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Abstract 

In rivers worldwide, human demands for water resources have fundamentally altered flow 

regimes and aquatic habitats, leading to profound impacts on ecosystem integrity and 

biodiversity. Riverine fish are prominent indicators of the impacts of river regulation because of 

fundamental links between flow, life histories and population dynamics. In order to effectively 

manage and rehabilitate riverine fish populations, there remains a considerable need to 

understand the life history processes and associated environmental variables that influence 

population structure and resilience.  

In Australia’s Murray-Darling Basin, native fish populations have declined in association with river 

regulation, yet few studies have considered the age demographics and dynamics of populations, 

and the processes that influence these, in an integrated manner. In this thesis, I have explored 

the population structure and dynamics of the migratory, pelagic spawning, golden perch 

(Macquaria ambigua), in the flow regulated and fragmented River Murray. My overarching aim 

was to investigate the population dynamics of golden perch and the processes (e.g. recruitment 

and movement) that influence population structure, including the potential effects of flow and 

river regulation. To understand how flow and connectivity influence population dynamics, I 

characterised temporal variability in age demographics over a period of hydrological extremes 

(drought–flood), then to elucidate the processes promoting these temporal patterns, I 

investigated spawning, recruitment and movement.  

From 2001 to 2010, the Murray-Darling Basin (MDB) experienced severe drought. Throughout 

this period, golden perch age structure in the lower River Murray was characterised by 

intermittent recruitment and a few dominant cohorts. These distinct cohorts 

were predominantly recruited prior to the drought, in association with overbank floods or 

increased flow contained within the river channel (Chapter 2). 

Despite a depauperate age structure at the end of the Millennium Drought, population growth 

of golden perch in association with flooding in 2010 was rapid and substantial (Chapter 3). This 

response superficially supports the flood-pulse model, where flooding promotes high 



abundances of biota due primarily to recruitment driven by floodplain derived 

energy. Nevertheless, growth in the golden perch population was promoted by increased 

abundances of age 0+ and 1+ fish, the product of spawning and recruitment in the 

flood year and the year prior, respectively. Recruitment of a g e  0 +  fish 

was substantial, demonstrating the capacity of fishes with periodic life histories to respond 

to episodic events that may promote high survival of early life stages. In addition, however, 

approximately 50% of the population sampled post-flooding was age 1+ fish, that were 

not detected in the population as age 0+ the year prior, and were assumed to have migrated 

from elsewhere in the system. Consequently, immigration of juvenile fish was 

considered a substantial driver of population growth.  

In order to understand the spatial arrangement of recruitment sources, and the influence 

of movement on population structure, I used otolith chemistry to retrospectively determine 

the provenance and movement history of individuals from specific age cohorts (Chapter 4), 

and radio telemetry to investigate the movements of adult fish (Chapter 5). 

Water and otolith chemistry, specifically 87Sr/86Sr, was used to delineate the provenance 

and movement of golden perch. Water 87Sr/86Sr was distinct among the Darling River and 

lower and mid-River Murray. In turn, otolith chemistry revealed that  golden perch 

collected in the lower River Murray were the progeny of spawning in either the River 

Murray or Darling River, during years characterised by within-channel rises in flow, or 

in both rivers in a year characterised by extensive overbank flooding.  

Movement of fish from the Darling River was a substantial driver of population structure in 

the lower River Murray, with fish dispersing from natal habitats in the Darling River either 

in the year of birth, as eggs and larvae, or at age 1+ in association with flooding. 

Importantly, the Darling River constituted a recruitment source for golden perch 

when environmental conditions were unsuitable for spawning and recruitment in 

the River Murray. In regulated river systems worldwide, the ecological 

importance of tributaries and tributary-mainstem junctions is increasingly recognised. 
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To investigate the habitat use and movement of adult golden perch in relation to flow, 

season and water temperature, I used a combined radio-telemetry and passive integrated 

transponder (PIT) tag approach. Site fidelity was common, with 36% of fish remaining at the 

site of capture throughout the study period (~2 years). Over the same period, however, 29% 

of fish migrated long distances upstream (up to 270 km), coinciding with steady, rising and 

falling flows. These movements were correlated with seasonal variation in water temperature 

and to a lesser extent, flow variability. Whilst environmental factors, such as flow, may 

constitute an impetus for movement, movement may also be driven by endogenous cues 

such as sexual maturity and age. The role of these factors in promoting movement and 

interactions with flow, warrant further investigation. 

Golden perch in the lower River Murray appeared to exhibit partial migration, whereby some 

fish in a population migrate and some do not. This combination of retentive and 

dispersive behaviours minimises risks associated with habitat and environmental 

heterogeneity. For example, in large river basins, where climate variability and river 

regulation lead to regionally diverse flow patterns, within-population variability in migratory 

movements and destinations increases the chance of at least some fish being exposed to 

environmental conditions conducive to spawning and recruitment. For golden perch, this 

mechanism may contribute to the basin-wide persistence of this species. 

In this thesis, I have addressed concepts relating to the autecology, population structure 

and movement of golden perch and provided new insights regarding the spatial 

structuring of populations. Globally, these factors are considered key contemporary 

knowledge requirements for understanding the impacts of anthropogenic disturbances on 

riverine fish populations. Despite increasing recognition of the need to manage freshwater 

fishes, and indeed ecosystem function, at the river-scale, research and management are often 

undertaken in a spatially disaggregated manner. Ultimately, conservation and rehabilitation of 

riverine fishes requires management at a spatial scale concordant with life history and 

population processes. Such approaches also need to integrate recruitment source, life history 

and migratory diversity, and the hydrological and hydraulic characteristics of rivers that 

support critical life history processes. 
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CHAPTER 1: General Introduction 

River Murray Commission (1946) 

The regulated River Murray



2 

Chapter 1: General Introduction 

River regulation and freshwater fishes 

Flow is a pervasive force in riverine ecosystems. It drives hydrological and geomorphological 

processes, and determines the types and amount of habitat available to aquatic biota (Poff and 

Ward 1989). It governs the nature of the substratum and the degree of connectivity between 

habitats (longitudinally, laterally, vertically and temporally), facilitates the exchange of nutrients 

and organisms (Vannote et al. 1980; Junk et al. 1989; Thorp and Delong 1994; Ward and Stanford 

1995) and influences the physiological nature, movements and life histories of resident plants 

and animals (Junk et al. 1989; Poff et al. 1997). 

In many regions of the world, human demands for freshwater have fundamentally altered the 

flow regimes of rivers, leading to profound impacts on freshwater biodiversity and the integrity 

of aquatic ecosystems (Dudgeon et al. 2006; Vorosmarty et al. 2010). Dams impede the flow 

regimes and fragment habitats of over half the world’s large river systems (Nilsson et al. 2005). 

Indeed, flow regulation through dams, barrages, weirs and levees arguably is the most significant 

human impact on aquatic ecosystems (Petts 1984; Sparks 1995; Stanford et al. 1996; Ward et al. 

1999; Pringle et al. 2000). 

The impacts of flow-regulating structures are generally well known (Petts 1984; Ward and 

Stanford 1989; Walker and Thoms 1993; Bunn and Arthington 2002). Impacts occur upstream 

and downstream as a result of habitat fragmentation, inundation, hydraulic and hydrological 

alteration, and altered water physico-chemistry. Regulatory structures fragment habitats by 

obstructing the longitudinal and lateral dispersal and migration of aquatic organisms (Lucas and 

Baras 2001) leading to reductions in abundance, distribution, richness and/or diversity of aquatic 

communities, genetic isolation and species loss (Penczak et al. 1998; Ward et al. 1999; Gehrke et 

al. 2002; Katano et al. 2006). Artificially elevated water levels, upstream of regulating structures 

(i.e. weir pools or reservoirs), permanently connect habitats that may have been connected 

temporally or not at all, whilst hydraulic alteration converts lotic to lentic waters and 

reduces hydraulic heterogeneity (Petts 1984; Bice et al. 2017). This affects geomorphic 

(e.g. erosion,sedimentation) and biological (e.g. larval drift) processes and favours biota 

adapted to lentic rather than lotic systems (Copp 1990; Brown and Ford 2002; Dudley and 

Platania 2007) 
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Hydrological alteration inhibits geomorphic processes (such as channel 

development), isolates channel and floodplain environments and reduces floodplain 

productivity, alters the availability and suitability of habitats for aquatic organisms, and 

disadvantages biota reliant on hydrological variability and cues (Boulton and Lloyd 1992; 

Walker and Thoms 1993; Sparks 1995; Nesler et al. 1988; Pringle et al. 2000; Bunn and 

Arthington 2002). In floodplain rivers, discharge variability produces a mosaic of aquatic 

and terrestrial habitats that foster biota adapted to exploit spatio-temporal disturbance 

(Copp 1989; Ward and Stanford 1989; Ward et al. 1999). River regulation disrupts the 

natural disturbance regimes that maintain these mosaics, (Junk et al. 1989; Ward et al. 

1999; Poff et al. 2007). In turn, this leads to a loss of faunal diversity and a change in 

ecosystem structure and function (Walker et al. 1992; Welcomme 1994).  

Globally, population decline and range reduction are major issues for freshwater biodiversity 

(Dudgeon et al. 2006) and declines in large-bodied riverine fishes exemplify this (Cooke et 

al. 2012). Because of their dependence on aquatic habitats and the fundamental links 

between flow and life histories and population dynamics, riverine fish are prominent 

indicators of changes associated with river regulation (Bunn and Arthington 2002). Flow 

regulation can affect fish by decreasing habitat complexity and productivity, and by 

interrupting critical life history processes such as movement and spawning (Dudley and 

Platania 2007). In turn, recruitment may be compromised leading to population decline 

(e.g. Paragamian et al. 2005). Ultimately, river regulation creates conditions that favour 

generalist and non-indigenous species at the expense of locally-adapted native fishes (Brown 

and Ford 2002; Aarts et al. 2004; Poff et al. 2007). 

Riverine fishes display diverse life history strategies (e.g. Humphries et al. 1999; Reynolds 

et al. 2005) that may determine differential susceptibility to the impacts of river 

regulation (Winemiller 2005; Olden et al. 2006). Perhaps the best known study of life history 

diversification in freshwater fishes and its implications for population regulation, including 

the impact of anthropogenic disturbance, is that of Winemiller and Rose (1992) who 

developed a framework based on trade-offs among three demographic variables of 

survival, fecundity, and onset and duration of reproductive life. 
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This approach was considered an improvement on guilds defined by physiological 

recruitment attributes that provided limited insight into the dynamics of populations 

(Winemiller 2005). Winemiller and Rose (1992) proposed a trilateral continuum between 

three primary life history strategies: 1) periodic – large, long-lived, high fecundity, 

contracted breeding season, 2) opportunistic – small, short-lived, high reproductive effort, 

extended breeding season and 3) equilibrium – intermediate size, low fecundity, large egg size, 

parental care. Such an approach enables prediction of populations with high or low demographic 

resilience as influenced by environmental variability, predictability and seasonality. Ultimately, 

in regulated rivers, flow modification and fragmentation influence the life-history composition of 

fish assemblages (Olden and Kennard 2010). Fishes with periodic life-history strategies and high 

recruitment variation/low demographic resilience may be particularly susceptible to the 

hydrological modification of rivers, especially homogenisation of flow regimes; concurrently, 

species with opportunistic life-history strategies may prosper (Olden et al. 2006). 

Maintenance or reinstatement of natural flow variability is considered vital to support the 

conservation of freshwater biota (Poff et al. 1997; Arthington and Pusey 2003).To facilitate 

integrated approaches that address water security for humans and the conservation 

of freshwater biodiversity (Vorosmarty et al. 2010), trade-offs need to be made. These trade-

offs will be best informed by a knowledge of how ecosystems and their constituent biota 

function and respond to flow modification (Richter et al. 2003). Conservation of freshwater 

fishes requires an understanding of the life history processes that influence population 

dynamics, including their spatio-temporal characteristics and the relationships with 

environmental conditions, particularly flow. In large rivers, however, relationships between 

environmental variables and key life-history processes (e.g. spawning, movement) are spatio-

temporally complex and inherently difficult to study (Fausch et al. 2002; Kraabol et al. 2009). 

Despite many advances in the study of freshwater fishes, an understanding of the autecology of 

freshwater fishes remains fundamental to conservation. A lack of basic information on fish life 

history (e.g. where fish spawn, where they move, when they move) constitutes a major 

impediment to the management and conservation of fishes in large-rivers, and inhibits 



restoration of hydrology, habitats, fish populations and riverine ecosystems (Galat and 

Zwiemuller 2001; Cooke et al. 2012).  These sentiments are echoed by Shenton et al. (2012), 

Cooke et al. (2016) and Crook et al. (2016) who collectively advocate the need for basic 

autecological knowledge on freshwater fishes to inform modelling of population dynamics, 

mitigation of barriers to fish passage and ecosystem restoration. In addition to a paucity of life-

history and ecological information, data on the demographics and population dynamics of many 

freshwater fishes is scarce (Reynolds et al. 2005) 

Flow regulation in Australia’s Murray-Darling Basin 

Flow modification is often most severe in regions where flow variability is naturally high and 

where human demand for security of water supply is greatest. The flow regimes of rivers in the 

Murray-Darling Basin (MDB), Australia, are highly variable and many native biota have evolved 

to exhibit broad environmental tolerances and flexible life histories (Walker et al. 1992; Puckridge 

et al. 1998). Like elsewhere in the world, anthropogenic modification of flow regimes in the MDB, 

homogenises and fragments habitats and hydrology, disrupting a dynamic disturbance regime.  

Modification of flow regimes and the structures that achieve it (hereafter termed river 

regulation) are considered primary factors in declines in the range and abundance of native fish 

in the MDB. Indeed, the MDBC Native Fish Strategy estimates that native fish abundances are 

presently 10% of their pre-European levels reflecting the effects of flow regulation, habitat 

degradation, lowered water quality, barriers, alien species, exploitation, diseases, and 

translocation and stocking (Barrett 2004). As a result, fish are a primary objective, and form a 

considerable focus, for environmental water delivery under contemporary river rehabilitation 

programs such as the Murray-Darling Basin Plan and the associated Basin Watering Strategy 

(Koehn et al. 2014). 

Research on the impacts of river regulation on freshwater fish of the MDB has primarily 

occurred in the mid to upper reaches of the River Murray and its tributaries (i.e. the Ovens, 

Goulburn, Broken and Campaspe Rivers) (e.g. Mallen-Cooper 1996; Humphries and Lake 

2000; King et al. 2003; Mallen-Cooper and Stuart 2003; O’Connor et al. 2005).  These regions 

are hydrologically and hydraulically distinct from the lower reaches of the River Murray with 

many reaches retaining their lotic character, albeit with altered seasonality of flows, decreased 
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flow variability and magnitude, and  in some cases, cold water pollution (Maheshwari et al. 

1995).  As a consequence, life history models proposed for native and alien fish species may 

reflect this mid-catchment perspective (e.g. Humphries et al., 1999; Stuart and Jones, 2006; 

Koster et al. 2016). 

The lower River Murray, defined as the 885 km of river between the Darling River 

confluence and the river mouth is regulated by levies, five tidal barrages and 10 low-level (<3 m) 

weirs, creating a series of impounded weir pools that have lost their lotic character and, under 

non-flood flows, have relatively stable water levels (Walker 2006). The weirs, and associated weir 

pools, create barriers to the upstream and downstream movement of aquatic biota, 

although upstream fish passage has been addressed through installation of fishways on the 

tidal barrages and all main stem weirs, via the ‘Sea to Hume Dam’ fish passage program 

(Barrett and Mallen-Cooper 2006).  

Upstream river regulation (i.e. headwater dams and riverine diversions) has reduced hydrological 

variability in the lower River Murray, leading to isolation of the floodplain, a loss of environmental 

cues, decreased riverine productivity and altered carbon dynamics (Boulton and Lloyd 2002; 

Gawne et al. 2007). Despite these significant changes to the natural flow regime, connectivity 

and productivity, there are few quantitative data to describe the impacts on fish and ultimately 

to inform actions to conserve and rehabilitate native fish populations. 

Freshwater fish in the Murray-Darling Basin 

Overall, native fish populations in the MDB have declined in range and abundance, whilst 

exotic species such as common carp (Cyprinus carpio) have proliferated (Cadwallader 1978; 

Walker and Thoms 1993; Gehrke et al. 1995; Pollino et al. 2004; Mallen-Cooper and Brand 

2007). In its various forms, river regulation in the MDB exacerbates other threats such as 

salinity, reduced water quality and alien species, and across a continuum of spatial scales 

(e.g. wetland to catchment), alters fish assemblages, decreases species diversity and 

favours exotic species (Gehrke and Harris 2000; Humphries and Lake 2000; Gehrke and 

Harris 2001; Humphries et al. 2002; Pollino et al. 2004; Humphries et al. 2008).  Dams and 

weirs cause downstream accumulations of fish, alter the abundance and feeding habits of 

fishes upstream and downstream, and affect fish behaviour (Cadwallader 1977;

6 
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Mallen-Cooper 1996; O’Connor et al. 2006; Baumgartner 2007). Furthermore, 

smaller-scale floodplain regulating structures and levees interrupt lateral connectivity 

(Jones and Stuart 2008). 

Flow regulation is implicated in the population decline of species that spawn in relation to 

flow cues (e.g. golden perch), or for whom increases in flow improve recruitment (e.g. Murray 

cod Maccullochella peelii) (Walker and Thoms 1993). Cold-water pollution from 

headwater dams, although not applicable to the lower River Murray, has also altered fish 

assemblages by disadvantaging native species and favouring exotic species (e.g. brown trout 

Salmo trutta) (Pollino et al. 2004; Todd et al. 2005). 

The primary impacts of river regulation on fishes in the lower River Murray are 

reduced hydrological variability, leading to isolation of the floodplain and a loss of 

environmental cues, altered fluvial dynamics (conversion of lotic to lentic waters), 

barriers to movement and interactions with alien species. Nevertheless, there are few 

quantitative data to describe the consequences. 

The native fishes of the MDB demonstrate three life-history modes, analogous to the 

three life history strategies proposed by Winemiller and Rose (1992) and 

reflecting the duration of spawning, spawning style and time, cues for spawning, 

fecundity and parental care (Humphries et al. 1999):  

1. Large-bodied circa-annual spawners (relates to Humphries et al. (1999) Mode 1 and

Winemiller and Rose (1992) equilibrium strategy). Large-bodied, long-lived species (e.g. Murray

cod, freshwater catfish Tandanus tandanus) that spawn in spring/early summer, and at the

same time each year. Spawning is temperature related and thousands to tens of

thousands of eggs are laid demersally and subject to parental care.

2. Large-bodied flow-cued spawners (Humphries et al. (1999) Mode 2 and Winemiller and

Rose (1992) periodic strategy). Large-bodied, long-lived species (e.g. golden perch, silver perch

Bidyanus bidyanus) may spawn at any time between spring and autumn. Spawning is linked to a

rise in flow (or flow variability) and a temperature threshold. Hundreds of thousands of semi-

buoyant (pelagic) eggs are laid and no parental care is exhibited.



3. Small-bodied protracted or restricted spawners (Humphries et al. (1999) Mode 3a and 3b,

respectively and Winemiller and Rose (1992) opportunistic strategy). Mostly small-bodied species

that have protracted, repeat or serial spawning from spring to autumn (e.g. Australian smelt

Retropinna semoni, flatheaded gudgeon Philypnodon grandiceps) or a single spawning event

from late winter through summer (e.g. carp gudgeons Hypseleotris spp and Murray rainbowfish

Melanotaenia fluvialtilis). Spawning cues are uncertain; from hundreds to thousands of planktonic

or demersal eggs are laid and no parental care is exhibited.

