networks can introduce new microbes from

foreign exposures, or restrict contact with Indigenous microbes

(i.e., the missions adjusting the social dynamics and accessible contact

between individuals will have altered the transmission of microbes

between the members of an Indigenous community and simulta-

neously introduced colonist microorganisms). Sociocultural behavior

adaptations can potentially introduce new sources and recipients of

foreign microbes, but changes to cultural customs or behaviors can

equally restrict or assist access to microbes from certain individuals or

groups. The breakdown of the Kapu and the introduction of the cash

economy changed cultural ideals regarding divisions of labor, empha-

sizing the colonist values of females within the domestic spheres and

males within the public spheres, which created differential group

access to unique microbial sources (Van Buren, 2009). The gendered

roles in food preparation and consumption within Hadza society con-

tributed microbial differences between males and females; thus, it is

likely that historical gendered-based microbial differences could be

detected, perhaps playing a role in health (Schnorr et al., 2014). On a

larger scale, it is likely that the Hawiian microbiome would have inte-

grated some level of commensal microorganisms from a European-

adapted microbiome, through increased interactions with colonists.

Furthermore, contact between individuals within the society itself

would have changed (e.g., differences in caretaking and caregiving,

socially acceptable sexual liberties, interactions through occupation),

which could impact microbial inheritance of the next generation.

5.3 | Introduction of infectious disease

Unquestionably, the most devastating effect of colonialism was the

introduction of novel pathogens. Globally, Indigenous populations

were decimated by epidemics of infectious diseases introduced by

colonists; some of the hardest hit areas lost up to 90% of their popula-

tion (Cook, 1998; Kunitz, 1996; Zubrow, 1990). In the Americas, no

specific case study can be reliably ascertained because the speed by

which the pathogenic agents spread and obliterated the Indigenous

population outran European ethnohistorical records, leaving only indi-

rect archaeological evidence, such as specific demographic patterns in

mortuary samples (Hutchinson & Mitchem, 2001; Milner, 1980).

Despite inadequate information, it is presumed that the Indigenous

population had no “immunological memory” of the introduced dis-

eases from the “Old World” and that the malignance of these patho-

gens was due to the separate evolutionary histories between the

continents (Crosby, 1976; Ramenofsky, Wilbur, & Stone, 2003). The

evident introduction of novel pathogenic microorganisms simulta-

neously proposes the introduction of nonpathogenic microorganisms,

supporting evidence of changes to the microbiome and immune pro-

files of Indigenous populations.

Research has implicated the microbiome in the development and

education of the immune system in infancy, but the microbiome also

plays a role in pathogen resistance through “bacterial interference” or

“colonialization resistance” (Brook, 1999). Bacterial inference refers to

antagonistic and competitive relationships between bacterial species,

in which bacteria have developed mechanisms to interfere with the

capability of other bacteria to colonize and survive alongside them

(Buffie et al., 2015; Falagas, Rafailidis, & Makris, 2008). There are a

number of mechanisms of bacterial interference; principally, nutrient

rivalry or host–cell binding site competition, where the endemic

human microbes outnumbered and outcompeted invading microor-

ganisms (Reid, Howard, & Gan, 2001) Another aspect of bacterial

interference is the capacity of endemic microbes to produce antago-

nistic compounds, such as bacteriocins, (i.e., toxic proteins produced

by bacteria that inhibit the growth of, or even kill, other bacteria, with-

out causing harm to themselves) or simple molecules, like hydrogen

peroxide or lactic acid, to change the microenvironment and deter

invader establishment (Brook, 1999). Some research has shown that

dysbiotic perturbations to the microbiome can weaken the effects of

colonization resistance, leaving the host susceptible to pathogen inva-

sion (Bäumler & Sperandio, 2016; Brown et al., 2012). The impact is

cumulative; the establishment of a pathogen can exacerbate dysbiosis

and disrupt microbial functionality, negatively influencing host physi-

ology, immunity, and susceptibility to infectious disease (Kau et al.,

2011; Lu et al., 2013). Pathogens can also induce apparent
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competition, utilizing host immune response to preferentially displace

or alter the host microbiome for its own benefit in such that the dys-

biotic microbiota act as a pathogenic community (Hajishengallis, Dar-

veau, & Curtis, 2012; Sears & Pardoll, 2011).

Infectious disease would have directly altered the microbiome,

but the consequential human depopulation would have also altered

human population structures, both genetically and socially, further

impacting microbial transmission to surviving generations. While there

is little agreement on the timing of depopulation, the size of precolo-

nial Indigenous populations, or the overall mortality rates, there is a

shared consensus on the indirect impacts of disease on the Indigenous

population; high mortality and morbidity would have disturbed subsis-

tence activities and the labor force, reduced political influence, and

forced social reorganization (Cook, 1998; Dobyns, 1966; Milner,

1980; Snow & Lanphear, 1988; Zubrow, 1990). Survivors of one com-

munity decimated by disease often resettled among different commu-

nities, contributing to the spread of disease and influencing horizontal

microbial transmission among different communities (Warrick, 2003).

It is hard to predict the variety of indirect repercussions depopulation

had on Indigenous life, let alone the subsequent impact upon their

microbiomes. A case in point, albeit with very little available archaeo-

logical evidence, is the suggestion that depopulation of South America

resulted in the loss of domesticated crop diversity (Clement, 1999).

The reduction in labor force would have reduced the number of horti-

culturalists to maintain widespread minor crops, and a loss in dietary

diversity would have induced a loss in microbial diversity, potentially

instigating dysbiosis, and thus, further increasing pathogen suscepti-

bility (Clement, 1999; Ley, Peterson, et al., 2006). Under colonialism,

Indigenous populations likely encountered novel pathogens at an

alarming rate, while simultaneously enduring the impacts of dietary

change and/or malnutrition, socioeconomic restriction, and both psy-

chological and biological stress. All of which are factors that have been

described in contemporary research as instigators of microbial dysbio-

sis (Bailey et al., 2011; Brown et al., 2012; David, Maurice, et al.,

2014; De Palma, Collins, Bercik, & Verdu, 2014).

DISCUSSION

Colonialism represents one of the greatest and swiftest historical

sociocultural adaptations throughout human evolutionary history.

Through anthropological and archaeological evidence, it is evident

that the process of colonialism was detrimental to the traditional life-

styles and health of the Indigenous populations. Moreover, it is evi-

dent that the ensuing rapid lifestyle changes that Indigenous

populations endured would have likely altered their microbiomes.

Explorations of the unintentional alterations to the microbiome

throughout progressive industrialization have shown that modifica-

tions to the composition and structure of the microbiome can be det-

rimental to human health. However, our fundamental understanding

of contemporary microbiome alterations requires recognition of the

current ascertainment bias; the majority of microbiome studies exam-

ine populations of European descent, who live industrialized lifestyles

(Lewis et al., 2012; Warinner & Lewis, 2015). The little existing

research on different ethnic populations has shown that there are

taxonomic, compositional, and functional differences in the micro-

biomes of different human populations (Anwesh et al., 2016; Martínez

et al., 2015; Ozga et al., 2016; Rampelli et al., 2015; Yatsunenko et al.,

2012; Zhang et al., 2014). Therefore, it cannot be assumed that the

same instigator will equally impact different microbiomes; dysbiosis

may take different forms, provoking various disease responses.

Researchers have shown that rheumatoid arthritis patients’ disease-

associated dysbiosis was compositionally similar across all patients,

but the “stabilization” of the microbiome after taking rheumatoid

arthritis drugs of each patient concluded with compositionally dispa-

rate recoveries (Zhang et al., 2015). The impact of alterations to differ-

ent microbiomes (especially across different populations) has not been

explored with regard to the subsequent co-evolutionary histories of

populations, and therefore the burden upon health.

The rapid transition into a disadvantageous lifestyle, inflicted

upon Indigenous populations throughout colonialism, would have

selected for the best microbiome for survival through the detrimental

transition, or rather a microbiome most suitably adapted for the novel

lifestyle (Ley, Peterson, et al., 2006; Wilson, 1997; Zilber-Rosenberg &

Rosenberg, 2008). However, the microbial functional repercussions of

these alterations may not necessarily be the best adaptations for

human physiological health. Recent investigations suggest that genetic

predisposition to disease is contingent upon the composition and

function of the microbiome (Bonder et al., 2016; Knights et al., 2014).

Thus, the dysbiosis of the ecologically adapted functional microbiome

could trigger adverse immunological and metabolic genetic pheno-

types (Bonder et al., 2016). Furthermore, human genetics were altered

during the Colonial Period. Ancestry admixture has shown a strong

link between population-specific alleles and host genetic factors that

mediate immunity and pathogen-resistance (Lindo et al., 2016;

Rishishwar et al., 2015); as previously discussed, the greatest genetic

influence on the human microbiome stems from immune-related fac-

tors. The disruption to the Indigenous microbiome, induced by colo-

nialism, altered the stable co-evolutionary relationship that was

predetermined by genetic background and cultural history.

While the effects of colonialism are still being felt today, espe-

cially among Indigenous populations, our current understanding of

microbial kinship patterns implies that alterations to the microbiome

could be passed onto future generations and may not ever be restored

to their original state (Ley, Peterson, et al., 2006; Sonnenburg et al.,

2016). While the long-term repercussions of microbial change over

successive generations are not fully understood, there are a number

of mechanisms that can propagate and participate in transgenerational

inheritance of microbiome alterations. Primarily, there is selective

maternal transmission of specific bacterial strains to young infants

(Chu et al., 2017; Korpela et al., 2018). The origin of some specific

species can be traced back to the mother, and they remain consistent

and stable during and throughout infant development, implying a

selective advantage in familial microbial inheritance and an adaption

of some symbiotic bacterial species to have evolved vertical transmis-

sion dependence (Duranti et al., 2017; Korpela et al., 2018). However,

while caregivers transfer microbes to the infant microbial community

throughout their development, recent evidence does suggest that

environmental drivers are more critical for the maturation of micro-

biome composition (Chu et al., 2017). Therefore, shared environments
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(e.g., family household) will promote microbial sharing through social-

ity; transgenerational inheritance occurs within nuclear family units

sharing familial microbes (Bokulich et al., 2016). This means that com-

munity dysbiosis can also be “inherited” in a non-traditional sense; if

the fetus or neonate are exposed to maternal dysbiosis during this

critical developmental window, the infant “inherits” a dysbiotic micro-

bial state, although not necessarily the same dysbiotic state as their

mother (Miyoshi et al., 2017; Mulligan & Friedman, 2017). The dysbio-

sis experienced by Indigenous populations today may not represent

the dysbiosis directly caused by the events of colonization, but

instead, is the downstream remnant of historical perturbations that

define the hysteretic microbiome.

In suggesting the colonial transition was detrimental to contem-

porary Indigenous health, we introduce the paradox of contemporary

colonists, whose ancestors immigrated to novel lands and experienced

changes to their own diets, lifestyles, and contact with novel diseases,

but have consistently better health than their Indigenous counter-

parts. However, the perturbations to the colonial microbiome, and the

consequential impact on their health, would be different. It is possible

that the microbial disruption felt by colonists was less drastic than

what was experienced by Indigenous populations; colonists were able

to maintain some microbial stability through cultural lifestyle (for

example, preservation of familiar dietary sources, such as wheat or

milk, or sustained familial ties maintaining familial microbes; Earle,

2010; Phillips, 2009). As long as the colonists were able to maintain

some cultural stability, the largest demarcating factor between Indige-

nous and non-Indigenous populations during the colonial transition is

the fact that Indigenous populations were not able to reestablish pre-

colonial lifestyles and traditions, i.e. the environmental factors that

underpin the origin of their microbiomes. On the other hand, perhaps

the co-evolutionary history between European populations and their

microbiomes through ancestral perturbations of the Neolithic Revolu-

tion and earlier population transformations provides greater resilience

or adaption to change within new environments (Adler et al., 2013;

Mathieson et al., 2018; Olalde et al., 2018). Understanding the

impacts of disruptive change on both the Indigenous populations and

their colonial counterparts will be critical in illuminating microbial eco-

system functions to improve human health.

To be clear, highlighting a microbial role in Indigenous health does

not negate the significance of the role of socioeconomics in the Indig-

enous health disparity. There is evidence that indicates socioeconomic

status impacts the composition of the microbiome (Belstrøm et al.,

2014; Chong et al., 2015); hence, socioeconomic status may be exac-

erbating the influence of the microbial evolutionary history on Indige-

nous health. In proposing an underlying microbial element in

Indigenous health disparities, we offer a potential explanation for an

additional “unknown” risk factor that contributes to the discrepancy in

health between Indigenous peoples and their non-Indigenous coun-

terparts. Effective reduction of any disease prevalence requires a con-

sideration of all determinants involved (Findley, Williams, Grice, &

Bonham, 2016). Factors involved in disease risk—social, behavioral,

biological, economic, and environmental—are also involved in the

structuring of the microbiome; thus, a greater understanding of the

symbiotic microbiome–human relationship will aid public health

efforts within Indigenous communities to improve population health.

In the implementation of such microbial investigations,

researchers need to go beyond global health programs, and look

toward community engagement and translating microbiome research

into something malleable for health care providers or public health

policies (O’Doherty, Virani, & Wilcox, 2016; Valeggia & Snodgrass,

2015). Most notably, these inquiries require the inclusion of Indige-

nous communities, especially in regards to therapeutic benefits (Lewis

et al., 2012). Partnerships between researchers and Indigenous com-

munities can provide opportunities for locals to gain first-hand experi-

ence regarding specific factors contributing to illness and disease, to

learn preventative techniques in health care, and to understand

health-related skills and management (Gracey, 2014). Importantly,

allowing community control over both their own health care and

research, including sharing experimental data, allows efficient research

processes to assist in developing tangible beneficial community out-

comes (James et al., 2014; Sankaranarayanan et al., 2015). Research

efforts need to be cognizant in ethics of care frameworks, to be aware

of the potential challenges in research practices that may do disser-

vice to Indigenous communities, and give attention to the relationship

between researchers and Indigenous communities (Held, 2006;

Sharp & Foster, 2007; Taylor & Guerin, 2010). While these potential

issues may be community-specific, additional challenges can stem

from interpretation of these ethical guidelines. For example, difficul-

ties can arise in the ability to disentangle group interests from individ-

ual concerns, identifying whom is able to provide community

representation, and furthermore, whether this representative is able

to present the range of community perspectives (M. W. Foster &

Sharp, 2000; Sharp & Foster, 2007). The global health inequalities

between the Indigenous populations and their non-Indigenous coun-

terparts demand greater efforts in tracking the health of Indigenous

communities. Failure to note the impact of Indigenous identity within

microbiome research is not a neutral stance, but risks hiding existing

inequalities or neglecting communities (Kirmayer & Brass, 2016).

Studying the microbiomes of Indigenous peoples involves recognition

of specific local, cultural, and historical contexts (Kirmayer &

Brass, 2016).

While we propose colonialism as a key agent for microbial dysbio-

sis, it is equally likely for microbial dysbiosis to be an independent var-

iable of the consequential physiological and psychological changes

endured by Indigenous peoples throughout colonialism. In other

words, was dysbiosis of the microbiome caused by the alterations in

diet, introduction of novel microorganisms, and adjustments to cul-

tural lifestyles, or did microbial dysbiosis arise in parallel to the nutri-

tional disease, infectious diseases, and psychological trauma caused

by colonialism? Both scenarios are plausible. Furthermore, both sce-

narios have significant ramifications for Indigenous health. Elucidating

the cause of dysbiosis enables diagnosis and treatment of dysbiotic-

related pathology, for it is therapeutically important to discern

whether remediating dysbiosis will cure disease or merely provide pal-

liative remedy. To delineate between cause and effect, Frank et al.

(2011) suggest three modes of investigation: observation, experimen-

tation, and modelling. First, large-scale surveys of both microbial com-

position and functionality must be integrated alongside screening

human genotypes and their molecular phenotypes, which can provide

associations between microbial profiles and genetic predispositions
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(Frank et al., 2011). Second, there needs to be experimental support

for the contribution of dysbiosis to disease (e.g., double-blind, ran-

domized controlled experiments involving both the normalization of

dysbiotic profiles in individuals with disease and inducing dysbiosis in

healthy individuals), and last, it is necessary to be able to model,

experimentally demonstrate, and analyze these relationships computa-

tionally and statistically (Frank et al., 2011). Realistically, the determi-

nation of colonialism’s impact on modern-day Indigenous health will

not be straightforward, as these cause or effect scenarios are not

mutually exclusive. Until the cause of dysbiosis can be explained, per-

haps insight can be instead gained by studying the historical popula-

tions of the past and investigating their microbial changes through

colonialism in real time.

We may be able to reconstruct and examine the historic changes

in Indigenous microbiota using ancient DNA research; microbial

DNA from the past can be extracted from archaeological or paleon-

tological remains and provide a direct assessment of the evolution-

ary history of ancient microorganisms and microbiomes (De La

Fuente, Flores, & Moraga, 2013; Willerslev & Cooper, 2005). Ancient

DNA extracted from dental calculus has already been used to ascer-

tain oral microbiomes of ancient populations, providing direct bio-

logical evidence of microbiome-related changes linked to alterations

in lifeway, diet, and environment (Warinner, Hendy, et al., 2014;

Adler et al., 2013; Weyrich et al., 2017). In this case, ancient micro-

bial DNA could be used to reconstruct the ancient oral microbiomes

of pre- and postcolonial individuals, allowing researchers to directly

analyze alterations to the microbiome community composition,

structure, and function throughout the colonial transition. While

contemporary research is concentrated on the gut microbiome, the

preservation of the ancient oral microbiome in dental calculus (calci-

fied dental plaque) is superior to fossilized feces (source of ancient

gut microbiome) in protecting microbial DNA from exogenous DNA,

contamination, and the postmortem environment (Warinner, Rodri-

gues, et al., 2014; Weyrich, Dobney, & Cooper, 2015). The intercon-

nection of the microbial niches on the human body suggest that if

significant changes within the oral microbiome occurred, this would

also indicate transformations in the gut community (Said et al., 2013;

Zhang et al., 2015). By reconstructing the microbial profile of ancient

populations, we can detect microorganisms that have evolved exclu-

sively within specific populations and environments, track the intro-

duction of novel microorganisms, and distinguish those

microorganisms that adapted and adjusted to the alternative envi-

ronment introduced with colonialism. Furthermore, we can identify

which microorganisms persisted into subsequent generations, and

how they function to assist in modern human health or disease. As

the long-term effects of alterations to the microbiome are presently

unknown, it is important to evaluate the capacity for these ancient

and historic transitions to impact modern-day human population

health, especially where it is detriment. Through the reconstruction

of ancestral microbiomes, we can gain a greater comprehension of

microbiome and host interactions, strengthening the foundation of

microbiome research to be used in contributing to the improvement

of Indigenous health.
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2.1 Main text:

Our increased understanding of the vast microbial communities living on and within
the human body—the microbiota—and their contributions to human physiology
and health are reshaping how we assess public health issues. A key public health
crisis—the global health inequality between Indigenous populations and their non-
Indigenous counterparts [1]–– desperately needs a reassessment in the context of
recent microbiota research. Higher infant mortality rates, lower life expectancies,
and a growing burden of ‘lifestyle diseases’ (e.g. obesity, cardiovascular disease, type
2 diabetes mellitus, and renal disease) occur in Indigenous people at rates signifi-
cantly higher than local non-Indigenous populations [2]; diseases which correspond
with alterations to gut microbiota communities, at least in non-Indigenous popu-
lations. While Indigenous microbiota remain understudied [3], recent evidence also
suggests that the co-evolutionary history of microbiota and their host may play key
roles in identifying novel causes of disease that plague Indigenous peoples [4]. In this
respect, the current health disparity in numerous different Indigenous populations is
perhaps symptomatic of recent shared historical disturbances to their microbiota; as
such, human colonialism may have interrupted the co-evolutionary synergy between
microbe and human [5].

Millennia of coadaptation between microbiota and the human body have led to
evolved co-dependence. Our microbial communities are responsible for numerous
basic physiological functions, including food digestion, metabolic regulation, im-
mune education and propagation, and protection against invading pathogens [6, 7].
The acquisition of initial microbial communities is dependent upon both familial
inheritance and social contact [8], and continues to be shaped throughout early life
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development, consistently challenged by medical, dietary, social, and lifestyle factors
throughout a lifetime—factors that are specialised to one’s cultural background and
heritage. These processes create microbiota specific to certain environments, ex-
plicit to isolated cultures and geographic segregation. Past populations maintained
unique microbiota compared to the relatively ameliorated and familiarised lifestyles
present across Industrialised societies today.

The disruption caused by European contact, expansion, and Colonial practices
drastically reshaped Indigenous lifestyles, diet, disease exposure, and environment.
Radical changes to such factors should be expected to leave significant and profound
consequences upon an Indigenous individual’s microbiota, potentially interrupting
the microbial functional processes that are requisite for healthy human physiol-
ogy [9]. Furthermore, we should expect that concomitant changes also occurred
within microbial functional capabilities, result in adaptations under new conditions.
Alterations to an established microbiome could undermine microbial survival and
alter selection pressures to favour new environmental or dietary inputs [10]. Most
importantly, our current understanding of microbial kinship patterns implies that
potential repercussions of the microbiota alterations could be hereditary and passed
along to future generations of Indigenous peoples.

The current bias of microbiome research to Industrialised populations has clouded
our understanding of the links between the microbiota and human health. Includ-
ing the microbiota of ethnically diverse populations, and critically, the inclusion
of evolutionary history into microbial health research, will enlighten the capability
of medical interventions to manipulate microbiota for human health. These inves-
tigations should also look towards community engagement and the translation of
microbiota data into a culturally-appropriate options to improve Indigenous health
through health care providers, public health policies, or the community at large [11].
While the evolutionary history of Indigenous populations’ microbiota may explain
some ‘unknown’ risk factors in the health disparities between Indigenous peoples and
their non-Indigenous counterparts, additionally identifying factors linked to disease
risk—social, behavioural, biological, economic, and environmental—involved in the
structuring microbiota, provide a greater understanding of Indigenous populations’
microbiota to aid current public health efforts.
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3.1 Abstract

Aboriginal and Torres Strait Islander children have disproportionately poorer oral
health than non-Indigenous Australian children, especially those living in rural com-
munities. A once-annual caries preventative treatment (Intervention) was offered to
schoolchildren of the Northern Peninsula Area, Queensland; a rural population pre-
dominantly of Aboriginal Australian and Torres Strait Islander descent. After only
two consecutive years, the Intervention was seen to significantly improved the rate
of dental decay. Here, we examine the salivary oral microbiota of these children
to understand the ecological mechanisms behind this improvement in clinical out-
come. Saliva samples from children (mean age = 10 ± 2.96 years old; n = 104)
were used to reconstruct bacterial community composition and taxonomic abun-
dance, with high-throughput sequencing of the V4 region of bacterial 16S ribosomal
RNA gene. The salivary microbial community distinguished between children re-
ceiving the Intervention from those who did not, with lower taxonomic diversity
and abundance (Shannon index, Bray-Curtis; p < 0.05). In children, both with
and without the treatment, the oral microbial communities were associated with
presence and severity of carious lesions existing at the time of saliva collection. The
relative abundance of Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus
gasseri, Prevotella multisaccharivorax, Parascardovia denticolens, and Mitsuokella
species HMT 131 were significantly increased in children with severe caries, espe-
cially within children who did not receive Intervention treatment. This is the first
study to describe the oral microbiota from Aboriginal Australian and Torres Strait
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Islander peoples, simultaneously providing insight into microbial associations with
dental decay and the microbial ecological response to treatment. Further studies
are required for the understanding of how such caries-preventative therapy induces
these microbial ecological shifts and what the microbial functional repercussions of
such alterations are in the long-term, to improve upon oral health disparities within
Australia.
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3.2 Introduction

Aboriginal and Torres Strait Islander people (hereinafter also respectfully referred to
as “Indigenous”) make up 2.8% of Australia’s population but suffer approximately
2.3 times the disease burden than that of non-Indigenous Australians [1, 2]. Of this
burden, 64% can be attributed to chronic disease conditions: the primary contrib-
utors include cardiovascular diseases (12%), cancer (9%), and respiratory diseases
(8%) [2]. Often overlooked, but certainly contributing to this disease burden, is the
impact of poor oral health, for which dental decay is the most common affliction in
children [2, 3]. In fact, Indigenous Australian children have, on average, twice the
number of decayed or missing teeth than non-Indigenous children, and adolescents
suffer from 2.7 times the rate of dental decay than similarly aged non-Indigenous
Australians [4]. This not only precedes long-term systemic health problems, but
manifests pain and discomfort, causing difficulties in chewing and potential malnu-
trition, generating sleep disturbance, behavioural problems, a lack of concentration
and cooperation—all factors that can hinder learning, quality of life, and overall
well-being in young children [5, 6]. Despite the importance of good oral health, the
current trajectory appears to be worsening in Indigenous Australian populations [7],
especially within rural communities that lack access to regular dental care. Ease of
access to dental services significantly impacts the rate of dental decay, as rural or
remote Indigenous Australian children have poorer oral health relative to their ur-
ban counterparts [4]. As such, a 2004 oral health survey of the Northern Peninsula
Area (NPA), Queensland, found the dental decay rate of 6- and 12-year-old children
to be double that of the state average, and more than four times greater than that
of the average Australian child overall [8].

In order to combat this oral health gap, a novel dental caries preventative in-
tervention was designed by Lalloo et al. [9] to decrease and/or slow the incidence
of decay, with a focus on children living in remote-rural communities. This novel
preventative approach was designed to be sustainable and cost-effective, using a
combination of three common dental interventions all within a single-annual visit
[9]. Initially, an oral antiseptic povidone-iodine (PVP-iodine) tropical treatment is
applied to all tooth surfaces. PVP-iodine has been shown to interfere directly with
the binding ability of mutans streptococci to the tooth surface, as well as having
broad antimicrobial activity [10, 11]. Next, pit and fissure sealants are applied to
the occlusal surfaces of posterior teeth, preventing decay and/or the development
of incipient lesions [12]. Finally, fluoride varnish is applied to all tooth surfaces,
strengthening the enamel structure and promoting remineralisation, which is espe-
cially important in remote communities that lack water fluoridation [13, 14]. This
preventative strategy was implemented in the communities of the NPA region, Far
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North Queensland, which is located over 1,000 kilometres north of the nearest city
(Cairns, population ∼146,000). After two consecutive applications, Lalloo et al.
reported this preventative intervention to have significantly improved oral health,
resulting in a 29.3% decrease in caries incidence relative to children who did not
receive treatment [15].

Despite the reduction in dental decay, the mechanisms that underpin this obser-
vation are not entirely understood. Caries are a multifactorial disease, dependent
on both the microbial community inhabiting the mouth (i.e. the microbiota) and
abiotic environmental conditions of the mouth. While dietary carbohydrate fermen-
tation reduces the salivary pH to induce the demineralisation process of the enamel
[16], the ‘ecological plaque hypothesis’ suggests that demineralisation begins with a
disruption to the ‘balanced’ (i.e. in dynamic equilibrium) oral microbial ecosystem of
the mouth, which pressures selection for ‘pathogenic’ microorganisms with aciduric
and acidogenic properties [17]. Thus, by examining the microorganisms present in
saliva—the most accessible, non-invasive, and child-friendly sampling strategy—we
gain insight into the microbial community that may contributes to dental decay,
or indicative of the number and severity of carious lesions. [18]. Furthermore, the
microbial load of saliva has been shown to be reflective of the microbial response to
therapeutic modulations and treatments, thus providing an avenue to explore the
impact of this novel preventive intervention on the microbial ecology [19, 20].

Current evidence suggests that oral microbiota are distinct across populations,
wherein geographic locations and/or ethnic identities predicate specific microbial
communities [21]. Unfortunately, there is little evidence on how population-specific
microbiota contribute to health and disease, despite early evidence to suggest that
certain Indigenous populations may have increased or decreased disease suscepti-
bility because of their microbial community composition. For example, the analy-
sis of dental plaque from Canadian First Nation children showed unique microbial
abundances of cariogenic organisms in severe early childhood caries, and conversely,
caries-free children were abundant in microbes not previously associated with oral
health [22]. Similar research has not yet been conducted in Indigenous Australian
children. However, preliminary work studying the oral microbiota from dental calcu-
lus of Aboriginal Australian adults showed a distinctive microbial community from
that found in non-Indigenous Australians, despite their shared periodontal disease
state [23]. Such research highlights the importance of exploring both the microbial
differences between ethnic groups, and how these specific microbial signatures may
drive disease susceptibility.

Here, for the first time, we describe the salivary microbiota of Aboriginal and
Torres Strait Islander children, who participated in a three-year-long trial of a caries
preventative intervention programme. Using bacterial 16S ribosomal RNA (rRNA)
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amplicon sequencing, we investigate the impact of this novel preventative treatment
on the salivary microbial community and explore the microbiota associated with
dental decay development in this rural Indigenous Australian population.

