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Abstract 20 

Next-generation sequencing approaches in microbiome research have allowed surveys of 21 

microbial communities, their genomes, and their functions with higher sensitivity than ever 22 

before. However, this sensitivity is a double-edged sword, as these tools also efficiently 23 

detect contaminant DNA and cross-contamination, which can confound the interpretations 24 

of microbiome data. Therefore, there is urgent need to integrate key controls into 25 

microbiome research to improve the integrity of microbiome studies. Here, we review how 26 

contaminant DNA and cross-contamination arise within microbiome studies and discuss 27 

their negative impacts, especially during the analysis of low-microbial biomass samples. We 28 

then identify several key measures that researchers can implement to reduce the impacts of 29 

contaminant DNA and cross-contamination during microbiome research. We put forth a set 30 

of minimal experimental criteria to improve the validity of future low-microbial biomass 31 



 2 

research called the ‘RIDE’ checklist. 32 



 3 

 33 

Prospects and pitfalls of microbiome research 34 

 35 

The completion of the Human Microbiome Project in 2017[1] was a major landmark in 36 

microbiome research. This research field has the potential to create novel therapies for 37 

human disease, aid in environmental conservation, improve agricultural outputs, 38 

understand our ancestor’s lifestyles, and identify criminals in forensic casework, amongst 39 

many other areas[2–6].  40 

 41 

Amplification-based methods that target hypervariable regions (e.g. PCR amplification of 42 

the 16S ribosomal RNA (rRNA) gene) account for the majority of studies exploring the 43 

microbiota because of their speed and inexpensive cost[7]. Shotgun sequencing has also 44 

become more popular in recent years due to decreasing DNA sequencing costs and the 45 

ability to obtain both species-level taxonomic resolution and functional genomic 46 

information. Both of these approaches rapidly illuminate uncultured microorganisms and 47 

allow researchers to compare and contrast microbial communities in diverse environments, 48 

including the human body, subglacial Antarctic lakes, NASA’s space equipment, deep-sea 49 

hydrothermal vents, extinct hominids, and coral reefs[5,8–12]. 50 

 51 

Despite their benefits, the molecular methods used to investigate microbial communities 52 

have key limitations, including non-proportional target amplification and the inclusion of 53 

contamination. While tools to address non-proportional target amplification have been 54 

developed[13–15], strategies to limit contamination are less appreciated. Several studies 55 

have documented the routine amplification of contamination and its impacts on biological 56 
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interpretations[16–24], but there is still no systematic requirement to examine or report 57 

contamination within microbiota or microbiome (hereby referred to as microbiome) studies. 58 

Here, we highlight how contamination has negatively impacted microbiome research, 59 

especially when assessing low-microbial biomass samples, and provide several 60 

recommendations to minimize the effects of contamination in future research. 61 

 62 

 63 

Contamination in Microbiome Studies 64 

 65 

Two key types of contamination can arise in microbiome studies: contaminant DNA and 66 

cross-contamination.  Contaminant DNA can originate from many sources despite the 67 

utmost care in sample collection and preparation, including the sampling and laboratory 68 

environments[25–27], researchers, plastic consumables[28], nucleic acid extraction 69 

kits[5,19,23,24,29–32], laboratory reagents including PCR mastermixes[16–18,33–36], and 70 

cross-contamination from other samples and sequencing runs[37,38]. To date, over 30 71 

common contaminant taxa have been identified in DNA extraction blank controls and no-72 

template controls across multiple studies (Table 1). For example, Salter et al. found that 73 

several contaminant taxa were shared in blank controls across multiple studies, 74 

laboratories, and DNA extraction methods[19]. These widespread contaminant taxa appear 75 

to originate from common sources (e.g. kit and reagent manufacturing, human commensals 76 

on lab personnel, or thrive within laboratory environments). Despite the identification of 77 

some common contaminants, the types and abundance of contaminant taxa vary between 78 

extraction kits and laboratories[5,19,23,24] and even through time within the same 79 

laboratory[39].  80 
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Cross-contamination is another challenge during microbiome sample processing and 81 

