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Analytic Magnetic Fields and Semi-analytic Forces and Torques due
to General Polyhedral Permanent Magnets

James LG O’Connell, William SP Robertson, Benjamin S Cazzolato
School of Mechanical Engineering, The University of Adelaide

This paper outlines an algorithm which analytically calculates
the magnetic field produced by a general polyhedral permanent
magnet with any number of faces and arbitrary face orienta-
tions, then uses the algorithm to semi-analytically calculate the
force and torque on a second general polyhedral magnet. The
algorithm is validated against both literature and finite element
simulations using cuboids and dodecahedra. It is then used to
model a basic two-magnet repulsive system, where it is shown
that frustum magnets can produce a larger force per unit volume
than cuboidal magnets. The shape of the frustums is optimised to
maximise the force between them at a given separation distance,
showing a considerable increase in force when compared to
cuboidal magnets with the same volume. This paper shows that
there is scope to improve performance of magnetic systems by
using novel magnet shapes, and presents an algorithm which can
be used for this optimisation process.

Index Terms—Magnet, Polyhedral magnet, Magnetic field,
Magnetic force, Magnetic torque, Shape optimisation.

I. INTRODUCTION

Permanent magnets have many applications in magnetic
resonance imaging, gearing, actuators, and motors [1]. Fur-
thermore, they can be an essential component in wave energy
harvesting [2], vibration isolation [3], and many other appli-
cations. Due to their extensive use in a number of industries,
it is important to understand the interactions between them,
improving the design and optimisation process of electromag-
netic systems.

Throughout recent decades, researchers have attempted to
understand interactions between permanent magnets. Akoun
& Yonnet [4] started this trend by calculating the force
between two parallel cuboidal permanent magnets with par-
allel magnetisation by finding the interaction energy between
the magnets. Janssen et al. [5] used the same energy-based
approach, but instead calculated the torque on one of the
magnets. Allag & Yonnet [6] extended the force and torque
expressions to non-parallel magnetisations. Engel-Herbert &
Hesjedal [7] and Ravaud & Lemarquand [8] have calculated
the magnetic field of cuboidal magnets rather than forces
and torques. However, these studies are limited to cuboidal
magnets and cannot be used for any other shapes.

A number of studies have examined ring and cylindrical
magnets rather than cuboids. Furlani et al. [9] was able to
semi-analytically calculate the field due to radially magnetised
ring magnet sectors. Several papers by Ravaud et al. [10–12]

Manuscript received December 1, 2012; revised August 26, 2015. Corre-
sponding author: J. O’Connell (james.oconnell@adelaide.edu.au).

have found expressions for radially and axially magnetised
ring magnets and sectors. Again, however, these studies are
limited to ring magnets and cannot be used for other geome-
tries.

To mitigate this geometrical limitation, some researchers
have explored polyhedral permanent magnets, generalising the
solution to any three-dimensional shape with flat facets. Some
authors such as Soltner & Blümler [13] and Meessen et al. [14]
have approximated the magnetic field of a polyhedral magnet
using assumptions such as the dipole model or discretisation of
shapes into cuboids, but these are not always accurate. Other
authors, however, have been more successful in solving for the
exact magnetic field. Janssen et al. [15] and Rubeck et al. [16]
were able to find analytic expressions for the magnetic field
of a polyhedral magnet by decomposing it into a collection
of simple two-dimensional planar surfaces. Meessen et al.
[14] and Lee & Gweon [17] studied trapezoidal magnets
in a Halbach array using discretised magnets and magnets
of infinite thickness respectively and found improvement in
the maximum magnetic field strength over more traditional
cuboidal Halbach arrays. However, there has been little work
on the forces and torques due to polyhedral permanent mag-
nets.

Several studies by Beleggia & De Graef [18, 19], Beleggia
et al. [20], and De Graef & Beleggia [21] examine magnetic
nanoparticles with arbitrary shape. They found expressions for
the demagnetisation tensor field, interaction energy, force, and
torque using a Fourier space approach. However, for most
shapes, these must be calculated numerically, limiting the
accuracy and speed of the solution.