3.3 Methods and Materials

Ethics statement

Ethics approval was granted by the Griffith University Human Research Ethics Com-
mittee (GU Ref No: DOH/05/15/HREC); the Far North Queensland (FNQ) Human
Research Ethics Committee (FNQ HREC/15QCH/39-970); the Department of Ed-
ucation and Training (Queensland Government) to approach participants at the
schools; and the Torres and Cape Hospital and Health Service for Site Specific Ap-
proval. All surveys were conducted with the full understanding and written consent
of parents/guardians of children from the three school campuses in the NPA of FNQ.

Study population and design

All children attending school in the NPA (two primary schools and one secondary)
were invited to participate in this longitudinal caries preventive programme. Due
to both the inclusivity and discretionary design of this programme, the number
of participating children varied each year. Participants consented to the overall
study and received dental care, and all participants could additionally accept or
refuse the caries preventative treatment (herein referred to as the ‘Intervention’),
which included dental therapy, placing of fissure sealants on suitable posterior teeth,
swabbing dentition with povidone-iodine, and the application of fluoride varnish [9].
Children who opted out of the Intervention due to cultural or logistical reasons acted
as a natural untreated ‘control group’ (herein referred to as the ‘Control’ group),
receiving the same examinations, but not the three-step Intervention. Of the 177
children who participated in the 2017 study year, only children who attended all
three years of the study (2015, 2016, 2017) were included in this analysis (n =
104; Intervention n = 69, Control n = 35). As saliva was taken prior to treatment
application, Intervention children had received two consecutive treatments as of 2017
(SI Table 1).

Prior to the application of the Intervention, the research team (consisting of
dentists and/or oral health therapists) undertook a detailed head, neck, and den-
tal clinical examination, alongside a questionnaire on basic demography (age and
gender), residential history (exposure to fluoridated drinking water), and percep-
tions surrounding general and oral health (such as oral health behaviours, attitudes,
and knowledge, dental visits, and dietary information). Dental caries experience
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was recorded using the International Caries Detection and Assessment System [24].
Saliva samples were collected prior to the treatment of existing oral health prob-
lems, and the Intervention was applied after any required restorative treatments
were completed.

Sample collection

Stimulated saliva samples were collected at the initial epidemiological examina-
tions, by chewing on paraffin wax for five minutes and dribbling into a sterile cup;
the expectorated volume was recorded. 2 mL of saliva was transferred into an
OMNIgene•Oral OM-501 collection tube (DNA Genotek). Samples were stored at
room temperature, until transfer to The University of Adelaide, where samples were
frozen at –20◦C until extraction, according to the manufacturer’s instructions.

For control of potential airborne microbial contamination, samples of the air
(n = 11) were collected through opening blank OMNIgene•Oral OM-501 collection
tubes in the dental examination room for at least a minute, both at the start and
end of a day of salivary collection. Air control samples were transported and stored
along with saliva samples.

DNA extraction, amplification, and sequencing

Saliva samples were extracted in a dedicated clean facility for microbiome research
at the University of Adelaide. Standard personal laboratory equipment included
a laboratory coat, surgical facemask, shoe covers, and two layers of gloves (to al-
low frequent glove changes without skin exposure). All surfaces are cleaned prior
to laboratory work with Decon 90 (Decon Laboratories Limited) and KlerAlcohol
70% v/v Isopropyl Alcohol (EcoLab Life Sciences). All extractions were prepared
and completed in still-air cabinets, which were cleaned with a 2% bleach (NaClO)
solution, and UV-treated for 30 minutes prior to beginning any work.

200 µL of saliva was incubated at 50◦C for an hour prior to extraction. The total
genomic bacterial DNA was extracted using the Roche High Pure PCR Template
Preparation Kit (Roche Life Sciences), following the manufacturer’s instructions.
Two sample blank controls (as known as extraction blank controls; EBCs) were
included for each extraction batch (two EBCs per 22 saliva samples). All samples
were amplified in triplicate alongside an additional PCR no-template control, using
barcoded primers specific to the V4 region of the 16S rRNA gene, primer 515F (5’-
GTGCCAGCMGCCGCGGTAA – 3’) and 806R (5’-GGACTACHVHHHTWTCT
AAT-3’) [25]. Each PCR reaction contained: 18.05 µL sterile H20, 1 µL of DNA
extract, 0.25 µL of Hi-Fi taq (Life Technologies), 2.5 µL of 10X Hi-Fi reaction
buffer (Life Technologies), 1 µL MgSO4 (50 mM), 0.2 µL dNTPs (100 mM), and 1
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µL each of the forward and reverse primers (10 mM). Samples were amplified under
the following conditions: 95◦C for 6 minutes; 38 cycles of 95◦C for 30 seconds, 50◦C
for 30 seconds, and 72◦C for 90 seconds; and final step, 60◦C for 10 minutes.

PCR triplicate products were pooled (to a final volume of 75 µL) and visualised
by electrophoresis on a 2.5% agarose gel to check for size and quality of representa-
tive sample. Samples were prepared for high throughput sequencing by quantifica-
tion on a fluorometer using a High Sensitivity dsDNA reagent kit (Qubit 2.0, Life
Technologies), and pooled at equimolar concentrations for a normalized 5 nmol/L,
before purification using AMPure cleanup (Ampure, Agencourt Bioscience). DNA
sequencing was completed across two MiSeq runs using 150bp paired end chemistry
(Illumina) at Australian Genome Research Facility Ltd. in Adelaide, Australia.

Data processing and analysis

Raw Illumina BCL files were processed through BCL2fastq (v. 1.8.4; Illumina) to
produce three fastq files (forward, barcodes, and reverse sequences). Metagenomic
data was then processed using the open-source QIIME2 platform (v. 2018.8) [26].
Raw multiplexed paired-end fastq files were imported and demultiplexed using bar-
codes, then denoised using the Deblur algorithm QIIME2 plugin [27]. Sequences
were truncated to 120 bp based on the median quality score. One saliva sample was
removed from downstream analysis due to extremely low sequencing depth of 68
sequences (Sample ID: Bam17.200), leaving 103 samples for downstream analysis.
In the remaining samples, MAFFT [28] was called in QIIME2 to create a masked
sequence alignment, removing highly variable positions. 16S rRNA sequences were
assigned to taxonomic groups using the Greengenes (v. 13.8) [29], Human Oral
Microbiome Database (HOMD; v. 15.1) [30] and ribosomal database SILVA (132
release) [31]; taxa names reported in text were chosen based on specificity and as-
signment confidence.

All statistical analyses were performed using QIIME1 (v. 1.9.1) [26]. Alpha di-
versity metrics were computed using Shannon, observed species, and Chao1 indices
at rarefaction depth of 19,255 sequences (the lowest sequencing depth of any sam-
ple), with significant group differences determined by nonparametric t-test. Beta
diversity analysis was completed using Bray-Curtis dissimilarity and binary Jaccard.
Anosim (analysis of similarities) and adonis permutational multivariate analysis of
variance were used to test significant differences in Bray-Curtis dissimilarities and
binary Jaccard values across sample groups. Taxonomic group differences were de-
termined using Kruskal-Wallis nonparametric ANOVA. All significant differences
were assessed using FDR corrected p-values < 0.05.
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3.4 Results

3.4.1 Authentic oral microbial community recovered from saliva

16S rRNA gene amplicons from all samples (biological samples and controls; n = 146)
after data trimming and quality filtering produced a total of 6,991,276 sequences.
The saliva samples (n = 103) produced an average of 65,678 sequences (SD = 51,278,
range 19,255–551,410; 96.76% of total sequences). Blank control samples (extraction
blank controls (EBCs), PCR negatives, and air filter controls; n = 43) contributed
to a total of 226,401 sequences (3.24% of total sequences), with an average of 5265
sequences per sample (SD = 9821.62, range 18–49,953). All sequences clustered into
1,221 features (the QIIME2 term for sub-operational taxonomic units or amplicon
sequence variants).

Saliva samples shared a total 1,056 features, with 165 features unique to the
EBC samples. Blank control samples shared 280 overlapping features with salivary
samples; likely due to reagent contamination and/or cross-contamination [32, 33].
Blank controls predominantly contained Proteobacteria (mean relative abundance
46% of total sequences), Firmicutes (25%), Actinobacteria (15%), Bacteroidetes
(6%), Fusobacteria (1%), Cyanobacteria (1%), and Chloroflexi (1%). There were 17
assigned genera with a mean relative abundance greater than (1%), and the top 5
dominating genera, Staphylococcus (mean relative abundance of 10.3% of total se-
quences), Acinetobacter (7.7%), Pseudomonas (7%),Novosphingobium (6.2%), and
Micrococcus (5.8 %) are all known laboratory contaminants (Figure 1) [33].

Dominant Genera in Control Samples

Figure 1: Dominant genera of control samples. Each bar represents a single sample; all genera
contributing more than 1% of total sequences are coloured, showing the variation of taxonomy and
contamination content within the control samples. Controls have an average sequencing depth of
5265 (ranging from 18–49,953 sequences).
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A total of 14 phyla, 23 classes, 42 orders, 76 families, 119 genera, and 1,166
features were detected from 103 saliva samples. The most abundant phyla were
Proteobacteria (average 29% of total sequences), Bacteroidetes (26%), Firmicutes
(25%), Actinobacteria (11%), Fusobacteria (8%), and Spirochetes (1%). From the
total of 119 genera detected, 15 genera dominated with a mean relative abundance
>1% of the total sequences, with a total average contribution of 88.9% of sequences:
Prevotella (19.3%), Neisseria (13.1%), Haemophilus (12.5%), Streptococcus (9.2%),
Rothia (7.4%), Veillonella (5.1%), Fusobacterium (4.6%), unclassified genera of fam-
ily Gemellaceae (3.5%), Actinomyces (2.4%), Granulicatella (2.4%), Porphyromonas
(2.4%), unverified Prevotella (2.3%), Leptotrichia (2.2%), Aggregatibacter (1.5%)
and Oribacterium (1%) (Figure 2).

3.4.2 Age, dentition, and gender did not drive significant

variation in salivary microbiota

Previous salivary research identified microbial differences in saliva associated with
age and dentition [34, 35]. Therefore, we tested the impact of dentition (mixed
dentition-permanent dominant (n = 31), vs mixed dentition-deciduous dominant (n
= 29), vs all-permanent dentition (n = 43)), age group (ages 6–8 (n = 33), vs ages
9–13 (n = 54), vs ages 14–17 (n = 16)), as well as sex (male (n = 38) vs female (n =
65)) (Table 1) on microbial community composition and structure, as measured by
alpha and beta diversity metrics. We found no support for significant compositional
differences between any demographic groups (Shannon, observed species, Chao1, p
> 0.05, t (range) = -1.53–1.82).

Moreover, there was no support for age or sex contributing to microbial commu-
nity variation as confirmed by Bray-Curtis and binary Jaccard metrics (adonis, p >

0.1, R2 (range) = 0.009–0.022; anosim, p > 0.05, R (range) = 0–0.051). Binary Jac-
card diversity found variation to be driven significantly by dentition groups (adonis,
p = 0.045, R2 = 0.025), but these groups were not significantly different from one
another (anosim, p = 0.155, R = 0.022). This suggests that while dentition may
describe the variation of unique features within the microbial composition,it does
not significantly differentiate structure. Overall, these results suggest demographic
factors are unlikely to be driving microbial diversity within this population.

Table 1. Sample demographics by treatment group, (N = 103)
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3.4.3 Intervention decreases microbial diversity

To investigate the impact of the Intervention on the salivary microbial community,
we analysed the microbial diversity of the Control and Intervention group samples,
as calculated using Shannon, observed species, and Chao1 index metrics, compared
using a nonparametric t-test (Table 2). Saliva samples of the Control group con-
tained significantly higher microbial diversity (Shannon, observed species, Chao1, p
< 0.05, t = 2.77–3.5), illustrating a reduction in both the taxonomic diversity and
richness in children who received the Intervention. However, this difference in diver-
sity did not significantly change the microbial community composition. While the
presence or absence of microbial variation could be explained by treatment (Con-
trol vs Intervention; binary Jaccard, adonis, p = 0.007, R2 = 0.016), the overall
community composition was not significantly dissimilar between treatment groups
(Bray-Curtis, adonis, p = 0.05, R2 = 0.018; Bray-Curtis anosim, p = 0.70, R =
-0.019; Jaccard anosim, p = 0.70, R = -0.019). Overall, this suggests that while the
Intervention impacts the microbial diversity, the Intervention has minimal impacts
on the overall microbial ecology.

Table 2. Alpha Diversity of Intervention and Control Groups. Significance (p < 0.05)
calculated at QIIME2 feature level, p-values are FDR corrected.

To examine whether the Intervention adversely impacted ‘pathogenic’ microor-
ganisms, we tested significant associations of microbes between the Intervention
group and the Control group with Kruskal-Wallis (Table 3). This was calculated
at the feature level, then assigned in QIIME2 to three different reference databases
(Greengenes, Human Oral Microbiome Database, and SILVA) to achieve best pos-
sible species identification. Three species were detected with significantly greater
abundance within the Control group: Lactobacillus salivarius (p = 0.04, t = 15.42),
Unassigned Selenomonas (p = 0.04, t = 14.85) and Actinomyces sp. HMT 896
(p = 0.04, t = 14.78). The decrease in the decay-associated L. salivarius suggests
that the Intervention may have an impact on microbes associated with dental decay
present at the time of sampling.
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3.4.4 Presence or absence of caries is not associated with

microbiota

Given previous work identifying signals of dental decay in salivary microbial com-
munities [36, 37, 38], we initially tested the presence or absence of dental decay
using the merged code ICDAS system, without accounting for Intervention partici-
pation [39]. We found no significant differences in the microbial diversity between
all children who were caries-free (CF; ICDAS scores of 0–2, i.e. showing no obvious
sign of local enamel breakdown) vs caries-active (CA; ICDAS scores = 3–6), using
any alpha diversity metric (Shannon, observed species, Chao1; p > 0.4, t (range) =
0.72–0.81). Further examination also revealed no significant differences in the over-
all composition between the two groups (Bray-Curtis anosim, p = 0.13, R = 0.04;
Jaccard anosim, p = 0.10, R = 0.04). Although significant variation was detected
in the microbial abundance associated with the presence or absence of caries using
Bray-Curtis (adonis; p = 0.028, R2 = 0.019), binary Jaccard did not support differ-
ences in microbial variation, as it was not determined by the presence or absence
of unique species (adonis; p = 0.09, R2 = 0.012). Overall, these results suggest
very little difference between the microbial communities associated with presence or
absence of dental decay in these children without accounting for the participation
of the Intervention programme.
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3.4.5 Intervention differentially influences microbiota accord-

ing to decay status

At the time of sampling, 85% of children in the Control group had carious lesions,
relative to 55% of children in the Intervention group (Table 1). Therefore, to de-
termine the impact of treatment accounting for dental decay, we initially examined
the differences in diversity and composition of CF children to determine how the In-
tervention treatment impacted the microbial community of children without dental
decay. We found no significant differences in microbial diversity between therapeutic
groups (CF Intervention group (n = 31) vs CF Control group (n = 5); Shannon,
observed species, Chao1, p = 1, t (range) = -0.80—1). Furthermore, Intervention
appears not to have impacted the overall microbial community structure or variation
in CF children (Bray-Curtis adonis, p = 0.54, R2 = 0.026, binary Jaccard adonis, p
= 0.92, R2 = 0.022; Bray-Curtis anosim, p = 0.9, R = -0.15; binary Jaccard anosim,
p = 0.95, R = -0.16). These results suggest that the Intervention, despite the use of
broad-spectrum antimicrobials, did not appear to affect the diversity or composition
of the salivary microbial community in children with good oral health ab initio.

Next, we compared all children with active dental decay (CA; ICDAS score 3–
6) between treatment groups. Microbial diversity of CA Intervention children was
significantly lower than the microbial diversity of the CA Control group (CA Inter-
vention (n = 38) vs. CA Control (n = 29); Shannon, p = 0.006, t = 3.41; observed
species, p = 0.024, t = 3.04; Chao1, p = 0.048, t = 2.70). This suggests that the
decay-associated microbial diversity is different between therapeutic groups. Never-
theless, significant differences in microbial composition were not generally explained
by caries presence (binary Jaccard anosim, p = 0.279, R = 0.02; Bray-Curtis adonis,
p = 0.06, R2 = 0.024; Bray-Curtis anosim, p = 0.377, R = 0.005), although some
variation in microbial composition could be induced by the presence or absence of
unique species (binary Jaccard adonis, p = 0.017, R2 = 0.02). Generally, these
results suggest despite impact of Intervention treatment upon community diversity,
the overall community composition still supported the development of dental decay.
However, the Intervention only impacted the microbial diversity of children with
active decay, which may be characteristic of the preventative treatment mechanisms
acting upon pathogenic oral microbiota.
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Table 4. Sample distribution of caries severity by therapeutic group, based on the merged Inter-
national Caries Detection and Assessment System (ICDAS) score

3.4.6 Severity of dental decay impacts microbial composition

Given the minimal impact of the presence or absence of carious lesions on oral
microbial diversity, we looked to examine how caries severity influences the oral mi-
crobiota—regardless of Intervention participation—by grouping children into three
levels of decay (Table 4): None (ICDAS score of 0—2; n = 36), Moderate (ICDAS
3–4; n = 33), and Severe (ICDAS 5–6; n = 34). No differences in microbial diver-
sity were detected between the varying levels of decay (Shannon, observed species,
Chao1; p = 1, t (range) = -1.01–0.5). However, significant differences in microbial
community structure were identified using binary Jaccard (adonis, p = 0.032, R2 =
0.025; anosim, p = 0.02, R = 0.034), but not Bray-Curtis (adonis, p = 0.13, R2 =
0.026; anosim, p = 0.138, R = 0.014), indicating that these community differences
are perhaps driven by the presence or absence of unique species.

We looked to identify the microbial species that may underpin the differences in
composition between the three groups of varying decay. Seven species with a sig-
nificantly greater relative abundance corresponding with increasing caries severity
were detected using Kruskal-Wallis (Table 5; p < 0.036, t > 16.44): three Lacto-
bacillus species, Prevotella multisaccharivorax, Streptococcus mutans, Parascardovia
denticolens, and Mitsuokella HMT 131. Interestingly, we were also able to detect an
increase of an unassigned Treponema species associated with decrease in dental de-
cay (p = 0.04, t = 15.9), suggesting a relationship to oral health. Overall, it appears
the detection of several key ‘pathogenic’ taxa within this population is dependent
upon caries severity.
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3.4.7 Intervention differentially impacts taxa associated with

severe caries

Lastly, we explored whether the Intervention impacted these specific microorganisms
linked to decay severity inclusive of Intervention participation. To do so, we further
partitioned the caries severity groups based on therapeutic group: Intervention None
(n = 31), vs Intervention Moderate (n = 22), vs Intervention Severe (n = 16),
vs Control None (n = 5), Control Moderate (n = 11), vs Control Severe (n =
18). We were able to detect six of the seven taxa prior associated with caries
severity regardless of Intervention, using Kruskal Wallis: three Lactobacillus species,
P. multisaccharivorax, P. denticolens, and Mitsuokella HMT 131 (Table 6; p <

0.013, t > 25.95). S. mutans was no longer significantly detected when accounting
for treatment groups (p = 0.06, t = 21.48), suggesting the mean relative abundance
of S. mutans is not impacted by the Intervention therapy.

Chiefly, the three Lactobacillus species were detected at lower relative abundance
(at each level of decay) within the Intervention group compared to the Control group
(Table 4; p < 0.013, t > 25.95). Yet, some species increased in relative abundance
within the Intervention group (e.g. total assigned P. multisaccharivorax, p < 0.002,
t > 31.17). Parascardovia denticolens and Mitsuokella HMT 131 show minimal dif-
ferences between Intervention or Control groups, but maintained increasing relative
abundance correlated with caries severity (p < 0.04, t > 23.04). Further, some taxa
were only detected within the Control group (Corynebacterium and Leptotrichia
HMT 225, Kruskal Wallis, p < 0.014, t > 25.59), potentially indicative of the re-
duced microbial diversity within the Intervention treatment. These results highlight
the specificity of the Intervention on particular bacterial taxa, namely Lactobacil-
lus species, and present a number of salivary biomarkers that are representative of
increasing decay in our population of Indigenous Australian children.

3.5 Discussion

We examined the salivary microbial community from Aboriginal and Torres Strait
Islander children of remote NPA communities, Far North Queensland, in response
to both caries and the novel caries preventative Intervention programme. To our
knowledge, this is the first study to investigate the oral microbiota of Indigenous
Australian, and the first to review the impact to the salivary microbial community of
children after undergoing a longitudinal oral health therapy. After characterising the
salivary microbiota, we were able to show that the Intervention decreased the micro-
bial diversity but did not significantly impact the overall microbial composition. In
addition, we were able to detect microbial signals of dental decay in saliva; notably,
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we identified seven species associated with extensive carious lesions: Lactobacillus
salivarus, L.reuteri, L. gasseri, Streptococcus mutans, Prevotella multisaccharivorax,
Parascardovia denticolens, and Mitsuokella HMT 131.

As this study is the first to look at the whole-community changes to the mi-
crobiota in response to a caries preventative treatment, there is limited literature
currently available to interpret whole-community changes in the mouth linked to oral
treatments. While the topical disinfectant, fissure sealants, and fluoride varnish are
accepted as decay preventative measures, their implementation has been promoted
only after studying the direct impact of the treatment on mutans streptococci and
other limited caries-associated species in vitro [10], or by subsequent visual scor-
ing of carious lesions to measure caries increment [11, 12]. Our results show that
children who received the Intervention experienced a loss in species diversity (i.e.
richness), which is typically indicative of an ecological disturbance—a discrete event
causing the loss of microorganisms and an alteration to community structure [40].
Research has shown antimicrobial treatments to reduce microbial diversity on the
human oral microbiota in the short-term, usually linked with the depletion of one or
several specific taxa [41]. However, antimicrobial insults on the salivary microbiota
appear transient, and there is a near complete recovery of the microbial community
over time [20, 42]. For children of the NPA, the repeated annual application of the
Intervention appears to be driving a more permanent change and/or an incomplete
recovery of the initial microbial community state.

While conventional ecological theory suggests lower species diversity may reduce
resilience to ecological instability or invading pathogens [43], this may not be per-
tinent to oral health, where greater microbial diversity has been observed with oral
disease, compared to that of orally healthy individuals [36, 37, 44]. This observa-
tion is supported by our results, where decreased microbial diversity was detected
with Intervention treatment, and despite the presence of dental decay, was overall
linked to improvements in oral health within this population [9]. This might sug-
gest that decreased microbial diversity induced by the Intervention is symptomatic
of preventative mechanisms supporting oral health. We hypothesise that the Inter-
vention modifies the microbial ecology towards a state supportive of oral health; but
the processes by which this occurs cannot be elucidated by the study of microbiota
alone. The Intervention may be directly impacting microbial community function
or indirectly impacting the environmental variables that define microbial ecology
[43]. Future work looking at the functional potential of the microbial ecology may
illuminate the underlying agents of this ecological state. Understanding the impact
of these treatments on the overall microbial ecology of the mouth is critical for
understanding the long-term implications, benefits, or risks, associated with novel
dental therapies. Longitudinal tracking of the possible downstream effects from an
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initial ecological shift has often been disregarded in oral health research and needs
to be included in studies moving forward.

Using saliva, we detected several bacterial species associated with severe dental
decay in Aboriginal and Torres Strait Islander children. While oral microbes in a
planktonic state are not usually regarded as direct causal agents of dental decay,
understanding specific bacteria associated with poor oral health can facilitate pre-
vention and treatment, especially against those acidogenic and acidophilic species
that are more likely to contribute to the caries process. In this study, species L.
salivarus, L.reuteri, L. gasseri, S. mutans, P. multisaccharivorax, P. denticolens,
and Mitsuokella HMT 131 were all significantly increased within the salivary mi-
crobiota of children with severe carious lesions. S. mutans was initially detected
in association with increasing caries severity, but was no longer significant after
accounting for Intervention participation. Our results could suggest the limited
impact of the Intervention upon the relative abundance of S. mutans in saliva. Al-
ternatively, since the initial detection of S. mutans within the severe decay group
(regardless of treatment) was at very low relative abundance, the genomic results are
perhaps symptomatic of the generalised low prevalence of the Streptococcus genus
within this population. Streptococcus genus only contributed to 9.2% of the aver-
age relative abundance within our Aboriginal and Torres Strait Islander population
compared to multiple reports of Streptococcus abundance contributing to more than
20% of the saliva microbial community [34, 36, 37].

L. salivarius has been previously detected in saliva of individuals with progres-
sive carious lesions within multiple populations [45, 46, 47]. Lactobacillus species
are hypothesized to supervene the formation of the carious lesion, supporting down-
stream enamel demineralisation by more acidogenic species, such as S. mutans [48].
As such, it is surprising that L. reuteri has been suggested as a probiotic agent
against the formation of carious lesions, identified in the dental plaque of people
with good oral health [49], for our results do not support its beneficial association.
The Lactobacillus species’ functional repertoire (i.e. the ability to thrive in a low pH
environment and produce lactic acids [50]) suggests that its presence supports the
development of carious lesions. Similarly, the increased levels of Mitsuokella HMT
131, P. denticolens, P. multisaccharivorax in saliva from children with extensive
caries are likely symptomatic of the acidic, relatively anaerobic oral environment.
P. denticolens has previously been detected in association with caries from salivary
microbiota [46, 51].

While Mitsuokella HMT 131 has not previously been associated with dental
caries, it has been found in other anaerobic environments, such as the subgingival
plaque of periodontitis and dental root canals [52, 53]. Similarly, P. multisaccharivo-
rax both has been previously associated with a wide-range of oral diseases (including
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severe early-childhood caries, root caries, and periodontal disease), as it is an obligate
anaerobic species [54, 55]. Nevertheless, detection of caries-associated microorgan-
isms in this population suggests that the salivary microbiota can be indicative of
caries advancement. By identifying biomarkers for dental decay, we may also gain
greater insights into not only predicting caries development, but also additional oral
or systemic diseases. For example, while P. multisaccharivorax is associated with
severe caries in these children, its links to periodontal disease further suggest that
additional, longitudinal work should explore the relationships between these mi-
croorganisms and the increased risk for developing periodontal disease in Aboriginal
and Torres Strait Islander people, both in childhood and later in life [56, 2].

Despite both the cost-effectiveness and ease of large-batch processing provided by
16S rRNA sequencing, the approach has its limitations. First, there are known biases
in using the 16S gene for identifying microbial species. We used the V4 region of the
16S rRNA and protocols used in the Human Microbiome Project (HMP) [25], shown
to have one of the highest species assignment accuracy [57]. Yet, the discrepancies
between different variable regions and the different protocols used in other salivary
studies limit our ability to compare across populations. Second, sequencing with
16S rRNA also restricts the ability to describe increased or decreased “abundance"
of a particular microbial species associated with oral health or disease, as detection
can be influenced by the number of 16S rRNA operon copies present in a particular
bacterial genome [58]. Thus, only relative abundance can be discussed, which may
not reflect the true biological ecosystem [59], although we used both the use of
normalization and nonparametric Kruskal Wallis test to circumvent some of these
issues [59].

Lastly, the choice of reference database will influence the taxonomic assignment
(as seen in Tables 3,5,6). While Greengenes database was popularised by the HMP,
unfortunately, it has not been updated since May 2013 and is quickly becoming out-
dated. The HOMD database is also problematic; although it can more accurately
classify microorganisms present in the oral environment (of predominantly urban-
industrialised populations), it impedes assignments to any species not previously
identified in the oral environment. This latter impediment likely masks potentially
novel species found in understudied populations of various cultural and environ-
mental niches [24], as well as concealing potential contaminant taxa in oral samples.
SILVA database has the opposite dilemma, wherein its assignment to various en-
vironmental niches is accurate, it has less specificity for oral taxa. We attempted
to mitigate these ascertainment biases through the use of multiple databases for
taxonomic identification. While shotgun sequencing techniques will mitigate some
of these issues, further exploring the microbiota in underrepresented populations is
still a key issue for the future dental research [60].
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Our study is the first characterisation of the salivary microbiota of Aboriginal
and Torres Strait Islander children. A number of studies have already identified
population- and/or ethnic-based differences in oral microbiota [61, 62]. Since cul-
tural and environmental factors driving salivary microbial community variation can
dominate familial or hereditary signals [62, 63, 34], the coevolutionary history of mi-
crobiota and their host may be confounded or influenced by current cultural and en-
vironmental practices today [64]. Such as the processes of industrialisation, evident
in Indigenous Australian populations. Prior to the 1980s, Indigenous Australians
were noted for having considerably better oral health than their non-Indigenous
counterparts [65]. It is hypothesised that this cultural transition to an ‘indus-
trialised’ lifestyle—especially dietary impact of increased sugar intake and other
readily-fermentable carbohydrates—in addition to socio-economic risk factors [66],
may have induced an oral microbial community detrimental to oral health [4]. How-
ever, studies have shown that accounting for socio-economics variables still does not
explain the disparity in oral health that exists between Indigenous Australians and
their non-Indigenous counterparts [67]. Assessing the contributions of microbiota
to Indigenous Australian health and disease may require an understanding of what
their microbial communities were prior to impacts of sociocultural processes, such
as colonialism and industrialisation [64]. At the most basic level, future research
is immediately needed to explore if unique oral microbial communities exist in In-
digenous Australians compared to those of non-Indigenous descent, and determine if
these communities contribute to poorer oral health in Aboriginal and Torres Strait
Islander Australians compared to non-Indigenous people: such studies should be
recognized in the efforts to diminish the oral health gap.

