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Abstract

This thesis addresses the problem of combining data augmentation with multi-

domain and multi-modal training and inference for Generalised Zero-Shot Learn-

ing (GZSL). GZSL introduces an experimental setup, where the training set con-

tains images and semantic information for a set of seen classes, and semantic

information for a set of unseen classes, where there is no overlap between the seen

and unseen classes. The semantic information can be represented by a group of

attributes or some textual information that describes a visual class. The main goal

of GZSL methods is to build a visual classifier that works for both the seen and

unseen classes, even though there are no training images from the unseen classes.

The key to solve this challenging problem is to explore the connection between the

semantic and visual spaces by learning a model that can translate between these

spaces.

The solutions proposed in the field have been focused on three directions: con-

ventional Zero-shot Learning (ZSL), data augmentation and domain classification.

Conventional ZSL comprises an optimisation procedure that learns a mapping

from the visual to the semantic space using the seen classes. The inference maps

the images of the unseen classes from the visual to the semantic space, where

classification relies on a nearest neighbour classifier. The extension of ZSL to GZSL

is not trivial since it biases the classification towards the seen classes given the

lack of semantic and visual samples from the unseen classes during training. Such

issue has driven GZSL to two alternative approaches: domain classification and

data augmentation. Domain classification aims to learn a one-class classifier that

estimates the likelihood that visual samples belong to the set of seen classes – this

domain classifier is then used to select or modulate the visual classification of

test images. More specifically, an input visual sample is first classified as seen or
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unseen, and then forward to different classifiers (e.g., if it is classified as seen, then

it goes to the visual classifier trained with the seen images; and if it is classified

as unseen, then it goes to a conventional ZSL classifier). Even though relatively

successful, this approach assumes that seen and unseen classes are drawn from

different domains, which is unwarranted in GZSL because images from seen

and unseen classes most likely come from the similar distribution. The other

alternative approach, data augmentation, comprises the training of a generative

model that produces visual samples conditioned on a semantic sample. Then, this

generative model produces synthetic samples from the unseen classes, which are

joined by the real visual samples from the seen classes to train a visual classifier.

This approach introduces a multi-modal training, but there is no guarantee that the

generated visual samples can represent well the visual samples from the unseen

classes, and inference still relies only on the visual modality.

In this thesis, we propose several methods to address the issues mentioned

above. Firstly, we introduce a novel data augmentation model based on a cycle-

consistent multi-modal training to improve the generation of visual samples,

particularly from the unseen classes. Secondly, we propose a novel domain clas-

sification method that no longer relies on one-class classifiers – instead, we use

the visual samples from the generative model to train a binary domain classi-

fier. Thirdly, we extend our proposed GZSL data augmentation framework to a

multi-modal inference procedure, where we train a visual and a semantic classifier

that are combined to classify a test image. Our final proposed model is based

on a multi-modal and multi-domain data augmentation approach composed of

multiple classifiers trained in three modalities (visual, semantic and joint latent

space). Moreover, we proposed the use of a classification calibration technique

to produce an effective multi-modal and multi-domain classification. We report

extensive experiments for the proposed models, using several benchmark data

sets, such as the Caltech-UCSD Birds 200 (CUB), Animal with Attributes (AWA),

Scene Understanding Benchmark Suite (SUN), 102 Category Flower Dataset (FLO)

and ImageNet. The experiments show that multi-modal and multi-domain op-

timisation can be combined with data augmentation to produce state-of-the-art

GZSL results.
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CHAPTER 1
Introduction

1.1 Overview

In recent years, the advent of technological advancements for the acquisition of

visual data and for running deep neural networks have enabled outstanding visual

classification results from deep learning models. The training of deep learning

models generally requires large annotated training sets [26, 61, 81, 148], where

such models can only recognise the visual classes available from that training

set, even though in reality new visual classes can appear continuously after the

training process has finished [5,25,66,77,125]. The recognition of these new visual

classes is a challenge that has been studied by the computer vision and machine

learning communities [5,25,66,125]. For instance, Generalized Zero-shot Learning

(GZSL) proposes a solution to recognise these new classes [150] by exploring the

concepts of transfer learning and domain adaptation [52, 104]. The GZSL data

sets are divided into seen and unseen class domains, where the seen domain

corresponds to classes available for training, containing images that have been

manually annotated, and the unseen domain comprises a set of classes that does

not have any images during the training phase. GZSL methods are designed to

model the unseen visual classes with alternative semantic descriptions [2,41,44,76],

which can be represented by textual descriptions or lists of common attributes [69,

76, 102]. Fig. 1.1 illustrates two samples from the data set Animal with Attributes

(AWA) [76] – these samples contain the visual information available from the

image and their respective semantic features (in that case, represented by a list

1
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Figure 1.1: Sample of two classes (a horse on the left hand side and humpback

whale on the right hand side) from the GZSL benchmark data set Animal with

Attribute [76], and their respective semantic features (for each semantic attribute,

a score between 0 and 1 has been manually provided).

of attributes, and respective scores from 0 to 1) [69, 102]. The main motivation

for using the semantic description of classes is that, while the visual annotation

process is expensive and time-consuming, the semantic information is cheap to

obtain, and consequently, widely available [76, 150]. For instance, one can rely on

dictionary definitions of visual classes as an alternative semantic description.

Conventional GZSL methods are optimised [2,41,44,77] as depicted in Fig. 1.2.

In a pre-processing step, images are transformed to be represented as feature vec-

tors in a visual space, and semantic descriptors are represented as feature vectors

in a semantic space. In the first step (training), the GZSL model, represented by

the attribute prediction, is trained to regress visual samples to their respective

semantic samples [77]. In the second step (inference), the visual samples from the

test set are mapped, by the attribute prediction, into the semantic space, which is

used in a nearest neighbour classification process to predict the class label. Recent

studies have shown that these conventional GZSL approaches have two important

drawbacks [150]: (i) the bias issue towards the seen classes, and (ii) the single

modality inference. Firstly, the pipeline suffers from a bias towards the seen

classes issue, which consists of an imbalanced performance concerning the seen

and unseen classes [19, 149, 150]. More specifically, the classification accuracy for

the seen classes tends to be substantially higher than for the unseen classes [150].

Studies have pointed out that the bias issue is caused by two aspects of the GZSL

training: 1) the missing visual information for the unseen classes when training

the GZSL model [39], and 2) the asymmetry of the training sets for the seen

classes containing visual and semantic features, and for the unseen classes con-
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Figure 1.2: Overview of the conventional GZSL/ZSL model. During training, seen

classes are used to train an attribute prediction model that transforms visual to

semantic samples. During inference, visual samples from seen and unseen classes

are input to the attribute prediction that outputs a semantic sample, which is then

used in a nearest neighbour classification.

taining only semantic features [37]. The second drawback of conventional GZSL

approaches is that the optimisation procedure for training GZSL models uses

multiple modalities, but the inference procedure tends to rely on a single-modality

inference. In recent literature, several studies have been conducted to address

these two issues with GZSL approaches.

Frome et al. [42] suggested that deep neural networks can be used for optimis-

ing the pre-processing step of GZSL methods, explained above. In their approach,

a deep neural network is used to encode the image and semantic samples [42].

This approach, based on deep learning, has shown to improve the training and

inference of GZSL models [42]. Moreover, this work motivated subsequent studies

that employ deep learning for solving the GZSL problem [2–4, 150, 151]. Recent

studies have also proposed that the GZSL seen and unseen domains can be rep-

resented with distinct probability distributions [8, 133, 158]. In particular, these

papers address the bias issue with a one-class seen domain classifier that is used

to select or modulate a GZSL classifier. More specifically, the domain classifier is
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Figure 1.3: Overview of the domain classifier for GZSL. During training, the seen

class samples are used to learn an attribute prediction and a domain classifier.

During inference, the domain classifier estimates the probability that a test sample

belongs to the seen domain. Considering a threshold value, the classification will

be performed with the seen or the unseen classes, respectively.

trained with novelty detection methods (i.e., one-class classifiers) to estimate the

probability that input samples belong to the seen domain. Then, either the seen or

unseen classifier is selected by the domain classifier [133] for the GZSL inference

process, as depicted in Fig. 1.3. The main issue with this approach is that there is

not sufficient evidence to suggest that the seen and unseen classes form distinct

distributions in the visual feature space [37], making the training of the one-class

classifier challenging.

Another GZSL approach is based on data augmentation [21, 112, 142, 151],

depicted in Fig. 1.4. This approach assumes that the seen and unseen visual

samples share a similar probability distribution. The probability distribution can

be learned by a generative model, which is conditioned on the joint distribution of

visual and semantic samples [39, 151]. These generative models can augment the
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Figure 1.4: Overview of the GZSL data augmentation framework. During training,

this model learns to synthesize visual samples that are used to train a visual

classifier. During inference, a novel visual sample from seen or unseen classes is

tested by this visual classifier.

visual data set to train a visual classifier with real samples from the seen classes

and generated samples from unseen classes [151]. This approach alleviates the

bias towards the seen classes because it enables training with the same number of

samples from seen and unseen classes. However, the fact that these approaches do

not explore multi-modal inference can be seen as a weakness given the promising

results observed in other types of multi-modal inference applications [39, 144, 151].

The development and enhancement of GZSL approaches will be beneficial for

the computer vision community for a large number of applications, such as visual

classification [74, 151], segmentation [84, 87, 99, 119], generative models [7, 101, 122,

151], image retrieval [28, 32, 130, 155], and object detection [10, 50, 51, 113]. The

progress of this field can potentially ease the burden of annotating large data sets,

improve the learning for open-set applications [12, 125, 127] and contribute to a

broader understanding of human-robot interaction applications [67, 79, 93, 94, 139].



6 Chapter 1. Introduction

1.2 Motivations

In this thesis, we focus on the design of new GZSL solutions that explore effective

data augmentation, multi-modal and multi-domain training and inference pro-

cesses. We aim to address the bias towards the seen classes issue, the multi-modal

inference, and the asymmetry of the training sets between the seen and unseen

classes.

We propose a novel method that aims to alleviate the bias towards the seen

classes issue with a data augmentation approach that generates samples for seen

and unseen classes. Our contribution involves a novel multi-modal cycle con-

sistency loss that forces the generated visual samples to be transformed back

into their respective semantic samples – the proposed method is referred to as

cycle − WGAN [39] (see Fig. 1.5). Similarly to previous data augmentation ap-

proaches, cycle − WGAN aims to turn the GZSL problem into a ”supervised”

visual classification problem, using the real visual samples from the seen classes

and the synthetic visual samples from the unseen classes. With a cycle consistency

loss, cycle − WGAN enables more efficient learning of the generative model. This

leads to more effective training for the visual classifier when compared to previous

approaches that do not rely on such cycle-consistency loss.

We also tackle the asymmetry of the training sets for the seen classes con-

taining visual and semantic samples, and for the unseen classes containing

only semantic samples with the formulation of a new GZSL model based on a

domain classification strategy. In this work, we rely on a framework for learning

to transform visual and semantic features into a single latent space – as depicted

in Fig 1.6. The proposed binary domain classifier uses this joint latent space to

estimate whether a sample belongs to the seen or unseen classes [37] and also to

train the GZSL classifier. During inference, the result from the domain classifier

modulates the class estimation produced by the GZSL classifier. The main nov-

elty of our method is the use of this latent joint space for training a single GZSL

classifier for both the seen and unseen classes and a binary domain classification

procedure. The main advantage is that our approach no longer needs the training

of a novelty detector, involving a complex modelling of one-class classifiers [37].

Furthermore, we propose two methods that tackle the single-modality infer-
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Figure 1.5: Overview of cycle-WGAN. This figure depicts the proposed cycle

consistency loss that takes the generated visual samples to train a regressor that

maps the visual samples back to their semantic samples. This proposed loss en-

ables more effective data augmentation GZSL methods than previously proposed

models that do not rely on such cycle-consistency loss.

Figure 1.6: Overview of the proposed binary domain classifier method. In this

approach, the generative model produces samples in a latent space from the seen

and unseen classes – these samples are used to train a binary domain classifier and

a GZSL classifier. During inference, a test sample is transformed into this latent

space, classified by the GZSL classifier and modulated by the domain classifier.
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ence problem and the asymmetric training problem with new multi-modal and

multi-domain training and inference processes [38, 40]. One important contri-

bution of these methods is the use of data augmentation to train not only the

visual [21, 112, 142], but also the semantic and joint multi-modal classifiers. In

the first method, we proposed the augmentation network for multi-domain and

multi-modal GZSL (AN-GZSL) [40], where we present a novel GZSL architecture

that combines the use of generative models and multiple classifiers trained using

multiple modalities. Fig. 1.7 illustrates the first method. The second model consists

of a novel GZSL architecture that explores the use of variational autoencoders to

achieve multi-modal inference in GZSL [38]. We also propose a calibration strat-

egy for the combination of multiple models, which can be considered a simpler

and more effective solution for the multi-domain problem when compared to the

domain classification approach based on novelty detection methods.

Figure 1.7: Overview of multi-modal multi-domain data augmentation GZSL

model. During training, the generative model is used to synthesise samples for

the training of the visual and semantic classifiers. During inference, the calibrated

visual and semantic GZSL classifiers produce a multi-modal and multi-domain

seen and unseen class estimation.

The main contributions proposed in this thesis are designed to address the bias

towards the seen classes issue, the asymmetric training problem and the multi-

modal/multi-domain training and inference. The empirical results show that the

approaches proposed in this thesis established new state-of-the-art results at the

time of their publication. We report the results taking into consideration several
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measures commonly used in GZSL benchmarks, such as the seen and unseen

classification accuracy and their harmonic mean (H-mean). The main benchmark

data sets utilised in this thesis are: Caltech-UCSD Birds 200 (CUB) [146], Scene

Understanding Benchmark (SUN) [152], ImageNet [26], Animal with Attributes

(AWA1 and AWA2) [76, 150], and 102 Flower Category Database (FLO) [98].

1.3 Contributions

In this thesis, we present several contributions to the field of generalised zero-shot

learning, which can be summarised as follows:

∙ We investigate the advantages of deep generative models in GZSL. In par-

ticular, we propose novel generative models to augment GZSL data sets by

synthesising visual samples from semantic features. These synthetic visual

samples are employed to train a visual classifier for the seen and unseen

classes, where the seen class contains real and synthetic visual samples,

while the unseen classes contain exclusively synthetic samples. We explore

the use of two generative models for GZSL: Generative Adversarial Net-

works (GANs) [55] and Variational Autoencoders (VAE) [29]. Our main

contribution in this area is the introduction of a loss function that includes

a multi-modal cycle consistency objective function, which yields accuracy

improvement and eases the learning process of the GAN, providing faster

convergence.

∙ We propose a novel method that tackles domain classification trained with

a dual encoder/decoder framework, which is composed of a visual and

semantic variational autoencoders sharing a latent space. We show that this

joint latent space can be used for training a binary domain classifier and a

GZSL classifier. The estimation from the domain classifier modulates the

output of the GZSL classifier to produce a balanced classification between

the seen and unseen domains.

∙ We propose a multi-domain multi-modal classifier for GZSL. This work

tackles the use of a generative model for 1) training multiple classifiers

in several modalities; and 2) generating samples from multiple domains
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to mitigate the bias towards the seen classes issue. This method achieves

a good balance between the seen and unseen classification accuracy by a

multi-domain classification calibration [56] and no longer requires a domain

classifier [38, 40].

1.4 Outline

In this section we provide the thesis outline, where we briefly discuss the contents

of each chapter as follows:

In Chapter 1, we present the overview, motivations and contributions of this

thesis.

In Chapter 2, we provide a literature review of this thesis, where we aim to

contextualize all important topics related to generalised zero-shot learning, such

as deep learning, zero-shot learning, domain classification, and generative models.

Furthermore, we also provide an extensive background description of previous

GZSL methods.

In Chapter 3, we propose the cycle − WGAN [39], which is a novel GZSL

method. In this chapter, we show how generative adversarial networks (GAN)

can be used to synthesise visual samples using the semantic samples of the unseen

classes. We propose a cycle consistency regularisation for GANs in the GZSL

problem. This cycle consistency regularisation ensures that the generated visual

samples can be transformed back to their respective semantic features – this

regularisation improves the training process for the GAN, and improves GZSL

performance.

In Chapter 4, we propose a binary domain classification approach. This chapter

introduces a novel GZSL method that learns a joint latent representation space

for training two classifiers: a GZSL classifier, and a GZSL domain classifier that

estimates the probability that an input visual sample belongs to the seen or unseen

classes. The domain classifier modulates the GZSL classifier, alleviating the bias

towards the seen classes issue.

In Chapter 5, we introduce a multi-domain multi-modal GZSL training and

inference by proposing a novel method, called AN − GZSL. This model combines

data augmentation with multi-domain and multi-modal optimisation. The AN −



1.4. Outline 11

GZSL architecture comprise a generative adversarial network, a visual network

and a semantic network. The visual and semantic networks consist of calibrated

classifiers to guarantee a classification that is well balanced between seen and

unseen classes. Therefore, this approach does not require any gating mechanisms

or external domain classifiers.

In Chapter 6, we formulate the hypothesis that reconstruction spaces from

variational autoencoders can be used for multi-domain multi-modal GZSL training

and inference. In particular, we propose a novel GZSL method that combines

visual, semantic and joint latent space classifiers that are calibrated to promote a

balanced seen and unseen classification. The proposed model replaces domain

classification by a simple combination of multiple calibrated modal classifiers.

We conclude this thesis and discuss future work in Chapter 7.



12 Chapter 1. Introduction



CHAPTER 2
Literature Review

In the first part of this chapter, we review the literature in conventional ZSL. Then,

we describe the current research in Generalised Zero-Shot Learning, where we

highlight the main gaps in the literature which motivated the approaches proposed

in this thesis.

2.1 Overview

In recent years, deep learning methods have achieved outstanding progress on

several pattern recognition tasks [61, 81, 128]. An increasing number of studies

have demonstrated the efficiency of deep learning for several applications, such as

image classification [58,136], segmentation [87,99,119], object detection [50,51,113],

3D reconstruction [64, 70], and many others. In fact, recent studies have reported

results that surpassed human-level performance for several tasks in large-scale

data sets [54]. Despite these advances, the deployment of deep learning methods

in unstructured environments is not thoroughly explored [12,126,127]. One issue is

that it is impractical to collect a labelled training set that contains all possible visual

classes that might eventually appear for a deep learning model [126]. Therefore,

there is a growing interest in the development of deep learning methods that can

deal with previously unseen visual classes, either by recognising them [150] or by

detecting them as a novel object [126].

The recognition of previously unseen visual classes has been formalised as

zero-shot learning (ZSL) [36, 76, 157]. The lack of visual data from the unseen

13
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classes is compensated with information from other modalities, such as shared

attributes [77], semantic features [108, 109, 109, 114, 133], and contextual informa-

tion [156]. More specifically, during training, the set of seen classes contain visual

and non-visual information, while the unseen classes only contain non-visual

data, and during testing, only visual samples of unseen classes are presented for

classification [36, 76, 157].

In this section, we provide a general view of Zero-Shot Learning. Firstly, we

introduce the ZSL problem defined by Lampert et al. [76]. Secondly, we discuss

significant milestones for the field, such as the development of conventional ZSL

methods and the implementation of deep learning-based ZSL (deep ZSL). Then,

we present the paper by Xian et al. [150] that describes a novel experimental

setup which introduces Generalised Zero-Shot Learning (GZSL). Moreover, we

also discuss a widely accepted data set split proposed for GZSL benchmark data

sets [150].

2.1.1 Conventional Zero-Shot Learning

Conventional ZSL is defined as a transfer learning problem [23, 52, 103, 104, 140],

where the seen classes (or source domain) and the unseen classes (or target domain)

are disjoint during training [76]. Lampert et al. [76] address this challenging

problem by introducing a novel method based on attribute prediction [76] which

consists of transferring the knowledge between the visual and attribute spaces by

using the seen classes to train a regressor that transforms visual samples to their

respective attribute samples [19, 36, 76, 77, 157]. A new data set to benchmark ZSL

methods is introduced in that paper [76] – this data set is named ‘Animal with

Attributes‘ (AWA). AWA contains 30, 000 labelled images from 50 animal classes,

and a set of 85 semantic attributes that describe properties such as shape, colour,

or geographic information [69, 76, 102] for each of those animal classes. In contrast

to supervised learning, where the data sets are split into the train, validation and

test sets [5, 25, 54, 66, 148], the data set AWA is divided into two domains: the seen

domain, represented by 40 classes, and the unseen domain, represented by 10

classes [76]. Following this setup, ZSL methods can access the visual and attribute

samples from the seen domain during training. During inference, the trained

regressor transforms the visual features of a test visual sample into the semantic
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space (i.e., the attribute features). The classification is estimated by using this

semantic sample in a nearest neighbour search among the semantic samples of the

classes in the unseen domain.

From the work proposed by Lampert et al. [76], ZSL research has grown into

four main branches:

1. Handcrafted features: consists of hand-designing visual features derived

from image processing algorithms [53]. These features are composed of

edges, corners, colours or salient key-points in an image [53]. In the literature,

we observed many studies investigating the impacts of handcrafted features

to boost the performance of conventional ZSL, such as SIFT [43, 76, 85, 89, 91],

rgSIFT [77, 143], LSS [86], ORB [120], SURF [11, 77], HOG [22], PHOG [16, 34,

77, 91], Fisher vectors [4, 91, 107], and Vector Quantization [36, 76, 123, 133,

156, 157].

2. Semantic features: another research focus for conventional ZSL has been

the exploration of different semantic attributes [108,109,114]. In recent years,

several studies have proposed the expansion of conventional ZSL with the

attribute descriptions based on geometrical and morphological information,

such as shape, colour, and texture [157], and/or hierarchical information

of the classes [59, 78, 92, 117]. Another focus has been to ease the burden

of annotation with web data-mining strategies [13, 91, 108, 109, 133]. The

methods in this approach rely on mining semantic information from the

web to cover the gap between seen and unseen classes. Recent studies

have reported the use of skip-gram text models (e.g., word2vec) [42, 73, 106],

Wikipedia descriptions [108, 109, 133], textual information [34, 114], and

natural language processing [59, 78, 92, 108, 109].

3. Learning strategies: a large amount of conventional ZSL research has fo-

cused on the exploration of different learning strategies to transform samples

from the visual to the semantic space. More specifically, in subsequent years

from Lampert et al.’s paper [76], we have observed the proposal of several

learning strategies for conventional ZSL, including: direct attribute pre-

diction [76], indirect attribute prediction [76], learning manifolds [45, 133],

novelty detection [133], category-level recognition [156], compatibility in
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label-embedding [3] , online incremental learning [67], sketch [32, 130, 155],

learning unreliability of attributes [65], and co-occurrence of attributes [91].

Akata et al. [4] proposed a structured joint embedding optimisation based

on a max-margin objective function for the ZSL problem. Likewise, Zhang et

al. [161] extended that method by incorporating the semantic representation

of the unseen classes.

