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Consensus Maximization: Theoretical Analysis and New Algorithms

by Zhipeng CAI1

The core of many computer vision systems is model fitting, which estimates a particular
mathematical model given a set of input data. Due to the imperfection of the sensors,
pre-processing steps and /or model assumptions, computer vision data usually contains
outliers, which are abnormally distributed data points that can heavily reduce the
accuracy of conventional model fitting methods. Robust fitting aims to make model
fitting insensitive to outliers. Consensus maximization is one of the most popular

paradigms for robust fitting, which is the main research subject of this thesis.

Mathematically, consensus maximization is an optimization problem. To understand
the theoretical hardness of this problem, a thorough analysis about its computational
complexity is first conducted. Motivated by the theoretical analysis, novel techniques

that improve different types of algorithms are then introduced.

On one hand, an efficient and deterministic optimization approach is proposed. Unlike
previous deterministic approaches, the proposed one does not rely on the relaxation of
the original optimization problem. This property makes it much more effective at refining

an initial solution.

On the other hand, several techniques are proposed to significantly accelerate consensus
maximization tree search. Tree search is one of the most efficient global optimization
approaches for consensus maximization. Hence, the proposed techniques greatly improve

the practicality of globally optimal consensus maximization algorithms.

Finally, a consensus-maximization-based method is proposed to register terrestrial LIDAR
point clouds. It demonstrates how to surpass the general theoretical hardness by using
special problem structure (the rotation axis returned by the sensors), which simplify the
problem and lead to application-oriented algorithms that are both efficient and globally

optimal.
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Chapter 1

Introduction

1.1 Robust fitting in computer vision

Computer vision, as its name implies, aims to mimic the human visual system on
computers. An important tool to achieve this goal is model fitting, which is used to
estimate some model given a set of input data. The model refers to some mathematical
quantities that we are interested in. For example, the pose of an object, the trajectory
of a moving target, the 3D structure of a scene and so on. In computer vision, the input
for estimating the model is often a set of visual data, such as images, videos, 3D models

and so on.

Robust fitting is a special model fitting technique designed to handle the case where
input data is contaminated by outliers. In statistics, outliers refer to the data points that
differs significantly from others [1]. The existence of outliers can make non-robust model
fitting methods highly biased. To demonstrate this effect, we show in Figure 1.1 a line

fitting problem with one outlier.

(1
s>
In this problem, we want to fit a line on a set of 2D points S = {s;}! ; , where s; = [ 22)] .
5

(1)
92

Given a candidate solution 8 = [ ] , its relationship with a point s; can be represented

by:
s@ — 51(1) W o) 4 (1.1)

where n; is the noise introduced by the data generation process.
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FIGURE 1.1: Line fitting example. The outlier (the upper left point) does not follow
the linear distribution of other points. The Least Squares solution is far away from the
desired location due to the existence of outliers.

The simplest model fitting strategy is Least Squares [2], which estimates the model by

minimizing the sum of squared residuals, i.e.,

fus(01S) =Y r(8]si)?, (1.2)

s;ES

where each residual r(0]s;) is defined as the magnitude of the noise 7, i.e.,

r(0)s;) = s — (s - 00 + 92y, (1.3)

As a non-robust model fitting methods, Least Squares is highly sensitive to outliers.
From the Baysian perspective, minimizing frs(0|S) is essentially performing maximum
likelihood estimation [3], with the assumption that the noise magnitude n; follows a
normal distribution, and is independent and identically distributed (i.i.d.). However, this
assumption is violated due to the extreme distribution of outliers. Because the noise
level n; of the outlier is high w.r.t. the desired line (rendered in green), the Least Squares
solution is biased towards the outlier to minimize (1.2). This problem motivates the

need of robust fitting techniques, which are designed to be insensitive to outliers.

Many computer vision applications rely on robust fitting. These include estimating
geometric primatives (e.g., lines, planes, ellipses), and more complex tasks such as object

recognition, Structure-from-Motion and navigation.

Outliers exist in these applications because it is hard to perfectly model every detail of

the data generation process. For example, the data acquisition sensors are not always
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FIGURE 1.2: Example data for two-view geometry. To estimate the transformation
between two images, feature matching algorithms are executed first to extract candidate
correspondences. These candidates are rendered as lines between the two images. Note
that the red lines are wrong matches, which are the outliers.

reliable, they may sometimes return erroneuous measurments. Meanwhile, most sensors
cannot directly and only capture the data that we need for model fitting. Often a
preprocessing step is required to filter out irrelavant measurements and extract quantities

of interests. Such step often introduces outliers.

Figure 1.2 shows the data for two-view geometry. In this example, the task is to estimate
the transformation that aligns corresponding pixels (that capture the same scene points)
of the two images. As a preprocessing step, some feature matching algorithm [27, 14] is
first executed to extract candidate correspondences. The outliers in this case are those

incorrect candidates (red lines).