3.6 Concluding remarks

In conclusion, the Intervention markedly improved the rate of dental decay of NPA
children, in association with an ecological disturbance to the microbial community
that is atypical of health elsewhere in the body. In addition, we identified six
unsuspected biomarkers for severe caries in this population of Aboriginal and Torres
Strait Islander children. This study demonstrates the use of non-invasive saliva
collection to assess the links between the oral microbiota, dental disease and caries
preventative therapy, providing key information to assist in the development of such
oral health interventions and to assess longitudinal outcomes of caries prevention
programmes, especially within Indigenous populations. This research highlights the
need for further microbiome research in children and adults of underrepresented
populations across the globe.
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4.1 Abstract

The study of ancient human-associated microbial communities provides an unprece-
dented opportunity to assess evolutionary and anthropological questions, which have
substantial implications for medical research. Calcified dental plaque (calculus) has
quickly become the palaeomicrobiological material of choice, as the pre-mortem cal-
cification process protects endogenous DNA from post-mortem environmental condi-
tions. However, the impact of taphonomy (i.e. the processes of decay and preserva-
tion) on the reconstruction of ancient microbial communities—especially preserved
within dental calculus—remains largely unexplored. Here, we analysed metagenomic
shotgun sequences acquired from modern dental calculus samples, stored long-term
(>2 years) at room temperature (n = 6)—indicative of typical storage conditions
for ancient dental calculus samples in museum collections—to both fresh samples
(n = 18) and those stored long-term at -20◦C (n = 6). There were significant dif-
ferences in the microbial diversity of dental calculus samples stored long-term at
room temperature (Shannon, Kruskal-Wallis, p = 0.004, H = 10.87), notably im-
pacting Fusobacterium (p = 0.033, t = 10.84), Leptotrichia (p = 0.033, t = 10.01),
and Selenomonas (p = 0.045, t = 8.67) genera, with greater phyla-level alterations
to Fusobacteria (p = 0.002, t = 13.02) and Bacteroidetes (p = 0.008, t = 9.04).
Long-term storage at -20◦C had greater congruence to freshly extracted samples (p
> 0.05), but there were still a significant difference in abundance of phyla Fusobac-
teria (Kruskal-Wallis, p = 0.048, t = 7.14) and Actinobacteria (p = 0.048, t = 6.08).
Overall, phylum Fusobacteria appeared to be greatly impacted by long-term storage
regardless of temperature. Analysis of microbial reconstruction with 16S rRNA am-
plicon sequencing found a lesser impact of long-term storage; only room-temperature
storage impacting relative abundance of phylum Firmicutes (Kruskal-Wallis, p =
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0.02, t = 9.80). Our study is the first to explore the taphonomic impact of microbial
community reconstruction over time within modern dental calculus samples, iden-
tifying the biases that will impact both contemporary and ancient dental calculus
research, which need to be considered when translating paleomicrobiological records
for modern human health.
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4.2 Introduction

A new era of palaeomicrobiology commenced with the breakthrough of high-throughput
sequencing technology producing millions of DNA sequences in parallel, allowing ac-
cess to whole ancient microbial communities. Studies have already retrieved ancient
microbiota (i.e. human-associated microorganisms) from mummified human re-
mains [1], historical medical specimens [2], fossilised faecal remains (coprolites), and
microbial deposits in bone (deriving from seepage from decomposition) [3]. How-
ever, the most reputable source of palaeomicrobiological material is that of calcified
dental plaque, known as dental calculus or tartar. Dental plaque is a microbial
biofilm, formed by the specialised signalling mechanisms and adherence partner-
ships between human oral microorganisms to one another and to the enamel tooth
surface [4]. The salivary and cervical fluids naturally deposit calcium and phosphate
salts into the biofilm, petrifying it into dental calculus [5]. The ability to extract
micorbial DNA from mineralised calculus has been already been exploited within a
number of studies: such as, paleoepidemiological explorations [6], the examination
of bacterial genome evolution through time [7], employed within ancient human di-
etary analyses [6, 7], as well as monitoring the evolutionary history of microbiota
communities through time [8].

There are numerous benefits in using dental calculus for the analysis of ancient
microbiota through time. Firstly, as the mineralisation process occurs prior to the
cessation of the host, building up through an individual’s lifetime, the structure and
formation of dental calculus aids in safeguarding the endogenous microbiota from
host decomposition and post-mortem environmental contamination; which other
ancient microbiome samples (e.g. coprolites) for prone [9, 10, 5]. Additionally, the
presence of dental calculus in the archaeological record is far more abundant than
any other ancient microbiome sample; calculus commonly found on human teeth
of most pre-agricultural societies, but is ubiquitously in nearly all post-agricultural
populations [11]. Since dental calculus is often found alongside human remains,
additional anthropological data specific to the host can also further aid in the study
of ancient microbial communities [12].

The application of ancient dental calculus in the field of palaeomicrobiology is
still relatively new, but its analytical power in evolutionary and anthropological re-
search is tremendous, already providing insights from the past that have important
implications for contemporary public health and medical research. However, the
significance of these conclusions is dependent upon the ability to compare microbial
communities from ancient to modern dental calculus microbial communities. Like
most ancient DNA studies, paleomicrobiology of dental calculus has a number of
biases that need to be accounted for. For example, the ratio of guanine-cytosine
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bases within a microbial genome has been shown to impact ancient DNA preserva-
tion or damage [13], or the length of DNA fragments within ancient samples [7, 14],
have both been shown to bias taxonomic reconstruction. While the field of ancient
dental calculus research acknowledges the potential biases of taphonomy (i.e. the
processes of decay and preservation that impact the microorganisms in fossilisation),
how this bias may impact microbial community reconstruction, or comparisons to
modern dental calculus samples, is not yet understood. Conventionally, modern
dental calculus samples are removed from the mouth of a living individual, often
intermixed with fresh dental plaque, and then are typically stored at -20◦C or be-
low until time of DNA extraction. In contrast, ancient dental calculus specimens
are typically associated with remains that have persisted in the environment, from
decades to millennia, and then are stored at room temperature in archaeological
collections (e.g. museums), sometimes for decades. As a result, the field of pale-
omicrobiology has typically avoided direct whole community comparisons between
modern and ancient samples all together, despite the value that those comparisons
could possess [7].

Within modern microbial research, the investigation of sample storage condi-
tions on microbial community profiles have been tested upon human faecal material
[15, 16, 17], vaginal samples [18], skin [19], dental plaque [20], and environmental
soil samples [21]. In general, these studies have demonstrated an accumulation of
compositional alterations positively associated with the amount of time stored since
collection, with cold storage typically decelerating this process. These patterns of
decay are sample dependent, and as of yet, the impacts of storage methods over
time have not yet been explored in modern dental calculus samples. Understanding
the taphonomic issues present upon dental calculus microbial communities would
better allow us to explore the relevance of past oral microbiomes to modern human
health.

Here, we assessed the impact of both time and storage techniques on micro-
bial communities within modern dental calculus sampled over a period of six years
using both shotgun and 16S ribosomal RNA amplicon metagenomic sequencing tech-
niques. We qualitatively assessed taphonomic signatures within dental calculus
stored at room temperature and –20◦C freezer storage, highlighting the potential
biases that may occur in the analysis of ancient oral microbiota. More broadly, this
preliminary analysis aimed to examine the impact of long-term storage conditions
on the reconstruction of dental calculus microbial communities.
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4.3 Materials and Methods

4.3.1 Ethics Approval

All individuals recruited for this study were done so in accordance with the ethics
approval obtained from the University of Adelaide Human Research Ethics Commit-
tee (H–2012-108). All samples were obtained under informed consent from healthy
individuals, aged 18–50, who were not taking antibiotics at time of sampling.

4.3.2 Sample Collection and Storage

For the assessment of storage methods, supragingival dental calculus samples (n =
18) were obtained from the lingual incisors, over the course of five years, during the
donor’s routine dental appointment in Adelaide, Australia. The samples were re-
moved from the tooth using a dental pick by dental professionals, and were collected
into several different receptacles: transferred onto a cotton gauze and sealed in a bag
(n = 13), sealed into a sterile plastic tube (n = 4), or placed directly into a dental
sterilisation pouch (n = 2). After collection, the samples were randomly assigned
to one of two storage conditions: indoor room temperature (∼23◦C; also known as
’Room Temp’ group) or a standard freezer (–20◦C; also known as ’Freezer’ group).
Samples remained in respective storage conditions until DNA extraction. Samples
and associated metadata are summarised in Table 1.

Comparative supragingival dental calculus samples (n = 18) were collected from
lingual incisors of healthy volunteers, using a dental pick by a trained dental profes-
sional, at the University of Adelaide Dental School. Samples were placed into sterile
2 mL screw-cap tube and were immediately stored at –20◦C until DNA extraction.
All these samples were extraction within one month of collection (herein referred to
as the ’Fresh’ group).

4.3.3 DNA Extraction

All calculus samples were processed within a specialised clean laboratory, designed
for human microbiome research, at the University of Adelaide. The laboratory is
isolated from any post-PCR laboratories and has strict protocols in place to min-
imise human and environmental microbial contamination. Researchers working in
the microbiome lab are required to wear shoe covers, two pairs of gloves, face mask,
and a laboratory coat (to ensure minimum skin exposure). All surfaces are rou-
tinely cleaned with Decon 90 (Decon Laboratories Limited) or 2% bleach (NaClO)
solution, and KlerAlcohol 70% v/v Isopropyl Alcohol (EcoLab Life Sciences). All
consumables, disposables, tools, and instruments are wiped with 2% bleach upon en-
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Sample Metadata

Table 1. Sample description. Two individuals participating in the self-direct longitudinal calcu-
lus collection also participated in the donation of comparative fresh calculus samples, as indicated
by Donor ID

try to the laboratory and are subjected to routine cleaning before, during, and after
use. All sample work is carried out within still-air hoods to minimise environmental
contamination; the inside of the hood, tools, and instruments are UV-irradiated for
a minimum of 15 minutes before and after each use.

Once in the laboratory, all calculus samples were removed from their respective
storage vessel with tweezers and placed into a sterile 2 mL tube. All workplace
equipment, including the tweezers and bench-top, were treated with 5% bleach be-
tween each calculus sample. DNA was extracted from calculus using a modified
in-house silica method, based on that previously developed for ancient dental calcu-
lus DNA extraction (as described in [22, 7]. In brief, dental calculus samples were
decalcified and microbial cells lysed in 470 µL of 0.5 M ethylene diamine triacetic
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acid (EDTA; pH 8.0) and 30 µL of 10% sodium dodecyl sulphate (SDS), treated
with 20 mg/mL proteinase K, and incubated at 55◦C overnight. Cell lysis products
were bound to 20 µL of silica solution in the presence of 1.5 mL of buffer QG (con-
taining guanidium thiocyanate; Qiagen). Silica-bound DNA was rinsed twice with
80% ethanol, before resuspension in 100 µL of Tris-EDTA solution. Resuspension
was repeated to elute a total of 200 µL. Two sample blank extraction controls (i.e.
extraction blank controls, or EBCs) were also processed alongside each extraction
group (∼10 dental calculus samples per group).

4.3.4 Shotgun metagenomic libraries and sequencing

In preparation for shotgun sequencing, 50 µL of DNA extract was sheared using a
focused-ultrasonicator (Covaris Inc.) to ∼300bp fragment lengths. 20 µL of sheared
DNA extract was used to make shotgun libraries, constructed as previously described
in Meyer, Sawyer, and Kircher (2011), without the enzymatic damage repair step
[23, 7]. In short, DNA extracts underwent enzymatic polishing to produce blunt
ended fragments, before the ligation of truncated 5-bp forward and reverse barcoded
Illumina adaptors and filling of adaptor sequences. Resulting DNA fragments were
purified using MinElute Reaction Clean-ups (Qiagen) after each enzymatic step,
and then amplified using a polymerase chain reaction (PCR). In brief, AmpliTaq
Gold reactions were done in triplicate and contained: 12.75 µL sterile H20, 2 µL
of purified Library DNA, 0.25 µL of AmpliTaq Gold (Life Technologies), 2.5 µL
of 10X Gold buffer, 2.5 µL MgCl2 (25 mM), 0.625 µL dNTPs (10 mM), and 1.25
µL Illumina amplification primer, and 1.25 µ L GAII Illumina indexed adaptor.
Cycling conditions were as follows: 94◦C for 12 minutes; 13 cycles of 94◦C for 30
seconds, 60◦C for 30 seconds, 72◦C for 40 seconds (plus 2 seconds/cycle); and 72◦C
for 10 minutes. The resulting products were pooled, purified with AxyPrep magnetic
beads (Axygen Scientific Inc.), and then re-amplified with GAII-indexed Illumina
primers. The resulting libraries were subjected to a final purification, quantified on
a TapeStation (Aligent Technologies), subsequently pooled to a final 2 nmol/L DNA
concentration, and sequenced on an Illumina NextSeq, Mid Output, 150 cycle kit
(Illumina) at the Australian Genome Research Facility Ltd. (AGRF) in Adelaide,
Australia.

4.3.5 16S rRNA gene amplification and sequencing

All samples additionally underwent 16S ribosomal RNA (rRNA) amplification. Each
sample was amplified in triplicate, alongside an additional no template control, using
barcoded primers specific to the V4 region of the rRNA gene, with primers 515F (5’ -
GTGCCAGCMGCCGCGGTAA– 3’) and 806R (5’ -GGACTACHVHHHTWTCTAAT-
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3’) [24]. Each PCR reaction contained: 18.05 µL sterile H20, 1 µL of DNA extract,
0.25 µL of Hi-Fi taq (Life Technologies), 2.5 µL of 10X Hi-Fi reaction buffer, 1 µL
MgSO4 (50 mM), 0.2 µL dNTPs (100 mM), and 1 µL each of the forward and re-
verse primer (10 mM). Samples were amplified under the following conditions: 95◦C
for 6 minutes; 37 cycles of 95◦C for 30 seconds, 50◦C for 30 seconds, and 72◦C for
90 seconds; and final step, 60◦C for 10 minutes.

The resulting triplicate reactions were pooled and visualised by electrophoresis
on a 2.5% agarose gel to assess the fragment sizes and quality of each sample. All
resulting libraries were then quantified using a High Sensitivity dsDNA reagent
kit (Qubit 2.0, Life Technologies) and pooled together at equimolar concentrations.
Samples were then purified using an AMPure cleanup (Agencourt Bioscience). Final
quantification and DNA sequencing was completed at AGRF, on a MiSeq, 2x150bp
kit (Illumina).

4.3.6 Shotgun Bioinformatic Processing

Raw Illumina BCL files were processed through BCL2Fastq (Cassava) to convert
sequences into FASTQ file format, separated by Illumina GAII index. FASTQ read
files were simultaneously demultiplexed (using the unique P5/P7 barcode adap-
tor combinations), barcodes trimmed, and sequences collapsed with AdapterRe-
moval2 [25], using default parameters. All dental calculus samples underwent host
read removal using KneadData [26], which aligned the sequences to the human
genome (GRCh37/hg19) reference database, and removed all sequences with multi-
ple alignments (Table S1). Taxonomic assignments were generated using MEGAN
Alignment Tool (MALT; v0.3.8) [27]. MALT aligned DNA sequences against an in-
house database, created using 47,696 archaeal and bacterial genome assemblies from
the NCBI Assembly database [28], with BLASTn. The resulting alignment-based
blast-text files were then converted to RMA files using the blast2rma script within
MEGAN v6.12.8 [29], 2016), using the following lowest common ancestor (LCA) pa-
rameters: weighted-LCA, minimum percentage identity = 95%, minimum bitscore
= 44, minimum E-value = 0.01, minimum support percent = 0.25.

Two shotgun calculus samples were removed from the dataset after initial analysis
to minimise biases caused by unique attributes. Sample 19566 had an unusually
low read count (2085 sequences) (Table S1), whereas Sample 19567 was dominated
by phylum Chlamydiae (3.62% of total sequences) not previously found with great
abundance within the human mouth (Figure S1). Laboratory contaminant sequences
are reported in the Supplementary Materials (Table S2) but were not filtered from
calculus samples.
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4.3.7 16S ribosomal RNA Bioinformatic processing

Raw Illumina BCL files were converted to FASTQ file format in BCL2fastq (v.1.8.4;
Illumina, San Diego, CA, USA), producing R1, R2, R3 files (forward, barcodes, and
reverse). Using QIIME2 (v 2019.1) [30], raw multiplexed paired-end FASTQ files
were demultiplexed by unique barcode adaptor using the EMP-paired end protocol
and denoised using the Deblur algorithm QIIME2 plugin [31]). Sequences were
truncated to 150bp based on the median quality score. 16S rRNA sequences were
assigned to taxonomic groups using the Human Oral Microbiome Database (HOMD;
v. 15.1) [32]. Contaminant taxa were assessed using the Greengenes database (v13.8)
within the Supplementary Materials (Table S3), but were not filtered from calculus
samples [33].

4.3.8 Statistical analyses

Differences in community diversity between storage methods were investigated at
three taxonomic levels: species, genera, and phyla-level assignments. Shotgun se-
quences were exported from MEGAN6 at respective taxonomic-level assignments
in TSV format and imported into QIIME2. Sequences from shotgun samples were
then rarefied to the lowest number of assigned sequences at each taxonomic level
(species-level, n = 62,579; genera-level, n = 84,982; phyla-level, n = 92,436, se-
quences per sample). 16S rRNA sequences were rarefied to 16,674 per sample, for
every taxonomic level, the lowest number of sequences present within any sample.
Samples 19566 and 19567 were removed from the 16S rRNA dataset to maintain
homogeneity with the shotgun dataset, but additionally, sample 19569 was removed
due to low sequence count (Table S3).

All statistical analyses were completed in QIIME2 [34], except for Kruskal-Wallis
test of group significance, which was completed in QIIME1 (v.1.9.1). All beta di-
versity differences were measured with Bray-Curtis distance indices and significance
was tested with PERMANOVA. Alpha diversity was measured using Shannon and
observed species indices, with significance tested by Kruskal-Wallis nonparametric
statistical test of variance. All reported p-values were false discovery rate (FDR)
corrected and values < 0.05 were accepted as statistically significant.
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4.4 Results

4.4.1 Typical oral microbial communities are obtained with

shotgun sequencing of dental calculus

After removal of host sequences and two spurious samples (19566 and 19567), 34
dental calculus samples contained a total of 30,857,148 sequences, with a total of
19,300,197 sequences assigned to taxonomy. All dental calculus samples (n = 34)
were dominated by seven phyla: Actinobacteria (39.4 ± 1.43%), Proteobacteria (27.9
± 1.82%), Firmicutes (16.9 ± 1.34%), Bacteroidetes (11.1 ± 2.50%), Fusobacteria
(2.9 ± 2.60%), Spirochaetes (1.5 ± 5.95%), and Synergistetes (0.3 ± 9.18%) (Figure
1), as expected for a typical oral microbial community [35].

Dominant Phyla in Shotgun Sequenced Dental Calculus Samples

Figure 1: The relative abundance of human dental calculus microbial phyla, sequenced
with metagenomic shotgun methods. All samples were rarefied to 92,436 sequences. Samples
are grouped according to their storage method; 18 dental calculus samples underwent DNA ex-
traction within two weeks of collection (Fresh), nine samples were stored within a standard -20◦C
freezer for >1 year (Freezer), and seven samples were stored at room temperature (∼23◦C) for >1
year (Room Temp).

We initially assessed potential biases within our dataset through the examination
of known sample metadata. We found no significant differences in microbial commu-
nities between donor gender, at any taxonomic level (Male (n = 25) vs Female (n =
9); Shannon, observed species, Bray-Curtis, p > 0.05; Table S5a). Nor did the type
of storage vessel used to collect stored calculus samples significantly impact micro-
bial diversity or composition, at any taxonomic level (tube (n = 4), cotton-gauze (n
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= 9), and plastic bag (n = 2); Table S5a; Shannon, observed species, Bray-Curtis,
p > 0.05), indicating that such factors driving microbial diversity within this study
are unlikely to be linked to sample variables

4.4.2 Storage method impacts the diversity and composition

of dental calculus microbial communities

To target the microbial differences over time, only samples stored for more than two
years (i.e. collected in 2016 or earlier) were compared to Fresh samples in all down-
stream analyses (Table 1). We initially assessed whether the storage method (Room
Temp (n = 6), Frozen (n = 6), and Fresh (n = 18)) drove differences in microbial
diversity within dental calculus samples. We detected significant differences in diver-
sity and richness at the phylum level (Shannon, p = 0.004, H = 10.87), but found no
significant differences in the presence/absence of phyla (observed species, p = 0.09,
H = 4.79), suggesting that variation of phyla-level diversity is driven by abundance
and richness. Moreover, differences were not observed at the species- (Shannon, p
= 0.22, H = 3.07; observed species, p = 0.18, H = 3.48) or genera-levels (Shannon,
p = 0.06, H = 5.73; observed species, p = 0.26, H = 2.72). Additionally, each
storage method group was significant different from one another at all taxonomic
levels (Bray-Curtis: species, p = 0.02, pseudo-F = 1.91; genera, p = 0.003, pseudo-F
= 3.14; and phyla, p = 0.001, pseudo-F = 5.58; Figure 2). Overall, these results
support potential underlying biases caused by storage method that will impact the
reconstruction of microbial abundance within dental calculus.

4.4.3 Room temperature storage over time impacts microbial

community reconstruction

We next examined the impact room temperature (∼23◦C) storage on the shotgun
sequenced reconstruction of microbial communities, by comparing samples stored
at room temperature for more than two years (Room Temp; n = 6) to recently
collected samples (Fresh; n = 18). There was significantly greater diversity at the
phylum-level within Room Temp samples relative to Fresh samples, as measured by
Shannon (Table 2; p = 0.01, H = 9.40), although this was not observed at species- or
genera-level assignments (Table 2; p > 0.05). This suggests that room temperature
storage may induce greater phylum-level differences by commensurately altering the
diversity at lower taxonomic levels. Next, we examined microbial compositional
differences between Room Temp and Fresh samples, and noted both phyla- and
genera-level differences between storage methods (Bray-Curtis; phyla, p = 0.02,
pseudo-F = 4.48; genera, p = 0.02, pseudo-F = 2.90), although no significant differ-
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Figure 2: Principle Coordinates Analysis (PCoA) of Bray-
Curtis distances of shotgun sequenced phylum-level assign-
ments. Shotgun-sequenced dental calculus samples stored (>2 years)
at different temperatures have distinct microbial communities. Dif-
ferent colours represent the different storage conditions: Freshly ex-
tracted dental calculus (Fresh, green: n = 18), samples stored for
more than two years at room temperature (∼23◦C, Room Temp,
orange: n = 6), and samples stored for more than two years in a
standard freezer (–20◦C, Freezer, blue: n = 6).

ences could be detected at species-level (Bray-Curtis, p = 0.11, pseudo-F = 1.55).
These results suggest that long-term storage at room temperature impacts microbial
communities through alterations at microbial genera.

To identify taxonomic groups potentially driving significant differences between
groups, Kruskal-Wallis test of significantly different mean taxa abundances were
calculated at three different taxonomic levels (phyla, genera, and species; Table 3a).
Phylum Fusobacteria was significantly more abundant in Room Temp samples than
in Fresh samples (p = 0.002, t = 13.02), alongside Bacteroidetes (p = 0.008, t =
9.04). Three different genera, Fusobacterium (p = 0.033, t = 10.84), Leptotrichia
(p = 0.033, t = 10.01), and Selenomonas (p = 0.045, t = 8.67) were detected with
significantly greater abundance within Room Temp samples relative to Fresh . As
Fusobacterium and Leptotrichia belong to phylum Fusobacteria, this supports the
previous results suggesting broader taxonomic level changes. Moreover, no specific
species were identified as significantly different between groups (Table 3a; p > 0.05).
This suggests that changes in calculus microbial composition may be largely driven
by alterations to Fusobacteria during long-term room temperature storage.
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Table 2. Pairwise PERMANOVA
results for shotgun data.

Table 4. Pairwise PERMANOVA
results for 16S rRNA data.

Table 2. and Table 4. Impact of storage conditions on dental calculus microbial communities at
species-, genera-, and phyla-level assignments. PERMANOVA pairwise test for significance with
FDR-corrected P-values were obtained using 999 permutations. Bold values indicate a significant
result (p > 0.05).

4.4.4 -20◦C storage over time maintains microbial diversity

Long-term freezing has shown to induce significant changes in faecal microbiota
composition [36], but this has not yet been tested with oral samples. Therefore, we
explored changes to the diversity and composition in dental calculus samples stored
for more than two years at –20◦C (Freezer; n = 6) compared to Fresh samples. We
found no significant differences in microbial diversity within the different storage
groups at any taxonomic level (Table 2; Shannon and observed species, p > 0.05),
indicating that diversity is maintained in samples that are stored at –20◦C. How-
ever, we found significant differences between the microbial composition of Freezer
and Fresh samples at both the phyla- and genera-levels (Bray-Curtis, phyla, p =
0.02, pseudo-F = 5.08; genera, p = 0.03, pseudo-F = 2.52), although no significant
differences were detected at the species-level (Bray-Curtis, p = 0.06, pseudo-F =
2.01). Thus, while diversity is maintained, these results suggest that storing dental
calculus samples at –20◦C for more than two years may influence the compositional
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Kruskal-Wallis Group Significance

Table 3a. Fresh (n = 18) vs Room Temp (n = 6)

Table 3b. Fresh (n = 18) vs Freezer (n = 6)

Table 3c. Room Temp (n = 6) vs Freezer (n = 6)

Table 3. Kruskal-Wallis taxonomic group significance analysed at species-, genera-, and
phyla-level assignments with shotgun sequencing. All sample sequences were rarefied by
their taxonomic level (species n = 61,857; genera n = 85,704, and phyla n = 92,436). Bold values
indicate a significant result with FDR-corrected p-value (p > 0.05).
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reconstruction of dental calculus microbial community.
We investigated what taxa may be driving these compositional variations using

Kruskal-Wallis and observed two phyla significantly different between Fresh and
Freezer samples (Table 3b). Fusobacteria was significantly more abundant within
Freezer samples (p = 0.048, t = 7.14), whereas Actinobacteria was significantly
more abundant within Fresh samples (p = 0.048, t = 6.08). Surprisingly, there
were no genera significantly associated with this change (Table 3b; p > 0.05). Nor
were any species associated with this compositional difference (Table 3b; p > 0.05).
These results suggest that while storage at –20◦C may maintain the community
composition, long-term storage will induce higher-level structural changes in dental
calculus microbial community.

4.4.5 Temperature impacts microbial community over time

To further elucidate the impact of storage temperature, we compared the differences
in dental calculus microbial diversity and composition between the samples stored for
more than two years at difference temperatures; Room Temp compared to Freezer.
Diversity within these two long-term storage methods was not significantly different
at any taxonomic level (Table 2; Shannon and observed species, p > 0.05). As
Freezer group sample diversity was not significantly different from either Fresh or
Room Temp sample diversity (p > 0.05), but Room Temp samples were significantly
more diverse than Fresh (Shannon, p = 0.01, t = 9.40), the lack of detectable
difference between the two storage temperatures suggests the processes changing
diversity may be occurring temporally, but –20 ◦C storage lessens, or slows, these
mechanisms.

