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Abstract

This paper describes a proposed method for clustering attributes on
the basis of their spatial variability and the uncertainty of cluster member-
ship. The method is applied to geometallurgical domaining in mining ap-
plications. The main objective of geometallurgical clustering is to ensure
consistent feed to a processing plant by minimising transitions between
different types of feed coming from different domains (clusters). For this
purpose, clusters should contain not only similar geometallurgical char-
acteristics but also be located in as few contiguous and compact spatial
locations as possible so as to maximise the homogeneity of ore delivered
to the plant. Most existing clustering methods applied to geometallurgy
have two problems. Firstly, they are unable to differentiate subsets of
attributes at the cluster level and therefore cluster membership can only
be assigned on the basis of exactly identical attributes, which may not be
the case in practice. Secondly, as they do not take account of the spatial
relationships they can produce clusters which may be spatially dispersed
and/or overlapped. In the work described in this paper a new clustering
method is introduced that integrates three distinct steps to ensure qual-
ity clustering. In the first step, fuzzy membership information is used to
minimise compactness and maximise separation. In the second step, the
best subsets of attributes are defined and applied for domaining purposes.
These two steps are iterated to convergence. In the final step a graph-
based labelling method, which takes spatial constraints into account, is
used to produce the final clusters. Three examples are presented to illus-
trate the application of the proposed method. These examples demon-
strate that the proposed method can reveal useful relationships among
geometallurgical attributes within a clear and compact spatial structure.
The resulting clusters can be used directly in mine planning to optimise
the ore feed to be delivered to the processing plant.
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1 Introduction

Geometallurgy provides new opportunities for mine planning by integrating pri-
mary and response properties to enhance the value of information for decision-
making processes (Coward et al. 2009, 2013; Coward and Dowd 2015). Even
though significant progress has been made in sensing and collecting geometal-
lurgical data, there is still a significant gap in achieving effective use of these
data in practical applications. Discriminating among geometallurgical charac-
teristics is a step towards an effective use of geometallurgy for mine planning,
as similar geometallurgical characteristics will have similar responses in mineral
processing. From this perspective, a proper clustering of in-situ resources based
on geometallurgical characteristics is essential to optimising operations across
the entire value chain from mining to mineral processing.

Traditional geological clustering, commonly known as rock type domain-
ing, is important in understanding the nature of the deposit but it does not
necessarily reflect the responses of the ore to the various processing stages. Ge-
ometallurgical clustering (or domaining) is similar to geological clustering but
focusses on the geometallurgical characteristics of the orebody to provide a basis
for integrated optimisation from mining to processing (Hoal et al. 2013).

Clustering is an important problem in machine learning and, for unsuper-
vised problems, it is one of the hardest to formulate and solve. Regression and
classification are supervised because the response is known, whereas clustering
partitions data on the basis of similar characteristics and, at the same time,
maximises the separation of those partitions.

The classic cut-off grade approach to ore selection clearly does not con-
sider the mineral complexity and its responses to processing, such as the en-
ergy consumption due to different hardness and grindability, concentration of
deleterious elements, different recovery rates due to different geometallurgical
attributes. Clustering based on geometallurgical attributes has been an active
research topic over the past decade. Having more material classes (clusters) may
improve the ability to select the best processing route for each parcel of mined
ore so that the overall operation is optimised (Dunham and Vann 2007; Hunt
et al. 2013). However, the risk of misclassification increases as more clusters are
defined and this risk must be considered in any geometallurgical clustering.

Geological domains are not necessarily useful in defining processing domains
that are required to reflect characteristics such as the Bond ball mill work in-
dex (BMWi), which relates to the energy used in a ball mill (Bond, 1961), or
the A×b comminution index (Napier-Munn et al. 1996), which is a measure of
the ore impact breakage resistance. To remediate this problem, Keeney and
Walters (2011) used principal component analysis (PCA) (Wold et al. 1987)
to project variables onto a two-dimensional space representing geometallurgical
attributes such as mineralogy and grindability indices. Different classes were
then manually defined by drawing polygons around spatially contiguous pro-
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jected points on the basis of mineralogical association. These classes were used
to build predictive models and propagate them into the block model using stan-
dard geostatistical indicator approaches. The same method was used in a similar
case study to define four geometallurgical domains at drill-hole scale which were
then scaled up to block scale by four different methods: sectional interpretation
and wireframe modelling, nearest neighbour assignment, indicator kriging, and
stochastic trend analysis (Newton and Graham 2011). The two comminution
parameters, A×b and BMWi, were then populated into the block model by
applying specific regression models in each geometallurgical domain.

Leichliter and Larson (2013) developed a geometallurgical model to cluster
a deposit into two classes for two different recovery circuits: flotation circuit for
less oxidized ore and heap leaching for oxidized ore. They used the variables
of assays, geological mapping, mineralogy, hardness, gravity and floatability
attributes to define the classes.

Hunt et al. (2014) manually clustered copper recovery domains on the basis of
Al and Fe content (Low Al - High Fe and High Al - Low Fe). They pre-clustered
24 archetypes using chemical and mineralogical information. For each recovery
domain, they built linear regression models using Al, Cu, Fe and grinding index
from drill hole data and batch flotation tests. These models were scaled up for
the block model using standard geostatistical methods.

Nguyen and Keeney (2014) built a geometallurgical domaining system by hi-
erarchical clustering at sample scale using assay values, geotechnical logging and
petrophysical attributes to model and estimate grindability response indices.
Goodfellow and Dimitrakopoulos (2017) performed clustering using grades and
material types to define different ore destination policies, which were used to
optimise scheduling.

Garrido et al. (2017) used clay content as a measure to define the concept of
geometallurgical dilution in a manner similar to mining dilution. They defined
geometallurgical dilution as the ratio between the most common clay cluster and
all other clusters. This dilution concept can be used in scheduling optimisation
to avoid excessive changes in clay content in the ore to be sent to the processing
plant.

The research discussed above demonstrates the use and ability of geometal-
lurgical domaining in improving processing decisions and optimising scheduling
to processing plants. However, most of this research uses standard clustering
methods and the resulting clusters are then up-scaled to the block model using
geostatistical approaches. There is no explicit imposition of spatial contiguity
and compactness in the determination of clusters. In addition, the uncertainty
of the clustering is not assessed.