Point set registration is another example, where we want to estimate the relative rotation
and translation between two sets of points. Figure 1.3 shows example data in 3D. Similar
as the case of two-view geometry, 3D feature matching algorithms [36, 35] are required to
extract candidate correspondences, which introduce outliers. Note that in this case, due

to the instability of 3D feature matching algorithms, most of the candidates are outliers.

1.2 Robust criteria

One important question in robust fitting algorithms is the design of robust criteria,
which is a cost/loss function that is insensitive to outliers and is used to replace frs(0|S)
in (1.2).
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FIGURE 1.3: Example data for 3D point set registration. The lines between points are
candidate correspondences found by 3D feature matching algorithms. The red lines are
the outliers.

1.2.1 Consensus maximization

In computer vision, one of the most widely used robust fitting criteria is consensus

mazximization, where we want to maximize the consensus, which is defined as

fac(018) = D " T{r(6s;) < €}. (1.4)

s; €S
In (1.4), I{-} is an indicator function that returns 1 if the condition inside is true, and 0
otherwise; € is a predefined value called the inlier threshold, which estimates the maximum

residual of an inlier (the data point that is not an outlier) w.r.t. the desired model.

Intuitively, fac(0|S) counts the number of data points that are consistent with the model
6. To show why this is a reasonable objective to maximize, we re-use the line fitting
example in Figure 1.1. Figure 1.4 shows the consensus of the Least Squares solution and
the green line in Figure 1.1. We can see that with a reasonable inlier threshold ¢, the

green line, which is the desired one, has the maximum consensus value.

One may argue that there can be multiple lines around the green one (e.g., the lines
slightly above and below it) that have the same consensus. Indeed, this is often the case.
In computer vision, the purpose of consensus maximization lies more in the identification
of inliers or the removal of outliers. Given a solution 8* that maximizes fyic(0]S), we
label all points that are consistent with 8* as inliers. To refine the accuracy of the
fitted model, Least Squares on the indentified inliers is often conducted after consensus

maximization.
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(a) Least Squares solution (Consensus = 6). (b) Desired solution (Consensus = 9).

FIGURE 1.4: Consensus of the Least Squares solution and the desired one. Points
between the dashed line have residuals that are smaller than e.

The main focus of this thesis is the theories and applications of consensus maximization.
But for completeness, we also briefly introduce in the following sections, other robsut

criteria and their relationship with consensus maximization.

1.2.2 Me-estimator

As mentioned in Chapter 1.1, Least Squares is non-robust because of its i.i.d. and normal
distribution assumption. Motivated by this problem, many robust criteria that can

tolerate outlying distributions are proposed in the field of statistics.

M-estimators [4] are a class of criteria that generalize the maximum likelihood estimator.

They minimizes the following cost function:

FE(818) = > p(r(8]s:)), (1.5)

si€S
where p(-) is a function of 7(8|s;) that is symmetric, positive definite and has a unique
minimum of 0 at r(@[s;) = 0. Intuitively, p(-) controlls the influence of each residual to
the model estimation. Under this definition, we can see that Least Squares is also an
m-estimator, though non-robust. The p(-) in robust m-estimators is designed to reduce

the effect of large residuals, and in turn the outliers.

For example, in Huber Loss [18] (see Figure 1.5(a)),

l'f' S; r S; €
plr(ois = 2O om0 S 19

e(r(@|s;) — 3¢), otherwise
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(a) Huber Loss. (b) Truncated Least Squares. (c) Consensus Maximization.

FIGURE 1.5: p functions in M-estimators ((a) and (b)) and consensus maximization
((c)). The horizontal axis is the value of r(8|s;). We use € = 0.5 in this example. The
(re-scaled) cost function of Least Squares is also plotted for better comparison.

The growth rate of p(r(8|s;)) reduces from quadratic to linear when r(8|s;) is larger than
the inlier threshold €. Though more robust than the squared residual, Huber Loss is still

unbounded, meaning that extreme outliers can still have catastrophic effect.

Redescending m-estimators [5] are a sub-class of m-estimators with higher robustness.
Their main difference to Huber Loss is that instead of linearly growing, the function
values remain constant for large residuals. For example, the Truncated Least Squares [17]

(see Figure 1.5(b)) can be expressed as:

r(Glsi)Q, r(0]s;) < e

p(r(8]si)) = B (1.7)
€2. otherwise

Due to the bounded effect of outliers, redescending m-estimators can tolerate a large

amount (close to 50%) of outliers.

As shown in Figure 1.5(
p(r(8lsi)) =1 —1{r(0[s:)

¢), though consensus maximization can be viewed as setting
<

€}, it is not an m-estimator, since its minimum is not unique.

1.2.3 Least Median Squares and Least k-th Order Statistics

Besides m-estimators, Least Median Squares (LMS) [33] is also widely used in robust
statistics. As the name suggests, it minimizes the median of the residuals (squared or

not squared are equivalent), i.e.,

median 7(0]s;). (1.8)
s; €S

LMS is tolerable to 50% outliers.
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A natural generalization of LMS is the Least k-th Order Statistics (LkOS) estimator,
where we want to minimize the k-th smallest residual. Interestingly, there is a “complexity-
equivalence” between LkOS and consensus maximization. Specifically, if we can solve one
of these two problems in polynomial time, the other one can also be solved in polynomial
time. And this “equivalence” leads to the NP-hardness proof of consensus maximization,

see Chapter 3 for more details.