includes the transfer of primary sample DNA, barcodes, or amplicons from neighboring wells 82 

or tubes to create “batch effects”[40]. Cross-contamination can occur at multiple steps 83 

throughout sample processing: sample DNA can be accidentally transferred during initial 84 

sample processing and placement into tubes or plates[41], from aerosolization during 85 

pipetting, or during plate cover removal[42]. Barcode cross-contamination may also occur 86 

when incorrect neighboring barcodes ‘jump’ into sample wells or tubes — a phenomenon 87 

known as ‘tag switching’[43]. Finally, cross-contamination can also occur on the sequencing 88 

instrument from barcode sequencing errors, residual amplicons from past sequencing runs, 89 

or “index hopping,” where some sequencing platforms mismatch indexing reads to 90 

sequencing reads [44,45]. Overall, both contaminant DNA and cross-contamination are 91 

dynamic and need to be consistently and routinely monitored.  92 

 93 

 94 

Sample Types Most Affected by Contamination 95 

 96 

The impacts of contaminant DNA and cross-contamination can vary between samples 97 

according to their levels of microbial biomass. The microbial biomass in a sample can be 98 

estimated by comparing the quantity of microbial DNA in samples (e.g. quantitative PCR of 99 

16S rRNA amplicons) to that in DNA extraction blank controls[23]. Samples that typically 100 

contain high-microbial biomass include  feces or soil, and will usually contain substantially 101 

more DNA than DNA extraction blank controls, while low-microbial biomass samples will 102 

contain DNA levels similar to DNA extraction blank controls and include glacial ice, air, rocks, 103 

the built environment, placenta, and blood. Lower levels of microbial DNA within low-104 
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microbial biomass samples allow contaminant DNA and cross-contamination (e.g. from 105 

high-biomass samples processed simultaneously) to easily outcompete and dominate the 106 

biological signal within samples[19,23,24,46]. 107 

 108 

 109 

How Contaminant DNA Influences Microbiome Studies 110 

 111 

The amount and composition of contaminant DNA and cross-contamination can vary 112 

through time and location, generating signals within low-microbial biomass samples that 113 

can be easily perceived as biological; this concept is illustrated in Figure 1. Numerous studies 114 

have described contaminant DNA and demonstrated how it can skew results, including 115 

those in published low-microbial biomass studies[19,23,24]. For example, >95% of the 116 

taxonomic composition in a  Salmonella bongori culture diluted to ~1,000 cells was revealed 117 

to be contamination using both amplicon and shotgun DNA sequencing[19]. The same 118 

authors also found that infant nasopharyngeal swabs clustered according to the DNA 119 

extraction kit lot number, demonstrating that contaminant taxa introduced during DNA 120 

extraction were driving the observed signal[19]. A comparison of low-microbial biomass 121 

placental samples with blank controls, saliva, and vaginal swabs revealed that 16S rRNA 122 

gene sequences in placental samples could not be distinguished from those in blank 123 

controls[23]. Lastly, an analysis of peripheral blood and submucosal tissue samples 124 

demonstrated that 99% and 95% of the respective identified sequences corresponded to 125 

contaminant taxa[24]. The impacts of contaminant DNA and cross-contamination are not 126 

limited to these ‘whistle-blower’ studies and have likely impacted each and every low-127 

microbial biomass study published to date. Even if controls and low-microbial biomass 128 
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samples can be distinguished using beta-diversity analyses (e.g. a PCoA plot of unweighted 129 

UniFrac distances), measures of alpha (within-sample) diversity and differential abundance 130 

can be confounded in microbiome studies due to contaminant DNA and cross-131 

contamination. Together, these findings demonstrate that contaminant DNA and cross-132 

contamination can have a severe impact on low-microbial biomass microbiota studies and 133 

will continue to pose a demonstrable threat to the integrity of the field if left unaddressed.  134 

 135 

 136 

How Has DNA Contamination Already Impacted the Microbiome Research Field? 137 

 138 

The failure to include controls to assess DNA contaminants and cross-contamination has 139 

resulted in several controversial studies. For example, a recent study identified a distinct 140 

microbial community within human placenta without publishing appropriate controls[47]. 141 