In contrast, the microbial community composition between Room Temp and
Freezer sample groups was distinct at both phyla and genera taxonomic levels (Bray-
Curtis: phyla, p = 0.02, pseudo-F = 10.56; genera, p = 0.02, pseudo-F = 5.56),
although not at species-level (Bray-Curtis, p = 0.06, pseudo-F = 2.92). To examine
this further, we explored which taxa that differed between storage groups using
Kruskal-Wallis (Table 3c). We observed a significantly greater abundance of phyla
Proteobacteria (p = 0.023, t = 8.31) and Firmicutes (p = 0.023, t = 7.41) within
frozen dental calculus relative to those stored at room temperature, but saw no
significant differences in species or genera abundances (Table 3c; p > 0.05). These
results indicate that some sustained composition changes (i.e. Fusobacteria) ensue
over time despite storage method, while other phyla-level variations may be more
dependent upon temperature.
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4.4.6 Qualitative changes over time reconstructed with shot-

gun sequencing

As individual donors contributed multiple dental calculus samples over the course
of six years, this provided the ability to qualitatively assess a longitudinal record
in both Fresh and Frozen sample datasets. Two individuals, Donor 1 and Donor
8, donated more than three times, across different storage temperatures. Donor 1
donated calculus five times over four years, from 2012 to 2015 (Table 1); two samples
were stored at room temperature and three samples were stored at -20◦C, providing
the opportunity to determine the impact of room temperature relative to freezer
storage within a single individual (Figure 3). Consistent with previous Kruskal-
Wallis analyses, Fusobacteria phylum appears to increase in relative abundance with
time, within both at -20◦C and room temperature, whereas phyla Proteobacteria and
Firmicutes appear to maintain a greater relative abundance within Freezer samples
relative to Room Temp samples. This supports the hypothesis that storing dental
calculus at -20◦C slows—but does not prevent—taphonomic processes over time in
some individuals.

Qualitative Phyla Changes over Time in Individual Donors with Shotgun
Sequencing

Figure 3: The relative abundance of Donor 1 (n = 5) and Donor 8 (n = 3) dental
calculus microbial phyla, with shotgun sequencing. Samples are grouped according to their
storage type and sorted through time. Donor 1 donated five individual samples of calculus across
four years, and Donor 8 donated three samples across two years. This longitudinal record provides
a qualitative display of compositional changes though time
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Donor 8 provided three dental calculus samples over time, in which one sample
was freshly extracted and two were frozen at –20◦C (Figure 3). Corresponding
with the significantly greater abundance of Actinobacteria phyla within Fresh dental
calculus relative to Frozen (Table 3b), Donor 8 appears to have reduced abundance of
Actinobacteria present within the stored freezer samples, inconsistent with Donor 1,
whose abundance of Actinobacteria increasing over time within frozen samples. This
would contradict the hypothetical decrease of Actinobacteria with –20◦C storage,
and as such, stipulates taphonomic changes are dependent upon intra-individual
variation present before taphonomic processes take place.

4.4.7 16S rRNA amplicon reconstruction of dental calculus

microbial communities

While 16S rRNA amplification produced pronounced biases with ancient DNA from
dental calculus [7, 14], the samples within this study were stored for less than a
decade, which may differ to previous assessments of amplicon based approaches
[37]. Using 16S rRNA, the reconstructed oral microbial communities (n = 34) were
concomitant with shotgun sequenced samples, and were dominated by the same
seven phyla previously observed: Proteobacteria (37.2 ± 1.39%), Firmicutes (19.30
± 1.18%), Actinobacteria (14.5 ± 2.59%), Bacteroidetes (13.5 ± 1.55%), Fusobac-
teria (12.5 ± 2.32%), Synergistetes (1.5 ± 8.39%), and Spirochaetes (1.4 ± 6.23%).
However, 16S rRNA sequence assignment also presented an additional four phyla
which contributing to a total of < 1% of sequences; Absconditabacteria (SR1), Chlo-
roflexi, Gracilibacteria (GN02), and Sacccharibacteria (TM7) (Figure 4).

Unlike the shotgun dataset, donor gender (Male (n = 24) vs Female (n = 9)) did
significantly impact genera-level diversity as measured using observed species index
(Supplementary Table 5b; p = 0.03, H = 4.60). However, gender did not significantly
impact the microbial diversity at species- or phyla-levels (Table S5b; Shannon and
observed species, p > 0.05), nor were female or male samples groups significantly
different from one another at any taxonomic level as measured by Bray-Curtis (Table
S5b; p > 0.05). It is more likely that the 16S rRNA sequencing is picking up an
anomaly between the gender groups, as shotgun sequencing was unable to detect
any differences between genders. The different storage vessels used to collect stored
calculus samples did not significantly impact microbial diversity or composition at
any taxonomic level (tube (n = 4), cotton-gauze (n = 9), and plastic bag (n =
2); Table S5b; Shannon observed species and Bray-Curtis, p > 0.05). Overall,
these results suggest a limited impact of metadata variables influencing the storage
methods differences.
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Dominant Phyla in 16S rRNA Sequenced Dental Calculus Samples

Figure 4: The relative abundance of human dental calculus microbial phyla, sequenced
with 16S ribosomal RNA amplification. All samples were rarefied to 16,674 sequences per
sample. Samples are grouped according to their storage group; 18 dental calculus samples under-
went DNA extraction within two weeks of collection (Fresh), nine samples were stored within a
standard -20◦C freezer for >1 year (Freezer), and six samples were stored at indoor room temper-
ature (∼23◦C) for >1 year (Room Temp).

4.4.8 Storage method impacts the 16S rRNA reconstruction

of dental calculus microbial communities

As we expect 16S rRNA reconstruction of degraded dental calculus material to sus-
tain distinct alterations the community composition compared to shotgun sequenc-
ing, we re-examined the impacts of storage. Only calculus samples stored for more
than two years were included in the following analyses. We first assessed any change
in community variation linked to storage method, and found no significant differ-
ences in diversity driven the storage method at any of the three taxonomic levels
(phyla: Shannon, p = 0.36, H = 2.02, observed species, p = 0.83, H = 0.37; genera:
Shannon, p = 0.73, H = 0.63; observed species, p = 0.44, H = 1.61; species: Shan-
non, p = 0.26, H = 1.28; observed species, p = 0.24, H = 2.87). However, storage
method groups were significantly different from one another at all taxonomic levels,
as tested with Bray-Curtis (phyla, p = 0.01, pseudo-F = 3.58; genera, p = 0.007,
pseudo-F = 2.63; species, p = 0.003, pseudo-F = 2.19;). These results support differ-
ences in the taphonomic effect upon the reconstruction of dental calculus microbial
communities using 16S rRNA, compared to shotgun metagenomic approaches [14],
and that these differences may impact the community compositional structure more
than the microbial diversity.
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Figure 5: Principle Coordinates Analysis (PCoA) of Bray-
Curtis distances of phylum-level assignments. 16S amplicon
sequenced dental calculus samples stored (>2 years) at different tem-
peratures have distinct microbial communities. Different colours rep-
resent the different storage conditions: Freshly extracted dental cal-
culus (Fresh, green: n = 18), samples stored for more than two years
at room temperature (∼23◦C, Room Temp, orange: n = 6), and
samples stored for more than two years in a standard freezer (-20◦C,
Freezer, blue: n = 6).

4.4.9 Room temperature storage 16s rRNA reconstruction of

microbial communities

To examine the impact of room temperature storage on 16S rRNA reconstruction, we
compared samples stored at room temperature (Room Temp; n = 5) for two or more
years to fresh extracted samples (Fresh; n = 18). No significant differences in diver-
sity were detected at any taxonomic level between Room Temp samples and Fresh
samples (Table 4; Shannon and observed species, p > 0.05). As phylum-level dif-
ferences in diversity were detected with shotgun sequencing technique, these results
suggest 16S rRNA amplification obscures, or is unable to detect, diversity differences
associated with long-term, room temperature storage. Next, we found significant
differences in microbial community composition between the Room Temp and Fresh
samples, using Bray-Curtis, at all taxonomic levels (phyla, p = 0.006, pseudo-F =
5.90; genera, p = 0.012, pseudo-F = 3.72; species, p = 0.006, pseudo-F = 3.04). As
species-level differences were not detected within the shotgun metagenomic dataset,
these results suggest long-term storage at room temperature potentially decreases
16S rRNA sequence assignment accuracy to species-level identity, artificially induc-
ing greater genera-level diversity differences.

Only the phylum Firmicutes was observed to significantly differ between groups,
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Kruskal-Wallis Group Significance

Table 5a. Fresh (n = 18) vs Room Temp (n = 5)

Table 5b. Fresh (n = 18) vs Freezer (n = 6)

Table 5c. Room Temp (n = 5) vs Freezer (n = 6)

Table 5. Kruskal-Wallis taxonomic group significance of 16S rRNA data analysed
at different taxonomic levels assigned by the Human Oral Microbiome Database
(HOMD; v. 15.1) [32]. All sample sequences were rarefied to the lowest number of sequences
present within a sample (n = 16,674). Bold values indicate a significant result with FDR-corrected
p-value (p > 0.05).
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observed at a lower relative abundance in Room Temp samples using Kruskal-Wallis
(Table 5a; p = 0.02, t = 9.80). In contrast, a Firmicutes genus, Staphylococcus, was
detected at a significantly greater abundance in Room Temp samples compared to
Fresh (p = 0.004, t = 16.97), but its low mean relative sequence abundance would
suggest minimal contribution to the microbial community differences detected. Four
species were observed in Room Temp samples, but were not detected within Fresh
group: Unassigned Staphylococcus (p = 0.001, t = 21.58), Unassigned Acidovo-
rax (p = 0.043, t = 11.83), Actinomyces sp. HMT 448 (p = 0.043, t = 11.81),
and Capnocytophaga haemolytica (p = 0.043, t = 11.81). Overall, unlike shotgun
sequenced calculus, it appears that differences between fresh and long-term room
temperature storage microbial communities are not able to be defined by particular
phyla or genera, suggesting 16S rRNA reconstruction may obscure potential impact
of taphonomy.

4.4.10 Long-term freezer storage maintains microbial diver-

sity and community composition

Next, we assessed the impact of long-term –20◦C storage upon dental calculus mi-
crobial communities reconstructed with 16S rRNA by comparing samples stored for
more than years at –20◦C (Frozen; n = 6) to those collected recently (Fresh; n =
18). As observed with the shotgun approach, microbial diversity was not impacted
by long-term freezer storage at any taxonomic level (Table 4; Shannon and observed
species, p > 0.05). However, unlike shotgun sequencing, we were also unable to de-
tect any significant differences in the microbial community structure between Fresh
and Freezer samples with Bray-Curtis (phyla, p = 0.731, pseudo-F = 0.42; genera,
p = 0.36, pseudo-F = 1.07; species, p = 0.38, pseudo-F = 1.04). These results sug-
gest 16S rRNA amplicon sequencing may mask potential taphonomic compositional
changes occurring within dental calculus microbial community when stored at –20◦C
for more than two years.

We found no significant differences in the mean relative abundance of any phyla
using Kruskal-Wallis (Table 5b; p > 0.05). However, despite microbial composi-
tional similarities between samples, we detected significant differences in specific
genera and species’ mean relative abundance between Fresh and Frozen. Four dif-
ferent genera were detected at significantly different abundances between Fresh and
Freezer samples, driven by the presence or absence between groups; Staphylococ-
cus (p = 0.002, t = 18.41), Moraxella (p = 0.012, t = 13.71), and Unassigned
Betaproteobacteria (p = 0.048, t = 9.81) were not detected within the Fresh sam-
ples, whereas Micrococcus (p = 0.048, t = 9.84) was not detected with the Freezer
samples. Finally, two species, Unassigned Staphylococcus (p = 0.001, t = 22.41)
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and Unassigned Moraxella (p = 0.003, t = 17.88), were detected in Frozen samples
but not with Fresh samples. Significance was likely detected due to very low mean
relative abundances (average of < 0.0007% of the total rarefied sequences, Table
5b) and their presence or absence between sample groups, which overall, substan-
tiates the very limited impact of these species and genera upon overall community
composition. Moreover, it supports the potential decrease of 16S rRNA sequence
assignment accuracy to species-level identity, wherein both ‘species’ were unassigned
sequence features.

4.4.11 Time in storage influenced 16S rRNA microbial com-

munity reconstruction

We investigated the specific impact of temperature by comparing long-term stored
calculus samples of Room Temp (n = 5) to Freezer (n = 6), but found no significant
differences in diversity at any taxonomic level between long-term storage methods
(Table 4; Shannon and observed species, p > 0.05). This indicates that storage
temperature alone does not influence the 16S rRNA reconstructed diversity. Yet,
significant differences were detected between the different storage temperatures using
Bray-Curtis, detected at all taxonomic levels (phyla, p = 0.04, pseudo-F = 4.41;
genera, p = 0.01, pseudo-F = 3.68; species, p = 0.02, pseudo-F = 2.65), likely
reflecting the community preservation of Freezer samples relative to Room Temp
samples.

Using Kruskal-Wallis, significant differences in the mean relative abundance were
detected between Room Temp and Freezer sample groups in Saccharibacteria (p =
0.037, t = 8.25) and Firmicutes phyla (p = 0.037, t = 7.50). Notably, Firmicutes
was observed with significantly greater abundance within Freezer sample group rel-
ative to Room Temp samples ( p = 0.04, t = 7.50), whereas, Saccharibacteria was
only detected within Room Temp samples, at very low abundance within the micro-
bial communities overall (average of < 0.0009% of the total rarefied sequences). No
species or genera significantly differed in abundance between the long-term storage
methods (Table 5c; p > 0.05). These results support the impact of room tempera-
ture storage upon Firmicutes abundance in the 16S rRNA reconstruction of dental
calculus microbiota, as seen in the shotgun dataset.

4.4.12 Limited community changes detected over time with

16S rRNA sequencing

We assessed the qualitative phyla differences within Donor 1 and 8 samples across
different storage methods with 16S rRNA sequencing (Figure 6). In Donor 1, phy-
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lum Firmicutes followed the conjectured trend, with lower abundance within Room
Temp samples relative to Freezer (Table 5c). Furthermore, Donor 1 showed decreas-
ing relative abundance of Firmicutes with age within Freezer samples, which could
suggest even samples stored –20◦C for long periods of time may eventually procure
taphonomic patterns, wherein storage at –20◦C only decelerates the taphonomic
process. Only one sample (Donor1; 2014 Freezer) of five had observable levels of
Saccharibacteria (with very little sequence abundance attributed to this phylum;
Table 5c, supporting its significance difference as symptomatic of intra-individual
microbial variation.

Qualitative Phyla Changes over Time in Individual Donors with 16S rRNA
Sequencing

Figure 6: The relative abundance of Donor 1 (n = 5) and Donor 8 (n = 3) dental
calculus microbial phyla, with 16S rRNA amplicon sequencing. Samples are grouped
according to their storage type and sorted through time. Donor 1 donated five individual samples
of calculus across four years, and Donor 8 donated three samples across two years. This longitudinal
record provides a qualitative display of compositional changes though time

Saccharibacteria is present within both Freezer samples of Donor 8, but not
within the Fresh sample; an alternative interpretation of this storage temperature
variance is under-sampling bias of low-abundant taxa [24]. Another hypothesis
could be a potential taphonomic impact of freezing producing sequence misassign-
ment; wherein Saccharibacteria phylum was not detected with shotgun sequencing.
In Donor 8, Firmicutes does not appear to be significantly impacted by –20◦C,
with minimal differences between Freezer samples stored a year apart (Figure 6).
All three samples maintain compositional similarities, supporting the –20◦C stor-
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age in sustaining the calculus microbial community reconstructed with 16S rRNA
sequences.

4.5 Discussion

Studies of ancient human-associated microbes are imperative to understanding how
recent historical lifestyles have modified the evolutionary-relationships between hu-
man and microbes [38]. To understand the evolution, ecology, and origin of con-
temporary microbial communities, researchers need to be able to compare microbial
communities of the past to the present compositional state; dental calculus has been
shown to be promising archaeological material for this analysis [8, 6, 7]. However,
the underlying contribution of taphonomic changes to the dental calculus microbial
community remains largely unexplored and may significantly contribute to the con-
clusions made from such past to present comparisons. Within this preliminary study
on the impacts of long-term storage methods on the reconstruction of dental calculus
microbiota, we elucidate a number of phyla-level compositional changes with time
and storage temperature, which are discussed in detail below. The analyses pre-
sented here highlight the potential underlying taphonomic biases present in ancient
dental calculus research and demonstrate a need to explore taphonomic processes
across ancient microbial communities more broadly.

Modern microbial research has already quantified the effect of storage conditions,
over a two-week period, upon dental plaque communities [20], but this impact has
not been assessed over the period of several years. Thus, our study is the first to
provide insights into the taphonomic impact on the reconstruction of oral microbial
communities from long-term stored samples (i.e. years). Of all the taphonomic
differences, phylum Fusobacteria was the most significantly impacted by long-term
storage, regardless of storage temperature. No literature has reported blooms of Fu-
sobacteria previously, but current reports of time and storage temperature impacts
predominantly focus on faecal material, where Fusobacteria is not a dominant phy-
lum [16]. Furthermore, while these qualitative results of the impact of room temper-
ature storage may have only minor implications for modern microbial research—as
freezing samples immediately after collection is common-practice for modern micro-
biota studies [39]—these results emphasise the difficulties in comparing microbial
communities from ancient and contemporary populations for paleomicrobiological
research.

Our results show that there are significant changes in the diversity of the mi-
crobial communities that result from storing samples over long periods of time at
room temperature (∼23◦C). With shotgun sequencing, we were able to detect sig-
nificant alterations to phyla Fusobacteria with long-term room temperature storage.
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However, as ancient DNA research relies on dental calculus collection from skele-
tal remains, where ‘storage’ is at the whim of the post-mortem environment, these
alterations induced by indoor room temperature storage may not recapitulate the
taphonomic changes of typical ancient dental calculus samples. Nevertheless, with
the lack of species- or genera-level associations linked to microbial community dif-
ferences, these results emphasise that broader microbial community level alterations
will impact the comparison of ancient and contemporary microbial communities.
Accordingly, this preliminary analysis suggests that researchers should look to test
greater ecological shifts that differ between microbial communities, such as differ-
ences in co-occurrence relationships. For example, does the removal of significantly
different phyla from a microbial community still maintain differences in the depen-
dent ecology? Future work is needed to unravel the technicalities and patterning
of the taphonomic processes within ancient dental calculus in order to annotate the
impact of taphonomy within paleomicrobiological dental calculus research.

Similarly, our results indicate that dental calculus samples stored at –20◦C for
longer than two years will suffer compositional changes, driven by phyla Fusobacteria
and Actinobacteria. Within for modern microbiome research, this impact interferes
with the ability to return to long-term stored dental calculus samples to reconstruct
bacterial communities using shotgun sequencing and yield the same microbial re-
construction. However, this did not appear to be problematic using 16S amplicon
sequencing. Within both shotgun and 16S data, Firmicutes is seen to increase within
samples stored at –20◦C compared to room temperature; this has been previously
noted in faecal microbial communities stored at –80◦C, wherein the process of freez-
ing increases DNA extraction of gram-positive bacterial cell walls [40, 41]. Yet,
faecal material will undergo very different biomolecular taphonomic processes than
stable calcified dental plaque due to the mineralisation of vast majority of plaque
organisms [5]. Potentially, the microbial community differences detected between
room temperature and freezer storage is driven by the developing plaque biofilm on
outside of the dental calculus [42]. However, there is very limited unbiased metage-
nomic understanding of plaque development, with the majority of research of biofilm
formation using ex situ modelling or DNA checkerboard hybridisation to resolve the
influence of microorganisms on the outer calculus surface [43, 44]. To counter this,
prospective research should look to investigate the integration of a pre-wash, prior to
the DNA extraction of modern dental calculus, in how it impacts the reconstruction
of both fresh and stored dental calculus communities.

Even within contemporary research, there is currently very little understood re-
garding the taphonomic processes ex situ of dental calculus microbial communities.
Microscopic analysis has shown no evidence of alterations to the mineralised struc-
ture of calculus post-mortem [6]; however, this does not preclude the presence of
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non-mineralised bacteria within gaps and tubular holes of the calcified matrix [42]
or impacts on DNA preservation within the cellular structure. Previous work on
supragingival calculus (calculus formed below the gum line, usually related to pe-
riodontal disease) found that immediately frozen oral samples maintained animate
aerobic and anaerobic culturable bacteria when released from the calcified matrix
[45]. However, Tan et al. (2004) did not investigate unculturable bacteria, which
are estimated to make up more than 60% of the oral microbial community [35].
Nevertheless, this suggests that there is some duration in which bacteria captured
within the calcified matrix are dormant, but the processes of extinction, predation,
metabolic activity, and subsequent changes to the entire dental calculus ecological
community remain unknown.

As a preliminary study, there are caveats that limit our ability to make defini-
tive recommendations regarding taphonomic repercussions. Firstly, the results are
circumscribed by the small sample size; our stored dental calculus collection was de-
pendent upon self-directed donations over several years. Moreover, the small sample
size required us to use multiple samples from the same individuals. However, while
inter-individual variation could confound differences between storage method groups
and freshly extracted samples (as samples originated from different donors), our re-
sults support a greater impact of storage on microbial community variation. The
oral microbial community is one of the most conserved microbial ecosystems on the
human body, with the smallest amount of inter- and intra-variation [46]. However, it
is possible that the intra-individual variation sampled over multiple years may simu-
late taphonomic changes. Researchers Hall et al. (2017) found, within supragingival
plaque, inter-individual variation was consistently stronger than the intra-individual
variation, even though up to 30% of individuals experienced a significant drift in
Bray-Curtis measure of microbial diversity over a period one year [47]. This makes
the analysis of changes in microbial communities over time purely qualitative with
regards to significant taxonomic group differences, where the extent of taphonomic
change may not be able to be disassociated from the intra-individual variation over
time.

4.6 Concluding remarks

Our study highlights several important considerations for studies involving both
ancient dental calculus and contemporary microbiome research on modern calculus
samples. Storage conditions have the potential to introduce substantial alterations
to microbial community profiling based on both shotgun and 16S rRNA gene se-
quencing. Ideally, samples should be stored at –20◦C or below immediately after
collection and extracted as soon possible, limiting the time elapsed between collec-
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tion and DNA extraction. Ancient or historic DNA research using dental calculus
samples to reconstruction the ancient oral microbial community should also take
into consideration the taphonomic impacts seen within shotgun sequenced results of
room temperature samples when comparing to contemporary dental calculus sam-
ples. Despite the limitations of this study diminishing the ability to make quantita-
tive statements regarding compositional differences, our findings suggest precautions
should be taken in interpreting microbial communities’ differences between calculus
samples with different storage methods. These findings underpin the importance
of contemporary microbiota research for bioarchaeological interpretations and to
better understand the taphonomic processes in ex-situ dental calculus microbial
communities.
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5.1 Abstract

The sociocultural and environmental processes of Industrialisation are associated
with the rapid rise of several non-communicable diseases (e.g. obesity, type II di-
abetes, heart disease, etc.), irrefutably altering human epidemiology [1]. Several
recent studies suggest that these historic increases in ‘industrial diseases’ are un-
derpinned by key changes in the human microbiome—the collection of commensal
microorganisms that live within and on the human body. Contemporary populations
living ‘traditional’ (pre-industrial) lifestyles have been shown to have significantly
more microbial diversity than populations living modern industrialised lifestyles,
suggesting a loss of microbial diversity with Industrialisation. However, the micro-
bial evolutionary history of current European populations cannot be inferred from
a proxy of different cultures practising unique lifestyles, bringing into question the
key factors and the timing that underpin past industrial-associated changes in the
microbiome and, subsequently, human health. Sequencing ancient DNA from calci-
fied dental plaque (calculus) samples can now provide ‘real-time’ insights into the
factors that shaped the human microbiome in the past, allowing researchers to track
the impacts of past sociocultural and environmental changes through time. Here, we
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examine the oral microbiomes from 128 individuals who lived before, during, and af-
ter the Industrial Revolution (IR), and describe how the microbiome was influenced
by the different stages of Industrialisation (post-1800s). We identified geographic-
specific changes in microbiota linked to industrial and environmental differences
amongst those who lived during the IR, including unique signals in Europeans who
migrated to Australia. We also identified a further historic change in human micro-
biome that likely began early 20th century, alongside improvements in oral hygiene
and dental treatment, accounting for biases of taphonomy and disease. This study is
the first to substantiate the human microbiome alterations during the IR, expanding
our understanding of the ancestral European microbiome and the development of
industrial diseases.
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5.2 Main text

Introduction

From the beginning of the late 18th century, a revolution of human industry and
manufacturing—the Industrial Revolution (IR)—transformed human behaviour and
environment, leading to the development of urban centres, factory industries, built
environments, advanced communication, transportation, and technology [2]. The
process of Industrialisation today is associated with the increase of non-communicable
diseases [3], such as obesity [4], cardiovascular disease and stroke [5], type II diabetes
mellitus [6], and immunoregulatory disorders [7, 8]. It has been hypothesised that
this increased prevalence of non-communicable diseases [9, 10, 11, 12] is linked to the
human microbiome (i.e. microorganisms and respective genomic material living on
and within the human body) and its evolutionary discordance with industrialised
lifestyles and environments [12]. This is exemplified by studies looking at post-
industrial lifestyle factors impact on the human microbiome (e.g. antibiotics [13]),
or research into the microbiomes of people living ‘traditional’ lifestyles compared
to those living in the US, Europe, and other conteporary industrialised societies
[14, 15, 16, 17]. However, suppositions from cultural proxies are complicated by
numerous factors, including the fact that many modern ‘traditional’ populations are
genetically distinct, and likely do not recapitulate the ancestral state of industri-
alised European populations [18].

By utilising ancient DNA (aDNA) from ancient calcified dental plaque (calcu-
lus), we can now reconstruct ‘real-time’ snapshots of the human microbiome in
the past [19, 20]. Initial work by Adler et al. (2013) reassembled the human
oral microbiome extracted from dental calculus using limited subsets of riboso-
mal RNA, and established differences in microbial composition between pre- and
post-agricultural cultures, as well as microbial alterations between Medieval and IR
individuals [21]. Changes in the oral microbiome linked to Industrialisation were
also noted by Weyrich et al. [22]. However, both studies were limited by small
sample sizes and lacked comparisons between different European populations. This
study aims to gain a greater understanding of the microbial changes associated with
human health and disease by exploring the taxonomic changes of the human oral
microbiome correlated with changing process of Industrialisation, i.e. alterations
in physical environment (e.g. increased urbanisation and environmental pollutants)
and human behaviour (e.g. antibiotics, sanitation, and hygiene).
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Changes to the oral microbiome with the Industrial Revolution

We reconstructed the oral microbiome from the dental calculus of 128 individuals
(68 new oral microbiomes and 60 pre-existing) who experienced the different stages
of the IR, including individuals who lived prior to the IR (n = 56) in medieval Eng-
land [23], Ireland [24], and Germany [25]; during the IR (∼1800–1920s; n = 37),
including Germany (n = 9), Switzerland (n = 12), Australia (n = 12), and England
[23] (n = 4); and those living within the recent century in France and Australia
(>1900s; n = 35) (Table S1). A shotgun metagenomic sequencing approach was
used to obtain an average sequencing depth 3,666,849 sequences per sample (range
23,134–18,143,046) (Table S3). All data was filtered for environmental and labora-
tory contaminant species, which has been shown to confound aDNA analyses of mi-
crobial communities [26, 27]. All retained samples possessed >90% non-contaminant
species (Table S8) and were rarefied to 180,123 sequences per sample for downstream
analyses. As prior research noted microbial community differences by tooth type
within a single population [23, 28], we examined the impact of tooth type within this
meta-analysis; significant differences in oral microbiome composition were linked to
tooth type (Bray-Cutis PERMANOVA; p = 0.001; pseudo-F = 2.73); however, this
was significantly confounded by location. Previous research [29] has observed that
inter-population differences have stronger impacts upon the microbial community
than intra-population tooth types; therefore, key findings were confirmed using only
a single tooth type (e.g. only incisors; see Supplementary Materials), although all
teeth were utilised for the following analyses.

Industrialisation impacted the oral microbiome composition

We first reproduced previous findings that indicated the oral microbiota of Euro-
peans living during the IR (n = 25) were significantly different to those living before
that period (n = 56) (beta-diversity; Bray-Cutis pairwise PERMANOVA; p = 0.008;
pseudo-F = 3.53), confirming suspected links between change in the human micro-
biome and the IR [21, 22]. However, inter-population differences in geography may
be compounding the IR changes observed across populations. Therefore, within our
within England population, we examined only definitively pre-IR (n = 20) and IR
(n = 4) individuals and indeed confirmed a significant difference oral microbiome
compositions (Bray-Curtis pairwise PERMANOVA; p = 0.015, pseudo-F = 3.03),
that was not confounded by cultural and environmental differences.
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Unique oral microbiomes are detected in different geographic locations
during the Industrial Revolution

As there is no singular model of ‘Industrialisation’, the processes of ‘industrialis-
ing’ were, and are still, experienced differently in distinct locations [30]. We ex-
amined if populations in central Europe experienced the IR differently to those in
England, comparing the oral microbial diversity and composition within three sep-
arate European populations: Switzerland (n = 12), Germany (n = 9), and England
(n = 4). While, no significant differences in diversity were detected between cen-
tral European countries (Shannon Kruskal-Wallis; p = 0.40, H = 1.846), English
and German oral microbiomes contained significantly different compositions from
one another (Bray-Curtis pairwise PERMANOVA; p = 0.003, pseudo-F = 4.15).
Switzerland microbiome was observed to be similar to both England (Bray-Curtis
pairwise PERMANOVA; p = 0.06, pseudo-F = 2.38) and Germany (Bray-Curtis
pairwise PERMANOVA; p = 0.19, pseudo-F = 1.40). The specific reasons for this
remain unknown; however, differences in each countries’ IR were apparent across
these three countries.

