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ABSTRACT

Aims. Accurately and rapidly classifying exoplanet candidates from transit surveys is a goal of growing importance as the data rates
from space-based survey missions increase. This is especially true for the NASA TESS mission which generates thousands of new
candidates each month. Here we created the first deep-learning model capable of classifying TESS planet candidates.
Methods. We adapted an existing neural network model and then trained and tested this updated model on four sectors of high-fidelity,
pixel-level TESS simulations data created using the Lilith simulator and processed using the full TESS pipeline. With the caveat that
direct transfer of the model to real data will not perform as accurately, we also applied this model to four sectors of TESS candidates.
Results. We find our model performs very well on our simulated data, with 97% average precision and 92% accuracy on planets in the
two-class model. This accuracy is also boosted by another ∼4% if planets found at the wrong periods are included. We also performed
three-class and four-class classification of planets, blended and target eclipsing binaries, and non-astrophysical false positives, which
have slightly lower average precision and planet accuracies but are useful for follow-up decisions. When applied to real TESS data, 61%
of threshold crossing events (TCEs) coincident with currently published TESS objects of interest are recovered as planets, 4% more
are suggested to be eclipsing binaries, and we propose a further 200 TCEs as planet candidates.

Key words. planets and satellites: detection – methods: analytical

1. Introduction

In the next two years, the NASA Transiting Exoplanet Survey
Satellite (TESS) mission (Ricker et al. 2014) is likely to more
than double the number of currently known exoplanets (Sullivan
et al. 2015; Huang et al. 2018a; Barclay et al. 2018). It will do
this by observing 90% of the sky for up to one year and monitor-
ing millions of stars with precise-enough photometry to detect
the transits of extrasolar planets across their stars (e.g. Huang
et al. 2018b; Vanderspek et al. 2019; Wang et al. 2019). Every
∼27.1 day “sector” monitors the light of tens of thousands of
stars which are then compiled into 1D “light curves”, detrended
for instrumental systematics, and searched for signals similar to
transiting planets. However, those signals with exoplanetary ori-
gin are dwarfed by signals from false positives – those from
artificial noise sources (e.g. systematic errors not removed by
detrending), or from astrophysical false positives such as binary

? Full Tables A.1 and A.2 are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://
cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A53
?? NASA FDL 2018 participant.
??? NASA FDL 2018 mentor.

stars and variables. The best way to classify exoplanetary signals
is therefore a key open question.

Answers until now include human vetting, both by teams
of experts (Crossfield et al. 2018) or members of the public
(Fischer et al. 2012), vetting using classical tree diagrams of
specific diagnostics (Mullally et al. 2016), ensemble learn-
ing methods such as random forests (McCauliff et al. 2015;
Armstrong et al. 2018), and deep learning techniques such as
neural networks (Shallue & Vanderburg 2018; Schanche et al.
2018; Ansdell et al. 2018). The current process of vetting TESS
candidates involves a high degree of human input. In Crossfield
et al. (2018), 19 vetters completed the initial vetting stage of
1000 candidates or threshold crossing events (TCEs), with each
candidate viewed by at least two vetters. However each TESS
campaign has so far produced more than 1000 TCEs, and a
simple extrapolation suggests as many as 500 human work
hours may be required per month to select the best TESS
candidates.

The first attempts at classification using neural networks
have tended to use exclusively the light curve (e.g. Shallue &
Vanderburg 2018; Zucker & Giryes 2018). In Ansdell et al.
(2018), we modified the 1D light-curve-only neural network

A53, page 1 of 11
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://www.aanda.org
https://doi.org/10.1051/0004-6361/201935345
mailto:hugh.osborn@lam.fr
http://cdsarc.u-strasbg.fr
ftp://130.79.128.5
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A53
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/633/A53
http://www.edpsciences.org
http://creativecommons.org/licenses/by/4.0


A&A 633, A53 (2020)

approach to candidate classification of Shallue & Vanderburg
(2018) to include both centroids and stellar parameters, subse-
quently improving the precision of classification. In this paper
we show results on adapting those models to both simulated and
real TESS data, the first time deep learning has been performed
for TESS.

2. Datasets

2.1. TSOP-301

As no flight data existed at the start of the project, we relied on
multiple end-to-end simulations performed by the TESS team.
Three such runs were considered for use: an initial one-sector
run named ETE-6 (Jenkins et al. 2018) used for the final TESS
mission ground segment integration test, a 2.5-sector run (two
whole sectors and a further sector including only the overlap
region) named TSOP-280 used for the final validation and veri-
fication of the TESS science processing pipeline (Jenkins et al.
2016), and a four-sector run called TSOP-3011 which was specif-
ically designed to create a test set for machine learning and to
characterize detection characteristics of the TESS pipeline. We
focused on the TSOP-301 run, which had the most data and the
most complete set of simulated features.

TSOP-301 was a full four-sector end-to-end run of the TESS
science processing pipeline. To help facilitate the development of
the science processing operations center (SPOC) pipeline, it was
necessary to produce simulated flight data with sufficient fidelity
and volume to exercise all the capabilities of the pipeline in
an integrated way. Using a physics-based TESS instrument and
sky model, the simulation tool named Lilith (Tenenbaum et al.,
in prep.) creates a set of raw TESS data which includes mod-
els for the charge-coupled devices (CCDs), readout electronics,
camera optics, behaviour of the attitude control system (ACS),
spacecraft orbit, spacecraft jitter and the sky, including zodia-
cal light, and the TESS input catalog (TIC). The end product
is an array of expected instrumental artifacts and systematic
errors (e.g. cosmic rays, CCD readout errors, thermal-induced
focus errors, and spacecraft jitter-induced pointing errors). The
model also incorporates realistic instances of stellar astro-
physics, including stellar variability, eclipsing binaries, back-
ground eclipsing binaries, transiting planets, and diffuse light.