In general, the only species that require flow variability to spawn are the flow-cued spawners, 

golden perch and silver perch, and strong recruitment of these species coincides with in-channel 

rises in flow and overbank floods (Mallen-Cooper and Stuart 2003; Ye 2004). Consequently, 

restoration of key aspects of the hydrograph (e.g. spring flow pulses) may be particularly 

important for these species.  

Although in many large temperate and tropical rivers there are numerous species that specifically 

spawn on floodplains (Copp and Penaz 1988; Gorski et al. 2010), it appears that in the southern 

MDB (and likely the MDB as a whole) there are no large-bodied native species that actually use 

floodplains for spawning (Humphries et al. 1999; King et al. 2003).  The one large-bodied species 

that does is the alien common carp (King et al. 2003).  

Most native fish species will spawn and recruit in the river channel, but it is highly likely that 

floodplain inundation increases productivity in the channel, benefiting recruitment (Junk et al. 

1989). Strong recruitment in some circa-annual and flow-cued spawners (i.e. Murray cod and 

golden perch) has been associated with overbank flows (Ye 2004; Rowland 1996; Zampatti et al. 

2014) and, if floods coincide with spawning, food from the floodplain is transported back into the 

river channel, enhancing recruitment (Humphries et al. 1999). Nevertheless, the role of the 

floodplain and overbank flows in the recruitment ecology of large-bodied fish in the lower River 

Murray remains unexplored. 

Investigations into the ecology of freshwater fishes in the lower River Murray have 

predominantly been conducted on small- to medium-bodied fishes in relation to distribution, life 

history and taxonomy (Lloyd and Walker 1986; Puckridge and Walker 1990; Bertozzi et al. 2000; 

Hammer et al. 2007; Wedderburn et al. 2008) and more has been published on the ecology of 

8
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large-bodied alien fish than large-bodied native fish (e.g. Villizzi and Walker 1999a, 1999b; Smith 

and Walker 2003a, 2003b, 2004). Reynolds (1983) investigated the movement of large-bodied 

native species and the exotic common carp, but only recently have investigations of the 

assemblage structure and migration ecology of entire fish communities been initiated (e.g. 

Baumgartner et al. 2008; Stuart et al. 2008 and Conallin et al. 2011). 

Most of the investigations into the flow-related ecology and impacts of river regulation on fish in 

the MDB have been undertaken in the hydrologically and hydraulically distinct mid-reaches of 

the Murray River and its tributaries (e.g. Humphries and Lake 2000; Mallen-Cooper and Stuart 

2003; King et al. 2003; O’Connor et al. 2005). 

Study species: golden perch (Macquaria ambigua) 

Golden perch (Macquaria ambigua) is a large-bodied (up to 76 cm total length, [TL]) 

potamodromous fish (i.e. migrates wholly within freshwater) that is widespread in the  

Murray-Darling, Lake Eyre and Bulloo-Bancannia river basins (representing the Murray-

Darling and Central Australian biogeographical provinces, Unmack 2001), and also occurs in 

the Dawson and Fitzroy Rivers, in the Eastern biogeographical province (Allen et al. 

2002; Unmack 2001). Across these regions, golden perch are currently described as a 

single taxon (M. ambigua), but a range of studies have demonstrated various levels of 

genetic variation among populations (e.g. Musyl and Keenan 1992; Faulks et al. 2010; 

Beheregaray et al. 2017). As such, three distinct lineages are recognised across 

the three biogeographical provinces (Beheregaray et al. 2017).

Golden perch is an iconic fish in the Murray-Darling Basin; a major target species for 

recreational anglers and formed the primary component of a commercial fishery in the 

River Murray until 2002, when commercial fishing ceased in the riverine reaches of the 

lower River Murray (Ye 2004). A commercial fishery, however, continues to operate in the 

terminal lakes (Alexandrina and Albert) of the River Murray where approximately 20–

200 tonnes/annum is landed (Earl 2016). 



Golden perch has undergone reductions in range and abundance in the MDB (Cadwallader 

1978; Walker 1979; Brumley 1987). These declines have been primarily attributed to the 

construction of dams and weirs altering flow regimes and creating barriers to movement 

(Cadwallader 1978; Gehrke et al. 1995; Mallen-Cooper 1996; McDowall 1996). Interestingly, the 

potential impacts of commercial or recreational fishing are rarely mentioned. The following 

sections discuss the life history of golden perch in relation to the impacts of river 

regulation on spawning and recruitment, and movement. 

How does hydrology influence the spawning and recruitment of golden perch? 

Golden perch exhibit a periodic life-history strategy (Winemiller and Rose 1992) with a life-

span of over 20 years, batch fecundity of ~500,000 and high recruitment variation (Lake 1967; 

Stuart 2006; Mallen-Cooper and Stuart 2003). Golden perch are also pelagic broadcast-

spawners (i.e. release passively drifting eggs into open water that develop as they drift 

downstream), a trait they potentially retained from a marine ancestor (Mackay 1973). 

Indeed, pelagic broadcast-spawning is common in marine fishes, and whilst is has 

been proposed a rare trait in freshwater fishes (Houde 1994; Hoagstrom and Turner 

2015) it is relatively common in riverine fishes in tropical South America and South East Asia 

(Medley et al. 2007; Cowx et al. 2015)  

In lotic ecosystems, pelagic broadcast-spawning is often associated with migratory 

reproductive behaviour and, in conjunction, such life history traits render these species 

particularly susceptible to the impacts of river regulation (Welcomme and Winemiller 

2005). In lotic ecosystems worldwide, migratory, pelagic broadcast-spawning fishes 

(pelagophils) are disadvantaged by fragmentation and flow modification; spawning 

migrations are interrupted by barriers, hydrologic cues and hydraulic habitats for 

spawning are altered by flow regulation, and the obligate downstream drift of eggs and 

larvae, essential for the development of early life stages, is interrupted by the physical and 

hydraulic impacts of dams and weirs (Dudley and Platania 2007; Perkin et al. 2015). Many of 

these species also demonstrate periodic life history strategies, with high recruitment variability 

and low demographic resilience (Winemiller 2005).  

 10 
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Golden perch was originally described as flood-cued spawner by Lake (1967) and more recently 

as a species that has a life history that fits the Flood-Pulse Concept proposed by Junk et al. 

(1989) (Gehrke and Harris 1994; Schiller and Harris 2001). That is, fish spawn in association 

with spring floods that inundate floodplains, stimulating the production of abundant 

food, such as zooplankton, and facilitating high rates of survival of larval fish. This model, 

however, has been questioned in recent years with researchers demonstrating that 

spawning may occur in association with increases in flow contained within the river channel 

(Mallen-Cooper and Stuart 2003; Roberts et al. 2008; Sharpe 2011). It has also been 

reported that golden perch may spawn with no increase in flow (King et al. 2005; 

Balcombe et al. 2006). Strong recruitment into the adult population has also been 

associated with within-channel rises in flow (Mallen-Cooper and Stuart 2003). Golden 

perch in regulated rivers, however, have more variable recruitment, whereby a small 

number of age classes comprise a large proportion of the population, than in unregulated 

or lesser-regulated rivers where multiple age classes indicate more frequent 

recruitment (Roberts et al. 2008). 

The collection of fish larvae can provide evidence of when, where and under what 

environmental conditions a particular fish species has spawned. Furthermore, fish larvae 

have been suggested as a useful tool to investigate the effects of river regulation and 

restoration (Scheidegger and Bain 1995; Humphries and Lake 2000). Numerous studies 

have collected the drifting eggs or larvae of golden perch but the success of 

subsequent recruitment in these studies was unevaluated (King et al. 2005; Gilligan and 

Schiller 2003). The presence of larval fish alone does not predicate recruitment and ultimately 

recruitment into the reproductive population will be a key to the restoration of native fish 

communities. Our knowledge on how hydrology influences the population dynamics of 

golden perch is growing; nevertheless, long-term studies that integrate spawning, 

survival, recruitment to the adult population and flow have been lacking (King et al. 2005; 

Brown and Wooden 2007). 
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Movement of juvenile and adult golden perch 

Golden perch exhibit a range of migration patterns from strong home range fidelity (Crook 

2004) to large-scale (100s-1000s km) movements upstream and downstream (Reynolds 1983; 

O’Connor et al. 2005). Long-distance movements in spring and early summer, both in an 

upstream and downstream direction, are proposed to be associated with spawning, but 

empirical data linking movement with reproduction are rare. Nevertheless, Koster et al. (2017) 

associated golden perch movement with the spatio-temporal presence of eggs and larvae 

in a tributary of the River Murray. 

In a tag and recapture study undertaken in the lower River Murray, golden perch were recorded 

travelling >1000 km in an upstream direction and >450 km downstream (Reynolds 1983). 

Reynolds (1983) proposed that long-distance upstream migrations were a spawning movement 

being undertaken by mature golden perch to ensure that pelagic eggs would not drift into saline 

water and die. Subsequently, monitoring of fishways in the mid-Murray has demonstrated that a 

large proportion (>90%) of the migratory population may, at times, be smaller immature fish, age 

1+ and greater (Mallen-Cooper 1999; Mallen-Cooper and Brand 2007).  

Biotelemetry techniques have been used to investigate the movement of golden perch in the 

mainstem and tributaries of the mid reaches of the River Murray (Crook 2004a, 2004b; O’Connor 

et al. 2005; O’Connor et al. 2006). O’Connor et al. (2005) utilised radio-telemetry to 

investigate the movement of adult golden perch in a relatively unobstructed 500 km lotic 

reach of the mid River Murray. Fish were observed to move both downstream and upstream 

during a rising spring flow to distinct reaches of the River Murray before making 

return homing movements. These movements were in the spawning season 

(spring–summer) and hence were considered to be associated with reproduction, while 

outside the spawning season there was limited movement (O’Connor et al. 2005). A 

similar non-spawning season pattern of restricted movement, strong site fidelity and 

established home ranges was reported in a River Murray tributary (Crook 2004a, 2004b). Yet 

that study was over a short time-frame (four months) and in a geomorphically 

constrained section of river. Consideration of the temporal and spatial scale of 

these investigations is important, especially with long-lived fish. 



The life histories and ecological requirements of migratory, pelagic-spawning fishes, such as 

golden perch, expose these fishes to multiple impacts of river regulation. Understanding the 

ecology and mechanisms by which golden perch populations are structured in the lower River 

Murray can guide ecological rehabilitation in the MDB (e.g. barrier removal, hydrological and 

hydraulic restoration, habitat restoration). Furthermore, this knowledge can provide broader 

insight into the population dynamics of freshwater fishes with periodic life strategies, and guide 

population rehabilitation in regulated rivers. 

Study Region: The lower River Murray and Chowilla Anabranch system 

The Murray-Darling Basin is the largest catchment in Australia, draining an area of 

1 073 000 km2 or 14% of the continent. The combined length of the two major rivers, the 

Murray and the Darling, is ~5 500 km. In general, the climate is arid or semi-arid and 

approximately half the annual discharge originates from <5% of the catchment (the 

headwaters of the Murray) (Walker 1992). Mean and median annual discharge are 12 300 

GL and 11 883 GL, respectively, but natural discharge is highly variable (Maheshwari et al. 

1995).  Under regulated conditions approximately 36% of the natural mean annual 

discharge (4 915GL) reaches the sea (Walker 2006), although this has been zero several 

times in the past 10 years due to diversions and storage during drought (Zampatti et al. 

2010). 

Flows in the system are managed by the Murray-Darling Basin Authority (MDBA) according to 

a parliamentary agreement from 1914 and SA receives a guaranteed minimum annual 

entitlement flow of 1850 GL (Jacobs 1990). This normally comprises a minimum winter (non-

irrigation season) flow (measured at the South Australian border) of approximately 3 000 

ML/d and a summer (irrigation season) flow of approximately 7 000 ML/d. 

Large-scale regulation commenced in the 1920s, and by the 1960s the Murray subsystem 

was regulated by three large headwater storages (Hume, Eildon, and Burrinjuck), main 

channel and tributary weirs, levees and tidal barrages. The lower River Murray, downstream 

of the Darling River confluence, is re-regulated by floodplain levies, five tidal barrages and 11 

low level (<3 m) weirs creating a series of impounded weir pools that under non-flood flows 

have relatively stable water levels (Walker 2006).  Weirs in the lower Murray were 
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specifically located to provide navigation for paddle steamers in the 1920s and 30s, hence they 

create a continuous series of pools. Their cumulative effects on the river’s ecosystem are 

profound. These structures have fragmented over 600 km of river into a series of 29–88 km 

long weir pools and transformed a highly dynamic lotic system into a homogenous series of 

cascading lentic environments (Walker 2006). The impacts of river regulation on the hydrology, 

geomorphology and ecology of the lower River Murray have been comprehensively described 

(see Walker et al. 1992; Walker and Thoms 1993; Maheshwari et al. 1995; Walker 2006).  

One area in the lower River Murray River that does retain spatial habitat variability, including 

hydraulic heterogeneity, under regulated flows, is the Chowilla Anabranch system. The floodplain 

in this region is 5–10 km wide and is characterised by many irregularly shaped off-channel 

habitats including anabranches, billabongs (oxbows) and deflation basins (Walker and Thoms 

1993). The Chowilla region is the largest remaining region of floodplain habitat in the lower River 

Murray River and in 1987 the region was listed as a Wetland of International Importance under 

the Ramsar Convention recognising its diverse birdlife and the extent of red gum (Eucalyptus 

camaldulensis) and black box (Eucalyptus largiflorens) woodlands. 

The Chowilla Anabranch system lies on the northern floodplain of the River Murray adjacent to 

Lock and Weir No. 6, approximately 620 km from the river mouth. The anabranch system is a 

complex of perennial and ephemeral creeks, backwaters, billabongs and lakes. Data on the 

historical (preregulation) character of the system is scarce; nevertheless, some insight can be 

gained from the journal of the explorer Charles Sturt. In the summer of 1829-30, Sturt travelled 

by boat from the mid-reaches of the Murrumbidgee River down the River Murray to the Murray 

mouth. He made numerous observations of the hydraulic character of the river. In late January 

1830 he described a significant ‘rapid’ in the vicinity of the Rufus River, then after passing the 

Lindsay River described the river tending southwards (the approximate present day site of 

Lock 6) and passing down a series of several rapids. He did not describe the Chowilla Creek 

confluence but described more ‘rapids’ and ‘shoals’ as he passed through the Murray gorge (Sturt 

1833). The channel forms that Sturt described have now been replaced by a series of contiguous 

weir pools.



Due to the head differential (~3 m) created by Lock and Weir No. 6 on the Murray River, 20–90% 

of River Murray flows are now diverted through the Chowilla Anabranch system under low flow 

conditions (i.e. < 10,000 ML/d) (Stace and Greenwood 2004). Consequently, the Chowilla 

Anabranch system exhibits permanent lotic habitats in what previously would have been a 

combination of perennial and ephemeral streams. Given Sturt’s 1830 description of the River 

Murray in this region, it appears that regulation has shifted lotic waters from the main channel 

into the anabranch system, and reduced these habitats regionally by hundreds of kilometres.  

The uniqueness of these flowing waters in a region where main channel hydraulics have been 

fundamentally altered has been attributed to the maintenance of remnant populations of 

endangered flora and fauna that are uncommon or extinct elsewhere in the lower Murray 

(O’Malley and Sheldon 1990; Pierce 1990; Sharley and Huggan 1995). The region has been 

proposed as a significant spawning and recruitment site for golden perch and Murray cod 

(Maccullochella peelii) (Pierce 1990; Lloyd 1990), two fish species whose range and abundance 

have declined in the MDB (Cadwallader 1978; Walker and Thoms 1993). 

Thesis scope 

River regulation is considered a dominant factor in worldwide declines in the distribution and 

abundance of freshwater fishes.  Despite this, studies that investigate the influence of hydraulics 

and hydrology on the ecology of fish over a range of spatial scales and over sufficiently long 

temporal scales (i.e. multiple years) are rare (Fausch et al. 2002; Arthington and Pusey 2003; 

Humphries et al. 2008). Furthermore, whilst the potential impacts of river regulation on native 

fish are often discussed, there are few studies that provide causal links or direct evidence 

(Murchie et al. 2008). This is particularly true for fish populations in the Murray-Darling Basin. 

In order to effectively manage and rehabilitate riverine freshwater fish populations, 

there remains a considerable need to understand the life histories and population dynamics of 

fishes, including the influence of flow on population processes (e.g. spawning, recruitment, 

movement) (Cooke et al. 2012). The periodic life history characteristics of golden perch, 

including long-distance migration, flow-cued spawning and pelagic eggs and larvae, 

render this species particularly susceptible to river regulation. As such, 

the rehabilitation of golden perch populations forms a key component of flow 
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restoration strategies in the MDB.  Nevertheless, the population dynamics of golden perch 

throughout the MDB remain little explored and knowledge on the ecology of golden perch 

remains incomplete. This information is fundamental to inform flow restoration strategies to 

mitigate the impacts of river regulation on golden perch and to develop robust monitoring 

programs to measure response. 

The Chowilla Anabranch system and adjacent River Murray are considered important to the 

ecology and regional population dynamics of golden perch, yet the region is also subject to the 

range of impacts of river regulation that characterise the lower River Murray, namely altered 

fluvial dynamics (conversion of lotic to lentic waters), barriers to movement, and reduced 

hydrological variability. Consequently, Chowilla and the adjacent River Murray provide a unique 

region in which to study the ecology and population dynamics of golden perch. 

The overarching aim of this thesis is to investigate the population dynamics of golden perch in 

the lower River Murray and the processes (e.g. recruitment and movement) that influence 

population structure, including the potential effects of flow and river regulation. 

The specific objectives are to: 

1. Investigate temporal variation in spawning and recruitment of golden perch, over

multiple years and in relation to biologically relevant environmental parameters (e.g.

discharge and water temperature), in order to inform the conservation or restoration of

ecologically important components of the flow regime of the River Murray.

2. Determine the influence of hydrological extremes (i.e. drought and overbank flooding) on

golden perch population demographics in the lower River Murray.

3. Use water and otolith chemistry, specifically 87Sr/86Sr, to retrospectively determine the

natal origin of distinct cohorts of golden perch and the migration history of these fish.

Identifying the provenance of golden perch in the lower River Murray and integrating this

with migration history will improve understanding of the spatial ecology of golden perch

and relationships between flow and key life history processes (spawning, recruitment and

movement).
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4. Investigate the movement behaviour of adult golden perch to understand how movement 

may influence population processes and also inform barrier mitigation, habitat

conservation and rehabilitation, and environmental flow delivery.

These investigations will provide new knowledge regarding the ecology and population dynamics 

of golden perch in a highly regulated semi-arid river, and a continuum for studies undertaken in 

the hydrologically and hydraulically distinct mid-reaches of the River Murray, and the Darling 

River (e.g. Mallen-Cooper and Stuart 2003; King et al. 2003; O’Connor et al. 2005; Sharpe 2011). 

This will assist in the development of conceptual and empirical population models for golden 

perch, which incorporate appropriate spatio-temporal scales and associated environmental 

drivers. Such an approach will assist in the management and rehabilitation of native fish 

populations in the Murray-Darling Basin, and more broadly will advance understanding of the 

impacts of river regulation on riverine fishes, thus aiding management and conservation. 