Bacterial DNA contribution from maternal blood was raised as an issue[48], and no evidence 142 

for a distinct placental microbiota was found when placental samples were compared with 143 

blank controls in a follow-up study[23]. A recent, comprehensive review concluded that 144 

current evidence does not support the notion that the human placenta harbors a distinct 145 

microbiota[49]. Nevertheless, the initial publication[47] spurred several subsequent 146 

studies[50–53] on the ‘placental microbiota’; all lacked appropriate controls and further 147 

perpetuated the notion that the placenta harbors a distinct microbiota. In addition to the 148 

placenta, there has been a recent surge of other low-microbial biomass microbiota studies, 149 

especially in clinical medicine, and include investigations of the microbial components of 150 

brain tissue[54], breast tissue[55,56], nipple aspirate fluid[57], intrauterine samples[58], and 151 

seminal fluid[59]. None of these studies included appropriate controls or an assessment of 152 
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contaminant taxa and cross-contamination in their findings. Unsurprisingly, each of these 153 

studies identified common contaminant taxa from commercial extraction kits and molecular 154 

reagents as the taxa driving the observed biological signals. In addition, the studies failed to 155 

examine the limit of detection using their methodology – the critical first step when 156 

exploring low-microbial biomass communities. While it is possible that these are true 157 

biological signals, it is also possible that they arise from contaminant DNA, and additional 158 

experiments should be included to determine if such microbial DNA originates from living 159 

cells as opposed to contaminant DNA[60].  Together, these studies highlight the desperate 160 

need for the field to recognize and adhere to a minimum set of experimental criteria to 161 

ensure valid and reproducible findings.  162 

 163 

 164 

Mitigating the Impacts of Contaminant DNA 165 

 166 

To control for contaminant DNA and cross-contamination in low-microbial biomass 167 

microbiome studies, there are several measures that need to be taken to 1.) reduce all types 168 

of contamination and experimental bias, 2.) monitor and identify contaminant sources, and 169 

3.) recognize and mitigate the effects of contaminant DNA and cross-contamination during 170 

analysis. In chronological order of how a study would be performed, we provide suggestions 171 

for each approach, and put forth minimum guidelines (‘RIDE’ checklist; Box 1.) to help 172 

researchers, editors, and reviewers manage the effects of contamination in future 173 

microbiome research (Box 1). 174 

 175 

1.) Reduce experimental bias and contamination during sampling and processing. 176 
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Simple measures during sample collection and processing can be used to limit the 177 

introduction of contaminant DNA and cross-contamination and minimize their downstream 178 

effects (Figure 2). First, randomizing samples and treatments (i.e. collecting or processing 179 

samples from different treatments together) is an important experimental design 180 

consideration to prevent erroneous conclusions arising from batch effects or day-to-day 181 

variation of contaminant DNA (Figure 1). In addition, the same researcher, reagents, robots, 182 

and equipment should be used to process all of the samples in a specific study, if possible. 183 

To specifically avoid contaminant DNA, there are several key considerations. Samples should 184 

be collected in the cleanest available environment (e.g. inside a ship rather than on deck; in 185 

a wind protected area; etc), and personnel should wear protective clothing and equipment 186 

to cover all exposed human surfaces if possible (i.e. lab coats or cleanroom suits, face 187 

masks, hair nets, sleeves, and clean disposable gloves). Ideally, researchers should also 188 

process the samples in an isolated, low-contaminant, controlled environment (e.g. still-air 189 

cabinet or laminar-flow hood) where surfaces and equipment are treated with a ≥3% 190 

sodium hypochlorite solution and ultraviolet radiation to minimize and fragment 191 

environmental contaminant DNA[61]. Samples should be processed using reagents, lab 192 

ware, and sampling equipment that have the lowest levels of contamination possible. As 193 

consumables labeled ‘DNA free’ typically contain degraded microbial DNA[36], consumables 194 

with hard surfaces, such as plastic tubes and pipettes, can be decontaminated using 195 

ethylene oxide treatment[28], and reagents can be decontaminated by UV treatment that is 196 

optimized for each reagent (i.e. UV irradiation can destroy enzyme function)[62]. Ideally, a 197 

physically isolated workstation should also be used to aliquot stock reagents to limit 198 

contamination[63]. To minimize cross-contamination, there are additional steps to consider. 199 