For the explicit use of the spatial component, Oliver and Webster (1989)
incorporated into the dissimilarity measure a spatial variogram model, using an
isotropic exponential structure with parameters of nugget effect, sill and range.
Bourgault et al. (1992) generalised the Oliver and Webster (1989) method by
using a multivariate (co)variogram to account for both spatial and attributes
correlations in clustering. Allard and Guillot (2000) modelled the hard clus-
tering problem as a mosaic of independent stationary normal random functions
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for the univariate case. Three different optimisation approaches were tested.
One approach was based on minimising the ratio between the variance whithin
a cluster and the variance between clusters. The second optimisation method
used negative log-likelihood to estimate the parameters. Finally, in the third
approach they used the expectation-maximisation (EM) algorithm. The spa-
tial structure is accounted for by the kriged (estimated) mean of the random
function and the associated kriging variance. Guillot et al. (2006) assumed that
the spatial component is characterised by a second order stationary random
field. The inference of the parameters that define the covariance function and
the clusters are found by a Markov chain Monte Carlo algorithm. This method
uses quantitative and categorical multivariate data. For hard clustering in the
univariate case, Carlo et al. (2017) incorporated the spatial component as a
non-stationary Markov random field conditioned to the k-nearest neighbour-
hood structure. The optimisation was performed by the EM algorithm. The
method allows each cluster to have different spatial interaction modulated by
a spatial covariate. Fouedjio (2016) incorporated the spatial component in the
definition of the dissimilarity measure in the agglomerative hierarchical clus-
tering method. The dissimilarity/similarity between two observations is not a
simple Euclidean measure but rather a function of their spatial correlation. It
is not clear what effect negative correlations in cross-variograms have on this
dissimilarity measure and its performance when the spatial correlation is low,
but the method is consistent with geostatistical approaches.

Based on Gaussian mixture models, Ambroise et al. (1996) proposed a
method that adds a regularisation component, derived from the spatial struc-
ture, to the clustering optimisation formulation. This method takes into account
the membership of all neighbours of any observation for clustering. Romary
et al. (2015) incorporated the spatial component into the distance metric using
a hierarchical clustering method. The distance function takes into account the
spatial connectivity introduced by a moving neighbourhood. Weights for each
attribute can be defined by the user and incorporated into the distance function.
The coordinates are also included as attributes.

In addition to clustering methods that incorporate a spatial component,
cleaning realisations of lithofacies in a regular grid, or image, helps to preserve
spatial continuity. Schnetzler (1994) used two image processing pixel-base meth-
ods of dilatation and erosion, to produce cleaner images. The resulting grid does
not necessarily reproduce the original statistics of the lithofacies. To overcome
this issue, a post-process changes the categorical value of the pixels to match the
original statistics. The probability of accepting changes is defined as the ratio
of the kriging variance to the total variance. This method is only applicable to a
regular grid as it was designed to correct ’noisy’ grids for visualisation purposes.
Deutsch (1998) improved the method of Schnetzler (1994) by using the quan-
tile transformation to correct proportions and produce less-noisy realisations.
Locations in the borders between regions are candidates for relocation. The
maximum a posteriori selection algorithm replaces each location by the most
probable value according to the local neighbourhood structure, based on three
aspects: closeness, conditioning data, and target proportions.
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In this paper, a new adapted method is proposed to cluster diverse attributes
to build geometallurgical domains. The method, spatial weighted fuzzy cluster-
ing (SWFC), is based on traditional fuzzy clustering (Dunn 1973) with a novel
adaptation to support mixed attributes together with the capacity to include
expert knowledge and spatial structures. The formulation of the clustering
algorithm based on fuzzy clustering, flexible distance metrics and feature se-
lection is given in the methodology section. The mathematics of the proposed
SWFC method is then described in the following section. Three case stud-
ies are presented to illustrate the application of SWFC, starting with a very
simple illustrative example, followed by a two-dimensional case, and finally, a
comprehensive three-dimensional synthetic geometallurgical block model.

2 Methodology

A dataset is defined as a set of observations or samples. Each sample is a k-
dimensional vector, where each dimension represents a feature or an attribute.
Each attribute can be a continuous or a categorical variable (ordinal or nominal).
The goal of clustering is to partition the dataset into P sets where samples
within a partition are similar and partitions are well separated. The concept of
similarity within a cluster (defined as compactness, see below) and separation
distance between clusters are key aspects of clustering.

2.1 Definition of Symbols and Indices

Symbols:
P is a set of partitions or clusters.
P is the number of partitions or clusters.
K is the number of dimensions of a multivariate sample.
N is the total number of samples.
Sj is the number of samples in the jth cluster.
vj is the centroid of the jth cluster.
m is the fuzzier used in the fuzzy clustering algorithm.
u is the membership matrix with N rows and P columns.
w are the weights of attributes.

Indices:
i indicates the ith sample, 1 <= i <= N . For example xi.
j indicates the jth cluster, 1 <= j <= P . For example vj .
k indicates the kth dimension, 1 <= k <= K. For example wk.

2.2 Hard Clustering

Hard clustering, or crisp clustering in the machine learning literature, seeks a
non-overlapped, hard partition of a dataset and therefore the partitions P are
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disjoint sets and each sample belongs only to one partition. One option for
clustering is to find the centroids of clusters that minimise the overall distance
of each sample to the centroid of its cluster, i.e.,

(v∗1 , . . . , v
∗
P ) = arg min

v1,...,vP

P∑
j=1

Sj∑
i=1

D(xi, vj),

P∑
j=1

Sj = N, (1)

where D is any distance metric, xi is the ith sample belonging to the jth cluster.
There are many hard clustering methods and among the most used are K-

Means, for continuous variables, K-Mode for categorical variables and several
variants for mixed variables.

K-Means is probably the most used clustering method due to its simplicity.
K-Means is solved by a two-stage iterative procedure to minimise the variance
of the distances within clusters. In the first stage the centroids of clusters are
assumed to be fixed and each sample is assigned to the closest centroid. In the
second stage, the centroids are updated as the average of all samples within
a cluster. The two stages are iterated until the overall variance of clusters is
minimised. It is common to select initial centroids at random.

A very common variation is to perform an initial dimension reduction to
compress the information into two or three dimensions by PCA (Ding and He
2004). After the dimensionality has been reduced, K-Means is applied to the
compressed data.

For geometallurgical applications, it is important to quantify the uncertainty
of belonging to a cluster but hard clustering cannot provide this assessment. The
fuzzy clustering method assigns the grade of cluster membership to all samples.
This grade can be used as a probability measure and, therefore, it can provide
a simple way to quantify the uncertainty of clustering.

2.3 Fuzzy Clustering

Fuzzy clustering, as opposed to hard clustering, is a method that seeks to find
the grade of membership of a sample with regard to each cluster (Ruspini 1969).
The objective for optimisation, therefore, changes to

u∗ = arg min
u

N∑
i=1

P∑
j=1

(uij)
mD(xi, vj),

P∑
j=1

uij = 1,∀i = 1, . . . , N (2)

and

u−1ij =

P∑
j′=1

[
D(xi, vj)

D(xi, vj′)

]2/(m−1)
, (3)

where m is the fuzzier, which controls the degree of fuzziness. When m is close
to 1, the fuzzy partition becomes a hard partition, that is, uij will be 0 or 1, and
when m is large, uij will tend to be uniformly distributed, but always subject

to
∑P

j=1 uij = 1,∀i.
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There are several methods to find the optimal membership, for example,
fuzzy c-means, fuzzy k-modes and fuzzy k-prototypes. These methods are not
designed to use mixed attributes and they do not perform feature selection. To
take these features into account, a distance-based approach must be used.