This simulated raw image dataset is then passed through
the SPOC pipeline providing full integration tests of the sci-
ence processing from raw pixel calibration, to transiting planet
search (Jenkins et al. 2010; Seader et al. 2013), to the genera-
tion of archivable data products such as tables of TCEs and data
validation products (Twicken et al. 2018; Li et al. 2019). Full
instrumental and astrophysical ground truth is generated for each
Lilith run and can be used as a training set.

In TSOP-301 we simulated four sectors using the then-
current TESS target management and selection with the use of
version 6 of the TIC. There were 16 000 targets per sector and
many targets were near the ecliptic pole resulting in many targets
being observed for more than one sector. Realistic planet distri-
butions based on current understood planet populations were not
used, and instead a distribution was generated with good overlap
with the desired TESS planet detectability in order to provide a
machine-learning classifier with a good distribution of signals to
train on. A fraction of 20% of all targets had planetary transits,
the distributions for which are seen in Fig. 1. An additional 20%

1 Called “TSOP-301” from the TESS operations issue tracking ticket
which initiated the run.
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Fig. 1. Distribution of injected planet signals as a function of key inputs.
The split distribution in the upper plot is due to an injected distribution
into the multi-sector regions that was flat in linear period space. The
lighter colour shows those injections present in TCEs.

had eclipsing binaries (EBs) or background eclipsing binaries
(BEBs) in order to give the classifier a good set of potential
astrophysical false positives. Using appropriate dataset balanc-
ing (i.e. Sect. 3.2), this difference should have minimal effects
on the performance of a deep-learning model.

2.2. Pre-processing

TESS light curves were pre-processed in a method similar to that
of Shallue & Vanderburg (2018) and Ansdell et al. (2018), iter-
ating over each TCE to produce binned phase-folded “global”
(full light curve showing the entire phase between −0.5 and
0.5) and “local” (zoomed in on the transit between −2.5tdur to
2.5tdur) views of both the light and centroid curves (see Fig. 3
in Shallue & Vanderburg 2018 or Fig. 1 in Ansdell et al. 2018).
A light curve from which instrumental systematic errors have
been removed is compiled for each target before it is searched for
transiting planets (the so-called pre-search data conditioning, or
PDC, light curve), and then a light curve with all non-planetary
signals detrended is produced after a candidate detection has
been found (the data validation, or DV, light curve). Unlike
Shallue & Vanderburg (2018) and Ansdell et al. (2018), which
used exclusively the PDC light curves, we used both of these
time series. These were both accessed from the TESS MAST
pages2.

2 https://archive.stsci.edu/tess/bulk_downloads.html
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The DV time series contain unique time series for each can-
didate planet, with flux during the transits of previously detected
TCEs removed. We took the detrended (LC_DETREND) DV light
curve where these were available, using the initial (LC_INIT)
light curve if not. Centroid information is found exclusively in
the PDC files, and comes in two types – PSF centroids (which
are calculated using a model of the TESS point spread function)
and the MOM centroids (which are simply the weighted centre
of light within the TESS aperture). We extracted row and col-
umn PSF centroids where available, as these are typically more
accurate, but reverted to MOM when these were missing. In both
cases, the median was subtracted giving relative x- and y-shifts
in the centre of light.

Anomalies greater than 3.5-sigma from surrounding points
are also removed from each time-series. Both time series were
then phase folded and median binned into global and local views.
We primarily use the DV light curve for the final “views” of
the TCEs, however in some cases the gaps around previously
detected transits cause large gaps in the final views. We pick
a threshold of 50%, above which the PDC light curve views
are instead used. These light curves are then normalised using
the detected depth such that the median out-of-transit is 0.0 while
the transit depth is at −1.0. The row and column centroids are
first added in quadrature, and then also phase folded and binned
into global and local views. To normalise the centroids, the out-
of-transit median is subtracted, the time series is then inverted
(to match the “flux drop” of a transit), and finally it is multiplied
by the ratio between the out-of-transit RMS in the (normalised)
light curve and this new centroid curve. This is done to turn cen-
troid curves without significant deviations into flat lines (rather
than amplify low-significance structure).

Some TCEs remain with large numbers of gaps in the phase-
folded views (due to detection near or on gaps in the light curve),
which is problematic as not-a-numbers (“NaNs”) are undiffer-
entiable, and therefore cause immediate errors when present in
data seen by a machine-learning model. Models with NaNs and
without anomalies removed initially struggled to train, likely as
a result of too many objects with missing data. To avoid this,
we remove 4577 TCEs for which more than 25% of the local
view is missing. Only 4% of these constituted planetary candi-
dates, therefore the overall fraction of planets actually increased
due to this cut. We also filled any gaps missing data in the
remaining views with zeros (which matches the median out-of-
transit value), although our white-noise augmentation step (see
Sect. 3.4) means the model sees Gaussian noise for these missing
values.