Library preparation should be performed in a separate room from DNA extraction to 200 
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minimize contamination from highly-amplified products (i.e. pre-PCR work should be 201 

physically isolated from post-PCR work). Filter tips and low-aerosol pipettes can also help in 202 

reducing cross-contamination[64]. The use of non-redundant dual indexing is strongly 203 

recommended to prevent index swapping during sequencing [65,66]. It is also important to 204 

perform the recommended bleach and maintenance washes in the DNA sequencer between 205 

sequencing runs, as this can reduce run-to-run cross-contamination in Illumina MiSeq 206 

studies by 100-fold (from 0.01% to 0.0001%) [67]. 207 

 208 

Minimum guidelines: Different sample groups or treatments should be randomized and not 209 

processed separately. Researchers should wear disposable lab gloves, face masks, and avoid 210 

exposed skin to reduce the introduction of contaminant DNA into the samples. As many 211 

procedures as possible (e.g. sample transfer, DNA extraction, library preparation, and 212 

sequencing) should be performed in a cleaned, isolated working environment with 213 

appropriately treated equipment and consumables.  214 

 215 

 216 

2.) Include controls from sampling to sequencing. 217 

Several types of controls should be included in every analysis to monitor contaminant DNA 218 

and assess the levels of cross-contamination between samples. These controls include both 219 

negative controls to monitor background levels of contaminant DNA: (1) sampling blank 220 

controls, (2) DNA extraction blank controls, and (3) no-template amplification controls. In 221 

addition, two types of positive controls across a titration (variable cellular or gDNA input) 222 

can be used to determine the limit of detection and ensure cross-contamination does not 223 
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drive the results of the study: (4) DNA extraction positive controls and (5) amplification 224 

positive controls.  225 

 226 

Negative controls 227 

Three types of negative controls are minimally required to allow adequate monitoring of 228 

contaminants throughout sample handling and processing and provide the ability to detect 229 

when and how contaminants are introduced into biological samples. At least one of each 230 

type of negative control must be included per sampling, extraction, and amplification batch. 231 

Although we would recommend that two negative controls should be used and placed 232 

strategically to monitor contaminants from the start to the end of the process (e.g. the first 233 

tube should be negative control #1, the last tube should be negative control #2). For larger 234 

studies using robotic systems with plates, 8 of each negative control type should be 235 

minimally required per study [68]. 236 

(1) Sampling blank controls allow for detection of contaminant DNA introduced during the 237 

sampling procedure, including items used to collect the sample, such as swabs, gauze, or 238 

drills, and any reagents or preservatives used to store or transport the samples (e.g. media, 239 

alcohol, or RNA stabilizer). Material analyzed in sampling blanks should be collected in the 240 

same room and at the same time as biological samples and should undergo the same 241 

laboratory treatment as the biological samples, from collection to sequencing. While 242 

sampling controls will contain DNA from the extraction process, it will allow the researcher 243 

to discern which contaminants are specific to the sampling location and equipment versus 244 

the laboratory.  245 

(2) DNA extraction blank controls monitor the contaminant DNA content in extraction kits, 246 

molecular reagents, and the laboratory environment through the DNA extraction process 247 
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and, as above, should be processed alongside the biological samples from extraction to 248 

sequencing.  249 

(3) No-template amplification controls can monitor contaminant DNA present in reagents 250 

and the laboratory environment during library preparation and sequencing. All negative 251 

controls provide a semi-quantitative estimate of background contaminants and allow 252 

researchers to identify contaminants that can be used in downstream subtractive analyses. 253 