2.4 Distance Metrics

Clustering essentially relies on similarity among observations and therefore the
most critical aspect is the definition of a distance metric between observations.
In general, the Euclidian distance (Eq. (4)) is the default selection when all
attributes are continuous, however when there is a mix of continuous and cate-
gorical attributes the Euclidian distance

Deuclidean(x, y) =

√√√√ K∑
k=1

(xk − yk)2 (4)

is not the best choice.
For two multivariate attributes x and y, the distance function can be for-

mulated as the contribution of each dimension to the total distance (Friedman
and Meulman 2004), which is given by

D(1)(x, y) =

K∑
k=1

dk(xk, yk). (5)

This formulation gives a high degree of flexibility in the definition of specific
distance functions for different kinds of attributes.

2.4.1 Continuous Attributes

For continuous attributes, such as grades, recovery rates and milling indices,
the distance function is defined as

dk(x, y) = |x− y|/sk, (6)

where sk is any measure of dispersion, such as variance, standard deviation,
interquartile range (Friedman and Meulman 2004). The importance of including
dispersion is to avoid distortions with different scale values of the attributes. In
this paper the standard deviation was used as dispersion measure.

2.4.2 Categorical Attributes

For categorical attributes, such as lithology, alteration types and mineralisation
styles, the distance function is defined by a distance matrix, which is a symmetric
square matrix of size M × M , where M is number of unique values of that
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attribute. For example, for a categorical attribute taking a set of possible values
h1, h2, . . . , hM , the distance matrix is

0 . . . θ1j . . . θ1M
... 0

...
...

...
θj1 . . . 0 . . . θjM
...

...
... 0

...
θM1 . . . θMj . . . 0

 ,

where each θij is a fixed value corresponding to the distance between the value
hi and hj and θij = θji,∀i, j as the distance is symmetric.

If the categorical attribute has no preference among values, θij can be a
constant positive value for all i and j ∈ 1, . . . ,M . For example, when θij
is 1, the matrix becomes the traditional transformation to indicators, and is
equivalent to

dk(x, y) =

{
0, if x = y

1, else
. (7)

The flexibility of the matrix distance function allows for the definition of
distance between categorical values, which is very useful for geometallurgical
applications since there are, in general, categorical variables related to rock
property attributes. For example, silication and silicification alterations are
more similar compared to silication and argillic alteration. In this case, the
distance between silication and silicification alterations should be smaller than
that between silication and argillic alterations based on the definition above.
The same can be considered in the case of metamorphic rocks, for example,
phyllite and schist rocks are more similar compared to slate and gneiss.

The distance for the categorical attribute can be defined as

dk(x, y) = θh(x)h(y)/sk, (8)

where h(x) denotes the value of the categorical variable x used in the definition
of its distance matrix.

2.4.3 Targeted Attributes

Another flexibility of the proposed distance function is the option of including
a target value in any distance function. There are situations when similarity
needs to be defined as closeness to a target value; for example, the focus of
interest could be on low, medium and high recoveries. Setting specific low,
medium and high values of recoveries will tend to yield clusters according to
those targets. Friedman and Meulman (2004) defined a distance function for
one and two targets, t and u, as

gk(x, y, t) = max(dk(x, t), dk(y, t)) (9)
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and
gk(x, y, t, u) = min (gk(x, y, t), gk(x, y, u)). (10)

These two metrics are not strictly distance metrics because they violate the
identity property, but they work in practice. The problem arises when they
are used to compare two values very close to each other. For example, both
distances, gk(x, y, t) and gk(x+ ε, y, t) with x+ ε < y, are the same, due to the
maximisation criterion in Eq. (9).

To correct this problem a new criterion for a single target t is defined as

gk(x, y, t) = dk(x, t) + dk(y, t) (11)

and its extension to multiple targets T is given by

gk(x, y, T ) = min(gk(x, y, t)),∀t ∈ T. (12)

Including the target is applicable to both continuous and categorical distance
functions.

2.5 Feature Selection

In geometallurgy there are, in general, many attributes that can be used for
clustering. The contributions of attributes to clustering may vary from very
important to little or no importance. It is desirable that the clustering pro-
cedure considers the degree of importance of different attributes, which can
sometimes be defined by expert knowledge. In this context, feature selection is
an important procedure to determine the involvement of attributes and their
degree of involvement as part of the clustering process. The most basic method
is to consider all permutations of attributes and to select a set which performs
the best. This approach obviously is computationally intensive and, as the
number of attributes increases, the number of possible permutations increases
exponentially. Note that the number of permutations of n attributes without
repetitions is 2n − 1, which is equal to 1,048,575 permutations for a reason-
able case of 20 attributes. On the other hand, forward and backward methods
are greedy methods for feature selection. The forward method starts with one
attribute and iteratively adds the attribute that most improves the distance
metric. The backward method starts with all variables and removes the least
useful attribute one at a time.

Another strategy is based on weights. Each attribute has, as an indicator
of its degree of importance, a positive number within the range of [0, 1] as its
weight. This weight can then be included in the distance metric

D(2)(x, y, w) =

K∑
k=1

wkdk(xk, yk), (13)

where wk is the weight of the k-feature, subject to
∑K

k=1 wk = 1.
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In the case of clustering, by default all attributes have the same weight in
different clusters. In practice, it may be desired in some cases to impose different
weights for attributes in different clusters, i.e.,

D(3)(x, y, w, c) =

K∑
k=1

wckdk(xk, yk), (14)

where wck is the weight of the attribute k in the cluster c, subject to

K∑
k=1

wck = 1,∀c. (15)

This weight-based feature selection mechanism can also be included in the
optimisation process to determine the best weights for each attribute in each
cluster.

As pointed out by Friedman and Meulman (2004), the best minimisation
strategy is to assign all weight to the attribute with the lowest dispersion of
observations in each cluster, which provides an incentive to spread the weights
to more attributes, the distance is defined as

D(4)(x, y, w, c, λ) =

K∑
k=1

d(4)(x, y, w, c, λ) + λ log(K), (16)

where
d(4)(x, y, w, c, λ) = wckdk(xk, yk) + λwck log(wck). (17)

The parameter λ controls how the weights are spread to other attributes.
For larger λ, the weights will tend to be similar for all attributes whereas for
smaller λ the weights will tend to be given one or a few attributes.

2.6 Spatial Correction

Another important characteristic is the spatial structure. Traditional cluster-
ing methods do not incorporate any spatial structure. In fact, if coordinates
of samples are included as attributes, traditional methods are likely to produce
erroneous results as samples in the same cluster are not necessarily spatially con-
nected and these clustering procedures will tend to separate them into different
clusters on the basis of their coordinates. Within the geometallurgical context, a
cluster (ore parcels with similar geometallurgical characteristics) may, in many
sectors, not be directly spatially connected across the deposit, and therefore a
more advanced technique is required for taking the coordinates into account.
As one of the goals of geometallurgical clustering is to generate clusters as spa-
tially connected as possible, it is essential to apply a spatial correction to avoid
compact zones that include a few observations that belong to a cluster different
to that to which the majority belong.
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Spatial correction is conceptually similar to image segmentation. In com-
puter vision, image segmentation tries to simplify any image by assigning to
each pixel a label (here equivalent to a cluster) from a small set of labels. Image
segmentation has been successfully applied for applications such as cancer detec-
tion and automated driving (López and Malpica 2008; Tarabalka and Charpiat
2013; Tarabalka and Rana 2014; Wang et al. 2016).