Thesis structure and a note on chapter styles 

In this thesis, each data chapter is written in the form of a stand-alone scientific paper, several 

of which (Chapters 2, 3 and 5) have been published. As such, each chapter includes a separate 

introduction, method, results, discussion and references, and tables and figures are integrated in 

the text. Co-authorship is acknowledged at the start of each published chapter. All chapters are 

tied to the overarching aim of my thesis, and I present them as a cohesive flow of work reflecting 

my research objectives and culminating in a General Discussion (Chapter 6).  
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Abstract. Restoring fish populations in regulated rivers requires an understanding of relationships between hydrology

and population dynamics. In the present study, spawning and recruitment of golden perch,Macquaria ambigua ambigua,
were investigated in relation to flow in the regulated lower River Murray. All life stages were sampled in three successive
years, with peak flows of 8500 (2004 05), 15 000 (2005 06) and 7000MLday�1 (2006 07). Larvae occurred only in

November/December 2005, and young of year fish only in early 2006. Counts of daily increments in otolith microstruc
ture indicated spawning in lateOctober/earlyNovember 2005. Back calculated birth years for adults, derived from otoliths
and compared with the hydrograph for the preceding 25 years, revealed the dominance of three year classes spawned in

association with increased discharge in 2000, 1998 and 1996. In 2007, an additional year class of 1 year old fish appeared,
following spawning in 2005. In each case, strong recruitment followed spring summer spawning, when peak flows were
.14 000MLday�1 and water temperatures would have exceeded 208C. Restoration of within channel flows of
15 25 000MLday�1 from late spring through summer would promote spawning and recruitment and improve the

resilience of golden perch populations in the lower Murray.
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Introduction

An understanding of flow related ecology is critical to the
restoration of freshwater ecosystems, in particular to inform

the provision of more natural flow regimes in regulated rivers
(Arthington and Pusey 2003; Poff et al. 2010). Fish are a
prominent indicator of anthropogenically induced changes to
the natural flow regime. Worldwide, flow regulation affects

fish by decreasing habitat complexity and productivity,
impeding movement and disrupting life histories (Lucas and
Baras 2001; Brown and Ford 2002; Poff et al. 2007). Many

studies highlight the potential effects of river regulation on
fish, yet there remains considerable need to quantify ecological
responses to flow alteration, using rigorously designed

experiments conducted over appropriate spatio temporal
scales (Humphries et al. 2008; Souchon et al. 2008; Poff and
Zimmerman 2010; Bradford et al. 2011).

Flow regulation is considered a key threat to native fish in

the Murray Darling Basin (MDB), Australia (Cadwallader
1978; Gehrke et al. 1995), and is implicated, along with a
range of other factors (e.g. habitat degradation, lowered water

quality and alien species), in causing a reduction in native fish

levels to ,10% of their pre European levels (Barrett 2004).
Golden perch (Macquaria ambigua, Richardson, 1845; Per
cichthyidae) is a large bodied (up to 76 cm in total length, TL)

potamodromous fish that is widespread in the inland rivers of
Australia (Allen et al. 2002). Subspecies are recognised in the
MDB (Macquaria ambigua ambigua), the Dawson and Fitzroy
Rivers (Macquaria ambigua oriens) and potentially the Lake

Eyre Basin (Musyl and Keenan 1992; Faulks et al. 2010).
Golden perch (Macquaria ambigua ambigua) is an iconic fish
in the MDB; it is a major target species for recreational anglers

and once formed the primary component of a commercial
fishery in the River Murray (Kailola et al. 1993). Golden perch
has undergone a reduction in range and abundance in the

MDB, which has primarily been attributed to anthropogenically
altered flow regimes, cold water pollution and barriers to
fish movement (Cadwallader 1978; Gehrke et al. 1995;
Mallen Cooper 1996).

Golden perch has traditionally been described as a flood cued
spawner, with a life history consistent with the flood pulse
concept described by Junk et al. (1989). That is, fish spawn

in association with spring floods that inundate floodplains,
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stimulating the production of abundant food such as zooplank
ton and facilitating high rates of survival of larval fish (Lake

1967; Harris and Gehrke 1993; Schiller and Harris 2001). This
model, however, has been questioned in recent years, with
spawning and recruitment found to occur also in association

with increases in flow contained within the river channel or
with no increase in flow (Mallen Cooper and Stuart 2003; King
et al. 2005; Balcombe et al. 2006; Roberts et al. 2008; Kerezsy

et al. 2011).
Numerous studies have collected the drifting eggs or larvae

of golden perch, and related the abundance of these to environ
mental conditions, but the success of subsequent recruitment in

these studies remains unclear (Gilligan and Schiller 2003; King
et al. 2005; King et al. 2009). Understanding recruitment and
the demographics of populations, however, is essential for the

conservation and restoration of freshwater fishes (Minckley
et al. 2003). In the MDB, several studies have investigated the
age or size structure of golden perch populations and related

recruitment to antecedent flow conditions (Mallen Cooper and
Stuart 2003; Balcombe et al. 2006; Ebner et al. 2009). Using
the age structure of golden perch in the mid reaches of the
River Murray, Mallen Cooper and Stuart (2003) demonstrated

a positive association between strong year classes and spring
flows contained within the river channel. These findings
support the proposition of Humphries et al. (1999) of a poten

tial over emphasis on the importance of flooding and flood
plains in the biology of native fish in the MDB and that
in channel environments may also be important for spawning

and rearing of native fish. Overall, our knowledge on how
hydrology influences the population dynamics of golden perch
is increasing; nevertheless, long term studies that integrate

investigations of larval abundance, survival, recruitment and
the influence of flow have been lacking (King et al. 2005;
Brown and Wooden 2007).

The objective of the present study was to investigate golden

perch spawning and recruitment at a site within the lower River
Murray. We expected that golden perch spawning and recruit
ment would be reliant on within channel and overbank rises in

flow and, consequently, golden perch recruitment would be
episodic because of the highly altered flow regime of the lower
River Murray. Specifically, we aimed to (1) investigate spawn

ing and recruitment in relation to flow over a 3 year period in the
lower RiverMurray, (2) verify the annual nature and seasonality
of otolith increment formation for golden perch in the lower
River Murray, (3) investigate the age structure of the golden

perch population and relate back calculated spawning dates to
the antecedent flow regime and (4) inform the potential restora
tion of ecologically relevant components of the flow regime of

the lower River Murray.

Materials and methods

Study area

The MDB drains an area of 1 073 000 km2, or 17%, of the

Australian continent. The combined length of the two major
rivers, the Murray and the Darling, is ,5500 km. The Murray
and Darling Rivers flow through predominantly semiarid or arid
landscapes. As such, in their natural states, they experienced

highly variable flow regimes (Walker et al. 1995; Puckridge

et al. 1998). River regulation in the form of large headwater
storages, weirs, floodplain levees and tidal barrages, and con

sumptive use for irrigation and domestic supply, have had a
profound impact on total discharge and discharge variability in
the lower River Murray (Maheshwari et al. 1995). The season

ality of flows is retained, with flows peaking in spring/summer,
but their magnitude is much reduced (Walker and Thoms 1993;
Maheshwari et al. 1995). Mean annual discharge to the sea

(4915GL) is now ,36% of the natural mean (12 300GL). On
the basis of modelled natural (i.e. preregulation) and current
(i.e. regulated) flow data (MDBA, unpubl. data), median flow
has decreased from ,27 000MLday�1 to 8000MLday�1 and

the frequency of within channel pulses has been greatly reduced
(e.g. flows of 20 000MLday�1 were equalled or exceeded
62% of the time under preregulation conditions, compared with

26% under current conditions). Large overbank flood flows
(e.g. 100 000MLday�1) still occur, but their frequency has also
been reduced such that they now occur ,2% of the time com

pared to 4% historically (MDBA, unpubl. data).
The present study was conducted in the lower River

Murray where a series of 10 low level (,3 m) weirs fragment
830 km of river into a series of contiguous weir pools,

transforming a historically highly dynamic lotic system into
a homogenous series of lentic environments under low flows
(Walker 2006). Spawning and recruitment of golden perch

were investigated in the River Murray main channel and
Chowilla Anabranch system, a complex of anabranches on
the northern floodplain of the River Murray that circumvent

Lock and Weir No. 6,,620 km from the river mouth (Fig. 1).
As a result of the head differential created by Lock and Weir
No. 6, flow diverted through the anabranches creates perma

nent lotic habitats in a region where such habitats are now
rare in the main river channel.

Environmental data

Daily mean flow (MLday�1) for the period January 1980 to
December 2008 for the River Murray at the South Australian

border and daily water temperature (8C) data for the period July
2005 to February 2009 for the River Murray adjacent to the
Chowilla system were obtained from the South Australian

Department of Environment, Water and Natural Resources
(DEWNR) surface water monitoring archive (DEWNR, unpubl.
data). Long term historical flow data for the lower RiverMurray
in its unregulated state are unavailable; therefore, modelled

‘natural’ daily flow data were obtained from the Murray
Darling Basin Authority (MDBA, unpubl. data). These data are
derived from the MSM Bigmod model that employs a water

balance approach and integrates hydrological, climatic and
consumptive (e.g. irrigation diversions and losses) data, and
storage and water sharing operating rules (Close 1990).

A modelled data series from 1891 to 2008 was utilised.

Collection of golden perch

Golden perch larvae were sampled using drift nets and light
traps at eight sites in the Chowilla Anabranch system and
adjacent River Murray (Fig. 1). Sites were sampled fortnightly

from October to January in 2004 05 and from September to
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Ageing of golden perch

Under a dissecting microscope (�40), golden perch larvae were
measured to the nearest millimetre and otoliths were removed.

An earlier validation of daily increment formation of known age
larvae identified that the sagittae were preferred to lapilli
because they were easier to prepare, revealed an easily inter

pretable microstructure and provided higher andmore confident
increment counts (B. P. Zampatti and S. J. Leigh, unpubl. data).
Furthermore, transverse sections provided better resolution and

regularity of microstructural patterns than did other sectioning
planes. For preparation of transverse sections, sagittae were
embedded in Crystal BondTM (Aremco Products Inc., Valley
Cottage, NY, USA) and ground from both anterior and posterior

surfaces to the primordium with 9 mm imperial lapping film
and polished using 0.3 mm alumina slurry to produce sections
between 50 and 100mm thick.

Sections were examined using a compound microscope
(�600) fitted with a digital camera and the Optimas image
analysis software (version 6.5, Media Cybernetics, Rockville,

MD, USA). A drop of immersion oil was used to enhance the
clarity of sections. Increments were counted blind with respect
to fish length and capture date. Estimates of age were deter

mined by counting the number of increments from the primor
dium to the otolith edge. Three successive counts were made by
one reader for one otolith from each fish. If these differed by
more than 5%, the otolith was rejected, but if not, the mean was

used as an estimate of the number of increments.
Increment counts were considered to represent the true age of

golden perch larvae and juveniles from analysis of otoliths from

known age larvae supplied by Narrandera Fisheries Centre, New
SouthWales Department of Primary Industries. Egg development
and hatching occur within the first 24 h post spawning (Brown

and Wooden 2007) and increment counts of known age larvae
exceeded the known age at hatch by one increment, which
incorporates egg development before hatch. Spawn dates were
determined by subtracting the estimated age from the capture date.

Transverse sections of adult golden perch sagittae display a
clear incremental pattern of opaque and translucent zones that
form annually (Anderson et al. 1992; Mallen Cooper and Stuart

2003). Whole sagittae dissected from juvenile and adult fish
were embedded in clear casting resin and a single 400 600 mm
transverse section, incorporating the primordium, was prepared

using a GemmastaTM diamond cutting saw (Shelleys Lapidary
Supplies Pty. Ltd., Mile End, South Australia). Sections of
sagittae were examined using a dissecting microscope (�25)

under transmitted light. Estimates of age were determined by
counting the number of complete or clearly discernable opaque
zones from the primordium to the otolith edge.Where the otolith
was recorded as having an opaque edge, it was noted whether

this marginal increment was included in the estimate of age.
Otoliths were interpreted independently by three readers. Dis
crepancies in otolith age by one or two readers were due in all

instances to the inclusion of a marginal increment (opaque zone
at the otolith edge) and were adjusted accordingly to reflect the
age with reference to the capture date and the estimated birth

date. A suitable birth date was assigned by considering the
timing of the formation of a new annulus (opaque zone) and the
back calculated spawning dates estimated for larval fish.

Prepared transverse sections of sagittae from golden perch
collected monthly in 2005 06 at the Lock and Weir No. 6

fishway were used to determine the seasonality (month) of
annulus (opaque zone) formation. The margin of each otolith
was first categorised as either being opaque or translucent.

Second, where the margin was described as translucent, the
distance between the last completed increment (opaque zone)
and the outer edge of the otolith was further described as being

thin or wide. The change in relative frequency of each of these
three margin categories (i.e. opaque, translucent and thin, and
translucent andwide) in eachmonthly samplewas plotted across
a 12 month period (Campana 2001).

Results

Hydrology

The maximum known age of golden perch is 26 years (Stuart

2006); hence, a 25 year flow record is considered adequate for
an investigation of age structure of golden perch populations in
the Chowilla region. Over the past 25 years, discharge in the
River Murray at the South Australian border has varied

considerably; maximum flows of .110 000MLday�1 were
recorded in the summer of 1993 94 and minimum flows of
,1000MLday�1 were recorded in the winter of 2007 (Fig. 2).

The 3 year study investigating the spawning and recruitment of
golden perch was conducted during an unprecedented period
(since river regulation in the 1930s) of low flow. Maximum

daily discharges during the study periodwere,8500MLday�1,
15 000MLday�1 and 7000MLday�1 in December 2005,
November 2006 and February 2007, respectively.

Modelled ‘natural’ discharge data demonstrated the pro

found effect river regulation and water extraction have had on
the hydrology of the lower River Murray (Fig. 3). During a
period of intensively regulated and low flows from 2000 to

2008, natural flows would have been characterised by several
overbank flood events and substantial annual within channel
rises in flow (Fig. 3).

Temporal and spatial variation in occurrence of larvae

No golden perch larvae were collected in the 2004 05 sampling
season, 14 golden perch larvae were sampled in 2005 06

(between 29 November and 14 December 2005) and no larvae
were collected in 2006 07 (Fig. 4). Golden perch larvae col
lected in 2005 had a mean length of 11.2mm (range 8 14mm)
and were collected in both light traps (n¼ 13) and drift nets

(n¼ 1) from five creeks in the Chowilla system, namely Boat,
Chowilla, Hypurna, Salt and Slaney Creeks.

Length frequency structure

The size distribution of juvenile and adult golden perch ran
ged between 50 and 500mm in TL for samples collected
between 2005 and 2007. In 2005, the length frequency was

unimodal, with fish ranging in length from 240 to 440mm
(Fig. 5). A bimodal distribution was observed in 2006, with a
small mode of fish ranging from 50 to 80mm and a mode of

larger individuals ranging from 240 to 450mm. In 2007, these
modes progressed to 120 300mm and 340 500mm, respec
tively (Fig. 5).
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2006, with no addition of further year classes. In 2007, an
additional strong year class of 1 year old fish appeared, follow

ing successful spawning and recruitment of golden perch during
a small but prolonged within channel increase in discharge in
spring/summer 2005.

Age structure data also indicated that the number of older
fish in the Chowilla region decreased over time. Golden perch is
known to live up to 26 years (Stuart 2006); nevertheless, no fish

older than 11 years was collected in the Chowilla region or
adjacent River Murray during our study. The fate of these older
fish is unknown but potential causes of the truncation of the age
structure may include fishing pressure or emigration of older

fish from the region (B. P. Zampatti and S. J. Leigh unpubl.
data). Importantly, however, from a conservation perspective,
selective removal or emigration of large, old individuals may

ultimately contribute to serious population depletion for species
with variable recruitment (Longhurst 2002).

Overall, our data supported the proposition of Mallen

Cooper and Stuart (2003) that golden perch recruitment in the
MDB is not reliant on flood flows (i.e. overbank) and that even
relatively small within channel flow events may support signif
icant recruitment. Nevertheless, golden perch recruitment in the

lower River Murray appears to be absent or minimal during
periods of stable low flow and regulated ‘entitlement’ flows
(i.e. flow delivered for consumptive use). This is in contrast to

golden perch in the more arid northern regions of the MDB, and
the adjacent Lake Eyre Basin, where, on the basis of length
frequency data, recruitment is proposed to occur during periods

of zero flow and irrespective of antecedent flow conditions and
season (Balcombe et al. 2006; Kerezsy et al. 2011). Conse
quently, there appears to be considerable variation in the life

histories of golden perch throughout the species geographic
range. Such regional variation in life histories is well acknowl
edged for northern hemisphere salmonids (e.g. Beechie et al.

2006; Malcolm et al. 2012) and is becoming increasingly

recognised for golden perch (Balcombe et al. 2006; Roberts
et al. 2008; Ebner et al. 2009; Kerezsy et al. 2011). Accordingly,
regional differences in life histories should form an important

consideration when determining management and conservation
actions for golden perch, including the maintenance or restora
tion of components of the natural flow regime.

There still exists considerable conjecture on the role of over
bank flows ingolden perch recruitment (Mallen Cooper andStuart
2003;King et al.2009; Ebner et al. 2009). Although it appears that
there is consensus that spawning and recruitmentmayoccur during

within channel and overbank flows, some authors have suggested
that spawning intensity and recruitment may be strongest during
overbank floods (King et al. 2009).Our data concurredwith that of

Roberts et al. (2008) forMacquaria ambigua oriens in the Fitzroy
Basin indicating that dominant year classesmaybe associatedwith
high flows (overbank) andwithin channel rises in flow. Neverthe

less, to test the premise that spawning intensity increases during
overbank floods, data on golden perch spawning during a major
overbank flow in the MDB (e.g..90 000MLday�1 in the lower

River Murray) are required.
There were two successful recruitment events for golden

perch in the lower River Murray region in the period 2000 07,
namely 2000 and 2005. In these years, spawning and recruitment

corresponded with maximum discharges of ,60 000 and

15 000MLday�1, respectively. Recruitment appears negligible
in all other years when flows were relatively low and stable.

There was one flow event in 2003 of ,15 000MLday�1 that
was not accompanied by significant recruitment; however, this
was of a relatively short duration and occurred in late winter/

early spring when water temperatures would have been,208C.
Although overbank flooding may be important, particularly

from a perspective of primary productivity (Junk et al. 1989),

the fact that within channel flows can support strong golden
perch recruitment has important implications for flow manage
ment in the lower River Murray. Medium sized flow events are
the component of the flow regime that has been most signifi

cantly altered by river regulation in the lower Murray River
(Walker 2006). Furthermore, it is these size events (e.g. 15
25 000MLday�1) that could practically be restored within the

current constraints of system operation. Our results indicate that
restoration of these within channel flow events may lead to
more frequent golden perch recruitment.

Discharge data for the River Murray at the South Australian
border indicated that since 2000, flows of a magnitude poten
tially suitable for golden perch spawning and recruitment
(i.e. .14 000MLday�1) occurred in 2 years out of the past 8

years (Fig. 3). In comparison, modelled ‘natural’ flow data
indicated that, under unregulated conditions, flows of such
magnitude would have occurred in 7 of the past 8 years. Golden

perch is long lived (.20 years) and hence adapted to coping
with a highly variable environment that may lead to variable
recruitment. Nevertheless, golden perch (Macquaria ambigua

oriens) recruitment in coastal rivers in eastern Australia is more
variable (i.e. low numbers of dominant year classes) in rivers
with higher levels of regulation than it is in less regulated rivers

(Roberts et al. 2008). This is also evident in the lower River
Murray where episodic recruitment results in only a few strong
year classes dominating the population. Modelled flow data,
however, indicated that discharges of the magnitude potentially

conducive to spawning and recruitment may have been more
frequent in the unregulated River Murray and hence may have
resulted in more consistent recruitment and a golden perch

population more resilient to environmental perturbations.

Conclusions and management recommendations

Conceptual models of ecological response to flow alteration are
useful tools to inform the delivery of environmental flows, but
increasingly, water and natural resource managers require
quantitative data to justify decisions regarding the allocation of

finite water resources. The findings of the present study provide
an empirical, testable basis for the formulation of flow ecology
relationships that are necessary to underpin contemporary

approaches to developing and testing environmental flow
regimes (e.g. Poff et al. 2010) that will ultimately assist in the
re establishment of native fish populations in the MDB.