1.3 Example residual forms

Depending on the application, the residual r(@|s;) in robust criteria can have different

forms.

For example, in the case of homography estimation (see Figure 1.2), the input data
S is a set of feature matches, where each s; = {P;,q;} consists of the homogeneous

coordinates of the two matched pixels p; € R? and q; € R?. The homogeneous coordinate

of a pixel x € R? is defined as . The model we want to estimate in this case is a

3 x 3 homography matrix H(0), where we put € in the bracket to indicate that H is

parametrized by the vector @ € R®. The residual in this case is

B H(H)(12)pl
r(0]s;) = ||H(9)(3)Pz —qi| (1.9)

2

where H(8)(1?) is the first two rows of H(0) and H(8)®) is the last row.

In the case of point cloud registration (see Figure 1.3), s; = {p}, q;} is the coordinates of
the matched 3D points. And the model we want to estimate is the rigid transformation
(rotation R() and translation t(6) parametrized by 6 € R%) between two point clouds.

The residual in this case is

r(8]s;) = |R(6)p; + t(8) — o}, , (1.10)

1.4 Optimization algorithms for robust fitting

After choosing a robust criterion, the last question in the design of robust fitting algorithms
is how to find the best model w.r.t. this criterion. Unlike Least Squares, which can be
efficiently solved by gradient-based methods or even in closed-form, optimization for

robust criteria is often much harder (See Chapter 3 for more details).
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This section briefly introduces optimization algorithms for the robust criteria mentioned
in Chapter 1.2. A detailed survey focusing on consensus maximization algorithms can be

found in Chapter 2.

1.4.1 Random-sampling-based algorithms

Random-sampling-based algorithms are widely used in practice, and with a long history.

RANSAC [16], proposed by Fischler et al. in 1981, is an important representative of this
class. It is the first algorithm for consensus maximization. RANSAC iteratively fits models
on randomly sampled data subsets and returns the model with the highest consensus.
The key insight is that the iteration number quantifies the confidence of sampling a
full-inlier subset (see Chapter 2.1.1 for more details). And the basic assumption of
RANSAC is that, a model fit on a full-inlier subset tends to have a high consensus. Many
RANSAC variants [12, 38, 11, 23, 39] were proposed later on to further improve the

performance.

Similar to RANSAC, an algorithm called “program for robust regression (PROGRESS)” [34,
Chapter 5] was also proposed for LMS. The key of this algorithm is also a random sample-

and-test process.

Random-sampling-based algorithms are widely used because of their practical efficiency.
However, the inherent randomness makes them hard to guarantee the solution quality

and sometimes unstable.

1.4.2 Gradient-based deterministic optimization algorithms

The drawback of random-based agorithms motivates the need of gradient-based deter-

ministic optimization algorithms, which update the model in a more guided fashion.

The standard optimization algorithm for m-estimators is Iterative Re-weighted Least
Squares (IRLS), which was first proposed in 1970’s [40]. Given an initial solution 6,
IRLS alternates between weight assignment and weighted Least Squares until convergence
(see [7] for the proof of convergence). The weight assignment step attaches to each data

point a weight defined as

_ Op(r(6os;)) 1
w(Bols;) = ar(Bolsi)  r(B|si)

(1.11)
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And the weighted Least Squares step updates 8y by:

0y < argmin Z w(Bgls;) - 7(0]s;)>. (1.12)
6 s;ES

Though IRLS is widely used for m-estimators, it cannot be directly applied to consensus
maximization. This is because the objective for consensus maximization is a step function
(see Figure 1.4), hence the gradient % = 0 for almost all 8. This makes the update

step (1.11) always return 0 weight for all s;.

The first gradient-based consensus maximization algorithm was proposed by Le et al. [20]
at 2017. They first relaxed the objective fyic(0|S) of consensus maximization using ¢;
penalization, and then performed optimization on the relaxed objective function. Several
approaches [22, 21, 32] that utlize different relaxation techniques were proposed later.
Compared to RANSAC variants, gradient-based algorithms conduct a more guided search.
Hence, they are often more effective in refining an initial solution. However, the use of
relaxation makes these algorithms prone to the tuning of smoothing parameters, which
is time consuming. Moreover, incorrect settings of smoothing parameters can even make
these algorithms return solutions that are worse than the initial one (see Chapter 4 for

more details).

1.4.3 Globally optimal algorithms

Though efficient, algorithms in Chapter 1.4.1 and 1.4.2 are all sub-optimal, i.e., they
cannot guarantee to find the best solution possible. This motivates the need of globally

optimal algorithms.