There are many techniques for image segmentation, but the graph cut method
(Boykov and Veksler 2006) is of special interest in this work because it can be
integrated easily with fuzzy clustering.

The image segmentation, or labelling, problem can be formulated as an
energy minimisation problem in a graph, given by

E(L) =
∑
p∈I

Dp(Lp) +
∑
pq∈N

Vpq(Lp, Lq), (18)

where Lp represents the label of a pixel p of the image I, Dp is the data penalty
function, Vpq is the interaction potential, or the spatial relationship, and N is
the neighbourhood (spatial connectivity).

Clearly there are some similarities between the image segmentation prob-
lem and our proposed clustering method. An image corresponds to the entire
deposit whereas a pixel corresponds to an observation and the pixel value cor-
responds to an attribute of a sample. The fuzzy membership information (Eq.
(3)) of each observation can be interpreted as the data penalty function. This
means that each observation has a probability of belonging to a cluster and
using Dp(Lp) = − log (upLp

) assigns a lower data cost when the membership
probability is higher and vice versa. The interaction potential Vpq corresponds
to the spatial relationship among observations.

The neighbourhood can be determined by the k-nearest neighbours in the
case of unstructured locations, or the surrounding cells in the case of a regular
grid, which defines the connections of data in the form of a graph. Complex
interaction potential functions can be formulated in the form of geostatistical
(co)variograms or correlograms as defined in Bourgault et al. (1992), but a
simpler one is the Potts model, which focuses on discontinuities. The Potts
model is defined as

Vpq(Lp, Lq) = Kpq ∗

{
1, if Lp = Lq

0, else
, (19)

whereKpq may be a constant value or the cost of the spatial relationship between
p and q, for example, the distance between p and q. The Potts model favours
a clearer segmentation among clusters, opposite to smooth transitions, which is
desired for domaining.
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3 Proposed Method

The proposed method, SWFC, combines two components: (i) an adapted ver-
sion of fuzzy clustering, termed weighted fuzzy clustering (WFC), and (ii) the
spatial correction using the graph cut method. Both components are formulated
as optimisation problems.

3.1 Optimisation Formulations

For the proposed fuzzy clustering, the concepts of compactness and separation
are combined in a single objective formulation, and they are defined below.

3.1.1 Compactness

Compactness is defined as

COMP (m,u, v, w, λ) =

P∑
j=1

N∑
i=1

umijD
(4)(xi, vj , w, j, λ), (20)

where λ controls the weight values among attributes. The u matrix is given by

u−1ij =

P∑
j′=1

K∑
k=1

[
d
(4)
k (xi, vj , w, j, λ)

d
(4)
k (xi, vj′ , w, j′, λ)

]2/(m−1)
. (21)

3.1.2 Separation

Separation is defined as

SEP (m, v,w, λ) =

P∑
j=1

P∑
j′=1,i6=j′

K∑
k=1

d
(4)
k (vik, vj′k,max(wj , wj′), j, λ). (22)

The maximum criterion in Eq. ((22)) is required because different clusters
may not share the same weights, in which case the maximum weight is used for
the kth dimension.

3.1.3 Objective

The proposed clustering seeks to minimise compactness of clusters and, at the
same time, to maximise separation between clusters. A single objective formu-
lation that incorporates both aims is defined as

(v∗, w∗) = arg min
v,w

(COMP (m,u, v, w, λ) +
C

SEP (m, v,w, λ)
), (23)
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where C is a constant which scales the importance of separation as a criterion
in the optimisation formulation. The lower the value of C, the less important is
any increment in separation. Our experiments indicate that a value of C = 15 is
appropriate to give more relative importance to compactness over separation but
a complete assessment of the impact of different values is recommended. Other
expressions that combine compactness and separation in a single objective may
also be explored.

There are two main obstacles to solving this optimisation problem. The first
is the non-convexity of the problem, meaning that the global minimum is hard
to find. The second is the difficulty of finding the cluster centroids and defining
a proper set of weights that can be used.

The first obstacle can be dealt with by the use of metaheuristics, which is a
simple technique to solve optimisation problems with many local optima. The
second obstacle is solved by a two-stage procedure in the proposed method.
In the first stage, the optimal centroids and membership are found for a given
set of fixed weights. In the second stage, the weights are optimised given the
clusters and memberships found in the first stage. These two steps are iterated
until convergence.

3.2 Implementations

Genetic algorithm (GA) metaheuristic is used not only because of its simplicity,
flexibility and good performance, but also because GA has been successfully
used as an optimisation method for clustering (Luchi et al. 2016; Maulik and
Bandyopadhyay 2000; Nanda and Panda 2014).

3.2.1 Genetic Algorithm

A genetic algorithm is a metaheuristic optimisation method that emulates the
process of evolution. There are three main concepts involved in GA: selection,
crossover and mutation.

The selection operation imitates the natural selection process in which better
individuals have more chances to pass their genes to the next generation. A
fitness value is assigned to each individual, which corresponds to the evaluation
function to be optimised. Crossover produces new individuals combining the
genes of the parents. Mutation produces a new individual by mutating a small
part of the gene of an individual.

These three operations are executed for many generations to ensure that the
best final individual of the population is a good local optimum. A complete
tutorial on GA can be found in Whitley (1994).

The hyper-parameters of GA are the number of individuals in the population,
the number of generations, the operations of selection, crossover and mutation,
and the probabilities of crossover and mutation. Given these hyper-parameters,
which depend on the problem to be solved, the GA procedure for minimisation
is given by algorithm 1.
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Algorithm 1: Minimisation by GA

Result: best individual, best fitness
Data: npop: size of the population, ngen: number of generations
population ← set of random individuals of size npop;
foreach ind ∈ population do

fitness (ind) ← evaluation(ind);
end
fitness (ind) ← set of random individuals of size npop;
for iteration← 1 to ngen do

offspring ← selection(population);
foreach ind ∈ offspring do

if rand() < prbcx then ind← crossover(ind);
if rand() < prbmut then ind← mutation(ind);
fitness (ind) ← evaluation(ind);
if fitness (ind) < best fitness then

best fitness ← fitness (ind);
best individual ← ind;

end

end

end

The most important design aspect of any GA is the solution codification
(genome), which is problem dependent. For a given problem codification, its
corresponding crossover and mutation operations must also be defined. In our
implementations, the crossover function is the standard uniform crossover. Se-
lection is performed by tournament selection.

3.2.2 GA for Optimising Centroids

For the first stage discussed above, the problem reduces to finding the cluster
centroids that minimise the objective function given in Eq (23). Thus, the
genome in this case represents the centroids of each cluster.