Although such approaches are often proposed, examples are
generally rare (although see Cambray et al. 1997; King et al.

2010; Bradford et. al. 2011).
Our data and recent studies in the mid reaches of the River

Murray (e.g.Kinget al.2009)provide sufficient evidence for a trial
flowmanipulation in the lowerRiverMurray to promote spawning
and recruitment of golden perch. The acquisition by theAustralian
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CHAPTER 3: Effects of flooding on recruitment and abundance of 
golden perch in the lower River Murray. 

Juvenile golden perch post flooding in the lower River Murray







initiate spawning (Humphries et al. 1999).

Golden Perch is a large bodied (up to

76 cm total length) potamodromous fish

that is widespread in the MDB, but has

undergone a reduction in range and abun

dance in some regions due to altered nat

ural flow regimes, cold water pollution

and barriers to movement (Cadwallader

1978; Mallen Cooper 1996). Due to its rec

reational and commercial importance,

Golden Perch is one of the most studied

freshwater fish in the MDB. Investigations

have included reproductive biology and

early life history (Mackay 1973; Gehrke

1991), spawning and recruitment (Lake

1967; Mallen Cooper & Stuart 2003; Ebner

et al. 2009) and movement (Reynolds

1983; Crook 2004; O’Connor et al. 2005).

Early studies suggested Golden Perch

spawned in association with floodplain

inundation (Lake 1967), which was con

sidered to improve survival of larval fish

by stimulating the production of zooplank

ton (Harris & Gehrke 1993; Schiller &

Harris 2001). Recent research, however,

indicates that spawning and recruitment

may also occur in association with

increases in flow contained within the

river channel (Mallen Cooper & Stuart

2003; King et al. 2005; Zampatti & Leigh

2013). Nonetheless, investigation of

Golden Perch recruitment in association

with overbank flows and floodplain

inundation has been confined to the mid

reaches of the River Murray during

relatively minor flooding (i.e. 25 000

35 000 ML/day) (King et al. 2009).

The mid reaches of the River Murray

are hydrologically and hydraulically

distinct from the lower river (Maheshwari

et al. 1995; Walker 2006). Furthermore,

whilst much of the mid River Murray has

a broad (10 20 km) floodplain, the lower

Murray is characterised by distinct flood

plain and gorge geomorphic regions

(Walker 2006). A series of 10 weirs also

fragments and disrupts the natural hydrol

ogy and hydrodynamics of the lower River

Murray, particularly under low medium

flows (i.e. <50 000 ML/day). River regula

tion and fragmentation can have profound

effects on pelagic spawning, potamodrom

ous fish, such as Golden Perch, by inter

rupting upstream and downstream

movements of all life stages and compro

mising larval survival (Dudley & Platania

2007). If flooding and floodplains are

important for Golden Perch recruitment,

inter and intra regional variation in geo

morphology and connectivity may have

consequences for the movement and

recruitment of Golden Perch leading to

regional variation in population dynamics.

In 2010/11, high flows (>90 000 ML/

day) and extensive flooding in the lower

River Murray provided an opportunity to

investigate the recruitment of Golden

Perch following 10 years of drought, low

flows (<15 000 ML/day) and floodplain

isolation. The objective of this study was

to investigate the recruitment and abun

dance of Golden Perch in response to an

overbank flow in the lower River Murray.

We expected that increased discharge

and floodplain inundation would promote

Golden Perch recruitment (to at least age

0+) and augment Golden Perch abun

dance in the lower River Murray. We also

sought to explore variation in recruitment

between the distinct geomorphic regions

of the lower River Murray.

Study Area

This study was conducted in the lower

River Murray, downstream of the South

Australian border (Fig. 1). In this region,

a series of 10 low level (~3 m) weirs regu

late flow released by upstream dams and

diverted by irrigation and fragment

830 km of river into a series of contiguous

weir pools. Unlike the regulated but free

flowing mid reaches of the River Murray,

the weirs in the lower River Murray trans

form a historically highly dynamic lotic

system into a homogenous series of lentic

environments under low flows (Walker

2006).

To investigate the association between

flooding and Golden Perch population

structure, we surveyed a total of 128 sites

in the River Murray main channel, the

Chowilla and Katarapko Anabranch sys

tems and the littoral zones of Lake Alex

andrina (Fig. 1). Sites were sampled in

three distinct geomorphic regions (Walker

& Thoms 1993): (i) swamplands and lakes

(downstream of Mannum), (ii) gorge

(Mannum Lock 3) and (iii) floodplain

(Lock 3 Lock 6) (Fig. 1).

Materials and Methods

To investigate abundance and recruitment

(to at least age 0+) of Golden Perch in

association with the 2010/11 overbank

flow, we examined annual variation in

the catch per unit effort (CPUE) and

length/age structure of Golden Perch col

lected in the Chowilla Anabranch system

and adjacent River Murray using a 7 year

dataset. Golden Perch were sampled in

March/April 2005 2010 and May/June

2011 (following recession of floodwaters)

during quantitative electrofishing surveys

of fish assemblages at 16 22 sites repre

senting all available meso (e.g. lentic and

lotic waters) and microhabitats (e.g. open

water, aquatic macrophytes and woody

debris) in the region (Fig. 1). At each site,

12 9 90 s (power on time) electrofishing

shots were conducted by boat electrofish

ing using a 5 kW Smith Root Model GPP

5.0 electrofishing unit. All fish were mea

sured to the nearest mm (total length,

TL), and a subsample (n = 31 78 fish/

year), proportionally representing the

length frequency of Golden Perch col

lected from each year, was retained for

ageing. In April 2011, we used the same

electrofishing technique to sample 18

sites in the Katarapko Anabranch system

and three sites in the adjacent River Mur

ray (Fig. 1) to compare recruitment of

Golden Perch between the two main ana

branch systems in the floodplain geomor

phic region of the lower River Murray in

South Australia.

To investigate whether age structure

and hence recruitment of Golden Perch

postflood varied spatially along the length

of the lower River Murray (i.e. between

the three geomorphic zones), we sampled

88 sites in the River Murray main channel

in November/December 2011. This com

prised 24, 41 and 23 sites in the swamp

lands and lakes, gorge and floodplain

geomorphic regions, respectively (Fig. 1).

Sampling was conducted by boat electro

fishing using a 7.5 kW Smith Root Model

GPP 7.5 electrofishing unit. Electrofishing

was conducted during daylight hours, and

all available littoral habitats were fished.

All fish were measured to the nearest

mm (total length, TL), and a subsample

(n = 31 119 fish), proportionally repre
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CHAPTER 4: Otolith chemistry delineates the influence of provenance 
and dispersal on the population dynamics of golden perch in a 

regulated river. 

A cross-section of a golden perch otolith
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Abstract 

In regulated rivers globally, migratory fishes are threatened by fragmentation and flow 

modification. Effective management of these fishes requires a spatio-temporal context for 

the life history processes (spawning, recruitment and movement) that determine population 

dynamics. The structural and chemical properties of fish otoliths provide a unique means to 

recount a fish’s life history in time and space. We investigated the age structure of the 

migratory, pelagophil golden perch (Macquaria ambigua) in the River Murray, Australia, and 

utilised water and otolith 87Sr/86Sr to delineate the provenance and movement of fish from 

discrete cohorts. Water 87Sr/86Sr was distinct among the Darling River (a major tributary), and 

lower and mid-River Murray. Otolith chemistry revealed golden perch collected in the lower 

River Murray were the progeny of spawning in either the River Murray or Darling River, during 

years characterised by within-channel rises in flow, or in both rivers in a year characterised 

by overbank flooding. Movement of juvenile fish from the Darling River substantially 

influenced population structure in the lower River Murray, whereby population growth post 

flooding was largely a result of immigration of age 1+ fish. This study demonstrates the 

potential importance of tributary recruitment sources and dispersal on main-stem population 

dynamics, and the utility of otolith chemistry for spatially reconciling population structure and 

the life history processes of freshwater fishes.  
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Introduction 

Globally, modification of riverine habitats and flow regimes alters ecosystem function, with 

related impacts on population resilience and biodiversity (Dudgeon et al. 2006; Poff et al. 

2007). Freshwater fishes are particularly vulnerable to river regulation (Nilsson et al. 2005), 

and effective management requires a spatio-temporal context for the key life history 

processes (spawning, recruitment and movement) that determine population dynamics. 

Rivers are dendritic in nature and riverine fish may disperse among the branches of these 

networks (Fagan 2002; Koster et al. 2014). Ontogenetic variation in habitat use is also 

commonplace, with alternative locations potentially used for spawning, rearing and refuge 

(Amoros and Bornette 2002; King 2004). As such, dispersal and migration between disparate 

locations can be an important determinant of metapopulation structure and function (Jager 

et al. 2001).  

In lotic ecosystems, migratory, pelagic-broadcast spawning fishes (pelagophils) are 

particularly impacted by fragmentation and flow modification (Hoagstrom and Turner 2013). 

Hydrologic cues and hydraulic habitats for spawning are altered by flow regulation, and 

spawning migrations and the obligate downstream drift of eggs and larvae, essential for the 

development of early life stages, are interrupted by physical barriers and the hydraulic 

impacts of dams and weirs (Welcomme et al. 2006; Perkin et al. 2015). Consequently, in 

regulated rivers, these fishes may demonstrate episodic recruitment and low demographic 

resilience (Zampatti and Leigh 2013a). Conservation and rehabilitation of pelagophils requires 

an understanding of habitat and hydrological requirements across a fish’s lifetime, including 

characterising natal, juvenile and adult habitats, and movement among these (Dudley and 

Platania 2007). 

In Australia’s Murray Darling Basin (MDB), flow regulation has negatively impacted native fish 

populations (Barrett 2004). To redress this, fish form a primary objective for environmental 

water delivery under contemporary river rehabilitation programs (Koehn et al. 2014). Golden 

perch (Macquaria ambigua) is one of few species in the MDB that are migratory, pelagic-

broadcast spawners, and where spawning, recruitment and movement have been explicitly 

associated with flow variability (Mallen-Cooper and Stuart 2003; Mallen-Cooper and Brand 

2007; King et al. 2009; Zampatti and Leigh 2013a; Koster et al. 2014; 2017). Accordingly, these 

aspects of golden perch life history form a focus for environmental flow management in the 

MDB. 
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To inform flow restoration, knowledge regarding the spatial structure of populations and 

influence of flow on population processes is vital. Nevertheless, few investigations relating 

fish recruitment to flow have considered precisely when and where fish originated (although 

see Limburg et al. 2013, and Macdonald and Crook 2014). In the lower River Murray, golden 

perch spawning and recruitment (i.e. ≥ age 0+) are associated with in-channel and overbank 

rises in flow, nominally >15,000 ML day-1 (Zampatti and Leigh 2013a). Following extensive 

flooding in the lower River Murray in 2010–11, golden perch abundance increased 

significantly, compared to six previous years of generally low, in-channel flows (Zampatti and 

Leigh 2013b). Age-structure analysis revealed that increased abundance was due to high 

numbers of age 0+ and 1+ fish born in the flood year and in the year prior, respectively. 

Indeed, ~50% of the juvenile golden perch collected post-flooding were age 1+ fish born 

during a period of low flow in the lower River Murray (<10,000 ML day-1, 44th percentile 

exceedance flow, MDBA unpublished data). Zampatti and Leigh (2013b) speculated that the 

age 1+ cohort did not originate in the River Murray and instead originated in the Darling River, 

the major tributary of the River Murray, potentially in association with a substantial rise in 

discharge (0–11,000 ML day-1) in the lower Darling River in early 2010. Confirming the 

provenance of golden perch in the lower River Murray and integrating this with migration 

history will improve understanding of the spatial ecology of golden perch in the MDB and 

relationships of flow with key life history processes and population dynamics. 

The chemical composition of fish otoliths (earstones) can be used to study the origin and 

movement of fish (Elsdon et al. 2008). A fish’s historical movement, including its place of birth 

and death, can potentially be determined by comparing geochemical signatures in otoliths 

with ambient signatures in water, if there is geographic variability in water chemistry. Stable 

isotopes of strontium (Sr) have been used successfully to discern the natal habitats and 

movements of numerous diadromous and freshwater fishes. (Kennedy et al. 2002; Crook et 

al. 2013; Brennan and Schindler 2017). Unlike metal:Ca ratios (e.g. Sr/Ca, Ba/Ca), Sr isotope 

ratios are not biologically fractionated; therefore, 87Sr/86Sr values measured in otoliths 

directly reflect the ambient water 87Sr/86Sr (Kennedy et al. 2000). As a result, spatio-temporal 

‘isoscapes’ of dissolved 87Sr/86Sr in water can provide a template for determining the spatial 

origin and movement history of fish (Barnett-Johnson et al. 2008; Muhlfeld et al. 2012). 



67 

The aims of this study were to characterise the age structure of golden perch populations in 

the lower River Murray and use water and otolith strontium isotope ratios to elucidate the 

natal origin and migration history of fish from discrete cohorts. Our specific objectives were 

to: 1) demonstrate the persistence of specific age-classes in the lower River Murray 

population associated with distinct flow events, 2) characterise spatio-temporal variability in 

water 87Sr/86Sr at sites in the Murray and Darling rivers, 3) determine otolith core 87Sr/86Sr in 

distinct cohorts of golden perch, 4) compare 87Sr/86Sr in otolith cores with water 87Sr/86Sr in 

the study region to elucidate fish provenance, and 5) measure 87Sr/86Sr along transects from 

otolith core to edge to investigate the migration history of golden perch from the specific age 

cohorts.  

Study Region 

The Murray–Darling Basin (MDB) drains an area of 1 073 000 km2. The combined length of 

the two major rivers, the Murray and the Darling, is ~5500 km and both flow through 

predominantly semi-arid or arid landscapes. River regulation, in the form of large headwater 

storages, weirs, floodplain levees and tidal barrages, and consumptive use for irrigation and 

domestic supply, has had a profound impact on the magnitude and variability of discharge in 

the River Murray (Maheshwari et al. 1995) and many of its tributaries (Kingsford 2003). 

This study was conducted in the lower and mid reaches of the River Murray, and the lower 

Darling River. The lower River Murray extends downstream from the Darling junction to the 

river mouth (Figure 1). In this region, 10 low-level (~3 m) weirs fragment 830 km of river into 

a series of contiguous weir pools. Under low flows, the weirs transform a historically dynamic 

lotic system into a homogenous series of lentic environments (Walker 2006; Mallen-Cooper 

and Zampatti 2018). The mid Murray extends upstream for 1155 km, from the Darling River 

junction to Yarrawonga (Figure 1). This region is less fragmented by weirs and retains long 

reaches (100s km) of lotic habitat (Mallen-Cooper and Zampatti 2018); nevertheless, it is 

impacted by regulated discharge and, in some reaches, seasonal inversion of flow 

(Maheshwari et al. 1995).  The lower Darling River extends for 510 km upstream from the 

junction with the River Murray to the Menindee Lakes, an extensive series of off-channel lakes 

(457 km2; 1731 GL capacity) used to regulate and store Darling River flows for consumptive 

use.  
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Figure 1. Map showing the location of the River Murray, Darling River and other major 

tributaries in the southern Murray–Darling Basin, including the numbered Locks and Weirs 

(up to Lock 26, Torrumbarry). 
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Methods 

Fish collection and ageing 

Sampling of golden perch occurred annually from 2010 to 2014 in main-channel and 

anabranch habitats between Lock 3 and 6 in the lower River Murray. In each year, golden 

perch were sampled in March–May by boat electrofishing using either a 5 kW or 7.5 kW Smith 

Root (Model GPP 5 or 7.5) electrofishing unit. At each site, electrofishing was conducted 

during daylight hours and all available littoral habitats were fished. All fish were measured to 

the nearest mm (total length, TL) and a sub-sample of fish (n = 50–70) proportionally 

representative of the length-structure was retained for ageing. Fish were euthanized in the 

field by overdose of AQUI-S® (Aqui-s, Lower Hutt, New Zealand) prior to the removal of sagittal 

otoliths.  

Whole sagittae were embedded in clear resin and sectioned transversely through the 

primordium (400 to 600 m). Sections were mounted on microscope slides and examined 

using a dissecting microscope (x 25) under transmitted light. Annual increment formation in 

golden perch otoliths has been validated (Anderson et al. 1992; Mallen-Cooper and Stuart 

2003; Zampatti and Leigh 2013a). Independent estimates of age were made by three readers 

by counting the number of opaque zones (annuli) from the primordium to the otolith edge. 

Young-of-year (YOY, < 1 year old) fish were defined as individuals lacking clearly discernible 

annuli. 

Water collection and Sr isotope analysis 

To investigate spatio-temporal variability in dissolved 87Sr/86Sr in water, surface water 

samples were collected at a range of intervals (fortnightly to monthly) over a four-year period 

from December 2011–December 2014 in the River Murray upstream of the Darling River 

confluence (Mildura, Lock 11), the River Murray downstream of the Darling River confluence 

(Lock 6), and the lower Darling River (Lock 32). One water sample was also collected in the 

Darling River at Pomona (immediately upstream of Wentworth) in December 2011 (Figure 1). 

Water samples were collected in new polypropylene 114 x 44 mm sample containers 

(SARSTEDT, Nümbrecht, Germany) and refrigerated. 
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An aliquot (20 ml) of each water sample was filtered through a 0.2 µm Acrodisc syringe-

mounted filter into a clean polystyrene beaker and dried overnight in a HEPA-filtered fume 

cupboard. Previous analyses have shown that filtering after transfer to the laboratory, rather 

than after sample collection in the field, has no influence on measurement of 87Sr/86Sr (Palmer 

and Edmond 1989). Strontium was extracted using a single pass over 0.15 ml (4 x 12 mm) 

beds of EICHROMTM Sr resin (50–100 µm). Following Pin et al. (1994), matrix elements were 

washed off the resin with 2M and 7M nitric acid, followed by elution of clean Sr in 0.05M 

nitric acid. The total blank, including syringe-filtering, is ≤0.1 ng, implying sample to blank 

ratios of ≥4000; no blank corrections were therefore deemed necessary. Strontium isotope 

analyses were carried out on a Nu Plasma multi-collector Inductively Coupled Plasma Mass 

Spectrophotometer (ICPMS) (Nu Instruments, Wrexham, UK) interfaced with an ARIDUS 

desolvating nebulizer, operated at an uptake rate of ~40 µL min-1. Mass bias was corrected by 

normalizing to 87Sr/86Sr = 8.37521 and results reported relative to a value of 0.710230 for the 

SRM987 Sr isotope standard. Internal precisions (2SE) based on at least 30 ten-second 

integrations averaged ± 0.00002 and average reproducibility (2SD) was ± 0.00004. 

Otolith preparation and Sr isotope analysis 

Otoliths for Sr isotope analysis were obtained from golden perch collected for age 

determination and prior collections (2005–2010) of golden perch juveniles and adults 

sampled by electrofishing in main channel and anabranch habitats in the lower River Murray 

between Lock 3 and Lock 6 (Table S1, Supplementary material). Post larval fish (age 0+) were 

collected in riverine and anabranch habitats in 2005, using the methods outlined in Zampatti 

and Leigh 2013a. Briefly, drift nets (500-µm mesh, 0.5-m-diameter opening, 1.5-m length) and 

modified quatrefoil light traps (Floyd et al. 1984) were set concurrently, overnight. 