2.3. Stellar and transit parameters

The neural networks will classify data using the shape and distri-
bution of the input transit data. However, extra information can
be found by using other parameters which may also help classifi-
cation. This includes stellar parameters, which testing in Ansdell
et al. (2018) showed provided a boost of around 0.5% in accu-
racy for planet classification (potentially as a result of identifying
large stars unlikely to be planet hosts). However, the planetary
injections performed by Lilith effectively choose random stars
rather than following any physical correlations (such as trends in
planet occurrence with metallicity or stellar mass), and therefore
stellar parameters are unlikely to provide as big a boost. Some
transit phenomena may also not be represented in the light curve
data but may aid classification, the most obvious being depth and
duration – both an overly deep and an overly long eclipse may
suggest an eclipse of two similar-sized objects. However, one or

both of these are lost during global and local view normalisation.
We therefore added the following additional data: from the tran-
sit search: the orbital period, transit duration, the semi major axis
scaled to stellar radius (a/Rs), the number of transits NTRANS, the
transit S/N, and the transit depth and ingress duration. Derived
from the transit model fit parameters we added the radius ratio
Rp/Rs, the impact parameter b, the ratio of the maximum mul-
tiple event statistic (MES, a proxy for S/N; Jenkins et al. 2002)
to the expected MES from the single event statistic (SES; i.e. the
S/N of the strongest signal) SES

√
Ntrans, the logged planet radius

divided by an arbitrary planetary boundary (set at 13 R⊕), and the
logged ratio of the transit duration over the expected duration for
a planetary transit given the stellar density and orbital period.
Furthermore, from stellar parameters we added the TESS band
magnitude, stellar radius, total proper motion, stellar log g, stel-
lar metallicity, and stellar effective temperature. We took these
values from the DV light-curve fit headers provided for each
TCE.

All these additional data were then normalised by subtracting
the median and dividing by the standard deviation.

2.4. Labels

Unlike for real flight data, the ground truth of our simulated
TESS dataset is known precisely. However, the injected signals
are never recovered perfectly during transit search – some may
be found at the incorrect period, or with incorrect durations, and
so on. Therefore, the degree of correlation between the injected
signal and the recovered TCE must be computed – we adapted
the code of the TESS team which sums in quadrature the num-
ber of cadences that overlap between the in-transit (or in-eclipse)
points from an injection and those from the detection, setting a
threshold of 0.75.

We split eclipsing binaries into their primary and secondary
dips, therefore recovering both signals. We also searched for
injections recovered at an integer multiple of the real period,
finding a handful of equal-depth eclipsing binaries detected at
half the real period. Although complex labels were generated
for each target (e.g., EB_secondary or BEB_at_2P), we collated
all labels from the same source to give between four (planet,
eclipsing binary, background eclipsing binary, non-astrophysical
signal) and two (planet and not planet) labels, depending on the
model used.

2.5. TESS sectors 1 to 4

At the point of submission, data from four TESS sectors have
been released. Catalogues of TCEs have been compiled from
the ∼16 000 two-minute cadence targets observed for each
sector3. In total, this gives 7562 TCEs from 3266 unique
TESS IDs, which includes duplications between sectors. Of
these, 370 have been published as TESS objects of interest
(TOIs). Their identification comes from candidates identified by
the “quick-look pipeline” (QLP, Fausnaugh et al. 2018) which
are then manually vetted in the manner of Crossfield et al.
(2018).

The TESS light curves were processed in the same way as
for the simulated data (see Sect. 2.2). We also performed the
same removal of light curves that had more than 20% of points in
either of the phase-folded views missing. This led to the removal
of 2197 candidates.
3 http://archive.stsci.edu/tess/bulk_downloads/bulk_
downloads_tce.html for sectors 1–3, and we took the information in
the released DV light curves to build a TCE catalogue for campaign 4.
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Despite being generated from the pixels with realistic noise
sources, the simulated data are unlikely to be identical to the real
data in some key ways, especially in terms of unexpected sys-
tematic noise sources. This likely includes the second orbit of
sector 1 which has higher than average systematic noise due to
unexpected noise in fine pointing. However, some injected noise
sources have been identified as not present in the real data, such
as the sudden pixel sensitivity dropouts (SPSDs) which were
present in Kepler.

3. Machine learning models

3.1. Architecture

In Astronet (Shallue & Vanderburg 2018) and exonet (Ansdell
et al. 2018), a series of convolutional layers are applied to
the local and global views, with the larger global view hav-
ing a deeper convolutional structure. These are then combined
together as inputs for a series of fully connected (FC) layers
(equivalent to a linear Artifical Neural Network, or ANN, layer)
before outputting a single estimate of class membership. This
estimate, between 0 and 1 for each input sample, may be naively
thought of as an estimate of the probability of class membership,
however without priors and Bayesian methodology, it should not
be directly taken as a measure of planetary probability. Figure 2
gives an overview of the model architecture.

We maintained the convolutional filter sizes and architec-
ture from Astronet, with four 1D convolutional layers for the
local view, and eight for the global view. Max pooling is per-
formed every two layers to reduce the overall size of the tensor.
With the number of input data points shrunk by a factor of two
(see Sect. 3.5), the final fully connected layers were similarly
shrunk from 512 to 256 neurons. The dimensionality of the out-
put depends on the model loss function, with either a single class
probability estimate per object (binary) or an estimate per class
per object (multi-class).

For binary models, the binary cross entropy loss function
(BCEloss in pytorch) was used, whereas for multi-class mod-
els, a cross entropy loss (CrossEntropyLoss in pytorch) func-
tion was used. For gradient descent, we used Adam (Kingma &
Ba 2014) as an optimizer with a starting learning rate of around
2× 10−5.

In all cases, we trained until the output of the loss function,
when applied to validation data, had stopped decreasing; a sign
that the model is well-fitted but has not yet begun to be over-
fitted. This was between 200 and 500 epochs, depending on the
learning rate and number of classes used.