The initial centroids are selected from samples at random. The mutation
operation perturbs one dimension of one centroid: for continuous variables, the
perturbation corresponds to a random value drawn from a normal distribution
N (µ = 0, σ = 0.1), whereas for categorical variables, the perturbation simply
selects a different value of their categories at random.

The evaluation function for optimising centroids is given by algorithm 2 and
the mutation operator is given by algorithm 3. The function dim(A) returns
the number of the rows and columns of a matrix A.
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Algorithm 2: Evaluate clustering criteria for optimising centroids

Result: compactness + C
separation

Data: V : centroids
Parameters: m: the fuzzier, λ: weight strenght, w: weights, C: constant

for the contribution of separation
U ← Equation (21);
compactness ← Equation (20);
separation ← Equation (22);

Algorithm 3: Mutation for finding centroids

Result: mutated V
Data: V : centroids
Parameters: C: set of categorical values for the attribute k
P,K ← dim(V );
j ← randint(1, P );
k ← randint(1,K);
if attribute k is continuous then V [j, k]← V [j, k] + randnorm(0, 0.1);
else V [j, k]← select at random from C − V [j, k];

3.2.3 GA for Optimising Weights

In the second stage, the weights are optimised with fixed centroids, and the
problem reduces to finding the weights that minimise the objective function
given in Eq. (23).

As the weights are within the range [0, 1], the mutation adds a small number
drawn from the normal distribution, N (µ = 0.0, σ = 0.01). Two integer num-
bers are selected at random, one for a cluster and the other for an attribute to
modify.

Note that the weights must sum to one. In addition, expert knowledge can
be used to set a specific weight to an attribute and the perturbation can preserve
these values.

The optimisation of weights is given by algorithm 4 and the mutation oper-
ator by algorithm 5.

Algorithm 4: Evaluate clustering criteria for optimising weights

Result: compactness + C
separation

Data: W : weights
Parameters: m: the fuzzier, λ: weight strenght, V : centroids, C:

constant for the contribution of separation
U ← Equation (21);
compactness ← Equation (20);
separation ← Equation (22);
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Algorithm 5: Mutation for optimising weights

Result: mutated W
Data: W : weights
P,K ← dim(W );
j ← randint(1, P );
k ← randint(1,K);
W [j, k]←W [j, k] + randnorm(0, 0.01);
//Normalisation

W [j] = W [j]/
∑K

k=1W [j, k],∀j;

3.2.4 Proposed Clustering Method (SWFC)

The final proposed method is shown in algorithm 6 and the spatial correction
is given by algorithm 7.

Algorithm 6: Spatial weighted fuzzy clustering

Result: clusters: clusters assigned to each sample, U : membership
matrix, V : centroids, W : weights,

Data: locations: coordinates of observations, samples: multivariate
attributes of observations, P : number of clusters

Parameters: m: the fuzzier, λ: weight strength, V : centroids, C:
constant for the contribution of separation,

//N samples of K attributes
N,K ← dim(samples);
//start with uniform weights on all attributes
CurrentW ← ones(P,K);
CurrentW ← CurrentW/K;
repeat

//stage1
V ← OptimiseCentroids(CurrentW, samples, P, C);
//stage2
W ← OptimiseWeights(CurrentW, V,m,C);
CurrentW ←W ;

until
∑
|W − CurrentW | < ε;

//Spatial correction
clusters← SpatialCorrection(locations, U);

The function BuildNeighbourhood(locations) returns the edges of the spatial
structure of the locations. The spatial structure can be defined using Delaunay
tessellation, k-nearest neighbour, or the surrounding blocks in a structured block
model.
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Algorithm 7: Spatial Correction by graph cut method

Result: clusters: clusters assigned to each sample
Data: U : membership matrix, locations: coordinates of observations,
//N samples and P clusters
N,P ← dim(U);
//Use K-Nearest-Neighbour or regular grid
edges ← BuildNeighbourhood(locations);
//Data penalty is lower for higher probabilities and higher for lower
probabilities
D ← − log(U);
//Interaction potential by Potts model
for i← 1 to P do

for j ← 1 to P do
if i = j then V [i, j]← 0;
else V [i, j]← 1;

end

end
clusters ← GraphCut(edges,D,V );

3.2.5 Efficiency and Scalability

The efficiency of SWFC relies mainly on its two components, the optimisation of
the centroids and weights and the spatial correction by the graph-cut method.

When the centroids are optimised, GA calculates, for each individual, the
membership matrix, separation and compactness. The complexity of the calcu-
lation of the membership matrix is O(N ∗P 2), separation is O(N ∗P ∗K), and
compactness is O(K∗P 2). As usually N � K and assuming that K > P , an up-
per bound for the complexity of the evaluation of each individual is O(N∗P ∗K).

The GA algorithm needs to evaluate npop individuals over ngen generations,
therefore, the total complexity of the WFC algorithm is O(N ∗ P ∗K ∗ npop ∗
ngen). Our results indicate that WFC converges in less than 20 iterations (main
loop in algorithm 6).

The complexity of the graph-cut algorithm used is O(N ∗ P 2) (Boykov and
Veksler 2006).

The complexity of the fuzzy clustering is comparable to the K-Means al-
gorithm at each iteration, but the difference is in the optimisation procedure,
where SWFC is more computational intensive. Nevertheless, it overcomes two
aspects: the use of GA helps in escaping from local minima and both fuzzy
clustering and feature selection are jointly optimised.

The complexity of SWFC does not have a high impact on the number of
samples N , since it scales linearly as a function of N . Also, P is usually small
for practical reasons (no greater than 10) and K is, in general, less than 100.

GA is a stochastic optimisation method and the results may be affected by
the initial random seed. Our experiments showed that different seeds produce
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very stable results. All results reported are based on a single, representative
run.

3.2.6 Assessing the Number of Clusters

There is no common choice for the number of clusters and this selection largely
depends on the data and the application of the clusters. However, there are
several indices that can be used to assess the cluster quality. The silhouette
index (SI) (Eq. (24)) comprises compactness and separation (Rousseeuw 1987).
This index is a real number in the range [-1,1]. An index close to -1 means there
is little or no cluster structure and close to 1 indicates perfect compactness
within clusters and clear separation between clusters. This index uses only the
distance among observations and it is defined as

SI =
1

N

N∑
k=1

SIk (24)

where

SIk =
1

N

N∑
i=1

((bi − ai))/(max(bi − ai)), (25)

N is the total number of points, ai is the average distance between point i
and all other points in its own cluster, and bi is the minimum of the average
distances between i and points in other clusters.