The IR originated in Britain, with Industrialisation developing for a number
of decades prior to the ‘onset’ in 1780s [31]. Switzerland and Germany remained
predominately rural in early 19th century with later expansion into specialised in-
dustries; Basel (Switzerland) was textile-industry focused, especially in synthetic
dye production, while Hettsedt (Germany) was primarily invested in mining and
metallurgy. London (England) was infamous for its air pollution, even prior to the
Industrial Revolution [32]. All of these industries would have increased production
of environmental heavy metal pollutants; metallurgy was linked to increased nickel
and copper pollutants, whereas increased copper, zinc, and cadmium were linked to
chemical dye industries [33, 34]. Presumably, microbial similarities may be linked to
shared environmental factors, such as contact with these heavy metals. Moreover,
socioeconomic factors may also contribute to the microbial differences between Ger-
many and England, as individuals were from disparate socioeconomic classes with
distinct lifestyle and behavioural factors [23].

Microbial composition maintained after colonial settlement

With the increasing poverty and population size of Industrial European cities, colo-
nial settlements became attractive economic opportunities, with increasing migra-
tion throughout the 1800s to colonies that were typically areas independent of in-
dustrial processes [35]. Here, we were able to reconstruct the oral microbiome of
British settlers of the South Australian colony of Adelaide (dated 1846–1927; n =
12). Oral microbiome diversity in Australian colonists was similar to populations of
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their surmised homeland, England (Shannon Kruskal-Wallis; p = 0.48; H = 0.72), as
Adelaide colony was a predominately British migrant population, this suggests that
migration out of Europe did not impact microbiome diversity. This is surprising, as
exposure to new environments is hypothesised to lead to increased microbial diver-
sity [36], and these results indicate that other shared lifestyle processes maintained
an oral microbial community similar to the colonial homeland.

Similarly, the oral microbiome composition was similar to that observed in Eng-
land (Bray-Curtis pairwise PERMANOVA; p = 0.5, pseudo-F = 0.81), perhaps
reflecting their ancestral and cultural ties to their colonial homeland. In fact, the
individuals examined here worshipped within an Anglican Church [37], much like
those individuals of IR England [23], suggesting that they may have been commit-
ted to maintaining cultural homogeneity within settler society [38]. However, we are
limited by the small sample size of the IR England population to make definitive
conclusions.

Australian colonists were significantly less diverse than both German (Shannon
Kruskal-Wallis; p = 0.02, H = 7.29) and Swiss IR populations (Shannon Kruskal-
Wallis; p = 0.02, H = 8.00). Australian colonists also had an oral microbiome
composition distinct from IR individuals of both Germany (Bray-Curtis pairwise
PERMANOVA; p = 0.006, pseudo-F = 6.26) and Switzerland (Bray-Curtis pair-
wise PERMANOVA; p = 0.02, pseudo-F = 3.19). Several species were significantly
absent in both Australian colonists and English individuals compared to German
and Swiss IR individuals (n = 21): four oral species of Selenomonas, Prevotella mas-
culosa, and Centipedia periodontii (Kruskal Wallis; p < 0.05, Table S9). Moreover,
German and Swiss populations shared a greater relative abundance of 15 different
genera (p < 0.05, Table S10) than the Australian and English populations, includ-
ing Selenomonas, Ottowia, and Streptococcus, potentially driving the compositional
differences between populations. In contrast, only three genera (Pseudoramibac-
ter, Methanobrevibacter, and Parvimonas) maintained significantly greater relative
abundances within the Australian colonists and English population (Figure 1).

These compositional differences appear to be linked to the dominance of (or lack
of) Methanobrevibacter within these populations, as previously described by Farrer
et al. [39]. Presuming Methanobrevibacter -dominated microbiomes persisted from
England over to the colonial settlement, the environment or lifestyles of colonists
appear to support this microbial composition later into the IR period. While, Far-
rer et al. had previously linked Methanobrevibacter -dominated microbiomes’ func-
tional potential to low-meat and high-fibre diet [39], the early Adelaide colony was
renowned for their protein-heavy diets, as supported by stable isotope analysis [37].
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Predominance of Significantly Different Genera between IR Populations

Figure 1: Mean relative abundance of significantly different genera (Kruskal-Wallis,
FDR corrected p-value < 0.05, see Table S10) between IR populations Switzerland and
Germany compared to Australia and England. All samples rarefied to 180,123 sequences.
Alpha diversity differences between European populations appear to be driven by the presence or
absence of genus Methanobrevibacter.

The modern microbiome is different from the IR microbiome

Controlling for taphonomic biases

Multiple studies have identified differences between modern and historical oral mi-
crobiomes [21, 22, 40]; however, several known biases could have driven these results
which have not yet been investigated. Thus, while we initially detected significant
differences in microbial composition between IR and modern healthy individuals
(’healthy-modern’; Bray-Curtis PERMANOVA; p = 0.001, pseudo-F = 19.816), we
sought to explore two potential key sources of bias influencing this result. First, we
examined the taphonomic bias that may be influencing the composition of ancient
microbiota. As long-term storage of dental calculus at room temperature has been
shown to significantly alter relative abundance of Fusobacteria and Proteobacteria
phyla over time (see Chapter 4), we controlled for taphonomy within archaeological
dental calculus by removing all species within the Fusobacteria and Proteobacteria
phyla. Significant differences between IR populations and healthy-modern individ-
uals were maintained (Bray-Curtis PERMANOVA; p = 0.001, pseudo-F = 23.92),
indicating this compositional difference is likely not an artefact of taphonomy.
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Controlling for periodontal disease

The second key source of bias between modern and historical populations is the
prevalence of oral disease within past populations and its interpretation from skeletal
remains [41]. Modern microbiome research has shown differences in oral microbial
composition between healthy individuals and those with periodontal disease [42, 43],
although this has yet to be investigated using supragingival calculus. Here, we
examined 18 modern dental calculus samples, from individuals suffering mild to
advanced periodontal disease (‘periodontal-modern’), for which periodontal-modern
and healthy-modern populations had significant different oral microbiomes (Bray-
Curtis PERMANOVA; p = 0.04, pseudo-F = 2.09).

Next, we examined all IR oral microbiomes compared to modern individuals suf-
fering from periodontal disease and observed a significant difference between popu-
lations (Bray Curtis PERMANOVA; p = 0.001, pseudo-F = 17.07), even after cor-
recting for taphonomy (Bray-Curtis PERMANOVA; p = 0.001, pseudo-F = 20.50).
These results demonstrate that the differences between the IR and modern day can-
not be explained by periodontal disease alone, suggesting that there may have been
further alterations to the human microbiome following the early stages of the IR.

Differences between historic and modern populations were linked to wholesale
decreases in three phyla, including Euryarchaeota, Chlorofexi, and Synergistetes
taxa (p < 1.18e-8, SI Table 11; Figure 2). Together, these results suggest that the
IR has impacted and altered the human microbiome, dramatically changing the oral
microbial ecology.

The inclusion of modern periodontal patients also highlights the reduction in Ar-
chaea present within the modern oral microbiome. Within our modern periodontal
population, only one supragingival sample had detectable levels of Methanobrevibac-
ter, whereas Methanobrevibacter was detected in 83% ancient and historical individ-
uals, with 39% of individuals presenting more than >10% of absolute total sequences
assigned to Methanobrevibacter genus (Table S3). The presence of Archaea within
the supragingival calculus of living people today is limited. Several modern oral mi-
crobiome studies has identified a correlation between the presence and abundance of
Methanobrevibacter genus within the subgingival periodontal pockets and severity
of periodontal patients [44], but its overall prevalence dependent upon methodology
and geographic population [45]. Moreover, this analysis has not been replicated us-
ing supragingival calculus. In contrast to the pronounced level ofMethanobrevibacter
within our IR Australian population, bioarchaeological analysis of these individuals
saw very little evidence of periodontal disease within this population.
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Average Phyla Abundance of Populations through Time

Figure 2: Mean phyla relative abundance of the average individual oral microbiome
of each geographic population, from pre-IR to modern populations. All samples were
rarefied to 180,123 sequences. Both 1950s post-war individuals included to show transition from
IR to modern average composition. Phyla frequencies were generated from species assignments,
and do not include unassigned reads.

Transition to modern oral microbiome began prior to the Great

Acceleration

After the IR, another rapid period of change began after World War II—known
as the ‘Great Acceleration’—caused industrialised populations to undergo a further
epoch of rapid population growth, urbanisation, and technological development [46].
As we identified differences between IR and modern populations, we sought to iden-
tify when this change began to occur. We reconstructed the oral microbiome of two
French individuals who died in the early 1950s, just prior to the Great Acceleration
(‘post-war’). We found one individual to be more similar to the modern microbiome
composition, while the other maintained a microbiome more similar to individuals
of the IR (Figure 3), suggesting that changes to the modern oral microbiome was
ongoing during the 1950s. Furthermore, the two post-war individuals were not sig-
nificantly different from either healthy- and periodontal-modern populations (Bray
Curtis PERMANOVA pairwise; healthy, p = 0.054, pseudo-F = 2.50; periodontal, p
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Figure 3: Principle coordinates analysis shows microbiome transitions from Industrial
Revolution (IR) populations through to modern populations, with 1950s post-war
samples divided between the two groups. Beta diversity was calculated with Bray-Curtis.
(A, B) Plots of the first and second axis (A) show the progression towards the contemporary oral
microbiome, and first and third axis (B) present the variation between modern healthy and modern
periodontal disease microbiomes. All samples were rarefied 180,123. (C, D) After controlling for
potential taphonomic biases, the axis explaining variation switch, with the first and second axis
(C) describing the oral health of modern populations, and the first and third (D) support the IR
to modern transition. All samples were rarefied to 143,16—due to phyla removed—but rarefaction
depth was shown to not influence results (SI Table 12).

= 0.065, pseudo-F = 1.86) or IR individuals (Bray Curtis PERMANOVA pairwise;
p = 0.14, pseudo-F = 1.49). However, when we accounted for taphonomy in the
comparison of post-war individuals, significant differences were observed between
post-war and healthy-modern individuals (Bray Curtis PERMANOVA pairwise; p
= 0.008, pseudo-F = 2.81), but not between post-war and periodontal-modern in-
dividuals (Bray Curtis PERMANOVA pairwise; p = 0.07, pseudo-F = 2.17). This
could suggest with the improvement in oral hygiene behaviour and treatment from
post-war era induced a microbial alteration towards the healthy modern composi-
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tion, but this result may alternately be an artefact of the post-war individual sample
size (n = 2) and is not conclusive. Nevertheless, this suggests that the modern oral
microbiome in Industrialised Europeans was established in some individuals by the
1950s.

Concluding Remarks

Our results identify key changes in the oral microbiome that are linked to human
lifestyles and environments over the past 200 years. We identified unique oral mi-
crobiomes linked to areas experiencing different types of Industrialisation. Socio-
cultural changes introduced throughout the IR are likely to play key roles, in addi-
tion to industrial changes in the environment, such as pollutants. Evidence from ice
cores has shown an increasing trend of large-scale atmospheric pollution of heavy
metals such as lead, zinc, cadmium, and copper from the onset of the Industrial Rev-
olution up until the 1960s–1970s [33, 47]. Further preliminary work using murine
models supports changes within the mammalian microbiome with heavy metal expo-
sure that induced phylum-level alterations and subsequent functional dysregulation
[48, 49, 50]. As timing and amplitude differs between heavy metals pollutions differs
geographically [47], this would suggest culminating exposures developing with the
IR, as seen in our results. Furthermore, these geographic differences alongside indi-
vidual socioeconomic status would modify personal exposures to pollutants based on
accessible soil or aquatic systems, or as it were, immediate contact within workshops
or factories.

Additionally, our results support a novel, additional microbial shift that occurred
sometime in the past millennium, transpiring by the 1950s at least in France. This
transition may have altered the microbial communities linked to periodontal disease,
although further research is needed to verify these findings. Improvements in oral
hygiene, oral health practices, and periodontal treatments and therapies during and
after the 1950s are likely to be a significant contributor to this phenomenon [51].
Nonetheless, there are also many other sociocultural and environmental changes
that flourished in the post-war period, which were introduced in the late IR era,
such as, changing toothpaste ingredients to an alkaline base [52], the initial devel-
opment and use of synthetic antibiotics [53], or the public adoption of synthetic
organic pesticides [54], in addition to the fundamental alterations to the overall
structure and dynamics of environmental ecosystems through climate change, pol-
lution, and urbanisation [55]. In the investigation of these historical impacts, future
work requires an examination of microbial adaptation with recent Industrialisation,
alongside functional analyses that may reveal the mechanisms that underpin these
changes at the taxonomic level. Functional potential is critical for understanding the
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connections between the microbiome and chronic disease and is also more broadly
needed to anticipate how microbial communities will respond to environmental and
cultural changes within an increasingly Industrialised future.
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Thesis Structure

The study of the human oral microbiome—whether through paleomicrobiology or
contemporary dental health research—provides a new lens through which to under-
stand and potentially contribute to improved population oral health and systemic
well-being. Oral disease is the most common noncommunicable disease to affect
people throughout their lifetime, causing pain, discomfort, disfigurement, and even
death [1]. It is estimated that oral disease impacts over half of the world’s pop-
ulation, with inequalities existing between different geographic and socioeconomic
population groups [2]. What is especially prevalent is the increase in oral disease with
increasing urbanisation, wherein the social determinants of industrialised lifestyles
have detrimental repercussion impacts oral health [1]. This thesis has three main
goals:

1. Provide context and perspective to microbiome science from the field of evo-
lutionary medicine to advance contemporary public health research.

2. Investigate the interconnection between processes of industrialisation and the
alteration to the human microbiome.

3. Identify promising and prospective areas for future research.

In the section below, I summarise each chapter and its greater significance.

Chapter 1

I contextualise the principles of evolutionary medicine (i.e. the application of mod-
ern evolutionary theory to explain human health and disease) to the investigation
of the human microbiome, encompassing past environmental and sociocultural al-
terations which may have shaped human biological mechanisms that contribute to
disease susceptibility. In this way, evolutionary medicine can be used to better
understand contemporary Indigenous health by providing a contextual microbial
evolutionary history.

Colonialism is known to have had many physiological and psychological impacts
on Indigenous health and well-being, and I argue that contemporary Indigenous
health needs to be understood within the context of the microbial evolutionary his-
tory. By defining and delimiting topically broad colonial processes and providing
historical examples of potential microbial alterations, supported by recent micro-
biome research, I hypothesised the potential past microbial alterations that may
be contributing to the health inequalities burdening Indigenous populations glob-
ally [3]. Closing the health inequality gap between Indigenous and non-Indigenous
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populations requires consideration of all the likely components contributing to their
health and disease.

Chapter 2

The cross-disciplinary scientific dissemination of ideas and information requires sim-
plicity if it is to be widely accessible [4]. This chapter constitutes my effort to deliver
a simple and accessible cross-disciplinary understanding of the role of evolutionary
analyses of the human microbiome within of contemporary public health research
(manuscript to be submitted to The Lancet journal). This is especially important
within Indigenous health research, where Indigenous populations’ microbial evolu-
tionary history has been impacted by colonialism and historical subjugation, and
their contemporary health status remains globally disadvantaged with serious health
inequalities.

Chapter 3

Oral health research has a tendency to focus on singular pathogenic microorganisms
associated with disease to make inferences about the microbial community as a
whole [5]. This reductionist approach not only misrepresents the oral microbial
ecology, but because scientific research tends to be concentrated upon industrialised
and predominately European populations, this can lead biases in the understanding
oral health and disease in difference geographic or ethnic populations [6].

This chapter represents the first study: (1) to have explored the salivary mi-
crobiome of Aboriginal Australians and Torres Strait Islanders appertaining to oral
health and dental decay; and, (2) to analyse the oral microbial ecology differences
following the impact of a novel longitudinal oral health treatment. Understanding
how oral health treatments will impact the microbial ecology as a whole—as opposed
to the study of singular ‘pathogenic’ microorganisms—provides greater insight into
the subsequent physiological responses, potential inadvertent consequences of treat-
ment, and prospective dental therapy targets.

Furthermore, this chapter contributes to the examination of understudied populations—
such as Indigenous Aboriginal Australians and Torres Strait Islanders—which is
crucial to the improvement of Indigenous health outcomes and tackling oral health
inequalities.

Chapter 4

I provide the first qualitative assessment of impacts to the reconstruction of microbial
communities from long-term storage upon dental calculus samples, looking at two
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different standard storage conditions over a period of five years.
The growing research field of ancient human microbiomes (through the extraction

and analysis of the paleomicrobiological material from dental calculus, i.e. calcified
dental plaque) is elucidating the evolutionary history of the oral microbial. How-
ever, there is little known of the underlying biases and post-mortem nuances of
dental calculus material. The processes of preservation and fossilisation (known as
taphonomy) have not been analysed within dental calculus material. The interpre-
tation and inclusion of taphonomic modifications to the reconstruction of microbial
communities provided within this chapter (in which long-term room temperature
storage may represent archaeological material) offer guidance for understanding and
characterising the biases in comparing contemporary and ancient microbial commu-
nities.

Chapter 5

I reconstructed the historical oral microbiomes of European individuals who expe-
rienced the Industrial Revolution during their lifetime and identify the subsequent
sociocultural and environmental changes caused by the processes of industrialisation
that may have impacted the human oral microbiome composition. Industrialised
processes changing peoples’ lifestyle and modifying the environment (i.e. urbanisa-
tion) have been already been hypothesised to have altered the human microbiome,
as evident by studies of microbial comparisons between traditional societies and cul-
tures to industrialised ones [7, 8]. However, these modern cultural proxies cannot
precisely conjecture what the past pre-industrial European microbiome composition
or diversity looked like, nor reveal what historical ecological alterations assisted in
the establishment of the modern oral microbiome composition diversity seen today.

By exploring the compositional changes of the human oral microbiome associated
with Industrialisation, we advance our understanding of the evolutionary forces in-
ducing ecological change. As the processes of Industrialisation have not ended with
the Industrial Revolution, illuminating the preceding sociocultural and environmen-
tal changes that altered past microbiomes and physiological health may illustrate
future consequences for population health research. This further improves the recog-
nition, diagnosis, and interpretation of alterations to the oral microbial community
within human health and disease.

In summary, this thesis demonstrates the broad interdisciplinary nature of un-
derstanding the human oral microbiome, the importance of advancing investigations
inclusive of integral microbial ecosystem, and the contribution of evolutionary his-
tory to modern human microbiome research. In demonstrating the impacts of envi-
ronmental and sociocultural-behavioural changes to the ecology of the human oral
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microbiome, my thesis contributes to an array of research in the study of the hu-
man microbiome, paleomicrobiology, evolutionary medicine, public and population
health, and to dentistry and general medicine, institutional academics and indus-
try professionals alike. Equally so, understanding the human microbial ecological
community within human health and disease could not be discerned without the
multidisciplinary approach and interpretation. From an evolutionary perspective,
uncovering past ecological changes has unequivocal relevance to the developments
of future prevention and treatment of oral disease, and capacity to improve human
systemic health. In this discussion chapter, I examine and explore the outcomes
and interpretations of my research, presenting the ideas and prospects for future
research avenues.

Influencing the oral microbiome

Within this thesis, there are two underlying primary research foci:
Firstly, by investigating the changing components of lifestyle and behaviour and

their lateral impact upon human microbial ecology, we gain a better understand-
ing of the past evolutionary history of human-microbiome interactions that have
contributed to the contemporary microbial composition.

The second examines the variations of microbial ecology (both in past and present
populations) for insights into mechanisms influencing the interconnection of the
microbiome and human health. From the analysis of salivary microbiota composition
in children associated with dental decay severity, to the historical transformation of
population health in the past 200 years of industrialisation (and its direct impact
upon the evolution of the oral microbiome); within this thesis and within the field
of microbiome research (microbiomics), it is indisputable that human physiological
health is directly tied to the human microbiome.

However, there are numerous components of human physiological health, which
are often not discussed or accounted for within microbiomics research. One such
factor is ‘socioeconomics’, which is critically pertinent to the both the investigations
within this thesis and collectively within the future of human microbiome research.

Socioeconomics of the human microbiome

The combined measure of economic and social status is known as ‘socioeconomic
status’ (SES), a complex indicator usually comprising income, education, and occu-
pation [9]. Within this section, I will discuss SES and its respective factors applicable
to the various components of this thesis, giving consideration to its position within
my results, and identify prospective areas for future research.
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Importantly, SES is positively associated with health; greater wealth and social
position typically enjoy lower rates of morbidity or mortality within Industrialised
societies [10, 11, 12]. While often discussed on an individual level, SES can also
have a strong influence on health outcomes (disease, disability, and mortality) at a
community-level [13]. SES explains variation in many aspects of life and lifestyles.
Dietary choices, occupational activities, exposure to pollutants, psychosocial stress,
and social interactions are all are reasonably well explained by an individual’s SES
score or other measure of resource availability [14].

This complements our current understanding of the human microbiome, in which
the environment and interactions with environmental components shapes acquisition
and exchanges of microbes [15, 16, 17]. Thus, SES constrains the broader social and
environmental conditions able to influence the structure and composition of the
microbiome, and for that reason, it becomes eminently relevant that measurements
of socioeconomics are integrated into human microbiome research

SES and Indigenous health

The determinants of socioeconomics are indicative universally of health [18], es-
pecially with Indigenous population health. Indigenous populations are overrep-
resented within lower SES groupings, where they experience significant disadvan-
tages across a range of indicators including education, employment, and income [?
19]. The consequences of Colonialism (see Chapter 1) and the incorporation of
Indigenous peoples into the construction of the nation state (or complete lack of
incorporation in some cases) was shaped by varying degrees of violence, disloca-
tion, and cultural oppression, that structures the marginalisation, denigration, or
the suppression of Indigenous communities today [20].

Marginalisation and its associated stressors and anxieties can alter the body on a
fundamental biological and biomolecular level, impacting immune response, growth
and metabolic processes [21, 22]. Contemporary Indigenous health is impacted by
a range of culturally-specific historical trauma, such as a loss of language, environ-
mental deprivation or separation from land, or more widely, a spiritual disconnect,
that has modified neuroendocrine and psychological functional ramifications [21, 19].
These impacts can be intergenerational, passed along by epigenetic alterations, or
through the human microbiome [23, 24, 25]. Thus, the integration of SES within
microbiome research and associated health status of Indigenous populations is con-
founded by the ensuing impacts of historical trauma.

Within Chapter 1, I suggest SES is not a confounding factor within the dis-
cussion of the microbial contribution to Indigenous health, but rather compounding
factor to Indigenous health disparities. The SES of Indigenous populations is rem-
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nant of the historical colonisation wherein the colonial structures have maintained
material and symbolic (i.e. political) privileges, but is also emblematic of an ongoing
system of oppression [26]. If intergenerational impacts from historical alterations of
colonialism contribute to the discordance of the human microbiome with physiolog-
ical health, we have to assume that the continuity of oppression (i.e. generalised
lower SES than their non-Indigenous counterparts) within colonial societies defines
contemporary Indigenous health.

In other words, there is no certainty in completely disentangling SES factors
in the study of the Indigenous human microbiome. However, this should not pre-
clude its integration within analyses; the only way to understand how health and
the microbiome are shaped by differential psychosocial, physical, and chemical en-
vironments linked to ethnicity and SES is through the inclusion of individuals from
diverse ancestral, cultural, and social backgrounds [27].

SES in microbiome research

Thus far, research on SES and the human microbiome is relatively limited. Miller
et al. (2016) found lower neighbourhood SES was positively associated with lower
colonic microbiota diversity and unevenness [28]. This was supported by Bowyer
et al. (2019), in finding reduced microbial diversity in lower SES individuals even
after adjusting for individual health status and diet [29]. The incorporation of
SES within the analysis of human microbiome associated with health and disease
becomes vitally important in the understanding of biological mechanisms underlying
the relationships between disease risk and environmental factors.

Even though oral health research has long acknowledged the impact of SES
upon disease prevalence [30], only two studies have included SES in their analysis
of the oral microbiome. Belstrm et al. (2014) noted approximately 20 percent of
the variation of bacterial profiles within saliva could be attributed to SES, despite
no detectable impact of body mass index, alcohol consumption, or diet [31]. In a
larger analysis of community SES, Renson et al. (2018) also detected a number of
microbial taxa associated with sociodemographic variables, consistent with health
inequalities [32]. Notably, within this meta-analysis, the researchers were able to de-
tect disease-associated microbial differences between ethnic populations, suggesting
the oral disease state was driven by different microbial ecologies [32]. However, one
of the difficulties with large-scale cross-sectional studies is their limited resolution in
narrowing the role of oral microbiota in health inequalities. Therefore, prospective
studies which allow for controlling population demographics along with repeated
measurement are preferable for identification of etiological factors.

In the investigation of microbiota associated with oral health and disease, Chap-
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ter 3 concentrates on a subset of Aboriginal Australians and Torres Strait Islanders,
sharing environmental locality, and lifestyle and socioeconomic factors [33]. Abo-
riginal Australians and Torres Strait Islanders—who live across a wide range of
locations, belong to many distinctive descendent groups, with diverse sociocultural
and environmental interactions. As a collective population, they exhibit greater
rates of oral disease (including that of dental decay and periodontal disease) than
their non-Indigenous counterparts [34]. Disentangling the socioeconomic influences
from the role of culture and environment within Australian populations becomes
important for government programs and public health initiatives targeted towards
the education, preventative action, and treatment of oral disease within Aboriginal
Australians and Torres Strait Islanders.

Within the Aboriginal Australians and Torres Strait Islanders of the Northern
Peninsula Area (NPA), Queensland (Chapter 3), we observed very little impact
a novel caries preventative intervention treatment on the abundance of Streptococ-
cus mutans bacteria within the salivary microbial community. S. mutans is the
predominant target in dental decay intervention treatments, with the design and
development of therapies concentrating on the biophysical properties of S. mutans
that augment dental decay [35, 36]. In fact, many developed dental treatments focus
on isolated oral ‘pathogenic’ species in the aetiology of decay, without accounting
for the oral ecological ensemble [37].

Thus, within the study of Aboriginal Australian and Torres Strait Islander chil-
dren of the NPA community, we saw the preventative intervention treatment im-
proving oral health and decreasing the prevalence and severity of dental decay, but
not impacting S. mutans abundance. This raises questions about the microbial
ecological of the community involved with dental decay progression and the extra-
neous cultural and socioeconomic impacts that shape this microbial community. The
complex interactions of the oral microbiome, influenced by social and physical envi-
ronmental factors, alongside biological processes, may be unique to this particular
population. Only by extricating the socioeconomic factors relevant to the cultural-
or regional-specific influence upon oral microbial ecology, are we better equipped to
tackle the population-wide Aboriginal and Torres Strait Islander disparities in oral
health.

SES in past populations

The SES role within health inequalities is not a product of contemporary society;
health inequalities were far more pronounced in the past than they are today [38].
While the Industrial Revolution brought about nationwide economic benefits and
diffusion of wealth among the general public, it also resulted in inconceivable hard-
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ships for the lower socioeconomic classes dependent upon industrial occupations
for survival [38, 39]. The historical working class of the 19th century were not
just spatially differentiated in where they lived and worked, but the adversity and
hardships of working-class labour, inadequate diets, unsanitary conditions, rampant
endemic diseases and occupational trauma, physically demarcated lower SES in-
dividuals [38, 40]. These SES inequalities would be cultural and environmentally
differentiated, creating and shaping vast SES differences across populations and
ethnicities.

I suspect the geographic differences detected among the oral microbiomes of in-
dividuals from the period of Industrial Revolution were driven by SES differences
where the cultural processes of industrialisation varied. However, in the analysis of
historical microbiomes, SES of an individual is specified at best by mortuary records,
but more often inferred by bioarchaeological interpretations of skeletal remains [41].
To the best of our knowledge, the vast majority of individuals analysed from the
Industrial Revolution period were of lower socioeconomic classes (see Chapter 5
Supplementary Materials). Through this supervised consideration, our analysis
of historical low SES Industrial populations and the microbial differences between
them, contribute to a greater comprehension of cultural and environmental drivers
shaping the human microbiome (discussed in further detail in following sub-sections)
as defined by their SES. This also cultivates questions to the intergenerational con-
sequences of the ancestral SES upon the contemporary microbial composition of de-
scents, wherein social status becomes enmeshed within the biological components of
microbial ecology. As the same processes that contributed to the onset of the Indus-
trial Revolution still persisted through time, alterations to cultural socioeconomics
and continued escalation of accessible wealth to the ordinary individual continued
to improve and alter human physiological health and disease in conjunction with
the human microbiome [42, 43].