4. Large scale data sets: part of the ZSL community has focused on the pro-

posal of large-scale data sets, such as ImageNet [42,117], Caltech-UCSD Birds

200 (CUB) [34, 91] and Scene Understanding (SUN) [65, 91].

The effort to tackle large scale data sets, such as ImageNet [26], has led Frome

et al. [42] to propose a novel deep visual-semantic embedding (DeViSE), which

is the first model to introduce the use of convolutional neural networks (e.g.,

AlexNet [75]) to address the ZSL problem. Later, this work has motivated the

development of many other studies that explore the use of deep learning for

solving ZSL.

2.1.2 Deep Learning for Zero-Shot Learning (Deep ZSL)

In recent years, deep learning has enabled the automated learning of data rep-

resentation for machine learning applications [27, 54]. In Fig. 2.1, we illustrate

how a deep learning model extracts discriminant features from images. Deep

neural networks can be roughly divided into two parts. The first part consists of a

feature extraction network composed of convolutional filters, activation functions

(e.g. ReLu [90], LeakyRelu [90]) and regularisation techniques [62, 71, 90, 122, 135].

When an image is processed by this model, it is forwarded through this first part,

where the initial layers are able to represent low-level visual information such as

texture, lines, colour, and edges [80, 141, 162]. The intermediate and final layers

can combine the representations from the initial layers to detect more complex

visual features, which can be part of more complex visual objects, such as a car, a

person, or an animal. The last layer outputs a vector of visual features, which are

processed by the second part of the model, represented by a Multilayer Perceptron

(MLP) [95]. The MLP is a discriminative neural network that learns the conditional

output probability of a class given a visual feature [24, 54].
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Figure 2.1: [54]. Depiction of a Convolutional Neural Network pipeline. The

image is input into the convolutional neural network (CNN) that extracts discrim-

inative features to be used by a fully-connected neural network, represented by a

multi-layer perceptron (MLP), which estimates a class label.

The training of deep neural networks progresses by adjusting the network

parameters. These adjustments are achieved with an optimisation algorithm,

such as Stochastic Gradient Descent [116, 121]. The objective of this algorithm is

to minimise a loss function, such as categorical cross-entropy [15, 54] that aims

to train a classifier from the MLP output. Deep neural networks represent the

currently dominating model used in GZSL problems. In recent years, several

studies proposed the use of several deep learning architectures for GZSL, such as

GoogLeNet [137], AlexNet [75], VGG [131] and ResNet [58].

A recent study [42] has shown that the visual features obtained from the last

convolutional layer from pre-trained deep learning models can be adapted to

the ZSL task. In particular, the deep learning models trained on the ImageNet

challenge appear to extract effective features for ZSL benchmark data sets [42, 54].

The use of deep learning for feature extraction can facilitate ZSL training, and

possibly boost the ZSL performance when compared to the use of handcrafted

features. The same principle of feature extraction has been explored in ZSL for

textual and hierarchical information [34, 92, 109, 114, 133]. More specifically, deep

learning models have been trained on the English dictionary [92], and articles

from Wikipedia [34]. Despite the outstanding results achieved by ZSL methods

implemented with deep learning models, some questions still require further

investigation. For instance, when deployed in unstructured environments, these

methods will be required to handle samples from both seen and unseen classes [77].
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Hence, the ZSL constraint that seen class samples are not present during testing is

rather unrealistic for the deployment of ZSL in unstructured environments. Recent

studies show that conventional ZSL models perform poorly when this constraint

is violated [19, 138], which motivated the development of methods that work well

in the classification of both seen and unseen classes.

2.2 Generalised Zero-Shot Learning

Generalised Zero-Shot Learning (GZSL) relaxes the ZSL constraint that seen class

samples are not present during testing [19]. Chao et al. [19] argue that for a

ZSL model to be truly useful, it should be able to identify classes from the seen

and unseen domains at test time. Chao et al. [19] highlighted the issues with

conventional ZSL setup, and propose to evaluate conventional ZSL with a novel

generalised ZSL setup.

Partially motivated by the work above, researchers have switched their focus

from ZSL to GZSL [19, 39, 150, 151]. This interest can be attributed to the stan-

dardisation of benchmark data sets proposed by Xian et al. [150], where they

highlight two important issues in conventional ZSL [150]. First, the naive use of

ImageNet [26] pre-trained CNNs, such as ResNet [58], violates the conventional

ZSL conditions because of an existing overlap between the zero-shot (i.e., unseen)

classes and the classes from ImageNet used to train deep learning models [26].

This issue is reported for several benchmark data sets (e.g., AWA [76], CUB [146]

and SUN [152]). Xian et al. [150] then propose a solution to overcome this issue

– a new data set split that takes into consideration the class overlapping with

ImageNet classes. The second issue reported by Xian et al. [150] regards the appli-

cation of conventional ZSL model in GZSL conditions. In particular, classification

results from ZSL models show that samples from the unseen domain are prone to

be mislabelled into one of the seen classes. This is defined as the bias towards the

seen class (a.k.a. hubness problem [31], or class imbalance [19]) [77,150]. Therefore,

Xian et al. [150] introduced a new test set of images from the seen classes, and

a new way to assess GZSL methods with a novel set of metrics that takes into

consideration the bias issue, and the balancing performance between the seen and

unseen samples.
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Contemporary GZSL models can be categorised into three groups: conven-

tional attribute prediction from ZSL to GZSL, domain classification, and visual

data augmentation. In the following sections, we describe these categories.

2.3 Conventional Attribute Prediction from ZSL

to GZSL

In conventional ZSL, the attribute prediction model learns a mapping function

from the visual to the semantic space [3, 4, 42]. This model is optimised using the

training data set composed of visual and semantic samples from the seen class

domain. When tested in GZSL conditions, the inference procedure is achieved

by mapping a visual sample to the semantic space, in which the classification is

performed via a nearest neighbour procedure. Where, the distance between the

predicted semantic feature is computed to the semantic features from the unseen

classes. The label inference is achieved by attributing the class label obtained from

the neighbour with minimal distance. The main compatibility functions used to

compute the nearest neighbour are based on the minimum Euclidean distance

[77], or the maximum cosine similarity [42].

Preliminary research in GZSL has explored several learning methods for at-

tribute prediction. Farhadi et al. [36] and Lampert et al. [76] propose an attribute

prediction model optimised with the minimization of the difference between

transformed visual samples and their respective semantic representations. In

this approach, they assumed that the attributes are mutually independent given

the class label, which can be considered a naive approach. Socher et al. [133]

propose to overcome this simplistic assumption by using a lower-dimensional

manifold approach learned with an unaligned language corpora acquired from

online sources. Similarly, an approach based on representing images by the co-

occurrence of the visual concepts has also been proposed [91]. This co-occurrence

of the training classes is used as discriminative features to estimate the classifica-

tion for the unseen classes. Jayaraman et al. [65] claim that attribute prediction

models are ineffective to transform visual samples into semantic samples, and

propose a random forest method that measures the unreliability of the attributes

predicted by regressor models. This method aims to learn statistics about the
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attribute prediction errors tendencies to weight the inference procedure for the

unseen classes.

Frome et al. [42] argue that attribute prediction models transform the visual

samples into a semantic space that is agnostic to the relative similarity of GZSL

classes, and propose to tackle ZSL as a ranking problem [3, 4, 42, 161]. The main

assumption is that the nearest neighbour inference can be solved by training the

attribute prediction model with a rank optimisation, rather than a minimization

optimisation. In this rank optimisation, the attribute prediction model aims to

approximate the prediction to the ground truth semantic sample and at the same

time to push the prediction further from the other GZSL classes. Frome et al.

explore this assumption by proposing a pairwise bi-linear function with a margin

restriction [42]. Akata et al. [4] extend this approach into a structured joint embed-

ding optimisation, and later with a max-margin rank objective function [3]. Zhang

et al. [161] propose a novel bi-linear objective function that also take into account

the semantic features from the unseen classes during the optimisation. However,

the conventional ZSL methods still suffer from the bias toward the seen classes

issue, when tested under GZSL conditions.

In recent years, there has been an interest in two different strategies to mitigate

the bias issue, namely: domain classification and data augmentation, which are

covered in the sections below.

2.4 Domain Classification for GZSL

The unknown nature of the unseen classes raises the hypothesis that the GZSL

problem can be handled with a domain classifier using a novelty detection strategy.

In the literature, novelty detection consists of the ability of a system to estimate

whether a non-observed sample belongs to the same distribution of the data used

for training the model [68]. Fig. 2.4 illustrates the application of a novelty detection

method to two visual samples (one from the seen and another from the unseen

class) transformed into the semantic space. The main assumption in domain

classification is that it is possible to robustly distinguish between samples from

the seen and the unseen classes [133].

Several papers introduced methods that suggest that domain classification is
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(a) novelty detection for a random seen sample

(b) novelty detection for a random unseen sample

Figure 2.2: Illustration of a novelty detection model. Diagram (a) shows how

a sample from a seen class is classified by a novelty detector as belonging to

the seen domain distribution, while diagram (b) illustrates that unseen samples

are classified as outliers (or novelty) by the novelty detector. Although the illus-

tration represents the novelty detection being computed in the semantic space,

we highlight that the same operation can be performed in different embedding

spaces [8, 37, 158].
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Figure 2.3: Illustration of the general pipeline for Domain Classification methods.

During training, these multiple models are trained with samples from the seen

visual classes 1) to perform classification for the seen and unseen class samples,

and 2) to classify input samples as belonging or not to the seen class distribution

(i.e., domain classification). During inference, test samples from seen and unseen

classes are presented to the models, and the domain classifier selects (or modulates)

the model to compute inference.

useful in GZSL problems [8, 37, 133, 158]. Domain classification for GZSL consists

of an external domain classifier that modulates the classification of the seen and

unseen classes, as depicted in Fig. 2.3. In these methods, the training consists of

optimising a classifier that can estimate the probability that visual samples belong

to the seen class distribution. The GZSL classifier is trained to estimate class labels

for the seen and unseen domains, but this inference is modulated by the domain

classifier.

Socher et al. [133] propose to use a one-class Gaussian Process (GP) [111, 147]

as the domain classifier that selects the seen class classifier (using the visual space)

or the unseen class classifier (using the semantic space). This is the first approach

to explore domain classification, but it does not scale well with the number of

training samples due to limitations of the GP model training [111, 147]. In a

different approach, Zhang et al. [158] propose a mechanism that explores the use

of multiple neural networks in domain classification. In this approach, a classifier

for the seen classes and another classifier for the unseen classes are trained using a

generative model and the domain classifier is trained to select between the seen

and unseen classifiers with a threshold. Even though successful, the approach

by Zhang et al. [158] suffers from a non-trivial asynchronous optimisation of
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multiple networks. Atzmon and Chechik [8] introduce a gating network for

domain classification. In this approach, the gating network comprises a model

that modulates the output probability of the seen and the unseen classifiers. Even

though these methods present promising results, there are still major questions

that need to be answered by domain classification approaches. Firstly, these

approaches consist of the disjoint training of multiple models for the seen and

unseen domains, which can be considered non-optimal. Secondly, the assumption

that the seen and unseen visual samples belong to two distinct distributions is

too strong and may not hold in practice, limiting the applicability of domain

classifiers.

In [37], we proposed a novel model that aims to address these questions. The

proposed model is composed of a binary domain classifier and a GZSL classifier,

which are optimised in an end-to-end training. The first network is a GZSL

classifier trained with real visual samples from the seen data set, and synthetic

visual samples of the unseen classes. This network is capable of classifying all

GZSL classes, rather than the classes from specific domains. The second network

comprises a binary domain classifier trained with the same data set – this model

modulates the outputs of the GZSL classifier. This approach extends the domain

classification into a binary classification problem, which is arguably simpler than

currently used one-class domain classification. Another approach that we explore

in this thesis is the extension of current methods to a well balanced multi-domain

method without the use of any domain classifier [38, 40]. We note that such

implementation is possible with the use of classification calibration, which is

explained in the next section.

2.4.1 Neural Network Calibration

A recent study by Guo et al. [56] highlights that the confidence output estimated

from deep learning models is generally poorly calibrated. A neural network that

provides a calibrated confidence reflects the correctness of the output probability.

The study by Guo et al. [56] shows that despite their outstanding performance in

terms of accuracy, the miscalibrated outputs from neural network classifiers do not

allow their deployment in real-life environments [56]. Guo et al. [56] show that the

optimisation tools available for modern deep neural networks, such as the number
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of layers, the large number of parameters, weight decay, batch normalization

and dropout have largely contributed to the poor calibration of deep learning

models. One of the most effective approaches that they propose for calibrating

neural networks consists of the optimisation of the temperature scaling in the

softmax activation function [56]. This temperature scale factor can be optimised

with a simple post-processing step based on a held-out validation set to provide a

calibrated confidence output.

In this thesis, we rely on deep learning classification calibration [56] to produce

a multi-domain and multi-modal GZSL classifiers without the use of an external

domain classifier.

2.5 Visual Data Augmentation for GZSL

Deep generative models estimate the joint probability distribution of observed and

target variables [54,72,101,122]. In recent years, we have seen remarkable progress

in the optimisation of deep generative models, and their capability of generating

synthetic data, such as image, video, and audio [54]. In GZSL, generative models

are applied to generate synthetic visual samples that can reduce the bias towards

the seen classes issue. We refer to this framework as GZSL data augmentation. This

model is trained with seen classes by conditioning the generation of visual samples

on their respective semantic samples. Then, we can generate visual samples from

the semantic samples of the unseen classes, and use them, together with the real

visual samples of the seen classes, to train a GZSL visual classifier. Two types of

generative models have received attention from GZSL researchers: Generative

Adversarial Network (GAN) [55] and Variational Autoencoder (VAE) [29]. Below,

we provide a brief explanation of GANs and VAEs and list studies that have

employed them for GZSL.

2.5.1 Generative Adversarial Networks

The term GANs refers to methods that rely on adversarial training for estimating

generative models [55]. Fig. 2.4(a) illustrates the GAN framework, which is

composed of the generative and the discriminative networks. The generative

model aims to learn the training set distribution using a noise input randomly
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drawn from a known probability distribution (e.g. Gaussian distribution), and the

output consists of a generated (i.e., fake) sample that is similar to samples from

the observed distribution [55]. The discriminative model estimates the probability

that a sample belongs to the training set distribution of the observable variable.

During training, the discriminator receives real and fake samples and has to

predict whether a sample is from the real distribution [55]. In this framework, the

discriminative and generative models are trained simultaneously, by optimising

an adversarial process, where the objective function can be decomposed into two

terms. In the first term, the goal of the generative model is to fool the discriminative

model into assigning high probabilities to the fake samples. In the second term,

the main goal of the discriminative model consists of differentiating the fake and

real samples [55]. The convergence of the GAN optimisation is achieved when the

discriminative and generative models reach the Nash equilibrium [122].

Figure 2.4(b) depicts the conditional GAN that extends the original GAN frame-

work [55]. The conditional GAN aims to learn the joint probability distribution of

multiple modalities, where the generator receives as input a vector composed by a

latent variable (sampled from a known noise function) and a conditional variable,

represented by a one-hot vector [48], semantic features [151] or from other visual

spaces [63, 101, 134, 154]. The condition leads the GAN to generate conditional

visual samples. Likewise, the discriminator receives the same conditional variable

concatenated with the respective visual sample [63, 101, 134, 151, 154] – the main

goal of this discriminator is to determine whether this pair of visual and semantic

samples belong to the same distribution.

Recently, there is an increasing number of studies employing GANs to GZSL

models. Xian et al. [151] introduce a conditional GAN framework, where the

conditional variable is represented by the semantic sample concatenated to a latent

variable sampled from a Gaussian distribution. This conditional vector is for-

warded through the generative model to obtain a synthetic visual sample. Besides

the discriminative network, they also introduce a classifier network that evaluates

the quality of the synthetic visual features generated. The discriminator and gener-

ator are regularised with (i) a Wasserstein loss [7], and (ii) a cross-entropy objective

function computed from the fully-connected classifier for the seen classes [151].

The generative model is used to generate visual samples conditioned on the se-
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(a) GAN

(b) conditional GAN

Figure 2.4: Illustration of a Generative Adversarial Network (GAN) framework.

(a) depicts the GAN that generates visual samples from a latent noise variable.

This visual sample is assessed to be real or fake by discriminator network. (b)

illustrates a conditional GAN which generates visual samples conditioned on a

concatenation of the respective semantic samples and a latent noise variable. The

generated visual sample is again used as an input with the semantic feature to be

assessed by the discriminator network.
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mantic samples from the unseen classes [151] – these generated samples are used

to augment the original data set and train a visual GZSL classifier [151]. Felix et

al. [39] extend that method [151] by replacing the cross-entropy objective function

with a cycle-consistency loss [164] that minimises the mean square error between

the original semantic sample and a reconstructed semantic sample produced by a

regressor trained with the generated visual sampled at the input. This approach

aims to improve the domain transfer in GANs and to produce synthetic samples

which yield better GZSL classification accuracy. Then, many attempts have been

made to improve the regularisation of GANs for the GZSL problem [33,60,82,124].

For instance, Elhoseiny [33] investigates a framework [151] that extends the regu-

larisation of GANs with a loss function that promotes the generation of realistic

synthetic samples from the unseen classes and maximises the entropy computed

by the classification output from a classifier. More recently, Li et al. [82] introduce

the use of soul samples to regularise the generation of samples. These soul samples

can be described as a class meta-representation, which is obtained by averaging

meaningful samples from the data set distribution. Sariyildiz et al. [124] extend

the optimisation in [151] with an objective function based on a gradient matching

strategy that consists of the difference between the gradients of the real and fake

samples, which provides smoother training and more discriminative synthetic

samples. In [60], a novel approach explores the optimisation of the GAN with a

novel discriminator network that aims to address the use of metric learning [60].

The main issue with the models presented above is that, although they all

propose multi-modal training processes, none of them relies on a multi-modal

inference, despite significant research in multi-modal machine learning [9] that

shows solid classification results.

2.5.2 Variational Autoencoder

Variational Autoencoder (VAE) [29] is composed of an encoder and a decoder,

as depicted in Fig. 2.5. This model is designed to learn the data distribution

representation, where the encoder network represents a transformation function

from an observable variable (e.g. an image) into a latent variable from a continuous

space that enables random sampling and interpolation [29]. One of the VAE loss

function terms enforces the probability density function (pdf) of the latent variable
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to be a normal distribution. The other loss term enforces the decoder network to

reconstruct the original data from the estimated latent variable [29].

Figure 2.5: Illustration of a Variational Autoencoder model. During training, the

visual sample is transformed into the latent space by the encoder. The decoder

utilises samples from the latent space to reconstruct the original visual sample.

The backpropagation is achieved by minimising the reconstruction error between

the original and reconstructed visual samples and the divergence between the

prior and observed distributions in the latent space.

The forward pass in the VAE framework consists of three steps: encoding,

sampling and decoding. First, the encoder network estimates the mean and

variance of the latent normal distribution that represents an input visual sample.

Then, we randomly sampled from this latent distribution and forward the sample

to the decoder network that aims to reconstruct the visual sample.

There have been a few GZSL approaches that employed VAEs in GZSL data

augmentation [96, 144]. Mishra et al. [96] propose a VAE-based data augmented

GZSL, where visual samples are concatenated to semantic samples to be used

as input to the encoder, and in the reconstruction, the semantic samples are

concatenated to the latent variable. This optimisation procedure maximises the

joint representation likelihood of these modalities [96]. The generation of synthetic

visual samples is achieved by randomly sampling a point from the latent space,

and concatenating it with the semantic sample from an unseen class. This vector is

then used by the decoder to generate a visual sample. Kodirov et al. [35] introduces

an autoencoder that optimises the following model: visual→semantic → visual.
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In contrast to [96], this approach enforces the semantic sample to match the

latent space distribution. In this approach, the generation of visual samples is

achieved by using the semantic samples from unseen classes to draw points in the

latent space. These points are then decoded into the visual space. The inference is

achieved by a nearest neighbour classifier in the visual space Later, an investigation

proposed by Schonfeld et al. [129] has shown that a stack of VAEs can be used to

boost GZSL performance. They introduce a VAE framework composed of two

parallel encoder and decoder networks that share the same latent space. The first

VAE is denoted as visual encoder/decoder (it encodes and decodes the visual

samples), and the second is denoted as semantic encoder/decoder (it encodes

and decodes the semantic samples). Considering the shared latent space, they

propose an objective function that introduces a cross-alignment and a distribution-

alignment regularisation on the latent space [129]. The cross-alignment term

enforces that a pair of visual-semantic samples transformed into the join latent

space can be decoded by the decoder of a different modality [129].

Similarly to the GZSL data augmentation with GANs, the VAE methods pre-

sented in this section do not explore multi-modal inference, which can be consid-

ered a major weakness of those approaches.
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CHAPTER 3
Multi-modal Cycle-consistent Generalized

Zero-Shot Learning

The work contained in this chapter has been published as the following paper:

Felix, R., Kumar, V. B., Reid, I., and Carneiro, G., Multi-modal cycle-consistent

generalized zero-shot learning. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 21-37, 2018 [39].
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Abstract

In generalized zero shot learning (GZSL), the set of classes are split into seen

and unseen classes, where training relies on the semantic features of the seen and

unseen classes and the visual representations of only the seen classes, while testing

uses the visual representations of the seen and unseen classes. Current methods

address GZSL by learning a transformation from the visual to the semantic space,

exploring the assumption that the distribution of classes in the semantic and

visual spaces is relatively similar. Such methods tend to transform unseen testing

visual representations into one of the seen classes’ semantic features instead

of the semantic features of the correct unseen class, resulting in low accuracy

GZSL classification. Recently, generative adversarial networks (GAN) have been

explored to synthesize visual representations of the unseen classes from their

semantic features - the synthesized representations of the seen and unseen classes

are then used to train the GZSL classifier. This approach has been shown to boost

GZSL classification accuracy, but there is one important missing constraint: there is

no guarantee that synthetic visual representations can generate back their semantic

feature in a multi-modal cycle-consistent manner. This missing constraint can

result in synthetic visual representations that do not represent well their semantic

features, which means that the use of this constraint can improve GAN-based

approaches. In this paper, we propose the use of such constraint based on a new

regularization for the GAN training that forces the generated visual features to

reconstruct their original semantic features. Once our model is trained with this

multi-modal cycle-consistent semantic compatibility, we can then synthesize more

representative visual representations for the seen and, more importantly, for the

unseen classes. Our proposed approach shows the best GZSL classification results

in the field in several publicly available data sets.

3.1 Introduction

Generalized Zero-shot Learning (GZSL) separates the classes of interest into a

sub-set of seen classes and another sub-set of unseen classes. The training process

uses the semantic features of both sub-sets and the visual representations of only
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Figure 3.1: Overview of the proposed multi-modal cycle-consistent GZSL ap-

proach. Our approach extends the idea of synthesizing visual representations of

seen and unseen classes in order to train a classifier for the GZSL problem [151].

