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Abstract: Optical fibre-based sensors measuring refractive index shift in bodily fluids and
tissues are versatile and accurate probes of physiological processes. Here, we suggest a refractive
index sensor based on a microstructured exposed-core fibre (ECF). By considering a high
refractive index coating of the exposed core, our modelling demonstrates the splitting of the
guided mode into a surface sensing mode and a mode that is isolated from the surface. With the
isolated mode acting as a reference arm, this two-mode one-fibre solution provides for robust
interferometric sensing with a sensitivity of up to 60, 000 rad/RIU-cm, which is suitable for
sensing subtle physiological processes within hard-to-reach places inside living organisms, such
as the spinal cord, ovarian tract and blood vessels.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The analysis of physiological processes and early detection of certain diseases [1] requires
sensors capable of probing subtle changes in temperature [2], pH level [3,4], and concentration of
biological fluids and gases [3] in hard-to-reach places inside living organisms such as the brain
[5], spinal cord [6], ovarian tract [7] and blood vessels [8]. Such changes can often be sensed as
small shifts in the optical refractive index of bodily fluids and tissues [8].

Microstructured exposed-core optical fibres (ECFs) provide a broad range of optical properties
demanded by biomedical refractive index sensors intended to operate inside living organisms
[9–12]. ECFs confine and guide light in a small volume of a dielectric material surrounded by
longitudinal air holes (Fig. 1). One of the holes is open along the entire length of the fibre, which
allows using it as a sample chamber where a portion of the guided light evanescently extends
above the fibre and provides light-matter overlap and enhanced interaction required for sensing.
Here, by considering a thin dielectric coating of an ECF (Fig. 1), we show that the guided

mode can be split into a surface sensing mode and a mode that is isolated from the surface. The
isolated mode is immune to environmental changes, but the surface mode is sensitive to refractive
index shifts in the outer medium across the entire fibre length. We show that interference between
the two modes can be used to create a fibre-optic sensor capable of detecting shifts in the optical
refractive index with 60, 000 rad/RIU-cm sensitivity. Such sensitivity is comparable with that of
two-arm interferometers [13,14] and two-mode one-fibre interferometers based on elliptical core
[15], mismatched core [16], liquid-crystal-clad [17], and photonic crystal [18] fibres.
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Fig. 1. (a) Schematic of an ECF coated with a dielectric layer of thickness h, length ` [see
(c)], and refractive index ndl. (b) Optical intensity profile in the fibre with the 100-nm-thick
dielectric layer and ndl = 2. The fundamental guided mode confined in the Y-shaped core
and a higher-order mode localised in the dielectric layer can be seen. (c) Longitudinal
cross-section of the ECF and schematic of the mode behaviour. The mode of the bare ECF
splits into the two guided modes due to the dielectric layer. The two modes co-propagate,
re-couple and interfere near the output edge of the fibre.

2. Two-mode microstructured exposed core fibre

We consider a standard ECF structure [19] (Fig. 1) that consists of a Y-shaped silica core
(the refractive index nco = 1.4607, 2.2 µm size) formed by three elliptical air holes (nair = 1)
[9–11,19,20]. Two of these holes are fully enclosed by silica, but the third hole is open such that
the top surface of the Y-shaped core can be accessed from the outer space across the fibre length.
The exposed surface of the Y-shaped hole is covered by a dielectric layer of uniform thickness

Fig. 2. Dispersion characteristic of the ECF with the 100-nm-thick dielectric layer. Themap
is composed of individual power spectra calculated for ndl=1 · · · 2.5. The peaks in these
spectra trace dispersion curves, but their magnitude corresponds to the relative fraction of
the power in each guided mode (encoded as the intensity in red). The insets show the modal
intensity profile in the xy-plane of the fibre.
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h and optical refractive index ndl. We consider ndl from 1 to 2.5 because the dielectric layer
deposited on top of a realistic ECF can be made of Teflon (ndl = 1.36), silica glass (ndl = 1.46), a
polymer (ndl = 1.49), tellurite glass (ndl = 2) or other high refractive index materials [8,20–22].
The optical properties of such fibre originate from the small Y-shaped core with the dielectric
layer (inset Fig. 1) and therefore only this region is considered in our analysis.
Figure 2 shows the dispersion characteristic of the ECF and the representative modal optical

intensity profiles in the xy-plane calculated with an in-house finite-difference time-domain
(FDTD) method [23]. The same results would be obtained using other simulation techniques.
The wavelength is 532 nm and the thickness of the dielectric layer is h = 100 nm. Qualitatively
similar results were obtained for all wavelengths across the visible spectral range as well as for
the fibres with the other experimentally accessible [20] dielectric layer thicknesses 50 − 200 nm.
The bare fibre (ndl = 1) supports two guided modes with the effective refractive indices