Another index for assessing the quality of clusters is the Davies-Bouldin
index (DBI), which describes how well the clustering has been done as measured
by the distance between observations and cluster centroids. Values of this index
close to 0 suggest better cluster structures (Davies and Bouldin 1979). DBI is
calculated using the following equations

DBI =
1

P

P∑
i=1

Di, (26)

Di = max(Rij), i = 1, . . . , P, j = 1, . . . , P, (27)

Rij =
Ti + Tj
Mij

, (28)

Mij =

(
K∑

k=1

|vik − vjk|p
)1/p

, (29)

Ti =

 1

Si

Si∑
j=1

|xj − vi|p
1/p

, (30)

with p = 2 for the Euclidean norm.
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Table 1: Parameters used in the algorithms

Parameter Value Observation
npop 100 Population size
ngen 100 Number of generations
prbcx 0.8 Probability of crossover
prbmut 0.4 Probability of mutation
Tournament size 9 9 individuals used in the tournament selection
λ 0.25 Weight strength
m 2.0 Fuzzier
C 15 Constant for the contribution of separation

4 Application

Three examples are presented in this paper to demonstrate the application of the
proposed method. The first example is a simple synthetic case that illustrates
the difficulties of traditional methods when clustering using different attributes.
The second example is a cross-section of a simulated copper porphyry deposit
(Garrido et al. 2017). The third example is a full synthetic geometallurgical
block model (Lishchuk 2016).

The results of K-Means and PCA clustering methods are compared. The
spatial correction also is applied to K-Means and PCA, using the membership
matrix as the inverse of the squared distance between each sample to the cen-
troids, given by

uij =
1/ ‖xi − vj‖2∑P

j′=1 1/ ‖xi − vj′‖2
. (31)

K-Means and PCA with spatial correction are denoted by SK-Means and
SPCA respectively.

Table 1 shows the values of the parameters used in the algorithms for the
three examples.

4.1 Illustrative Example

In this example, there are four attributes: grades of copper, gold and iron, and
recovery of copper, denoted as Cu, Au, Fe and Rec respectively. Although these
attributes do not usually follow normal distributions, for the sake of simplic-
ity, they were taken from normal distributions, but their means and standard
deviations are different so as to form four clusters, see Table 2.

All attributes follow their default normal distributions but for specific clus-
ters, they follow normal distributions with different means and lower variances.
Cluster 1 includes only Cu, Fe and Rec; cluster 2: Cu, Fe and Au; cluster 3:
Cu, Fe, Rec; and cluster 4 only Fe and Au.

A spatial component was assigned to each cluster: half of cluster 1 is uni-
formly located in the region of [(10.0 − 35.0), (10.0 − 35.0)] and the other half
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Table 2: The design of four clusters based on combination of Cu, Fe, Au and
Rec

Attribute Default C1 (red) C2 (blue) C3 (green) C4 (yellow)
Cu N (0.68, 0.3) N (0.8, 0.05) N (0.9, 0.05) N (0.4, 0.05)
Fe N (2.56,1.15) N (1.5,0.1) N (1.2,0.1) N (4.0,0.1)
Au N (21.5,11.08) N (30.0,1.0) N (15.0,1.0) N (40.0,1.0)
Rec N (81.43,6.04) N (88.0,1.0) N (70.0,2.0)
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100

Figure 1: Scatter plot of true four clusters

in [(65.0− 85.0), (65.0− 85.0)]; all of cluster 2 is located uniformly in the region
of [(0.0− 100.0), (30.0− 70.0)]; all of cluster 3 is located uniformly in the region
of [(5.0 − 45.0), (65.0 − 100.0)]; and finally, cluster 4 is located uniformly in
[(55.0− 100.0), (0.0− 35.0)].

The illustrative example comprises 200 samples of cluster 1, 200 samples of
cluster 2, 400 samples of cluster 3, and 100 samples of cluster 4. Of these 900
samples, the locations of 100 samples are randomised uniformly for the entire
region of [(0.0 − 100.0), (0.0 − 100.0)]. Figure 1 shows the final locations of all
samples.

In this example, the number of clusters is known and, therefore, the example
can be used to assess the efficacy of different clustering methods. Both K-Means
and PCA perform better with three clusters, although PCA has similar results
with four clusters. The proposed method, with or without spatial correction,
significantly outperforms K-Means and PCA in finding the correct number of
clusters (Table 3).

Using four clusters, the performance of different clustering methods can be
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Table 3: Davies-Bouldin and silhouette indices of K-Means, PCA, and WFC for
different number of clusters

Clusters
K-Means PCA WFC

DBI SI DBI SI DBI SI
2 0.852 0.504 1.026 0.496 0.234 0.802
3 0.819 0.537 0.801 0.537 0.306 0.776
4 0.974 0.427 0.818 0.520 0.185 0.866
5 0.907 0.452 0.856 0.442 1.771 0.577
6 0.923 0.439 0.931 0.426 1.231 0.600

Table 4: Explained variance of PCA components

Component Explained variance (%)
1 53.55
2 30.14

further assessed. The imposed spatial structure and added noise make it difficult
for the K-means clustering method to reproduce four clusters (Fig. 3a). The
poor performance of the K-means method is clearly shown in the figure in which
green and blue clusters are correctly identified but the other two clusters are
not. In addition, the importance of different attributes is not identified. For
example, the Cu attribute is well clustered (good separation and low variance)
across all clusters (Fig. 2a) despite the fact that no Cu dependency is imposed
in cluster 4 (Table 2).

PCA overcomes some of the problems of K-Means. Two components were
used. Table 4 depicts the contribution of each component to the total variance.
When the data are projected, and therefore compressed to only two dimensions,
the cluster structure can be clearly seen by visual inspection (Fig. 5). Despite
the obvious cluster structure, PCA clustering performs better than K-Means
but clusters 1 and 4 are still misclassified to some extent (Fig. 4).

There are two hyper-parameters that need to be defined to apply SWFC: the
fuzzier m and the parameter λ for weights. Most cases reported in the literature
suggest that a value of 2.0 for m is a reasonable choice to account for uncertainty
(Pal and Bezdek 1995; Ren et al. 2016), and m = 2.0 is used in all applications
of SWFC discussed in this paper. For parameter λ, there is no rule of thumb
guidance in the literature. A small value close to 0 means that all weight will
be assigned to one attribute, while a large value will tend to assign the same
weights to all attributes. For this example, the influences of different λ values
between 0.05 and 1.0 on the weights assigned to different attributes are shown
in Fig. 6. This figure is useful for assessing the impact of λ on the number
of attributes that are considered significant for finding the cluster structure so
that an appropriate λ value can be selected. For this example, a value of 0.25
was selected for λ because it tends to give importance to two or three attributes
for clustering, which matches the number used to create the clusters in the first
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Figure 2: Boxplots of all attributes in clusters found by (a) K-Means, (b) SK-
Means, (c) PCA, (d) SPCA, (e) WFC, and (f) SWFC. Attributes from top to
bottom are Cu, Fe, Au and Re
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Figure 3: Scatter plot of clusters found by (a) K-Means, (b) SK-Means, (c)
PCA, (d) SPCA, (e) WFC, and (f) SWFC
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Figure 4: Confusion matrix of clusters found by (a) K-Means, (b) SK-Means,
(c) PCA, (d) SPCA, (e) WFC, and (f) SWFC
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place.
The spatial correction was also applied to the three clustering algorithms,

K-Means, PCA and WFC, to compare the effect of this correction. The spatial
correction applied to K-Means results in the loss of cluster 1 (Fig. 4b), due to its
weak membership values, which are reassigned to cluster 4 (Fig. 3b). Although
the correction improves PCA compared to K-Means, its performance remains
the same as WFC (Fig. 3e). The spatial correction applied to PCA gives re-
sults that are similar to SWFC (Fig. 4 d and f). WFC is impressively exact,
even identifying the correct clusters for the randomly located observations. The
performance of SWFC slightly decreases but it still significantly outperforms
SK-Means (Fig. 4 b and f). The spatial correction alters the final cluster mem-
bership of only a few observations in order to make the clusters more spatially
compact (Fig. 4f). The boxplots for WFC and SWFC show no substantial
difference in their performance statistics (Fig. 2 e and f).