The main contribution of the paper is the use of a new multi-modal cycle con-

sistency loss in the training of the visual feature generator that minimizes the

reconstruction error between the semantic feature a, which was used to synthesize

the visual feature x̃, and the reconstructed semantic feature ã mapped from x̃. This

loss is shown to constrain the optimization problem more effectively in order to

produce useful synthesized visual features for training the GZSL classifier.
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the seen classes; while the testing process aims to classify the visual represen-

tations of both sub-sets [150, 161]. The semantic features available for both the

training and testing classes are typically acquired from other domains, such as

visual features [77], text [109, 133, 161], or learned classifiers [156]. The traditional

approach to address this challenge [150] involves the learning of a transformation

from the visual to the semantic space of the seen classes. Testing is then performed

by transforming the visual representation of the seen and unseen classes into this

semantic space, where classification is typically achieved with a nearest neighbor

classifier that selects the closest class in the semantic space. In contrast to Zero-shot

Learning (ZSL), which uses only the unseen domain for testing, GZSL approaches

tend to be biased towards the seen classes, producing poor classification results,

particularly for the unseen testing classes [151].

These traditional approaches rely on the assumption that the distributions

observed in the semantic and visual spaces are relatively similar. Recently, this

assumption has been relaxed to allow the semantic space to be optimized together

with the transformation from the visual to the semantic space [88] - this alle-

viates the classification bias mentioned above to a certain degree. More recent

approaches consist of building a generative adversarial network (GAN) that syn-

thesizes visual representations of the seen and unseen classes directly from their

semantic representation [17, 88]. These synthesized features are then used to train

a multi-class classifier of seen and unseen classes. This approach has been shown

to improve the GZSL classification accuracy, but an obvious weakness is that the

unconstrained nature of the generation process may let the approach generate un-

representative synthetic visual representations, particularly of the unseen classes

(i.e., representations that are far from possible visual representations of the test

classes).

The main contribution of this paper is a new regularization of the generation

of synthetic visual representations in the training of GAN-based methods that

address the GZSL classification problem. This regularization is based on a multi-

modal cycle consistency loss term that enforces good reconstruction from the

synthetic visual representations back to their original semantic features (see

Fig. 3.1). This regularization is motivated by the cycle consistency loss applied

in training GANs [164] that forces the generative training approach to produce
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more constrained visual representations. We argue that this constraint preserves

the semantic compatibility between visual features and semantic features. Once

our model is trained with this multi-modal cycle consistency loss term, we can

then synthesize visual representations for unseen classes in order to train a GZSL

classifier [142, 151].

Using the experimental setup described by Xian et al. [150], we show that our

proposed regularization provides significant improvements not only in terms of

GZSL classification accuracy, but also ZSL on the following datasets: Caltech-

UCSD-Birds 200-2011 (CUB) [146, 150], Oxford-Flowers (FLO) [98], Scene Catego-

rization Benchmark (SUN) [36, 150], Animals with features (AWA) [77, 150], and

ImageNet [26] . In fact, the experiments show that our proposed approach holds

the current best ZSL and GZSL classification results in the field for these datasets.

3.2 Related Work

The starting point for our literature review is the work by Xian et al. [150, 151],

who proposed new benchmarks using commonly accepted evaluation protocols

on publicly available datasets. These benchmarks allow a fair comparison among

recently proposed ZSL and GZSL approaches, and for this reason we explore

those benchmarks to compare our results with the ones obtained from the current

state of the art in the field. We provide a general summary of the methods

presented in [150], and encourage the reader to study that paper in order to obtain

more details on previous works. The majority of the ZSL and GZSL methods

tend to compensate the lack of visual representation of the unseen classes with

the learning of a mapping between visual and semantic spaces [20], [6]. For

instance, a fairly successful approach is based on a bi-linear compatibility function

that associates visual representation and semantic features. Examples of such

approaches are ALE [3], DEVISE [42], SJE [4], ESZSL [118], and SAE [35]. Despite

their simplicity, these methods tend to produce the current state-of-the-art results

on benchmark datasets [150]. A straightforward extension of the methods above is

the exploration of a non-linear compatibility function between visual and semantic

spaces. These approaches, exemplified by LATEM [149] and CMT [133], tend not

to be as competitive as their bi-linear counterpart, probably because the more
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complex models need larger training sets to generalize more effectively. Seminal

ZSL and GZSL methods were based on models relying on learning intermediate

feature classifiers, which are combined to predict image classes (e.g., DAP and

IAP) [77] – these models tend to present relatively poor classification results.

Finally, hybrid models, such as SSE [161], CONSE [100], SYNC [18], rely on a

mixture model of seen classes to represent images and semantic embeddings.

These methods tend to be competitive for classifying the seen classes, but not for

the unseen classes.

The main disadvantage of the methods above is that the lack of visual training

data for the unseen classes biases the mapping between visual and semantic spaces

towards the semantic features of seen classes, particularly for unseen test images.

This is an issue for GZSL because it has a negative effect in the classification

accuracy of the unseen classes. Recent research address this issue using GAN

models that are trained to synthesize visual representations for the seen and

unseen classes, which can then be used to train a classifier for both the seen

and unseen classes [17, 88]. However, the unconstrained generation of synthetic

visual representations for the unseen classes allows the production of synthetic

samples that may be too far from the actual distribution of visual representations,

particularly for the unseen classes. In GAN literature, this problem is known as

unpaired training [164], where not all source samples (e.g., semantic features)

have corresponding target samples (e.g., visual features) for training. This creates

a highly unconstrained optimization problem that has been solved by Zhu et

al. [164] with a cycle consistency loss to push the representation from the target

domain back to the source domain, which helped constraining the optimization

problem. In this paper, we explore this idea for GZSL, which is a novelty compared

to previous GAN-based methods proposed in GZSL and ZSL.

3.3 Multi-modal Cycle-consistent Generalized

Zero-Shot Learning

In GZSL and ZSL [150], the dataset is denoted by 𝒟 = {(x, a, y)i}
|𝒟|
i=1 with x ∈ 𝒳 ⊆

RK representing visual representation (e.g., image features from deep residual
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nets [58]), a ∈ 𝒜 ⊆ RL denoting L-dimensional semantic feature (e.g., set of

binary attributes [77] or a dense word2vec representation [92]), y ∈ 𝒴 = {1, ..., C}
denoting the image class, and |.| representing set cardinality. The set 𝒴 is split into

seen and unseen subsets, where the seen subset is denoted by 𝒴S and the unseen

subset by 𝒴U, with 𝒴 = 𝒴S ∪ 𝒴U and 𝒴S ∩ 𝒴U = ∅. The dataset 𝒟 is also divided

into mutually exclusive training and testing subsets: 𝒟Tr and 𝒟Te, respectively.

Furthermore, the training and testing sets can also be divided in terms of the seen

and unseen classes, so this means that 𝒟Tr
S denotes the training samples of the seen

classes, while 𝒟Tr
U represents the training samples of the unseen classes (similarly

for 𝒟Te
S and 𝒟Te

U for the testing set). During training, samples in 𝒟Tr
S contain the

visual representation xi, semantic feature ai and class label yi; while the samples in

𝒟Tr
U comprise only the semantic feature and class label. During ZSL testing, only

the samples from 𝒟Te
U are used; while in GZSL testing, all samples from 𝒟Te are

used. Note that for ZSL and GZSL problems, only the visual representation of the

testing samples is used to predict the class label.

Below, we first explain the f-CLSWGAN model [151], which is the baseline for

the implementation of the main contribution of this paper: the multi-modal cycle

consistency loss used in the training for the feature generator in GZSL models

based on GANs. The loss, feature generator, learning and testing procedures are

explained subsequently.

3.3.1 f-CLSWGAN

Our approach is an extension of the feature generation method proposed by Xian

et al. [151], which consists of a classification regularized generative adversarial

network (f-CLSWGAN). This network is composed of a generative model G :

𝒜×𝒵 → 𝒳 (parameterized by θG) that produces a visual representation x̃ given

its semantic feature a and a noise vector z ∼ 𝒩 (0, I) sampled from a multi-

dimensional centered Gaussian, and a discriminative model D : 𝒳 ×𝒜 → [0, 1]

(parameterized by θD) that tries to distinguish whether the input x and its semantic

representation a represent a true or generated visual representation and respective

semantic feature. Note that while the method developed by Yan et al. [154]

concerns the generation of realistic images, our proposed approach, similarly

to [17, 88, 151], aims to generate visual representations, such as the features from
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Figure 3.2: Overview of the multi-modal cycle-consistent GZSL model. The vi-

sual features, represented by x, are extracted from a state-of-art CNN model, and

the semantic features, represented by a, are available from the training set. The

generator G(.) synthesizes new visual features x̃ using the semantic feature and

a randomly sampled noise vector z ∼ 𝒩 (0, I), and the discriminator D(.) tries

to distinguish between real and synthesized visual features. Our main contribu-

tion is focused on the integration of a multi-modal cycle consistency loss (at the

bottom) that minimizes the error between the original semantic feature a and its

reconstruction ã, produced by the regressor R(.).

a deep residual network [58] - the strategy based on visual representation has

shown to produce more accurate GZSL classification results compared to the use

of realistic images. The training algorithm for estimating θG and θD follows a

minimax game, where G(.) generates synthetic visual representations that are

supposed to fool the discriminator, which in turn tries to distinguish the real

from the synthetic visual representations. We rely on one of the most stable

training methods for GANs, called Wasserstein GAN, which uses the following

loss function [7]:

θ*G, θ*D = arg min
θG

max
θD

`WGAN(θG, θD), (3.1)

with

`WGAN(θG, θD) = E(x,a)∼Px,a [D(x, a; θD)]− E(x̃,a)∼P
x,a
G
[D(x̃, a; θD)]

− λE(x̂,a)∼P
x,a
α
[(||∇x̂D(x̂, a; θD)||2 − 1)2],

(3.2)

where E[.] represents the expected value operator, P
x,a
S is the joint distribution
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of visual and semantic features from the seen classes (in practice, samples from

that distribution are the ones in 𝒟Tr
S ), P

x,a
G represents the joint distribution of

semantic features and the visual features produced by the generative model G(.),

λ denotes the penalty coefficient, and P
x,a
α is the joint distribution of the semantic

features and the visual features produced by x̂ ∼ αx + (1 − α)x̃ with α ∼ 𝒰 (0, 1)

(i.e., uniform distribution).

Finally, the f-CLSWGAN is trained with the following objective function:

θ*G, θ*C, θ*D = arg min
θG,θC

max
θD

`WGAN(θG, θD) + β`CLS(θC, θG), (3.3)

where `CLS(θC, θG) = −E(x̃,y)∼P
x,y
G
[log P(y|x̃, θC)], with

P(y|x̃, θC) =
exp((θC(y))T x̃)

∑c∈𝒴 exp((θC(c))T x̃)
(3.4)

representing the probability that the sample x̃ has been predicted with its

true label y, and β is a hyper-parameter that weights the contribution of the loss

function. This regularization with the classification loss was found by Xian et

al. [151] to enforce G(.) to generate discriminative visual representations. The

model obtained from the optimization in (3.3) is referred to as baseline in the

experiments.

3.3.2 Multi-modal Cycle Consistency Loss

The main issue present in previously proposed GZSL approaches based on genera-

tive models [17, 88, 151] is that the unconstrained nature of the generation process

(from semantic to visual features) may produce image representations that are too

far from the real distribution present in the training set, resulting in an ineffective

multi-class classifier training, particularly for the unseen classes. The approach

we propose to alleviate this problem consists of constraining the synthetic visual

representations to generate back their original semantic features - this regulariza-

tion has been inspired by the cycle consistency loss [164]. Figure 3.2 shows an

overview of our proposal. This approach, representing the main contribution of
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this paper, is represented by the following loss:

`CYC(θR, θG) = Ea∼Pa
S,z∼𝒩 (0,I)

[
‖a − R(G(a, z; θG); θR)‖2

2

]
+ Ea∼Pa

U ,z∼𝒩 (0,I)

[
‖a − R(G(a, z; θG); θR)‖2

2

]
,

(3.5)

where Pa
S and Pa

U denote the distributions of semantic features of the seen and

unseen classes, respectively, and R : 𝒳 → 𝒜 represents a regressor that estimates

the original semantic features from the visual representation generated by G(.).

3.3.3 Feature Generation

Using the losses proposed in Sections 3.3.1 and 3.3.2, we can propose several

feature generators. First, we pre-train the regressor R(.) defined below in (3.6), by

minimizing a loss function computed only from the seen classes, as follows:

`REG(θR) = E(a,x)∼P
a,x
S

[
‖a − R(x; θR)‖2

2

]
, (3.6)

where P
a,x
S represents the real joint distribution of image and semantic features

present in the seen classes. In practice, this regressor is defined by a multi-layer per-

ceptron, whose output activation function depends on the format of the semantic

vector.

Our first strategy to build a feature generator consists of pre-training a regressor

(using samples from seen classes) optimized by minimizing `REG in (3.6), which

produces θ*R and training the generator and discriminator of the WGAN using the

following optimization function:

θ*G, θ*D = arg min
θG

max
θD

`WGAN(θG, θD) + λ1`CYC(θ
*
R, θG), (3.7)

where `WGAN is defined in (3.2), `CYC is defined in (3.5), and λ1 weights the

importance of the second optimization term. The optimization in (3.7) can use

both the seen and unseen classes, or it can rely only the seen classes, in which case

the loss `CYC in (3.5) has to be modified so that its second term (that depends on

unseen classes) is left out of the optimization. The feature generator model in (3.7)

trained with seen and unseen classes is referred to as cycle-(U)WGAN, while the

feature generator trained with only seen classes is labeled cycle-WGAN.



3.4. Experiments 43

The second strategy explored in this paper to build a feature generator involves

pre-training the regressor in (3.6) using samples from seen classes to produce θ*R,

and pre-training a softmax classifier for the seen classes using `CLS, defined in

(3.3), which results in θ*C. Then we train the combined loss function:

θ*G, θ*D = arg min
θG

max
θD

`WGAN(θG, θD) + λ1`CYC(θ
*
R, θG) + λ2`CLS(θ

*
C, θG). (3.8)

The feature generator model in (3.8) trained with seen classes is referred to as

cycle-CLSWGAN.

3.3.4 Learning and Testing

As shown in [151] the training of a classifier using a potentially unlimited number

of samples from the seen and unseen classes generated with x ∼ G(a, z; θ*G) pro-

duces more accurate classification results compared with multi-modal embedding

models [3, 4, 42, 118]. Therefore, we train a final softmax classifier P(y|x, θC), de-

fined in (3.4), using the generated visual features by minimizing the negative log

likelihood loss `CLS(θC, θ*G), as defined in (3.3), where θ*G has been learned from

one of the feature learning strategies discussed in Sec. 3.3.3 - the training of the

classifier produces θ*C. The samples used for training the classifier are generated

based on the task to be solved. For instance, for ZSL, we only use generated

visual representations from the set of unseen classes; while for GZSL, we use the

generated samples from seen and unseen classes.

Finally, the testing is based on the prediction of a class for an input test visual

representation x, as follows:

y* = arg max
y∈𝒴

P(y|x, θ*C), (3.9)

where 𝒴 = 𝒴 for GZSL or 𝒴 = 𝒴U for ZSL.

3.4 Experiments

In this section, we first introduce the datasets and evaluation criteria used in the

experiments, then we discuss the experimental set-up and finally show the results

of our approach, comparing with the state-of-the-art results.
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3.4.1 Datasets

We evaluate the proposed method on the following ZSL/GZSL benchmark datasets,

using the experimental setup of [150], namely: CUB-200-2011 [146, 151], FLO [98],

SUN [150], and AWA [76, 150] – where CUB, FLO and SUN are fine-grained

datasets, and AWA coarse. Table 3.4.1 shows some basic information about these

datasets in terms of number of seen and unseen classes and number of training and

testing images. For CUB-200-2011 [146,151] and Oxford-Flowers [98], the semantic

feature has 1024 dimensions produced by the character-based CNN-RNN [114]

that encodes the textual description of an image containing fine-grained visual

descriptions (10 sentences per image). The sentences from the unseen classes are

not used for training the CNN-RNN and the per-class sentence is obtained by

averaging the CNN-RNN semantic features that belong to the same class. For

the FLO dataset [98], we used the same type of semantic feature with 1024 di-

mensions [114] as was used for CUB (please see description above). For the SUN

dataset [150], the semantic features have 102 dimensions. Following the protocol

from Xian et al. [150], visual features are represented by the activations of the 2048-

dim top-layer pooling units of ResNet-101 [58], obtained from the entire image.

For AWA [76, 150], we use a semantic feature containing 85 dimensions denoting

per-class attributes. In addition, we also test our approach on ImageNet [26], for a

split containing 100 classes for testing [145].

The input images do not suffer any pre-processing (cropping, background

subtraction, etc.) and we do not use any type of data augmentation. This ResNet-

101 is pre-trained on ImageNet with 1K classes [26] and is not fine tuned. For the

synthetic visual representations, we generate 2048-dim CNN features using one of

the feature generation models, presented in Sec. 3.3.3.

For CUB, FLO, SUN, and AWA we use the zero-shot splits proposed by Xian et

al. [150], making sure that none of the training classes are present on ImageNet [26].

Differently from these datasets (i.e., CUB, FLO, SUN, AWA), we observed that

there is a lack of standardized experimental setup for GZSL on Imagenet. Recently,

papers have used ImageNet for GZSL using several splits (e.g., 2-hop, 3-hop), but

we noticed that some of the supposedly unseen classes can actually be seen during

training (e.g., in split 2-hop, we note that the class American mink is assumed
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Table 3.1: Information about the datasets CUB [146], FLO [98], SUN [152], AWA

[150], and ImageNet [26]. Column (1) shows the number of seen classes, denoted

by |𝒴S|, split into the number of training and validation classes (train+val), (2)

presents the number of unseen classes |𝒴U|, (3) displays the number of samples

available for training |𝒟Tr| and (4) shows number of testing samples that belong

to the unseen classes |𝒟Te
U | and number of testing samples that belong to the seen

classes |𝒟Te
S |.
Name |𝒴S| (train+val) |𝒴U| |𝒟Tr| |𝒟Te

U |+ |𝒟Te
S |

CUB 150 (100+50) 50 7057 1764+2967

FLO 82 (62+20) 20 1640 1155+5394

SUN 745 (580+65) 72 14340 2580+1440

AWA 40 (27+13) 10 19832 4958+5685

ImageNet 1000 (1000 + 0) 100 1.2 × 106 5200+0

to be unseen, while class Mink is seen, but these two classes are arguably the

same). Nevertheless, in order to demonstrate the competitiveness of our proposed

cycle-WGAN, we compare it to the baseline using carefully selected 100 unseen

classes [145] (i.e., no overlap with 1k training seen classes) from ImageNet.

3.4.2 Evaluation Protocol

We follow the evaluation protocol proposed by Xian et al. [151], where results

are based on average per-class top-1 accuracy. For the ZSL evaluation, top-1

accuracy results are computed with respect to the set of unseen classes 𝒴U, where

the average accuracy is independently computed for each class, which is then

averaged over all unseen classes. For the GZSL evaluation, we compute the

average per-class top-1 accuracy on seen classes 𝒴S, denoted by s, the average

per-class top-1 accuracy on unseen classes 𝒴U, denoted by u, and their harmonic

mean, i.e. H = 2 × (s × u)/(s + u).

3.4.3 Implementation Details

In this section, we explain the implementation details of the generator G(.), the

discriminator D(.), the regressor R(.), and the weights used for the hyper param-
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Table 3.2: Summary of cross-validated hyper-parameters in our experiments.
R(.) GAN: G(.) and D(.) Classifier

lrR(.) batch #ep lrG(.) lrD(.) batch #ep lr batch #ep

CUB 1e−4 64 100 1e−4 1e−3 64 926 1e−4 4096 80

FLO 1e−4 64 100 1e−4 1e−3 64 926 1e−4 2048 100

SUN 1e−4 64 100 1e−2 1e−2 64 926 1e−4 4096 298

AWA 1e−3 64 50 1e−4 1e−3 64 350 1e−4 2048 37

ImageNet 1e−4 2048 5 1e−4 1e−3 256 300 1e−3 2048 300

eters in the loss functions in (3.2),(3.3),(3.7) and (3.8) - all these terms have been

formally defined in Sec. 3.3 and depicted in Fig. 3.2. The generator consists of a

multi-layer perceptron (MLP) with a single hidden layer containing 4096 nodes,

where this hidden layer is activated by LeakyReLU [90], and the output layer, with

2048 nodes, has a ReLU activation [97]. The weights of G(.) are initialized with

a truncated normal initialization with mean 0 and standard deviation 0.01 and

the biases are initialized with 0. The discriminator D(.) is also an MLP consist-

ing of a single hidden layer with 4096 nodes, which is activated by LeakyReLU,

and the output layer has no activation. The initialization of D(.) is the same as

for G(.). The regressor R(.) is a linear transform from the visual space 𝒳 to the

semantic space 𝒜. Following [151], we set λ = 10 in (3.2), β = 0.01 in (3.3) and

λ1 = λ2 = 0.01 in (3.7) and (3.8). We ran an empirical evaluation with the training

set and noticed that when λ1 and λ2 share the same value, the training becomes

stable, but a more systematic evaluation to assess the relative importance of these

two hyper-parameters is still needed. Table 3.2 shows the learning rates for each

model (denoted by lr{R(.),G(.),D(.)}), batch sizes (batch) and number of epochs (#ep)

used for each dataset and model – the values for G(.) and D(.) have been esti-

mated to reproduce the published results of our implementation of f-CLSWGAN

(explained below), and the values for R(.) have been estimated by cross validation

using the training and validation sets.

Regarding the number of visual representations generated to train the classifier,

we performed a few experiments and reached similar conclusions, compared

to [151]. For all experiments in the paper, we generated 300 visual representations

per class [151]. We reached this number after a study that shows that for a
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small number of representations (below 100), the classification results were not

competitive; for values superior to 200 or more, results became competitive, but

unstable; and above 300, results were competitive and stable.

Table 3.3: Comparison between the reported results of f-CLSWGAN [151] and our

implementation of it, labeled baseline, where we show the top-1 accuracy on the

unseen test 𝒴U (GZSL), the top-1 accuracy for seen test 𝒴S (GZSL), the harmonic

mean H (GZSL), and the top-1 accuracy for ZSL (T1Z).
CUB FLO SUN AWA

Classifier 𝒴U 𝒴S H T1Z 𝒴U 𝒴S H T1Z 𝒴U 𝒴S H T1Z 𝒴U 𝒴S H T1Z

f-CLSWGAN [151] 43.7 57.7 49.7 57.3 59.0 73.8 65.6 67.2 42.6 36.6 39.4 60.8 57.9 61.4 59.6 68.2

baseline 43.8 60.6 50.8 57.7 58.8 70.0 63.9 66.8 47.9 32.4 38.7 58.5 56.0 62.8 59.2 64.1

Since our approach is based on the f-CLSWGAN [151], we re-implemented

this methodology. In the experiments, the results from our implementation of

f-CLSWGAN using a softmax classifier is labeled as baseline. The results that

we obtained from our baseline are very similar to the reported results in [150], as

shown in Table 3.3. For ImageNet, note that we use a split [145] that is different

from previous ones used in the literature, as explained above in Sec. 3.4.1, so it

is not possible to have a direct comparison between f-CLSWGAN [151] and our

baseline. Nevertheless, we show in Table 3.6 that the results we obtain for the

split [145] are in fact similar to the reported results for f-CLSWGAN [151] for

similar ImageNet splits. We developed our code 1 and perform all experiments

using Tensorflow [1].