neff = 1.183 and neff = 1.377. The mode with neff = 1.377 is the fundamental mode and the
other mode is a higher-order guided mode. At ndl = 1, the two modes behave independently –
their resonance peaks are separated and have different magnitudes and linewidths. However,
because of a strong dependence of neff of the higher-order mode on ndl, the two modes hybridise
at ndl ≈ 1.7, which is evidenced by hybridisation of their modal intensity profiles (Fig. 2), nearly
equal magnitude of power density peaks, and avoided dispersion curve crossing [24].
At ndl>1.8, the hybridisation disappears and the two modes again become independent.

The fundamental mode regains its original profile, but that of the higher-order mode becomes
completely different – the light is localised in the dielectric layer where the refractive index is
higher than that of the core. At ndl>1.7 there also appears the second higher-order mode with the
light localised at the interface between the Y-shaped core and air. Initially, the fraction power
carried by this mode is low, but it gradually increases as the value of ndl is increased.
In the following, we will consider the regime of ndl>1.8 where the guided modes strongly

confine light in the core and the dielectric layer. We will not consider the regime of mode
anti-crossing (ndl ≈ 1.7), although that regime would be suitable for other applications [24].

3. Analytical model of sensitivity

As the light propagates along the fibre section with the dielectric layer of length ` [Fig. 1(c)], a
phase difference arises from the difference in propagation constants of the fundamental mode
in the Y-shaped core, βco, and the higher-order mode in the dielectric layer, βdl. A fraction
of the power in the higher-order mode can be coupled back into the fundamental mode. The
out-of-phase component results in an interference effect that can be observed as an oscillating
attenuation measured as a function of wavelength at the output edge of the fibre.

We use the perturbation theory [25] where we assume that the refractive index of the dielectric
layer is perturbed as ndl + ∆ndl, but that of the fibre core remains unchanged. This idealised
model allows us to validate the analytical formalism presented below, and it also corresponds to
a practical scenario of small temperature changes induced mostly in the dielectric layer by living
biological cells or micro-droplets of liquids placed on top of the fibre.
The phase of fringes arising due to the interference effect is φ = 2π`∆neff

λ = `∆β, where λ is
the wavelength of light in free space, ` is the length of the fibre section with the dielectric layer
[Fig. 1(c)], and ∆β=βco−βdl is the difference in the propagation constants of the interfering
modes. Under the condition of sufficiently small ∆ndl we obtain βdl = β̄dl + kη̄dl∆ndl, where
β̄dl and η̄dl are the unperturbed propagation constant and the fraction (with respect to the total
amount carried by all modes) power of the mode guided in the dielectric layer, respectively, and
k is the wavevector. Thus, by following [16], the refractive index change ∆ndl can be related to
the measurable change in phase ∆φ as ∆ndl ≈ λ∆φ

2πη̄dl` .
In Fig. 3(a) we plot ∆ndl as a function of ∆φ for several representative fibre section lengths

`. We consider a dielectric layer material with ndl = 2, which in a practice would correspond
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to tellurite glass [21]. We observe that by using tens of centimeter long sections of the fibre,
one could sense refractive index changes of ∼10−6 by using a single interferometer arm for the
interfering modes and without disturbing the mode propagating in the core of the fibre. Shorter
fibre sections can also be used when a smaller sensitivity is acceptable.

Fig. 3. (a) Change in the optical refractive index of the dielectric layer of the ECF, ∆ndl, as
a function of the phase change ∆φ for several representative lengths ` defined in Fig. 1(c).
The thickness of the dielectric layer is 100 nm and ndl = 2. For example, at ` = 150 cm one
could sense refractive index changes of ∼10−6 leading to the change of phase ∆φ = π. (b)
Phase sensitivity as a function of ndl.

We also calculate the phase sensitivity [14,16] as Sφ = ∆φ
∆ndl` . For the practical scenario [16,21]

of ∆φ = π for ndl = 2 we obtain Sφ ≈ 17, 000 rad/RIU-cm. This value is of the same order of
magnitude as Sφ predicted for a slow-light Mach-Zehnder interferometer [14]. In Fig. 3(b), we
plot Sφ as a function of ndl = 1.8 · · · 2.4. The model predicts a gradual decrease in Sφ from
60, 000 rad/RIU-cm to 3, 000 rad/RIU-cm, which is consistent with the diverging behaviour of
the dispersion curves of the fundamental and the first higher-order modes (Fig. 2).