Finally, it should be noted that negative controls can contain too little DNA to be effectively 254 

processed. In these cases, the use of known carrier DNA in blank controls can help to 255 

efficiently amplify contaminants[69]. 256 

 257 

Positive Controls 258 

Two types of positive controls can be included to determine the limit of detection and 259 

provide insight into the effects of cross-contamination during extraction, library 260 

preparation, and sequencing.  261 

(4) DNA extraction positive controls monitor DNA extraction efficiency, determine the limit 262 

of detection, and examine levels of cross-contamination during DNA extraction. To include a 263 

DNA extraction positive control, a serial dilution of a known cell type(s) (e.g. 1, 10, 100, 264 

1000, 10,000, 100,000 cells) should be extracted alongside samples and span the expected 265 

limit of detection of the assay (see Katharoseq below)[68]. Ideally, researchers should use a 266 

commercially available mixed community, such as the Zymo mock community (Zymo, 267 

D6300), as this enables standardization across different laboratories. Researchers can also 268 

consider including a range of positive titration spike-ins into liquid samples, such as blood, 269 

urine, or mucus, to evaluate the efficiency of extraction and the limit of detection, which is 270 

important as many sample types have inhibitors or chemicals that can increase the limit of 271 
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detection. The bottom line is to use a positive control of known concentration that is 272 

relevant to your study and experimental questions.  273 

(5) The last recommended positive control is the positive amplification control, which is 274 

again a titration of DNA from known organism type(s) to be processed solely during the 275 

library preparation stage. This control enables a detection limit to be established for library 276 

preparation. Critically, both positive control types can be used to calculate the limit of 277 

detection within the laboratory techniques used and the levels of cross-contamination using 278 

novel bioinformatic approaches [68]. For example, Katharoseq utilizes differences in 279 

amplification efficiencies of true positives compared to negatives to mathematically 280 

determine a limit of detection by calculating cutoff scores to guide sample exclusion. In 281 

doing so, cross-contamination can also be evaluated, as positive controls from DNA 282 

extractions should be different from those used in library preparation.  283 

 284 

Control samples often produce libraries of lower quantity and quality, but this should not 285 

prevent the control samples from being sequenced.  Libraries should be quantified (i.e. 286 

using a PicoGreen or Qubit assay for amplicon studies or a TapeStation or BioAnalyzer for 287 

shotgun sequencing) and pooled at equal molarity (e.g. X ng per observed fragment lengths 288 

per sample). If amplified control samples contain significantly lower amounts of DNA 289 

compared to biological samples, they should be included in sequencing pools by pooling the 290 

controls at a certain maximum volume (e.g. 20 μl of each control). In addition, amplified 291 

biological samples with low amounts of DNA can be pooled at this same maximum volume 292 

as controls (e.g. 20 μl)[68]. Alternatively, all samples and controls can be pooled at equal 293 

volumes; however, this approach requires deeper sequencing because the higher-biomass 294 

samples will dominate the DNA sequencing effort. While not ideal, another option is to 295 
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increase the number of PCR cycles for negative controls to gain more DNA for sequencing. 296 

For highly contentious sample types and claims (e.g. placenta), independent replication in 297 

another laboratory and the use of non-DNA sequencing approaches (e.g. FISH) for 298 

verification are highly recommended. 299 

 300 

Minimum guidelines: One of each negative control type (sampling blank control, DNA 301 

extraction blank control, and no-template amplification control) must be included for each 302 

batch of samples, or a minimum of 8 negative controls per type per 96-well plate for studies 303 

using robotic systems. Controls must be processed alongside samples to account for 304 

contamination and should not be processed separately. 305 

 306 

 307 

3.) Critically assess and report contributions of contamination during analysis. 308 

The impacts of contaminant taxa must be assessed in the final analysis and interpretation of 309 

the data. Three different strategies currently exist to assess the impacts of contamination in 310 

microbiome datasets: (1) compare controls to biological samples; (2) subtract contaminants 311 

from biological samples; and (3) use predictive modeling to identify putative contaminants. 312 

Each method varies in its stringency and application. 313 

 314 

(1) Comparisons of biological samples to the controls can be used to assess the level of 315 

contamination and the types of contaminant taxa. The level of contamination (i.e. 316 

background levels of contaminant DNA) must be determined per batch of samples, as level 317 

of contaminant DNA can vary based on different methodologies and through 318 

time[5,19,23,24,39]. Quantitative PCR (qPCR) can be used to determine the level of 319 
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contamination by comparing abundances in negative controls to biological samples [23]. 320 