This paper outlines a semi-analytic method for calculating
the magnetic fields, forces, and torques for polyhedral per-
manent magnets. First, an algorithm to analytically calculate
the magnetic field is presented. This method is similar to the
magnetic field calculation method given by Rubeck et al. [16]
but requires evaluation of fewer terms by using general scalene
triangles rather than right-angled triangles. Then, numeric in-
tegration is performed to find the force and torque on a second
polyhedral magnet due to the field from the first. This work is
validated using past literature and finite element simulations on
the magnetic configuration presented by Akoun & Yonnet [4].
To further validate the algorithm, finite element simulations are
performed on two perpendicularly magnetised dodecahedral
magnets, which are compared to the semi-analytic solutions
from this method. Once validated, a configuration involving
two pyramidal frustum magnets is presented, where it is shown
that the frustums can produce a larger repulsive force per unit



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

volume than cuboidal magnets. Finally, this algorithm is used
to optimise the geometry of the frustums to maximise the force
between them.

II. METHODOLOGY

This work uses the charge method outlined by Furlani [1],
where a fictitious magnetic charge is distributed over the
surface of each magnet, and assumes a relative permeability
µr of unity with constant uniform magnetisation M. Recent
studies have detailed methods for including the effect of non-
unity permeability in calculations of the magnetic field from
permanent magnets [22]. While out of the scope for the current
work, such methods can also be applied to the results presented
here.

In this method, polyhedral permanent magnets are decom-
posed into the polygonal facets that make up the surface of
the polyhedron. Each polygonal facet has a fictitious magnetic
charge distribution, which creates a magnetic field and thus
induces forces and torques on other magnets.

In this work, two magnets are defined, magnet A and magnet
B. The force and torque on magnet B is calculated due to
the field produced by magnet A. An algorithm to analytically
calculate the field due to magnet A is presented. Then, a mesh
is applied to the surface of magnet B and the field due to
magnet A is calculated at each mesh element. Finally, numeric
integration is performed to find the force and torque on magnet
B. These steps are outlined in more detail below.

A. Calculation of the field due to magnet A

The field due to magnet A is found using a similar method
to Rubeck et al. [16], but the equations are more efficient.
Unlike the field equations presented by Janssen et al. [15],
all expressions and sub-expressions here are purely real. The
magnetic field is found by first taking a polyhedral permanent
magnet, such as that shown in Figure 1a, and decomposing it
into its polygonal facets. Each facet is rotated about the x- and
y-axes, making it parallel to the XY -plane, using the rotation
matrix Rxy , given by

Rxy =


nz√

n2
x+n2

z

0 − nx√
n2
x+n2

z

− nxny√
n2
x+n2

z

√
n2
x + n2

z
nynz√
n2
x+n2

z

nx ny nz

 , (1)

where n̂ = [nx, ny, nz] is the outward-facing unit normal
vector of each facet. Once parallel to the XY -plane, a line
is drawn from the z-axis to each polygon vertex, as shown in
Figure 1b, forming n triangles, where n is the number of sides
of the polygon. It is important that the last triangle is defined
from vertex n to vertex 1. This is because this algorithm
calculates the field due to each triangle, which may include
area not covered by the polygon. For example, the triangle
between the z-axis, vertex 1, and vertex 5 of the polygon
shown in Figure 1b is not part of the polygon, but the field of
it is calculated from the first four triangles. The fifth triangle
is defined from vertex 5 to vertex 1, effectively creating a
triangle which subtracts the field due to this area outside the
polygon.

After n triangles have been defined, each one is rotated so
that the side joining the two vertices is parallel to the y-axis,
shown in Figure 1c. This is done using the rotation matrix

Rz =

−
y2−y1√

(y2−y1)2+(x2−x1)2
x2−x1√

(y2−y1)2+(x2−x1)2
0

− x2−x1√
(y2−y1)2+(x2−x1)2

− y2−y1√
(y2−y1)2+(x2−x1)2

0

0 0 1

 ,

(2)
where x1, x2, y1, and y2 are the x and y coordinates of the
two vertices not intersecting the z-axis before the triangle is
rotated.

After rotation, the charge model outlined by Furlani [1] can
be used to solve for the magnetic field due to each triangle
using the following expression.