4. Rigorous numerical simulations

We numerically verify the sensitivity in Fig. 3. FDTD simulations of macroscopic fibre sections
are impractical due to prohibitive computational time requirements. However, the linearity of our
model allows maintaining the same value of Sφ by increasing ∆ndl and decreasing `. We verified
that ∆ndl ≤ 0.1 does not to disrupt the validity of the approximations made in the analytical
model. Thus, we choose ` = 50 µm and ∆ndl ≈ 3.66 × 10−2.
Figure 4(a) shows the fringe pattern calculated by collecting and Fourier-transforming the

light emitted from the output edge of the fibre [Fig. 1(c)]. The observed fringe shift ∆φ ≈ π at
∼ 534 nm is in good agreement with the predictions of the analytical theory. The small shift of
the fringe from the nominal wavelength 532 nm is an artefact caused by the finite resolution of
the Fourier transformation of the time-domain signal produced by the FDTD simulation.
The optical intensity profile along the length of the fibre [Fig. 4(b)] shows a periodic energy

exchange between the core and dielectric layer. The period of the interference effect equals
∼2.0 µm, which is in agreement with the theoretical value calculated for λ = 532 nm and ndl = 2
as λ/∆neff using ∆neff obtained from the dispersion characteristic in Fig. 2.
We also show that the investigated ECF is highly sensitive to changes in the refractive index,

nout, of the medium located above the dielectric layer. In this case, the refractive indices of both
fibre core and dielectric layer remain unchanged, but that of the outer medium is perturbed as
nout + ∆nout. This scenario is difficult to analyse analytically because of the need to calculate
leaky-mode losses [26]. Hence, we employ the FDTD method. Figure 5 shows the fringe pattern
calculated for a 50-µm-long fibre section with the dielectric layer. We use ∆nout = 9.2 × 10−2
and ndl = 2. We observe a phase shift of ∼ π and we obtain Sφ = 6, 830 rad/RIU-cm.
The results of our analysis should not be affected by optical losses in the fibre core and the

dielectric layer. For example, optical losses in a 150-cm-long fibre section without dielectric
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Fig. 4. (a) Calculated fringe pattern produced by the ` = 50 µm fibre section with the
dielectric layer [` is defined in Fig. 1(c)] with the unperturbed refractive index of the
dielectric layer (ndl = 2, solid curve) and the perturbed refractive index (ndl + ∆ndl, dashed
curve). In agreement with the analytical theory, the phase shift ∆φ ≈ π is observed at
∼ 532 nm. (b) Optical intensity distribution in a short region of the fibre.

Fig. 5. Fringe pattern produced by the 50-µm-long fibre section with the dielectric layer with
the unperturbed (solid curve) and uniformly perturbed (dotted curve, ∆nout ≈ 9.2 × 10−2)
refractive index of the medium located above the dielectric layer. The refractive indices of
the core and dielectric layer, ndl = 2, are constant.

layer are about 3% [19]. Optical losses in the tellurite layer manufactured using high purity raw
materials and an improved film fabrication technique can be as low as 3% [27]. Furthermore, the
signal attenuation should be decreased by the fact that in the tellurite layer the light forms hot
spots [Fig. 4(b)]. Overall, the attenuation can decrease the intensity of the signal but it would not
affect the interference behaviour predicted by our theory and simulations.
Thus far, in our analysis we considered a relatively simple system with nout = 1. However,

qualitatively similar results will be obtained for nout = 1.33 · · · 1.6, which corresponds to the
refractive index of most common biological fluids and cells [28]. Due to high computational
complexity, the analysis of interference processes in a liquid-immersed fibre is possible only
with numerical techniques. However, qualitative behaviour of light in the dielectric layer can be
predicted analytically. The refractive index of liquids and cells is smaller than ndl = 2, which
ensures the existence of guided modes in the dielectric layer. The sensitivity is proportional to
the fraction of the power evanescently coupled to the medium above the dielectric layer [25].
This fractional power increases as the refractive index of the outer medium is increased [29].
However, this also results in shorter propagation lengths at which strong interference fringes
would be observed, because of radiation losses and absorption by biological fluids [28].

5. Conclusions

Our simulations have demonstrated that we can make a single-arm interferometric sensor
by coating the core of a microstructured exposed core fibre with a high refractive index
material. We show that the proposed fibre structure can guide light in both the core and coating,
thereby satisfying conditions for strong mode interference and providing the sensitivity of up
to 60, 000 rad/RIU-cm. Single-arm fibre-optical interferometers are simpler and more robust
than those based on two arms, and therefore the investigated fibre structure should be especially
suitable for sensing of small refractive index shifts in living organisms.
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