3.2. Balanced batch sampling

Training a neural network using a dataset with an unbalanced
class distribution is difficult (see, e.g. Chawla et al. 2004), since
the learning algorithm inevitably biases the model towards learn-
ing the majority class. In the case of the Kepler dataset used
in Ansdell et al. (2018), the two classes (planet and non-planet)
were more closely balanced than the data here. This was partly
because candidates labelled as “unknown” by human vetters
(Batalha et al. 2013; Burke et al. 2014; Mullally et al. 2015; Rowe
et al. 2015) were classified and removed from the DR24 sam-
ple. However, such a step is not available with our TESS dataset,
hence only 14% of the TCE dataset are planets. It is therefore
necessary to perform dataset balancing in order to train the net-
work. We took an approach that involves resampling the input
data (rather than, e.g. weighting the loss function). We did this

Fig. 2. Convolutional neural network architectures used in this work.
“CONV”: a 1D convolutional layer, with the two following numbers
referring to the kernel size and the number of filters; “MAXPOOL”
refers to the process of 1D max pooling the tensor, and the numbers
refer to kernel size and stride; “FC” is a fully connected or linear ANN
layer where the number shows the number of neurons.

by balancing the mini-batches used in training, meaning each
training epoch sees an equal number of samples from each class
(see, e.g., He & Garcia 2008).

3.3. Cross validation

To test the model while retaining as much of the data as possible
for training, we used cross validation. This splits the data into
k parts, and independently trains such that a different subsection
of data is kept as validation data each time, while (k − 1) parts
are used for training. We used k = 8 for all models here in order
to use all available graphics processing units (GPUs).

3.4. Augmentation

Augmentation is the process of modifying training data in order
to generate similar but not identical samples, thereby increasing
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Table 1. Results on testing different model augmentation and input view
sizes.

Model Avg. precision

201/2001 bins 92.0± 0.7%
101/1001 bins 92.7± 0.7%

Without white noise 89.6± 0.7%
Without phase-inversion 90.4± 0.7%
Without phase-shifts 90.5± 0.7%
Without any augmentation 85.2± 0.7%

Notes. The 101-bin and 201-bin models are with all three methods
of data augmentation. Testing of individual augmentation techniques
was performed by removing each individual method in turn from the
101-bin model. Four-fold cross validation was used for this testing, and
the numbers given are on the validation dataset.

the effective number of samples. This therefore helps preserve
against over-fitting. We used three methods of augmentation:
white Gaussian noise was added to each light and centroid curve,
with the amount chosen randomly between 0 and the out-of-
transit RMS of each light- and centroid-curve; a shift of between
−5 and 5 bins was applied to the phase; and 50% of all time
series were mirrored in phase. These were tested using cross
validation on a baseline binary model to assess whether augmen-
tation improved model training, with the results seen in Table 1.
It was found that adding each improved the overall precision
of the model, with the removal of Gaussian white noise aug-
mentation having the greatest effect (3.1% decrease in average
precision, or AP).

3.5. Input array dimensions

For both the astronet and exonetmodels, input arrays of 2001
and 201 in size were used for global and local views, respectively.
Reasons for this included that long-period planet candidates seen
with Kepler needed at least a single bin on the global view,
and that high-resolution local view allows the in/egress of small
planets to be resolved. TESS, which will find shorter-period
planets which are on average larger than those of Kepler, there-
fore may not need such wide bins. We tested whether or not
reducing the number of bins by a factor of two improved perfor-
mance with TESS (see Table 1). This shows that a smaller light
curve view does indeed improve model performance, likely
because increasing S/N in each bin outweighs the effects from
low phase resolution in TESS. Halving the number of bins also
increases run speed.

4. Results with simulated data

To best assess the accuracy and precision of each model, we
performed an “ensemble” or bagging method, taking all eight
models trained during cross validation and applying these to the
test data taking the mean across all of these eight class member-
ship probabilites. Ensembles typically outperform single models
and guard against models which may find local minima (see, e.g.
Dietterich 2000). Although different initialisation weights are
usually used for each model in an ensemble, we used the same
random initialisation weights. However, a test with the binary
model confirms that, due to each model seeing different training
and validation datasets, there is no difference in performance.
We used the 10% of data which were randomly left out of the
training/validation set. These results are shown for each model
in Table 2.

Table 2. Accuracy, recall, and average precision for the trained model on
the test set, using a mean of the estimated class membership probability
from all eight ensemble models.

Accuracy Recall Average precision

Binary 97.3%

Planet 91.8% 87.8% 95.2%
Not planet 97.6% 98.5% 99.4%

Three-class 97.1%

Planets 90.4% 90.1% 95.6%
EBs 95.1% 95.1% 96.9%
Unknown 94.8% 94.9% 97.7%

Four-class 96.3%

Planets 89.1% 88.8% 94.4%
EBs 87.4% 91.7% 94.7%
BEBs 88.5% 81.7% 91.7%
Unknown 94.6% 95.5% 97.8%

Notes. For overall average precision, a “micro” average is performed
which better accounts for imbalanced datasets.

Here we define accuracy as the fraction of all estimated class
members that are correct (TP/(TP + FP), often also called pre-
cision); recall as the fraction of all objects of a class which are
estimated correctly (TP/(TP+FN)); and average precision as the
average accuracy (or precision) for all classes, weighted by the
class frequency (a so-called micro average, implemented with
scipy’s average_precision_score)4.

We find the binary model gives the best planet accuracy,
while the three-class model gives both the highest average
precision on planets and on all classes.

In Fig. 3 we show a comparison of the ROC (receiver
operating characteristic) curves for all three class categories
on exclusively planets. These show near-perfect agreement sug-
gesting the addition of other classes does not inhibit a model
from differentiating planets. In Figs. 4 and 6 we show the ROC
curves for each class in the multi-class, three-class, and four-
class models respectively, when applied to the test dataset. We
calculate both the median and mean values across all eight
ensemble models. Due to the tendancy of class probabilities
to cluster near 0 or 1, the median gives a higher precision
at more restrictive thresholds (e.g. low recall) while the mean
gives higher recall for less restrictive thresholds (e.g. low pre-
cision)5. In Figs. 5 and 7 we show confusion matrices for the
three- and four-class models using cross validation data, includ-
ing randomly selected local view light curves for each class. In
Fig. 8 we compare the performance of recall and accuracy with
respect to MES using cross validation data for the four-class
model.