Alternatively, we recommend that positive controls coupled with the limit of detection 321 

approach can be used to calculate a sample exclusion value (e.g. K1/2 value)[68], and 322 

samples with fewer reads than the exclusion value should be discarded [68]. Taxa detected 323 

in negative controls must be reported. This is especially important to ensure that the 324 

significant differences in taxa abundances or composition between sample types or 325 

treatments are not driven by contaminant taxa. We provide a table containing taxa that 326 

have been detected in the negative controls from two or more studies (Table 1). While we 327 

do not recommend that researchers throw away any significant result driven by the taxa in 328 

this table, researchers and reviewers should be extra cautious of such findings.  329 

 330 

(2) Contaminant taxa detected in negative controls can also be subtracted (filtered) from 331 

biological samples during analysis. One approach is to remove all taxa found within negative 332 

controls from the biological samples. This is an extremely conservative approach that can 333 

result in the loss of biological signal due to cross-contamination of DNA from biological 334 

samples into negative controls. In addition, taxa closely related to common contaminant 335 

taxa can be truly present in a biological specimen (e.g. Pseudomonas), and would be 336 

removed by this approach. We would instead recommend the use of more nuanced filtering 337 

approaches that have been developed to help in situations where cross-contamination is 338 

high or when taxa closely related to common DNA contaminants are thought to be present 339 

in biological samples [70–73]. Finally, should contaminant taxa still be driving biological 340 

signal after filtering, they should be verified using a different approach such as an effectively 341 

used and validated Fluorescent In-Situ Hybridization (FISH) assay [74,75]  342 

 343 
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(3) Bioinformatic modeling has been developed to estimate the source and proportions of 344 

contaminant taxa within biological samples.  For example, SourceTracker analysis uses 345 

Bayesian modeling to estimate the proportion of potential contaminant taxa from a data 346 

set[76]. To do this, the blank controls can serve as contaminant ‘sources’ and the biological 347 

samples as ‘sinks’ to estimate the origin and abundance of contaminant taxa within 348 

biological samples. Subsequently, the relative contributions of contaminant DNA within the 349 

samples can be factored into downstream analysis and data interpretation. However, it 350 

should be stressed that sufficient cross-contamination can confound SourceTracker analysis.  351 

 352 

Minimum guidelines: The level of contamination must be determined for each batch of 353 

samples. Biological samples must be compared to negative controls and taxa identified in 354 

negative controls must be reported. The approach taken to identify and minimize the 355 

effects of contaminant DNA during analysis should be clearly reported to enhance 356 

reproducibility and allow such approaches to be critically evaluated by others. 357 

 358 

 359 

Concluding Remarks 360 

 361 

Microbiome research holds great promise for multiple fields, but methodological pitfalls can 362 

easily undermine the progress and reputation of this developing research area. Therefore, 363 

these pitfalls must be recognized and explicitly addressed at each phase of the scientific 364 

process by researchers, reviewers, and editors alike. Here, we present the ‘RIDE’ checklist 365 

for contaminant assessment to be applied across a wide-range of disciplines interested in 366 

exploring the microbial communities in low-microbial biomass samples (see Box 1 for our 367 
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‘RIDE’ minimum standards checklist). Failure to take these caveats into account is likely to 368 

waste valuable time and money and erode the credibility of microbiome research. The 369 

current situation is similar in many ways to the methodological issues in ancient DNA 370 

research recognized over 20 years ago. A series of high-profile publications based on PCR 371 

amplification of short sequences were used to support remarkable findings, including the 372 

reported recovery of DNA more than 40 million years old[77–79] – well beyond the 373 

theoretical limit of DNA survival of around one million years[80]. Although these findings 374 

were heavily criticized by other ancient DNA researchers[81–85] and are now recognized as 375 

erroneous, these publications nevertheless damaged the credibility of the ancient DNA field. 376 