B = −µ0

4π

∫
V

(∇ ·M)
x− x′

|x− x′|3
dv′ +

µ0

4π

∮
S

(M · n̂) x− x′

|x− x′|3
ds′, (3)

where B is the magnetic field, µ0 is the magnetic permeability
of free space, M is the magnetisation vector, x is the point of
interest, x′ is a point on or inside the magnet, dv′ is a volume
element of the magnet, and ds′ is a surface element of the
magnet.

Assuming constant uniform magnetisation M, the first in-
tegral in Equation (3) disappears as ∇·M = 0. The magnetic
field due to each triangle can then be found by solving the
second integral, giving

Bx∆ =
µ0M · n̂

4π

(
1

2
log

(laz2 + y2) (laz1 − y1)

(laz2 − y2) (laz1 + y1)
+

y1

2la1
log

laz1 + la1

laz1 − la1
− y2

2la2
log

laz2 + la2

laz2 − la2

)
(4a)

By∆ =
µ0M · n̂

4π

(
a

2la2
log

laz2 + la2

laz2 − la2
−

a

2la1
log

laz1 + la1

laz1 − la1

)
(4b)

Bz∆ = −µ0M · n̂
4π

(
sgn (z′) arctan

ay2 − ay1

y1y2 + a2
+

arctan
az′y1laz2 − az′y2laz1

z′2y1y2 + a2laz1laz2

)
, (4c)

with

la1 =
√
a2 + y2

1

la2 =
√
a2 + y2

2

laz1 =
√
a2 + y2

1 + z′2

laz2 =
√
a2 + y2

2 + z′2,

where log() is the natural logarithm, sgn() is the sign func-
tion, arctan() is the arctangent, and (0, 0, z′), (a, y1, z

′), and
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Fig. 1: A simple polyhedral permanent magnet, created by chamfering one edge of a cuboid (a). The magnet is magnetised
vertically upward, as indicated by the arrow. Each facet is rotated such that it is parallel to the XY -plane and a line is drawn
from the z-axis to each vertex (b), creating n triangles from the n-sided facet. Each triangle is rotated such that the edge
joining the two vertices is parallel to the y-axis (c). The field of each rotated triangle is calculated then rotated back to the
initial state. Each of these fields is added to give the total field of the facet. This process is then repeated for all other facets
of the polyhedron to give the total field of the polyhedron.

(a, y2, z
′) are the coordinates of the triangle vertices after

rotation. This field can then be rotated back to the original
position using the rotation matrix R−1

z . The field due to each
triangle is summed, giving the field of the polygonal facet.
Then, the field due to the polygonal facet is rotated back to
the original position using the rotation matrix R−1

xy . The total
field due to magnet A is then calculated by summing the field
contribution of each polygonal facet. This field calculation
gives the magnetic field at the origin, but the magnetic field
at any point can be calculated using a coordinate translation
such that the point of interest lies on the origin. The magnetic
field calculation can be represented using Algorithm 1.

Algorithm 1 was implemented on the three-dimensional
polyhedral magnet shown in Figure 1. Flux lines were drawn
on the plane of symmetry to give a visual representation of
the magnetic field, and are shown in Figure 2.

B. Force and torque on magnet B

The force and torque on magnet B is found using numeric
integration of the magnetic field due to magnet A over the
surface of magnet B, as described by Furlani [1]. This is done
by numerically solving the integrals

FB =

∮
SB

(MB · n̂B)BA dsB, (5a)

TB =

∮
SB

(MB · n̂B) (rB ×BA) dsB, (5b)

where SB is the surface of magnet B, MB is the magnetisation
vector of magnet B, n̂B is the outward-facing normal vector
of the surface of magnet B, BA is the field due to magnet A,

Algorithm 1 Calculate the magnetic field of a polyhedral
permanent magnet

1: Set B = [0, 0, 0]T.
2: for each n-sided facet of the polyhedron do
3: Define the vertices in an anticlockwise order when

looking at the polyhedron from the outside.
4: Store these in a 3 × n matrix P such that each

column represents a vertex.
5: Copy the first column of P and add it as the

(n+ 1)th column.
6: Evaluate the matrix Rxy and create a new matrix

Pxy given by Pxy = RxyP .
7: for j = 1, . . . , n do
8: Using the jth and (j + 1)th columns of Pxy ,

calculate Rz . Create Pz given by Pz = RzPxy .
9: Evaluate B∆ using the points from Pz and Equa-

tion (4).
10: Add the value of

(
R−1

xyR
−1
z B∆

)
to B.