Branch-and-Bound is a standard global optimization technique. It was proposed by Land
and Doig [19] in 1960 and later widely used for robust fitting [26, 41, 31]. The key idea
is divide-and-conquer. Specifically, the parameter space of the model 0 is iteratively
divided, with upper and lower bounds of the optimal objective value computed over
divided sub-spaces. With the increase of the division resolution, the upper and lower
bounds will eventually meet, and the solution corresponding to the final bounds is the
optimal one. With properly designed bounding functions, Branch-and-Bound can be
used for any robust criterion mentioned in previous chapters. However, the bounding

functions are heavily application-dependent and not always trivial to construct.

Recently, the development of globally optimal consensus maximization algorithms has
received a lot of attention. Utilizing special properties of consensus maximization,

algorithms such as basis enumeration [29, 15] and tree search [25, 10] (see Chapter 2 for
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more details) were proposed. In practice, tree search has been demonstrated to be one of

the most efficient globally optimal algorithms.

1.5 Open questions and contributions

1.5.1 How hard is robust fitting?

Recent advancement in globally optimal consensus maximization [26, 41, 31, 29, 15,
25, 10] seems to provide a positive signal on the tractability of globally optimal robust
fitting. Empirical efficiency has been demonstrated in several existing works, which raises

questions that motivate the work of this thesis.

Specifically, how hard is consensus mazximization? Can we expect an efficient and globally
optimal algorithm in general? To answer these questions, we first study in Chapter 3 the
theoretical hardness of consensus maximization. The results are briefly summarized as

follows:

1. Consensus maximization is NP-hard. This means that, there are no algorithms that
can solve consensus maximization in time poly(|S|, d), where |S| is the number of

input data points, and d is the dimension of 6, and poly(-) is a polynomial function.

2. Consensus maximization is W[1]-hard in the dimension d. This means that, there
are no algorithms that can solve consensus maximization in time f(d)poly(|S|),

where f(d) is an arbitrary function of d.

3. Consensus maximization is APX-hard. This means that, there are no polynomial
time algorithms that can find an approximate solution with consensus up to (1—4)¥*

for any known approzimation ratio §, where ¥* is the maximum consensus.

The NP-hardness negates the existance of a general and tractable globally optimal
algorithm. The W[l]-hardness further tells us that existing globally optimal algorithms
must all scale exponentially w.r.t. d, and hence are unlikely to remain efficient when d

grows.

The APX-hardness further prohibits the development of efficient approximate algorithms.
Note that none of the approaches mentioned in Chapter 1.4.1 and 1.4.2 can guarantee
an arbitrary approximation ratio ¢, i.e., they are not approximate algorithms in this

important technical sense.
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1.5.2 What kind of algorithms to develop?

The hardness results also provide indications to the algorithms we should develop in the

future.

The APX-hardness indicates that the development of efficient and deterministically
convergent algorithm is a good direction to pursue, since it is unlikely to obtain guarantees
to the solution quality. Chapter 4 proposes a more effective deterministic algorithm.
Unlike previous algorithms of the same type [20, 22, 21, 32|, the proposed one does not
relax the original objective function, and hence is free from the tuning of smoothing

parameters.

A slightly positive result also proved in Chapter 5 is that:

e Consensus maximization is Fixed-Parameter Tractable (FPT) w.r.t. the number of

outliers o. Specifically, it can be solved in time O((o + 1)%*!poly(|S|, d))

Intuitively, this means that when o is small, consensus maximization can still be efficient
solved globally, even though |S| is large. This result is proved by constructing a tree
search algorithm that is FPT. This suggests that among all globally optimal algorithms,
accelerating tree search is a more promising direction. Chapter 5 proposes new techniques

that further accelerate tree search, making it capable of handling a much larger o.

Meanwhile, although a general algorithm does not exist, we can still utilize special
problem structures to design application-oriented approaches that are both efficient and
globally optimal. Chapter 6 proposes such an algorithm for registering LiDAR point
clouds, which utilizes the rotation axis obtained from the sensor to simplify the problem

and significantly speed up global optimization.

To further improve the practicality of globally optimal algorithms, we can also develop
preprocessing algorithms [31, 8], where efficient heuristics are designed to detect and
remove some true outliers before performing global optimization, so that to reduce the
input size for globally optimal algorithms. Though without guarantees: in practice, these
preprocessing algorithms can often remove a considerable amount of outiers, making
the acceleration to global optimization much more significant than the overhead of

preprocessing. Chapter 6 also applies preprocessing to accelerate Branch-and-Bound.

1.6 Thesis outline

The upcoming chapters are organized as follows:
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e Chapter 2 provides a detailed discussion about existing works for consensus maxi-

mization.

e Chapter 3 discusses the theoretical hardness of consensus maximization. The results
of the chapter distinguish the performance of existing algorithms, and reveals the

possibilities or impossibilities to develop new ones with certain properties.

e Chapter 4 contributes to the improvement of efficient but sub-optimal methods. It
proposes a novel deterministic optimization algorithm for consensus maximization.
Unlike existing approaches of the same type, the proposed one does not rely on
the relaxation of the cost function (1.4), thus is more effective at refining an initial

solution.

e Chapter 5 proposes new techiques that can significantly speed up consensus maxi-
mization tree search, making globally optimal solutions much more tractable in

practice.

e Chapter 6 applies consensus maximization to efficiently and optimally register
terrestrial LIDAR point clouds. Though the result of Chapter 3 precludes the
development of tractable and globally optimal algorithms in general. We show that
this goal is still achievable for some applications, where specific structures can be

utilized to simplify the optimization problem.
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Literature Review

Existing algorithms for consensus maximization can be categorized as:

1. Efficient but sub-optimal algorithms.

2. Globally optimal algorithms.

This chapter surveys several representatives of each categories, and discusses their

relations to the work of this thesis.