3.5 Results

In this section we show the GZSL and ZSL results using our proposed mod-

els cycle-WGAN, cycle-(U)WGAN and cycle-CLSWGAN, the baseline model

f-CLSWGAN, denoted by baseline, and several other baseline methods previ-

ously used in the field for benchmarking [150]. Table 3.4 shows the GZSL results

and Table 3.5 shows the ZSL results obtained from our proposed methods, and

several baseline approaches on CUB, FLO, SUN and AWA datasets. The results

1Code is available at: https://github.com/rfelixmg/frwgan-eccv18
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in Table 3.6 shows that the top-1 accuracy on ImageNet for cycle-WGAN and

baseline [151].

Table 3.4: GZSL results using per-class average top-1 accuracy on the test sets of

unseen classes 𝒴U, seen classes 𝒴S, and the harmonic mean result H – all results

shown in percentage. Results from previously proposed methods in the field

extracted from [150]
CUB FLO SUN AWA

Classifier 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H

DAP [76] 4.2 25.1 7.2 − − − 1.7 67.9 3.3 0.0 88.7 0.0

IAP [76] 1.0 37.8 1.8 − − − 0.2 72.8 0.4 2.1 78.2 4.1

DEVISE [42] 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4

SJE [4] 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6

LATEM [149] 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3

ESZSL [118] 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1

ALE [3] 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5

SAE [35] 8.8 18.0 11.8 − − − 7.8 54.0 13.6 1.8 77.1 3.5

baseline [151] 43.8 60.6 50.8 58.8 70.0 63.9 47.9 32.4 38.7 56.0 62.8 59.2

cycle-WGAN 46.0 60.3 52.2 59.1 71.1 64.5 48.3 33.1 39.2 56.4 63.5 59.7

cycle-CLSWGAN 45.7 61.0 52.3 59.2 72.5 65.1 49.4 33.6 40.0 56.9 64.0 60.2

cycle-(U)WGAN 47.9 59.3 53.0 61.6 69.2 65.2 47.2 33.8 39.4 59.6 63.4 59.8

3.6 Discussion

Regarding the GZSL results in Table 3.4, we notice that there is a clear trend of

all of our proposed feature generation methods (cycle-WGAN, cycle-(U)WGAN),

and cycle-CLSWGAN) to perform better than baseline on the unseen test set. In

particular, it seems advantageous to use the synthetic samples from unseen classes

to train the cycle-(U)WGAN model since it achieves the best top-1 accuracy re-

sults in 3 out of the 4 datasets, with improvements from 0.7% to more than 4%. In

general, the top-1 accuracy improvement achieved by our approaches in the seen

test set is less remarkable, which is expected given that we prioritize to improve

the results for the unseen classes. Nevertheless, our approaches achieved improve-

ments from 0.4% to more than 2.5% for the seen classes. Finally, the harmonic
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Table 3.5: ZSL results using per-class average top-1 accuracy on the test set of

unseen classes 𝒴U – all results shown in percentage. Results from previously

proposed methods in the field extracted from [150]
ZSL

Classifier CUB FLO SUN AWA

DEVISE [42] 52.0 45.9 56.5 54.2

SJE [4] 53.9 53.4 53.7 65.6

LATEM [149] 49.3 40.4 55.3 55.1

ESZSL [118] 53.9 51.0 54.5 58.2

ALE [3] 54.9 48.5 58.1 59.9

baseline [151] 57.7 66.8 58.5 64.1

cycle-WGAN 57.8 68.6 59.7 65.6

cycle-CLSWGAN 58.4 70.1 60.0 66.3

cycle-(U)WGAN 58.6 70.3 59.9 66.8

Table 3.6: ZSL and GZSL ImageNet results using per-class average top-1 accuracy

on the test sets of unseen classes 𝒴U – all results shown in percentage.
Classifier ZSL GZSL

baseline [151] 7.5 0.7

cycle-WGAN 8.7 1.5
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mean results also show that our approaches improve over the baseline in a range

of between 1% and 2.2%. Notice that this results are remarkable considering the

outstanding improvements achieved by f-CLSWGAN [151], represented here by

baseline. In fact, our proposed methods produce the current state of the art GZSL

results for these four datasets.

Analyzing the ZSL results in Table 3.5, we again notice that, similarly to the

GZSL case, there is a clear advantage in using the synthetic samples from unseen

classes to train the cycle-(U)WGAN model. For instance, top-1 accuracy results

show that we can improve over the baseline from 0.9% to 3.5%. The results in this

table show that our proposed approaches currently hold the best ZSL results for

these datasets.

It is interesting to see that, compared to GZSL, the ZSL results from previ-

ous method in the literature are far more competitive, achieving results that are

relatively close to ours and the baseline. This performance gap between ZSL

and GZSL, shown by previous methods, enforces the argument in favor of using

generative models to synthesize images from seen and unseen classes to train

GZSL models [17, 88, 151]. As argued throughout this paper, the performance

produced by generative models can be improved further with methods that help

the training of GANs, such as the cycle consistency loss [164].

In fact, the experiments clearly demonstrate the advantage of using our pro-

posed multi-modal cycle consistency loss in training GANs for GZSL and ZSL.

In particular, it is interesting to see that the use of synthetic examples of unseen

classes generated by cycle-(U)WGAN to train the GZSL classifier provides re-

markable improvements over the baseline, represented by f-CLSWGAN [151].

The only exception is with the SUN dataset, where the best result is achieved by

cycle-CLSWGAN. We believe that cycle-(U)WGAN is not the top performer on

SUN due to the number of classes and the proportion of seen/unseen classes in

this dataset. For CUB, FLO and AWA we notice that there is roughly a (80%, 20%)

ratio between seen and unseen classes. In contrast, SUN has a (91%, 9%) ratio

between seen and unseen classes. We also notice a sharp increase in the number

of classes from 50 to 817 – GAN models tend not to work well with such a large

number of classes. Given the wide variety of GZSL datasets available in the field,

with different number of classes and seen/unseen proportions, we believe that



3.6. Discussion 51

Figure 3.3: Evolution of `REG in terms of the number of epochs for CUB, FLO,

SUN and AWA.

there is still lots of room for improvement for GZSL models.

Regarding the large-scale study on ImageNet, the results in Table 3.6 show that

the top-1 accuracy classification results for Baseline and cycle-WGAN are quite

low (similarly to the results observed in [151] for several ImageNet splits), but our

proposed approach still shows more accurate ZSL and GZSL classification.

An important question about out approach is whether the regularisation suc-

ceeds in mapping the generated visual representations back to the semantic space.

In order to answer this question, we show in Fig. 3.3 the evolution of the recon-

struction loss `REG in (3.6) as a function of the number of epochs. In general,

the reconstruction loss decreases steadily over training, showing that our model

succeeds at such mapping. Another relevant question is if our proposed methods

take more or less epochs to converge, compared to the Baseline – Fig. 3.4 shows

the classification accuracy of the generated training samples from the seen classes

for the proposed models cycle-WGAN and cycle-CLSWGAN, and also for the

baseline (note that cycle-(U)WGAN is a fine-tuned model from the cycle-WGAN,

so their loss functions are in fact identical for the seen classes shown in the graph).

For three out of four datasets, our proposed cycle-WGAN converges faster. How-

ever, when the `CLS in included in (3.7) to form the loss in (3.8) (transforming

cycle-WGAN into cycle-CLSWGAN), then the convergence of cycle-CLSWGAN

is comparable to that of the baseline. Hence, cycle-WGAN tends to converge

faster than the baseline and cycle-CLSWGAN.
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Figure 3.4: Convergence of the top-1 accuracy in terms of the number of epochs

for the generated training samples from the seen classes for CUB, FLO, SUN and

AWA.

3.7 Conclusions and Future Work

In this paper, we propose a new method to regularize the training of GANs in

GZSL models. The main argument explored in the paper is that the use of GANs to

generate seen and unseen synthetic examples for training GZSL models has shown

clear advantages over previous approaches. However, the unconstrained nature of

the generation of samples from unseen classes can produce models that may not

work robustly for some unseen classes. Therefore, by constraining the generation

of samples from unseen classes, we target to improve the GZSL classification

accuracy. Our proposed constraint is motivated by the cycle consistency loss [164],

where we enforce that the generated visual representations maps back to their

original semantic feature – this represents the multi-modal cycle consistency loss.

Experiments show that the use of such loss is clearly advantageous, providing

improvements over the current state of the art f-CLSWGAN [151] both in terms of

GZSL and ZSL.

As noticed in Sec. 3.6, GAN-based GZSL approaches offer indisputable ad-

vantage over previously proposed methods. However, the reliance on GANs to

generate samples from unseen classes is challenging because GANs are notori-

ously difficult to train, particularly in unconstrained and large scale problems.

Therefore, future work in this field should be focused on targeting these problems.

In this paper, we provide a solution that addresses the unconstrained problem,

but it is clear that other regularization approaches could also be used. In addition,

the use of GANs in large scale problems (regarding the number of classes) should

also be more intensively studied, particularly when dealing with real-life datasets
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and scenarios. Therefore, we will focus our future research activities in solving

these two issues in GZSL.
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CHAPTER 4
Generalised Zero-Shot Learning with

Domain Classification in a Joint Semantic

and Visual Space

The work contained in this chapter has been published as the following paper:

Felix, R., Harwood, B., Sasdelli, M., and Carneiro, G., Generalised Zero-Shot

Learning with Domain Classification in a Joint Semantic and Visual space. In

Digital Image Computing: Techniques and Applications (DICTA), pages –. IEEE,

2019 [37].
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Abstract

Generalised zero-shot learning (GZSL) is a classification problem where the

learning stage relies on a set of seen visual classes and the inference stage aims

to identify both the seen visual classes and a new set of unseen visual classes.

Critically, both the learning and inference stages can leverage a semantic repre-

sentation that is available for the seen and unseen classes. Most state-of-the-art

GZSL approaches rely on a mapping between latent visual and semantic spaces

without considering if a particular sample belongs to the set of seen or unseen

classes. In this paper, we propose a novel GZSL method that learns a joint la-

tent representation that combines both visual and semantic information. This

mitigates the need for learning a mapping between the two spaces. Our method

also introduces a domain classification that estimates whether a sample belongs

to a seen or an unseen class. Our classifier then combines a class discriminator

with this domain classifier with the goal of reducing the natural bias that GZSL

approaches have toward the seen classes. Experiments show that our method

achieves state-of-the-art results in terms of harmonic mean, the area under the seen

and unseen curve and unseen classification accuracy on public GZSL benchmark

data sets. Our code will be available upon acceptance of this paper.

4.1 Introduction

Humans have a powerful ability to learn about new visual objects without actually

seeing them. This process generally involves the use of language to describe

how a new visual object would look like. The textual description then allows

for a new class of object to be formed in a person’s mind. Our understanding

of exactly how the human brain functions for this task is limited, but it is clear

that humans make some sort of association between visual objects and semantic

textual descriptions. Conceptually, objects with similar descriptions can naturally

be viewed as being near to each other in some latent space, representing visual

and semantic information. The research topic is known as generalised zero-shot

learning (GZSL) aims to mimic this recognition ability of humans. In general,

GZSL approaches employ an auxiliary set of semantic information that describes a



4.1. Introduction 59

set of visual classes. This additional information, such as tags or descriptions, can

be utilised to overcome missing visual information in some of the classes [150].

Traditional GZSL approaches aim to recognise the visual classes available dur-

ing the training process (i.e. the seen, source or known classes), and also classes

that are not available during training (i.e. unseen, target or novel classes). Due

to this constraint, GZSL approaches are intrinsically divided into two main tasks:

(1) the training of a model that learns a transformation from the visual to the

semantic space, using the visual samples and semantic information from seen

classes; and (2) the transformation of a new test image by the model above into

the semantic space, followed by a search of the closest semantic sample repre-

senting a seen or unseen class. In recent years, GZSL researchers have become

increasingly interested in pairwise functions for disentangling these domains [42],

and deep generative models [39, 129] for learning to transform between the visual

and semantic representations. In general, GZSL methods do not try to estimate

if a test sample belongs to the set of seen or unseen classes – this issue inevitably

biases GZSL approaches toward seen classes. Only recently this issue has been

acknowledged with a method that automatically combines the classification of

Zero-Shot Learning (ZSL) for unseen classes with the classification of seen classes,

by automatically weighting (using the test sample) the contribution of each clas-

sifier [8]. Although that approach is in the right direction, it has the issue of

relying on the training of multiple classifiers. Another issue with the methods

above is that they do not consider a latent space jointly optimised for the visual

and semantic representation, which we believe is a crucial part of the inference

process performed by humans that should be imitated by GZSL methods. In

Fig. 4.1, we illustrate the idea explored in this paper for GZSL. The visual and

semantic samples are represented in a joint latent space. This space is used to learn

a classifier of visual classes and a domain classifier for seen and unseen domains.

In this paper, we aim to explore two observations about the latent space for the

domain classification. The first observation is that samples from unseen classes that

are visually similar to one of the seen classes tend to be projected relatively close

to other seen classes distributions, instead of outside of the distribution of seen

classes, as proposed by Socher et al. [133]. Our second observation is that samples

from unseen classes that are visually different from any of the seen classes, tend to
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Figure 4.1: Depiction of the method proposed in this paper – our approach learns

the latent space for the visual and semantic modalities. We train two classifiers

using samples from this latent space: one to classify all the seen and unseen visual

classes, and another to classify between the seen and unseen domains. The final

classification combines the results of these two classifiers.

be projected outside the distribution of seen classes [133]. Atzmon and Chechik [8]

propose a general framework that combines domain expert classifiers, such as

DAP [76] for unseen classes, and LAGO for the seen classes [8]. However, this

method relies on the disjoint training of both experts models, and the assumption

that unseen samples are projected outside the distribution of seen classes [133].

Hence, this method can be considered to be in general sub-optimal. We propose a

general framework for learning and combining the visual and domain classifiers

using the latent space. More specifically, we first introduce a general framework

for latent space learning from cycle-WGAN [39] and CADA-VAE [129]. Then,

we propose a novel method for the seen and unseen domain classification from

this latent space. Finally, we introduce a way to combine the visual and domain

classifiers. The empirical results show that our proposed framework outperforms

previous approaches in terms of unseen accuracy and harmonic mean (H-mean) on

several GZSL benchmark data sets, such as CUB [146], SUN [150], AWA1 [76, 150]

and AWA2 [76,150]. In terms of unseen accuracy, our method shows improvements

of 4.5%, 5.6%, 2.5%, 1.5% for CUB, SUN, AWA1, and AWA2, respectively. Moreover,

our method shows substantial improvements in terms of area under the curve of

seen and unseen accuracy (AUSUC) [19]. For AUSUC we improved from 0.3698,

0.5238, 0.5216 to 0.3743, 0.5247, 0.5219, on CUB, AWA1 and AWA2, respectively.
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4.2 Related Work

In this section, we discuss relevant literature that motivates and contextualises our

work.

4.2.1 Traditional Zero-Shot Learning

Zero-shot learning (ZSL) is similar to GZSL, with a crucial difference: during

inference, only the visual samples from the unseen classes are considered [77, 150].

This difference makes ZSL a special case of GZSL. Therefore, critical problems

present in GZSL are not considered in this approach, such as the natural bias of

the visual classifier toward the seen classes. Unfortunately, this setup not only

reduces the applicability of ZSL methods but also makes it unrealistic for real-

world applications [39, 151]. Also, ZSL fails to handle jointly the seen and unseen

data [18, 19]. Due to the simplicity and unrealistic assumptions of ZSL, the whole

field moved toward the GZSL problem, which is introduced in the next section.

4.2.2 Generalised Zero-Shot Learning

In GZSL, the algorithm is trained using visual samples from the seen classes,

but the inference involves the analysis of samples from the seen and unseen

classes. The main issue faced by GZSL methods is the bias toward the seen classes

naturally present during inference, so a great deal of research has focused on

mitigating this problem [39, 151]. Particularly important examples of this type

of research are anomaly detection [133], domain balancing [19] and generative

data augmentation for GZSL [39, 129, 151]. Despite the advances in GZSL with

the approaches mentioned above, we note that little attention has been devoted

to addressing the seen/unseen domain classification in GZSL based on a latent

space that is jointly learned to represent the visual and semantic representations.

Moreover, we argue that the multi-modal nature of this joint latent space carries

interesting properties to perform domain classification. In this paper, we show

that classifying the seen and unseen domains plays an important role in improving

domain balancing in GZSL.
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4.2.3 Data Augmentation for Zero-Shot Learning

A particularly successful GZSL method is based on data augmentation, where

artificial visual samples of the unseen classes are generated from the semantic

representation to train the visual classifier [39, 129, 144, 151]. This approach has

produced the current state-of-the-art results in GZSL benchmark data sets. Overall,

these studies focus on how to learn generative models conditioned on the semantic

information that is used to augment the data set for the unseen classes. Among

the main approaches, we observe the use of Generative Adversarial Networks

(GAN) [39, 151] and Variational Autoencoders (VAE) [129, 144]. In this paper,

we formalise these approaches as a framework for generative probabilistic latent

space learning. Additionally, we show that these latent spaces have interesting

properties that allow our approach to classifying samples into the seen or unseen

domains for GZSL.

4.2.4 Domain Classification

Recent research has tackled the problem of GZSL as a novelty detection prob-

lem [133]. This approach assumes that unseen classes are projected out of the

distribution of seen classes. Therefore, these unseen classes samples can be han-

dled as an outlier of the seen classes distribution [133]. However, this approach

fails to notice that samples from unseen classes can be projected relatively close

to one of the seen classes. Atzmon and Chechik [8] aims to tackle this novelty

detection issue by providing a framework that handles domain classification for

GZSL. The gist of that approach consists of a gating method that performs domain

adaptation to combine an unseen class classifier (e.g., DAP [77], DeVISE [42]),

and CMT [133]), and a seen class classifier [8]. Even though this method achieves

remarkable performance in GZSL, it still relies on a sub-optimal disjoint training

of multiple classifiers. In this paper, we mitigate these two issues by combining a

seen/unseen class discriminator with a domain classifier that uses samples from a

latent space that is trained to represent both the visual and semantic spaces.
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4.3 Method

In this section, we introduce the problem formulation and our proposed approach.

4.3.1 Generalised Zero-Shot Learning

In order to formulate the method of learning a classifier that can recognise visual

samples from unseen visual classes, we define a visual data set 𝒟 = {(x, y)i}N
i=1,

where x ∈ 𝒳 ⊆ RK denotes the visual representation, and y ∈ 𝒴 = {1, ..., C}
denotes the visual class. Recent research shows that such visual representation, x,

can be acquired from networks specialised in feature extraction. These are widely

available in the literature, such as pre-trained deep residual nets [58].

In GZSL, the set of classes 𝒴 is split into two domains: seen domain 𝒴S =

{1, ..., |S|}, and the unseen domain 𝒴U = {(|S|+ 1), ..., (|S|+ |U|)}. Hence, the

total number of classes is C = |S|+ |U|, with 𝒴 = 𝒴S ∪𝒴U , 𝒴S ∩𝒴U = ∅. During

training, we can only access visual samples from 𝒴S, but during testing, samples

can come from any class in 𝒴 . This lack of visual samples from unseen classes

during training is compensated with a semantic data set that includes semantic

information for the seen and unseen classes. Therefore, we introduce the semantic

data set ℛ = {(a, y)j}j∈𝒴 , which associates visual classes with semantic samples,

where a ∈ 𝒜 ⊆ RL represents a semantic feature (e.g., set of continuous features

such as word2vec [150], or BoW). Note that the semantic data set only has a single

element per class.

In comparison with the supervised learning paradigm, the problem of GZSL

has a distinct setup. The data set 𝒟 is divided into mutually exclusive training

and testing visual subsets 𝒟Tr and 𝒟Te, respectively. The 𝒟Tr contains a subset

of the visual samples belonging to the seen classes, and 𝒟Te contains the visual

samples from the seen classes that are held out from training and all samples from

the unseen classes. The training data set is composed of the semantic data set ℛ
and the training visual subset 𝒟Tr, while the testing data set relies only on the

testing visual subset 𝒟Te.
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4.3.2 Data Augmentation Framework

In this section, we first introduce the components for the latent space learning

applied to GZSL models, then we describe CADA-VAE and cycle-WGAN. Finally,

we introduce the domain classification for these latent space.

In recent years, we note an increasing number of models that use data aug-

mentation for GZSL models [35, 39, 96, 129, 151, 166]. Overall, these methods aim

to learn a generative model that produces artificial samples from unseen visual

classes conditioned on their semantic representation. These artificial samples lie

in a latent space. In this paper, we aim to demonstrate that our proposed domain

classification can be adapted to GZSL models that rely on data augmentation, such

as CADA-VAE [129] and cycle-WGAN [39]. Although these two models consist of

different training approaches, we observe that their components can be generally

described as a framework for latent space learning. Below, we introduce three

components of such models: the encoder (or generator), the decoder (or regressor),

and the discriminator.

The encoder transforms samples from an input space (i.e., visual or semantic)

into a latent space. We represent the encoder with

zx = Encoderx(x) (4.1)

for the visual space and similarly for the semantic space with za = Encodera(a),

where the vector z{x,z} ∈ RZ lies in the latent space. The decoder transforms from

the latent space into one of the input modalities. We represent the decoder with

x̃ = Decoderx(z), (4.2)

and similarly for the semantic space with ã = Decodera(z). The latent space

discriminator, used to determine whether a sample z belongs to the latent space

given the input x, is represented by

p(z | x) = Discriminator(z; x). (4.3)

We consider the simplified models above to describe CADA-VAE [129] and cycle-

WGAN [39] as the latent space learning models.

CADA-VAE: This model is a special type of variational autoencoder (VAE) for

GZSL [129]. In this approach, the VAE aims to learn the latent space with cross
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alignment and distribution alignment losses, as depicted in Fig. 4.2. The overall

loss by Schonfeld et al. [129] can be described with

ℒ =ℒVAE + γ
( L

∑
i

L

∑
j ̸=i

|| x(j) − x̃(i) ||
)

+ δ
(
|| µ(j) − µ(i) ||22 + || Σ

1
2
(j) − Σ

1
2
(i) ||

2
Frobenius

)
,

(4.4)

where the first term represents the VAE loss [129], the second term denotes the

reconstruction error between L modalities – that is, during training, the encoder

projects input samples in the latent space (e.g. Encoderx for x), then the decoder

of a different modality is used (e.g.Decodera from zx – see Fig. 4.2), which con-

straints the visual and semantic projections to be in the same region of the latent

space represented by the mean µ and variance Σ of the samples produced by the

encoder [129].