Sagittal otoliths were dissected and retained whole (age 0+ fish) or embedded in clear casting 

resin (≥ age 1+ fish) and sectioned transversely (400 to 600 m). Whole otoliths and sections 

were then mounted on acid-washed glass slides using CrystalbondTM. Whole otoliths were 

mounted proximal surface downwards and polished to the primordium using a graded series 

of wetted lapping films (9, 5 and, 3 μm), whilst transverse sections were polished using wetted 

lapping film (9 μm). Slides were then reheated and the polished otolith/section transferred 

to a ‘master’ slide, on which otoliths from all collection sites were arranged randomly to 

remove any potential for systematic bias during analysis. The samples were rinsed in 
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ultrapure water (Millipore) and air-dried overnight in a class 100 laminar flow cabinet at room 

temperature. 

Laser ablation – inductively coupled plasma mass spectrometry (LA-ICPMS) was used to 

measure 87Sr/86Sr in the otoliths of juvenile and adult fish. The experimental system consisted 

of a Nu Plasma multi-collector LA-ICPMS (Nu Instruments, Wrexham, UK), coupled to a HelEx 

laser ablation system (Laurin Technic, Canberra, Australia, and the Australian National 

University) constructed around a Compex 110 excimer laser (Lambda Physik, Gottingen, 

Germany) operating at 193 nm. Otolith mounts were placed in the sample cell and the 

primordium of each otolith was located visually with a 400× objective and a video imaging 

system. The intended ablation path on each sample was then digitally plotted using GeoStar 

v6.14 software (Resonetics, USA). For YOY fish collected in 2010, a single 55 µm ablation spot 

was used to measure 87Sr/86Sr in the region of the otolith core (area incorporating early life 

history information i.e. first few days of a fish’s life) and edge (area incorporating information 

from the capture location). The laser was operated at 80mJ and pulsed at 10 Hz. 

For all other samples, otoliths were ablated along a transect from the primordium to the 

dorsal margin using a 6 × 100 μm rectangular laser slit. The laser was operated at 90 mJ, 

pulsed at 10 Hz and scanned at 5 or 10 μm sec-1 (depending on the size of the otolith) across 

the sample. Ablation was performed under pure He to minimise the re-deposition of ablated 

material, and the sample was then rapidly entrained into the Ar carrier gas flow. Each otolith 

transect was pre-ablated using reduced energy (50 mJ) was conducted along each transect to 

remove any surface contaminants and a 20–30 sec background was measured prior to 

acquiring data for each sample. Corrections for Kr and Rb interferences were made following 

the procedures of Woodhead et al. (2005) and mass bias was then corrected by reference to 

an 86Sr/88Sr ratio of 0.1194. Iolite Version 2.13 (Paton et al. 2011) that operates within IGOR 

Pro Version 6.2.2.2 (WaveMetrics, Inc., Oregon) was used to process data offline, with data 

corrected for potential Ca argide/dimer interferences. 

A modern marine carbonate standard composed of mollusc shells (87Sr/86Sr value of 0.70916 

according to long-term laboratory measurements, identical to the accepted modern seawater 

value of 0.709160, MacArthur and Howarth 2004) was analysed after every 10 otolith samples 

to allow for calculation of external precision. Mean (±1 SD) values of 87Sr/86Sr values in the 

modern marine carbonate standard (n = 24) run throughout the analyses were 0.70918 ± 
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0.00017, with external precision (expressed as ± 2 SE) calculated as ± 0.00006. Mean within-

run precision, measured as ± 2 SE, was ± 0.00005. 

Results 

Golden perch age demographics 2010‒2014 

From 2010‒2014, three distinct cohorts of golden perch were present in the lower River 

Murray, corresponding with birth years of 2005‒06, 2009‒2010 and 2010‒11 (Figure 2). In 

2010, age 4+ fish, from the 2005‒06 cohort, comprised ~70% of population, but this cohort 

diminished in 2011, to represent <20% of population as age 5+ fish (Figure 2) and by 2014 was 

absent (Figure 2). In 2011, age 0+ and 1+ fish from the 2010‒11 and 2009‒10 cohorts, 

respectively, comprised >70% of the population, and continued to dominate through 2012‒

2014 (Figure 2). The most prominent cohort in the lower River Murray from 2010‒2014, was 

2009‒10 recruits which comprised at least 50% of the population from 2011‒2014, as age 1+‒

4+ fish, respectively (Figure 2). 
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Figure 2. Age-frequency distributions of golden perch collected in the lower River Murray 

annually in March–May 2010–2014. Dashed lines track progression of cohorts originating in 

2005–6, 2009–10 and 2010–11. 
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Spatio-temporal variation in water 87Sr/86Sr 

Water 87Sr/86Sr showed substantial variation both among years and among regions. In the 

lower Darling River, 87Sr/86Sr values ranged from 0.707434–0.707592 and exhibited 

considerable intra and inter-annual stability (Table 1 and Figure 3). Water 87Sr/86Sr values in 

the lower Darling River were considerably lower and clearly distinct from the mid-Murray and 

lower Murray, which ranged from 0.715954–0.717482 and 0.708619–0.714719, respectively 

(Table 1 and Figure 3). Water 87Sr/86Sr values in the lower River Murray reflected mixed water 

sources and variability in contribution of discharge from the River Murray and Darling River 

catchments (Table 1 and Figure 3). For example, in February 2012, flow from the Darling River 

comprised >95% of flow to the lower River Murray, and water 87Sr/86Sr in this region 

(0.708619) approached that of the Darling River (~0.7075) (Table 1 and Figure 3). In contrast, 

in November 2014, flow from the Darling River was negligible and water 87Sr/86Sr in the lower 

River Murray (Lock 6, 0.714130) more closely resembled that in the mid River Murray (Lock 

11, 0.716920) (Table 1 and Figure 3). 
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Table 1. Site location, dates, 87Sr/86Sr, and internal precision (2SE) for water samples collected 
from the River Murray and Darling River from December 2011–December 2014. 

Site Date 87Sr/86Sr Internal Precision 
River Murray at Lock 11 Dec 2011 0.716295 0.000017 

19 Nov. 2012 0.716434 0.000015 
12 Dec. 2012 0.715954 0.000010 
7 Jan. 2013 0.716214 0.000015 
23 Sept. 2013 0.717318 0.000015 
7 Oct. 2013 0.717334 0.000017 
4 Nov.2013 0.717482 0.000017 
2 Dec. 2013 0.717399 0.000017 
6 Jan. 2014 0.716988 0.000018 
3 Feb. 2014 0.716424 0.000017 
17 Sept. 2014 0.716694 0.000020 
2 Oct. 2014 0.716482 0.000019 
8 Nov. 2014 0.716920 0.000019 
8 Dec. 2014 0.716872 0.000028 

Darling River upstream of 
Wentworth Dec. 2011 0.707434 0.000015 

Darling River downstream Weir 32 6 Nov. 2012 0.707592 0.000022 
8 Oct. 2013 0.707509 0.000016 
4 Nov. 2013 0.707542 0.000022 
2 Dec. 2013 0.707486 0.000017 
3 Jan. 2014 0.707498 0.000016 
26 Feb. 2014 0.707458 0.000017 
9 Sept. 2014 0.707481 0.000019 
7 Oct. 2014 0.707486 0.000017 
3 Nov. 2014 0.707462 0.000014 
11 Dec. 2014 0.707490 0.000014 

River Murray at Lock 6 Dec. 2011 0.712042 0.000022 
18 Jan. 2012 0.708715 0.000017 
6 Feb. 2012 0.708619 0.000016 
23 Mar. 2012 0.710413 0.000016 
10 Apr. 2012 0.711247 0.000016 
13 Nov. 2012 0.709700 0.000015 
11 Dec. 2012 0.710338 0.000014 
16 Sept. 2014 0.713774 0.000024 
14 Oct. 2014 0.713254 0.000026 
11 Nov. 2014 0.714130 0.000020 
9 Dec. 2014 0.714719 0.000019 
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Provenance of golden perch 

Golden perch from the 2005‒06 cohort exhibited otolith core 87Sr/86Sr ranging from 0.71651‒

0.71741 and 0.71566‒0.71655 for age 0+ and age 1+ fish, respectively (Figure 3 and Table 2). 

These otolith 87Sr/86Sr correspond with water 87Sr/86Sr in the mid River Murray at Lock 11 

(Figure 3 and Table 1), indicating a River Murray natal origin for the 2005‒06 cohort of golden 

perch. In contrast, golden perch from the 2009‒10 cohort exhibited otolith core 87Sr/86Sr 

ranging 0.70704‒0.70878 for age 0+ and age 4+ fish (Figure 3 and Table 2) suggesting that the 

majority of fish had originated in the Darling River (Figure 3 and Table 1). Of the fish from the 

2010‒11 cohort, 75% (n = 9) had otolith core 87Sr/86Sr values ranging from 0.71163‒0.71280 

and the remaining 25% (n = 3) from 0.70760‒0.70783 (Figure 3 and Table 2), corresponding 

with water 87Sr/86Sr in the lower River Murray and Darling River, respectively (Figure 3 and 

Table 1). As such, the 2010‒11 cohort of golden perch differed from the 2005‒06 (River 

Murray origin) and 2009‒10 (Darling River origin) cohorts in that fish originated from both 

the lower River Murray and Darling River. 
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Table 2. Otolith core and edge 87Sr/86Sr for golden perch from three prominent cohorts: 1) 
2005–06 (collected as age 0+ in 2005 and age 1+ in 2007), 2009–10 (collected as age 0+ in 
2010 and age 4+ in 2014), and 2010–11 (collected as age 0+ in 2011). 

Year collected Age Year of birth Core 87Sr/86Sr Edge 87Sr/86Sr 

2005 0+ 2005‒06 0.71652 0.71559 
0+ 2005‒06 0.71741 0.71555 
0+ 2005‒06 0.71651 0.71455 
0+ 2005‒06 0.71667 0.71573 
0+ 2005‒06 0.71678 0.71576 

2007 1+ 2005–06 0.71622 0.71448 
1+ 2005–06 0.71597 0.71572 
1+ 2005–06 0.71655 0.71473 
1+ 2005–06 0.71566 0.71476 
1+ 2005–06 0.71620 0.71532 

2010 0+ 2009–10 0.70704 0.70854 
0+ 2009–10 0.70770 0.71010 
0+ 2009–10 0.70750 0.70866 
0+ 2009–10 0.70757 0.70957 
0+ 2009–10 0.70762 0.70918 
0+ 2009–10 0.70758 0.70923 
0+ 2009–10 0.70757 0.70770 
0+ 2009–10 0.70752 0.70857 

2014 4+ 2009–10 0.70717 0.71117 
4+ 2009–10 0.70759 0.71155 
4+ 2009–10 0.70760 0.71176 
4+ 2009–10 0.70878 0.71144 
4+ 2009–10 0.70735 0.71132 

2011 0+ 2010–11 0.71184 0.71316 
0+ 2010–11 0.71202 0.71260 
0+ 2010–11 0.70776 0.71307 
0+ 2010–11 0.71167 0.71253 
0+ 2010–11 0.71227 0.71325 
0+ 2010–11 0.71248 0.71220 
0+ 2010–11 0.70783 0.71133 
0+ 2010–11 0.71014 0.71215 
0+ 2010–11 0.71163 0.71191 
0+ 2010–11 0.70760 0.71262 
0+ 2010–11 0.71223 0.71189 
0+ 2010–11 0.71280 0.71203 
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Migration history of fish 

To investigate the migration history of golden perch we analysed 87Sr/86Sr profiles from otolith 

core to edge, thus elucidating lifetime variability in 87Sr/86Sr. Age 1+ golden perch from the 

2005‒06 cohort exhibited otolith 87Sr/86Sr transects indicative of spawning and residence in 

the River Murray. At a finer spatial scale, early in their lives,these fish displayed otolith 
87Sr/86Sr comparable to water 87Sr/86Sr in the mid River Murray early in their lives prior to 

transition to a lower River Murray 87Sr/86Sr (Figure 4a). Age 4+ golden perch from the 2009‒

10 cohort exhibited otolith 87Sr/86Sr transects indicative of a Darling River origin and 

subsequent transition into the River Murray as age 1+ fish (Figure 4b). Of the 12, age 0+ 

golden perch from the 2010‒11 cohort, 75% exhibited otolith 87Sr/86Sr indicative of a lower 

River Murray spawning origin and continued residence in the lower River Murray until capture 

(Figure 4c). The remaining 25% exhibited otolith core 87Sr/86Sr values comparable to that of 

water in the Darling River, but rapid transition to values representative of water 87Sr/86Sr in 

the lower River Murray early in the fish’s lives (Figure 4d), indicating a lower Darling River 

natal origin and subsequent dispersal into the lower River Murray as larvae. 
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Figure 4. Individual life history profiles based on transect analysis of 87Sr/86Sr from core to 

edge of otoliths from a) an age 1+, 2005‒06 cohort, golden perch, b) an age 4+, 2009‒10 

cohort, golden perch, c) an age 0+, 2010‒11 cohort, golden perch and d) an age 0+, 2010‒11 

cohort, golden perch. Green dashed line indicates the 87Sr/86Sr of the lower Darling River 

water(~0.7075–0.7076), blue dashed lines represent the range of 87Sr/86Sr in the lower River 

Murray water (~0.7086‒0.7147) and red dashed lines represent the range of 87Sr/86Sr in the 

mid River Murray water (Lock 11 ~0.7160‒0.7175). 
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Discussion 

Population demographics 

Data on population age structure are fundamental for fisheries management, including 

understanding how interventions, such as flow augmentation, influence populations (Berkley 

et al. 2004; Cowx and Van Zyll de Jong 2004). In 2010, the golden perch population in the 

lower River Murray was dominated (~70%) by a single age-class (4+ fish), That originated in 

association with a spring flow-pulse in the River Murray four years previously (late 2005). 

Although fish ranged in age from 0+ to 14+, the population was characterised by a 

depauperate age structure, with an absence of recruitment during an extended period (2001–

2009) of drought (hereafter the ‘Millennium Drought’)(Van Djik et al. 2013; Zampatti and 

Leigh 2013a). Long-lived freshwater fishes with periodic life histories, like golden perch, 

characteristically demonstrate large inter-annual variation in recruitment, and distinct 

cohorts may dominate populations for many years (Winemiller 2005). In regulated rivers, 

hydrological alteration and fragmentation, can compromise the demographic resilience of 

species with periodic life history traits (Olden and Kennard 2010), and climate variability, 

including drought, may further exacerbate this impact (Bond et al. 2015). As such, the 

appearance of a cohort of age 0+ golden perch in early 2010, during the later stages of the 

Millennium Drought, and in association with unprecedented low flows in the River Murray, 

was unexpected and, at the time, the provenance of these fish was unclear (Zampatti and 

Leigh 2013a). 

In subsequent years, several cohorts that emanated from years characterised by drought and 

overbank flooding, dominated the population (Zampatti and Leigh 2013b). Concurrently, 

older age classes declined and were absent by 2014. The mechanisms for this decline may 

include mortality and emigration. Golden perch can live for >20 years (Stuart 2006), so age-

related mortality is unlikely, but anoxic blackwater during flooding in 2011 may have affected 

survival (Leigh and Zampatti 2013; Thiem et al. 2017). Recreational fishing mortality also 

occurs but has not been quantified in the River Murray. Reproductively mature golden perch 

migrate upstream in the River Murray and Darling River (Reynolds 1983; Mallen-Cooper 1999; 

Zampatti et al. 2018), and movement rates of freshwater fish may increase in association with 

higher flows (Albanese et al. 2004). Indeed, investigations of the abundance and size-

structure of golden perch populations in the mid–upper reaches of the River Murray have 
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shown an influx of larger, adult fish, post-flooding (Lyon et al. 2019). In association with a 

decrease in reproductively mature age-classes in the lower River Murray, this suggests that 

upstream movement during floods may have substantial influence on population structure in 

donor and receiving populations. Given the fundamental roles of survival and movement in 

determining population structure, rates of mortality and movement for golden perch in the 

River Murray represent essential knowledge.  

Integrating water and otolith chemistry 

Spatial heterogeneity in water chemistry among rivers allowed the spatial origin and 

migration histories of fish to be determined. Catchment lithology and geological variation was 

sufficient to distinguish river water 87Sr/86Sr (Douglas et al. 1995; Gingele and De Deckker 

2005), although the lower River Murray showed substantial variation in water 87Sr/86Sr over 

4 years. Temporal variation in water 87Sr/86Sr is expected in rivers that receive inputs from 

heterogeneous sub-catchments or groundwater (Crook et al. 2013; 2016); nevertheless, 
87Sr/86Sr in the lower River Murray in 2011–2014 (~0.7086‒0.7147) was distinctly lower than 

the mid River Murray, primarily due to the influence of low 87Sr/86Sr water from the Darling 

River. Consequently, the lower and mid River Murray, and Darling River, exhibited distinctive 

isotopic signatures, and fish originating in, or moving between, these regions, were 

discernible based on otolith 87Sr/86Sr.  

Otolith chemistry revealed that golden perch from the lower River Murray were the progeny 

of spawning in either the River Murray or Darling River. Recruitment occurred during years 

characterised by within-channel rises in flow, in either river, or by extensive overbank 

flooding, across both catchments. Fish from the 2005‒06 year class, when there was an in-

channel rise in discharge in the River Murray, originated in the mid River Murray before 

transitioning to the lower River Murray. Relatively low otolith 87Sr/86Sr observed early in the 

fish’s lives suggests a natal origin in the lower reaches of the mid River Murray (i.e. the Lock 

11 region) and drifted as early-stage juveniles into the lower River Murray. During the same 

period, flows in the lower Darling River were negligible and unlikely to promote spawning and 

recruitment of golden perch. 
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From 2010 to 2014, golden perch from the 2009–10 year class formed the dominant cohort 

in the lower River Murray and these fish exhibited otolith core 87Sr/86Sr commensurate with 

a Darling River natal origin. In 2009–10, the River Murray was in the latter stages of the 

Millennium Drought (VanDijk et al. 2013), and low flows in the river were unlikely to promote 

golden perch spawning and recruitment (Zampatti and Leigh 2013a). In the Darling River, 

however, golden perch spawning was associated with a substantial increase in discharge (0 

to 11,000 ML.day-1). In early 2010, low abundances of 0+ golden perch (2009–10 cohort) were 

collected in the lower River Murray, but it was not until 2011 that these fish, as 1 year olds, 

contributed to a significant increase in golden perch abundance in this region (Zampatti and 

Leigh 2013b). All otolith 87Sr/86Sr transects from age 4+ (2009–10 cohort, n = 5) golden perch 

collected in the lower River Murray in 2014, demonstrated a distinct transition from the 

Darling River to the River Murray at age 1+, indicating movement between these rivers in 

association with wide-spread flooding in the River Murray and Darling River in 2010‒11.  

Flooding in 2010‒11, was also associated with an additional cohort of golden perch, that like 

2009–10 cohort, contributed substantially to the lower River Murray age structure over 

subsequent years (Zampatti and Leigh 2013b). Otolith 87Sr/86Sr analysis of this cohort 

indicated two potential natal origins, the Darling River and the lower River Murray. For fish 

with a Darling River origin, transects of otolith 87Sr/86Sr showed a transition in 87Sr/86Sr early 

in the fish’s life, indicative of movement from the Darling River to the River Murray. This 

suggests a lower Darling River natal origin and subsequent larval drift into the lower River 

Murray. The presence and progression of this cohort, in association with overbank flooding, 

accords with: 1) contemporary models of golden perch spawning and recruitment, whereby 

both flooding and in-channel flows may promote strong cohorts (Mallen-Cooper and Stuart 

2003; Zampatti and Leigh 2013b), and 2) concepts of increased productivity and ecosystem 

response in floodplain rivers, corresponding with flooding (Puckridge et al. 1998). 
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Dispersal and movement 

This study demonstrates that the Darling River is an important source of golden perch to the 

lower River Murray, with fish dispersing from natal habitats either in the year of birth, as eggs 

and early stage juveniles, or at age 1+, in association with high flows (flooding) in the Darling 

River and River Murray. The dispersal of eggs and early stage juveniles is mediated by the 

hydraulic characteristics of flowing water. Worldwide, fishes with pelagic early life stages are 

disadvantaged by fragmentation and flow regulation, with obligate downstream drift of early 

life stages interrupted by the physical and hydraulic impacts of dams and weirs (Dudley and 

Platania 2007; Perkin et al. 2015). The lower Darling River is unconstrained by weirs and 

characterised by lotic habitats for 100s of kilometres, even under low discharges (e.g. 