2.1 Efficient but sub-optimal algorithms

2.1.1 RANSAC and its variants

Arguably, RANSAC [16] is the most widely used algorithm for consensus maximization.
As its full name (RAndom SAmple Consensus) suggests, RANSAC works by iteratively
performing random-sampling-and-consensus-verification. In each iteration ¢, RANSAC
fits the model 6; on a randomly sampled minimal data subset. The word “minimal” refers
to the smallest number of data points that can be used to decide a model. E.g., for 2D line
fitting (Figure 1.1), we need 2 points to decide a line, then the minimum data subset is two
points. After computing each 8;, RANSAC calculates its consensus fyic(60;]S) (defined
in (1.4)) and replaces the current best model 8* with 6; if fyic(60;1S) > fvc(0%]S). 6*

is returned as the final solution when RANSAC terminates.

The basic assumption of RANSAC is that, models fitted on full-inlier data subsets (i.e.,
a subset that contains only inliers) tend to have high consensus. Therefore, RANSAC

terminates when we have a high confidence p (often set to be close to 1, e.g., 0.99) that

13
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we have sampled at least one full-inlier minimal subset. And this confidence can be

guaranteed by the following termination criterion:

log (1 —p)

log (1 — (Lua&iS)yw)’

i > (2.1)

where 7 is the iteration number, w is the size of the minimal subset, and p € (0, 1) is the

required confidence, which is set by the user.

To show why (2.1) guarantees the confidence p of sampling a full-inlier minimal subset,

note that when (2.1) is satisfied, we have

0%|S) i
log(1 ~ p) > log((1 — (M oy (2
0*|S) | i
=1-(1- (fMCﬁS')) )' > p. (2.3)
Denote 7 as the inlier rate of S. Since W <17, we have
A 0*1S) .
1= (=) 2 1= (1= (P (2.4)

Combining (2.3) and (2.4), we have when (2.1) is true,
1—(1—7“)">p. (2.5)

Note that 1 — (1 —7%)? is the possibility that we have sampled at least one full-inlier

minimal subset in ¢ iterations.

RANSAC is popular due to its practical efficiency, especially when w is small and/or 7
is high. This efficiency can be further improved for specific applications [11, 38], where
prior knowledge (provided by similarity measurements between feature matches) can be
utilized to guide the sampling procedure, such that we can find full-inlier subsets more

efficiently.

The drawback of RANSAC lies in the uncertain optimality. Due to the inherent ran-
domness, the solution quality of RANSAC varies in different runs. More importantly,
the consensus of RANSAC solutions is often far from the maximum achievable. One
reason is that models fitted on minimal samples are very sensitive to the data noise, even

though the minimal sample contains only inliers (see [39] for an example).

To alleviate the problem introduced by minimal samples, several RANSAC variants [12,
23, 39] are developed. LO-RANSAC [12, 23] proposes to fit models on non-minimal

samples once a better solution is discovered. Tran et al. [39] suggests to sample full-inlier
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subsets with large spans. Though these algorithms can often improve the solution
of RANSAC, they are still based on heuristics and therefore cannot guarantee the

improvement, especially on challenging data (see Chapter 4).

2.1.2 Deterministic local optimization algorithms

Motivated by the need of a more stable refinement strategy than heuristics, recent
algorithms [20, 21, 32] start to apply deterministic optimization techniques for consensus
maximization. These algorithms start from an initial solution (can be obtained for
example, by random guess, least squares, or even from the solution of RANSAC), and
iteratively perform deterministic updates to improve the solution quality. Compared to
random heuristics such as LO-RANSAC, these algorithms are more effective in refining

an initial solution, though they still cannot guarantee the global optimality.

The major obstacles for applying deterministic optimization to consensus maximization
is that, the objective (1.4) we want to maximize is a step function, which is not smooth,
and has zero gradient almost everywhere (see Figure 1 of Chapter 4 for demonstration).
Hence, we cannot directly perform gradient-based optimization to improve the initial
solution. To overcome this problem, previous algorithms first relax the original objective
function (e.g., using ¢; penalization [20], reformulation based on Alternating Direction
Method of Multiplier (ADMM) [21], and smooth surrogate functions [32]), and then
conduct optimization over the relaxed objective functions. Though these methods
enable gradient-based optimization techniques, the use of relaxation inevitably makes
them susceptible to the vagaries of smoothing parameters, which controls the degree of
relaxation during optimization. The optimal choice of these smoothing parameters often
varies between different problems. And as will be demonstrated in Chapter 4, incorrect
settings of smoothing parameters can make these methods return a solution that is even

worse than the initial one.