Figure 4.2: Depiction of the method CADA-VAE [129]. In this method encoders for

the visual and semantic representation project samples into a shared latent space.

cycle-WGAN: Fig. 4.3 depicts the model cycle-WGAN [39]. This model is

optimised as a Generative Adversarial Network (GAN), regularised by a cycle

consistent term, described with

ℒ = ℒWGAN + γ
(
|| a − ã ||22

)
, (4.5)

where the first term, ℒWGAN , represents a Wasserstein Generative Adversarial Loss

(WGAN [39]), and the second term denotes the reconstruction loss (cycle) for
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the semantic representation. Thus, the generative projection of a given semantic

representation into the latent space is encouraged to be back projected near the

original semantic representation.

Figure 4.3: Depiction of the cycle-WGAN method [39]. This method encodes the

semantic space into a latent visual space. The decoder produces semantic vectors

that are used to regularise the learning process.

4.3.3 Domain Classification

From the previous section, we note that the latent space is an embedding space

for visual and semantic samples. Therefore, we can use this latent space to learn a

discriminative model given by

f (y | x) =
∫

v

∫
z

p(z | x) f (y, v | z)dvdz, (4.6)

where the function f (.) represents the GZSL classifier and can be described in

terms of domains, v ∈ {s, u} (s = seen and u = unseen), with

f (y | x) = ∑
v∈{s,u}

p(y | zx) f (v | zx, y), (4.7)

where we assume from (4.6) that p(z | x) is a delta function at zx = Encoderx(x).

The term p(y | zx) in (4.7) is represented by a simple deep learning classifier with

softmax activation. We define the function f (.) in (4.7) by

f (v | zx, y) =

p(v | zx, y), if v, y are in same domain

0, otherwise,
(4.8)
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where ”same domain” means the domain of seen or the unseen classes, and

p(v | zx, y) is denoted by a deep learning classifier with softmax activation. The

function in (4.8) represents our proposed domain classifier (DC). During the DC

training, for training samples of the seen domain, we optimise p(v = s|z, y) with

samples drawn from the latent space. These samples are acquired from visual and

semantic representations projected in the latent space. For the unseen domain,

p(v = u|z, y), we use the semantic projections in the latent space.

4.4 Experiments

In this section, we present the benchmark datasets, as well as the evaluation criteria

for our experimental setup. We then show the results of our method and compare

them with the current state-of-the-art. Finally, we provide ablation studies to

explore our method.

4.4.1 Data Sets

We assess our method on four publicly available benchmark GZSL data sets: CUB-

200-2011 [146]; SUN [150]; AWA1 [76, 150], and AWA2 [76, 150]. To guarantee that

our experiments are reproducible, we use the GZSL experimental setup described

by Xian et al. [150]. As the CUB data set is generally regarded as fine-grained,

there is an intrinsic expectation that the novel unseen classes tend to have their

class modes close to the seen classes. Thus, such dense visual representation

space is a challenging problem for GZSL approaches. We also explore the use of

coarse data sets, such as AWA1, AWA2, and SUN. Given the diversity of classes

for such coarse data sets, there is an intrinsic expectation that novel classes will be

projected far away from the samples of seen classes in the latent space, making the

domain classification a trivial task. However, we argue that this statement does

not always hold, particularly for classes that are visually similar (e.g. zebra/horse,

whale/dolphin, leopard/bobcat), as depicted in Fig. 4.4. Table 4.1 contains some

basic information about the data sets in terms of the number of seen and unseen

classes and the number of training and testing images.

We represent the visual space by extracting image features from the activation

of the 2048-dimensional top pooling layer of ResNet-101 [58]. For the semantic
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Figure 4.4: Example of two classes that are visually similar from the benchmark

dataset AWA1 [150]. (A) the sample leopard belongs to the seen classes, and (B)

the sample bobcat belongs to the unseen classes. We speculate that samples from

these two classes will lie close to each other in the latent space even though they

come from different domains, challenging the view that samples from new unseen

classes will lie far from samples of the seen classes in the latent space.

Table 4.1: The benchmarks for GZSL: CUB [146], SUN [152], AWA1 [150], and

AWA2 [150]. Column (1) shows the number of seen classes, denoted by |𝒴S|, split

into the number of training and validation classes (train+val), (2) presents the

number of unseen classes |𝒴U|, (3) displays the number of samples available for

training |𝒟Tr| and (4) shows number of testing samples that belong to the unseen

classes |𝒟Te
U | and number of testing samples that belong to the seen classes |𝒟Te

S |
from [39, 151]

Name |𝒴S| (train+val) |𝒴U| |𝒟Tr| |𝒟Te
U |+ |𝒟Te

S |
CUB 150 (100+50) 50 7057 1764+2967

SUN 745 (580+65) 72 14340 2580+1440

AWA1 1 40 (27+13) 10 19832 4958+5685

AWA2 40 (27+13) 10 23527 5882+7913
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representation of the data set CUB-200-2011 [150], we use the 1024-dimensional

vector produced by CNN-RNN [114]. These semantic samples represent a written

description of each image using 10 sentences per image. To define a unique se-

mantic sample per-class, we average the semantic samples of all images belonging

to each class [150]. We use manually annotated semantic samples containing 102

and 85 dimensions respectively, for the data sets SUN [150], AWA1 [150], and

AWA2 [150]. To prevent a violation of the ZSL constraints, where the test classes

should not be accessed during training, all the features were extracted according

to training splits proposed in [150].

4.4.2 Evaluation Protocol

Xian et al. [150] formalised the current evaluation protocol for GZSL. We first

compute the average per-class top-1 accuracy measured independently for each

class, then we calculate the overall mean. We calculate the mean-class accuracy

for each domain separately, i.e., the seen (𝒴S) and the unseen (𝒴U) classes. Then,

we also compute the harmonic mean (H-mean) of the seen and unseen domains

accuracy [150]. Furthermore, we show results by measuring the area under the

seen and unseen curve (AUSUC) [19] by varying the domain expertise [19]. This

domain expertise consists of a hyper-parameter to perform the trade-off between

the performance in the seen and unseen classes [19].

4.4.3 Implementation Details

In this section, we describe the architecture and training procedures for learning

the proposed latent space. As described in Sec. 4.3, we extend the following

two models for our experimental setup: CADA-VAE [129] and cycle-WGAN [39].

The model CADA-VAE contains the following models that are parameterised as

neural networks: Encoderx(.), Encodera(.) in (4.1), Decoderx(.), and Decodera(.)

in (4.2). The training of CADA-VAE aims to produce a latent space that satis-

fies (4.4). In terms of the model architecture and hyper-parameters (e.g. the number

of epochs, batch size, the number of layers, learning rate, and, weight decay), we fol-

lowed the specifications provided by [129]. The encoder for visual representation

is parameterised with 1560 hidden neurons, and the encoder for the semantic
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representation is parameterised with 1450 hidden neurons. The decoders for

the visual and semantic representation are parameterised with 1560, 660 hidden

neurons, respectively. For both modalities, the encoders project samples into the

latent space, which is represented with 64-dimension vectors in the latent space.

The model is optimised with Adam for 100 epochs [71]. We use an adaptive

scheduling rate for the hyper-parameters γ, δ, by (0.044, 0.0026), with respective

epochs (21 − 75, 0 − 90) [129]. We also extended cycle-WGAN [39], as explained

in Sec. 4.3. The model cycle-WGAN contains the following functions that are

parameterised as neural networks: Encodera(.) in (4.1), Decodera(.) in (4.2), and

Discriminator(.) in (4.3). We followed the hyper-parameters choice (e.g. number

of epochs, batch size, number of layers, learning rate, and weight decay, learning rate

decay) defined in [39]. The encoder is parameterised with a single hidden layer

containing 4096 nodes with LeakyReLU activation [90], and the output layer, with

2048 nodes, has a ReLU activation [97]. The decoder is parameterised with a linear

layer, and the discriminator is a network with a single hidden layer with 4096

nodes. The network has a LeakyReLU activation, and the output layer has no

activation.

The domain classifier (DC)2 is implemented as a neural network with binary

output, representing the seen and unseen domains. The model is trained with

Adam optimiser [71] to recognise the domains. The output probability of the

domain classifier tends not to be well calibrated [8, 47]. Therefore, we calibrate the

model output using the validation set [47, 150]. Then, the domain classification is

performed as described in (4.7) [19].

4.4.4 Results

In this section, we present the results for our proposed approach. The first ques-

tion aimed to be answered in this paper consists of whether the proposed latent

space contains relevant information that enables our approach to learn the domain

classifier for GZSL. Thus, we provide numerical evidence that our method out-

performs both baselines (i.e., CADA-VAE and cycle-WGAN) and previous GZSL.

In Table 4.3, we show the results in terms of unseen class accuracy 𝒴U, seen class

2The code will be available at https://github.com/rfelixmg/gzsl-domain-classification.
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accuracy 𝒴S and harmonic mean H, as described in Sec. 4.4.2. These results are

given for the data sets CUB, SUN, AWA1 and AWA2. We compare our approach

with 12 leading GZSL methods, which are divided into three groups: semantic

(SJE [4], ALE [3], LATEM [149], ESZSL [118], SYNC [18], DEVISE [42]), latent space

learning (SAE [35], f-CLSWGAN [151], cycle-WGAN [39] and CADA-VAE [129])

and domain classification (CMT [133] and DAZSL [8]). The semantic group con-

tains methods that only use the seen class visual and semantic samples to learn a

transformation function from the visual to the semantic space, and classification is

based on nearest neighbour classification in that semantic space. The latent space

learning group relies on visual samples from seen classes and semantic samples

from seen and unseen classes during training, and are detailed in Sec. 4.3. The

domain classification group relies on methods that weight the classification of

seen and unseen classes. We discuss the numeral results in Table 4.3 in Section 4.5.

4.4.5 Ablation Studies

In Table 4.2 we report the area under the curve of seen and unseen accuracy

(AUSUC) [19] for the benchmark data sets CUB, SUN, AWA1, and AWA2. We

compare the results of the original CADA-VAE [129] and cycle-WGAN [39] with

and without the DC. Similar to harmonic mean, the AUSUC is an evaluation

metric that measures the trade-off between the seen and unseen domains.

Table 4.2: Area under the curve of seen and unseen accuracy (AUSUC). The

highlighted values per column represent the best results in each data set. The

notation * represents the results that we reproduced.
Classifier CUB SUN AWA1 AWA2

EZSL 0.3020 0.1280 0.3980 −
DAZSL [8] 0.3570 0.2390 0.5320 −
f-CLSWGAN [151] 0.3550 0.2200 0.4610 −
cycle-WGAN [39]* 0.4180 0.2321 0.4730 −
CADA-VAE [129]* 0.3698 0.2362 0.5238 0.5216

cycle-WGAN + DC 0.4262 0.2321 0.4744 −
CADA + DC 0.3743 0.2364 0.5247 0.5219
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Table 4.3: GZSL results using per-class average top-1 accuracy on the test sets

of unseen classes 𝒴U, seen classes 𝒴S, and H-mean result H; and ZSL results

on the unseen classes exclusively – all results shown in percentage. The results

from previously proposed methods in the field were extracted from [150]. The

highlighted values represent the best ones in each column. The methods below

the double horizontal line represent the ones that use the semantic vectors from

unseen classes during training. The notation * represents the results that we

reproduced, and results represented with − were not available in the literature, or

hyper-parameters were not given.
CUB SUN AWA1 AWA2

Classifier 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H

Semantic approach

SJE [4] 59.2 23.5 33.6 30.5 14.7 19.8 74.6 11.3 19.6 73.9 8.0 14.4

ALE [3] 62.8 23.7 34.4 33.1 21.8 26.3 76.1 16.8 27.5 81.8 14.0 23.9

LATEM [149] 57.3 15.2 24.0 28.8 14.7 19.5 71.7 7.3 13.3 77.3 11.5 20.0

ESZSL [118] 63.8 12.6 21.0 27.9 11.0 15.8 75.6 6.6 12.1 77.8 5.9 11.0

SYNC [18] 70.9 11.5 19.8 43.3 7.9 13.4 87.3 8.9 16.2 90.5 10.0 18.0

DEVISE [42] 53.0 23.8 32.8 27.4 16.9 20.9 68.7 13.4 22.4 74.7 17.1 27.8

Generative approach

SAE [35] 18.0 8.8 11.8 54.0 7.8 13.6 77.1 1.8 3.5 82.2 1.1 2.2

f-CLSWGAN [151] 57.7 43.7 49.7 36.6 42.6 39.4 61.4 57.9 59.6 68.9 52.1 59.4

cycle-WGAN [39] 60.3 46.0 52.2 33.1 48.3 39.2 63.5 56.4 59.7 − − −
CADA-VAE [129] 53.5 51.6 52.4 35.7 47.2 40.6 72.8 57.3 64.1 75.0 55.8 63.9

CADA-VAE [129]* 57.2 48.4 52.4 36.8 45.1 40.6 76.6 55.0 64.1 75.3 55.5 63.9

Domain Classification

CMT [133] 49.8 7.2 12.6 21.8 8.1 11.8 87.6 0.9 1.8 90.0 0.5 1.0

DAZSL [8] 56.9 47.6 51.8 37.2 45.6 41.4 76.9 54.7 63.9 − − −
cycle-WGAN + DC (ours) 61.9 45.9 52.7 39.3 41.3 40.3 68.6 53.4 60.0 − − −
CADA-VAE + DC (ours) 52.4 52.9 52.6 34.0 50.7 40.7 72.6 57.5 64.2 74.9 57.0 64.3
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4.5 Discussions

In this section, we discuss the main contributions presented by our approach. We

performed our experiments by combining previous GZSL approaches (such as

CADA-VAE [129]) and cycle-WGAN [39]) with our Domain Classification in order

to enhance the balancing of the seen and unseen domains for GZSL.

Firstly, in Table 4.3 we provide quantitative information that shows that our

method outperforms existing methods in terms of unseen accuracy, 𝒴U. This

demonstrates that by learning to classify the domain for each sample, our method

improves the classification of the unseen classes. Specifically, for CUB, SUN, AWA1

and AWA2 data sets, the baseline unseen classification results of 48.4%, 45.1%,

55.0%, and 55.5% have become 52.9%, 50.7%, 57.5%, and 57.0%. This improvement

was achieved given a minor trade-off with the seen classes.

Secondly, despite the trade-off mentioned above, our approach is still able to

achieve minor improvements in terms of H-mean. Table 4.3 shows an improve-

ment of 0.2%, 0.1%, 0.1% and 0.4%, when compared to the baseline CADA-VAE.

Although these results can be considered minor, we argue that our model does not

directly optimise the H-mean. Thus, this improvement indicates that our approach

has a more balanced performance than previous models.

We note similar behaviour for the cycle-WGAN model [39], where the proposed

method achieves improvement for H-mean from 52.2% to 52.7% for CUB, from

39.2% to 40.3% for SUN, and from 59.7% to 60.0% for AWA1. However, such

improvement is achieved due to the positive trade-off towards the seen domain.

We argue that this difference, when compared to CADA-VAE, is due to the inherent

differences in the latent space learning of each of the approaches. In fact, the

approach CADA-VAE is directly optimised by a variational autoencoder, where

the control on the latent space is guided by a divergence measure for the visual

and semantic representation jointly. On the other hand, the cycle-WGAN model is

directly optimised by an adversarial loss from a generative adversarial network

conditioned mainly on the semantic representation.

In terms of AUSUC, the proposed approach achieves improvements for both

cycle-WGAN [39] and CADA-VAE [129]. For CADA-VAE, the domain classifi-

cation yielded improvements from 0.3698,0.2362, 0.5238,0.5216 to 0.3743, 0.2364,
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0.5247, 0.5219, for CUB, SUN, AWA1 and AWA2, respectively. Likewise, for cycle-

WGAN [39], the DC provided improvements from 0.4180, 0.4730 to 0.4268, 0.4744

for CUB and AWA1, respectively.

4.6 Conclusion and Future Work

In this paper, we introduce a principled method to classify the seen and unseen

domains in GZSL. In particular, we presented our domain classifier that learns

directly from the latent space of visual and semantic information. We have demon-

strated that our proposed approach can be combined with previous latent space

learning models, such as CADA-VAE and cycle-WGAN. Our approach yielded

improvements for each one of those models by automatically balancing the seen

and unseen domains in benchmark experiments on four available data sets: CUB,

SUN, AWA1, and AWA2.

Our experimental results show that our proposed approach has achieved state-

of-the-art H-mean results for CUB, AWA1 and AWA2, and unseen accuracy for

CUB, SUN, AWA1, and AWA2. In particular, our results are substantially better

than the state of the art on CUB and SUN, which contain a large number of classes.

On AWA1, AWA2, which are smaller data sets, our results are marginally better.

Furthermore, our model produces substantial improvements in terms of AUSUC

results for CUB, AWA1 and marginally better on AWA2.

As stated previously, our domain classification learns to discriminate between

samples from the seen and unseen domains. We observe that the improvement

of CADA-VAE and cycle-WGAN are different. The CADA-VAE model tends

to improve in terms of the unseen domain when the DC is applied. Whereas

cycle-WGAN tends to improve in terms of the seen domain. On one hand, we note

that the training strategy for both models follows different guidelines, VAE and

GAN. On the other hand, our model does not impose direct constraints in order to

optimise GZSL metrics, such as accuracy or H-mean. In fact, we believe that these

aspects are the main factors for the contrasting outcomes for CADA-VAE and

cycle-WGAN models. With that in mind, we believe that the differences between

these two data augmentation approaches should be studied in future generalised

zero-shot learning research.
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In the future, we intend to further study the reasons behind the performance

difference observed between the data sets. Moreover, we also plan to develop

a more extensive framework that can incorporate domain classification for ap-

proaches that do not rely on latent space learning.
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Augmentation Network for Generalised Zero

Shot Learning with Multi-Modal Inference

The work contained in this chapter is in submission as the following paper:

Felix, R., Sasdelli, M., Reid, I. and Carneiro, G., Augmentation Network for

Multi-modal and Multi-domain Generalised Zero Shot Learning. In Submission,

2019 [40].
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Abstract

Generalised zero-shot learning (GZSL) is defined by a training process contain-

ing a set of visual samples from seen classes and a set of semantic samples from

seen and unseen classes, while the testing process consists of the classification

of visual samples from the seen and the unseen classes. Current approaches are

based on inference processes that rely on the result of a single classifier running on

only one modality (visual, semantic, or latent joint space) that balances the classifi-

cation between the seen and unseen classes using gating mechanisms. There are a

couple of problems with such approaches: 1) multi-modal classifiers are known

to generally be more accurate than single modality classifiers, and 2) the gating

mechanisms rely on a complex one-class training of an external domain classifier

that modulates the seen and unseen classifiers. In this paper, we mitigate these

issues by proposing a new GZSL method – augmentation network that tackles

multi-modal and multi-domain inference for generalised zero-shot learning (AN-

GZSL). Our approach consists of a multi-modal inference that combines visual

and semantic classification and automatically balances the seen and unseen classi-

fication using temperature calibration, without requiring any gating mechanisms

or external domain classifiers. Experiments show that our method produces the

new state-of-the-art GZSL results for fine-grained benchmark data sets CUB and

FLO and for the large-scale data set ImageNet. We also obtain competitive results

for coarse-grained data sets SUN and AWA1. We show an ablation study that

justifies each stage of the proposed AN-GZSL.

5.1 Introduction

As computer vision systems start to be deployed in unstructured environments,

they must have the ability to recognise not only the visual classes used during the

training process (i.e., the seen classes) but also classes that are not available during

training (i.e., unseen classes). The importance of such ability lies in the impractical-

ity of collecting visual samples from all possible classes that will be shown to the

system. In this context, approaches categorised as Generalised Zero-Shot Learning

(GZSL) [19, 39, 150] play an important role due to their ability to classify visual
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samples from seen and unseen classes. In general, the training of GZSL methods

involves the use of visual samples from seen classes and semantic samples (e.g.,

textual definition) from seen and unseen classes. The rationale behind the use of

semantic samples is that they are readily available from various sources, such as

Wikipedia, English dictionary [92], or manually annotated attributes [76]. Such

training setup can potentially mitigate the issue of collecting visual samples from

all possible unseen classes, and the success of GZSL lies in the effective transferring

of knowledge between the semantic and visual modalities.

In recent years, we note three different approaches for solving GZSL. One type

of GZSL approach has focused on training a mapping function that transforms

samples from the visual to the semantic space [77], and inference is then based on a

classification process that works exclusively in the semantic space. Another type of

GZSL method is based on training a conditional generative model that generates

visual samples from their respective semantic samples. The generated visual

samples of the unseen classes and the true visual samples from the seen classes

are then used for training a visual classifier [17, 39, 60, 82, 105, 124, 129, 144, 151] –

inference is based on a visual classification process. Another type of GZSL method

relies on an external domain classifier (trained with the visual samples from the

seen classes via a one-class learning problem) that modulates the classification

between the seen and unseen classes [8, 14, 37, 133, 158], where the classification in

each domain typically uses a single modality.

There are a couple of issues with the GZSL methods above: 1) even though

the training process involves some sort of interaction between the visual and

semantic modalities, the inference usually does not rely on a truly multi-modal

classification (i.e., where both modalities are jointly used in the process) [8, 17, 39,

76,77,133,144,151], which can be considered a weakness given the strong evidence

that multi-modal inference can improve classification accuracy [8, 158, 163]; and 2)

the one-class training of external domain classifiers that modulate the seen and

unseen classification [8, 14, 37, 133, 158] is not a trivial process given the similarity

between the seen and unseen class domains. In fact, it can be argued that samples

from these domains are drawn from the same distribution, making it challenging

to distinguish between them.

In this paper, we introduce the Augmentation Network for multi-modal and
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Figure 5.1: Depiction of our proposed model Augmentation Network for multi-

modal and multi-domain Generalised Zero-Shot Learning (AN-GZSL). AN-GZSL

is composed of the augmentation network (that generates visual samples for

training the visual and the semantic networks), the visual and semantic networks,

a classification calibration (represented by τψ and τφ in (5.2)) that enables multi-

domain classification, and the multi-modal classification that combines the visual

and semantic modules.
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multi-domain Generalised Zero-Shot Learning (AN-GZSL) designed to address the

two problems listed above – see Fig. 5.1. The approach consists of an augmentation

network, a visual network, a semantic network, a classification calibration and

a multi-modal classifier. The augmentation network is a generative model that

produces visual samples conditioned on the semantic data, where these generated

visual samples are used by the visual network to learn a visual classifier and by

the semantic network to model a semantic classifier. The visual and semantic

classifiers are then calibrated to enable an effective modulation-free multi-modal

classification. Then, the two calibrated classifiers are combined in a multi-modal

classification. We show that the proposed approach produces state-of-the-art

GZSL results on the fine-grained benchmark data sets CUB [146,150] and FLO [98]

and on the large-scale data set ImageNet [26, 145]. We also achieve competitive

results for the coarse-grained data sets SUN [150] and AWA1 [76]. The experiments

also show an ablation study that tests the importance of each component of the

proposed model.

