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Abstract

Analytical CT reconstruction is popular in practice because of its computational efficiency,

but it suffers from low reconstruction quality when an insufficient number of projections are

used. To address this issue, this paper presents a new analytical method of backprojection

Wiener deconvolution (BPWD). BPWD executes backprojection first, and then applies a

Wiener deconvolution to the whole backprojected image. The Wiener filter is derived from a

ramp filter, enabling the proposed approach to perform reconstruction and denoising simul-

taneously. The use of a filter after backprojection does not differentiate between real sam-

pled projections and interpolated ones, introducing reconstruction errors. Therefore a

weighted ramp filter was applied to increase the contribution of real sampled projections in

the reconstruction, thus improving reconstruction quality. Experiments on synthetic data

and real phase-contrast x-ray images showed that the proposed approach yields better

reconstruction quality compared to the classical filtered backprojection (FBP) method, with

comparable reconstruction speed.

Introduction

Reconstruction algorithms play an important role in Computed Tomographic (CT) imaging.

Good reconstruction methods are required to yield high-quality CT slices, subsequently assist-

ing practitioners and researchers to make better judgements, such as improved medical diag-

noses. Reconstruction methods that are capable of generating high quality images with a small

number of projections enable effective radiation dose reduction, which has significant benefits

for human screening examinations, animal model research and for radiation sensitive samples

[1]. On the other hand, improvements in acquisition hardware have enabled the resolution of

volumetric CT projection images to increase, allowing the fine-details of the internal structures

of the target to be visualised. For instance, phase contrast X-ray imaging setups at synchrotron

facilities are capable of capturing high resolution images with pixel gaps of 10 μm [2], with

more than 2000-by-2000 pixels. In addition to the reconstruction quality, reconstruction
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methods should also consider computation resources (e.g., memory, CPU etc.) and recon-

struction time. For these reasons, a large amount of research focused on improving the recon-

struction quality has been conducted over the last few decades.

Current CT reconstruction algorithms can be classified into two classes: analytical methods

and iterative methods. The analytical methods are mostly based on the projection-slice theo-

rem, which holds in the continuous domain. To obtain a complete discrete image signal, the

Nyquist—Shannon sampling theorem applies. With sufficient projection samples, analytical

methods can consistently reconstruct high-quality images. In addition, analytical methods are

computationally efficient and easy to implement [3]. Due to these advantages, the filtered

backprojection algorithm (FBP), a popular analytical method, is usually used as the benchmark

for assessing new reconstruction methods. However, the analysis in [4] reveals that πN/2

noiseless projections are required for reconstructing a CT image without any loss of informa-

tion, where N denotes the number of detectors. In such a situation, more than 3000 projections

are needed to recover a 2000-by-2000 pixel synchrotron CT image. This excessive demand for

projections is considered a drawback for utilizing analytical methods in radiation sensitive

applications including biological tissue studies.

To address the drawback of the analytical methods, iterative methods have been extensively

studied. The iterative methods model the CT data acquisition directly in the discrete form as

p ¼ Af þ �; ð1Þ

where p denotes the acquired noisy projections, A denotes the CT imaging model named the

system matrix, f is the target CT image, and � represents the noise. The iterative methods have

two important advantages. Firstly, p is a discrete representation which is the actual acquired

data, so Eq (1) is more accurate to represent the real CT imaging model than the projection-

slice theorem. Secondly, it is easy to incorporate prior knowledge into the inverse process of

Eq (1) to improve the quality. The system of Eq (1) is likely under-determined or A is singular,

so direct inversion, such as the least squares method, cannot be applied. In the early 1970s,

Gordon et al. first proposed an algebraic reconstruction technique (ART) method [5] to solve

Eq (1), which decomposed Eq (1) into a series of linear equations and calculated iterative solu-

tions by projecting each projection onto a hyperplane. The previous solution was used as an

initial “guess” for the successive projection. ART had a relatively rapid convergence speed but

suffered from heavy salt and pepper noise [3]. The Simultaneous Iterative Reconstruction

Technique (SIRT) [6] was then proposed to reduce the noise by introducing a set of correction

terms. By combining ART and SIRT, the simultaneous algebraic reconstruction technique

(SART) [7] applied a longitudinal Hamming window to emphasize the corrections applied

near the middle of a projection ray, relative to those applied near its end, to further improve

the reconstruction quality. On the other hand, SIRT and SART required more iterations to

converge than ART. While the above three methods disregarded the noise term �, recent

approaches usually applied a regularization term (or prior term) to reduce the noise effect [4].