The method proposed in Chapter 4 is also a deterministic optimization approach. It
uses bisection to increase the consensus of the current solution. The key contribution
is to reformulate the optimization problem of each bisection iteration into a bi-convex
program, which can be efficiently solved by standard bi-convex optimization. In this way,
we can apply efficient and deterministic optimization for consensus maximization without
relaxing the original objective function. Therefore, no smoothing parameter tuning is

required.
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2.2 Globally optimal algorithms

While efficient, the algorithms mentioned in previous sections are all sub-optimal, i.e.,
they cannot guarantee to find the best solution possible. To address this problem, several

globally optimal algorithms are proposed.

2.2.1 BnB

BnB [13] is a standard global optimization technique. It is essentially an exhaustive
search algorithm. In the context of consensus maximization [24, 31, 41], BnB iteratively
divides the parameter space of the model 8, and calculates the upper and lower bounds of
the maximum consensus value fyic(6*|S) on all sub-spaces. The global upper and lower
bounds are maintained as the maximum over all sub-spaces. As each sub-space becomes
smaller and smaller, the global upper bound will gradually decrease, and the global lower
bound will gradually increase. The algorithm terminates when the global upper and
lower bounds meet (or are closer than a predefined threshold), and returns the solution
that achieves the upper bound, i.e., the maximum consensus value. The core of BnB lies
in the design of bounding functions, i.e., the way to compute upper and lower bounds.
The speed of BnB depends heavily on the tightness of bounding functions. BnB has two
drawbacks. One is its high computational complexity, which is worst case exponential
to the size of the parameter space. The second one is the difficulty in designing the
bounding functions. The form of bounding functions is highly problem-dependent, and

not always trivial to construct.

Section 4.2 of Chapter 6 provides a concrete example of how to design a BnB algorithm

for translation search in the problem of point cloud registration.

2.2.2 Basis enumeration

Basis enumeration [30, 15] is another type of globally optimal algorithms, which as its
name suggests, enumerates all possible bases (see [30] or Chapter 5 for the definition),
and fits models on them. Each basis is a subset of the input data S that has p data
points, where p < |S]. In many computer vision applications, p is only slightly larger
than the dimension d of the model, e.g., p = d + 1. Though the complexity of basis

enumeration is not related to the size of the parameter space, the number of all possible

S
bases is <| |>, which still scales poorly with |S| and p.
p
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2.2.3 Tree search

Consensus maximization can also be solved globally via tree search [25, 9, 10]. The key
idea is to fit the problem into the framework of the LP-type methods [28, 37], where
each iteration of the algorithm solves an LP-type problem (defined in Chapter 5). As
the pioneer in this direction, Li et al. [25] utilizes Breadth-First Tree Search (BFTS) in
the application of triangulation. Later, by designing more effective heuristics to guide
tree search and conduct branch pruning, an A*-tree search algorithm is proposed [9, 10],
which is much faster than BFTS. In practice, A* tree search has been demonstrated to

be one of the most efficient globally optimal algorithms.

In addition to the empirial efficiency, a key difference between tree search and other types
of globally optimal algorithms is that, tree search is Fized-Parameter Tractable (FPT) [6]
w.r.t. the number of outliers o (see Chapter 3 for the proof). To be more precise, the time
complexity for tree search is O(d°poly(|S|,d)) (poly(-) means a polynomial function),
i.e., the runtime of tree search is exponential only in o and d. Hence, for applications
where o and d is not large, tree search is theoretically still tractable even though |S| is

large.

Nonetheless, for challenging data, previous tree search algorithms can still be inefficient
for moderate o(> 10) and d(> 6) (see Chapter 5 for more details). To further improve
the practicality of tree search, Chapter 5 proposes novel techniques that can significantly

accelerate A* tree search, making it able to handle a much larger number of outliers.

2.2.4 Preprocessing

Though capable of guaranteeing the solution quality, globally optimal algorithms scale
poorly with the size of the input data |S| and/or the number of outliers o. This is due

to the theoretical hardness of consensus maximization, as shown in Chapter 3.

An interesting research direction that aims to accelerate global optimization is the
development of preprocessing algorithms [31, 8], where heuristics are designed to efficiently
identify /remove some true outliers before performing global optimization. Since these
algorithm guarantees to remove only true outliers, they can reduce the input data
size/outlier rates without affecting the optimal solution. Though there is no theoretical
guarantee, in practice, these algorithms can often remove a considerable amount of
outliers in a short time, thus significantly increasing the speed of global optimization.
Inspired by this line of work, Chapter 6 applies preprocessing to accelerate BnB in the

application of point cloud registration.
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Robust Fitting in Computer

Vision: Easy or Hard?”
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Abstract

Robust model fitting plays a vital role in computer vision, and research into algorithms for robust fitting continues to be active.
Arguably the most popular paradigm for robust fitting in computer vision is consensus maximisation, which strives to find
the model parameters that maximise the number of inliers. Despite the significant developments in algorithms for consensus
maximisation, there has been a lack of fundamental analysis of the problem in the computer vision literature. In particular,
whether consensus maximisation is “tractable” remains a question that has not been rigorously dealt with, thus making it
difficult to assess and compare the performance of proposed algorithms, relative to what is theoretically achievable. To shed
light on these issues, we present several computational hardness results for consensus maximisation. Our results underline

the fundamental intractability of the problem, and resolve several ambiguities existing in the literature.