200 ML.day-1). These conditions may facilitate the development of golden perch eggs and 

larvae to a juvenile stage that can then tolerate the lentic, weir pool environments of the 

lower River Murray (Mallen-Cooper and Zampatti 2018). Comparative hydraulic conditions 

are re-established in the weir-pool constrained lower River Murray at discharges exceeding 

~20,000 ML.day-1, a discharge that has been shown to be a potential threshold for golden 

perch spawning and recruitment in this region (Zampatti and Leigh 2013a) 

Interactions between mainstem rivers and tributary streams are increasingly recognised as 

important determinants of riverine ecological function, particularly in regulated rivers where 

tributaries may retain native habitats and hydrological characteristics (Kiffney et al. 2006; Rice 

et al. 2008; Pracheil et al. 2013). For native fish populations, tributary spawning and rearing 

habitats, and mainstem-tributary movements, may confer benefits to mainstem fish 

populations and, in some cases, be integral to population persistence (Pollux et al. 2006; 

Pracheil et al. 2009). Certainly, in the case of golden perch in the southern MDB, population 

demographics in the lower River Murray are substantially influenced by interaction with the 

Darling River. The hydrological and hydraulic characteristics of the Darling River, and 

connectivity between the Darling River and lower River Murray, promote greater 

demographic resilience to golden perch populations in the lower River Murray than would 

occur if populations were dependent wholly on the River Murray. Rehabilitation of flow-

impacted rivers will benefit from considering mainstem-tributary interactions and their 

influence on to the spatial structuring and dynamics of fish populations (Galat and Zweimuller 

2001; Koster et al. 2014).  
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Whilst the importance of drift for early life stages (eggs and larvae) of riverine fish is 

increasingly considered (Lechner et al. 2016), the downstream movement of juvenile fish (e.g. 

age 1+ and 2+) has received less attention; although the downstream migration of juvenile 

diadromous salmonids (smolts) has been extensively studied (e.g. McDonald 1960; 

McCormick et al. 1998). In this study, the flood-mediated downstream movement of age 1+ 

golden perch from the Darling River had a substantial influence on population structure in the 

lower River Murray. Flooding has been shown to displace juvenile and small-bodied 

freshwater fish, and increase active movement, with subsequent impacts on assemblage 

structure (Albanese et al. 2004; Walton et al. 2017). Nevertheless, for iteroparous, 

potamodromous, non-salmonid fishes, there is a paucity of studies considering the flood-

associated downstream dispersal of juvenile fish and the influence of these movements on 

receiving population dynamics (Kraabol et al. 2009). This process, which may be a 

fundamental driver of riverine fish population dynamics in large floodplain rivers, warrants 

further investigation. 

Management implications and conclusions 

Knowledge of the demographics of populations, including variability through space and time, 

is essential to understanding the stability and resilience of populations (Winemiller 2005; Kerr 

et al. 2010). For many of the world’s riverine fish, however, basic age structure data are 

deficient, thus impeding conservation (Reynolds et al. 2005). In Australia’s MDB, 

contemporary demographic data for most riverine fishes has been lacking, and despite a 

motivation to improve native fish populations (Barrett 2004), demographic targets have not, 

until recently (e.g. Commonwealth Environmental Water Office 2016), formed part of 

population monitoring or management. 

Critical to managing fish populations, is an understanding of the processes that determine 

population structure. In this study, we used the chemistry of otoliths as a natural tag to 

investigate natal origin and trace the movements of larval, juvenile and adult fish, an 

ontological approach not possible with traditional mark-recapture or telemetric techniques 

(Gillanders 2005). The findings of this study support Zampatti and Leigh (2013b) who 

suggested that a dominant cohort of golden perch in the lower River Murray, spawned during 

a drought, actually originated in the Darling River. They also support the premise that 

spawning and recruitment of golden perch in the lower River Murray does not generally occur 
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in low spring–summer flow years (e.g. <15,000 ML.d-1; Zampatti and Leigh 2013a). 

Nevertheless, conspicuous cohorts of golden perch in the lower River Murray, may align with 

low-flow years, due to immigration from disparate regions that have experienced appropriate 

hydrological conditions to promote spawning and recruitment. This complex structuring of 

populations, that incorporates spatio-temporal variability in population processes and 

associated environmental drivers, highlights the importance of considering the range of 

factors that may influence population structure (e.g. spawning, recruitment and movement), 

to effectively manage riverine fish populations.  

In the Murray-Darling Basin, the movement of reproductively mature golden perch between 

river catchments has long been recognised (Reynolds 1983), and contemporary genetic 

studies indicate high rates of dispersal and genetic diversity (Faulks et al. 2010). Nevertheless, 

golden perch are traditionally managed as individual jurisdictional stocks. In concert with 

previous studies, the results of this study suggest that golden perch, at least in the southern 

MDB, need to be managed holistically as one meta-population (stock) over a large spatial 

scale (1000s km). Furthermore, whilst within-channel flow pulses and overbank floods may 

both promote golden perch recruitment (Mallen-Cooper and Stuart 2003; Sharpe 2011; 

Zampatti and Leigh 2013a), it appears that large-scale flooding is an important driver of 

population growth, facilitated by: 1) localised spawning and recruitment, and 2) dispersal of 

early life stages and juvenile fish (e.g. age 1+), from disparate regions.  

Concepts of provenance and migration form essential questions for understanding population 

dynamics and the management of freshwater fishes (Kennedy et al. 2002; Brennan et al. 

2015). Ultimately, to promote population persistence, research and management need to be 

undertaken at scales commensurate with population processes. This study has shown that 

integrating water and otolith 87Sr/86Sr enables determination of spawning regions and the 

age-related movement of a migratory, pelagic-spawning fish. This approach has broad utility 

for understanding the ecology and population dynamics of riverine fishes, and providing 

insight into the processes that structure populations, the scales over which these operate and 

associated environmental conditions.  
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Movements of golden perch are known to vary
from strong home-range fidelity (Crook 2004a;
Koehn & Nicol 2016) to large-scale up- and down-
stream migrations of thousands of kilometres (Rey-
nolds 1983; O’Connor et al. 2005). The migratory
nature of golden perch is well recognized (Allen
et al. 2002; Barrett & Mallen-Cooper 2006), partic-
ularly the occurrence of long-distance upstream
migrations in association with elevated river flow
(Reynolds 1983). Nevertheless, data from the tag-
recapture study of Reynolds (1983) indicate only
5% of recaptured fish moved >200 km upstream
and 1% moved >1000 km. Furthermore, although
long-distance movements in spring and early sum-
mer are proposed to be associated with spawning,
and early life-stages of golden perch are collected in
the river channel, data linking spawning with move-
ment are rare (Reynolds 1983; O’Connor et al.
2005). More recently, however, Koster et al. (2017)
associated golden perch movement with the spatio-
temporal presence of eggs and larvae in a tributary
of the River Murray.
Previous telemetric studies of the movement and

habitat use of golden perch have been conducted in
the lotic mid-reaches or tributaries of the River Mur-
ray and Darling River (e.g. Crook 2004a,b; O’Con-
nor et al. 2005, 2006; Koster et al. 2014; Koehn &
Nicol 2016; Marshall et al. 2016). None have been
undertaken in the hydrodynamically distinct lower
River Murray, where 10 low-level (3 m) weirs and
five tidal barrages form serial impoundments over
830 km of river, from the Darling River confluence
to the River Murray mouth (Walker 2006). These
hydraulically distinct and fragmented reaches of the
lower River Murray may modify fish behaviour and
impede movement.
Telemetry is a useful method for monitoring fish

movements (Lucas & Baras 2000; Jellyman 2009),
but it can be logistically difficult and costly when
applied at broad scales (Lucas & Baras 2001), thus
may limit the spatial and temporal scope of a study.
Combinations of techniques may provide more
extensive coverage and yield more accurate data to
inform models of population dynamics (Bridger et al.
2001; Lowe 2003; Gilroy et al. 2010). This study
employed radio-telemetry and PIT tags to investigate
the movements of adult golden perch in anabranch
and main channel habitats of the lower River Mur-
ray. The objectives of the study were to (i) describe
the movement patterns of golden perch in relation to
flow and season in the serially impounded lower
River Murray, and (ii) contrast these to movement
patterns observed in previous studies in the lotic
reaches of the mid River Murray. We expected that
golden perch would display individual variability in
movement behaviours ranging from site fidelity to
long-distance migration. When long-distance

movements did occur (upstream and/or downstream),
we expected that this behaviour would be associated
with increased river flow in spring/summer.

Study area

The Murray Darling Basin (MDB) extends over
1 073 000 km2 and the combined length of the
two major rivers is ~5500 km. The Basin is largely
arid to semi-arid, and in a global context, runoff
and discharge generally are low, but highly variable
(Puckridge et al. 1998). Flows in the system are
regulated by diversions and headwater dams, weirs,
offstream regulators, floodplain levees and river-
mouth barrages, and on average only ~36% (4915
GL) of the natural mean annual discharge (12 300
GL) now reaches the sea (Walker 2006). The
lower River Murray extends from the Darling River
confluence to the river mouth and is dominated by
a series of 10 low-level (3 m) weirs, constructed in
1922 1936, that form contiguous lentic weir pools
(29 88 km long) (Walker 2006) (Fig. 1). Each weir
incorporates a lock to facilitate boat passage, and
the lock and weir structures in combination are
generally referred to as ‘Locks’. Since 2002, the
weirs have progressively been retrofitted with fish-
ways that effectively facilitate the upstream passage
of the whole migratory fish community, including
golden perch (Barrett & Mallen-Cooper 2006; Stu-
art et al. 2008).
Golden perch movement was investigated in the

River Murray channel and in the Chowilla Ana-
branch system (hereafter ‘Chowilla’), adjacent to
Lock 6, about 620 river-km from the river mouth
(Fig. 1). Chowilla is a diverse complex of creeks,
backwaters, billabongs and lakes situated in the
‘floodplain’ geomorphic region of the lower River
Murray, South Australia (O’Malley & Sheldon
1990). Due to the 3-m head differential created
by the weir at Lock 6, up to 90% of low flows
(<10 000 ML day�1) are diverted through Cho-
willa, maintaining permanent lotic habitats in a
region where these have become rare. Chowilla is
part of a Wetland of International Importance under
the 1971 Ramsar Convention and is recognized as
an Icon Site under the Murray Darling Basin
Authority’s (MDBA) The Living Murray Program
(TLM) (MDBA 2016). Nevertheless, the region
has been degraded by changes to the river flow
regime, salinization, overgrazing and drought.
Management interventions including environmen-
tal watering, offstream weir construction to aid
artificial floodplain inundation, and mitigation of
barriers to fish movement, have been imple-
mented to address declines in native fish species
in the region (MDBC 2016).
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musculature forward of the dorsal fin and a dart tag (PDL
or PDXL: Hallprint, Victor Harbor, SA, Australia) was
positioned between the dorsal pterygiophores to enable
external visual identification and reporting by anglers. Fol
lowing recovery, fish were released at their capture location.

Fish tracking

Five fixed logging stations (ATS radio receiver/loggers) were
installed on major tributaries of Chowilla Creek and its junc
tion with the River Murray (Fig. 1). Each fixed logging sta
tion constantly scanned preprogrammed radio tag
frequencies. Three Yagi antennas were positioned on each
station: one upstream, one downstream and one in the
direction of the tributary. The presence of a tagged fish in
the vicinity of an antenna was recorded automatically as a
frequency (Fish ID), antenna number, date and time, and
signal strength, indicating the direction of movement.

Golden perch were also tracked manually by boat every
2 4 weeks between August 2005 and August 2007, using a
three element Yagi antenna and an ATS radio receiver/log
ger (model RC4500C). Regular tracking was undertaken
throughout the Chowilla anabranch system and up to
20 km upstream and downstream of Lock 6 in the River
Murray. On occasion, individuals were manually tracked as
far as 83 km upstream of Lock 6 (i.e. Lock 7). Radio sig
nals could be detected from approximately 600 m, and
once a fish was detected, the area of greatest signal strength
was located and recorded by GPS. Trials with hidden
transmitters indicated that they could be located consis
tently to within 2 m2.

Broader upstream movements of fish that exited Chow
illa were identified by interrogating data from PIT tag
reader systems on fishways at Lock 7 10 on the River Mur
ray (Barrett & Mallen Cooper 2006; Fig. 1). At the time of
the study, Lock 11 did not include a fishway and was
impassable to golden perch (other than via the navigation
lock itself).

Movements were categorized based on the total linear
range (i.e. distance (river km) between the most upstream
and downstream locations for each individual fish) and
macrohabitats (i.e. main river channel, anabranch creeks or
backwaters) occupied during the 24 month study.

Data analysis

To test the premise that emigration from Chowilla and
long distance movement would be associated with increasing
flow in spring/summer, relationships between the initiation
of long distance movement and potential environmental dri
vers were assessed using Generalized Linear Mixed Models
and Template Model Builder (glmmTMB, October 26,
2017) (Brooks et al. 2017) in R version 3.4.2 (2017 09 28).
Individuals were deemed to have initiated a ‘long distance
movement’ when they were detected moving from home
ranges and exiting Chowilla by remote logging stations,
and were subsequently detected upstream in the River
Murray by manual tracking and/or on PIT readers at
Locks 7 10.

The GLMMs were fitted using maximum likelihood and
the Laplace approximation, and a binomial distribution
with a log link. Individual tagged Fish ID was assigned as a
random effect to account for behavioural variability
between tagged individuals. Explanatory variables included
in the GLMMs were: (i) day of year (Julien day); (ii) sea
son; (iii) mean daily Chowilla Creek water temperature
(°C); and (iv) flow, which was represented in the GLMMs
in four different ways. Firstly, parameters were included for
River Murray and Chowilla Creek flow. Secondly, flow at
each location was represented as mean daily flow and per
cent change in daily flow (i.e. average daily flow over the
previous 5 days as a percentage of the average daily flow
over the previous 10 days). Flow and water temperature
data for analyses were sourced from hydrographic monitor
ing stations in Chowilla Creek (A4260535 and A4261091)
and the River Murray (A4261001) www.waterconnect.
sa.gov.au).

Candidate models, including the dependent variable of
initiation of movement (emigration) were fitted with combi
nations of explanatory variables, ranging from the full
model with all predictors included, to single term fits.
Model fits and their Akaike information criteria (AIC) were
compared to those of the null model, for example,
~1 + 1│Fish ID. Final model selections (eight candidate
models) were based on the magnitude of differences
(ΔAIC) between the null model and the best model fit with
the smallest AIC (Burnham & Anderson 2002; Zuur et al.
2009).

RESULTS

Movement patterns

Data on the individual movement patterns of the 52
tagged fish were collected over 96 680 days (mean �
SD: 418 � 145 days) between August 2005 and
August 2007. There was no evidence of mortality
immediately post-tagging, but the tags of two fish
commenced emitting mortality signals at 246 and
392 days post-tagging (Table 1). Given the time that
had elapsed since tagging, we suggest this was most
likely due to tag rejection, or potentially natural mor-
tality.
Movements by golden perch over the study period

could generally be grouped into three distinct cate-
gories:
1. Site fidelity within Chowilla (total linear range 0

2 km),
2. Small- to medium-scale movements within Chow-

illa and the adjacent River Murray (total linear
range 2 22 km), and

3. Long-distance unidirectional movements upstream
in the River Murray (total linear range 33
270 km).

Most (94%, n = 49) golden perch exhibited site
fidelity and limited movements for periods of 2
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24 months. Continued site fidelity (i.e. residency)
was exhibited by 19 golden perch, which moved
<2 km from their release location throughout the

study period (Table 1 and Fig. 2a). Site fidelity was
also characteristic of fish prior to and/or following
small- to medium-scale movements within Chowilla

Table 1. Biological and movement details for the 52 golden perch tracked in this study. Fish are grouped into three move
ment types: 1) site fidelity (F), 2) small medium distance (S M), and 3) long distance (L D). Sex: male (M), female (F). Fate
at the end of the study: living (L), captured by an angler (A), mortality signal (M), missing (MI)

Movement type
(F, S M, L D) Total linear range (km) Length (mm) Weight (g) Sex Time at liberty (days) Fate (L, A, M, MI)

F 0.00 432 1168 M 336 L
F 0.00 364 658 F 605 L
F 0.00 362 572 F 680 L
F 0.11 429 959 F 393 L
F 0.12 379 700 F 420 L
F 0.13 387 732 F 510 L
F 0.14 415 1014 F 337 L
F 0.28 446 1299 F 540 L
F 0.50 397 742 F 392 M
F 0.55 355 570 F 420 L
F 0.60 449 1206 F 359 L
F 0.62 420 1015 F 671 L
F 0.66 407 901 F 143 MI
F 1.00 351 648 F 360 L
F 1.00 409 940 M 603 L
F 1.10 384 818 F 622 L
F 1.16 376 780 F 483 L
F 1.25 370 780 F 358 L
F 1.40 450 1308 F 246 M
S M 2.28 410 950 M 673 L
S M 2.40 380 735 F 392 L
S M 3.00 390 745 F 533 L
S M 3.47 400 873 F 358 L
S M 4.85 387 813 F 393 L
S M 5.17 367 669 F 510 L
S M 7.35 373 724 F 121 A
S M 7.60 360 591 F 547 L
S M 7.80 485 1754 M 358 L
S M 8.20 381 749 F 426 L
S M 10.22 365 659 F 536 L
S M 10.70 367 865 F 154 L
S M 13.07 395 828 F 545 L
S M 14.47 393 822 F 515 L
S M 16.10 394 897 F 220 MI
S M 18.10 385 824 M 547 L
S M 21.20 396 1031 F 186 L
S M 21.50 397 947 F 467 A
L D 33.20 357 641 F 551 A
L D 81.75 408 941 F 464 L
L D 92.80 354 634 F 402 L
L D 149.15 396 915 F 414 L
L D 150.30 360 666 F 474 L
L D 151.35 382 786 F 96 L
L D 153.85 381 835 F 452 L
L D 155.00 397 769 F 468 L
L D 191.30 400 895 F 402 L
L D 199.40 400 930 F 302 L
L D 208.60 423 1025 307 L
L D 214.26 422 1081 M 359 A
L D 264.50 380 790 F 496 A
L D 266.00 421 1041 M A
L D 271.60 438 1216 F 173 A
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downstream movements were detected by remote log-
ging stations, manual radio-tracking or PIT readers on
fishways during the period of this study.
There was no difference (Student’s t = 0.28,

df = 50, P = 0.39) between the mean sizes (LT) of
fish that undertook long-distance upstream move-
ments and those that remained at Chowilla. Further-
more, the ratio of males to females that moved
upstream (2:12) and those that remained at Chowilla
(6:31) were similar.
The model best explaining initiation of long-dis-

tance upstream movement of radio-tagged golden
perch (DAIC = 11.3) included the explanatory vari-
ables, day of year (coeff = 0.005, P = 0.031) and
mean daily Chowilla Creek water temperature (co-
eff = 0.264, P = 0.005) (Table 2). Movements out of
Chowilla and upstream in the River Murray were
undertaken by fish during the austral summer in
2005 2006 and through late spring summer in 2006
2007, and despite water temperature varying 10 27°C
across the study, upstream movements only occurred
at temperatures >17°C (Fig. 3). The next best model
(DAIC = 9.5) included day of year, mean daily water
temperature in Chowilla Creek and per cent change in
daily flow in Chowilla Creek indicating that short-
term (days weeks) flow variability was also associated
with migration. For those fish migrating from Chow-
illa, per cent change in flow ranged �6 +7% demon-
strating movement in association with increasing,
decreasing and relatively stable flow (Fig. 3).