Examples include [8–12]. These methods can yield noticeable image quality improvements

over FBP, at the cost of more iterations to converge to an optimal solution. Although numer-

ous efforts have been made to develop various iterative methods with low computational com-

plexity [13–15], they all suffered from significantly higher computational complexity than

FBP. According to statistical analysis in [16], iterative methods usually have about two to three

orders of magnitude larger computational cost than that of FBP. Iterative methods also require

high computational resources, i.e., the system matrix A contains more than 1012 float numbers

for solving a 2000-by-2000 pixel image, and are not robust across different protocols and appli-

cations, because their reconstruction performance is sensitive to the particular choice of
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parameters, which are hard to fine-tune [16–18]. These iterative reconstruction challenges

have attracted substantial interest, with the use of GPU technology to speed up the computa-

tion [13, 19], cutting-edge optimization methods to increase convergence speed [14, 20], and

the development of a rotation-based projector to avoid the occurrence of a large system matrix

[21]. However, with the parallel development of higher-resolution detectors for performing

volumetric CT scans these issues will likely remain.

To avoid the above issues, analytical methods are revisited in this paper. In contrast to the

popular FBP, another analytical method is backprojection-then-filtering (BPF), first proposed

by Bates et al. [22] in 1973. BPF works in the reverse order to FBP, reconstructing the images

via first backprojecting, and then filtering the backprojection with a 2-dimensional (2D) ramp

filter in the frequency domain. In theory, both methods achieve the same result [23] for con-

tinuous signals. In practice, projections are angularly sampled and discrete. The 2D ramp filter

for BPF has to be formed via sampling a continuous ramp filter, resulting in a direct current

(DC) shift and aliasing artifacts [18, 24, 25]. In addition, the projections are distributed in the

polar coordinate system while the reconstructed image is in the Cartesian system, so an inter-

polation must be employed at the backprojection step to convert between coordinate systems.

Usually, the nearest-neighbor interpolation is adopted, which inevitably leads to errors. If the

common 2D ramp filter is applied, the interpolation error will be magnified after filtering.

This impact could be even worse if the number of projections is insufficient. Although FBP

suffers from similar noise, its filtration is performed prior to backprojection such that it can

avoid magnifying the noise. Due to these factors, BPF does not perform as well as FBP in

practice.

To overcome the shortcomings of BPF, a backprojection Wiener deconvolution (BPWD)

approach is presented here. BPWD executes the backprojecting first, followed by a Wiener

deconvolution instead of simple filtering. The point spread function for BPWD is derived

from a 2D ramp filter, enabling it to reconstruct the target image. Meanwhile, the Wiener fil-

tering inherent in deconvolution reduces the noise effect and improves the image quality. Fur-

thermore, a weighted ramp filter, motivated by the projection geometry, is proposed for

sparse-view CT applications. All the three methods have a common backprojection operation.

Backprojection is considered the computational bottleneck of FBP or BPF [26], so the compu-

tational cost of BPWD is likely to be comparable to FBP or BPF. Table 1 compares the differ-

ence of the three analytical methods. These three methods are described and compared in

terms of both reconstruction quality and computational cost, and their application to large

synchrotron-based CT reconstructions is described. However, the proposed approach can be

used for medium-size CT images as well.

Materials and methods

Long synchrotron beamlines designed for phase-contrast X-ray imaging (PCXI) and CT, such

as the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron, all utilise a paral-

lel geometry. In a parallel geometry, each projection of an object at a given angle is seen as a set

of line integrals (see Fig 1). In the Cartesian system (x, y-axes), a line at angle θ and distance to

Table 1. Difference of three backprojection based methods.

Step FBP BPF BPWD

1 1D filtering for each projection Backprojection Backprojection

2 Backprojection 2D filtering for entire image Wiener deconvolution for entire image

https://doi.org/10.1371/journal.pone.0207907.t001
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the isocenter r can be expressed as

x cosyþ y sin y � r ¼ 0: ð2Þ

Let f(x, y) denote the pixel value at point (x, y), which usually represents the attenuation coeffi-

cient in X-ray CT applications. Then, the θ-view projection along the line of Eq (2) can be

expressed as

pðr; yÞ ¼
Z þ1

� 1

Z þ1

� 1

f ðx; yÞdðx cosyþ y siny � rÞdxdy; ð3Þ

where δ denotes the 2D Dirac delta function. Eq (3) is also known as the Radon transform and

the projection data is referred to as a sinogram. The backprojection of p(r, θ) is obtained by

bðx; yÞ ¼
Z p

0

pðr; yÞdy: ð4Þ

Simple backprojection of the projection images reconstructs a severely blurred image with

a high density in the center, which is due to the fact that projections intersect at this area. To

eliminate these effects, a filter is usually employed during reconstruction. In principle, the fil-

tration can be applied before or after backprojection (FBP or BPF), and both methods can

reconstruct the exact images if projections are noiseless and a sufficient number are acquired.