Keywords Robust fitting - Consensus maximisation - Inlier set maximisation - Computational hardness

1 Introduction

Robustly fitting a geometric model onto noisy and outlier-
contaminated data is a necessary capability in computer
vision (Meer 2004), due to the imperfectness of data acqui-
sition systems and preprocessing algorithms (e.g., edge
detection, keypoint detection and matching). Without robust-
ness against outliers, the estimated model will be biased,
leading to failure in the overall pipeline.

In computer vision, robust fitting is typically performed
under the framework of inlier set maximisation, a.k.a. con-
sensus maximisation (Fischler and Bolles 1981), where one
seeks the model with the most number of inliers. For con-
creteness, say we wish to estimate the parameter vector
x € R? that defines the linear relationship a’ x = b from a
set of outlier-contaminated measurements D = {(a;, bi)}lN: I
The consensus maximisation formulation for this problem is
as follows.

Problem 1 /MAXCON] Given input data D = {(a;, b;)}¥

=1’
where a; € R? and b; € R, and an inlier threshold € € Ry,
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find the x € RY that maximises

N

Vex| D) = Y I(jafx— bl <¢). (M

i=1
where [ returns 1 if its input predicate is true, and O otherwise.

The quantity |al.Tx —b;| is the residual of the i -th measure-
ment with respect to X, and the value given by W (x | D) is
the consensus of x with respect to D. Intuitively, the consen-
sus of x is the number of inliers of x. For the robust estimate
to fit the inlier structure well, the inlier threshold € must be
set to an appropriate value; the large number of applications
that employ the consensus maximisation framework indicate
that this is usually not an obstacle.

Developing algorithms for robust fitting, specifically
for consensus maximisation, is an active research area in
computer vision. Currently, the most popular algorithms
belong to the class of randomised sampling techniques, i.e.,
RANSAC (Fischler and Bolles 1981) and its variants (Choi
et al. 2009; Raguram et al. 2013). Unfortunately, such
techniques do not provide certainty of finding satisfactory
solutions, let alone optimal ones (Tran et al. 2014).

Increasingly, attention is given to constructing globally
optimal algorithms for robust fitting, e.g., Li (2009), Zheng
etal. (2011), Enqvist et al. (2012), Bazin et al. (2013), Yang
etal. (2014), Parra Bustos et al. (2014), Enqvist et al. (2015),
Chin et al. (2015) and Campbell et al. (2017). Such algo-
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rithms are able to deterministically calculate the best possible
solution, i.e., the model with the highest achievable consen-
sus. This mathematical guarantee is regarded as desirable,
especially in comparison to the “rough” solutions provided
by random sampling heuristics.

Recent progress in globally optimal algorithms for con-
sensus maximisation seems to suggest that global solutions
can be obtained efficiently or tractably (Li 2009; Zheng et al.
2011; Enqvist et al. 2012; Bazin et al. 2013; Yang et al.
2014; Parra Bustos et al. 2014; Enqvist et al. 2015; Chin
et al. 2015; Campbell et al. 2017). Moreover, decent empiri-
cal performances have been reported. This raises hopes that
good alternatives to the random sampling methods are now
available. However, to what extent is the problem solved?
Can we expect the global algorithms to perform well in gen-
eral? Are there fundamental obstacles toward efficient robust
fitting algorithms? What do we even mean by “efficient”?

1.1 Our Contributions and Their Implications

Our contributions are theoretical. We resolve the above
ambiguities in the literature, by proving the following com-
putational hardness results. The implications of each result
are also listed below.

MAXCON is NP-hard (Sect.2).

= There are no algorithms that can solve MAXCON in
time polynomial to the input size, which is proportional to N
and d.

MAXCON is W[1]-hard in the dimension d (Sect.3.2).

= There are no algorithms that can solve MAXCON in
time f(d)poly(N), where f(d) is an arbitrary function of d,
and poly(N) is a polynomial of N.

MAXCON is APX-hard (Sect.4).

— There are no polynomial time algorithms that can
approximate MAXCON up to (1—38)y* for any known factor
8, where v* is the maximum consensus. '

As usual, the implications of the hardness results are sub-
ject to the standard complexity assumptions P#NP (Garey
1990) and FPT#W][1] (Downey and Fellows 1999).

Our analysis indicates the “extreme” difficulty of con-
sensus maximisation. MAXCON is not only intractable (by
standard notions of intractability Garey 1990; Downey and
Fellows 1999), the W[1]-hardness result also suggests that
any global algorithm will scale exponentially in a function
of d,ie, N @ 1q fact, if a conjecture of Erickson et al.
(2006) holds, MAXCON cannot be solved faster than N 4

1t may be the case that MAXCON is in class APX, i.e., that it could
be approximated in polynomial time to some factor. However, we are
not aware of any such algorithms.