DISCUSSION

Adult golden perch displayed movement types that
could be assigned to three categories: (i) site fidelity
characterized by small-scale (<2 km) bidirectional

activity, (ii) small- to medium-scale bidirectional
movements (2 22 km) including potential explora-
tory behaviour and the establishment of new home
ranges, and (iii) rapid, unidirectional, long-distance
movements (33 270 km). These movements may
correspond to foraging, ranging and migration (Dingle
& Drake 2007) and during the course of our study
some golden perch displayed all three behaviours.
Importantly, the approach of using both radio trans-
mitters and PIT tags enabled the elucidation of these
multiscale movements that would have otherwise
been unresolved with the use of single methods. We,
therefore, advocate the use of multiple techniques,
across appropriate temporal scales, to investigate the
movement and population dynamics of fishes across
riverscapes (Fausch et al. 2002).
Extended periods of site fidelity are common

among freshwater fishes, even those that display
long-distance spawning migrations (e.g. Colorado
pikeminnow, Ptychocheilus Lucius) (Irving & Modde
2000). Limited movement and site fidelity are char-
acteristic traits of golden perch in the mid-reaches of
the River Murray and its tributaries (Crook 2004a;
O’Connor et al. 2005; Koehn & Nicol 2016) and in
the current study, nearly all golden perch exhibited
site fidelity and limited movements for periods of 2
24 months. Indeed, 19 fish maintained their home
site throughout the time their tags were active, which
included a spawning season (spring summer) and a
small flow pulse in spring/early summer (2005
2006).
Ten fish that initially exhibited site fidelity and

occupied small home ranges undertook small- and
medium-scale movements and subsequently returned
to their original range or, alternatively, selected new
sites. The movements of these fish were consistent with
a ‘home-range shift’ (HRS) model (Crook 2004b), and

Table 2. Model selection results comparing the effects of explanatory environmental variables on the initiation of long dis
tance movements (i.e. emigration from Chowilla) of individual golden perch (FISH ID). The top ranked model (lowest AIC
compared to null model, greatest DAIC) is shown in boldface. Variables in the models were represented by: DOY = day of
year, SEAS = season, TEMP CHOW = mean daily water temperature in Chowilla Creek, %CHFLOW RM = percentage
change in flow in River Murray (average daily flow over the previous 5 days as a percentage of the average daily flow over the
previous 10 days), %CHFLOW CHOW = percentage change in flow in Chowilla Creek

Model AIC DAIC Deviance
Log

likelihood

Null model 182.1 178.1 �89.0
DOY* + TEMP-CHOW** + FISH-ID 170.8 11.3 162.8 �81.4
DOY* + %CHFLOW CHOW + TEMP CHOW** + FISH ID 172.6 9.5 162.6 �81.3
DOY* + %CHFLOW RM + TEMP CHOW** + FISH ID 172.8 9.3 162.8 �81.4
SEAS + TEMP CHOW** + FISH ID 173.3 8.8 165.3 �82.7
DOY + %CHFLOW RM* + %CHFLOW CHOW + TEMP CHOW** + FISH ID 174.5 7.6 162.5 �81.2
SEAS + %CHFLOW RM + TEMP CHOW** + FISH ID 175.1 7.0 165.1 �82.6
SEAS + %CHFLOW CHOW + TEMP CHOW** + FISH ID 175.1 7.0 165.1 �82.6
SEAS + %CHFLOW RM + %CHFLOW CHOW + TEMP CHOW** + FISH ID 177.1 5.0 165.1 �82.5

*The significant variables in each model, where ** = P < 0.01 and * P < 0.05.
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risk, and accessing resources at novel sites may
require individuals to trade-off the security of a
known site with the potential risk of increased mor-
tality (Brodersen et al. 2008). Consequently, chang-
ing environmental conditions and the availability of
resources may contribute to heterogeneity in individ-
ual behavioural responses.
The high proportion of fish exhibiting localized

movements, including site fidelity, home-range shift
and ranging, appears unusual for a species that by
reputation, is considered migratory. Previous studies
with tags (Reynolds 1983) or in fishways (Mallen-
Cooper 1999) have tended to highlight the migratory
individuals, but contemporary movement models for
golden perch suggest a range of behaviours (Koehn
& Crook 2013). Individual variation in movement is
a common characteristic of riverine fishes (Lucas &
Baras 2001; Chapman et al. 2012), and like many
other freshwater fishes, golden perch populations
may also include less mobile or nonmigratory contin-
gents. This is indicated by our results and has been
demonstrated for golden perch in an intermittent
dryland river in the northern MDB (Marshall et al.
2016).
All golden perch that exited Chowilla in an

upstream direction and entered the River Murray
(29% of tagged fish) did so following the same route,
despite the presence of multiple alternative pathways.
In varied hydrodynamic environments, migrating fish
navigate using complex hydraulic cues (e.g. spatial
velocity gradients; Nestler et al. 2008), and in the
current study, the route chosen by out-migrating
golden perch followed the path of greatest discharge
and water velocity (DEWNR, unpublished data).
Consequently, manipulation of discharge (e.g. by
weir operations), through creeks in Chowilla and
elsewhere in the MDB, may influence the route taken
by migrating fish.
Golden perch undertaking long-distance upstream

migrations moved as far upstream as possible in the
River Murray before encountering Lock 11, which
lacked a fishway at the time of this study. Rates of
movement were rapid and comparable to those
observed by O’Connor et al. (2005) in the middle
reaches of the River Murray, suggesting that fish
were undertaking a more purposeful movement than
simple ranging. The fish accumulated in the tailwater
at Lock 11 and were subject to substantial angling
mortality (cf. Gehrke et al. 2002). Movement is
inherently risky and may increase the incidence of
individual mortality (Alerstam et al. 2003). In anthro-
pogenically modified rivers, this risk is exacerbated
by regulating structures (e.g. dams and weirs) that
impede movement, thus delaying migration and
increasing the incidence of angler-induced mortality.
Impacts on the individual can have population level
outcomes, and for golden perch, barriers to

movement are considered a primary cause of popula-
tion decline (Lintermans 2007). Effective fish passage
that minimizes migratory delay may assist in mitigat-
ing these impacts and assist in rehabilitating fish pop-
ulations (Castro-Santos & Haro 2003).
Radio-tagged golden perch in the middle reaches

of the Murray undertake long-distance up- and
downstream movements in spring, in association
with within-channel increases in flow (5000
25 000 ML day�1), while large numbers of adults
commonly move upstream through fishways (Mallen-
Cooper 1996; O’Connor et al. 2005). These move-
ments are generally considered to be spawning
related (Reynolds 1983; Mallen-Cooper 1996;
O’Connor et al. 2005), as golden perch spawn pela-
gic eggs in the river that hatch as drifting larvae in
spring summer, when there are warmer water tem-
peratures and increased flow (Lake 1967; King et al.
2009; Zampatti & Leigh 2013).
While our modelling results support the notion of

increased movement during spring/summer, when
water temperatures are elevated, there was limited
evidence of elevated discharge stimulating movement.
Indeed, long-distance upstream movements were ini-
tiated during periods of both stable low flow and
small in-channel flow pulses. Furthermore, these
movements occurred post the collection of larval
golden perch in the lower River Murray in 2005, and
in 2006 when no larval golden perch were collected
and recruitment of a young-of-year cohort was absent
(Zampatti & Leigh 2013). Consequently, seasonal
long-distance upstream movements of golden perch
may not necessarily be associated with spawning, at
least in the short term (i.e. the year of movement).
Stimuli for fish migration are diverse and often

species-specific, and may include both external (i.e.
environmental) and endogenous factors (cf. McMa-
hon & Matter 2006). While our study suggests, in
concurrence with others (e.g. O’Connor et al. 2005),
that golden perch movements are more likely at cer-
tain times of year and at water temperatures above a
threshold, this temporal period is broad (September
February). Additionally, while there was some sup-
port for flow variability (not flow magnitude) con-
tributing to initiation of migration, this was minor in
the context of the overall hydrological regime (Puck-
ridge et al. 1998). As such, we found little evidence
of migrations being stimulated by fine temporal scale
environmental cues. This does not preclude environ-
mental factors being associated with migration, but
raises the question of potential endogenous cues (e.g.
sexual maturity/age). Both males and females under-
took long-distance movements, and there was no dif-
ference in mean size (LT) between migratory and
nonmigratory individuals. This does not exclude pos-
sible age differences, however, as length is an unreli-
able indicator of age, and hence sexual maturity in
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golden perch (Anderson et al. 1992). The role of
endogenous factors in promoting long-distance
upstream migrations of golden perch awaits further
research.
Long-distance upstream movements were not accom-

panied by corresponding downstream homing move-
ments, unlike migratory golden perch in the free-flowing
middle reaches of the Murray (O’Connor et al. 2005).
While anglers caught five upstream migrants, the
remaining 10 upstream migrants were not subse-
quently detected downstream during the course of the
study. Low-level weirs (~3 8 m) can constitute an
obstacle to the downstream homing movements of
fishes (Ovidio & Philippart 2002), and has been
demonstrated for golden perch in the mid River Mur-
ray (O’Connor et al. 2006). In the lower River Murray
in particular, serial weirs may form a substantial
impediment to the downstream movement of fishes,
and while the construction of fishways on these weirs
has facilitated the upstream movement of migrating
fish (Barrett & Mallen-Cooper 2006), they provide
limited downstream passage (Baumgartner et al.
2014). As such, the fate of downstream migrants and
the facilitation of bidirectional fish passage warrant
further investigation.
The River Murray is over 2500 km long and the

impacts of river regulation vary along its length
(Walker 1985, 2006). Our data and previous studies
suggest that the movement patterns of golden perch
may also vary within and among regions of the
MDB. Flexible behaviour is common in freshwater
fishes, and is well documented for northern hemi-
sphere salmonids, pike (Esox lucius) and sturgeon
(Lucas & Baras 2001; Hodder et al. 2007; Watry &
Scarnecchia 2008). Indeed, partial migration, or the
existence of contingents with various migration
strategies, is recognized in many species of freshwater
fishes (Chapman et al. 2012). Such strategies enable
species and populations to persist in variable environ-
ments by buffering the effects of adverse environmen-
tal conditions and promoting resilience. In the highly
regulated MDB, the occurrence of a range of migra-
tion strategies in golden perch populations may well
promote some level of population maintenance in a
hydrologically homogenized and anthropogenically
fragmented environment.
To be effective, conservation strategies for golden

perch should be underpinned by life history models
that account for the spatio-temporal variability
observed in behaviour, including site fidelity, explora-
tory movements and home-range shift, potential
large-scale spawning migrations and homing beha-
viour, and large spatial-scale emigration. Of merit
would be further research that investigates the abiotic
and biotic drivers of movement behaviour. This
knowledge would also strengthen the conceptual
underpinnings of contemporary population dynamics

models, a fundamental tool for conservation and
management (Shenton et al. 2012; Bond et al. 2015)
Ultimately, species conservation relies on an

understanding of the processes that drive population
dynamics. As such, it is imperative to understand the
spatio-temporal scale of the life history of fish, and
design and implement management strategies at
these scales (Fausch et al. 2002; Kraabøl et al. 2009).
The high spatio-temporal variability in golden perch
behaviour and movement emphasizes the potential
need for river-scale approaches to the management of
migratory fishes, at scales that are relevant to the life
histories of fish and not constrained by human per-
spectives of artificially delineated sites or state
boundaries.
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CHAPTER 6: General Discussion 

A new generation: age 0+ golden perch collected in the lower River Murray 
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General Discussion 

Striking a balance between water security for human needs and the maintenance of aquatic 

ecosystem integrity is one of the great challenges of modern society (Richter et al. 2003; 

Vorosmarty et al. 2010). Whether to restore facets of a river’s native flow regime (Poff et al. 

1997) or create novel ecosystems (Acreman et al. 2014), there remains a pressing need to 

understand the ecology and population dynamics of aquatic biota. Ultimately, this knowledge 

will inform trade-offs and aid planning for future scenarios (e.g. climate change) (Poff and 

Matthews 2013; Arthington et al. 2018). 

Knowledge of population structure and dynamics is essential to understanding the stability and 

resilience of populations. Age demographic data form a basic premise of marine fisheries 

management (e.g. Hilborn and Walters 1992), yet are scarce for many of the world’s riverine 

fishes (Reynolds 2005; Cooke et al. 2012). These data, along with autecological knowledge, are 

integral to progressing the management and conservation of riverine fishes (Shenton et al. 2012; 

Crook et al. 2015). 

In Australia’s Murray-Darling Basin, native fish populations have declined markedly (Barrett, 

2004), but few studies have considered the age demographics and dynamics of populations 

(although see Anderson, et al. 1992; Rowland 1998; Mallen-Cooper and Stuart 2003; Crook et al. 

2016) and demographic targets seldom form part of monitoring or fisheries management. An 

understanding of these factors, however, is critical to inform management and measure 

population response to conservation initiatives (e.g. environmental flows). 

In this thesis, I have explored the population structure and dynamics of the migratory pelagophil, 

golden perch, in the flow regulated and fragmented River Murray, in an effort to understand how 

flow and connectivity influence population dynamics. Specifically, I characterised temporal 

variability in age demographics over a period of hydrological extremes (drought–flood), then to 

understand the processes promoting these temporal patterns, I investigated spawning, 

recruitment and movement. Here, I integrate and discuss the findings of my research, including 

their utility for the management and conservation of riverine fishes, and provide directions for 

future research. 
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Spawning, recruitment and age-structure 

From 2001 to 2010, the Murray-Darling Basin (MDB) experienced one of the most severe 

droughts in recorded history (van Dijk et al. 2013). From 2005–2010, flows in the River Murray 

system were approximately 40% below average and insufficient to inundate floodplains. In late 

2010, the drought was broken with widespread flooding across the southern MDB. Chapters 2 

and 3 of this thesis investigated the spawning, recruitment and age demographics of golden 

perch in the lower River Murray over this period.  

Throughout the Millennium Drought, the age structure of golden perch in the lower River Murray 

was characterised by intermittent recruitment and the dominance of a few specific cohorts. 

These distinct cohorts were predominantly recruited prior to the drought in association with 

overbank floods or increased flow contained within the river channel. Episodic recruitment is a 

defining characteristic of fishes with periodic life histories, where extended periods of poor 

recruitment are punctuated by specific strong cohorts that persist in the population (Winemiller 

and Rose 1992; Kraus and Secor 2004). In flow-regulated rivers, this demographic pattern is 

exacerbated (Olden et al. 2006). For example, in the coastal river basins of north-eastern 

Australia, golden perch exhibit disparate recruitment patterns between regulated rivers and 

those retaining more natural flow regimes, whereby recruitment is more consistent in the later 

(Roberts et al. 2008). In extreme cases, extensive river regulation may preclude the recruitment 

of pelagic spawning fishes, leading to their demise (Copp 1990). 

A broad age structure promotes resilience to environmental perturbations (Berkeley et al. 2004) 

and may improve spawning outcomes and future recruitment (Secor 2000). In marine 

ecosystems, overfishing can curtail age-structure diversity (Marteinsdottir and 

Thorarinsson 1998; Hsieh et al. 2010), and for riverine fishes, river regulation in its various forms 

may have a comparable effect (Winemiller 2005: Reynolds et al. 2005; Olden et al. 2006). During 

the decade-long Millennium Drought, only one cohort of golden perch entered the lower Murray 

population. This cohort was the product of spawning associated with a spring flow-pulse in 2005. 

In all other years, characterised by depressed flows and the absence of spring flow-pulse, 

recruitment was absent.  
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An annual spring flow-pulse was a predictable hydrological characteristic of the un-

regulated River Murray, and is now one of the most impacted flow components in the 

regulated river (Maheshwari et al. 1995; Mallen-Cooper and Zampatti 2018; Chapter 2 this 

thesis). The loss of this annual characteristic of the hydrograph likely compromises the 

demographic resilience of golden perch and other riverine biota in the lower River Murray 

and as such, its re-establishment should be a priority for environmental water 

management (Mallen-Cooper and Zampatti 2018). Indeed, restoration of this 

distinct hydrological characteristic is within the realms of current environmental water 

availability and management (CEWO 2016).  

Golden perch relative abundance in the lower River Murray was consistent throughout 

the Millennium Drought, but increased significantly post flooding (Chapter 3). Ecological 

extremes, such as floods and droughts, can exert a major influence on the structure and 

function of riverine ecosystems (Lake 2000). Low-flow events in rivers characteristically lead to 

the reduced survival, recruitment and abundance of freshwater fishes (Jowett et al. 2005; Poff 

and Zimmerman 2010). Golden perch abundances throughout the Millennium Drought were 

low, but relatively stable, potentially due to the recruitment event in 2005 offsetting mortality 

and emigration of older age classes. 

Despite a depauperate age structure at the end of the Millennium Drought, population 

growth of golden perch in association with flooding in 2010 was rapid and substantial. This 

response superficially supports the flood-pulse model (Junk et al. 1989), where flooding 

promotes high abundances of biota in floodplain and riverine environments, due primarily to 

reproduction and recruitment driven by floodplain derived energy. This classic concept, 

however, may be more applicable to tropical rivers (e.g. Dutterer et al. 2012) than 

rivers in temperate regions (Humphries et al. 1999). In the lower River 

Murray, significant growth in the golden perch population was promoted by age 0+ 

and 1+ fish, recruited during the flood and in the year prior, respectively, thus in part 

supporting the flood pulse model. Yet approximately 50% of the population 

sampled post-flooding was age 1+ fish that were absent from the population as age 0+ 

the year prior (2009–10), indicating that immigration was also a substantial driver of 

population growth. In Chapter 3 of this thesis, I proposed that the age 1+ fish may have   
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originated in the Darling River (the major tributary of the River Murray) in association with a 

high flow event in 2009–10, that was absent in the River Murray, and then dispersed to 

the lower Murray in association with widespread flooding in 2010-11. I explored this 

hypothesis in Chapter 4.   

Flooding was associated with substantial recruitment of golden perch to age 0+, 

demonstrating the capacity of fishes with periodic life histories to respond to episodic events 

that promote high survival of early life stages. In the case of golden perch, this occurred 

even when the extant population was characterised by limited and ageing year 

classes. For periodic species, recruitment variability goes hand-in-hand with longevity, 

which enables populations to persist over long periods (multiple years) of poor recruitment 

and recruitment failure (Secor 2000; Winemiller 2005). A proposed mechanism for this is 

the storage effect, where stored egg production, across multiple age-classes of long-lived 

fishes, can promote rapid population growth when conditions are favourable for the survival 

of early life stages (Secor 2007). It is notable, however, that at the end of the Millennium 

Drought, the lower Murray golden perch population was dominated (~70%) by age 4+ fish, that 

had likely just entered reproductive maturity, and low proportions (<10%) of fish aged 9+ and 

greater. Consequently, even with what may be regarded as a population with low 

demographic resilience and potentially limited storage effect, population growth was 

rapid.  

In this thesis, I have demonstrated that high abundances of a periodic fish species post 

flooding may be due to the combined effects of flood mediated: 1) recruitment and 2) 

immigration of juvenile fish spawned in an alternative location the year prior. Depending on 

the longevity of fishes, the influence of these processes may persist as distinct cohorts in 

the demographics of the broader metapopulation for many years (Winemiller 2005). In the 

case of golden perch in the lower River Murray, the cohorts that promoted population growth 

post flooding remained prominent for at least five years, at which point our study ceased, but 

have subsequently persisted much longer (Zampatti et al. 2018). This response is analogous to 

that of water birds in the arid Lake Eyre Basin of Central Australia where rare large floods 

may promote breeding events and recruitment, and maintain population abundance across 

landscapes for decades (Kingsford et al. 1999). Thus, such boom events are fundamental to 

the resilience of populations in highly variable environments. 