However, as explained previously, in practice FBP is always superior to BPF due to the insuffi-

cient number of projections and the presence of noise. In this section, both FBP and BPF are

briefly introduced and then BPWD is depicted.

Fig 1. Parallel beam geometry. A one-dimensional detector-bin measures an integral of attenuation along the line at

angle θ and distance r to the isocenter.

https://doi.org/10.1371/journal.pone.0207907.g001
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Filtered backprojection

FBP is a widely used technique to correct the blurring encountered in simple backprojection.

It can be modelled by the following formula [27],

f ðx; yÞ ¼
Z p

0

Z þ1

� 1

Pðo; yÞjojei2poðx cos yþy sin yÞdody; ð5Þ

where P(ω, θ) is the 1D Fourier representation of the projection at θ and ω denotes the fre-

quency. The inner integral can be regarded as a 1D inverse Fourier transform of the product

P(ω, θ)|ω|, which represents a projection filtered by a 1D filter whose frequency representation

is |ω|. The filter is commonly known as the ramp filter. The outer integral performs backpro-

jection. So, FBP consists of two steps: filtration and then backprojection.

The ramp filter attenuates low frequencies and passes high frequencies, such that high-fre-

quency features are emphasized while the magnitude of low-frequency features is reduced.

Then, a subsequent backprojection is used to reconstruct a clear image. As the common ramp

filter has the side effect of passing and magnifying additive noise from projection data, several

modified filters (i.e., Shepp-Logan, cosine, Hamming and Hann) were developed for a range

of applications, to reduce the high frequency cut-offs to certain degree, achieving a good trade-

off between noise removal and feature preservation. However, it is difficult to construct a per-

fect filter for all scenarios without prior knowledge of the noise distribution. When the target

image contains a high degree of complexity, common modified filters do little to improve the

reconstruction quality. In contrast to previous pre-defined filters, a dynamic data-dependent

filter was proposed to minimize the projection errors [28]. The data-dependent filter improved

the reconstruction quality, but still suffered from expensive computational cost because it was

derived from the ART method and changed in each iteration. Furthermore, the reconstruction

artifacts from FBP are prominent when the number of projections is inadequate.

Backprojection then filtering

BPF is mathematically modelled by [23],

Fðu; vÞ ¼ Bðu; vÞ � jRj; ð6Þ

where F(u, v), B(u, v) are the 2D Fourier representations of the target image and backprojec-

tion reconstruction respectively, u and v denotes the frequency, (�) means point-wise multipli-

cation, and |R| is a 2D ramp filter in the frequency domain, defined as

jRj ¼

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

; ðu; vÞ 6¼ ð0; 0Þ;

0; ðu; vÞ ¼ ð0; 0Þ:
ð7Þ

BPF backprojects the projections first to produce a blurry reconstruction with a high density at

the center, and then deblurs it via a 2D ramp filter.

In comparison with FBP, BPF is less popular because of its inferior reconstruction perfor-

mance, although both of them have similar computational complexity. There are two root

causes. First, the 2D ramp filter |R| suffers from DC shift and aliasing artifacts. The 1D ramp

filter |ω| for FBP has similar issues, but they can be eliminated by executing the filtering in the

spatial domain [25]. Second, the filter for BPF is in the Cartesian coordinate system while the

projections sampled radially are in the polar coordinate system. This conflict introduces inter-

polation errors, and the post filtering in BPF further amplifies such errors. Although a few

strategies have been proposed to rectify these issues, the improved BPF still underperforms

compared to FBP [23, 24, 29].
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Backprojection Wiener deconvolution

The convolution theorem states that a point-wise multiplication in the frequency domain cor-

responds to a convolution in the spatial domain. Thus, Eq (6) can be expressed as a convolu-

tion,

f ¼ b� r; ð8Þ

where r is the spatial-domain ramp filter (see Fig 2a). Eq (8) can be used to solve f by convolut-

ing b and r in the spatial domain. However, for finite-length discrete sequences of b and r, Eq

(8) can obtain identical results to Eq (6) only when either b or r is periodic in line with the cir-

cular convolution theorem [30]. Eq (8) is more computationally expensive than Eq (6), so BPF

is generally calculated via Eq (6).