This simple illustrative example clearly shows that traditional methods strug-
gle to find the cluster structure correctly when those clusters are defined by
different attributes. The proposed method significantly outperforms the tradi-
tional methods and can perfectly reveal the cluster structure in this case as well
as producing compact clusters in terms of spatial connectivity.
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Figure 6: Weights (left y-axis) of the four attributes for different values of λ
(x-axis). The black points indicate the number of weights greater than 0.05
(right y-axis) at each value of λ

Table 5: Explained variance of PCA components

Component Explained variance (%)
1 53.15
2 17.13
3 14.50

4.2 Simulated Copper Porphyry Deposit Example

This example is a simulated deposit based on actual data from a copper por-
phyry deposit (Garrido et al. 2017). The orebody is mainly dominated by
disseminated chalcopyrite and with four categories of large, moderate, small
and minimum presence of clay. A cross-section, comprising 6,462 blocks is used
to illustrate the results of SWFC in two dimensions. The first level clustering
results in 4,268 blocks of waste and 2,194 blocks of ore. The ore cluster has
two grade elements (copper and arsenic), two response attributes (copper re-
covery and bond index), and one categorical attribute (presence of clay in low,
medium and high degree). SWFC is applied to the ore super-cluster to find four
sub-clusters using these 5 attributes. For PCA clustering, three principal com-
ponents were used. Table 5 depicts the explained variance of each component
of the total variance.

Cluster 1 is characterised by high content of clay (category 2), low grade
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Table 6: Centroids of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index
1 2 0.436 20.00 76.48 10.65
2 1 0.454 20.00 83.03 12.70
3 0 0.968 63.34 94.11 16.04
4 0 0.780 20.00 94.98 16.49

Table 7: Weights of the four clusters found by SWFC

Cluster Clay Copper Arsenic Recovery Bond index
1 0.5275 0.0971 0.3152 0.007 0.0533
2 0.4017 0.1102 0.3877 0.0357 0.0647
3 0.5159 0.0241 0.0034 0.2786 0.1780
4 0.4595 0.0118 0.2403 0.2039 0.0846

values of copper and arsenic (detection limit of 20 for arsenic), and low recovery
due to the clay content and low hardness. Cluster 2 is characterised by medium
content of clay (category 1), low grade values of copper and arsenic, and slightly
higher recovery. Interestingly, SWFC has identified two additional clusters for
low content of clay (cluster 3 and 4), which are characterised by high recovery
and high bond index but are well separated by arsenic content (low and high),
see Table 6.

Table 7 lists the weights assigned to different attributes in SWFC, which ef-
fectively shows the degree of importance of each attribute for each cluster. Clay
content is the most important attribute for all clusters, which is consistent with
the copper recovery performance and hardness as high clay content is related to
low copper recovery and softer rocks. The second most relevant attribute differs
for different clusters. Arsenic content is more relevant for clusters 1, 2 and 4,
whereas recovery is for cluster 3. One interpretation is that SWFC was capable
of separating clusters 3 and 4 in terms of arsenic attribute although both have
low clay content.

Figure 7 shows the statistics of the four most relevant attributes for K-
Means, PCA and WFC. Clay content is well separated, but K-Means separates
clays in a different way. The clusters found by PCA and WFC look very similar,
except for the size of cluster 3. For all methods, copper grade is split into two
main groups: low and high. High content of arsenic is very relevant for cluster 3
in both PCA and WFC, whereas recovery is well separated among clusters. In
general, PCA and WFC perform similarly and both are superior to K-Means.

The spatial connectivity of the clusters is another important aspect for
SWFC. The results in terms of spatial connectivity for SK-Means, SPCA, and
SWFC are shown in Fig. 8. SK-Means does not preserve cluster 2 (Fig. 8
a and b) and SPCA does not preserve cluster 4 (Fig. 8 c and d) due to the
poor connectivity of the clusters. For WFC, there are several blocks in cluster 4
(blue) that are spatially unconnected (Fig. 8e); the spatial correction generates
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Figure 7: Statistics of the four most relevant attributes for all observations and
for the four clusters by (a-d) K-Means, (e-h) PCA, and (i-l) WFC. Attributes
are from left to right: clay content, copper, arsenic, and recovery
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Figure 8: Map of (a) K-Means, (b) SK-Means, (c) PCA, (d) SPCA, (e) WFC,
and (f) SWFC. Black represents waste rock. Red, Yellow, Green and Blue
represent the four clusters

29



Table 8: Attribute descriptions of the geometallurgical block model

Type of Attribute Attributes Observation
Rock properties Lithology, Specific gravity Lithology codes:

1: Semi-massive ore. Feldspar
rich dominated with albite.
2: Massive ore. Amphibole dom-
inated with minor apatite and bi-
otite.
3: Massive ore. Apatite domi-
nated with minor Amphibole.

Mineral groups Magnetite (Mgt),
Hematite (Hem), Al-
bite (Ab), Actinolite
(Act), Apatite (Ap),
Biotite (Bt)

Fe minerals: magnetite and
hematite.
Gangue: albite, actinolite, Ap-
atite and biotite.
Actinolite has some recoverable
content of Fe.

Chemical elements O, F, Na, Mg, Al, Si, P,
Cl, K, Ca, Ti, V, Mn and
Fe

Processing Iron recovery Recovery in magnetic separation
process

much more spatially compact clusters (Fig. 8f), which is a desirable property
achieved by the proposed method.

This simple two-dimensional case study illustrates the power of SWFC to
produce compact and well separated clusters while preserving their spatial con-
nectivity. It does so by selecting the appropriate attributes relevant for the
cluster structure using the optimisation technique discussed above. The result-
ing clusters can then be much more effectively used for scheduling. Taking into
account the characteristics of each cluster, for example, the scheduler may avoid
too many jumps between different clusters in order to derive sets of blocks with
similar characteristics to be delivered to the plant for a particular time period.

4.3 Simulated Geometallurgical Block Model Example

This geometallurgical block model was built based on the Malmberget iron
deposit in northern Sweden using simulation modules for geology, sampling,
production and mining economics. The complete methodology used to build
this geometallurgical block can be found in (Lishchuk 2016; Lund et al. 2015).