5.2 Literature Review

In this section we describe relevant literature that contextualises and motivates

the proposed approach.

Generalised Zero-Shot Learning (GZSL). In recent years, we have observed

a growing interest in GZSL. A catalyst for such interest was the paper by Xian

et al. [150] that formalises the GZSL problem. Their work introduces a solid

experimental setup and a robust evaluation metric based on the harmonic mean

between the classification accuracy results of the seen and the unseen visual

classes.

Recently proposed GZSL methods can be roughly divided into three categories:

semantic attribute prediction, visual data augmentation, and domain balanc-

ing. Semantic attribute prediction methods [3, 57, 76] tackle GZSL by training a

regressor that maps visual samples from seen classes to their respective semantic

samples. Hence, given a test visual sample (from a seen or unseen class), the

regressor maps it into the semantic space, which is then used in a nearest neigh-

bour semantic classification process. The main assumption of this approach is that
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the mapping from visual to semantic spaces learned from the seen class domain

can be transferred to the unseen class domain. Unfortunately, such assumption

is unwarranted, and a typical issue of this approach is that test visual samples

from seen classes are classified correctly and samples from unseen classes are

often incorrectly classified into one of the seen classes – this is referred to as a

bias toward the seen classes [150]. Recent research exploring matching functions

between visual and semantic samples can address the issue mentioned above, but

they still show biased classification toward the seen classes [3].

Visual data augmentation relies on a generative model trained to produce

visual samples from the corresponding semantic samples [17, 39, 60, 82, 105, 124,

129, 144, 151]. Such model allows the generation of visual samples for the unseen

classes, which are then used in the modelling of a visual classifier that is trained

with real visual samples from seen classes and generated visual samples from

unseen classes. Methods based on this approach are effective because they solve,

to a certain extent, the bias toward the seen classes. Recently, the training process

of this approach has been extended, forcing generated visual samples to regress to

the corresponding semantic samples, in a multi-modal cycle consistent training [39,

144]. This extension represents the first attempt at a multi-modal training, which

allowed further improvements in GZSL results. However, none of the methods

above relies on a multi-modal inference process. It is interesting to note that

the inference process of semantic attribute prediction focuses exclusively on the

semantic space, while visual data augmentation works solely on the visual space.

A multi-modal inference process that effectively merges the two spaces has yet to

be proposed.

Domain balancing methods solve the bias toward the seen classes issue with

a gating mechanism that modulates the classification of seen and unseen classes [8,

14,37,133,158]. In particular, these methods consist of a (generally visual) classifier

trained for the seen classes, a (usually semantic) classifier trained for the unseen

classes, and a domain classifier for the modulation process [8, 37, 158]. Even

though domain balancing approaches hold outstanding results [8, 158], they have

the following challenges: 1) the training of multiple domain-specific classifiers,

and 2) the non-trivial training of a gating mechanism that needs to classify between

seen and unseen classes using a one-class classification process, which is a hard
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task considering that these classes arguably come from the same data distribution.

In this paper, we also rely on visual data augmentation and domain balancing,

but differently from the approaches above, our multi-modal classification relies

on visual and semantic classifiers trained on all seen and unseen classes (i.e., they

are not domain-specific). Furthermore, the balancing between seen and unseen

domains is achieved with a classification calibration approach that does not need

any gating mechanism.

5.3 Method

In the next sub-sections, we first formulate the GZSL problem. Then, we intro-

duce our proposed augmentation network for multi-modal and multi-domain

generalised zero-shot learning (AN-GZSL), with the explanation of the inference,

architecture and training processes.

5.3.1 Problem Formulation

To formulate the GZSL problem [19, 150], we first define the visual data set 𝒟 =

{(xi, yi)}N
i=1, where x ∈ 𝒳 ⊆ RK denotes the visual representation (acquired from

the second to last layer of a pre-trained deep residual nets [58]), and y ∈ 𝒴 =

{1, ..., C} denotes the visual class, which can also be described with a one-hot

vector h ∈ {0, 1}C, where the y-th position in h is assigned to 1, and all the others

0. The visual data set has N samples, denoting the number of images. We also

need to define the semantic data set ℛ = {ay}y∈𝒴 , which associates visual classes

with semantic samples, where ay ∈ 𝒜 ⊆ RL represents a semantic feature (e.g.,

word2vec features [150]). The semantic data set has as many elements as the number

of classes. The set 𝒴 is split into the seen subset 𝒴S = {1, ..., S}, and the unseen

subset 𝒴U = {(S + 1), ..., (S + U)}. Therefore, C = S + U, with 𝒴 = 𝒴S ∪ 𝒴U,

𝒴S ∩ 𝒴U = ∅. Furthermore, 𝒟 is also divided into mutually exclusive training

and testing visual subsets 𝒟Tr and 𝒟Te, respectively, where 𝒟Tr contains a subset

of the visual samples belonging to the seen classes, and 𝒟Te has the visual samples

from the seen classes held out from training and all samples from the unseen

classes. The training data set comprises the semantic data set ℛ and the training
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visual subset 𝒟Tr, while the testing data set consists of the testing visual subset

𝒟Te and the same semantic data set ℛ.

5.3.2 AN-GZSL Calibrated Inference

The inference procedure consists of estimating the class label of a test visual sample

x that optimises

f (y|x,ℛ) = σφ(φ(y|x), τφ) + σψ(ψ(y|x,ℛ), τψ), (5.1)

where f (.) denotes the classification function, φ(.) and ψ(.) represent the visual

network (defined in Sec. 5.3.5) and the semantic network (Sec. 5.3.4) that return a

logit, and σφ(.) and σψ(.) represent the softmax activation function with tempera-

ture calibration [56], defined by

σ(ly, τ) =
e(ly/τ)

∑C
c=1 e(lc/τ)

, (5.2)

where the logit ly ∈ R represents the yth output of a network (i.e., the visual or

the semantic), and the temperature scaling τ represents a calibrating factor. The

multi-modal inference in (5.1) consists of a sum of the results from the visual and

semantic classifiers, where the final classification is achieved by

y* = argmax
y∈𝒴

f (y|x,ℛ). (5.3)

The GZSL inference in (5.3) balances the seen and unseen classification with a

confidence calibrated by the temperature scaling, which can be considered to

be a much simpler strategy compared to previous gating mechanisms [8, 133,

158] that had to deal with complicated one-class domain classification problems.

Furthermore, (5.3) shows a simple multi-modal inference without any hyper-

parameter to combine the contributions of each classifier.

5.3.3 Augmentation Network

The augmentation network relies on a generative model [151] trained to produce

visual samples conditioned on their semantic samples. After training this genera-

tive model, it is then possible to generate visual samples from the unseen classes
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to train a classifier using real visual samples from the seen classes and generated

visual samples from the unseen classes [17,39,60,82,105,124,129,144,151]. This ap-

proach has been recently extended with a cycle consistency loss that regularises the

training process [39]. The augmentation network is optimised with a Wasserstein

generative adversarial network (WGAN) [7] loss and cycle-consistent loss [39],

defined by

`AN =`WGAN + `CYC, (5.4)

where `WGAN represents the WGAN loss [7] that optimises a conditional generator

network g(.) and discriminator network d(.). The loss `WGAN is defined by

`WGAN = E(x,a)∼P
x,a
s
[d(x, a; θd)]− E(x̃,a)∼P

x,a
g
[d(x̃, a; θd)]

− κE(x̃,a)∼P
x,a
α
[(||∇x̃d(x̃, a; θD)||2 − 1)2],

(5.5)

where E[.] represents the expected value operator. The joint distribution of visual

and semantic samples from the seen classes is given by P
x,a
s , and P

x,a
g represents

the joint distribution of semantic and visual samples produced by the augmented

network with the generator network, as follows: x̃ ∼ g(a,𝒩 (0, I); θg). The coeffi-

cient κ in (5.5) weights the contribution of the third term of the loss, and the joint

distribution of the semantic and visual samples produced by x̂ ∼ αx + (1 − α)x̃

with α ∼ 𝒰 (0, 1) (i.e., uniform distribution) is given by P
x,a
α . In this network, the

generator receives the semantic samples and a noise vector to generate visual

samples. Then, the discriminator network aims to differentiate the generated

from the real visual samples [39]. Then, the loss `CYC provides a cycle-consistent

training regularisation which guarantees that the generated visual samples can

reconstruct their respective semantic samples. The loss `CYC is defined by

`CYC = Ea∼Pa
s ,z∼𝒩 (0,I)

[
‖a − r(g(a, z; θg); θr)‖2

2

]
+ Ea∼Pa

u,z∼𝒩 (0,I)

[
‖a − r(g(a, z; θg); θr)‖2

2

]
,

(5.6)

where the function r(.) represents a regressor network parameterised by θr that

estimates the original semantic samples from the visual samples generated by

g(.), the latent variable z represents a Gaussian noise, and the distributions of

the semantic samples of both seen and unseen domains are represented by Pa
s
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and Pa
u. In contrast to previous approaches [17, 39, 60, 82, 105, 124, 129, 144, 151],

our proposed augmentation network feeds the visual and semantic networks with

generated visual samples from both the seen and unseen domains – this allows

the visual and semantic classifiers to jointly learn an effective discriminating space

for all seen and unseen classes.

5.3.4 Semantic Network

The semantic network extends the ranking loss proposed by Akata et al. [3]. We

define the semantic network as ψ(y|x,ℛ) = xTθψay, represented by a bi-linear

model parameterised by θψ ∈ RK×L, with ay ∈ ℛ and x being either a real sample

from a seen class or a generated sample from an unseen class – note that the use

of such data augmentation represents the main difference between our proposed semantic

classifier and the one in [3]. This semantic network learns the joint relationship

between the visual sample x and semantic sample ay for a particular class y. For

training this network, we extend the loss from [3], defined by

`SN =
M

∑
i=1

C

∑
c=1

λ(xi, θψ, ayi , hi)
[

β(x̃i, θψ, ac, ayi , hi,c)
]
+

, (5.7)

where [.]+ represents the hinge loss, ayi denotes the semantic vector associated

with the class yi of the ith training sample, hi,c represents the cth position of the

one-hot vector for the ith training sample hi, and M is the size of the training set,

which includes the generated visual features. In (5.7), the term β(.) consists of a

compatibility bi-linear loss, defined by

β(xi, θψ, ac, ayi , hi,c) = hi,c + xT
i θψayi − xT

i θψac, (5.8)

and λ(.) represents a ranking regularization, defined by

λ(xi, θψ, ayi , hi) =
1

∑C
c=1 1

(
β(xi,θψ,ac,ayi ,hi,c)

) , (5.9)

where 1(.) represents a Heaviside step function, with the divisor computing the

rank of the transformation according to the semantic data set.

The optimisation of (5.7) forces ψ(y|x,ℛ) to be higher when x and ay match

correctly. This result is then calibrated by (5.2) to enable an effective multi-domain

classification.
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5.3.5 Visual Network

The visual network is a fully connected neural network represented by φ(y|x),
parameterised by θφ, where x can be a real sample from a seen class or a generated

sample from an unseen class. This visual network is trained with the usual

cross-entropy loss defined by `VN. Similarly to the semantic classifier, this visual

classifier is also calibrated with (5.2) for the multi-domain classification.

5.3.6 AN-GZSL Training

The loss function for our proposed AN-GZSL model is defined by

`AN−GZSL = `AN + `VN + `SN, (5.10)

which is minimised to estimate the parameters θg, θd, θr, θφ, θψ. For training, we

use the visual samples produced by the augmentation network as input to the

proposed visual and semantic networks. This approach not only augments the

number of samples from the seen classes, but it also generates samples from the

unseen classes. In practice, we perform an alternating training where we first

optimise θg, θd and θr, then we optimise θψ and θφ. Empirically, we have observed

that the augmentation network tend to generate random samples at early stages

of training [55]. Hence, the alternating strategy provides stronger gradients signal

for the optimisation of θψ and θφ, at late stages. After the optimisation of (5.10)

stabilises, the temperature for each network (τφ and τψ in Eq. 5.1) is learned using

a validation set held out from training [56].

5.4 Experiments

In this section, we describe the benchmark data sets, evaluation criteria and the

setup adopted for the experiments. Then, we present a set of ablation studies and

the results of the proposed method, which are compared with the state of the art

(SOTA).
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Table 5.1: Information about CUB [146], FLO [98], SUN [152], AWA1 [150], and

ImageNet [26,145]. Column (1) shows the number of seen classes, denoted by |𝒴S|,
split into the number of training and validation classes (train+val), (2) presents the

number of unseen classes |𝒴U|, (3) displays the number of samples available for

training |𝒟Tr| and (4) shows number of testing samples that belong to the unseen

classes |𝒟Te
U | and number of testing samples that belong to the seen classes |𝒟Te

S |
from [39].

Name |𝒴S| (train+val) |𝒴U| |𝒟Tr| |𝒟Te
U |+ |𝒟Te

S |

CUB 150 (100+50) 50 7057 1764+2967

FLO 82 (62+20) 20 1640 1155+5394

SUN 745 (580+65) 72 14340 2580+1440

AWA1 1 40 (27+13) 10 19832 4958+5685

ImageNet 1000 (1000 + 0) 100 1.2kk 5200+50k

5.4.1 Data Sets

We assess the proposed method on publicly available benchmark GZSL data sets.

More specifically, we perform experiments on CUB-200-2011 [146, 150], FLO [98],

SUN [150], and AWA1 [76, 150] with the GZSL experimental setup described by

Xian et al. [150]. We also perform GZSL experiments on ImageNet [26, 145]. The

data sets CUB and FLO are generally regarded as fine-grained, while AWA1 and

SUN are coarse-grained, and ImageNet is large-scale. In Table 5.1 we show some

details about the data sets regarding the number of seen and unseen classes and

the number of training and testing images.

For the semantic features, we use the 1024-dimensional vector produced by

CNN-RNN [114] for CUB-200-2011 [150] and FLO [98]. These semantic features

are extracted from a set of textual description of 10 sentences per image. To

define a unique semantic sample per-class, the semantic features of all images

belonging to each class were averaged [150]. For the SUN and AWA1 data sets,

we use manually annotated semantic features (attributes) containing 102 and 85

dimensions, respectively [150]. For the visual samples, we follow the protocol

by Xian et al. [150], where the features are represented by the activation of the

2048-dimensional top pooling layer of ResNet-101 [58], obtained for the image.
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All the semantic and visual features were obtained from [150]. To guarantee

reproducible and consistent results, we follow the data set split proposed by Xian

et al. [150], which guarantees that there is no overlap between the unseen classes

and the ImageNet training classes. Moreover, we followed the same testing setup

from [150].

For the ImageNet experiment [26], there can be several testing splits for GZSL

(e.g., 2-hop, 3-hop), which rely on the training set of 1K classes and testing set

on 22K classes. However, recent studies reported that such splits show overlap

between seen and unseen classes for GZSL [39]. We argue that although these

splits may be suitable for open-set recognition approaches, further studies are

required to ensure their applicability for GZSL [39]. Nevertheless, to demon-

strate the robustness of the proposed approach to large data sets, we experiment

with ImageNet [26] for a split containing 100 classes for testing [145] and the

standard 1K classes for training [145], without any overlap between seen and

unseen classes. For ImageNet, we used 500-dimensional semantic samples [145]

and 2048-dimensional ResNet-features, where images are resized to 256 × 256

pixels, cropped to 224 × 224 pixels, normalised with means (0.485, 0.456, 0.406)

and standard deviations (0.229, 0.224, 0.225) per RGB channel.

5.4.2 Evaluation Protocol

The evaluation protocol is based on computing the average per-class top-1 accuracy

measured independently for each class before dividing their cumulative sum by

the number of classes [150]. For GZSL, after computing the average per-class top-1

accuracy on seen classes 𝒴S and unseen classes 𝒴U, we compute the harmonic

mean of the seen and the unseen classification accuracy [150]. We also show

results using the receiver operating characteristics (ROC) curve that measures the

seen and the unseen classification accuracy over many operating points of the

classifier [19]. Using such curve, we can measure the area under the seen unseen

accuracy curve (AUSUC) [19] that represents an unbiased performance of the

GZSL method.
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5.4.3 Implementation Details

In this section, we describe the implementation details for the augmentation

network, visual network and semantic networks that compose the model AN-

GZSL, in terms of the model architecture and hyper-parameters (e.g. number of

epochs, batch size, number of layers, learning rate, weight decay, and learning rate decay)2.

Firstly, the augmentation network (composed of a generator, a discriminator,

and a regressor) is defined in terms of a generative adversarial network (GAN)

with cycle-consistency loss [39]. The generator consists of a single hidden layer

with 4096 nodes and LeakyReLU activation [90] with an output layer of 2048

nodes (same dimension as ResNet [58] feature layer). The discriminator consists

of a single hidden layer with 4096 nodes, which has a LeakyReLU activation

function, and the output layer has no activation. Secondly, the visual network

consists of a model parameterised with one fully connected layer from the 2048-

dimensional visual space into the label space 𝒴 . Thirdly, the semantic network is

defined as a bi-linear model [3] that matches the 2048-dimensional visual space

with the semantic space. Moreover, we introduce a dropout layer for the visual

and the semantic networks for regularisation during training with dropout rate

equal to 0.2. We performed cross-validated experiments that showed the number

of generated features that turns the model competitive and stable [151]. The

augmented network generates 300 visual samples per class for training the visual

and the semantic networks for all the benchmark data sets [151]. The temperature

calibration in (5.2) is achieved by optimising the parameters τψ and τφ with a

grid search minimization of the losses for the visual and semantic networks.

Finally, we perform a Bayesian inference using Monte-Carlo dropout [46] because

recent results suggest that such Bayesian inference can improve classification

calibration and accuracy [47]. All hyper-parameters of the proposed AN-GZSL

model were estimated with standard model selection methods using the validation

sets proposed by Xian et al. [150].



5.4. Experiments 93

Table 5.2: GZSL results using per-class average top-1 accuracy on the test sets of

unseen classes 𝒴U, seen classes 𝒴S, and H-mean result H – all results shown in

percentage. The highlighted values represent the best ones for each column.
CUB FLO SUN AWA

Classifier 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H

AN − GZSLφ 46.2 61.5 52.8 60.0 70.8 65.0 48.7 33.1 39.4 55.4 64.8 59.7

AN − GZSLψ 77.7 41.8 54.4 84.9 36.6 51.2 47.2 21.6 29.6 46.4 67.3 54.9

AN − GZSLτ=1 46.2 61.5 52.8 60.1 70.9 65.1 53.3 32.8 40.6 55.6 65.0 60.0

AN − GZSL 60.5 56.6 58.5 80.7 69.3 74.5 41.7 37.1 41.7 58.2 66.1 61.9

5.4.4 Ablation Study

In Table 5.2, we report the ablation study for the proposed method AN-GZSL. First,

we report the results for inference computed by the visual network (AN − GZSLφ).

Second, AN − GZSLψ reports the results for our semantic network. Then, AN −
GZSLτ=1 shows the combination of the visual and semantic network without the

temperature calibration. The last row shows the results AN − GZSL with the

calibrated (i.e., multi-domain) multi-modal networks.

5.4.5 Results

In Table 5.3, we compare the GZSL results on CUB, FLO, SUN and AWA1, pro-

duced by the proposed model AN-GZSL and several other methods previously

proposed in the field. These methods are split into three groups: semantic ap-

proach, generative approach and domain balancing. The semantic approach

models are DAP [76], IAP [77], DEVISE [42], SJE [4], LATEM [149], ESZSL [118],

ALE [3], PQZSL [83], AREN [153], and MLSE [30]. The generative approaches are

SAE [35], f-CLSWGAN [150], cycle-WGAN [39], CADA-VAE [129], GDAN [60],

GMN [124], Zhu et al. [165], and LisGAN [82]. The domain balancing models

are: CMT [133] and DAZSL [8]. Moreover, we report the following metrics in

Table 5.3: the accuracy for the unseen domain (𝒴U), the seen domain (𝒴S) and the

harmonic-mean (H) between these two accuracy measures.

Table 5.4 shows the top-1 accuracy on ImageNet for the proposed AN-GZSL

and the results reported by previous methods on the same ImageNet experimental

2Please see more details in the code, https://github.com/rfelixmg/an-gzsl
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setup.

In Fig. 5.2, we show the ROC results of the proposed method AN-GZSL, and the

cycle-WGAN [39], which has code available online and represents one of the SOTA

methods for that measure, to the best of our knowledge. Furthermore, Figure 5.2

shows the seen and unseen classification graphs for previously published GZSL

methods (please refer to Tab. 5.3 for a reference to each method). We represent

previous methods [151] by single (diamond-shaped) points denoting the results

for the seen and unseen classification accuracy. We can only use single points

for these methods because they are the results available from the literature (i.e.,

previous methods only report a single operating point for the classification of seen

and unseen classes).

Using the graph in Fig. 5.2, we compute the AUSUC on each data set for

AN-GZSL – results are shown in Table 5.5. We also added the results reported

by the previous methods EZSL [118], fCLSWGAN [151], cycle-WGAN [39] and

DAZSL [8] in Table 5.5.

5.5 Discussions

Ablation study. Table 5.2 shows the importance of each component of AN-GZSL,

where the H-mean tends to be higher for the multi-modal approach, compared to

each individual modality, and the multi-domain multi-modal method at the last

row shows the best performance in all data sets. The high similarity between the

results of AN − GZSLτ=1 and AN − GZSLφ suggests that the un-calibrated multi-

modal classifiers rely entirely on the visual classifiers. This is explained by the

fact that the classification results produced by the un-calibrated semantic classifier

shows classification probabilities close to a uniform distribution, in contrast to

the un-calibrated visual classifier that shows more non-uniform distributions.