In this subsection, a new method of BPWD is introduced. The definition of (7) shows that

all the components in the 2D ramp filter |R| are nonzero except the center point which also

causes the DC-shift issue. If a strategy is employed such that |R| contains no zero entries, i.e.,

the center point is set to a tiny value of machine epsilon, Eq (6) can be rewritten as

Bðu; vÞ ¼ Fðu; vÞ �
1

jRj
: ð9Þ

Again, by following the convolution theorem, (9) can be converted into

b ¼ f � h; ð10Þ

where h is the spatial-domain representation of 1

jRj. If noise is considered, Eq (10) can be gener-

alized as

b ¼ f � hþ n; ð11Þ

where n denotes the unknown additive noise.

Eq (11) is a typical mathematical model for many imaging systems including CT, in which

h is commonly known as the point spread function (PSF). An example is shown in Fig 2b.

Numerous algorithms have been developed to recover f from Eq (11). Examples include Wie-

ner deconvolution, the Lucy-Richardson algorithm and regularization. Wiener deconvolution

applies a Wiener filter inherent in the deconvolution to the observed noisy samples, enabling

simultaneous reconstruction and denoising. It is often conducted in the frequency domain to

avoid the complex convolution operation. The Wiener filter is a pseudo-inverse filter of h in

Fig 2. Ramp filter. (A) in the spatial space; (B) its corresponding PSF.

https://doi.org/10.1371/journal.pone.0207907.g002
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the frequency domain, expressed as

G ¼
1

H
H�H

H�H þ Z

� �

; ð12Þ

whereH is the Fourier representation of h andH� denotes its complex conjugate, G is the fre-

quency-domain representation of the Wiener filter, and Z is the noise-to-signal ratio in power

spectrum domain. In the following context σ represents the corresponding spatial-domain

value of Z. Then, the Fourier representation of the estimation of f can be calculated as

F̂ ¼ B � G: ð13Þ

When there is no noise, the Wiener filter is just the inverse ofH which is the ramp filter. In

other words, in the absence of noise BPWD is equivalent to BPF.

In real applications noise is inevitable, so Wiener deconvolution with an appropriate esti-

mate of σ can minimize the noise effect and yield improved reconstruction quality. Although

different CT scanners suffer from varying degrees of noise, the noise-to-signal ratio can be

evaluated from previous experience. Users of clinical CT scanners usually have limited control

over the reconstruction process, but Radiologists might adjust the noise ratio manually to

obtain a subjectively optimum reconstruction for different clinical applications, if the recon-

struction process was simple and fast. The same is true in a research environment for scientists

using synchrotron beamlines, where there is a higher level of control over the choice of recon-

struction parameters. In addition, Wiener deconvolution is a linear method to obtain a least

squares solution, and no iterative process is needed. By contrast, the Lucy-Richardson and reg-

ularization methods have to involve an iterative process to converge to the optimal solution

and require more reconstruction time. For this reason Wiener deconvolution performs the

fastest and was adopted in the proposed framework.

Weighted ramp filter

In FBP, filtering is an important step that improves the image quality. Different filters have dif-

ferent performance in terms of spatial resolution and noise removal. A sharp filter preserves

spatial resolution but leaves noise, whereas a smooth filter yields polished images but loses fine

edge details. The selection of the reconstruction kernel is therefore based on the specific clini-

cal or research application. The ramp filter, deduced from mathematical analysis, is a typical

sharp filter and able to maintain more high-frequency features. However, it has weak noise

reduction performance, and even magnifies extraneous noise from projections. Variations of

the ramp filter include Shepp-Logan, cosine, Hamming and Hann filters. Compared to the

ramp filter, these derived filters lower the high-frequency cut-offs by different degrees for fil-

tering out noise, but at the same time they introduce undesirable effects. The reconstructions

of the ramp filter preserves sharp edges better, but presents more grainy noise than the other

filters. The Hann filter has the lowest cut-off frequency, resulting in the lowest noise in the

reconstruction, at the expense of texture blurring. The Shepp-Logan filter is a good compro-

mise, and was therefore chosen for FBP in the following discussions. In BPWD, denoising

relies on Wiener filtering, so the ramp filter was selected to derive the point spread function.

The projection slice theorem lays a foundation for analytical methods. It declares that when

the projections are examined in the frequency domain, the corresponding Fourier samples

locate only at the radial acquisition tracks, and the samples lying on other angles are vacant.

This means that the samples reside in a polar coordinate system while the reconstructed image

is represented in a Cartesian coordinate system. The conversion between different coordinate

systems also causes misalignment. Both the vacancy and misalignment issues are usually solved

Backprojection Wiener deconvolution for CT reconstruction

PLOS ONE | https://doi.org/10.1371/journal.pone.0207907 December 18, 2018 7 / 22

https://doi.org/10.1371/journal.pone.0207907


at backprojection using a nearest-neighbor interpolation policy. However, interpolation errors

are introduced and an insufficient number of projections worsens this type of error. In FBP,

the filter is applied to each acquired projection directly, preventing noise from spreading to

the interpolated samples. In BPF and BPWD, backprojection is executed before the filtration,

and the interpolated samples accumulate both interpolation errors and acquisition noise. A

common 2D ramp filter does not differentiate between the real acquired samples and the inter-

polated ones, resulting in a degraded reconstruction.