5. Application to real TESS data

We directly applied the trained models to those TCEs from the
first four sectors of real TESS data (see Table A.1). As well as

4 The micro-averaged average precision simplifies to (TP+ TN)/(TP+
TN + FP + FN) in the binary case.
5 This is most likely due to the sigmoid layer, which distributes class
probability estimations close to either 0 or 1. For example, the mean
of classifications [0,0,0,0,0,1,1,1] is more inclusive for misidentified
candidates (0.375) than a median (0.0).
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Fig. 4. Receiver operating characteristic curve for our three-class model.
“UNK” refers to unknown, or non-astrophysical sources; PL refers to
planets; and EB refers to eclipsing binaries.

using the ensemble models from Sect. 4, we also compiled an
average planet class

To check how well the model was performing, we loaded the
TOIs published so far on the TESS alerts database6, which is

6 https://tev.mit.edu/data/, accessed 2019/02/08, a log-in is
required.
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Fig. 5. Confusion matrix, using real data from the cross validation
dataset, for the three-class model. Labels as in Fig. 4. The binned and
phase-folded input data from a single randomly selected object are
shown in each subplot, with the light curve in blue and the centroid
curve in orange. The black number is the total number of objects classi-
fied in this subset, while the red number shows recall to two significant
figures, i.e. the proportion of each class that is estimated to be a member
of this class (hence horizontal rows always sum to 100% within round-
ing errors). Objects on the diagonal are correctly classified and coloured
green, while those outside are mis-classified and are coloured red. The
strength of the background colours is proportional to the percentage (i.e.
recall) in each box.
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Fig. 6. Receiver operating characteristic curve for the four-class exonet
model. The EB and BEB models perform poorly in comparison to
Fig. 4, mostly due to confusion with each other (see Fig. 7).

compiled using candidates from both the SPOC pipeline (which
come from the TCE tables used here) and the so-called quick-
look pipeline (QLP). Planet candidates are then identified by
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Fig. 8. Comparison of recall and accuracy as a function of the MES for
each of the classes in our four-class model.

manual vetting as in Crossfield et al. (2018). As expected, our
TCE list contains all but one of the 146 SPOC-derived TOIs,
but only 46 of the 207 QLP-derived TOIs. Including duplica-
tions due to candidates identified in multiple sectors, we found
353 TCEs which corroborated with 201 TOIs (based on a combi-
nation of period, epoch, duration, and depth matches). Of those
TCEs, 61% were classified as planets with a threshold of >50%
in our average classifier. Ignoring duplications and taking the
classification from the most sectors (or otherwise averaging the
classifications) gives 112 out of 212 TOIs in agreement.

Table 3. TESS objects of interest with a high likelihood of being
astrophysical false positives.

TID TOI UNK3 PL3 EB3 EB4 BEB4

2760710 227.01 0.090 0.000 0.910 0.836 0.024
279740441 273.01 0.574 0.000 0.426 0.000 0.835
425934411 142.01 0.506 0.001 0.493 0.000 0.678
272086159 176.01 0.001 0.000 0.999 0.879 0.003
272086159 176.01 0.002 0.000 0.998 0.800 0.000
237924601 252.01 0.006 0.000 0.994 0.003 0.873
92226327 256.01 0.150 0.000 0.850 0.558 0.276
425934411 142.01 0.157 0.005 0.838 0.000 0.979
425934411 142.01 0.033 0.000 0.966 0.000 0.853
237924601 252.01 0.021 0.107 0.872 0.125 0.592
231702397 122.01 0.199 0.390 0.411 0.057 0.640
307210830 175.02 0.186 0.412 0.401 0.000 0.610
176778112 408.01 0.352 0.014 0.634 0.000 0.520
355703913 111.01 (a) 0.055 0.010 0.935 0.005 0.408
237924601 252.01 0.110 0.399 0.491 0.011 0.515

Notes. We only show all classes for the three-class model, and the split
EB and BEB classes from the four-class model. (a)Marks HATS-34b.

Of the 43 planets known before launch (the majority being
hot jupiters), 95.2% were classified as planets by the model,
with the exception of WASP-18b (planetary probability esti-
mate (ppl)= 49.9%) which has a detectable secondary eclipse
(Shporer et al. 2019), and HATS-34b (ppl = 39%) which has a
V-shaped transit (b = 0.94, de Val-Borro et al. 2016).

Of the 14 planets already confirmed by TESS from the TOI
list, we strongly identify TOIs 123b, 135b, 125b, 120b, 125c,
and 174b, (ppl > 0.9), weakly recognise TOIs 216b, 197b, 144b
and TOI-136b, (0.3 < ppl < 0.9), and misidentify TOI-125c,
TOI-216c, and TOI-256b & c.

A further 15 are ranked as EBs or BEBs (with p > 0.5 in
either model), which we list in Table 3. However, a quick manual
vetting of these signals does not come to the same conclusion,
with TIDs (TESS ID, as defined in the TIC, Stassun et al. 2018)
2760710, 92226327, 231702397, and 307210830 still possible
planet candidates. A total of 95 and 82 objects are classed as
“unknown” (e.g. from a non-astrophysical source) with the three-
and four-class models, respectively.

Interestingly, a further 200 TCEs not classified as TOIs are
estimated to be members of the planet class (see Table A.2).
These are spread across 144 unique TESS objects, with 57 of
those having a class probability greater than 90%. After view-
ing these 200 TCEs, we plotted a handful of the most promising
planetary candidates in Fig. 10.