This societal improvement led to the development of numerous public health
initiatives, altering epidemiological patterns and driving the transition towards the
present-day microbiome [42, 44]. Our analysis of two individuals living through the
early 19th century up until post-World War II 1950s, suggests a secondary alteration
transitioning the early Industrial Revolution microbial composition to the contem-
porary periodontal disease-associated microbiome, but potentially dissimilar to the
modern healthy microbiome (see Chapter 5). Rather, the contemporary ‘healthy’
human microbiome is not analogous to the ancient or historical ‘healthy’ micro-
biome. However, this analysis may be distorted by our sample of predominantly
low-SES populations. Until we can better account for the influence of SES, both in
past and present populations, we may not be able to fully capitalise on the ways in
which the microbiome can inform our understanding of the causes and consequences
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of disease risks. Ideally, SES needs to be controlled within microbiome research,
in the search for etiological factors and disease associations. Where SES cannot be
supervised within microbiome analysis, it needs to be integrated and accounted for.
However, with the difficulties in being able to tease apart the nuances of socioeco-
nomics, by narrowing down on the factors that are influenced by socioeconomics—as
such as diet or exposure to environmental pollutants—we may better exemplify the
contribution of SES to human microbiome and health.

Diet impacts the human oral microbiome

Diet, nutrition, and subsistence has been shown to impact the oral microbial ecosys-
tem and the oral environment, with direct associations to oral disease. Some areas
of nutritional analysis have well-known impacts on the oral microbial ecology, such
as the increased consumption of dietary carbohydrates, wherein the breakdown of
sugars encourages plaque development through microbial ecological changes that
lead to the onset or worsening of dental decay [45, 46]. Other dietary components
are not yet fully understood, such as the associations between periodontal health
and nutritional consumption, with a strong association between obesity and peri-
odontal disease [47], and an inverse relationship between high protein intake and
periodontitis [48]. Even still, the modification of dietary patterns has documented
consequences for oral and systemic health; from major changes in subsistence, such
as the shift from foraging to agriculture [49, 50, 51], or cultural alterations, such the
impact of colonisation upon Indigenous populations [52, 53]. There is still much to
unravel regarding to cultural dietary and the nutritional factors that influence oral
microbial ecology.

The evolution of human subsistence patterns correlates with the major alter-
ations in the evolutionary history of the human oral microbiome. The introduction
of a predominantly carbohydrate-based diet, approximately ten thousand years ago
(i.e. the Agricultural Revolution), was shown to have altered the oral microbial com-
position with an increased number of periodontal-associated and decay-associated
microorganisms [49]. Notably, the transition to agriculture appears to have devel-
oped an ecosystem inclusive of a newly dominant Fusobacteria phylum [49]. Dental
research has observed Fusobacteria as the key component of greater dental plaque
construction, acting as a ‘coaggregation bridge’ in the biofilm formation with non-
specific, multi-species binding [54]. Increased plaque formations are associated with
increased dental decay, wherein the microbial biofilm maintains a micro-environment
with acidic conditions inducing enamel breakdown [46]. The archaeological record
observes increased rates of dental decay with the onset of agriculture, but more-
over, notes the presence of carious lesions were common even within hunter-gatherer
subsistence societies reliant upon high-carbohydrate plants (especially with sticky
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texture, e.g. dates or figs) [53].
Rates of dental decay climbed alongside the Industrial Revolution. With tech-

nological advances in milling and food processing and the establishment of the New
World sugar industry, individuals increasingly gained access to refined carbohydrates
and sugar [55, 45, 56]. Sugar consumption from the 17th century went from nearly
zero to, on average, 10 pounds (4.54 kg) per person annually, and by the 19th cen-
tury this increased to about 20 pounds (9.07 kg) [45]. Prior to the mid-19th century,
sugar was a luxury commodity afforded only by the wealthy high-socioeconomic
classes, but with the revolution of processing led to the economical production of
sugar, available to all SES classes [57].

One of the key questions in Chapter 5, in the inquiry of the apparent dichotomy
of oral ecological communities (i.e. Methanobrevibacter -dominant and the auxiliary
composition), is how the role of sugar might be participating in what appears to
be a progressive loss of Methanobrevibacter dominance. Research supports the fer-
mentation of dietary sugars (especially sucrose, fructose, and glucose) into acidic
by-products, lowering the salivary pH below 5.0 to induce demineralisation (dental
decay) [46]. But for optimal growth for Methanobrevibacter species, these organisms
prefers a more alkaline pH 6.9–7.4 environment [58]. With increasing volume and
presumably frequency of sugar intake, the microbial community is frequently dis-
turbed by pH fluctuations. Consequently, the ecological community alters with the
proliferation of acid-tolerating microorganisms, which would detrimentally impact
ecology dominated by Methanobravibacter [46].

Sugar consumption

The historical increased intake of dietary sugars throughout the 19th and 20th cen-
turies would likely have driven numerous cultural factors, for which we unfortunately
lack both historical and anthropological information to support a sugar-driven hy-
pothesis. For example, we observed the dominance of Methanobrevibacter oral ecol-
ogy within Australian colonialists. We know these individuals were of low-SES,
buried within the ‘pauper’ section of the Anglican Church cemetery between 1846–
1927 [59], but we have limited information of the foodstuffs available within their
lifetime. At the formation of early Australian colonies in New South Wales, sugar
was privately traded with regularity, with a per capita consumption of sixty pounds
(27 kg) by 1800s [60]. Sugar was initially linked to status; given as a reward to con-
victs for good behaviours, and sugar rations as part of wage payments [60]. Sugar’s
high-powered status appears to be maintained within New South Wales colonies
until the late-1880s when the sugar cane economy crashed after the introduction of
low-cost beet sugar [60]. Conceivably, access to sugar within the South Australian
colony of Adelaide likened to that of New South Wales, and our South Australian
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low-SES colonialists may not have had access to a consistent or frequent supply of
sugar. Unfortunately, while I was unable to establish historical evidence regarding
the South Australian diets of the mid-19th to the early 20th centuries, future anal-
yses may be able to derive dietary information from the functional analysis of oral
microbiomes (see below section ‘Functional analysis of microbiomes’ for further
discussion).

With now ubiquitous access to sugar, Industrial societies today present a distinct
reversal of SES and sugar consumption, with lower SES is linked to greater sugar
and refined cereal grains consumption [61]. In Australia, low SES was correlated
with both the increased consumption of sugar-sweetened beverages and greater rates
of dental decay, both of which were higher in rural or remotes regions [62]. This was
notably an influence on the rates of dental decay of Aboriginal Australian and Torres
Strait Islander children of the NPA region (Chapter 3), with a high proportion of
children consuming soft drinks, adding sugar to hot drinks and cereals, or consuming
syrup, jam, and sweet spreads on a daily basis [63]. While detailed dietary data was
collected, there was only a small subset of children who did not consume sugar on a
frequent basis, impacting our ability to statistically test the dietary influence within
the Chapter 3 analysis. Moreover, measurements of salivary pH were not taken in
the 2017 sampling year, which would be representative of sugar intake and ecological
pressures on the microbial community. Despite the omitted pH and dietary assess-
ment within Chapter 3, the overall significance of the improved oral health (i.e.
lower rates of dental decay and severity in children receiving Intervention treatment)
suggests that preventative action within communities suffering from severe rates of
dental decay and unequal oral health access benefit from immediate action of novel
treatments and post hoc microbial investigations.

Exposure to environmental pollutants

Environmental pollutants are chemicals or substances that end up in the environ-
ment as a result of human activity; pollutants can be naturally occurring matter or
energies, but are considered contaminants at excess levels in which the environment
cannot process or neutralize harmful by-products [64]. Human activity has produced
environment pollutants since the Bronze Age (∼3,600 BCE), with a notable steady
increase of anthropogenic lead pollution parallel to the growing sophistication of
metallurgy [65].

However, the onset of Industrial Revolution was a turning point in output
of heavy metal pollutants, notable bismuth, copper, zinc, nickel and cadmium
[66, 67, 68]. Further technological developments saw the production of persistent
organic pollutants and synthetic long-lasting compounds in the late Industrial era
[69]. Since the Great Acceleration, the exponential increase in environmental pol-
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lution has already shown detrimental structural and functional damage to Earth’s
ecosystems and climate [70]. Concerns regarding the impact of environmental pol-
lution on human health—through uptake of water, air, food, and medication—are
increasing with mounting evidence of pollutant exposure leading to the development
of numerous disorders, including obesity, metabolic syndrome, and type II diabetes
[71, 72].

Pollutants impacting the human microbiome

Currently, there is no research on the impact of environmental pollutants on the
human oral microbiome. However, there have been studies looking at the impact
of pollutants causing alterations to the gut microbiome of murine models [73, 74].
Heavy metal exposure has been shown to induce alterations in the composition
and functionality of the gut microbiome, prompting physiological disorders, such
as disrupted metabolic functionality and nutrient absorption [72]. Exposure to ar-
senic significantly decreased bacterial phylum Firmicutes, and increased phylum
Bacteroidetes, parallel with detected alterations in metabolite production [75]. Cor-
respondingly, Dheer et al. (2015) supported phyla-level microbial compositional
changes, noting associated alterations of the microbial functional capacity and in-
creased microbial gene expression of nitrogen reductase, which was linked to the
increased nitrate and nitrite levels in the ecological environment [76]. Thus, there is
probable cause for environmental pollutants impacting the oral microbiome directly
(i.e. pollutants interact with microorganisms in the oral cavity, e.g. breathing air
pollution) or indirectly through the initial alterations to the gut microbial commu-
nity [77].

With the increasing rates of heavy metal pollutants, populations of the Indus-
trial Revolution would have had very little prior exposure to such toxicity, sup-
plying a new ecological pressure upon the human microbiome. From Chapter 5,
the microbial ecological differences across geographic regions may have been driven
by varying national advances and specialisations of industry, producing distinctive
pollutant profiles. Another hypothesis regarding the lost ecological dominance of
Methanobrevibacter could be the increasing heavy metal pollutants present in the
environment. While speculative, there could be direct impact of heavy metal ions
upon Methanobrevibacter, as copper, nickel, and zinc metals had an observed im-
pact upon methanogenesis [78]. But this was seen to be strain dependent, and to
my knowledge, no literature has investigated the impacts of heavy metals on oral
Methanobrevibacter strains. Another hypothetical impact of heavy metals upon the
oral ecosystem by indirectly influencing the oral environment. Research has noted
the correlation between increased blood lead levels (from the ingestion or inhalation
of lead-containing substances, or transferred from mother to foetus) and increased
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prevalence of dental decay [79, 80]. Causation has not been elucidated, but it is
hypothesised that lead ions compete for calcium binding sites in salivary gland cells,
causing hypofunction and diminishing salivary flow rates, precipitating alterations
in the microbial community [81].

While the conjectured heavy-metal contact with ecological loss of Methanobre-
vibacter -dominance is only hypothetical, there are known impacts of pollutants upon
the environmental microbiome; e.g. the impact of mercury on soil microbial commu-
nity structures [82], or the soil microbial functional adaptation to increased heavy
metal exposure [83]. While there is very limited analysis on environmental pollutants
impacting the human microbiome, there are hypotheses that suggest a direct cor-
relation between environmental microbial diversity and human microbial diversity
[84, 85], Ideally, investigating the Methanobrevibacter pollutant hypothesis would
require a far greater temporal and spatial geographic sampling, where further ar-
chaeological or geohistorical information could illuminate past cultural practices and
behaviours of the individuals studied. However, even with the additional sampling
of ancient individuals, the reality is that very little is known about the various mech-
anisms underlying bidirectional interactions between environmental pollutants and
human-associated microbiota [86].

In a world with ever-increasing urbanisation and industrialisation, future re-
search to comprehend the microbial alterations consequent of pollutant exposure is
critical for human health and the interconnection of microbial ecosystems, function-
ality, and biochemical interactions. Prospective work should look towards human
rural and urban microbiome population differences in microbial functionality (not
solely composition [87]), especially in regards to environmental chemical contami-
nants. Moreover, investigations should look to large-scale analysis of present envi-
ronmental contaminants in soil, water, or air, using geo-databases, such as World
Health Organization Air Pollution database [88] and the combination of publicly
available microbiome datasets, such as the Human Microbiome Project [89] or the
American Gut Project [90]. While a future of genetically modifying microbial biocat-
alytic functions—as to reduce toxic or cariogenic pollutants to non-toxic harmless
derivatives—is a long way away, even just basic preliminary analyses are needed
before we can begin conceptualising theoretical engineering of microorganisms as
potential health treatments or solutions for pollutant biodegradation [91, 92].

Working with Ancient Dental Calculus

Metagenomic analyses of paleomicrobiological material, like any new field of re-
search, has a number of elemental issues afflicting the analysis and interpretation
of ancient oral microbiomes. Within this thesis, I observed and critically evaluated
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three main issues: (1) the dependence and reliance upon constructed databases, (2)
the limited understanding of taphonomic biases upon dental calculus microbiomes,
and (3) the ascertainment bias of sample collection. Below, I will discuss each issue
in greater detail.

Database bias

There is a vast amount of microbial diversity that remains uncharacterised on Earth,
which hinders the ability to accurately reconstruct ancient microbial communities
when reliant upon genome databases curated from modern microbiology research
[93, 94]. This is exemplified by how fast microorganisms can evolve, with rapid
generation times and large population size, allowing for rapid genetic adaptions
[95]. Therefore, sequencing historical microorganisms and matching them to mod-
ern genomes can lead to misidentification and misinterpretation, and with ancient
DNA (aDNA) analyses of past microbiomes only stipulating what microorganism
remained, not what taxa were lost. Unfortunately, within Chapter 5, this bias will
have impacted my ability to analyse the cultural and temporal differences of alter-
ations to ancient oral microbiomes and to those ecological changes at the onset of
Industrialisation. This can be observed by the number of sequences unassigned, for
which an average of 41% sample reads could not be assigned taxonomy (Chapter
5 Supplementary Materials, Table S8).

Database bias not only impacts our ability to accurately reconstruct the oral
microbial community but affects our ability to reconstruct the microbial species
function. Microbial species which are retained through time are likely to procure
genetic adaptations to environmental changes, but we are unable to detect them
within the contemporary species genomes (e.g. Methanobrevibacter oralis which
has been observed in the oral cavity since Neanderthals [51]). Such that, future
paleomicrobiology research efforts need to concentrate on bioinformatic approaches
(e.g. binning-assembly or de novo assembly) for reconstruction of ancient draft
genomes [96]. The benefit for these analyses is two-fold: firstly, we gain greater
insight into the bacterial evolution and gene content over time. Secondly, this moves
towards a further characterisation of the human oral microbiome and advances our
comprehension of the microbial role in human oral health and disease.

Taphonomic bias

Taphonomy is the processes of fossilisation and decay that biases preservation of mi-
crobial taxa [97]. Within ancient paleomicrobiological research, this bias will alter
the accurate reconstruction of the pre-mortem microbial community. Paleomicro-
biological research of fossilised faecal material (coprolites) have shown phyla-level

178



Discussion

microbial differences are resilience to taphonomic processes [98], however, there have
been limited investigations into how taphonomy might impact the ancient dental cal-
culus microbiome. Research supports the viability of culturable bacteria within the
exterior of the calculus matrix [99, 100], which would support the survival of taxa
within the lacunae and channels of the otherwise calcified mass. Warinner et al.
(2014) observed little post-mortem alteration to dental calculus using various mi-
croscopy and spectroscopy analyses; confirmation of the little to no post-mortem
alterations impacting the mineralised matrix [101]. But this does not exclude the
potential influence, and subsequent modifications of taphonomy upon non-calcified
microorganisms, that will affect the genetic reconstruction of the oral microbiome.

My study was one of the first to analyse the impact of storage condition and time
upon the reconstruction of dental microbiome communities (Chapter 4). While
experimental investigations of taphonomy in living organisms and modern environ-
ments may not recapitulate the exact taphonomic alterations to the reconstruction
of archaeological dental calculus microbiomes, they can advise ancient dental cal-
culus research to the taxonomic differences driven by evolutionary changes versus
those induced by taphonomy. However, a long-term study is needed to explore these
taphonomic effects in the context of the soil environment. Body farms (such as the
Australian Facility for Taphonomic Experimental Research [102]) could be essential
in the archaeological analysis of dental calculus, but would also have applicability
in forensic research. With the sampling accessibility of the oral cavity, oral bacteria
could act as indicators to time since death [103]. Furthermore, studies looking at
these taphonomic processes could be used to model such changes for the development
of bioinformatic techniques to detect and account for alterations of the microbiome
historically.

Sampling bias

Sampling bias, or ascertainment bias, is a systematic distortion in the measurement
of a true phenomenon due to the way a sample is collected [104]. This is a well-
documented bias in bioarchaeology, known as the osteological paradox, wherein the
interpretations of past epidemiological trends cannot discern the underlying vulner-
abilities of a skeletal populations [105]. For instance, the health of adolescences
living in the early Adelaide colony of Australia cannot be determined from osteo-
logical material, because only deceased adolescences are being studied. Likewise,
ancient oral paleomicrobiology suffers from a similar bias, in that sampled dental
calculus samples are only representative of the microbial plaque developed over an
indeterminate amount of time. This build up will temporally vary between indi-
viduals, impacted by intra-individual physiological and biological factors, impacting
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the microbial community accessible and the microbiome that is reconstructed.
Furthermore, we are only able to sample calculus from individuals who have

formed sufficient calculus build-up, usually excluding children who generally have
less calculus formation [106]. Calculus formation and incidence can be shaped by
systemic factors; aspects of health and disease can influence salivary pH or salivary
flow rates, impacting the calcification of dental plaque [106]. Archaeological dental
calculus collection further depends on the oral health of an individual for remaining
teeth (which can be influenced both by pre-mortem and post-mortem loss).

Research in Chapter 5 was impacted by these ascertainment biases; access to
ancient oral microbiomes is dependent upon access to bioarchaeological material.
Our skeletal material was generally biased toward lower socioeconomic status, po-
tentially influencing our temporal cross-comparisons. As previously mentioned, this
could be circumvented by improving modern-day sampling from a range of SES,
geographic locations, as well as age groups, so that we may better anticipate the
biases and influence of such factors on the oral microbiome. Furthermore, Chapter
5 noted the impact of different sampling schemes across skeletal populations (e.g.
collecting all samples from molar teeth) impacted the ability to perfectly test for po-
tential oral geographical influences of tooth type in the oral microbial communities,
which have been detected within single population analyses [107] (see Chapter 5
Supplementary materials). Ideally, future paleomicrobiological research will be
able to build upon the available sample size that work towards improving method-
ologies to account for, or statistically model, the impact of ascertainment.

Future directions for ancient paleomicrobiological research

There is still much to learn in dealing with the confounding factors that can mislead
paleomicrobiological findings and research. The unfortunate publication bias within
scientific research as a whole, which pushes researchers to publish mostly positive
results without highlighting the negative outcomes [108], suppresses methodological
or investigative flaws and impeding sufficient comprehension. Sometimes this had
led to been erroneous claims [109, 110, 111], whether by honest mistake or miscon-
duct within research practices, these studies illustrate the difficulties of innovative
explorations of unchartered territory. However, we gain to learn from even the most
controversial claims. Only by tackling these issues head on, critically evaluating
and highlighting the pitfalls of such biases, can we determine the necessary actions
needed to rectify them. The evaluation of paleomicrobiology biases and the inconsis-
tencies in our knowledge contributes to the growing foundation of paleomicrobiomics,
to ensure the reliability of future research.
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Greater contribution to understanding oral health

Although oral commensal microorganisms are culpable within oral disease, they also
characterise and cultivate oral health. Oral microbiota are responsible for coloni-
sation resistance, inhibiting the establishment of invading pathogens [112]) or by
behaving antagonistically [113]. Moreover, there are implications for oral microbiota
contributing towards greater systemic health through nitrate metabolism, essential
for cardiovascular health [114, 115].

Thus, the transformation of oral microbial ecology towards oral disease is depen-
dent upon the complex interactions between host susceptibility and environmental
factors, and by advancing our knowledge of such interplay endorses the enrichment
of global oral health research. Here, I will broaden the discussion of five main factors
that I determined and contributed within this thesis that support the improvement
of global oral health: (1) improving the foundational understanding of oral micro-
biota involved in health and disease, (2) inclusion of diverse ethnic populations, (3)
advise on whole-community investigations within dental research, (4) recommend
future functional analyses, and (5) evaluate the evolutionary history of the human
oral microbiome.

Foundational understanding of human oral microbiota

This thesis builds on the foundational knowledge of the human oral microbiome,
both past and present populations, that underpin future advances and novel den-
tal treatments to improve oral health. Both Chapter 3 and Chapter 5 describe
the basics of oral microbial composition of previously unexplored communities and
populations, which may necessitate understanding for oral health. Undeterred by
the technological and scientific developments in dental health treatments, overall
improvements in oral health tend to be the resultant of general progress in living
standards and livelihood conditions, rather than clinical interventions of dentistry
[116]. Moving away from predominately preventative and band-aid solutions, re-
search into the oral microbiome looks to resolve how we can better treat oral health
and disease at the causative-level.

One such innovative method is looking at designing an oral ‘microbiota trans-
plant’. Founded on principles of bacteriotherapy, a microbial transplant (e.g. faecal
transplantation) from a healthy donor with an endogenous microbiome community
is prescribed to an afflicted patient (e.g. Clostridium difficile-associated disease) in
order to re-establish a health-associated microbial ecology [117]. If the oral micro-
bial ecology of an individual suffering from an oral disease is persistently unable to
restore a healthy composition or its functional potential, a whole-community trans-
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plant may regenerate the oral health state. For less detrimental circumstances, the
development of an oral prebiotic or probiotic could be used for the maintenance or
restoration of ecological balance or enhance the existing beneficial microbial com-
munity [118].

The movement towards a personalised dental treatment would have extensive ef-
fects for all of healthcare, not just dentistry. Oral microbiota and health are tightly
linked to systemic health through inflammatory mediators, the immune system,
or even bacteraemia [118]. Notably, there have been observed changes in the oral
microbial community associated with alterations to the gut microbiome [119, 77].
Thus, the oral ecology is critical in understanding the interconnection of the hu-
man microbiome as a whole and the physiological relationship to health. Medicine
could focus on the management and treatment of the oral microbial community to
prescribe good systemic health.

Ascertainment bias in modern microbiome research

Prior discussions of ascertainment bias in regard to aDNA and sample collection
is also relevant to modern microbiome research. Ascertainment bias is prevalent
in modern microbiome research, especially for Indigenous populations, where study
populations are mainly of European descent [120]. Determining the role of microbial
diversity within human health and disease will be hindered by inadequate investi-
gation into human diversity [6]. Such explorations are vital in the understanding
of rare variants, as microbiome variation is inclusive of individual biological pro-
cesses, localised environmental factors, and sociocultural lifestyle behaviour [6]. The
under-representation of low socioeconomic and minority groups misrepresents our
perception of the human microbiome, and such investigations into these populations
is paramount for improving the health inequalities that plague them (see Chapter
2).

However, researchers need to recognise the ethical issues underlying this missing
inclusivity: many of these minority populations, especially those who identify as In-
digenous, are historically disadvantaged [120]. There are established procedures in
biomedical research for protecting vulnerable groups (see [121]), nevertheless, micro-
biome research should be built upon an ‘ethics of care’ framework that emphasises
a mutually beneficial relationship [122]. This could be done by designing a micro-
biome study that additionally addresses specific community health concerns; much
like the novel preventative intervention treatment for dental decay among children
of the NPA region (Chapter 3). Studying the salivary microbiota of these Aborig-
inal Australian and Torres Strait Islander children was a by-product of oral health
research that aimed to directly address the eminent rates of dental decay within
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the community [123]. Ensuring microbiome research is working alongside Indige-
nous communities to incorporate relevance and perceived benefit to the community
in question, alongside the culturally appropriate management of research practices,
methodology, and results is fundamental to these analyses [120, 121].

Whole community analysis of oral health and disease

Many investigations into the oral microbial community within dental health research
still utilise low resolution techniques, such as PCR-DGGE or DNA-microbe arrays,
omitting the ability to identify all present taxa within the sample or fully charac-
terise the microbial ecology [124]. These studies often concentrate on the formerly
identified taxa associated with oral disease, neglecting unknown or unclassified mi-
croorganisms. By definition, these taxa have an unidentified contribution to the
ecological community; individual microorganisms within these ecologies could have
disproportionate influence upon microbiome functionality or impacts upon phys-
iological health, and precluding them from analysis is counterproductive for oral
health research.

Despite some of the drawbacks of 16S ribosomal RNA (rRNA; as covered in
Chapter 3), 16S rRNA sequencing is a straightforward and economical solution for
microbial ecology analysis that can produce species-level resolution. Within Chap-
ter 3, we were able to identify several microorganisms associated with severe dental
decay (Lactobacillus salivarus, Lactobacillus reuteri, Lactobacillus gasseri, S. mu-
tans, Prevotella multisaccharivorax, and Mitsuokella HMT species 131), for which
most had not been linked to dental decay before. Intriguingly, some of these taxa
have been previously associated with periodontal disease; as Aboriginal Australians
suffer significantly greater rates of periodontal disease relative to non-Indigenous
Australians, these microorganisms may be indicative of their prospective suscepti-
bility [125]. But without whole community analysis, these connections and intersec-
tions between oral health and microbial ecologies remain hidden and ignored.

Future work should look towards improving whole community resolution. Par-
ticularly, shotgun metagenomic sequencing techniques, which can provide superior
oral microbiome analyses with accurate strain-level classifications, the possibility to
extract whole genes, and functional analysis of the metagenome [126]. As method-
ologies continue to advance with decreasing costs, whole community analysis should
be applied to widely surveyed oral disease mechanisms, especially in populations
suffering from health inequalities.
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Functional analysis of microbiomes

While changes in microbial composition can affect the functionality of the micro-
biome, the inverse is also true; the loss of unnecessary functional properties can
induce changes in the microbiome composition [127]. Therefore, it is imperative
that knowledge of both microbiome composition and function be established. Un-
derstanding the functional features of the microbiota has a greater capability to
provide ecological comprehension, and thus, illuminating the functional potential of
an oral ecosystem may be more meaningfully associated with physiological health
status. However, research is limited in the availability of bioinformatic programs
able to address microbial functions.

Currently, methods only used function-based gene screening, which can deter-
mine what genes are present in the entire sample and how those functionalities or
protein pathways differ between samples and environments [128]. Unfortunately, we
are still unable to link the sequenced functional information with specific microor-
ganisms, limiting the annotation a singular microbiota’s role within the ecosystem
as a whole. Alternatively, by employing de novo assembly methodologies to create
draft genomes from metagenomic sequencing, gene annotation can illuminate the
potential functions of specific microorganisms [129]. Nonetheless, this method will
not advise on genes that are actually expressed (i.e. used for functional output)
within the microbial ecosystem. This could be done with transcriptomics in paral-
lel to microbiome reconstruction; analysing the RNA sequences (gene transcripts)
can explain the proportional gene expression within a microbial community and the
community function at time of sampling [128].

Better still, metaproteomic techniques, measuring the proteins expressed within
the environment, can provide more precise functional information, as the presence
of gene transcripts does not necessarily indicate protein expression [130]. Equally so,
metabolomics—the study of the intermediates or end products of cellular metabolisms
(known as metabolites) within an environment—can accurate quantify the biolog-
ical interactions within the ecosystem of both the host and their microbiota [131].
The integration of these more informative methodologies increase our understanding
of the activities and dynamics of microbial communities, that provide insights into
microbial functionality.

Incorporating evolutionary history

The progression of industrialisation globally, and the subsequent shift in industrial
disease patterns, is occurring at a faster rate in developing countries—for which the
developmental status usually referring to its industrial status—than it did within
Europe more than half a century ago [132]. In Chapter 5, I explored how Indus-
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trialisation impacted oral microbiota for the first time. This information provides
new insights into how detrimental these industrial changes were to the human mi-
crobiome, coordinating with the increasing burden of industrial disease; a major
public health threat that demands immediate and effective action. Understanding
the processes that altered the human microbiome in the past are critical for under-
standing the alterations occurring in places anew, establishing such environmental
and cultural influences upon the human microbiome promotes the development of
preventive measures and controls to counter the epidemic of chronic disease [133].
While I emphasise this at a broad public health scale; the same patterns are charac-
teristic of global oral disease (especially untreated dental decay and periodontitis)
[134].

Evolutionary history also plays a significant role in shaping the human micro-
biome composition and function; as stated earlier, Indigenous health is directly tied
to their unique evolutionary histories. Current assessments of geographic and eth-
nic differences in the microbiome—based on diet, subsistence, and dental disease—
suggest that while generalisations may not be applied universally, knowing what
patterns to look for guides population-specific analyses and allows for more precise
inferences regarding the roles of evolutionary forces on the expression and composi-
tion of both the oral and human microbiome.