Intuitively, since the sampled projections contain less interpolation errors, they will con-

tribute better accuracy in the reconstruction and should be given a higher weighting. Moti-

vated by this idea, a weighted ramp filter was proposed in [31]. The weight matrix in their

weighted ramp filter follows a ρ-norm shape (ρ = 0.6) to emphasize the contribution from the

low-frequency samples because they are sampled relatively densely and introduce less interpo-

lation errors. Their weighted ramp filter performs well for sparse-view CT reconstruction, but

significantly underperforms when a sufficient number of projections are used.

In this section, a new weight matrix is proposed by following the projection trajectory. As a

result, the proposed method can treat the real samples and the interpolated ones differently

and increase the contribution of the former ones in the reconstruction. The weights are deter-

mined as below. It is assumed that there are N projections. The DC component in the fre-

quency domain is sampled N times, so a weight of N is assigned to the central point. Similarly,

if a frequency point is sampled only by one projection, its corresponding weight is 1; and if a

frequency point is obtained through interpolation, its corresponding weight is set to 0. Thus, a

weight matrix is constructed, denoted byM.

The proposed weighted ramp filterW is then expressed as

W ¼ ðaM þ 1Þ � jRj; ð14Þ

whereM is a normalized weight matrix for real acquired projections and α controls their

weights relative to interpolated samples which are supposed to have a base weight of 1. It is

noted that W is identical to a common ramp filter when α = 0. An example is shown in Fig 3.

Experiment setup

Synchrotron propagation-based PCXI has been utilised for High-resolution visualization of

airspace-containing organs in intact small animals by Parsons et al. [2], and in their research

two potential requirements were raised: reducing the radiation dose for specialized diagnostic

imaging studies at very high resolution in larger animals and potentially in humans, and flexi-

bility of reconstruction methods allowing specified regions of interest (ROI) to be rendered

with emphasis on different components of the tissue. The proposed method aims to allow the

user to adjust the reconstruction parameters depending on their requirements for smoothness

or sharpness of the textures in the ROI. Simulations were conducted to observe the perfor-

mance of different parameter choices using the two test images in Fig 4. Synchrotron X-ray

imaging data acquired at the Australian Synchrotron IMBL were then tested to provide a visual

comparison and demonstrate the real-world performance of the proposed approach.

The data was collected under animal ethics approvals from the Women’s and Children’s

Health Network (AE891-09-2013) and Australian Synchrotron (AS-2012-005) Animal Ethics

Committees. The specimen was an adult mouse and the lungs were the primary organ studied.

The animal preparation and imaging setup was as described in [32]. Briefly, mice were

humanely killed by CO2 asphyxiation, and to minimise motion blur during scanning they

were embedded in 2% agar while suspended in a 50 ml falcon tube with a 30 mm outside diam-

eter. Monochromatic 30 keV X-rays and the Ruby beam monitor (consisting of a GadOx

Backprojection Wiener deconvolution for CT reconstruction
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scintillator coupled to a pco.edge camera) were used with a sample-to-detector distance of

0.215 m. The field of view was set to 27.1 mm × 22.9 mm (2560 × 2160 pixels), and resulted in

an effective pixel size of 10.6 × 10.6 μm. An exposure length of 0.5 sec/projection was used,

and a total of 1800 projections were acquired over 180 degrees (0.1 degrees/step).

BPWD was implemented in Matlab (version R2016a 64-bit, MathWorks) and tested on a

laptop computer with an Intel Core-i7-6500U CPU and 16GB memory. A sparse-view test

case was conducted by selecting 180 projections with equal intervals. Because there was no

ground truth available, comparison was conducted based on visual appearance of the recon-

structions. The synchrotron images were larger than 2000 × 2000 pixels. The ART and SART

algorithms (i.e., open source implementations from https://github.com/phymhan/matlab-

tomo-2d) produced a 2899 × 4194304 (90.6GB) system matrix and failed to run on our test sys-

tem. Therefore, BPWD was only compared with analytical methods (FBP and BPF). The

Shepp-Logan filter exhibits a good balance between noise reduction and preserving features,

so it was adopted for FBP in simulation, yet in the real test applications reconstructions from

FBP with ramp, Shepp-Logan, and Hann filters are presented to demonstrate the performance

Fig 3. An example of constructing a weighted filter with 36 projections. (A) common ramp filter; (B) projection

trajectories; (C) weighted ramp filter. To emphasize the visual effect of weight, the elements not on the projection

trajectories are set to 0.

https://doi.org/10.1371/journal.pone.0207907.g003
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of high, middle and low cut-off frequency filtering. The common weighted 2D ramp filter was

used for BPF and BPWD. BPF-W denotes BPF with the weighted ramp filter, and BPWD-W

denotes BPWD with the weighted ramp filter. SNR is a popular measure to evaluate the quality

of medical images [33] and was therefore used as the criterion to judge algorithm performance.