As a direct result, a set of ancient DNA authentication criteria was formulated and widely 377 

adopted[63]. These standards, improved techniques, and greater attention to the issue of 378 

contaminant DNA dramatically improved the credibility of ancient DNA research. In 379 

microbiome research, similar standards need to be established to improve scientific 380 

integrity and secure the credibility of such research. It is important to note that the 381 

minimum set of guidelines and the ‘RIDE’ checklist that we propose (Box 1) will not 382 

guarantee that all contamination can be accounted for or removed, nor will it provide a 383 

solution for every contaminant problem. Complementary approaches for verifying results 384 

such as replication in independent laboratories and using non-DNA sequencing techniques 385 

such as FISH should also be considered. As new methods and analyses for microbiome 386 

analysis are also developed, novel solutions to account for contaminant DNA and cross-387 

contamination will need also to be established (see Outstanding Questions). In the 388 

meantime, it is imperative that low-microbial biomass research generates sufficient control 389 

data and that researchers develop and maintain a critical mindset when dealing with low-390 

microbial biomass microbiome samples. In this regard, we hope that the guidelines 391 
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introduced in this article will help authors, reviewers, and editors monitor and protect the 392 

future of the microbiome field.  393 

 394 
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 410 

Glossary: 411 

 412 

Contamination: An umbrella term encompassing both contaminant DNA and cross-413 

contamination (see below). 414 

 415 

Contaminant DNA: DNA from sources other than the sample(s) under study (e.g. DNA from 416 

reagents or researchers performing laboratory work).  417 

 418 

Cross-contamination: DNA exchange between samples within a study (e.g. accidental 419 

movement of DNA between different sample tubes during DNA extraction).  420 

 421 

DNA extraction blank control: A negative control consisting of an empty tube/well that is 422 

processed alongside biological samples during DNA extraction and allows for the detection 423 

of contaminant DNA introduced during DNA extraction.  424 

 425 

DNA extraction positive control: A positive control consisting of serially diluted cells of 426 

known type(s) that is processed alongside biological samples during DNA extraction and 427 

allows for determination of the limit of detection, monitoring of extraction efficiency, and 428 

quantification of cross-contamination during DNA extraction.  429 

 430 

Low-microbial biomass samples: A biological sample that contains similar quantities of 431 

target microbial DNA in the sample compared to negative controls (e.g. ≤10,000 microbial 432 

cells — [19]). 433 
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 434 

Microbiome: The microorganisms of a specific habitat, their genomes, and the surrounding 435 

environmental conditions[86]. 436 

 437 

Microbiota: The assemblage of microorganisms present in a defined environment[86]. 438 

 439 

No-template amplification control: A negative control made by preparing an amplification 440 

or library preparation reaction without input template (i.e. sample DNA) that is processed 441 

alongside biological samples and allows for the detection contaminant DNA during library 442 

preparation/PCR amplification.  443 

 444 

Positive amplification control: A positive control consisting of serially diluted DNA from 445 

known organism type(s) that are processed alongside biological samples during 446 

amplification or library preparation and allows for determination of the limit of detection, 447 

monitoring of library preparation efficiency, and quantification of cross-contamination 448 

during library preparation. 449 

 450 

RIDE: Report methodology, Include controls, Determine the level of contamination, and 451 

Explore the impacts of contamination in downstream analysis. Minimum standards checklist 452 

for low-microbial biomass microbiome studies. 453 

 454 

Sampling blank control: A negative control consisting of an empty tube that is processed 455 

alongside the collection of biological samples. Allows for the detection of contaminant DNA 456 

introduced during the sampling procedure (e.g. airborne, swabs, preservatives). 457 
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 458 

Genus Reference 

Actinomyces [23][24][39] 

Corynebacterium [19][24][68] 

Arthrobacter [19][24] 

Rothia [23][24] 

Propionibacterium [19][23][24][68] 

Atopobium [23][24] 

Sediminibacterium [23][39] 

Porphyromonas [23][24] 

Prevotella [23][24][68] 

Chryseobacterium [19][39] 

Capnocytophaga [23][24] 

Chryseobacterium [19][24] 

Flavobacterium [19][21][23][39] 