Conclusion

While each chapter maintains its own significance and contribution to the field of
oral microbiomes, together this work identifies and describes the impact of socio-
cultural and environmental changes, consequent of industrialisation, on the human
oral microbial composition. From this work three themes have emerged:

Evolutionary medicine informs our understanding of the human micro-
biome: I look at microbial changes in both contemporary and historic populations
to investigate the nuances of oral health and disease, and the greater changes to
the oral microbial ecology through time. Moreover, improving our methodological
ability to make such population comparisons.

Integrating cross-disciplinary understanding for public health research:
By contributing to the fields of both contemporary and ancient microbiome research,
I attempt to address and fill the gaps of our knowledge that will bring about greater
comprehension in the future of human microbiome research to inform population
and public health.

Importance of oral microbiome research: The data presented in this the-
sis provides a greater understanding of the human oral microbial community, both
through evolutionary time and within understudied contemporary populations. The
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contribution of my thesis to facilitates insights into our understanding of oral mi-
crobial ecology and its relationship to human oral and systemic health.
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Supplementary Table 1. Kneaddata output and Sequence Assignment. Shot-
gun sequences underwent host read removal, presenting the percentage of sequences align-
ing to the human genome (GRCh37/hg19) reference database. Sequences were then
aligned against an in-house database created using 47,696 archaeal and bacterial genome
assemblies from the NCBI Assembly database (Eisenhofer and Weyrich, 2018).
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Identified species of the shotgun sequenced Control Samples

Supplementary Table 2. Blank control samples species composition. List of
assigned species identified within shotgun sequenced extraction blank controls. Most
samples appear to be dominated by only one or two species.
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Supplementary Table 3. Percentage of assigned 16S rRNA sequences. Se-
quencing reads from 16S rRNA amplification underwent demultiplexing by unique bar-
code adaptors using the EMP-paired end protocol and denoised using the Deblur algo-
rithm QIIME2 plugin. Sequences were truncated to 150 bp (based on the median quality
score) before being assigned taxonomy using the Human Oral Microbiome Database
(HOMD; v. 15.1) (Chen et al., 2010).
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Identified species of the 16S rRNA sequenced Control Samples

Supplementary Table 4. Blank control samples species composition. List of
assigned species identified within 16s rRNA amplified extraction blank controls. Tax-
onomy was assigned using Greengenes database (v13.8) (McDonald et al., 2012). A
number of assigned species have been previously identified as part of the typical human
oral microbial community (Dewhirst et al., 2010).
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Alpha and beta diversity tests for significance of metadata variables

A. Shotgun data B. 16S rRNA data

Supplementary Table 5. Alpha and beta diversity tests for significance of categorical
variables ‘Storage Vessel’ and ‘Gender’ using PERMANOVA. At each taxonomic level
PERMANOVA significance was calculated for alpha (Shannon and Observed species) and beta
(Bray-Curtis) diversity metrics, to identify the potential influence of metadata variables on the
microbial communities of dental calculus. Bold values indicate a significant result (p<0.05); p-
values are FDR corrected.
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I Archaeological Context and Site Information

A total number of 130 dental calculus samples were analysed within this study,
including: 56 ancient European samples, 37 historical Industrial Revolution (IR)
samples, two post-war samples, 15 healthy modern samples, and 20 samples from
modern periodontal patients. Of this, 60 dental calculus samples (56 ancient and 4
IR samples) were downloaded from published sources (Table S1). The Australian
Centre for Ancient DNA (ACAD) and museum collection sample numbers, sample
information, estimated date and age, and classifications based on geography and
culture are provided in Table S1. The archaeological and anthropological context of
individuals from historic and 1950s populations are described within the following
sections.

Historical Australian samples

Dental calculus samples were obtained from individuals of the early Adelaide colony,
buried at The Anglican Church of St Mary’s (herein referred to as St Mary’s), Ade-
laide, South Australia. St Mary’s Church was established in 1846; its unmarked
burial ‘free grounds’ were used from 1846 to 1927. Excavation began in 1999, un-
dertaken by the Archaeology Department at the Flinders University under the direc-
tion of Dr William H. Adams. The 70 burials were osteologically analysed in a PhD
thesis [1]. In 2004, the 70 individuals were moved from storage at the University of
Adelaide to a specially designed subterranean storage facility [2]. In 2017, the crypt
was reopened, and 36 individual skulls were moved to the University of Adelaide for
further analysis, including the sampling of dental calculus. Only 15 skulls had dental
calculus present (likely due to the age of the individuals; 18 of the 36 individuals
were estimated to be younger than 13 years); in some cases, multiple dental calculus
samples (from different teeth) from the same individual were collected.

Historical documentation and skeletal evidence indicate the majority of indi-
viduals buried in the free grounds were farmers or labourers (i.e. working class
individuals) with good/adequate nutrition, but poor social conditions, especially in
regards to hygiene [1]. There was a high incidence of child mortality in the free
grounds at St Mary’s prior to 1875; likely a result of infectious diseases for which
people of the time had little understanding or no effective treatment for. Disease
was the clear cause of death for most adult individuals in the free grounds, as his-
torical records indicate 41.8–73.1% of individuals died from infectious causes, which
is corroborated by minimal evidence of skeletal peri-mortem trauma.

Historical records and skeletal analyses of geographic origin denote the majority
of the St Mary’s adults to have immigrated to Australia from England. Dietary
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habits remained distinctly English, and consumption of meat became especially im-
portant for Australian Europeans. Stable isotope analysis (backed by historical
accounts) indicated the average adult diet of St Mary’s individual would have con-
sisted of approximately 32% seafood, 60% terrestrial meat (e.g. cattle, sheep) and
8% terrestrial vegetation (e.g. wheat, barley). All individuals had dental decay, and
there was no evidence of fillings or other restorative procedures observed within this
population. Periodontal disease played a less significant role in oral disease within
this population, with ante-mortem tooth loss linked to the high incidence of carious
lesions [1].

Historical German samples

Dental calculus samples from IR German samples were attained from Hettstedt, of
the Mansfeld distinct in Saxony-Anhalt, Germany. Details of archaeological context
and sample descriptions have been previously described in Weyrich et al. (2017) [3].
In brief, Hettstedt burials were osteologically analysed in an unpublished Master
thesis by Klapdohr et al. in 2013 (see Weyrich et al. [3] for details). This population
was characterised socioeconomically by mining and metallurgical work, supported
by dominantly carbohydrate-based diet. Tooth loss and dental decay was prevalent,
with approximately 20% of adults exhibiting a severe degree of plaque formation [3].

Historical Swiss samples

Swiss dental calculus samples were obtained from the former Basel Hospital Ceme-
tery (St. Johanns Park), Bürgerspital hospital of Basel, Switzerland. Bürgerspital
hospital was the first modern hospitals for the lower classes of Basel, in use from
1845 to 1868. Of the 1061 individuals excavated, 220 individuals were curated by
the Natural History Museum, Basel, as part of the Spitalfriedhof St Johann Known
Age Collection, representing those individuals who could be identified by both grave
and hospital registers. Switzerland (notable the city of Basel) was a predominantly
textile industry, with the introduction of chemical factories in mid 19th century [4].
The production of synthetic dyes along the River Rhine was known for dumping
chemical waste straight into the aquatic systems [5].

1950s French samples

French dental calculus samples were collected from individuals who donated their
bodies to science, now part of the Georges Olivier collection at the Musee du
l’Homme of Paris, France. Calculus was collected from 13 different individuals,
all middle-age adults, living in Paris at the time of their death.
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Study ID 
Number 

Sample Type Museum 
ID 

Museum Geographic 
Location 

Specific Location Archaeological 
Site 

Estimated 
Date (CE) 

Period Anthropological Reference Calculus Sample 
Reference 

13214 Dental 
Calculus 

795 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13215 Dental 
Calculus 

776 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13216 Dental 
Calculus 

837 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13217 Dental 
Calculus 

734 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13218 Dental 
Calculus 

764 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13219 Dental 
Calculus 

801 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13220 Dental 
Calculus 

733 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13221 Dental 
Calculus 

842 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13222 Dental 
Calculus 

781 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13223 Dental 
Calculus 

777 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13224 Dental 
Calculus 

834 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13225 Dental 
Calculus 

822 Natural History of Basel 
Museum, Switzerland 

Switzerland Basel Basel Hospital 
Cemetery 

1845-1868 PostIndustrial Unpublished; Natural History of Basel 
Museum, Switzerland 

This study 

13226 Dental 
Calculus 

19 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13227 Dental 
Calculus 

23 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13228 Dental 
Calculus 

34 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13229 Dental 
Calculus 

40 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13230 Dental 
Calculus 

43 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13231 Dental 
Calculus 

50 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13232 Dental 
Calculus 

85 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13233 Dental 
Calculus 

88 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

13234 Dental 
Calculus 

93 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Unpublished; Klapdohr 2013 (Thesis) This study 

20454 Dental 
Calculus 

B83 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20455 Dental 
Calculus 

B83 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20456 Dental 
Calculus 

B83 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20457 Dental 
Calculus 

B83 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20459 Dental 
Calculus 

B59 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20460 Dental 
Calculus 

B53c Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20462 Dental 
Calculus 

B66b Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20463 Dental 
Calculus 

B66b Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20465 Dental 
Calculus 

B9 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20466 Dental 
Calculus 

B9 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20467 Dental 
Calculus 

B23 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20468 Dental 
Calculus 

B5 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20469 Dental 
Calculus 

B61 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20472 Dental 
Calculus 

B72 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20473 Dental 
Calculus 

B6 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20474 Dental 
Calculus 

B6 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20475 Dental 
Calculus 

B6 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20476 Dental 
Calculus 

B6 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20477 Dental 
Calculus 

B6 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20480 Dental 
Calculus 

B68 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20482 Dental 
Calculus 

B78 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20483 Dental 
Calculus 

B73 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20485 Dental 
Calculus 

B73 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 
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Study ID 
Number 

Sample Type Museum 
ID 

Museum Geographic 
Location 

Specific Location Archaeological 
Site 

Estimated 
Date (CE) 

Period Anthropological Reference Calculus Sample 
Reference 

20486 Dental 
Calculus 

B57 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20487 Dental 
Calculus 

B57 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20490 Dental 
Calculus 

B57 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20492 Dental 
Calculus 

B79 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

20493 Dental 
Calculus 

B79 Flinders University, Adelaide, 
Australia 

Australia Adelaide St Marys Anglican 
Church 

1846-1927 PostIndustrial Anson 2004 (Thesis) This study 

13227B Dental 
Calculus 

23 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Klapdohr 2013 (Thesis) Weyrich et al. 
2017 

13229B Dental 
Calculus 

40 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Klapdohr 2013 (Thesis) This study 

13230B Dental 
Calculus 

43 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Klapdohr 2013 (Thesis) Weyrich et al. 
2017 

13232B Dental 
Calculus 

85 Johannes Gutenberg 
University, Mainz, Germany 

Germany Hettstedt Hettstedt 
Gymnasium 

1860-1865 PostIndustrial Klapdohr 2013 (Thesis) Weyrich et al. 
2017 

B61 Dental 
Calculus 

B61 University of Zürich’s 
Institute of Anatomy, 

Switzerland 

Germany Dalheim St. Petri church 950–1200 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

G12 Dental 
Calculus 

G12 University of Zürich’s 
Institute of Anatomy, 

Switzerland 

Germany Dalheim St. Petri church 950–1200 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT05 Dental 
Calculus 

Burial 
102 

Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT08 Dental 
Calculus 

Burial 27 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT09 Dental 
Calculus 

Burial 
122 

Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT13 Dental 
Calculus 

Burial 27 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 1162-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT14 Dental 
Calculus 

Burial 63 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT24 Dental 
Calculus 

Burial 
86-91 

Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT25 Dental 
Calculus 

Burial 32 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT26 Dental 
Calculus 

Burial 
124 

Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT28 Dental 
Calculus 

Burial 87 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT29 Dental 
Calculus 

Burial 62 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT31 Dental 
Calculus 

Burial 44 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT32 Dental 
Calculus 

Burial 8 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

KT36 Dental 
Calculus 

Burial 71 Institute of Technology Sligo, 
Republic of Ireland 

Ireland Kilteasheen Bishop’s Seat 661-1275 Medieval Read. 2010. in Medieval Lough Cé: 
history, archaeology, and landscape 

Mann et al. 2018 

S108 Dental 
Calculus 

S108 University of Leiden, 
Netherlands 

Netherlands Middenbeemster Middenbeemster 
cemetery 

1829–1866 PreIndustrial Waters-Rist & Hoogland. 2013. 
International Journal of 

Paleopathology 

Ziesemer et al. 
2015 

S454 Dental 
Calculus 

S454 University of Leiden, 
Netherlands 

Netherlands Middenbeemster Middenbeemster 
cemetery 

1856 PreIndustrial Waters-Rist & Hoogland. 2013. 
International Journal of 

Paleopathology 

Ziesemer et al. 
2016 

16892 Dental 
Calculus 

155 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16893 Dental 
Calculus 

119 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16894 Dental 
Calculus 

114 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16896 Dental 
Calculus 

101 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16897 Dental 
Calculus 

28 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16898 Dental 
Calculus 

2 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16899 Dental 
Calculus 

32 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16900 Dental 
Calculus 

6 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16901 Dental 
Calculus 

99 Museum of London, England England London Crossbones 1598-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16903 Dental 
Calculus 

356 Museum of London, England England London St Benet 
Sherehog Church 

1673 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16905 Dental 
Calculus 

24 Museum of London, England England London St Benet 
Sherehog Church 

1670-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16906 Dental 
Calculus 

712 Museum of London, England England London St Benet 
Sherehog Church 

1670-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16907 Dental 
Calculus 

601 Museum of London, England England London St Benet 
Sherehog Church 

1825 PostIndustrial Farrer et al. 2018 Farrer et al. 2018 

16911 Dental 
Calculus 

12 Museum of London, England England London St Benet 
Sherehog Church 

1670-1853 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16913 Dental 
Calculus 

726 Museum of London, England England London St Benet 
Sherehog Church 

1280-1666 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16914 Dental 
Calculus 

1601 Museum of London, England England London St Benet 
Sherehog Church 

1250-1500 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16915 Dental 
Calculus 

1566 Museum of London, England England London St Benet 
Sherehog Church 

1250-1500 PostMedieval Farrer et al. 2018 Farrer et al. 2018 
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Study ID 
Number 

Sample Type Museum 
ID 

Museum Geographic 
Location 

Specific Location Archaeological 
Site 

Estimated 
Date (CE) 

Period Anthropological Reference Calculus Sample 
Reference 

16916 Dental 
Calculus 

67 Museum of London, England England London St Benet 
Sherehog Church 

1280-1666 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16917 Dental 
Calculus 

1511 Museum of London, England England London St Benet 
Sherehog Church 

1280-1666 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16918 Dental 
Calculus 

1570 Museum of London, England England London St Benet 
Sherehog Church 

1280-1666 PostMedieval Farrer et al. 2018 Farrer et al. 2018 

16919 Dental 
Calculus 

1018 Museum of London, England England London Chelsea Old 
Church 

1700-1850 PreIndustrial Farrer et al. 2018 Farrer et al. 2018 

16920 Dental 
Calculus 

198 Museum of London, England England London Chelsea Old 
Church 

1732 PreIndustrial Farrer et al. 2018 Farrer et al. 2018 

16921 Dental 
Calculus 

505 Museum of London, England England London Chelsea Old 
Church 

1700-1850 PreIndustrial Farrer et al. 2018 Farrer et al. 2018 

16922 Dental 
Calculus 

654 Museum of London, England England London Chelsea Old 
Church 

1827 PostIndustrial Farrer et al. 2018 Farrer et al. 2018 

16923 Dental 
Calculus 

353 Museum of London, England England London Chelsea Old 
Church 

1700-1850 PreIndustrial Farrer et al. 2018 Farrer et al. 2018 

16925 Dental 
Calculus 

622 Museum of London, England England London Chelsea Old 
Church 

1836 PostIndustrial Farrer et al. 2018 Farrer et al. 2018 

16926 Dental 
Calculus 

1023 Museum of London, England England London Chelsea Old 
Church 

1700-1850 PreIndustrial Farrer et al. 2018 Farrer et al. 2018 

16927 Dental 
Calculus 

722 Museum of London, England England London Chelsea Old 
Church 

1822 PostIndustrial Farrer et al. 2018 Farrer et al. 2018 

16930 Dental 
Calculus 

13872 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16931 Dental 
Calculus 

6351 Museum of London, England England London St Mery Graces 1350-1400 Medieval Farrer et al. 2018 Farrer et al. 2018 

16933 Dental 
Calculus 

12403 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16937 Dental 
Calculus 

13898 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16938 Dental 
Calculus 

12339 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16939 Dental 
Calculus 

12356 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16940 Dental 
Calculus 

7268 Museum of London, England England London St Mery Graces 1350-1400 Medieval Farrer et al. 2018 Farrer et al. 2018 

16941 Dental 
Calculus 

13622 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16942 Dental 
Calculus 

12497 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16944 Dental 
Calculus 

7358 Museum of London, England England London St Mery Graces 1350-1400 Medieval Farrer et al. 2018 Farrer et al. 2018 

16948 Dental 
Calculus 

7202 Museum of London, England England London St Mery Graces 1350-1400 Medieval Farrer et al. 2018 Farrer et al. 2018 

16949 Dental 
Calculus 

12400 Museum of London, England England London St Mery Graces 1400-1538 Medieval Farrer et al. 2018 Farrer et al. 2018 

16950 Dental 
Calculus 

6210 Museum of London, England England London St Mery Graces 1350-1400 Medieval Farrer et al. 2018 Farrer et al. 2018 

8812 Dental 
Calculus 

J2360 Jewbury Cemetery, England England York Jewbury 
Cemetery 

1250 Medieval Adler et al. 2013 Weyrich et al. 
2017 

8824 Dental 
Calculus 

J2454 Jewbury Cemetery, England England York Jewbury 
Cemetery 

1250 Medieval Adler et al. 2013 Weyrich et al. 
2017 

15501 Dental 
Calculus 

35020 The Musée de l'Homme, 
Paris, France 

France Paris The Musée de 
l'Homme 

1950 Post-War NA This study 

15498 Dental 
Calculus 

35023 The Musée de l'Homme, 
Paris, France 

France Paris The Musée de 
l'Homme 

1950 Post-War NA This study 

15495 Dental 
Calculus 

35004 The Musée de l'Homme, 
Paris, France 

France Paris The Musée de 
l'Homme 

1950 Post-War NA This study 

15500 Dental 
Calculus 

35026 The Musée de l'Homme, 
Paris, France 

France Paris The Musée de 
l'Homme 

1950 Post-War NA This study 

15494 Dental 
Calculus 

34993 The Musée de l'Homme, 
Paris, France 

France Paris The Musée de 
l'Homme 

1950 Post-War NA This study 

18752 Dental 
Calculus 

H1 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18754 Dental 
Calculus 

H2 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18756 Dental 
Calculus 

H3 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18758 Dental 
Calculus 

H4 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18760 Dental 
Calculus 

H5 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18764 Dental 
Calculus 

H7 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18766 Dental 
Calculus 

H8 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18767 Dental 
Calculus 

H8 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18769 Dental 
Calculus 

H9 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18771 Dental 
Calculus 

H10 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18773 Dental 
Calculus 

H11 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18775 Dental 
Calculus 

H12 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18777 Dental 
Calculus 

H13 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 
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18781 Dental 
Calculus 

H15 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18784 Dental 
Calculus 

H16 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18786 Dental 
Calculus 

H17 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18791 Dental 
Calculus 

H20 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18793 Dental 
Calculus 

H21 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19767 Dental 
Calculus 

P1 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19768 Dental 
Calculus 

P1 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19769 Dental 
Calculus 

P2 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19770 Dental 
Calculus 

P2 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19771 Dental 
Calculus 

P3 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19772 Dental 
Calculus 

P4 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19773 Dental 
Calculus 

P5 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19774 Dental 
Calculus 

P6 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19775 Dental 
Calculus 

P7 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19776 Dental 
Calculus 

P8 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19777 Dental 
Calculus 

P9 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19778 Dental 
Calculus 

P10 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19779 Dental 
Calculus 

P10 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19780 Dental 
Calculus 

P11 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19781 Dental 
Calculus 

P11 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19782 Dental 
Calculus 

P12 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19783 Dental 
Calculus 

P12 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19784 Dental 
Calculus 

P13 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19785 Dental 
Calculus 

P13 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19786 Dental 
Calculus 

P13 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19787 Dental 
Calculus 

P14 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19788 Dental 
Calculus 

P14 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19789 Dental 
Calculus 

P14 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19790 Dental 
Calculus 

P14 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19791 Dental 
Calculus 

P15 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19792 Dental 
Calculus 

P16 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19793 Dental 
Calculus 

P17 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19794 Dental 
Calculus 

P17 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19795 Dental 
Calculus 

P18 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19796 Dental 
Calculus 

P18 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19797 Dental 
Calculus 

P19 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19798 Dental 
Calculus 

P20 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19799 Dental 
Calculus 

P21 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19800 Dental 
Calculus 

P22 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19801 Dental 
Calculus 

P23 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

19802 Dental 
Calculus 

P23 University of Adelaide Dental 
School, Australia 

Australia Adelaide NA Modern Modern NA This study 

18433 Environment 
Control 

NA NA Hungary Bács-Kiskun Fajsz Garadomb Modern Environment NA Abdul-Aziz 2019 
(Thesis) 

20050 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 

20051 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 
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20052 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 

20053 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 

20055 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 

20056 Environment 
Control 

NA NA Australia Australia Tasmania Modern Environment NA Haberle et al. 
2019 

20057 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20058 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20059 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20060 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20061 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20062 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20063 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20064 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20065 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20066 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20067 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

20068 Environment 
Control 

NA NA Australia Australia Flinders Island Modern Environment NA Haberle et al. 
2019 

Air 
Environment 

Control 
NA NA Environment USA U Modern Environment NA 

Weyrich et al. 
2017 

Braccish 
Water 

Environment 
Control 

NA NA Environment USA U Modern Environment NA 
Weyrich et al. 

2017 

ForestSoil 
Environment 

Control 
NA NA Environment USA U Modern Environment NA 

Weyrich et al. 
2017 

Fresh 
GroundWater 

Environment 
Control 

NA NA Environment USA U Modern Environment NA 
Weyrich et al. 

2017 
Grassland 

Soil 
Environment 

Control 
NA NA Environment USA U Modern Environment NA 

Weyrich et al. 
2017 

19181 
Laboratory 

Control 
NA 

ACAD Ancient DNA 
Laboratory 

Australia Adelaide NA NA Modern NA This study 

13224EBC 
Laboratory 

Control 
NA 

ACAD Ancient DNA 
Laboratory 

Australia Adelaide NA NA Modern NA This study 

20495 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory 

Australia Adelaide NA NA Modern NA This study 

20520 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory 

Australia Adelaide NA NA Modern NA This study 

18796 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

18800 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

18794 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

18795 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

18798 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

16972 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

15522 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17004 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17034 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17229 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17232 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17234 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17252 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17254 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17580 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

17673 Laboratory 
Control 

NA ACAD Ancient DNA 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA Farrer et al. 2018 

19804 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

19834 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 

19837 Laboratory 
Control 

NA Modern Microbiome 
Laboratory, Adelaide, 

Australia 

Australia Adelaide NA NA Modern NA This study 
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II Methods and Materials

103 dental calculus samples processed for this study, including four post-1800s pop-
ulations from Australia (n = 28), Switzerland (n = 12), Germany (n = 10), and
France (n = 5), 54 modern Australian dental calculus samples from healthy donors
(n = 18) and periodontitis patients (n = 36). All samples and their respective extrac-
tion controls were maintained through to contamination filtering, before removing
duplicates (i.e. multiple calculus samples from the same individual), contaminated
samples, or samples not meeting metadata criteria (i.e. modern subgingival calculus
samples).

Historical dental calculus collection and DNA extraction

Sampling of the St Mary’s skulls were completed at the University of Adelaide,
using sterile procedures previously described in Weyrich et al. (2015) [6]. In brief,
a sterile dental pick was used to detach the calculus from tooth surface, collecting
the calculus fragments into a labelled non-breakable container for transport (e.g. a
sterile plastic 2 mL screw cap tube or plastic bag). The metadata regarding the
sampled individual (e.g. specifics of the oral location of calculus), the sampling
environment, and the collector was recorded in detail at time of sampling. German
and Swiss dental calculus were sampled using the described techniques at their
respective locations housing the skeletal remains.

Dental calculus samples were transported to the quarantine facility for ancient
DNA at University of Adelaide, Australia. Conditions are typical of an ancient DNA
laboratory, as specified in Weyrich et al. (2017) [3]. Prior to entry into the ancient
DNA laboratory, sample bags were bleached and UV irradiation for 15 minutes to
minimise introduced exogenous microbial contamination. Samples were stored at
4◦C until DNA extraction.

Prior to DNA extraction, a large fragment of the sampled dental calculus deposit
was isolated and decontaminated through exposure to high-intensity UV radiation
for 15 minutes on each side, to reduce environmental contaminant DNA present on
the outside of the dental calculus fragment. Following UV treatment, the fragment
was immersed in approximately 2 mL of bleach (5% (w/v) sodium hypochlorite) in
a sterile petri dish for 3 minutes, then submerged in ethanol (80%) for 1 minute to
remove any residual chemicals (i.e. bleach) [7]. The fragment was then transferred
to a 2 mL screw-cap tube and crushed into a non-uniform powder ready for DNA
extraction.

Each sample was extracted using an in-house silica-based extraction method,
previously described in Brotherton et al. [8], but with modified buffer volumes to
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account for smaller sample size, as described in Weyrich et al. [3]. Two sample blanks
controls (also know as extraction blank controls; EBCs) were extracted alongside
each batch (first and last sample, EBC1 and EBC2 respectively), with no more
than 14 calculus samples extracted together to reduce potential cross-contamination.
EBCs were treated as samples, undergoing the identical experimental procedures as
the dental calculus samples from extraction, to through library preparation, and
sequencing.

Modern dental calculus sample collection and extraction

Fresh supragingival dental calculus (n = 18) was collected from orally healthy volun-
teers (aged 18–50) at the University of Adelaide School of Dentistry clinic, obtained
under informed consent, as previously described in Chapter 5.

Periodontal dental calculus samples (n = 36) were collected in Adelaide, from
patients under examination at a private dental practice. Samples were collected by
dental professional, using a dental pick following standard calculus removal proce-
dures, and placed in sterile 2 mL screw-cap tubes for transport.

All modern dental calculus samples were transported to a specialised clean lab-
oratory facility, designed for human microbiome research at the University of Ade-
laide, and upon arrival, stored at −20◦C until DNA extraction. The modern micro-
biome laboratory is isolated from any post-PCR laboratories and has strict protocols
in place to minimise entry of human and bacterial contamination. Researchers in
the modern microbiome lab are required to wear shoe covers, two pairs of gloves,
face mask, and laboratory coat (ensuring minimum skin exposure while working).
All surfaces are routinely cleaned with Decon 90 (Decon Laboratories Limited) or
2% bleach (NaClO) solution, with KlerAlcohol 70% v/v Isopropyl Alcohol (EcoLab
Life Sciences). All consumables, disposables, tools and instruments are externally
bleached on entering the lab and then subjected to routine cleaning before, during
and after use. All sample work is carried out within the PCR hoods to minimise
environmental contamination; the inside of the PCR hood, tools and instruments
are UV-radiated for a minimum of 15 minutes before and after use.

DNA was extracted using a modified in-house silica method, based on that pre-
viously developed for ancient dental calculus DNA extraction (as described in [3, 8]
and optimised for modern dental calculus (as discussed in Chapter 4). In brief,
dental calculus samples were decalcified and microbial cells lysed in 470 µL of 0.5
ethylene diamine triacetic acid (EDTA; pH 8.0), and 30 µL of 10 % sodium dode-
cyl sulphate (SDS), and treated with 20 mg/mL proteinase K, then incubated at
55◦C for overnight. Cell lysis products were bound to 20 µL of silica solution in
the presence of 1.5 mL of QG buffer (Qiagen) containing guanidium thiocyanate.
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Silica-bound DNA was then rinsed with 80 % ethanol twice, before re-suspending in
100 µL of Tris-EDTA solution. Re-suspension is repeated to elute 200 µL total of
DNA. Two EBCs were processed alongside each extraction group (no more than 14
calculus samples per batch), and treated as samples, from extraction to sequencing.