The tunable parameters for the proposed weighted 2D ramp filter are α and σ, and their impact

on reconstruction quality was investigated, along with a comprehensive comparison of the

performance using both simulation and real CT data.

Results and discussion

Choice of α and σ
Fig 5 shows the performance trend with different α. Clearly, α affected the reconstruction qual-

ity in all test cases. For the NCAT phantom image with simple texture, the reconstruction

achieved the best quality when α = 1.2 regardless of the number of projections. In comparison

with a standard 2D ramp filter (α = 0), the proposed weighted 2D ramp filter obtained up to

3.94 dB gain in SNR for 60-projection reconstruction and 6.07 dB gain for 480-projection

reconstruction. For a real CT image with complex texture, the best reconstruction quality was

achieved at α = 0.8 in both 60-projection and 480-projection reconstructions, and the pro-

posed weighted filter contributed an improvement up to 1.47 dB and 2.13 dB gain, respec-

tively. The results reveal that (1) the choice of α is not susceptible to the number of projections;

(2) the proposed filter is more favourable to CT reconstruction with simple texture and suffi-

cient projections. In practice, it is difficult to obtain the optimal choice of α every time, so α
was universally chosen as 1 for the following tests.

The σ parameter estimates the noise level. In CT imaging, noise can come from scanning

systems, detectors as well as the reconstruction procedure (i.e., interpolation errors). In this

test, σ primarily results from the noise introduced by the use of an insufficient number of of

projections, which is important to sparse-view CT imaging applications. The experimental

results were assembled in Fig 6, and they showed that the choice of σ affects the reconstruction

quality. In the test case of a real CT image with 60 projections, choice of an appropriate σ
could improve the reconstruction quality with an SNR gain up to 8 dB in comparison to σ = 0

(equivalent to BPF). Larger σ was favourable when the number of projections was insufficient,

Fig 4. The two test images used in this paper. (A) NCAT phantom [34] with simple features; (B) real CT image with

complex features. Both images are 2048 × 2048 pixels and normalized to a display window [0, 1].

https://doi.org/10.1371/journal.pone.0207907.g004
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Fig 5. SNR performance with different α.

https://doi.org/10.1371/journal.pone.0207907.g005

Fig 6. SNR performance with different σ.

https://doi.org/10.1371/journal.pone.0207907.g006
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but could degrade the reconstructed image quality when the number of projections was ade-

quate. The phenomena reasonably reflect the fact that fewer projections cause more interpola-

tion errors, which subsequently introduces higher levels of noise. Overall, the performance of

σ was prone to both the image texture and the number of projections. It is difficult to seek a

fixed σ that can achieve the optimal performance for all scenarios, but the experimental results

revealed that an optimal σ would lie in the range of [1, 16]. A large σ reduces the noise but

smooths out the fine details simultaneously, so a fixed value of σ = 7 was used in the simulation

test while σ = 1, 7 and 15 tested in the real applications for varying purposes (i.e., examine

bones or soft tissues) so as to allow radiologists or scientists to tune σ themselves to obtain the

quality subject to their need.

Numerical simulation

Numerical simulations were tested to provide both visual and quantitative comparisons. It is

difficult to obtain noiseless projections in real CT applications, and the noise in common CT

imaging systems was found to follow a Gaussian distribution [35, 36]. So, a Gaussian noise

with zero mean and 0.01 variance was added to Fig 4b to approximate a real application. How-

ever, this prior knowledge was supposed to be unknown, so α and σ were set to the values sug-

gested previously. The SNR performances were recorded in Table 2 and Fig 7a. Visual results

were compared in Fig 8 and partial line profiles were compared in Fig 9.