11: end for
12: end for
13: The field at the origin is now equal to B.

and rB is the vector from the point of rotation of magnet B
to the surface of magnet B.

To solve these expressions, a mesh is defined on the surface
of magnet B. This mesh must be defined such that the field
due to magnet A is relatively constant over each element. The
field due to magnet A is evaluated at the centre of each mesh
element using Algorithm 1. The force and torque on magnet
B can be found by numerically integrating the field at each
element with area Ai, as shown in Equation (6), where bi is
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Fig. 2: The magnetic flux lines of the polyhedral magnet shown
in Figure 1. The flux lines travel from the north pole (top) of
the magnet to the south pole (bottom) of the magnet. The flux
lines behave similarly to that of a cuboidal magnet in most
regions due to the magnet being almost cuboidal. However,
in the top right region, the flux lines differ from those of a
cuboidal magnet due to the chamfer.

the field due to magnet A at the centre of each mesh element.

FB =
∑
i

(MB · n̂B)biAi, (6a)

TB =
∑
i

(MB · n̂B) (ri × bi)Ai. (6b)

This process can be represented programmatically using
Algorithm 2.

Algorithm 2 Calculate the force and torque on a polyhedral
permanent magnet

1: Apply a mesh to the surface of magnet B.
2: for each mesh element i on the surface of magnet B do
3: Translate the entire system so the centre of the

element lies on the origin.
4: Calculate the magnetic field strength from magnet

A using Algorithm 1.
5: Calculate the cross product of the torque moment

arm and the magnetic field strength r× b.
6: Calculate the quantity M · n̂ for the element.
7: Set fi = (M · n̂)bAi and τi = (M · n̂) (r× b)Ai

where Ai is the area of the element.
8: end for
9: Set F =

∑
i fi and T =

∑
i τi.

10: The force and torque on magnet B are given by F and T
respectively.

Thus the exact magnetic field due to a polyhedral permanent
magnet has been analytically calculated, and the force and
torque on a second polyhedral magnet has been numerically
calculated using the analytic field solution.

III. VALIDATION

The field, force, and torque solutions outlined in Section
II have been verified using both previous literature and finite
element simulations. Firstly, the configuration used by Akoun
& Yonnet [4] was considered (Figure 3). Here, the force on
magnet B is measured as it moves a distance d in the x-
direction while magnet A remains fixed. Both magnets have
parallel magnetisation vectors in the z-direction with a value
of 0.38 Tesla. The resulting force and torque depends not only
on magnetisation, but also on the geometry of the magnets.

Algorithms 1 and 2 were implemented in Matlab R2017b
(MathWorks, Inc., Natick, MA, USA), with a basic meshing
process using triangular elements. The mesh was created by
repeatedly bisecting each triangle edge and joining the three
bisection points, converting the triangle into four smaller
triangles, until all triangles in the mesh had area less than
a threshold value. Algorithms 1 and 2 were applied to Ak-
oun & Yonnet’s geometry [4] to calculate force and torque
values for varying displacement. The finite element package
Maxwell3D in ANSYS Electronics Desktop 2018.0 (ANSYS,
Inc., Berkeley, CA, USA) was used with adaptive meshing to
obtain finite element solutions for the force and torque in this
configuration. Additionally, the force solutions presented by
Akoun & Yonnet [4] and torque solutions presented by Janssen
et al. [5] were calculated using Matlab code from Robertson
[23, 24], with the torque being evaluated about the centre of
magnet B. These results were compared to those obtained with
Algorithms 1 and 2 as well as finite element simulations.

The three sets of results are shown in Figure 4. The forces
and torques obtained from Algorithms 1 and 2 align with both
the values from the finite element simulation and from the
analytic solution, validating the algorithms for simple cuboidal
magnets with parallel magnetisation. However, this test does
not consider non-cuboidal magnets or non-parallel magnetisa-
tion and these must be considered for further validation.