Pedobacter [19][39] 

unclassifiedTM7 [23][24] 

Bacillus [19][24][39] 

Geobacillus [24][39] 

Brevibacillus [19][24] 

Paenibacillus [19][24][39] 

Staphylococcus [24][39][68] 

Abiotrophia [19][24] 

Granulicatella [23][24] 

Enterococcus [23][24][39] 

Lactobacillus [23][24][39] 

Streptococcus [19][23][24][39][68] 

Clostridium [24][39] 

Coprococcus [23][24] 

Anaerococcus [23][24] 

Dialister [23][24] 

Megasphaera [23][24] 

Veillonella [23][24] 

Fusobacterium [23][24] 

Leptotrichia [23][24] 

Brevundimonas [18][19] 

Afipia [19][24] 

Bradyrhizobium [19][21][24][39] 

Devosia [19][39] 

Methylobacterium [18][19][23][39][68] 

Mesorhizobium [19][39] 

Phyllobacterium [19][24] 

Rhizobium [18][19][21] 

Methylobacterium [19][24] 
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Phyllobacterium [19][24] 

Roseomonas [19][24] 

Novosphingobium [19][39] 

Sphingobium [19][39] 

Sphingomonas [18][19][21][39] 

Achromobacter [21][39] 

Burkholderia [19][21][24][39] 

Acidovorax [18][19] 

Comamonas [18][19][24][39] 

Curvibacter [19][24] 

Pelomonas [19][24][68] 

Cupriavidus [18][19][39] 

Duganella [16][19] 

Herbaspirillum [16][18][19][24] 

Janthinobacterium [19][24] 

Massilia [18][19][24] 

Oxalobacter [19][24] 

Ralstonia [17][18][19][21][39] 

Leptothrix [16][19] 

kingella [19][24] 

Neisseria [23][24] 

Escherichia [16][18][19][21][24][68] 

Haemophilus [23][24][68] 

Acinetobacter [16][18][19][23][39][68] 

Enhydrobacter [19][24][39] 

Pseudomonas [17][19][21][24][39][68] 

Stenotrophomonas [16][17][18][19][21][24][39] 

Xanthomonas [17][19] 

 459 
Boxes and Figures: 460 
 461 
Table 1: Taxa previously identified in negative controls from multiple studies 462 
Taxa identified in the negative controls of more than one study are listed. Taxa listed in this 463 
table that are found to be driving significant results in a study should be treated with extra 464 
skepticism and evidence should be provided by researchers to prove that such findings are 465 
not due to contamination.  466 
 467 
 468 
Box 1: For authors, reviewers, and editors, the ‘RIDE’ minimum standards checklist for 469 
performing/reviewing low-microbial biomass microbiome studies. 470 

 Report experimental design and approaches used to reduce and assess the 471 
contributions of contamination. 472 

 Include controls to assess contaminant DNA. One of each type of negative control 473 
(sampling blanks, DNA extraction blanks, and no-template amplification) must be 474 
included per sampling, extraction, or amplification batch. 475 
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 Determine the level of contamination by comparing biological samples to controls. 476 
 Explore contaminant taxa within each study and report their impacts on the 477 

interpretation of biological samples. 478 
 479 

 480 

481 
Figure 1: Illustration of how contaminant DNA can influence interpretations of low-482 
microbial biomass microbiome data.  483 
Both treatment groups (triangle vs. circle) of low-microbial biomass samples are not 484 
different in microbial composition (sample DNA colors are same, blue and orange). 485 
However, because treatment groups were processed on separate days, differences in the 486 
types and abundances of contaminant DNA (in this case, red vs. black) drive the signal, 487 
leading to the conclusion that the treatment groups have different microbial compositions. 488 
Proper randomization of sample collection/processing would eliminate this artifact. 489 
Abbreviation: PCA, principal component analysis.  490 
 491 
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 492 
Figure 2: Flowchart of methods to minimize influence of contaminant DNA in low-493 
microbial biomass samples. Measures to reduce experimental bias and the introduction of 494 
contaminant DNA in low-microbial biomass microbiome studies. 495 

496 
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