Provenance and movement 

Variability in the age-structure and abundance of populations is a function of births, deaths, 

emigration and immigration, and an understanding of these processes is a prerequisite for 

management. Indeed, elucidating the mechanisms promoting population fluctuations has 

occupied fisheries science for over a century (e.g. Hjort 1914). Fundamental to this understanding 

is an appreciation of the spatial scale over which population processes occur, including how the 

spatial behaviour of individuals and contingents influence population dynamics (Cooke et al. 

2016). 

In the fourth and fifth chapters of this thesis, I investigated how the provenance and movement 

of fish influenced population structure. In particular, I used: 1) otolith chemistry to 

retrospectively determine the provenance and movement history of individuals from specific age 

cohorts, and 2) radio telemetry to investigate the movements of adult fish. These investigations 

provide knowledge on the spatial arrangement of recruitment sources, and the influence of 

immigration and emigration on the population structure of golden perch.  

The structural and chemical properties of fish otoliths provide a unique means to recount a fish’s 

life history in time and space. I used water and otolith 87Sr/86Sr to delineate the provenance and 

movement of golden perch from discrete cohorts. Water 87Sr/86Sr was distinct among the Darling 

River and lower and mid-River Murray. In turn, otolith chemistry revealed golden perch collected 

in the lower River Murray were spawned in either the River Murray or Darling River, during years 

characterised by within-channel rises in flow, or in both rivers in a year characterised by extensive 

overbank flooding. Movement of fish from the Darling River was a substantial driver of 

population structure in the lower River Murray, with fish dispersing from natal habitats in the 

Darling River either in the year of birth, as eggs and larvae, or at age 1+ in association with 

flooding in the River Murray and Darling River.  

The downstream drift of early life stages is a defining trait of pelagic-spawning fishes and one 

that makes them particularly susceptible to river regulation. Riverine fishes with drifting early life 

stages rely on advection to promote suspension and in turn development and survival (Pavlov et 

al. 2008). For all pelagic-spawning fishes, this process will operate over some minimum time or  
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length of river (Braaten et al. 2008). Whilst the hydrology of the Darling River has been grossly 

altered (Thoms and Sheldon 2000), the lotic characteristics of the lower Darling River 

remain intact, facilitating the downstream transport of eggs, larvae and early stage 

juveniles, and providing suitable developmental conditions for these life stages.  

Dams and weirs exert two primary impacts on the downstream movement of fish: 1) the physical 

impediment of the structure itself and 2) the hydraulic obstacle created by upstream reservoirs 

or weir pools, which may affect behaviour and the passive downstream movement of fishes. 

Worldwide, there is growing recognition that restoration of longitudinal connectivity for riverine 

fishes is a two-way street (sensu Calles and Greenberg 2009) and that consideration of the 

upstream and downstream movement of all life stages is required to conserve fish populations 

(Agostinho et al. 2008; Baumgartner et al. 2014). Nevertheless, the impacts of weir pools and 

reservoirs on the downstream movements of all life stages of fish remains a major knowledge 

gap. 

Preventing the downstream dispersal of fishes fragments populations and may ultimately 

influence survival and population resilience. In regulated rivers in South America, the mitigation 

of upstream passage through fishway construction, without recognition of the impacts of 

reservoirs on downstream movement, is considered to have little conservation value (Pelicice et 

al. 2015). For example, in the Amazon River Basin, fishways are constructed to cater for the 

upstream passage of adults, but for fishes with a drifting larval stage, the lentic environments 

created by reservoirs and weir pools subsequently prevent downstream dispersal and 

compromise survival (Pompeu et al. 2012).  

Similarly, in the Murray-Darling Basin, the physical impediment of dams and weirs is dealt with 

via fishways (Barrett and Mallen-Cooper 2006) and consideration of weir configuration (i.e. 

overshot or undershot) on the early life stages of fish (Baumgartner et al. 2006). Yet, the impact 

of hydraulic alteration and the influence of reservoirs and weir pools on the downstream drift of 

early life stages, or the active downstream movement of juveniles (e.g. Tiffan et al. 2009), has 

received minimal consideration. These impacts form important avenues for future research, 
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particularly the hydraulic conditions necessary for promoting the drift of eggs and larvae, and the 

active downstream movements of juveniles and adults. 

In this study, the Darling River constituted a spawning location for golden perch when 

environmental conditions were unsuitable in the River Murray. Subsequently, fish emigrated into 

the River Murray during early development (eggs and larvae), likely via passive drift, or used the 

Darling River as a nursery habitat and emigrated as age 1+ juveniles in association with 

subsequent high flow events. Elsewhere in the Murray-Darling Basin, major tributaries with intact 

lotic habits (e.g. the Ovens and lower Goulburn rivers) have also been identified as potential 

recruitment sources for riverine fishes such as golden perch and Murray cod (Maccullochella 

peelii) (Koehn et al. 2009; Koster et al. 2017).  

In regulated river systems worldwide, the ecological importance of tributaries and tributary-

mainstem junctions is increasingly being recognised (Rice et al. 2006; Pracheil et al., 2013; 

Gualtieri et al. 2017). Tributaries may preserve hydrological and hydraulic conditions that 

promote fish spawning and recruitment, and in turn provide a source of juvenile recruits to main 

channel habitats (Pollux et al. 2006; Pracheil et al. 2009; Webber et al. 2013). Our results concur 

that: 1) tributaries may provide hydrological and hydraulic characteristics that are permanently 

or temporarily absent from regulated main river channels, and are important to fish recruitment, 

and 2) connectivity between tributary and mainstem habitats can be a substantial driver of the 

structure of mainstem population contingents. Maintaining the unique hydrologic and habitat 

characteristic of tributaries is paramount, as is facilitating connectivity between tributary and 

mainstem contingents to ensure metapopulation integrity. 

Movement of adult golden perch 

Fish movement and habitat use can also be investigated with non-destructive techniques, such 

as electronic tags (Lucas and Baras 2000), particularly where homogenous water chemistry can 

limit the efficacy of otolith chemistry approaches and where there is a need for fine spatial-scale 

data (Gillanders 2005). The utility of electronic tags, however, is subject to considerations of 

battery size and tag longevity, and in turn, transmitter size in relation to fish body size (e.g. Cooke 
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et al. 2011). For this reason, studies pertaining to long-lived fish may be restricted to adult fish 

where the use of larger tags, with longer battery lives (i.e. years), is required.  

In chapter 5 of this thesis, I used a combined radio-telemetry and passive integrated transponder 

(PIT) tag approach to investigate the habitat use and movement of adult golden perch in relation 

to flow, season and water temperature. Site fidelity was common, with 36% of fish remaining at 

the site of capture throughout the study period (~2 years), which included a spring-summer 

spawning season and a within-channel flow pulse. Over the same period, however, 29% of fish 

migrated long distances upstream (up to 270 km), coincident with steady, rising and falling flows. 

These movements were correlated with seasonal variation in water temperature and to a lesser 

extent, short-term (10-day) flow variability. These findings concur with previous studies of golden 

perch movement, which have also demonstrated the existence of mobile and sedentary 

individuals (Crook 2004; O’Connor et al. 2005), but contrast with the studies that have associated 

movement with increased discharge (O’Connor et al. 2005; Koster et al. 2017). Whilst 

environmental factors, such as flow, may indeed constitute an impetus for movement, we 

suggest that movement may also be driven by endogenous cues such as sexual maturity and age, 

which may act independently of flow. The role of these factors in promoting movement and 

interactions with flow, warrants further investigation. 

A notable finding of our adult movement investigation was evidence of partial 

migration, whereby some fish in a population migrate and some do not (Chapman et al. 

2012). Movement may beneficially expose fish to suitable habitats and environmental 

conditions for growth and reproduction, but it is also inherently risky, and may increase the 

incidence of individual mortality (Alerstam et al. 2003). Across a population’s range, it is likely 

that a combination of retentive and dispersive behaviours minimises risks associated with 

habitat and environmental heterogeneity (Secor 1999). In large river basins, where climate 

variability, or indeed river regulation, lead to regionally diverse flow patterns, partial 

migration may increase the chance of at least some fish being in the right place, at the right 

time, to be exposed to hydrological conditions conducive to spawning and the survival of 

early life stages. In bird species, within-population variability in migratory movements and 

destinations (i.e. migratory diversity) promotes resilience to environmental change, 
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with species exhibiting partial migration less likely to decline (Gilroy et al. 2016). This concept 

has also been demonstrated for freshwater, estuarine and diadromous fishes (e.g. Kerr et al. 

2010; Moore et al. 2014; Gillanders et al. 2015), and for golden perch, may be a mechanism 

that contributes to the basin-wide persistence of this species. 

Plasticity and the portfolio effect 

Life-history diversity, including partial migration, provides a mechanism by which populations can 

persist in dynamic or altered environments (Kerr et al. 2010; Araya et al. 2014). Behavioural bet-

hedging, in conjunction with a diversity of spatially independent recruitment sources, means that 

whilst some contingents may experience high mortality or recruitment failure, concurrently 

others may experience lower mortality or environmental conditions more suitable for 

recruitment (Gahagan et al. 2015). Fish movement and connectivity between recruitment 

sources, however, is integral to promoting regional persistence (e.g. Scheurer et al. 2003). 

Despite population decline, golden perch remain one of the most widespread and abundant 

large-bodied fishes in the MDB. The studies conducted in this thesis demonstrate that golden 

perch in the southern MDB have life history strategies that integrate spatial and temporal bet-

hedging mechanisms (Slatkin 1974; Kraus and Secor 2004). These include a combination of a 

periodic life history strategy (chapters 2 and 3), spatially distinct recruitment sources (chapter 4), 

migratory diversity (chapter 5) and habitat flexibility (i.e. can persist in lotic and lentic waters). In 

contrast, in fishes where migratory diversity is absent or negligible, and where migration is an 

essential life history process (e.g. to access a spawning site), river regulation may lead to the 

demise of species (Godinho and Kynard 2009). For example, in the River Murray in the early 

1900s, the construction of main-channel weirs impeded the annual upstream spawning migration 

of Macquarie perch (Macquaria australasica), isolating fish from essential spawning habitats 

(lotic reaches characterised by rock substrates). This lack of migratory diversity and life history 

flexibility led to rapid population decline (Mallen-Cooper and Brand 2007) and ultimately the loss 

of this species from the River Murray. 
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For golden perch, recruitment source diversity and intra-population behavioural plasticity 

potentially contribute to a meta-population somewhat resilient to environmental variability and 

anthropogenic impacts such as river regulation and harvesting. This construct is analogous to the 

portfolio effect initially described for Atlantic salmon (Salmo salar) in Bristol Bay, Alaska 

(Schindler et al. 2010), whereby life-history diversity has a stabilising effect on meta-populations 

due to differential responses of contingents to environmental variability. A key aspect of this 

buffering effect is the presence of spatially distinct, but connected, recruitment sources.  

Notwithstanding the above, golden perch abundance in the MDB remains depressed compared 

to historical levels (Kaiola et al. 1994). Consequently, rehabilitation, particularly from a 

demographic perspective, will need to consider maintaining and rebuilding recruitment source 

diversity and connectivity, and reinstating the hydrological and hydraulic factors that promote 

spawning, recruitment and dispersal. Importantly, maintaining a mosaic of connected 

recruitment habitats and the spatial processes that link these, will likely promote greater 

population stability and resilience than relying on single recruitment sources (Kraus and Secor 

2004; Kerr et al. 2010).  

Ecological disturbance may also confer resilience to environmental change by selecting genetic 

traits that enable the persistence of individuals. For golden perch, contemporary genetic studies 

indicate that, despite anthropogenic fragmentation of many rivers in the MDB, high gene 

flow likely confers population resilience to environmental change due to the transfer of 

traits that have evolved elsewhere (Attard et al. 2017). Specifically, the wide-ranging 

movement of a portion of the population enables transfer of traits locally adapted to arid 

regions to those areas that may become more arid due to climate change. These genetic 

adaptations may bode well for the persistence of golden perch in the MDB. Indeed, the 

plasticity of golden perch population processes and high gene-flow, may confer greater 

resilience to climate change than many other fishes in the MDB (Balcombe et al. 2011). 
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Integrating knowledge to inform management 

To various extents, the reproduction, recruitment and movement of golden perch have been 

linked to flow (e.g. Humphries et al. 1999; Mallen-Cooper and Stuart 2003; King et al. 2016, Koster 

et al. 2017) and these key life history processes form objectives for environmental water 

allocation throughout the MDB (MDBA 2014). An ultimate goal of environmental water 

management and allied interventions (e.g. habitat restoration, stocking, fish passage, etc.), 

however, should be to rehabilitate native fish populations through population growth. To achieve 

this requires an understanding of population structure, the factors that influence population 

dynamics (i.e. recruitment, mortality, immigration and emigration), and the spatial scales over 

which these operate (Rieman and Dunham 2000). Considering this, conservation of golden perch 

populations would be well-served by a resilience approach that recognises the need to maintain 

the life history, population and habitat characteristics essential to promoting age structure 

diversity, and thus increasing the ability of a population to withstand and recover from 

disturbances (Waldman et al. 2016). 

Such strategies will be most effective when informed by life history and population models that 

integrate knowledge obtained across a continuum of scales that are relevant to fish life histories 

and population function (Fausch et al. 2002; Durance et al. 2006). In flow-impacted rivers, 

conservation of pelagic-spawning fishes could be advanced by modelling approaches that 

forecast population persistence by integrating key population defining processes in a 

hydrological and hydraulic context. A range of population models have been employed to 

assimilate some of these processes, including for golden perch and Australian bass (Percalates 

novemaculatea) in Australia (Bond et al. 2015; Lin et al. 2017) and shovelnose sturgeon 

(Scaphirhynchus platorynchus) and shortnose sturgeon (Acipenser brevirostrum) in North 

America (Jager et al. 2013; Goto et al. 2015) 

Modelling approaches that integrate connectivity and the influence of hydrology and hydraulics 

on population processes (e.g. spawning, drift of early life-stages, mortality and migration of 

juveniles and adults) would be particularly useful for pelagic-spawning riverine fishes with 

periodic life histories. Lin et al. (2017) utilised a spatio-temporal population model, informed by 
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individual movement data, to explore the effect of migration barriers, modified migratory cues 

(hydrology) and fishing mortality on the population persistence of Australian bass. This promising 

approach could have utility for golden perch, particularly if it was extended to include: 1) the 

influence of hydrology/hydraulics on spawning and the dispersal of eggs and larvae, 2) the effects 

of hydrology/hydraulics and physical barriers on movements of juveniles and adults, 3) the 

effects of angling, including at bottlenecks/barriers, and 4) the influence of hydrology on year-

class strength and population structure. 

Future Research 

Contemporary flow restoration in regulated rivers primarily considers the impact of river 

regulation on flow volume and rate (i.e. discharge), and following the tenets of the Natural Flow 

Paradigm (NFP: Poff et al. 1997), aims to reinstate ecologically significant components of the flow 

regime. Such approaches, however, seldom consider the hydraulic and hydrodynamic impacts of 

river regulation (Mallen-Cooper and Zampatti 2018). An important next step in understanding 

the flow-related biology of golden perch is to elucidate the hydraulic factors (e.g. water velocity) 

that potentially promote spawning, and the spatial scale of such processes. If water velocity, or 

some other hydraulic descriptor can be identified, this will provide a transferrable hydrologic unit 

that may be applied to flow restoration in rivers with differing geomorphology and discharge.  

Equally important are the critical water velocities required for the downstream drift of eggs and 

larvae, and the behaviour and fate of these life stages in relation to the hydraulics of large 

channels, including weir pools. Pelagic-spawning fishes with periodic life histories spawn 

large numbers of small eggs whose survival is maximised when large-scale 

environmental heterogeneity promotes patchy resources (Winemiller and Rose 

1993). As such, the interrelationships of riverine hydrodynamics with primary and 

secondary productivity and the mechanisms of survival of early life stages, form 

fundamental questions. Indeed, concepts concerning the drift and retention of early life 

stages of fish in relation to resource patchiness, and the implications of this for survival 

and recruitment, form an important focus for contemporary research in riverine fish 

ecology (Hoagstrom and Turner 2015; Humphries et al. in press).  
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Further research on the movement of juvenile and adult golden perch is also warranted, 

particularly the influence of movement on meta-population structure. The telemetry study 

of adult golden perch movement (Chapter 5) was conducted during low flows, during 

which approximately 30% of fish migrated upstream in the River Murray. At the end of the 

Millennium Drought, however, flooding was associated with a substantial decrease in the 

abundance of older age-classes of golden perch in the lower River Murray (Chapter 4), 

potentially due to emigration. Some of the longest migratory movements for golden perch, 

including a >2000 km migration up the River Murray and Darling River, have been associated 

with floods (Reynolds 1983). In addition, in the upper reaches of the River Murray, immigration 

of adult golden perch post flooding may alter the age demography of receiving populations 

(Lyon et al. 2019). Ultimately, there is likely to be a redistribution of both adult and 

juvenile fish during flooding that will restructure meta-population demographics. The 

existence of these movements, their links with abiotic factors and influence on population 

structure could be explored retrospectively using otolith chemistry techniques. 

Concluding remarks 

In this thesis, I have addressed concepts relating to the autecology, population structure and 

movement of golden perch and provided new insight regarding the spatial structuring of golden 

perch populations in the southern Murray-Darling Basin. These factors are considered key 

contemporary knowledge requirements for understanding the impacts of anthropogenic 

disturbance on riverine fish populations (Cooke et al. 2012; Crook et al. 2015; Cooke et al. 2016). 

The results of my study have utility for the management of golden perch and pelagic-spawning 

fishes globally. Despite increasing recognition of the need to manage fishes, and indeed 

ecosystem function, at the river-scale (Schlosser 1991; Fausch et al. 2002), research and 

management of freshwater fishes is often undertaken in a spatially disaggregated manner 

(Durance et al. 2006). For example, in Australia’s Murray-Darling Basin, units of management 

often relate more to arbitrary sites or State boundaries (e.g. Commonwealth Environmental 

Water Office 2016; Murray-Darling Basin Authority 2018) than the scale of fish life histories or 

population structure. Ultimately, conservation and rehabilitation of riverine fishes, including 
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golden perch, requires management at a spatial scale concordant with life history and population 

processes. It equally requires consideration of recruitment source, life history and migratory 

diversity, and connectivity. 

In the MDB, golden perch movement has been associated with spawning (O’Connor et al. 2005; 

Koster et al. 2017), but it has seldom been considered in its own right as driver of population 

structure and dynamics (although see Lyon et al. 2019). Our data suggest that the demographics 

of golden perch populations in lower River Murray are substantially influenced by fish movement. 

Indeed, the passive and active movement of golden perch at all life stages (eggs, larvae, juveniles 

and adults), in both a downstream and upstream direction, and between tributaries and the main 

stem, highlights the importance of considering bi-directional longitudinal and lateral connectivity 

in rivers to support the conservation of riverine fishes (Calles and Greenberg 2009). 

Rehabilitation and conservation of riverine fish populations will be advanced by approaches that 

integrate mainstem rivers, tributaries, and floodplains, and that recognise the fundamental 

importance of fluvial habitats in promoting pelagic-spawning fishes (Galat and Zweimuller 2001). 

Integral to such approaches is the rehabilitation of physical connectivity and consideration of the 

natural hydrological and hydraulic characteristics of rivers that support habitat maintenance and 

the critical life history processes that influence population dynamics. 
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