Algorithms 1 and 2 were significantly faster than the finite
element simulations when implemented in Matlab R2017b
(MathWorks, Inc., Natick, MA, USA) on a workstation PC
with an Intel Xeon E3-1240 v5 (3.50GHz) with 4 cores.
Algorithms 1 and 2 completed each force calculation in
approximately 0.65 seconds using 3072 triangular elements
on the surface of magnet B, while the finite element simu-
lations took a minimum of 30-40 seconds using an adaptive
setup with a percent error of 1% and approximately 17000
tetrahedral elements. Additionally, Algorithms 1 and 2 were
considerably more accurate, achieving a maximum force error
of 4.3 milliNewtons and a maximum torque error of 0.03
milliNewton-metres when compared to the analytic solutions,
while the finite element solutions gave a maximum force error
of 37 milliNewtons and a maximum torque error of 0.14
milliNewton-metres.

To validate Algorithms 1 and 2 for a more general case,
two dodecahedral magnets were considered (Figure 5). Both
magnets are regular dodecahedra with edge lengths of 20mm
and volumes of 61305mm3. Magnet B has magnetisation in
the x-direction and may move vertically, while magnet A has
magnetisation in the z-direction and is fixed. Both magnets
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Fig. 3: The geometry used in Akoun and Yonnet’s work in 1984 [4] with both magnets having parallel magnetisation in the
z-direction. Magnet B moves a distance d along the top of magnet A.
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Fig. 4: Forces and torques on magnet B shown in Figure 3 as it moves a distance d along the top of the magnet A. The
dashed lines represent the results calculated from Algorithms 1 and 2, with circles representing analytic solutions [4, 5] and
dots representing solutions obtained from a finite element simulation (Maxwell3D, ANSYS Electronics Desktop 2018.0). The
values obtained with Algorithms 1 and 2 are in excellent agreement with the other two methods, especially the analytic
solutions, indicating this work produces correct results for cuboidal magnets.
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have a unit magnetisation strength M, i.e. 1 Tesla. The x-
force and y-torque on magnet B are calculated, with the torque
calculated about its centre. The y- and z-forces, as well as
the x- and z-torques are almost zero and thus neglected. The
magnetic configuration was input into Algorithms 1 and 2 as
well as a three-dimensional finite element simulation, with the
results shown in Figure 6. Due to symmetry, the forces in the
y and z directions, as well as the torques about the x and
z axes are extremely small and therefore not plotted in the
figure.

The results obtained from Algorithms 1 and 2 align well
with the finite element simulations. This indicates that the
algorithms produce accurate force and torque results for non-
cuboidal polyhedral magnets with non-parallel magnetisation
vectors, further validating Algorithms 1 and 2.

No analytic solutions for dodecahedral permanent magnets
exist, so the error of Algorithms 1, 2, and the finite element
simulations cannot be quantified. However, the solution time
can still be analysed. Algorithms 1 and 2 were again consider-
ably faster than the finite element simulations, with solutions
being completed in approximately 4.96 seconds using 4608
triangular elements on the surface of magnet B, while each
finite element simulation took approximately 40-50 seconds
using an adaptive setup with a percent error of 1% and
approximately 18000 tetrahedral elements.

IV. GEOMETRIC OPTIMISATION

Algorithms 1 and 2 can be used for fast optimisation of
magnetic systems. Presented here is one such case, wherein
two pyramidal frustums are arranged with magnet B above
magnet A, as shown in Figure 7. Both magnets have a unit
magnetisation strength of 1 Tesla. The magnetisation vectors
are oppositely directed with the magnets in repulsion. The wall
angle θ is varied to maximise the force at a given distance
while the magnet height and volume are kept constant at 5cm
and 500cm3 respectively. A wall angle of θ = 90◦ corresponds
to a cuboidal magnet with a height of 5cm and both width and
depth of 10cm.

The frustums were separated by a given distance d and
the wall angle θ varied. For all values of θ, the repulsive
force between the magnets was calculated and divided by the
maximum force for each separation to give the normalised
force plot shown in Figure 8. The peaks of this plot correspond
to the maximum force at a given separation distance, and hence
show the optimal wall angle for that distance. The optimal
angle was calculated for several separation distances using
this method with the results shown in Table I. It can be seen
that the optimal wall angle increases with separation distance,
indicating that as the magnets move further apart, the optimal
shape tends toward a pyramid. On the contrary, as the magnets
become closer, the optimal shape tends toward a cuboid.