6. Discussion

6.1. Comparison with Ansdell et al. (2018)

In Ansdell et al. (2018), we achieved an average precision of
98%, with an accuracy on planets of 97.5%. In this study, we
are unable to achieve a similarly high average precision or accu-
racy, with 97.3% average precision for the binary model and 92%
accuracy on planets in the three-class model. A number of lim-
itations could explain this discrepancy, which we cover in turn
here.

The most obvious is in the presence of more false positives
in the TESS input data, whereas some non-astrophysical false
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positives (objects labelled as unknown by Batalha et al. 2013;
Burke et al. 2014; Mullally et al. 2015; Rowe et al. 2015) were
removed from the samples in both Shallue & Vanderburg (2018)
and Ansdell et al. (2018). The abundance of non-astrophysical
false positives in this TESS dataset may also be caused in part
by the reduction in the minimum number of transits from three
to two, allowing two non-periodic noise sources to combine to
give a candidate signal (far more difficult in the Nt ≥ 3 case).
Another discrepancy is in the source of labels: for this study the
ground truth was, for the most part, known absolutely thanks to
simulations. In the Kepler dataset, only those signals identified
as planet candidates by humans were positive classes, introduc-
ing a possible human bias. For example, planets that are more
difficult to identify (e.g. those affected by systematic noise) may
have been missed in human vetting, improving the overall quality
of the planet class.

It may seem like another difference might be the propor-
tion of low-S/N planet candidates in TESS compared to Kepler,
which could be intrinsically higher due to the larger average flux
uncertainties. However, this is not the case, and the distribution
of injected TESS planets and Kepler planet candidates is similar
in terms of S/N. Instead, low-S/N TESS candidates are found,
on average, at a larger planetary radius. This itself may be prob-
lematic, as large planets are more easily confused with eclipsing
binaries, although the difference is likely minimal.

Another significant difference between the TESS and Kepler
datasets is in the centroids. The uncertainty in the centre of light
(i.e. centroid) is determined by two things – the total number
of photons and the number of pixels that light is spread over.
TESS suffers in both of these cases when compared to Kepler,
with fewer photons (a direct correlation with the higher average
noise in TESS), and larger pixels compared to the point spread
function (PSF). This means centroids are noisier, and TESS may
not see a centroid shift on an object for which Kepler was able
to. This discrepancy may also explain why we initially found that
adding centroids caused problems with model training. Another
reason is the increased presence of NaNs in the input data arrays,
due partly to the shorter baseline and decrease in the minimum
number of transits to two compared to three in Kepler.

Another source of the discrepancy is in noise in the labels.
Although it may appear to simple to identify true signals from
no signal at all in simulated data, this is not necessarily true. For
example, single transits and eclipses were frequently detected
by TESS, with an incorrect period and/or with a second tran-
sit detected corresponding to some systematic noise or gap. Our
correlation metric would in these cases discard this as a “near
miss”. However, the neural network is indeed seeing the signal
of an astrophysical source.

A manual inspection of those candidates estimated to be
planets by the three-class model reveals that 69% of those 284
objects with “unknown” ground truth were in fact co-incident
with planetary injections. Of those, 44% came from monotran-
sits, 25% came from period confusion in multi-planet systems
(e.g. a period near resonant with two or more planets, producing
a planet-like phase-folded transit in combination), and the other
31% had other origins such as single or half-transits left by the
first iteration of transit detection which were then identified in
the incorrect period in the second search; and transits close to,
but not at, the correct period which became “smeared” in phase-
space. Immediately including these in the correctly identified
boxes improves planet accuracy in the cross-validation results
for the three-class model from 90.3 to 95.7% and the average
precision across all classes to 95.0%, nearly matching that of
Ansdell et al. (2018). A similar increase would be expected in the

ensemble test data. However, this poses a question as to exactly
what constitutes a bona fide planet detection, and whether plan-
ets on missed periods constitute a true detection or not. One
improvement might be to apply a continuous label from the
degree of correlation between injection and recovered signal
rather than a pure binary label. This however is beyond the scope
of this work.

6.2. Comments on multiclass and binary models

We attempted to train both binary and multi-class models partly
because we assumed that the simplicity of a binary model may
improve performance. We thought that a multi-class model with
specific knowledge of the source of the possible false positive
contaminant may aid planet follow-up. For example, class con-
fusion between a planet and a background eclipsing binary may
lead to the need for high-resolution imagery, whereas confu-
sion between a planet and a non-astrophysical signal may lead
to follow-up photometric observations of a future transit.

However, our results suggest that there is minimal difference
between binary and multi-class models, as Fig. 3 suggests. In
fact, the highest average precision on planets in the binary and
three-class models were equal at AP= 95.6%; this is likely to be
even higher if monotransits and other near-miss planetary signals
are included as true positives.

Figure 9 also shows how all three models perform worse
when classifying planets at lower S/N, with only between 60 and
70% of planets with 7 < S/N < 8.5 detected. This decrease is
expected, as the threshold for detections which become TCEs
(7.2σ) is set such that the fraction of signals at this threshold
which are from real astrophysical sources (both planets, EBs and
BEBs) is 50%. Far fewer than 50% of TCEs with MES∼7.1σ
are therefore likely to be planets, and our value of up to ∼70%
shows a marked improvement.

Where multiclass models did have a noticeable negative
effect was on the accuracy of identifying EB and BEB objects
in the four-class model. When normalised by depth and dura-
tion, blended binaries have identical shapes to eclipsing binaries,
although often at lower S/N. These two classes were therefore
frequently confused, as Fig. 7 shows, leading to lower average
precision for the model as a whole.