This geometallurgical model has 50×50×50 number of blocks of size 5×5×
5m, where 21,710 of them are ore blocks. The 23 attributes used for clustering
are: lithology, 6 mineral grades, 14 chemical element grades, specific gravity,
and iron recovery (Table 8).
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Table 9: Explained variance of PCA components

Component Explained variance (%)
1 50.51
2 24.65
3 12.26

Table 10: DBI and SI of K-Means, PCA, and WFC for different number of
clusters

Clusters
K-Means PCA WFC

DBI SI DBI SI DBI SI
2 0.98 0.50 1.05 0.46 0.53 0.69
3 0.95 0.39 1.38 0.33 0.48 0.71
4 0.96 0.44 0.97 0.43 0.63 0.61
5 1.20 0.43 1.27 0.41 1.00 0.53
6 1.21 0.42 1.38 0.41 1.56 0.42
7 1.24 0.41 1.28 0.39 2.57 0.44
8 1.36 0.40 1.27 0.31 2.59 0.36
9 1.34 0.32 1.38 0.30 4.13 0.36
10 1.41 0.32 1.32 0.30 6.40 0.29

In this example, the focus is on building geometallurgical domains for iron
recovery. Lithology should play an important role in clustering, but lithology
alone in this case is not sufficient to discriminate iron recovery.Finding the
other attributes that can contribute to a better identification of clusters is very
important.

The flexibility of SWFC is illustrated by setting the objective as achieving
a geometallurgical domaining for Fe recovery. To do so, the targeted distance
is used for iron recovery with the values at 15%, 50% and 85% percentiles
of its distribution, corresponding to recovery values of 82.41%, 88.98% and
91.22% respectively, and a weight of 15% was used for the recovery attribute.
These conditions provide a guide for SWFC to find three clusters. The purpose
of imposing the target and weight to Fe recovery is to find which secondary
attributes would be useful for clustering the structure as it is expected that
discovered clusters will tend to have Fe recovery values close to the defined
targets.

The number of clusters is set to three according to both DBI and SI values
(Table 10). For PCA clustering, three principal components were used. Table
9 shows the explained variance of each component of the total variance.

The results for apatite, magnetite, iron, iron recovery, and rock type are
used to compare the performance of the clustering methods.

Some interesting observations can be made about the centroids of the three
clusters (Table 11). The targeted distance applied to iron recovery is very well
represented by the SWFC method, but not so by SK-Means and SPCA because
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Figure 9: Distribution of (a) Lithology, (b) Fe, (c) Fe recovery, (d) Apatite, and
(e) Magnetite. Clustering methods from left to right are: K-Means, SK-Means,
PCA, SPCA, WFC and SWFC
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Figure 10: (a) Pairwise cluster discrepancy between K-Means, PCA and WFC.
(b) Pairwise cluster comparison between each clustering method before and after
spatial correction

they do not use targeted distance functions. Lithology is also well discriminated
and the positive correlation between apatite and iron recovery is maintained.
Apatite is separated only as low content for cluster 3 in SWFC, whereas SK-
Means and SPCA do not separate apatite to the same extent in cluster 3 but
are similar for clusters 1 and 2. The centroids of the three clusters for iron grade
show a similar separation for the three methods.

Figure 9 shows the statistics of the six clustering methods. SPCA separates
each lithology into each cluster as does SK-Means. SWFC clusters lithology in
a different way, for example, cluster 1 contains the three lithologies, but clusters
2 and 3 contain only lithology 1 and 3 respectively. This difference may be
explained by the fact that WFC and SWFC seek the imposed targets for iron
recovery.

A summary of the differences of clustering among K-Means, PCA and WFC
is given in Fig. 10a. K-Means shows some differences compared to PCA and
WFC, while PCA and WFC are very similar in performance (Fig. 10b).

This case study of a complete three-dimensional geometallurgical block model
demonstrates the flexibility of applying SWFC in practice. The objective was
for the three clusters to be centred in specific values of iron recovery, which
was fully achieved. The spatial correction step in the three clustering meth-
ods makes some changes in the final membership (Fig. 10b). Although these
changes are small, they are worthwhile as they ensure that the derived clusters
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Table 11: Centroids of the three clusters for lithology, apatite, magnetite, iron
and iron recovery found by SK-Means, SPCA and SFWC.

Cluster Lithology Apatite Magnetite Iron Iron recovery
SK-Means

1 3 2.85 87.96 64.37 89.60
2 1 3.81 62.20 46.33 87.94
3 2 2.14 81.48 61.07 84.33

SPCA
1 3 2.73 87.78 64.66 89.71
2 1 3.49 65.04 48.35 88.51
3 2 2.30 81.29 60.64 83.07

SWFC
1 3 4.51 88.08 64.87 91.22
2 1 4.88 57.05 42.98 88.98
3 2 1.82 72.87 54.83 82.41

are as spatially compact as possible.

5 Conclusions and Future Work

Identifying geometallurgical clusters or domains in mining applications is very
important not just to characterise geology and geochemistry, but also to assist
in choosing optimal processing routes for parcels of ore with different proper-
ties. Geometallurgy is increasingly incorporating more information and more
variables, which makes it more difficult to find useful cluster structures for mine
planning purposes.

In this paper, the difficulty of traditional clustering methods is demonstrated
when dealing with multivariate scenarios in which the cluster structures depend
on different attributes, as is commonly the case in practice. A new clustering
method is proposed which is based on fuzzy clustering but incorporates addi-
tional valuable characteristics such as feature selection, spatial correction and
the flexibility of including expert knowledge. Expert knowledge in the pro-
posed method can be incorporated through an appropriate distance definition
(categorical or targeted distances) and forcing a specific weight to a particular
attribute.

Three case studies were presented to illustrate the application of SWFC.
The first case study was explicitly designed to construct clusters that depend
on different subsets of attributes. While the traditional methods fail to dis-
cover the true clusters, WFC and SWFC can readily find the designed cluster
structure and SWFC also constructs well-connected clusters by incorporating
spatial information. The second case study was used to illustrate graphically
the effectiveness of SWFC using a two-dimensional synthetic geometallurgical
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model. The clusters found by SWFC are spatially well-connected and the most
compact. Finally, SWFC was applied to a complete synthetic geometallurgical
block model to demonstrate its capability and flexibility in building clusters,
which in this case are geometallurgical domains for iron recovery. By imposing
a targeted distance for iron recovery and weight, SWFC can find the relevant
secondary attributes that control the cluster structures.

In summary, SWFC has been demonstrated to be capable of defining mean-
ingful geometallurgical domains for different application scales, based either on
samples or complete block models.

In future research, the geometallurgical uncertainty will also taken into ac-
count for the clustering method. Uncertainty can be introduced by generating
many realisations of the block model. The SWFC method can then include the
distances between realisations to account for uncertainty. Also, the interaction
potential could be reformulated to incorporate some form of multivariate spatial
correlation, such as semivariogram or correlogram, instead of the Potts model.
It is also necessary to investigate an optimisation formulation that can include
the minimisation of compactness, maximisation of separation, feature selection
and spatial correction all within a single integrated step.
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