However, when calibration is applied, the classification probabilities produced

by both classifiers are pushed further away from the uniform distribution, which

means that the sum of calibrated classifiers can produce results that are different

from the original visual and semantic classifiers. In fact, Table 5.2 shows that

the multi-modal calibrated classification accuracy is always higher than single-

modality classification results. This multi-modal calibrated classifier also produces
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Table 5.3: GZSL results using per-class average top-1 accuracy on the test sets of

unseen classes 𝒴U, seen classes 𝒴S, and H-mean result H; – all results shown in

percentage. The highlighted values represent the best for each column.
CUB FLO SUN AWA

Classifier 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H 𝒴U 𝒴S H

Semantic approach

DAP [76] 4.2 25.1 7.2 − − − 1.7 67.9 3.3 0.0 88.7 0.0

IAP [76] 1.0 37.8 1.8 − − − 0.2 72.8 0.4 2.1 78.2 4.1

DEVISE [42] 23.8 53.0 32.8 9.9 44.2 16.2 16.9 27.4 20.9 13.4 68.7 22.4

SJE [4] 23.5 59.2 33.6 13.9 47.6 21.5 14.7 30.5 19.8 11.3 74.6 19.6

LATEM [149] 15.2 57.3 24.0 6.6 47.6 11.5 14.7 28.8 19.5 7.3 71.7 13.3

ESZSL [118] 12.6 63.8 21.0 11.4 56.8 19.0 11.0 27.9 15.8 6.6 75.6 12.1

ALE [3] 23.7 62.8 34.4 13.3 61.6 21.9 21.8 33.1 26.3 16.8 76.1 27.5

PQZSL [83] 43.2 51.4 46.9 − − − 35.1 35.3 35.2 31.7 70.9 43.8

AREN [153] 38.9 78.7 52.1 − − − 19.0 38.8 25.5 − − −
MLSE [30] 22.3 71.6 34.0 − − − 20.7 36.4 26.4 − − −

Generative approach

SAE [35] 8.8 18.0 11.8 − − − 7.8 54.0 13.6 1.8 77.1 3.5

f-CLSWGAN [151] 43.8 60.6 50.8 58.8 70.0 63.9 47.9 32.4 38.7 56.0 62.8 59.2

cycle-WGAN [39] 46.0 60.3 52.2 59.1 71.1 64.5 48.3 33.1 39.2 56.4 63.5 59.7

CADA-VAE [129] 51.6 53.5 52.4 − − − 47.2 35.7 40.6 57.3 72.8 64.1

GDAN [60] 39.3 66.7 49.5 − − − 38.1 89.9 53.4 − − −
GMN [124] 56.1 54.3 55.2 − − − 53.2 33.0 40.7 61.1 71.3 65.8

Zhu et al. [165] 33.4 87.5 48.4 − − − − − − − − −
LisGAN [82] 46.5 57.9 51.6 57.7 83.8 68.3 42.9 37.8 40.2 52.6 76.3 62.3

Domain balancing

CMT [133] 7.2 49.8 12.6 − − − 8.1 21.8 11.8 0.9 87.6 1.8

DAZSL [8] 41.0 60.5 48.9 59.6 81.4 68.8 35.3 40.2 37.6 64.8 51.7 57.5

Ours

AN − GZSL 60.5 56.6 58.5 80.7 69.3 74.5 41.7 37.1 41.7 58.2 66.1 61.9
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(a) CUB (b) FLO

(c) SUN (d) AWA1

(e)

Figure 5.2: ROC curves for the proposed method AN-GZSL, and several baseline

and state-of-the-art methods (please see text and Table 5.3 for details about the

methods). Note that these graphs are used to compute the AUSUC in Table 5.5.
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Table 5.4: GZSL ImageNet results – all results shown in percentage. Please see

caption of Table 5.3 for details on each measure. The highlighted values represent

the best ones in each column.
Classifier 𝒴U 𝒴S H

f-CLSWGAN [151] 0.7 − −
cycle-WGAN [39] 1.5 66.5 2.8

AN − GZSL 2.5 47.4 4.8

Table 5.5: Area under the curve of seen and unseen accuracy (AUSUC). The

highlighted values per column represent the best results in each dataset.
Classifier CUB FLO SUN AWA

ESZSL [118] 30.2 25.7 12.8 39.8

fCLSWGAN [151] 34.5 53.1 22.0 45

cycle-WGAN [39] 42.6 60.8 23.2 47.4

DAZSL [8] 35.6 58.1 21.0 55.9

AN − GZSL 43.7 64.6 23.6 47.9

the most balanced classification results between the seen and unseen domains

for all data sets. These results suggest that our proposed multi-modal calibrated

classifiers provide a way to correct the mistakes made by each modality classifier.

For example, this can happen when the classification probabilities of the correct

class are relatively high for both modalities, but not the highest in any modality,

and when summed, the correct class receives the highest confidence.

Another important point to notice from Table 5.2 is that our proposed AN-

GZSL seems to be more advantageous in fine-grained (i.e., CUB and FLO) than

in coarse-grained (i.e., SUN and AWA1) data sets. In coarse-grained data sets,

the results from the calibrated visual classifier are almost binary, with the highest

classification probability close to one and all other probability values close to zero.

The calibrated semantic classifier shows a more uniform distribution, which when

combined with the almost binary results of the visual classifier is less effective

(than in fine-grained problems) to change a possibly incorrect visual classifier

result for the multi-domain multi-modal model.

Comparison with SOTA. In Table 5.3, we notice a clear tendency of the pro-
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posed model AN-GZSL to perform substantially better than the SOTA in terms of

H-mean and classification accuracy on unseen classes for fine-grained (CUB and

FLO) data sets, and competitively for coarse-grained data sets (SUN and AWA1).

This result shows that the more challenging classification problem offered by

the fine-grained data sets represents an ideal situation for exploring multi-modal

and multi-domain classification. We discuss in the ablation study paragraph

above, the reasons behind the superior performance in fine-grained data sets

of our proposed AN-GZSL method. Another interesting point to observe from

Table 5.3 is that none of the competing methods stand out as a clear SOTA approach

for all data sets since one method can be better in one data set, but worse in all

others. In fact, out of the four data sets studied, AN-GZSL is better in two, GDAN

is better in one and GMN is better in another. It is also worth comparing the

performance of previous semantic approaches in Table 5.4, and our proposed

semantic network, represented by AN − GZSLψ in Table 5.2. This comparison

is important because our proposed semantic network introduces one significant

novelty, which is the use of visual data augmentation for training the semantic

classifier. Our proposed AN − GZSLψ produces substantially better results in

terms of H-mean and classification accuracy on unseen classes for CUB, FLO and

AWA1.

In terms of the large-scale data set ImageNet, we show in Table 5.4 that the pro-

posed method establishes a new SOTA in terms of the H-mean result. More specifi-

cally, the proposed method achieves around 80% of relative H-mean improvement.

We speculate that these results can be explained by the similar challenges present

in fine-grained and large-scale data sets. Also, the proposed approach scales as

well as f-CLSWGAN [151] and cycle-WGAN [39] with respect to the number of

classes and samples.

Seen and unseen classification graphs. Figure 5.2 shows the trade-off between

the classification of seen and unseen classes for GZSL methods. In particular, it

is interesting to notice a fact that is prevalent in GZSL methods, which is the

classification imbalance that usually favours the seen classes – the figure illustrates

that the majority of the previous methods (represented by diamonds) lie at the

bottom-right part of the graphs, indicating the preference for seen classes. In terms

of seen and unseen curves, the more balanced methods (see Table 5.3) usually lies
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close to the elbow of the curve, located at the top-right part of the graph. The

results suggest that our method is more robust to fine-grained data sets, such

as CUB and FLO. We argue that this is achieved due to the proximity of the

distributions of the classes in the feature spaces. This proximity increases the

effectiveness of the Bayesian inference because a large number of samples of the

parameter values can show a more calibrated classification result for each class.

On the other hand, coarse data sets have class distributions that are likely to be far

from each other, resulting in an ineffective Bayesian inference that keeps showing

over-confident classification results.

AUSUC. Table 5.5 shows that the proposed approach, AN-GZSL, outperforms

previous methods on data sets CUB, SUN and FLO. For AWA1, we achieve com-

petitive performance, where the proposed method is the second best. It is worth

emphasising that the AUSUC measure provides a more complete assessment of

GZSL methods, where it is no longer necessary to commit to a particular operating

point of the classification of seen and unseen classes.

5.6 Conclusions and Future Work

In this paper, we introduce a new approach to perform GZSL using a multi-

modal multi-domain augmentation network. The proposed approach is the first

to explore visual data augmentation for training visual and semantic classifiers,

enabling a truly multi-modal training and inference. In addition, we show that

the calibration of those visual and semantic classifiers provide an effective multi-

domain classification, where the classification of seen and unseen classes are

accurate and well balanced. The experimental results show that the proposed

approach has established new state-of-the-art GZSL harmonic mean results for

three benchmark data sets (CUB, FLO, and Imagenet). In particular, we report

results that are substantially better than the previous methods on CUB and FLO,

which are fine-grained data sets, and competitive on SUN and AWA1, which

are coarse-grained data sets. Moreover, the results of the proposed approach

outperform previous methods on Imagenet data set by a large margin. Also, our

proposed AN-GZSL achieves the best performance in terms of AUSUC for three

benchmark data sets.
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In the future, we intend to study more thoroughly the reason behind the

performance difference observed between fine-grained and coarse-grained data

sets. We will also investigate why it is challenging to obtain high classification

accuracy on the unseen classes of the large scale ImageNet data set.
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Abstract

Generalised zero-shot learning (GZSL) methods aim to classify previously

seen and unseen visual classes by leveraging the semantic information of those

classes. In the context of GZSL, semantic information is non-visual data such

as a text description of the seen and unseen classes. Previous GZSL methods

have explored transformations between visual and semantic spaces, as well as the

learning of a latent joint visual and semantic space. In these methods, even though

learning has explored a combination of spaces (i.e., visual, semantic or joint latent

space), inference tended to focus on using just one of the spaces. By hypothesising

that inference must explore all three spaces, we propose a new GZSL method

based on a multi-modal classification over visual, semantic and joint latent spaces.

Another issue affecting current GZSL methods is the intrinsic bias toward the

classification of seen classes – a problem that is usually mitigated by a domain

classifier which modulates seen and unseen classification. Our proposed approach

replaces the modulated classification by a computationally simpler multi-domain

classification based on averaging the multi-modal calibrated classifiers from the

seen and unseen domains. Experiments on GZSL benchmarks show that our

proposed GZSL approach achieves competitive results compared with the state-of-

the-art.

6.1 Introduction

In the usual visual classification setup, training comprises a set of visual classes,

each of which containing a large set of visual samples to model the classifier [54].

The inference process consists of classifying new visual samples into one of the

classes used for training. Although useful, this setup bears little resemblance

with real-world visual classification problems (e.g., self-driving cars or robotic

personal assistant), where previously unseen visual classes must be handled in

a reasonable manner. One possible way to address such real-world problems is

with the generalised zero-shot learning (GZSL) setup [150] that contains a set of

seen and another set of unseen classes – seen classes contain visual samples for

training, while unseen classes do not have any visual samples for training. In the
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GZSL setup, the recognition of unseen classes depends on semantic information

collected from different modalities, such as textual descriptions [114] or a list of

attributes [77] for the seen and unseen classes. One of the GZSL challenges lies

in how to handle the multi-modal information contained in the visual samples

from the seen classes and the semantic samples from the seen and unseen classes.

Another GZSL challenge is how to properly balance the classification of new

samples from seen and unseen classes because the classification model will be

naturally biased toward the classification of seen classes given the availability of

visual samples from those classes during training [37, 133].

Traditional GZSL methods aim to build a function that transforms samples from

the visual to the semantic space so that the classification of seen and unseen classes

are performed exclusively in the semantic space [150]. More recent approaches rely

on a generative model to produce visual samples from their respective semantic

samples [39, 60, 82, 105, 124, 129, 144, 151]. The generated visual samples from

unseen classes and the original visual samples from the seen classes are then

used to train a visual classifier that is used during testing in a single modality

(i.e., visual) classification. Note that these generative methods are the first GZSL

approaches to train a visual classifier with visual samples from both seen and

unseen domains. Alternative approaches encode the semantic and the visual

data into a joint latent embedding space [129] or with pairwise compatibility

functions [165], which are then used to train a classifier that works exclusively in

just one of the modalities. It is worth noting that the previous methods presented

above explore the multi-modality aspect of GZSL during training, but they always

rely on a single modality classifier for testing. We hypothesise that a multi-modal

inference has the potential to improve current GZSL results because of a more

effective use of the visual and semantic information available.

Another major issue affecting GZSL methods is the imbalance in the clas-

sification results for the seen and unseen classes [150]. One of the first GZSL

methods [133] noticed that and proposed the use of a domain classification that

classifies input visual samples into the set of seen or unseen classes, where in the

former case, the sample would go to a visual classifier, and in the latter case, the

sample would be transformed into a semantic sample to be classified by a semantic

classifier. Therefore, this method [133] not only addressed multi-modal training
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and inference, but it also tried to balance the seen and unseen classification. How-

ever, its classification accuracy is underwhelming, particularly compared with

recent methods. More recent methods also proposed the use of an external domain

classifier [8,37], but they always rely on a single modality classification. The major

drawback of the approaches above lies in the need to train a domain classifier

using visual samples from the seen classes, which is a hard classification problem

given that there is no guarantee that the divergence within the seen classes is

smaller than the divergence between seen and unseen classes.

Figure 6.1: Our model consists of encoders from visual and semantic spaces to

a latent joint embedding space. Samples from this joint space are used to train

decoders that reconstruct the original samples from visual and semantic spaces.

Samples from these visual, semantic and joint spaces are then used to train and

calibrate classifiers for each space. The final multi-domain classification confidence,

represented by f (y|x), is obtained from averaging the results of the multi-modal

calibrated classifiers.

In this paper, we introduce a new GZSL approach that relies on multi-modal

training and inference, where the multi-domain classification is based on cali-

brating the classifier from each modality, without the use of any external domain

classifier – see Fig. 6.1. More specifically, our model consists of a visual and a se-

mantic encoder that transforms samples from these two domains into samples in a

joint latent space. The proposed model also contains decoders from the joint space

back to the visual and semantic spaces. The samples from the visual, semantic,

and joint latent spaces are used to train the visual, semantic and joint classifiers. By

calibrating [56] those multi-modal classifiers, we obtain good balancing between

the classification of seen and unseen classes without an external domain classifier.
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Experiments include an ablation study that highlights the importance of each

modality and the classification calibration. Using public GZSL benchmarks, we

show that our method has results that are competitive with the state-of-the-art.

6.2 Literature Review

In this section, we review the recent literature in zero-shot learning (ZSL), GZSL,

and domain balancing for GZSL.

6.2.1 Zero-Shot Learning

ZSL is defined as a classification problem, where the set of seen visual classes

used for training does not overlap with the set of unseen visual classes used

for testing [77, 150]. The main solution explored by ZSL methods is based on

the use of an auxiliary semantic space, where each visual class has a particular

semantic representation. With the learning of a transformation function that

projects samples from visual to semantic spaces, it is then possible to transform

samples from unseen visual classes to the semantic space. This approach is

motivated by the assumption that the unseen visual clusters can be transferred

with same structure into the semantic space for computing inference. However,

a recent review of the literature in this field shows that the ZSL set-up limits the

applicability of ZSL methods [39, 151] because the testing procedure completely

ignores the seen classes [18, 19]. Although limited, ZSL methods can be seen as an

expert model for the unseen visual classes [8].

6.2.2 Generalized Zero-Shot Learning

GZSL extends the ZSL framework with the recognition of the seen and unseen vi-

sual classes during testing. This extension is challenging due to the bias toward the

seen classes issue reported in [19, 133, 150], which has motivated the development

of several GZSL approaches [151]. Previously, studies in GZSL have been based on

an ensemble of classifiers that combines semantic classifiers [30], approaches that

learn transformations between the visual and semantic spaces [159, 165], meth-

ods that combine seen and unseen classifications [8, 19, 133], and algorithms that
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generate synthetic unseen visual samples [39, 60, 82, 105, 124, 129, 144, 151].

The most successful GZSL approaches are based on methods that generate

synthetic visual samples for the unseen classes, given their semantic represen-

tation [39, 60, 82, 105, 124, 129, 144, 151]. These synthetic unseen visual samples,

together with the real seen visual samples, are used to train a visual classifier of

seen and unseen classes. The generative models explored by these methods are

the Generative Adversarial Networks (GAN) [39, 60, 82, 105, 124, 151] and Varia-

tional Autoencoders (VAE) [129, 144]. The approaches above do not have a testing

stage that can handle multi-modal (i.e., visual and semantic) classification. In fact,

during the testing stage, these approaches only deal with samples either in the

visual space or in a joint visual and semantic latent space. We hypothesise that

the use of all spaces (i.e., visual, semantic and joint latent spaces) can improve

recognition accuracy.

The first method to address the bias toward the seen classes was proposed by

Socher et al. [133]. Their paper realised that GZSL classifiers were biased towards

the seen classes because of the availability of visual samples from seen classes and

the lack of unseen visual samples during training. This issue is usually handled

with a domain classifier that classifies test samples into the seen or unseen classes,

and use different classifiers for each domain [37, 133, 158]. More recently, the

approach developed by Atzmon and Chechik [8] tackles the bias issue toward

seen classes in a similar manner. Their solution involves a classifier that combines

the result of a ZSL classifier for the unseen classes and a seen class classifier, where

this combination is achieved with a (seen/unseen) gating network. Even though

this approach achieves outstanding results, it can be criticised for not exploring

more effectively the multi-modality nature of the problem and for relying on a

computationally complex domain classifier that is challenging to be trained given

the assumption that samples from unseen classes come from a distribution that

has a high divergence with respect to the seen class distribution, which is hard to

guarantee.
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6.3 Methods

In this section, we first present the GZSL problem. Then we introduce our pro-

posed model that consists of a calibrated classifiers over the visual, semantic and

joint latent spaces.

6.3.1 Generalised Zero-Shot Learning

GZSL methods rely on visual and semantic data modalities. The data set for

the visual modality is represented by 𝒟 = {(x, y)i}N
i=1, where x ∈ 𝒳 ⊆ RX

denotes the visual representation, and y ∈ 𝒴 = {1, ..., C} denotes the visual

class. The visual representation consists of visual features extracted by pre-trained

deep neural networks, such as ResNet [58], and VGG [131]. In GZSL problems,

𝒟 is split into two disjoint domains: the seen domain 𝒴S = {1, ..., |S|}, and

the unseen domain 𝒴U = {(|S|+ 1), ..., (|S|+ |U|)}, where 𝒴 = 𝒴S ∪ 𝒴U, and

𝒴S ∩ 𝒴U = ∅. Visual samples from 𝒴S can be accessed during training time, but

samples from the unseen domain 𝒴U are only available during test time. Therefore

the main challenge in GZSL consists of classifying samples that are drawn from 𝒴 ,

independently if they come from the seen or unseen domain [150]. The data set

for the semantic modality is defined as ℛ = {ay}y∈𝒴 , where each ay ∈ 𝒜 ⊆ RA

is associated to a visual class from 𝒴 . The semantic representation consists of a

semantic information (e.g., textual description, or a set of attributes) available

for the visual classes. This information can be transformed into an embedding

space by feature representation methods (e.g., set of continuous features such as

word2vec [150]). The semantic data set has only one representation per visual class.

GZSL has a particular set up for the training and testing stages. The data set

𝒟 is divided into two subsets: 𝒟tr for training, and 𝒟ts for testing. The training

set contains visual samples drawn from the seen classes 𝒴S and the testing set

contains visual samples from both the seen and unseen domains. The semantic

data set, ℛ, is available during training and testing.
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6.3.2 GZSL with Calibrated Classifiers over Visual, Semantic and

Joint Latent Spaces

The inference of our proposed model estimates the visual class y of a test image x,

as follows:

y* = arg max
y∈𝒴

f (y|x), (6.1)

with

f (y|x) = σx(y|x̃, τx, θx) + σa(y|ã, τa, θa) + σz(y|z̃, τz, θz), (6.2)

where x̃ ∈ 𝒳 represents a generated visual sample, ã ∈ 𝒜 denotes a generated se-

mantic sample, z̃ ∈ 𝒵 ⊆ RZ is a generated joint latent sample, and σx(.), σa(.), σz(.)

represent the softmax classifiers for the visual, semantic and joint latent spaces

– these classifiers are parameterised by θx, θa, θz, and calibrated by τx, τa, τz, re-

spectively. Note that the inference defined in Eq. 6.1 and Eq. 6.2 shows the main

contributions of this paper: 1) the multi-modal inference, and 2) the domain balanc-

ing by classifier calibration without any external domain classifier to distinguish

samples from seen and unseen classes.

The whole model depicted in Fig. 6.1 shows other components that are defined

below. The visual and semantic encoders are defined by

z̃ ∼ p(E)
x (z|x, θ

(E)
x ),

z̃ ∼ p(E)
a (z|a, θ

(E)
a ),

(6.3)

where p(E)
x (.) and p(E)

a (.) denote the visual and semantic encoding models. The

visual and semantic decoders are defined by

x̃ ∼ p(D)
x (x|z, θ

(D)
x ),

ã ∼ p(D)
a (a|z, θ

(D)
a ),

(6.4)

where p(D)
x (.) and p(D)

a (.) represent the visual and semantic decoding models.

There have been many GZSL methods that rely on the generation of synthetic

visual samples, given their semantic representation [39, 60, 82, 105, 124, 129, 144,

151], as described in Sec. 6.2.2. In this paper, we extend the model proposed by

Schonfeld et al. [129]. In particular, the training of the model defined in Eq. 6.1-
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Eq. 6.4 is an end-to-end process that minimises the following loss function:

`(𝒟tr,ℛ) = γPD`PD + `VAE + γCM`CM + γDA`DA. (6.5)

The first term in Eq. 6.5 enables the training of a GZSL model taking into consider-

ation the joint domain optimisation (with the seen and unseen domain) and the

multi-modal inference (visual, semantic and latent spaces). The sample-wise loss

`PD is defined as the cross-entropy loss for the classifiers in Eq. 6.2, as follows:

`PD =− hy log(σx(y|x̃, τx, θx))− hy log(σa(y|ã, τa, θa))

− hy log(σz(y|z̃, τz, θz)),
(6.6)

where hy represents the yth dimension of a one-hot representation of the label y,

the sample z̃ is generated according to Eq. 6.3 using the encoders from the semantic

and visual spaces, and the samples x̃ and ã are generated with the decoders in

Eq. 6.4. It is important to notice in Eq. 6.6 that there is no hyper-parameter or

external domain classifier that weights the classification for each modality, as is

the case in previous GZSL methods [8,133]. Instead, we rely entirely on calibrating

the classifiers using temperature scaling [56], which, for the case of the softmax

classifier, is defined by

σx(y|x, τx, θx) =
e(πx(y|x,θx)/τx)

∑C
c=1 e(πx(c|x,θx)/τx)

, (6.7)

where πx(y|x, θx) represents the logit for the visual classification (and similarly

for σa(y|a, τa, θa) and σz(y|z, τz, θz) in Eq. 6.2). In traditional supervised learning,

the temperature scaling factor τ is assumed to be equal to one. However, recent

research shows that this parameter can be used for calibrating the classification

confidence [56]. After calibrating each classifier, the ensemble consists of summing

the three classification results from Eq. 6.2. The calibration parameters are learned

based on the validation set held out from training, as proposed in [150].

The second term in Eq. 6.5 represents the variational auto-encoder (VAE)

error [29], defined by [129]. The sample-wise loss for that second term is denoted
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by

`VAE =Eq(z|x,λ)
[

log(p(D)
x (x|z, θ

(D)
x ))

]
+ Eq(z|a,λ)

[
log(p(D)

a (a|z, θ
(D)
x ))

]
−𝒟KL

(
q(z|x, λx)||pφ(z)

)
−𝒟KL

(
q(z|a, λa)||pφ(z)

)
,

(6.8)

which represents the variational loss, where the first term aims to minimize the

reconstruction error for the visual features, the second term minimises the re-

construction error for the semantic features, and the last two terms represent the

Kullback-Leibler divergence between the prior distribution pφ(z) (assumed to be

Gaussian) and the variational distributions qφ(z | x, λx) and qφ(z | x, λa), also

assumed to be Gaussian.