The simulation results showed that the proposed approach outperformed BPF and FBP

consistently. In comparison with BPF, BPWD performed a SNR gain from 9.69 dB for 30-pro-

jection reconstruction to 7.2 dB for 1800-projection reconstruction. In comparison with the

popular FBP, BPWD also performed a SNR gain from 7.48 dB to 2.4 dB. Although the pro-

posed weighted 2D ramp filter contributed a limited improvement with up to 1.1 dB, the gains

were always positive. Interestingly, when the number of projections increased, the weighted fil-

ter could still improve the quality and help retrieve more high-frequency details. It was also

observed that the proposed weighted filter could help BPF improve its reconstruction perfor-

mance. Overall, BPWD with the proposed weighted filter (BPWD-W) always achieved the

best performance in terms of quality, and BPF performed the worst. In addition, BPWD-W

achieved a relatively high quality reconstruction of 17.5 dB with only 180 projections. After

that, only 1.8 dB gain was achieved for an additional 1620 projections. By contrast, FBP

achieved an SNR performance of 11.2 dB, and 1620 additional projections increased the SNR

to 16.5 dB. Visual comparison was made in Fig 8. FBP removed the Gaussian noise mostly due

Table 2. SNR (dB) performance of different methods.

Projections FBP BPF BPF-W BPWD BPWD-W

30 1.91 -0.27 0.72 9.48 9.91

60 5.53 2.78 3.82 14.19 14.53

120 9.12 5.77 6.74 16.59 17.19

180 11.09 7.29 8.22 17.08 17.83

240 12.33 8.23 9.15 17.25 18.07

300 13.24 8.88 9.80 17.27 18.15

360 13.91 9.37 10.29 17.36 18.25

420 14.37 9.71 10.63 17.33 18.22

480 14.81 9.99 10.91 17.36 18.23

960 16.11 11.01 11.95 17.35 18.28

1800 16.44 11.30 12.32 17.33 18.48

https://doi.org/10.1371/journal.pone.0207907.t002
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to the Shepp-Logan filter. BPF performed poorly and even introduced interpolation errors.

For example, in the reconstructions of Fig 8(c) and 8(d) a noisy circle was observed surround-

ing the target images. BPWD-W presented the best quality images. Its partial line profile

showed a good fit with the ground truth. Although the SNR difference between BPWD and

Fig 7. Performance comparison of different methods based on simulations. (A) SNR performance; (B)

reconstruction time.

https://doi.org/10.1371/journal.pone.0207907.g007
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Fig 8. Visual comparison using 180 projections. (A) original image with Gaussian noise; (B) FBP; (C) BPF; (D)

BPF-W; (E) BPWD; (F) BPWD-W.

https://doi.org/10.1371/journal.pone.0207907.g008
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Fig 9. Partial line (indicated by red line in Fig 8) profiles (normalised to the same maximum value) using 180

projections. (A) original image with Gaussian noise; (B) FBP; (C) BPF; (D) BPF-W; (E) BPWD; (F) BPWD-W.

https://doi.org/10.1371/journal.pone.0207907.g009
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BPWD-W was minor, it was observed that the proposed weighted filter could preserve more

image details. For example, a spike feature at Position 180 remained only in the BPWD-W

reconstruction. It is also noted that all methods attenuated the mean density of the entire

image, with FBP and BPF decreasing 8.3% and BPWD-W 12.5%. The loss in density could

result in removal of fine details.

Since the computational cost of backprojection dominates in all the three methods of FBP,

BPF and BPWD, their reconstruction times should be similar. To obtain fair comparisons, all

the three methods were implemented using standard Matlab functions (i.e., radon, iradon and

deconvwnr) and their reconstruction times were recorded in Fig 7b. The proposed weighted

2D ramp filter was pre-defined and pre-computed, so its construction time was not taken into

account. The results were based on average values produced by 10 trials each. The experimen-

tal results verified that all the methods had nearly the same reconstruction speeds. BPWD took

slightly more reconstruction time because the Wiener deconvolution was more complex than

simple filtering. Unsurprisingly, the number of projections affected the reconstruction speed,

from 1.4 seconds for a 30-projection reconstruction, to 73 seconds for a 1800-projection

reconstruction. On the other hand, it is noted that all three analytical methods could deal with

2048 × 2048 pixel CT images with 1800 projections on an ordinary laptop, while iterative

methods failed. The reconstruction time could be reduced if the algorithms were implemented

with a different language such as C/C++ or if a GPU is utilized.