Another noticeable result from the multiclass models is that
our model performs best at identifying non-astrophysical false
positives. This is especially true at low S/N (see Fig. 8) where the
recall and accuracy on these unknown signals actually increase.
This may suggest however that the model is in some ways “play-
ing the system” and applying the class of “unknown” for all
transit events with high noise, where such signals dominate.
However, the accuracy of the classification also suggests that the
model is learning the systematic noise inherent to the data, and
is therefore able to separate these signals from the astrophysi-
cal classes. This in itself is extremely important as often these
systematic noise sources are varied and are unable to be mod-
elled, and are therefore difficult to distinguish using classical
techniques.

6.3. Real TESS data

Directly applying a model trained on simulated data to real data
is a risky strategy. Although the planet and EB signals are likely
to appear physically similar, the characteristics of the systematic
noise are likely extremely different. However, a recall of 61% on
the TOI list is a relatively good sign that the model is transfer-
able. Especially given the different techniques and even pipeline
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Fig. 9. Comparison of recall and accuracy for planets as a function of
the MES across all three models. We note the y-scale has been re-scaled
between 60 and 100%.

Fig. 10. Small selection of candidates (TCEs) that have not been clas-
sified as TOIs but nonetheless appear to be good planet candidates.
These come from a manual search for planet-like signals amongst those
200 TCEs with high ppl estimations from our CNN models. Left panel:
“global” view for the whole phase; right panel: “local” view. These are
sorted by transit S/N. See Table A.2 for full information on all estimated
planets.

used to create the TOI list, and given the as-yet unknown ground
truth of those targets in the TOI list. Indeed, our models suggest
a handful of TOIs are indeed most likely to be astrophysical false
positives.

Our model also suggested nearly 100 further TCEs have
high (ppl > 0.95) planetary class probabilities. These include a
760 ppm signal from HD 55820 (TIC391903064), a 4 ppt tran-
sit on HD 270135 (TIC389669796), and a 500 ppm signal from
TIC207109417. Such targets are ripe for follow-up, and we hope
future vetting by improved models will confirm these signals
and identify even more. Unfortunately, a quick look at those
predicted planets also reveals many clear binaries, although the
majority have transit-like eclipse shapes due to a large radius
ratio, such as binary companions of giant stars. This may be due
to our input training set lacking objects of this nature.

Clearly our recall and accuracy on planet candidates in the
simulated data is not matched when applying that to real data.
However, without full knowledge of the ground truth in the real
TESS data, assessing model performance will be intrinsically
more challenging. In order to best represent the realistic noise
sources, one could inject and recover realistic transit signals in
real TESS data. However, this work was started before real data
was available, and performing injections and recovery in real
TESS light curves is beyond the scope of this paper. We intend
to perform such a task in a future publication.

7. Conclusion

The classification of candidates in exoplanet transit surveys can
be a long and labour-intensive process when manual techniques
are used. Neural network-based classifiers Astronet (Shallue &
Vanderburg 2018) and exonet (Ansdell et al. 2018) have proven
themselves to be extremely accurate (98% average precision
in Ansdell et al. 2018) and once trained can classify potential
planets extremely rapidly. We set out to apply such models to
TESS-like data.

To do this, we followed the Astronet technique of using
local and global “views” of the phase-folded, binned photometric
data for each candidate, as well as the improvements of exonet –
namely including the centroids and stellar parameters. In order to
improve results, we also added data augmentation by mimicking
additional noise sources, and use balanced batch sampling to nor-
malise the unequal number of samples of each class in training
data.

Using four sectors of pixel-level simulations with injected
planets and false-positive populations (known as TSOP-301), we
trained three models with varying numbers of source classes
using cross validation. We achieve average precision as high as
97.3% with accuracy on planet populations as high as 91.8%.
This is despite limitations when compared to those results using
Kepler data, such as lower-significance centroids, a large pop-
ulation of non-astrophysical false positives (which were partly
removed in the Kepler ML dataset), and a higher degree of
confusion between real planet signals and noise due to the low-
ered threshold on the number of transits from three to two.
Indeed, when positives from confusion between planet injections
or monotransits identified at the wrong period are included in the
“planet” class, accuracy rises to as high as 95.7%.

We also show that our models perform well even at low-
S/N with accuracy on planets as high as 75% for signals with
S/N < 8.5. Our use of multi-class models may also aid targeted
follow-up observations by providing class probabilities for dif-
ferent false-positives which may impact follow-up strategy. The
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high accuracy in non-astrophysical false positives also suggest
that our neural network is able to learn patterns in sources
with low-significance systematic noise. This could therefore
push planet detection closer to the theoretical S/N limit than is
possible with classical vetting techniques.

Once these models were trained on simulated data, we
applied them to real TESS candidates from sectors 1 to 4.
Although no ground truth exists to test the performance of this
model, we recover more than 60% of the currently identified TOI
list, including more than 95% of all planets identified before
the mission. We also identify 14 TOIs as likely false positives.
However, the use of confirmed TESS planets as a training set,
plus injections of simulated transits into real flight data, would
improve our confidence in such classifications. This will form
the next step in this ongoing project.
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Appendix A: Additional tables

Table A.1. TCEs that correspond to detected TOIs, with the estimated class probability as given by our CNN models.