Shotgun library preparation and sequencing

Modern dental calculus DNA extracts underwent fragmentation prior to library
preparation; 50 µL of extract was sheared using focused-ultrasonicator (Covaris Inc.)
to ∼300 bp fragment lengths. Both historical and modern dental calculus metage-
nomic shotgun libraries were constructed within their respective laboratories, using
the same protocol described previously in Kirche, Martin, and Sawyer (2011), but
without the enzymatic damage repair step [9, 3]. In short, 20 µL of DNA extract was
used in enzymatic polishing to produce blunt ended fragments, before the ligation of
truncated 7-bp forward and reverse barcoded Illumina adaptors, finishing by filling
in the gaps between the adaptor sequences and the DNA sequence. MinElute clean-
ups (Qiagen) were completed after both enzymatic polishing and barcode ligation
steps. Historical dental calculus libraries were amplified in triplicate by PCR for
13 cycles with Illumina amplification primers [10]. Each PCR reaction contained:
13.25 µL sterile H20, 5 µL of Library DNA, 0.25 µL of Hi-Fi taq (Life Technologies),
2.5 µL of 10X Hi-Fi buffer, 1.25 µL MgSO4 (50 mM), 0.25 µL dNTPs (100 mM),
and 1.25 µL each of the forward and reverse primers. Cycling conditions were as
follows: 94◦C for 12 minutes; 13 cycles of 94◦C for 30 seconds, 60◦C for 30 seconds,
72◦C for 40 seconds (plus 2 seconds/cycle); and 72◦C for 10 minutes. PCR products
were pooled and cleaned with AxyPrep magnetic beads (Axygen Scientific Inc.).
Modern libraries were amplified, and ancient libraries re-amplified, with GAII In-
dexed Illumina primers [10], using the above cycling conditions and a modified PCR
reaction: 12.75 µ L sterile H20, 2 µL of purified Library DNA, 0.25 µL of AmpliTaq
Gold (Life Technologies), 2.5 µL of 10X Gold buffer, 2.5 µL MgCl2 (25 mM), 0.625
µL dNTPs (10 mM), and 1.25 µL Illumina amplification primer, and 1.25 µL GAII
Illumina indexed adaptor. All libraries were purified again prior to quantification
using TapeStation (Aligent), then pooled for a final 4 nmol/L DNA concentration,
before sequencing on Illumina NextSeq, Mid Output 150 cycles, or HiSeq X Ten
(Illumina).

Downloaded dental calculus metagenomic data

60 shotgun-sequenced dental calculus samples from previously published datasets
were downloaded to include within this meta-analysis; sample information, geo-
graphic and cultural information, and respective publication are listed in Table S1.
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This includes 41 dental calculus samples from Medieval to Industrial England [11];
13 samples from Medieval Ireland [12]; two samples from Medieval England [3]; two
samples from Medieval Germany [13], and two samples from pre-Industrial Nether-
lands [14]. Three dental calculus samples from Weyrich et al. were included in the
contamination analysis [3], but were removed from further downstream analysis, as
the calculus samples were sampled from the same individuals re-extracted in this
study (ACAD samples 13232, 13227, and 13230). One of the datasets [11] included
11 extraction blank controls which were included in decontam analysis (Section
III).

As no archaeological material included a soil sample from their respective site,
a number of environmental and soil samples were downloaded to act as a proxy for
environmental contaminants; further sample details, geographic information, and
respective publications are listed in Table S1. This included one soil sample from
Hungary [15], six soil core samples from North Tasmania and 12 soil cores from
Flinders Island, Tasmania, Australia [16], and five various environmental samples
[3].

Bioinformatic Analysis

Raw fastQ files were trimmed, demultiplexed, and collapsed using AdapterRemoval
v2 [17] based on the unique forward and reverse barcodes. All modern samples un-
derwent host read removal using KneadData [18], which aligns sequencing reads to
the human genome (GRCh37/hg19) reference database and removes all sequences
with one or more alignments (Table S2), before being subsampled to 1.5 million
reads. Taxonomic composition was generated from collapsed reads sequenced data
using MEGAN Alignment Tool (MALT) v 0.3.8 [19]. MALT aligns DNA reads from
samples against an in-house database created using 47,696 archaeal and bacterial
genome assemblies from the NCBI Assembly database [20]. The resulting alignment
based blast-text files were then converted in RMA files using the blast2rma script
included with the program MEGAN v 6.12.8 [21] with the following Last Common
Ancestor (LCA) parameters: Weighted-LCA=80% , minimum bitscore=42, mini-
mum E-value=0.01, minimum support percent=0.1. Historical samples were assess
for ancient DNA authenticity by estimation of cytosine deamination using Damage-
Profiler [22] on Anaerolineaceae oral taxon 439 (Figure S1).
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20462_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 14,031 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20465_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 7,089 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20466_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 68,191 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20467_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 3,267 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20468_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 34,457 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20469_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 5,155 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20472_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 8 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20473_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 1,365 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20474_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 1,736 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20475_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 23,718 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fr
eq

ue
nc

y

3' end

3'C>T 3'G>A insertions deletions others

-25 -23 -21 -19 -17 -15 -13 -11 -9 -8 -7 -6 -5 -4 -3 -2 -1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Fr
eq

ue
nc

y

20476_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 22,077 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20480_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 17,394 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20482_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 9,173 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20483_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 21,949 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20485_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 11,686 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20486_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 125,484 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20487_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 15,370 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20490_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 6,119 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20492_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 104,077 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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20493_StMarys_AustralianColonialists-A439-MQ1-sorted 
Number of used reads: 4,288 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13214_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 12,288 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13215_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 47,879 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13216_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 63,868 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13217_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 68,167 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13218_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 101,623 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13219_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 41,318 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13220_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 33,539 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13221_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 27,523 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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13222_Switzerland_IndustrialEra-A439-MQ1-sorted 
Number of used reads: 2,582 (100.0% of all input reads) | Specie: null

5' end

5'C>T 5'G>A insertions deletions others
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Figure S1. Damage plots of all historical samples extracted (n = 52). Damage estimation
of cytosine deamination using DamageProfiler of Anaerolineaceae oral taxon 439

All dental calculus samples (n = 172) were filtered of environmental and lab-
oratory contaminant taxa, described in detail within Section III. In brief, initial
identification of any dental calculus sample identified to be more similar to EBCs or
environmental samples using Bray-Curtis beta diversity within a principle coordi-
nates analysis (PCoA) or hierarchical clustering (UPGMA tree) was removed from
further analysis. Next, using the decontam R package, contaminant species were
calculated by prevalence within dental calculus samples and control samples (i.e.
environmental samples or laboratory blank controls) [23]. Finally, using QIIME2
[24], sequences assigning to any of the decontam identified species were removed
from dental calculus samples. Any calculus sample found to have more than 10%
of their sequencing reads removed by filtering were also removed from downstream
analysis, as the biological signal may have potentially been distorted by contamina-
tion (Table S2).

After visualisation, species-level assignments were exported from MEGAN into
QIIME2 [25]. All statistical analyses were completed in QIIME2, except for Kruskal
Wallis test of group significance, which was completed in QIIME1 (v.1.9.1). All
sequences were rarefied to the lowest number of reads within a historical sample
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Table S2. KneadData Statistics. Sequencing reads aligned to the human genome
(GRCh37/hg19) reference database and removes all sequences with one or more alignments.

(180,183 sequences). Alpha diversity was measured using Shannon and observed
species, and pairwise comparisons calculated with Kruskal-Wallis. Beta diversity was
measured with Bray-Curtis distance index. Pairwise comparisons of beta diversity
between groups was measured with PERMANOVA [26]. All p-values were false
discovery rate corrected (reported p-value), and significant p < 0.05.
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III Contaminant filtering with decontam

Visualisation of highly contaminated dental calculus samples

Using Bray-Curtis dissimilarity matrix, all historical and ancient calculus samples
(n = 113), which included a number of duplicate individuals not used in down-
stream analysis (Table S1), alongside laboratory controls (n = 15), and environ-
mental controls (n = 24), are visualised in MEGAN6 using principle coordinates
analysis (PCoA) plot in order to identify samples that are poorly preserved and/or
highly contaminated.

Figure S2. PCoA of Taxonomy using Bray-Curtis. All historical and ancient calculus
samples (Green; n = 113), laboratory controls (Pink; n = 15), and environmental controls (Or-
ange; n = 24) are plotted in three-dimensional space relative to their dissimilarity to one another.
[Screenshot from MEGAN6 2019-02-18]

Two calculus samples, 13232 and 20459 (located within the cluster of control
samples, Figure S2), were removed from further analysis due to their similarities
with the laboratory and environmental control samples.

While the similarities between laboratory control samples 20520 and 17673 (bot-
tom most laboratory control samples located at 15% on PC2 axis, Figure S1) to the
dental calculus samples suggest potential cross-contamination, it is not possible to
distinguish this from a PCoA plot alone. 20520 and 17673 were samples were re-
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tained for decontam analysis. Furthermore, dental calculus samples 20472 and 20490
(located half-way between the clustering of control samples and the dental calculus
samples, Figure S1) were thought to be either highly contaminated or contain a very
weak biological signal and were retained for Decontam analysis.

No modern calculus samples were removed from further analysis as dental cal-
culus samples clustered separately from laboratory controls (Figure S3).

3a. Unable to discriminate potentially
contaminated calculus samples using
PCoA plot of species taxonomy

3b. Using hierarchical clustering (UP-
MGA tree) confirmed the laboratory
controls clustered separately from the
dental calculus samples.

Figure S3. Visualisation of modern dental calculus samples (Yellow; n = 54) and laboratory
controls (Orange; n = 8) using Bray-Curtis dissimilarity matrix. [Screenshots from MEGAN6
2019-02-18].

Identifying contaminant species with decontam

Decontam implements a statistical classification to identify of contaminant taxa
based on prevalence within a defined set of ‘negative controls’ relative to the ‘bio-
logical sample’. Biom tables of species-level taxonomy is exported from MEGAN6,
then imported into R. Multiple decontam tests were run to separate samples by
DNA extraction laboratory and respective laboratory controls and maximise the
ability to detect contamination prevalence.

Historical and ancient calculus vs laboratory controls

Decontam was first analysed using only calculus samples extracted at the University
of Adelaide’s specialised ancient DNA laboratory (n = 89), with respective labora-
tory controls (n = 15). Using a stringent threshold of 0.7, a total of 159 taxa were
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identified as contaminants, in such that the taxa were more prevalence in labora-
tory control samples than within dental calculus samples (Table S4). Of these 159
species, eight taxa were not assigned to species-level, thus the only remaining 151
species were used for downstream filtering. A total of 307 assigned taxa were unable
to be classified due to their prevalence in only one sample.

Historical and ancient calculus vs environmental controls

Only dental calculus samples collected from archaeological skeletal remains were
included within the comparison with environmental controls. Decontam was ran for
all ancient and historic calculus samples (extracted and downloaded; n = 111) vs
environmental control samples (n = 24) at species level. A total of 440 assigned
taxa were unable to be classified due to their presence in only one sample. Using
a stringent threshold of 0.6, a total of 179 taxa were identified as ‘contaminants’,
in such that their prevalence greater in soil samples than within dental calculus
samples (Table S5). Of this, 15 taxa were not assigned to species-level, thus the
remaining 164 species were used for downstream filtering.

Modern dental calculus vs laboratory controls

To identify contaminants specific to University of Adelaide’s specialised modern
microbiome laboratory, only modern dental calculus samples (n = 54) were run
alongside their respective laboratory controls (n = 8). Using a stringent threshold
of 0.6, a total of 11 taxa were identified as ‘contaminant’ taxa, in such that sequence
prevalence was greater in laboratory control samples than within dental calculus
samples (Table S6). However, one taxon, Actinobaculum sp. oral taxon 183, identi-
fied as a ‘contaminant’ despite its prior identification within the dental plaque [27].
Furthermore, only 11 contaminants appears to be an unusually low number relative
to previous research on contaminant profiles [28], or even the prior two decontam
analyses of ancient and historic calculus. Potentially, the calculation of prevalence
between 54 dental calculus with only eight laboratory controls limits the ability to
identify cross-contamination. Thus, in order to get a clearer signal of contaminants
within the modern calculus (despite the difference between laboratories) decontam
analysis was rerun using all extracted ancient, historic, and modern dental calculus
samples and all respective laboratory controls to increase statistical power.

Historical, ancient, and modern calculus vs laboratory controls

All ancient/historical (n = 89) and modern (n = 54) samples with their respective
extraction blank controls (n = 23) were analysed together (N =166) in decontam.
Using a threshold of 0.6, 96 contaminant taxa were identified, with only four taxa
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not identified to the species level. A total of 340 taxa were unable to be classified
due to their presence in only one sample (Table S7).

In comparison between the three different decontam tests (Historical and ancient
calculus, Modern calculus, and Historical, ancient, and modern calculus; groupings
referred hereinafter to as ‘Ancient’, ‘Modern’ and ‘All-calculus’ respectively), all
taxa from the Modern contaminant list, except Actinobaculum sp. oral taxon 183,
were identified as a contaminants within Ancient and/or All-calculus decontam lists.
An additional nine taxa were identified as contaminants within the All-calculus de-
contam list that had not been previously identified within either Modern or Ancient
decontam results. Yet, 71 different taxa had been identified within the Ancient
decontam results that were not identified by All-calculus. Therefore, in order to
filter dental calculus samples, all contaminants identified in all decontam tests were
filtered from all dental calculus samples.

Remove contaminant sequences

As 1950s France (n = 5) dental calculus samples did not have available extraction
blank controls, nor were at any point buried and in contact with the environment,
these samples were not included within any decontam analysis.

All contaminants identified through the combination of both environmental and
laboratory control decontam results totalled 418 taxa, in which 102 species were
duplicated across the multiple decontam tests. Accordingly, a total of 286 species
were used to filter contaminants from all dental calculus samples.

Removing contamination with QIIME2

Filtering historical and ancient dental calculus

After exporting all historical and ancient calculus samples (n = 116) from MEGAN6,
all sequences assigned taxonomy at species-level were imported into QIIME2 (v.
2019.1), with a total of 428 species assignments, and a total sequence count of
176,437,951. Taxa classified as ‘contaminants’ from decontam analysis were fil-
tered from the calculus samples, leaving a total of 299 species assignments with
174,720,382 sequences.

Any sample with more than 10% of total sequences filtered were removed from
downstream analyses. Four historical calculus samples and three 1950s samples
were subsequently removed. Furthermore, all duplicate samples (i.e. dental calculus
samples from different teeth of the same individual) were removed from the filtered
dataset. A total of 95 dental calculus samples, containing 221 species, with a total
of 166,448,366 sequences, were maintained for downstream analysis.
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Filtering modern dental calculus

Modern dental calculus samples (n = 54) had a total of 228 species assignments and
a total sequence count of 28,530,844. Filtering all species classified by decontam as
contaminants left 206 species and a total sequence count of 27,742,736. Consistent
with the stringent cut off used with historical and ancient samples, two modern
dental calculus samples with more than 10% of total sequences filtered were removed
from downstream analyses. Finally, after the removal of all duplicate samples, a
total of 35 modern dental calculus samples containing 185 species assignments, with
a total of 21,408,656 sequences, maintained for downstream analysis.

Table S3. Total sequences assigned to species taxonomy Before filtering contaminants.
Supplied electronically: 5_Supplementary_TableS3.csv

Table S4. Decontam output: for historical and ancient calculus vs laboratory controls.
Supplied electronically: 5_Supplementary_TableS4.csv

Table S5. Decontam output: for historical and ancient calculus vs environmental controls.
Supplied electronically: 5_Supplementary_TableS5.csv

Table S6. Decontam output: for modern dental calculus vs laboratory controls. Supplied
electronically: 5_Supplementary_TableS6.csv

Table S7. Decontam output: for historical, ancient, and modern calculus vs laboratory
controls. Supplied electronically: 5_Supplementary_TableS7.csv

Table S8. Dental calculus samples sequence information (n = 170). Including raw
sequencing, percentage assigned taxonomy, and contaminant sequences removed. Supplied

electronically: 5_Supplementary_TableS8.csv
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IV Oral geography biases microbial communities

Oral geography has been previously noted in literature to impact the microbial
plaque communities forming the tooth surface [29], linked to the biochemical and
biophysical properties of the oral cavity [30]. Within dental calculus research, this
may confound correlations with external variables, and up until recently [11], had
not been tested with ancient dental calculus. The following analysis looked to test
the statistical significance of tooth type within each dataset, and where significance
was found, we controlled for tooth type by subsequently processing the tooth type-
specific samples independently. However, due to the differing sampling schemes used
between geographic groups and published datasets, it becomes difficult to disentan-
gle potential cultural or geographic signals from interpopulation oral geography.

Significance of tooth type in Ancient and Historic

datasets

In the analysis of biases present within the dataset, oral geography, or tooth type
(molar, premolar, canine, or incisor) from which the calculus was sampled, from was
found statistically significant within the ancient and historic dataset with both alpha
(Shannon Kruskal-Wallis, p = 0.0008, H = 21.02; observed species Kruskal-Wallis,
p = 0.00002, H = 29.42) and beta diversity (Bray-Curtis PERMANOVA, p = 0.001,
pseudo-F = 2.74).

Alpha diversity detected differences between incisors (n = 19) and molars (n =
38) (Shannon Kruskal-Wallis pairwise, p = 0.04, H = 5.30; observed species Kruskal-
Wallis pairwise, p = 0.01, H = 10.14). Beta diversity as measured by Bray-Curtis
dissimilarity metric noted differences between canines (n = 7) and molars (n = 38)
(pairwise PERMANOVA, p = 0.04, pseudo-F = 2.59), incisors (n = 19) and molars
(n = 38) (pairwise PERMANOVA, p = 0.01, pseudo-F = 4.79), incisors (n = 19)
and premolars (n = 9) (pairwise PERMANOVA, p = 0.04, pseudo-F = 2.95), and
between molars (n = 38) and premolars (n = 9) (pairwise PERMANOVA, p = 0.05,
pseudo-F = 2.38).

Significant differences between pre-IR and IR populations with

single tooth type

To test difference between teeth type, twenty samples were removed from the fol-
lowing analyses due to missing metadata, including all IR Switzerland (n = 12),
pre-IR Netherlands (n = 2), Medieval Germany (n = 2), and IR Germany (n = 2).
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Furthermore, Australian IR samples were included (n = 12) as an IR population to
increase statistical power.

All samples collected from a molar tooth (n = 38) were tested for microbial
differences between pre-IR (n = 33) and IR individuals (n = 5); which included
Medieval Ireland (n = 13), Medieval to pre-IR England (n = 20), and IR Australia
(n = 3), IR Germany (n = 1), and IR England (n = 1). As seen in tests including
all teeth, there were no significant differences detected in alpha diversity (Shannon
Kruskal-Wallis, p = 0.68, H = 0.17; observed species Kruskal-Wallis, p = 0.44, H
= 0.61). Furthermore, beta diversity supported significant differences between pre-
IR (n = 33) and post-IR (n = 5) oral microbial communities using Bray-Curtis
(PERMANOVA pairwise, p = 0.023, pseudo-F = 2.38).

These tests were repeated using all samples collected from incisor teeth (n =
19), which includes populations IR Germany (n = 5), IR England (n = 1), IR
Australia (n = 3), and Medieval to pre-IR England (n = 10) samples. Again, no
significant alpha diversity differences were detected between pre-IR (n = 10) and IR
(n = 9) populations (Shannon Kruskal-Wallis, p = 0.87, H = 0.03; observed species
Kruskal-Wallis, p = 0.49, H = 0.48). Significant differences were detected between
pre-IR (n = 10) and post-IR (n = 9) oral microbial communities using Bray-Curtis
(PERMANOVA pairwise, p = 0.033, pseudo-F = 2.31).

In testing the pre-IR and IR differences within England only, there was no sig-
nificant differences detected between tooth type with either alpha or beta diversity
(Shannon Kruskal-Wallis, p = 0.11, H = 6.13; observed species Kruskal-Wallis, p =
0.15, H = 5.37; Bray-Curtis PERMANOVA, p = 0.08, pseudo-F = 1.61).

Tooth type had no impact on IR geographic differences

Due to the missing metadata of the Switzerland IR population, we could not test
IR geographic differences without the inclusion of the Australian IR populations (n
= 12). We found no support for differences driven by impact of tooth type between
three populations, Australia (n = 12), England (n = 4), and Germany (n = 7),
in alpha diversity (Shannon Kruskal-Wallis, p = 0.08, H = 5.13; observed species
Kruskal-Wallis, p = 0.68, H = 1.52). Furthermore, we did not detect any significant
impact of tooth type driving microbial differences with beta diversity (Bray-Curtis
PERMANOVA, p = 0.122, pseudo-F = 1.45).

Significance of tooth type in historic and modern dataset

Significant differences were detected between different tooth types within the modern
and historic dataset using alpha (Shannon Kruskal-Wallis, p = 0.03, H = 12.28;
Observed species Kruskal-Wallis, p = 0.02, H = 13.26) and beta diversity (Bray-
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Curtis PERMANOVA, p = 0.01, pseudo-F = 3.02).
Despite the significance of tooth type groups with alpha diversity, no pairwise

comparisons between different tooth types showed any significant difference (Shan-
non Kruskal-Wallis, p > 0.18, H range = 0.02–3.63; observed species Kruskal-Wallis,
p > 0.29, H range = 0.05–1.98). Beta diversity pairwise comparisons showed signifi-
cant differences between incisors (n = 35) and molars (n = 9) (Bray-Curtis pairwise
PERMANOVA, p = 0.015, pseudo-F = 4.74), and between incisors (n = 35) and
premolars (n = 8) (Bray-Curtis pairwise PERMANOVA, p = 0.015, pseudo-F =
4.94).

Significant differences between modern and IR populations

with single tooth type

As the majority of healthy-modern samples were collected from the incisor teeth (n =
14), we could only test differences between healthy-modern and IR populations with
an incisor dataset. All IR Switzerland (n = 12) were excluded, leaving Australia (n
= 3), Germany (n = 5), and England (n = 1). We confirm there were no significant
alpha differences detected between healthy-modern individuals (n = 14) and IR
individuals (n = 9) (Shannon Kruskal-Wallis, p = 0.71, H = 0.14; observed species
Kruskal-Wallis, p = 0.16, H = 1.93). Furthermore, we were able to detect significant
beta diversity differences with Bray-Curtis (PERMANOVA, p = 0.002, pseudo-F =
9.61).

Likewise, using only incisors from modern periodontal patients (periodontal-
modern; n = 12), we were able to reproduce the same results found with all-teeth
found between IR individuals (n = 9; Australia (n = 3), Germany (n = 5), and
England (n = 1)). Firstly, we did not detect any significant differences in alpha
diversity (Shannon Kruskal-Wallis, p = 0.71, H = 0.14; Observed species Kruskal-
Wallis, p = 0.52, H = 0.41). But, differences between periodontal-modern and IR
populations were still supported by Bray-Curtis (PERMANOVA, p = 0.001, pseudo-
F = 11.90).

Despite the smaller dataset, molar teeth also replicated previous results between
periodontal-modern (n = 4) and IR populations (total n = 5; Australia (n = 3),
Germany (n = 1), and England (n = 1)). No significant alpha diversity differences
could be detected between groups (Shannon Kruskal-Wallis, p = 0.14, H = 2.16;
observed species Kruskal-Wallis, p = 1, H = 0). Yet, the microbial community
differences between periodontal-modern and IR individuals were supported by Bray-
Curtis (PERMANOVA, p = 0.025, pseudo-F = 3.90).
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Differences maintained after correcting for taphonomy

After correcting for taphonomy (Section VI), beta diversity differences between
modern populations and IR individuals using a single tooth dataset were retested.
Healthy-modern individuals (n = 14) and IR individuals (n = 9) sampled from
incisors, retained significance beta diversity differences with Bray-Curtis (PER-
MANOVA, p = 0.001, pseudo-F = 10.59) after correcting for taphonomy.

Correspondingly, periodontal-modern (n = 12) and IR individuals (n = 9) sam-
pled from incisors maintained significant beta diversity differences with Bray-Curtis
(PERMANOVA, p = 0.001, pseudo-F = 13.89) after correcting for taphonomy. Fur-
thermore, the molar dataset from periodontal-modern (n = 4) and IR populations
(n = 5) upheld beta diversity differences (Bray-Curtis PERMANOVA, p = 0.025,
pseudo-F = 4.09).

Post-war samples suggest transition with single tooth type

As both 1950s post-war individuals were both sampled from molar teeth, we were
unable to test for differences using any health-modern samples. We tested signif-
icant differences between post-war (n = 2), periodontal-modern (n = 4) and IR
populations (total n = 5; Australia (n = 3), Germany (n = 1), and England (n
= 1)), and again, found no significant alpha diversity differences between groups
(Shannon Kruskal-Wallis, p = 0.10, H = 4.66; observed species Kruskal-Wallis, p
= 0.64, H = 0.89). While beta diversity supported significant differences between
populations (Bray-Curtis PERMANOVA, p = 0.01, pseudo-F = 2.53), we found
no significant differences between post-war individuals (n = 2) and periodontal-
modern (n = 4) (Bray-Curtis pairwise PERMANOVA, p = 0.19, pseudo-F = 1.76),
nor between post-war (n = 2) and IR individuals (n = 5) (Bray-Curtis pairwise
PERMANOVA, p = 0.19, pseudo-F = 1.51). These results are maintained after
correcting for taphonomy, with beta diversity supporting significant differences be-
tween populations (Bray-Curtis PERMANOVA, p = 0.015, pseudo-F = 2.51). Yet,
no significant differences were detected between post-war individuals (n = 2) and
periodontal-modern (n = 4) (Bray-Curtis pairwise PERMANOVA, p = 0.26, pseudo-
F = 1.75), nor between post-war (n = 2) and IR individuals (n = 5) (Bray-Curtis
pairwise PERMANOVA, p = 0.38, pseudo-F = 1.15).
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Genera Group Significance

Table S10. Kruskal-Wallis Group Significance calculated at genera-level. Differences in
the mean relative abundance of sequences between between IR populations

Phyla Group Significance

Table S11. Kruskal-Wallis Group Significance calculated at phyla-level. Differences in
the mean relative abundance of sequences between between IR populations
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V Correcting for taphonomic bias

The processes of decay and preservation upon archaeological materials, such as den-
tal calculus, is known as taphonomy. It has been suggested that taphonomy could
potential influence the microbial community within the post-mortem environment,
biasing microbial community reconstruction [12, 14]. In fact, analyses of long-term
room temperature storage of dental calculus revealed significance differences be-
tween relative abundance of phyla Fusobacteria, Proteobacteria, and Bacteroidetes
(seeChapter 4 for details). This means significant differences detected between his-
torical and modern dental calculus samples may be influenced by taphonomy. Here,
we tried to account for taphonomy within our analysis of historical and modern
microbiomes.

Testing for taphonomy

As the relative abundance between three main phyla—Fusobacteria, Proteobacteria,
and Bacteroidetes—were potentially influenced by taphonomic processes (Chapter
4), we initially looked to see what significant differences at the phyla level could be
detected between our modern population (n = 38) and our historic IR population
(n = 37). With Kruskal-Wallis group significance, we found significant differences
in the mean relative abundance of Fusobacteria and Proteobacteria phyla between
groups (Table S11; Kruskal-Wallis; Fusobacteria, p = 0.0005, t = 13.17; Proteobac-
teria, p = 0.00002, t = 20.67). Furthermore, the difference in Proteobacteria relative
abundance replicated taphonomic patterns of with a lower mean relative abundance
within the historic IR population compared to modern populations. However, Fu-
sobacteria also had a lower mean relative abundance in IR compared to modern pop-
ulations, opposite to what was expected with taphonomic processes. Conceivably, as
previous ancient dental calculus research [7] has noted an increase in Fusobacteria
through time associated with the consumption of carbohydrate sugars, the mean
relative abundance of Fusobacteria phyla may be confounded by temporal patterns
of microbial community alterations. Therefore, we proceeded with the analysis un-
der the assumption that both Fusobacteria and Proteobacteria may be influenced
by taphonomy.

We reran all analyses comparing modern and historic populations by remov-
ing all species within Fusobacteria and Proteobacteria phyla. However, due to
the removal of assigned sequences, rarefaction depth was lowered to 143,674 se-
quences per sample, the lowest sequencing depth of any sample within the historic
dataset. Ensuring this lowered rarefaction depth did not significantly alter the re-
ported results, we report the historical and modern comparisons below (Table S12)
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at 180,183 rarefactions, 143,674 rarefactions, and taphonomy-corrected 143,674 rar-
efactions. Post-war sample comparisons were most impacted by rarefaction depths
or taphonomy-correction, indicating the insufficient statistical power. Tests com-
paring the larger datasets showed negligible differences between rarefaction depth,
supporting the taphonomy-correction depth to be sufficient to support the overall
differences between modern and historic populations.

Table S12. Bray-Curtis pairwise PERMANOVA at different rarefaction depths. q-
value denotes FDR corrected p-value; significant q-values are bold (q < 0.05). Post-war sample
comparisons were impacted by differing rarefaction depths due to the sample size (n = 2).
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