The above test lead to an investigation on optimal angle for
a varying separation distance. For a given separation distance,
a golden ratio search was implemented to find the optimal
angle which maximises the repulsive force. This was repeated
for a large range of separation distances, and the plot shown
in Figure 9 (left) was obtained. Again, it can be seen that the

TABLE I: The optimal wall angle of the pyramidal frustums
at a given distance. This angle maximises the repulsive force
between the magnets while maintaining a constant magnet
volume and height.

Separation distance (mm) Optimal angle (degrees)
25 110
50 117
75 123

100 129
125 134
150 138

optimal angle increases with the separation distance. Interest-
ingly, when the separation distance is zero, the optimal angle
is not 90◦. Namely, the optimal geometry is not cuboidal when
the magnets are touching. Furthermore, the optimal angle is
always greater than 90◦, implying that cuboidal magnets are
not the optimal geometry for this particular configuration.

In addition to calculating the optimal angle at a given
separation distance, the percentage force increase was calcu-
lated. For each separation distance, the maximum force was
found, as well as the force between two cuboidal magnets of
equivalent height and volume. The percentage force increase
is defined as

PFI =
Ffrustum − Fcuboid

Fcuboid
× 100%. (7)

This percentage force increase was plotted against sepa-
ration distance (Figure 9, right). This value increases with
separation distance, corresponding to a larger wall angle.
Additionally, the force increase is positive for all separation
distances, meaning with a constant magnetic volume, polyhe-
dral magnets can achieve larger forces than cuboidal magnets.
Alternatively, the same forces can be achieved using a smaller
system mass, which could lead to significant cost savings.

V. CONCLUSION

Permanent magnets are widely used in many industries and
as such it is useful to characterise the interactions between
them. This paper has outlined a fast semi-analytic method to
calculate magnetic fields, forces, and torques of polyhedral
permanent magnets. The development of two algorithms were
discussed and implemented in Matlab. Several validation cases
were considered, including a basic cuboid case and a more
complicated system with dodecahedral magnets. These results
were then validated against both literature (where possible)
and finite element simulations. Then, a system with two
pyramidal frustums was implemented in which the wall angle
and separation distance could be varied while maintaining
constant magnetic volume and height. The algorithms pre-
sented in this paper were used for rapid optimisation of
this system, maximising the force between the magnets at
a given distance. This resulted in the optimal angle being
calculated over a large number of separations. Additionally,
a considerable improvement in force over cuboidal magnets
was found, showing standard magnetic geometries are not
always optimal. The algorithms presented here can be used
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Fig. 5: Three-dimensional view (a) and side view (b) of two dodecahedral permanent magnets, with magnet B positioned
vertically above magnet A. They have perpendicular magnetisation, with magnet A having vertical magnetisation and magnet
B having horizontal magnetisation. Magnet B moves a distance d in the vertical direction, with the forces and torques being
calculated as it moves.
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Fig. 6: The x-force and y-torque on magnet B shown in Figure 5. Both magnets are regular dodecahedra with edge lengths
of 20mm. The torque is evaluated about the centre of magnet B. Dashed lines represent the force and torque evaluated using
Algorithms 1 and 2, and dots represent the results from finite element simulations. The results from both methods are in
agreement, indicating correct results from Algorithms 1 and 2.
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Fig. 7: Three-dimensional view (a) and side view (b) of two pyramidal frustum magnets with opposing vertical magnetisations
M. Magnet B moves a distance d in the vertical direction. The wall angle θ is varied while maintaining a constant magnet
volume and height.
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Fig. 8: The normalised force between the two frustum magnets
shown in Figure 7 as the wall angle θ is varied. Each plot
corresponds to a given separation distance d shown in the
legend. The normalised force is calculated by dividing the
force at each point by the maximum force for each separation
distance. The peak of each plot corresponds to the maximum
force attained, and thus the optimal wall angle. As the separa-
tion distance increases, the peak moves to the right, indicating
the optimum wall angle increases with the separation distance.

to further understand non-standard magnetic geometries, as
well as optimise magnetic systems quickly to increase their
performance.
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