TCE info Binary 3-class estimates 4-class estimates All

TESS ID TOI Sect Period (d) Epoch tD (hr) δ (ppm) PL UNK PL EB UNK PL EB BEB PL

77031414 241.01 2 1.387 1355.196 2.290 14 260 0.998 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
122612091 264.01 3 4 2.217 1387.831 3.846 4180 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
1129033 398.01 4 1.360 1410.985 2.156 16 380 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
290131778 123.01 1 3.309 1325.375 5.672 3230 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
144065872 105.01 1 2.185 1326.506 2.865 11 840 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
230982885 195.01 2 2.073 1355.490 2.588 13 510 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
184240683 250.01 2 1.628 1355.508 2.376 13 800 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
267263253 135.01 1 4.127 1325.784 4.495 10 070 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
25375553 143.01 1 2.311 1325.582 3.416 6950 0.996 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
388104525 112.01 1 2 3 2.500 1327.410 2.877 14 940 0.996 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
25155310 114.01 1 2 3 3.289 1327.521 3.416 7180 0.996 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
38846515 106.01 1 2 3 2.849 1326.745 3.785 7500 0.996 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.999
422655579 388.01 4 2.903 1413.143 5.048 4660 0.995 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.998
402026209 232.01 2 1.338 1355.185 2.157 27 440 0.995 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.998
231670397 104.01 1 4.087 1327.673 5.597 3610 0.993 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.998
149603524 102.01 1 2 3 4.412 1326.079 3.779 14 030 0.992 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.997
92352620 107.01 1 3.950 1328.299 4.580 12 930 0.990 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.997
336732616 103.01 1 3.548 1327.253 3.488 10 400 0.989 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.996
166836920 267.01 3 5.752 1387.960 5.386 5390 0.986 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.995
281459670 110.01 1 2 3.174 1328.040 2.723 15 600 0.984 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.995
170634116 413.01 4 3.662 1412.892 3.784 12 460 0.980 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.993
257567854 403.01 4 3.533 1411.902 3.443 11 280 0.980 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.993
238176110 116.01 1 2.799 1326.689 2.365 16 850 0.978 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.993
260609205 219.01 1 2 3 4.462 1328.755 5.410 21 140 0.976 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.992
183537452 192.01 2 3.923 1356.415 2.616 11 500 0.968 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.989
403224672 141.01 1 1.008 1325.539 1.499 220 0.967 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.989
219253008 268.01 4 3 5.066 1415.524 6.158 1880 0.964 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.988
97409519 113.01 1 3.373 1327.053 2.640 17 150 0.964 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.988
204376737 231.01 2 3.361 1357.395 2.579 24 220 0.963 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.988
183979262 183.01 1 2 1 2 3.431 1326.104 3.130 8980 0.962 0.001 0.999 0.000 0.003 0.996 0.001 0.0 0.986
35857242 400.01 4 3.635 1413.315 4.005 8890 0.957 0.000 1.000 0.000 0.000 1.000 0.000 0.0 0.986
234994474 134.01 1 1.401 1326.033 1.261 560 0.956 0.000 0.999 0.001 0.000 1.000 0.000 0.0 0.985

Notes. These are ranked by the average planet score. 201 rows, see associated CDS table of all TCEs.

Table A.2. TCEs which do not correspond to TOIs, but to which our model gives a high average score for the planet class.

TCE info Binary 3-class estimates 4-class estimates All

TESS ID Sect Period (d) Epoch tD (hr) δ (ppm) PL UNK PL EB UNK PL EB BEB PL

92352621 1 3.950 1328.299 4.560 14 230 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.999
139256217 1 2.199 1325.350 3.821 18 410 0.997 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.999
259470701 4 2.543 1412.514 3.845 17 670 0.995 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.998
231275247 2 4.008 1354.114 4.995 21 100 0.995 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.998
272357134 1 4.197 1328.549 5.810 17 080 0.994 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.998
272357134 1 2 3 4.197 1328.549 5.810 17 030 0.992 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
272357134 1 2 4.197 1328.549 5.811 16 990 0.992 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
237342298 3 2.692 1386.312 4.341 31 710 0.991 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
231275247 3 4.008 1386.177 5.031 21 460 0.991 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
272357134 4 4.197 1412.487 5.797 17 060 0.991 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
272357134 3 4.197 1387.306 5.813 17 090 0.990 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.997
272357134 2 4.197 1357.927 5.812 16 860 0.989 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.996
231275247 1 2 3 4.008 1354.114 5.009 21 170 0.988 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.996
349308842 4 3.582 1410.985 4.156 32 620 0.985 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.995
170749770 4 5.306 1412.463 6.497 16 800 0.985 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.995
159984211 3 3.660 1386.931 6.411 10 150 0.982 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.994
237342298 4 2.692 1413.233 4.334 30 650 0.982 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.994
159984211 4 3.660 1412.553 6.462 10 990 0.980 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.993
350480660 4 4.464 1413.136 3.759 27 390 0.980 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.993
350480660 3 4.464 1386.354 3.739 27 110 0.976 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.992
64108432 4 2.779 1413.462 3.579 17 940 0.970 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.990
115115136 1 3.962 1327.888 4.558 32 680 0.968 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.989
268529943 3 4.301 1388.935 3.768 20 290 0.967 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.989
167554898 4 4.453 1413.030 3.887 6540 0.965 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.988
260756218 1 1.955 1325.391 2.300 26 760 0.941 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.980
422844353 4 6.635 1413.205 4.769 18 370 0.920 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.973
270380593 4 3.836 1414.136 2.390 5580 0.911 0.000 1.000 0.000 0.000 1.000 0.000 0.000 0.970
391903064 1 2 4.666 1326.494 3.005 760 0.901 0.000 1.000 0.000 0.011 0.989 0.000 0.000 0.964
178242590 4 1.302 1411.139 2.727 15 470 0.990 0.000 1.000 0.000 0.000 0.890 0.110 0.000 0.960
260304277 1 2 0.513 1325.773 1.100 180 0.863 0.000 1.000 0.000 0.000 0.999 0.000 0.001 0.954
234518605 1 2 5.679 1326.532 4.175 62 410 0.859 0.000 1.000 0.000 0.000 0.998 0.002 0.000 0.953
164752991 3 1.222 1386.808 1.225 2930 0.918 0.004 0.969 0.027 0.000 0.970 0.000 0.030 0.952

Notes. 210 rows, see associated CDS table of all TCEs.
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