The third term in Eq. 6.5 denotes the cross-modality alignment loss that calcu-

lates the reconstruction error between the visual and semantic modalities [129].

The sample-wise loss for that third term is defined by:

`CM = ‖x − x̃‖+ ‖a − ã‖, (6.9)

where x̃ is sampled from the decoder p(D)
x (x|z̃, θ

(D)
x ) in Eq. 6.4, with z̃ being

sampled from p(E)
a (z|a, θ

(E)
a ) in Eq. 6.3 and x and a belonging to the same class.

Similarly in Eq. 6.9, ã is sampled from the decoder p(D)
a (a|z̃, θ

(D)
a ) in Eq. 6.4, with

z̃ being sampled from p(E)
x (z|x, θ

(E)
x ) in Eq. 6.3 and x and a belonging to the same

class.

The fourth term in Eq. 6.5 consists of the distribution-alignment loss of samples

belonging to the same class. The loss is defined by [129]:

`DA =|| µx − µa ||22 + || Σ
1
2
x − Σ

1
2
a ||2F, (6.10)

where µx ∈ 𝒵 and Σx ∈ 𝒵 × 𝒵 are the mean vector and co-variance matrix of

the latent samples from a particular class produced by the encoder p(E)
x (z|x, θ

(E)
x )

(similarly for µa and Σa for p(E)
a (z|a, θ

(E)
x )), and ‖.‖F represents the Frobenius

norm. This loss assumes a uni-modal Gaussian distribution of the latent vectors of

a particular class, and approximates the distributions produced by the visual and

semantic classes. The training is achieved by minimising the loss in Eq. 6.10 with

the average of the sample-wise losses defined in Equations 6.6, 6.8, 6.9, where the

hyper-parameters are estimated with grid search using the validation set.
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6.4 Experiments

In this section, we introduce the experimental setup to demonstrate the perfor-

mance of the proposed method. First, we present the benchmark data sets, then

we describe the evaluation criteria for the experimental setup. We then show

the results of the proposed method compared with previous models from the

literature. Finally, we provide ablation studies to explore the functionality of the

proposed method.

Table 6.1: The benchmarks for GZSL: AWA1 [150], AWA2 [150], CUB [146], and

SUN [152]. Column (1) shows the number of seen classes, denoted by |𝒴S|, split

into the number of training and validation classes (train+val), (2) presents the

number of unseen classes |𝒴U|, (3) displays the number of samples available for

training |𝒟Tr| and (4) shows number of testing samples that belong to the unseen

classes |𝒟Te
U | and number of testing samples that belong to the seen classes |𝒟Te

S |
from [39, 151]

Name |𝒴S| (train+val) |𝒴U| |𝒟Tr| |𝒟Te
U |+ |𝒟Te

S |

AWA1 40 (27+13) 10 19832 4958+5685

AWA2 40 (27+13) 10 23527 5882+7913

CUB 150 (100+50) 50 7057 1764+2967

SUN 745 (580+65) 72 14340 2580+1440

6.4.1 Data Sets

We evaluate the proposed method on four publicly available1 benchmark GZSL

data sets: AWA1 [76, 150], AWA2 [76, 150], CUB [146], and SUN [150]. Re-

cent research argues that GZSL approaches that use pre-trained models must

take into consideration the overlap between unseen classes and the ImageNet

classes [150]. Therefore, we use the GZSL experimental setup described by Xian et

al. [150], which prevents that the GZSL unseen classes overlap with the ImageNet

classes [26, 150]. These data sets can be either fine or coarse-grained. The CUB

data set [146] is fine-grained, where the visual classes are similar to each other, and

1Data sets from https://cvml.ist.ac.at/AwA2/.
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the semantic representation contains discriminative details. The data sets SUN,

AWA1 and AWA2 are coarse-grained, where visual classes are better separated. In

particular, SUN represents a challenging GZSL problem due to the number and

diversity of classes [150]. Table 6.4 contains basic information about the data sets

in terms of the number of seen and unseen classes and the number of training and

testing images.

6.4.2 Feature Representation

The visual representation for all the benchmark data sets is extracted from the acti-

vation of the 2048-dimensional top pooling layer of ResNet-101 [58]. The semantic

representation of CUB [150] consists of the 1024-dimensional vector produced by

CNN-RNN [114]. These semantic samples represent a written description of each

image using 10 sentences per image. To define a unique semantic sample per-

class, we average the semantic samples of all images belonging to each class [150].

For AWA1, AWA2 and SUN we used the semantic features proposed by Xian

et al. [150], where we use the 102-dimensional feature for SUN [150], and the

85-dimensional feature for AWA1 [150] and AWA2 [150].

6.4.3 Evaluation Protocol

We evaluate the proposed model with Xian et al.’s [150, 151] protocol, which has

been widely used for GZSL evaluation. This protocol relies on three measures: top-

1 accuracy for the seen samples, top-1 accuracy for the unseen samples, and the

harmonic mean. The top-1 accuracy is computed by the average per-class, then we

calculate the overall mean over all classes. We calculate the mean-class accuracy

for each domain separately, i.e., the seen (𝒴S) and the unseen (𝒴U) classes. The

harmonic mean (H-mean) is a measure that combines the accuracy for the seen and

unseen domains [150]. We also present experiments using the area under the seen

and unseen curve (AUSUC) [19]. The AUSUC is achieved by varying a balancing

factor between the seen and the unseen contributions for the harmonic-mean [19].

The AUSUC is a more general assessment of GZSL methods, compared with the

measures above, because it does not commit to any operating point of the seen

and unseen classification. In fact, AUSUC shows the overall performance of the
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GZSL method, where several operating points are considered, with each point

representing different classification biases for the unseen and seen classes. The

evaluation protocol follows the guidelines reported by [150].

6.4.4 Implementation Details

In this section, we describe the architecture for the proposed model. We first

describe the variational auto-encoder network, where the visual encoder is a

network comprising one hidden layer with 1560 nodes, and the semantic encoder

is a network consisting of one hidden layer with 1450 nodes. The visual decoder

and the semantic decoder are represented by networks with one hidden layer

containing 1560 and 660 nodes, respectively. The latent space 𝒵 contains 64

dimensions. The whole model is optimised with Adam for 100 epochs [71]. The

hyper-parameters γPD, γCM and γDA are estimated with cross-validation. The

multi-modal classifiers in Eq. 6.1 are represented by a neural network with one

linear layer transformation and an output layer of size |𝒴| = C. As proposed in

Eq. 6.7, all these classifier networks have a softmax activation function after the

linear layer. The training of these classifiers relies on multi-class cross-entropy loss

and Adam optimiser [71], with a learning rate of 0.001. To alleviate the lack of

unseen samples, we generated artificial samples from the semantic representation

for all benchmark data sets during the training of the classifiers. The training uses

only seen visual samples. We propose the optimisation of the loss function in

Eq. 6.5, by alternating the training of each component. Furthermore, we calibrate

the predictions with temperature scaling for GZSL models, as described in Eq. 6.7,

where this optimisation process depends on the validation set provided by Xian et

al [150], and each classifier has a singular temperature scale.2

6.4.5 Results

Table 6.2 shows an ablation study of the proposed model. The ablation re-

sults show the accuracy of the classifiers trained for each modality: the joint

visual/semantic embedding space classi f ier(z̃) (similarly to Schonfeld et al. [129]);

the reconstructed visual space classi f ier(x̃); and the reconstructed semantic space

2Code available at https://github.com/rfelixmg/multi-spaces-gzsl.
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classi f ier(ã). We also show the results with our multi-modal approach trained

without temperature calibration, denoted by ’ours (τ = 1)’. The last row in

Table 6.2 shows the result of our proposed multi-modal approach with calibration.

Table 6.2: Ablation study of our GZSL approach, using per-class average top-

1 accuracy on the test sets of unseen classes 𝒴U, seen classes 𝒴S, and H-mean

result H – all results shown in percentage. We report the results for each of

the embedding spaces used for classification, the simple average combination

without classification calibration (denoted as τ = 1 in Eq. 5.2), and the proposed

temperature calibrated method. The best result per column is highlighted.
AWA1 AWA2 CUB SUN

Classifier 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H

classi f ier(x̃) 76.5 44.1 56.0 81.4 43.8 57.0 65.0 28.0 39.1 28.9 48.7 36.3

classi f ier(ã) 77.0 42.1 54.4 81.9 47.9 60.4 61.5 25.0 35.6 24.7 36.7 29.5

classi f ier(z̃) 76.6 55.0 64.1 75.3 55.5 63.9 57.2 48.4 52.4 36.8 45.1 40.6

ours (τ = 1) 80.0 51.3 62.5 84.4 52.0 64.4 66.7 30.1 41.5 32.8 49.2 39.3

ours 75.2 57.3 65.0 73.2 58.5 65.0 55.2 52.7 54.0 35.6 47.4 40.7

In Table 6.3, we evaluate the performance of the proposed approach, referred

to as ’ours’, and compare it to several models in the literature. More specifically,

we show the results for the data sets AWA1, AWA2, CUB, and SUN and compare

the proposed model to recently proposed and baseline GZSL methods. We define

three distinct groups of GZSL approaches: semantic approach, generative ap-

proach and models that combine domain classifiers. In the semantic approach we

compare the results from the proposed approach to SJE [4], ALE [3], LATEM [149],

ESZSL [118], SYNC [18], DEVISE [42], AREN [153], PQZSL [83], and MLSE [30].

This group focuses on learning a transformation from visual to semantic represen-

tation, then the classification is based on nearest neighbour classification in the

semantic space. For the generative approach we compare the proposed model to

SAE [35], f-CLSWGAN [151], cycle-WGAN [39], CADA-VAE [129], Zhu et al. [165],

LisGAN [82], GMN [124], and GDAN [60]. This group of GZSL approaches rely

on generative models to produce synthetic visual features for the unseen classes.

We also compare the proposed model to approaches that combine the seen and

unseen domain classifiers: CMT [133], DAZSL [8], and SABR [105].

In Table 6.4 and Fig. 6.2, we show the area under the curve of seen and unseen
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(a) AWA1 (b) AWA2

(c) CUB (d) SUN

(e)

Figure 6.2: The area for seen and unseen accuracy curve for the proposed method

(green) and CADA-VAE [129] (pink), which is the closest model to ours (please

see text and Table 6.3 for details about the methods). Note that these graphs are

used to compute the AUSUC in Table 6.4
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accuracy (AUSUC) results [19]. We evaluate the proposed model in terms of

AUSUC for the benchmark data sets AWA1, AWA2, CUB, and SUN; and com-

pare the results with the following GZSL models: ESZSL [118], DAZSL [8], f-

CLSWGAN [151], cycle-WGAN [39] and CADA-VAE [129]. We only show AUSUC

results for methods that published those results or for methods that have code

available online, which allowed us to run and obtain the results.

Table 6.3: GZSL results using per-class average top-1 accuracy on the test sets

of unseen classes 𝒴U, seen classes 𝒴S, and H-mean result H – all results shown

in percentage. The results from previously proposed methods in the field were

extracted from [150]. The highlighted values represent the best ones in each

column.
AWA1 AWA2 CUB SUN

Classifier 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H 𝒴S 𝒴U H

Semantic approach

SJE [4] 74.6 11.3 19.6 73.9 8.0 14.4 59.2 23.5 33.6 30.5 14.7 19.8

ALE [3] 76.1 16.8 27.5 81.8 14.0 23.9 62.8 23.7 34.4 33.1 21.8 26.3

LATEM [149] 71.7 7.3 13.3 77.3 11.5 20.0 57.3 15.2 24.0 28.8 14.7 19.5

ESZSL [118] 75.6 6.6 12.1 77.8 5.9 11.0 63.8 12.6 21.0 27.9 11.0 15.8

SYNC [18] 87.3 8.9 16.2 90.5 10.0 18.0 70.9 11.5 19.8 43.3 7.9 13.4

DEVISE [42] 68.7 13.4 22.4 74.7 17.1 27.8 53.0 23.8 32.8 27.4 16.9 20.9

AREN [153] − − − 15.6 92.9 26.7 38.9 78.7 52.1 19.0 38.8 25.5

PQZSL [83] 31.7 70.9 43.8 − − − 43.2 51.4 46.9 35.1 35.3 35.2

MLSE [30] − − − 23.8 83.2 37.0 22.3 71.6 34.0 20.7 36.4 26.4

Generative approach

SAE [35] 77.1 1.8 3.5 82.2 1.1 2.2 18.0 8.8 11.8 54.0 7.8 13.6

f-CLSWGAN [151] 61.4 57.9 59.6 68.9 52.1 59.4 57.7 43.7 49.7 36.6 42.6 39.4

cycle-WGAN [39] 63.5 56.4 59.7 − − − 60.3 46.0 52.2 33.1 48.3 39.2

CADA-VAE [129] 72.8 57.3 64.1 75.0 55.8 63.9 53.5 51.6 52.4 35.7 47.2 40.6

Zhu et al. [165] − − − 41.6 91.3 57.2 33.4 87.5 48.4 − − −
LisGAN [82] 52.6 76.3 62.3 − − − 46.5 57.9 51.6 42.9 37.8 40.2

GMN [124] 61.1 71.3 65.8 − − − 56.1 54.3 55.2 53.2 33.0 40.7

GDAN [60] − − − 32.1 67.5 43.5 39.3 66.7 49.5 38.1 89.9 53.4

Combining classifiers

CMT [133] 87.6 0.9 1.8 90.0 0.5 1.0 49.8 7.2 12.6 21.8 8.1 11.8

DAZSL [8] 80.0 52.8 63.6 − − − 57.8 44.4 50.2 37.7 44.9 41.0

SABR [105] 30.3 93.9 46.9 − − − 55.0 58.7 56.8 50.7 35.1 41.5

ours 75.2 57.3 65.0 73.2 58.5 65.0 55.2 52.7 54.0 35.6 47.4 40.7
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Table 6.4: Area under the curve of seen and unseen accuracy (AUSUC). The

highlighted values per column represent the best results in each data set. The

notation * represents the results that we reproduced. The best result per column is

highlighted.
Classifier AWA1 AWA2 CUB SUN

EZSL [118] 39.8 − 30.2 12.8

DAZSL [8] 53.2 − 35.7 23.9

f-CLSWGAN [151] 46.1 − 35.5 22.0

cycle-WGAN [39]* 47.3 − 41.8 23.2

CADA-VAE [129]* 52.4 52.2 37.0 23.6

ours 53.2 54.9 39.3 24.0

6.5 Discussions

The ablation results in Table 6.2 shows that the proposed approach is more accu-

rate than each one of the single modality classifiers (joint semantic/visual space,

reconstructed visual and reconstructed semantic spaces). We also show in Table 6.2

that the calibration of all classifiers provides a substantial improvement in terms

of H-mean for all data sets, compared with a simple combination of un-calibrated

classifiers. This suggests that the proposed combination of multi-modal calibrated

classifiers enables an accurate multi-domain classification with a good balance

between seen and unseen classification.

Table 6.3 shows that there is not a dominant method in the current GZSL

literature for top-1 accuracy measures. For instance, for AWA1, we notice that

GMN [124] and our approach are the top performing methods, with similar H-

mean results. For AWA2, our method is the best, with CADA-VAE [129] being

slightly worse, but comparable. For CUB, we notice that SABR [105], GMN [124]

and our approach are the top performing methods, with comparable H-mean

results. For SUN, GDAN [60] is significantly better than all other approaches.

Therefore, these results suggest that the top performing GZSL methods in the field

are GMN and ours, with other methods being superior on one data set and inferior

on other data sets (e.g., GDAN [60] and SABR [105]). It is also important to notice

that our approach produces better H-mean results than CADA-VAE [129], which
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is the most influential method for our proposed approach. Also, on the SUN data

set, our approach is in fact competitive with all other methods in the field, except

for the recently proposed GDAN [60] that is more than 10% better than any other

approach in the field.

Furthermore, Table 6.4 and Fig. 6.2 show that the proposed approach achieved

solid improvement in terms of AUSUC compared to the previous state of the

art. More specifically, the proposed approach produces the highest AUSUC in

three out of the four data sets (SUN, AWA1, and AWA2), and also improves over

CADA-VAE [129] on all four data sets. For CUB, our AUSUC result is the second

best among the methods in Table 6.4.

6.6 Conclusions

In this paper, we introduced an approach that explores multi-modal (i.e., visual,

semantic and joint latent modalities) and multi-domain (seen and unseen classes)

GZSL classifiers. The multi-modal aspect of our proposal is based on a dual

encoder-decoder method that uses a joint latent space to transform samples be-

tween the visual and semantic spaces. This mechanism allows us to generate

samples for seen and unseen classes for each of the visual, semantic, and latent

joint modalities, forming a multi-modal GZSL classification. By calibrating each

modality classifier, we show that we can achieve a good balance between the

classification of seen and unseen classes, producing an accurate multi-domain

classification method. The experimental results provide evidence for these con-

tributions and demonstrate that the proposed approach achieves competitive re-

sults in common GZSL benchmarks. Specifically, the proposed proposed method

achieved state-of-the-art H-mean results for AWA1, AWA2, and CUB. Moreover,

the proposed model achieves state-of-the-art results in terms of AUSUC for SUN,

AWA1 and AWA2.

In Sec. 5.5, we discussed how the proposed method can combine complemen-

tary information from multiple modalities and domains. We believe that our

result can motivate further study in GZSL on how to combine other modalities

and domains. We also believe that we can extend the proposed model to work

with different generative models, which can potentially produce better synthetic
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samples to train the GZSL models.
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CHAPTER 7
Conclusion and Future Directions

In this thesis, we investigated the impact of multi-domain and multi-modal opti-

misation, combined with data augmentation, for Generalised Zero-Shot Learning

methods. In this chapter, we discuss the key contributions of this thesis and

highlight the future work in this field.

7.1 Summary of the Contributions

In Chapter 3, we introduced a Multi-modal Cycle-consistent Generalised Zero-Shot

Learning (cycle-WGAN) [39]. The proposed model contains a multi-modal cycle-

consistent loss term, which regularises the optimisation of a GAN model for

GZSL. The proposed cycle-consistent loss aims to guarantee that the synthetic

visual samples can be transformed back to the semantic samples utilised in the

generative process. The model cycle-WGAN is the first GZSL data augmentation

approach to introduce a cycle-consistency loss [164]. This new constraint promotes

faster convergence and better generalisation when compared to the previous data

augmentation GZSL methods. We validate the work with extensive experiments

on five benchmark data sets, where the proposed model established a new state-

of-the-art for the data sets CUB, AWA, SUN, FLO and ImageNet (at the time of its

publication).

In Chapter 4, we presented a Generalised Zero-Shot Learning with Domain Classi-

fication in a Joint Semantic and Visual Space. This work represents a novel domain

classifier that estimates the source domain (i.e., seen or unseen) of a sample. We

123
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design this domain classifier using a joint latent space that contains samples from

both domains and, therefore, no longer relies on a challenging one-class classifier,

as previous GZSL domain classifier approaches [133]. We demonstrate that the

proposed approach is effective when combined with GZSL data augmentation

methods based on GANs and VAEs. We report results with experiments on the

following benchmark data sets: CUB, SUN, AWA1 and AWA2. The proposed

method outperforms previous approaches in terms of harmonic-mean for the

benchmark data sets CUB, AWA1 and AWA2 (at the time of its publication).

In Chapter 5, we proposed the Augmentation Network for Multi-modal and Multi-

domain Generalised Zero-Shot Learning (AN-GZSL). The proposed AN-GZSL model

is trained by an optimisation procedure that uses multi-modal and multi-domain

information. The augmentation network uses semantic samples from the seen and

unseen domains, and visual samples from the seen domain to promote a multi-

domain optimisation. Furthermore, the synthetic samples from the augmentation

network feed a multi-modal classifier. We calibrate the output of the multi-modal

models with temperature scaling. For this investigation, we report experiments in

five benchmark data sets: CUB, FLO, SUN, AWA and ImageNet. The proposed

method achieves state-of-the-art results for CUB, FLO and ImageNet, and it shows

competitive results for SUN and AWA.

In Chapter 6, we proposed a Multi-domain Generalised Zero-Shot Learning using

Visual, Semantic, and Joint Latent Spaces. This work extends the GZSL data augmen-

tation approach based on a dual VAE. The main contribution comprises the use

of reconstruction spaces to train three multi-modal classifiers, namely the visual,

semantic and joint latent classifiers that are calibrated to enable a balanced multi-

domain classification. In this paper, we report results for the benchmark data sets

CUB, SUN, AWA1 and AWA2, where the proposed model achieves competitive

performance to previous methods in the GZSL problem.

7.2 Limitations and Future Directions

GZSL data augmentation methods represent most of the leading approaches with

outstanding performance [144, 151]. However, the 2-step scheduled training,

where the generator is trained first, followed by the training of the GZSL classifier,
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can be considered a weakness of our method. Therefore, we plan to design an

end-to-end optimisation for GZSL data augmentation methods that can train the

generator and the GZSL classifier at the same time.

Moreover, recent studies have measured the qualitative performance of deep

generative models by their capacity to fool humans with synthetic samples of

images, audios and textual information. In this test, a human operator is asked

to choose whether a sample is real or synthetic [55, 115]. Despite the outstanding

quantitative progress achieved with GZSL data augmentation models, less effort

has been devoted to the design of models that can produce realistic synthetic

images for the unseen visual classes. In the future, we aim to investigate a deep

generative model framework that can synthesise realistic images from the semantic

descriptions of unseen classes. The capacity of generating images from unseen

classes based on descriptions can be potentially useful in forensics [160] and

machine creativity [49].

Furthermore, this thesis focuses on the two main modalities available for GZSL

benchmark data sets, which are the visual and semantic modalities. Current

findings reveal that multi-modal training and inference improves the performance

of machine learning models [38–40]. Several benchmark data sets are composed of

multiple modalities which have not been explored by GZSL approaches [146, 152].

Future work should concentrate on the extension of multi-modal concepts to

additional modalities, such as audio, sketches, and videos [10, 28, 51, 110, 130, 132,

160]. It remains to be investigated whether different modalities other than text can

be utilised for improving GZSL applications.

Finally, this thesis focuses on the training and inference steps from the GZSL

pipeline that do not include a pre-processing step for the visual and semantic data

sets. This is due to the standardization of GZSL benchmark data sets with an

experimental setup [150], which takes into consideration the overlap between the

classes used to pre-train deep learning models and GZSL classes. In the future, we

plan to investigate the data representation for GZSL models, where we will replace

the GZSL models based on pre-trained backbones with an end-to-end training

pipeline that includes the learning of the pre-processing step.

Despite the limitations listed in this chapter, this thesis proposed substantial

contributions to the field of Generalised Zero-Shot Learning. We systematically
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addressed some of the gaps in this field by proposing methods that use data

augmentation, multiple modalities and multiple domains in the training/inference

of Generalised Zero-Shot Learning models. At the time of their publications, the

empirical results show that the approaches proposed in this thesis established new

state-of-the-art., showing their practical importance to the field.
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