Real CT scan data

Since FBP is unable to mitigate the noise a denoising process could be considered after recon-

struction. Therefore, additional tests were used to investigate whether the 2D adaptive Wiener

noise-removal filtering could further improve FBP reconstructions. However, such a strategy

is in principle different from the proposed BPWD. Common Wiener filtering for denoising

uses a pixel-wise adaptive Wiener method based on statistics estimated from a local neighbor-

hood of each pixel. In other words, the Wiener filter varies over pixels within the image and

needs to be calculated dynamically. So, this process will naturally be time-consuming if the

window size is large. In addition to the need of estimating the noise level, the window size,

which is vital to denoising performance, has to be guessed. An improper choice of window size

will result in degradation of the image quality. By contrast, the Wiener filter in BPWD is

derived from a ramp filter which is independent of specific images. Once an estimation of

noise level is chosen, the Wiener filter is determined and then applied to the entire image

through a deconvolution. So, the proposed BPWD method embeds Wiener filtering into the

reconstruction process and is more computationally efficient. However, the reconstruction

quality of BPWD-W, FBP and FBP with additional Wiener filtering were investigated and

compared in the following sparse-view test. The noise level was unknown, so σ = 1, 7 and 15

were investigated for BPWD-W while the adaptive noise estimation policy was used for Wie-

ner filtering of FBP. In addition, the window size for Wiener filtering of FBP used two guesses:

5 and 10.

Fig 10 recorded the reconstruction results from FBP, FBP-then-Wiener-filtering and

BPWD-W, all performed with 180 projections. It was observed that BPWD-W with σ = 7

yielded reconstructions with less noise and better contrast than the other methods. In Fig 10G

the airway and spine (both indicated by red arrows) were clearly contrasted from their back-

ground, while other reconstructions contained either severe grainy noise or blurry bone

fine structure. Owing to its lowest cut-off frequency, the Hann filter with FBP achieved better

contrast than the ramp and Shepp-Logan filters, but yielded a quality just comparable to

BPWD-W with σ = 1. A post Wiener filtering could reduce the noise, see Fig 10(D) and 10(E)
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Fig 10. Sparse-view reconstructions with 180 projections from different methods. FBP with (A) ramp, (B) Shepp-

Logan, or (C) Hann filter; FBP with Hann filter then Wiener noise-removal filtering with a window size of (D) 5 or

(E) 10; BPWD-W with (F) σ = 1, (G) σ = 7, or (H) σ = 15.

https://doi.org/10.1371/journal.pone.0207907.g010
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Fig 11. Comparison of reconstructions between FBP and BPWD-W with 1800 projections. FBP with (A) ramp, (B)

Shepp-Logan, or (C) Hann filter; BPWD-W with (D) σ = 1, (E) σ = 7, or (F) σ = 15.

https://doi.org/10.1371/journal.pone.0207907.g011
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over Fig 10C, but introduced some noise-like sparkle spots. Moreover, an improper window

size can blur the reconstruction (i.e., Fig 10E). Thus, FBP-then-Wiener-filtering might have

the limitations: (1) the noise is estimated based on a local window, which might magnify a

local spike noise as a valid signal; and (2) a proper window size is difficult to estimate.

Scientists and researchers may expect to investigate more micro-scale details if there are

sufficient projections provided, thus reconstructions with complete projections were examined

and a small region is shown in Fig 11. With its denoising behavior, BPWD-W can offer more

flexibility by choosing different σ. A smaller σ is helpful to produce a strong contrast for bone

structure (Fig 11D), while a larger σ can provide a clearer image for soft issues (Fig 11F). By

contrast, when the number of projections is large, reconstructions from FBP with different fil-

ters all have good performance in rendering the bone structures, but suffer from noise effect

for soft tissues.

The above results showed that the values of σ affected the reconstruction quality. Once the

time-consuming backprojection completes, the Wiener deconvolution can be accomplished

within a few milliseconds. With the fast speed of Wiener deconvolution it is possible to make σ
values dynamically adjustable by users. Furthermore, a post edge enhancement technique can

be applied to combine the reconstructions from a small and big σ as

P ¼ ð1 � cEÞ � I þ cE � O ð15Þ

where O is the reconstruction with a small σ value, I the reconstruction with a large σ value, E
the Canny edge information, and c a weight factor which is chosen as 0.1 empirically. Fig 12

shows an edge enhanced reconstruction, which presents a smooth texture but with strong edge

information.

Conclusion

In this paper, a new analytical method using backprojection and Wiener deconvolution was

presented. The Wiener deconvolution embedded a denoising process within the reconstruc-

tion such that the proposed approach exhibited good performance in noise reduction. Inspired

by the radial geometry of CT systems, a weighted ramp filter was proposed to further improve

Fig 12. Canny edge enhancement using (Fig 11D and 11F). Note that the white fringes around the air containing

structures are characteristic of the propagation-based synchrotron PCXI setup.

https://doi.org/10.1371/journal.pone.0207907.g012
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the reconstruction quality. Both the simulation and real data test illustrated that the proposed

approach achieved substantially better performance in quality, and comparable performance

in terms of reconstruction speed, than that of the classical FBP. However, whether or not the

proposed BPWD can achieve a comparable reconstruction quality to the state-of-the-art itera-

tive algorithms is important to explore in future studies.
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