@ Springer

Thus, the decent performances in Li (2009), Zheng et al.
(2011), Enqvist et al. (2012), Bazin et al. (2013), Yang et al.
(2014), Parra Bustos et al. (2014), Enqvist et al. (2015),
Chin et al. (2015) and Campbell et al. (2017) are unlikely
to extend to the general cases in practical settings, where
N > 1000 and d > 6 are common. More pessimisti-
cally, APX-hardness shows that MAXCON is impossible to
approximate, in that there are no polynomial time approxi-
mation schemes (PTAS) (Vazirani 2001) for MAXCON.2
A slightly positive result is as follows.

MAXCON is FPT (fixed parameter tractable) in the
number of outliers o and dimension d (Sect. 3.3).

This is achieved by applying a special case of the algo-
rithm of Chin et al. (2015) on MAXCON to yield a runtime
of O((o + 1)d+1poly(N, d)). However, for most computer
vision problems, the values of o and d are moderate to large
(e.g., o in the range of hundreds, d > 5), hence, in practice,
the FPT algorithm is fast usually only for instances where o
is small (e.g., 0 < 10).

While this paper can also find relevance with a theo-
retical computer science audience, our work is important
to the computer vision community since it helps to clarify
the ambiguities on the efficiency and solvability of consen-
sus maximisation (see also Sect. 1.2). Second, our analysis
shows how the computational effort scales with the different
input size parameters, thus suggesting more cogent ways for
algorithm designers in computer vision to test and compare
algorithms. Third, since developing algorithms for consen-
sus maximisation is an active topic in computer vision, it
is important for researchers to be aware of the fundamental
limitations of solving the problem. Our theoretical findings
also encourage researchers to consider alternative paradigms
for robust fitting, e.g., deterministically convergent heuris-
tic algorithms (Le et al. 2017; Purkait et al. 2017; Cai et al.
2018) or preprocessing techniques (Svdrm et al. 2014; Parra
Bustos and Chin 2015; Chin et al. 2016).

While our results are based specifically on MAXCON,
which is concerned with fitting linear models, in practice,
computer vision applications require the fitting of non-linear
geometric models (e.g., fundamental matrix, planar per-
spective transforms, rotation matrices). However, while a
case-by-case treatment is ideal, it is unlikely that non-linear
consensus maximisation will be easier than linear consensus
maximisation (Johnson et al. 1978; Ben-David et al. 2002;
Aronov and Har-Peled 2008).

Note also that our purpose here is not to promote consen-
sus maximisation as the “best” robust criterion. However, as
arobust formulation that is “native” to computer vision, con-
sensus maximisation enjoys prevalent use in the community.

2 Since RANSAC does not provide any approximation guarantees, it is
not an “approximation scheme” by standard definition (Vazirani 2001).
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It is thus vital to know what is and isn’t possible accord-
ing to current algorithmic thinking. Second, it is unlikely
that other robust criteria are easier to solve (Bernholt 2005).
Although some that use differentiable robust loss functions
(e.g., M-estimators) can be solved up to local optimality, it
is unknown how far the local optima deviate from the global
solution.

1.2 Previous Complexity Analyses of Robust Fitting

In the broader literature, complexity results have been
obtained for a number of robust criteria (Bernholt 2005;
Erickson et al. 2006), such as Least Median Squares (LMS),
Least Quantile of Squares (LQS), and Least Trimmed
Squares (LTS). However, the previous works have not studied
consensus maximisation, which, as alluded to in Sect. 1.1, is
of significant importance to computer vision. Moreover, the
analyses in Bernholt (2005) and Erickson et al. (2006) have
focussed mainly on NP-hardness, while our work here estab-
lishes a broader set of intractability results (parametrised
intractability, inapproximability).

A closely related combinatorial problem is maximum fea-
sible subsystem (MaxFS), which aims to find the largest
feasible subset of a set of infeasible linear constraints.
A number of complexity results have been developed by
Amaldi and Kann (1995) for MaxFS. Unfortunately, we
were not able to transfer the results in Amaldi and Kann
(1995) to MAXCON,? hence, necessitating the present
work.

In computer vision, a significant step towards complexity
analysis of robust fitting (including consensus maximisation)
was the work by Enqvist et al. (2012, 2015). Specifically, an
O(N?*1) algorithm was presented, which was regarded as
tractable since d is restricted to a few small values in the appli-
cations considered. Strictly speaking, however, Enqvist et al.
(2012, 2015) have only established that robust fitting is in
class XP (slice-wise polynomial) when parametrised by the
dimension d, and this does not (yet) established tractability
by standard definition (Downey and Fellows 1999). Unfor-
tunately, our W[1]-hardness results in Sect. 3.2 rules out
tractability when parametrised by d alone.*

3 A dicussion between Tat-Jun Chin and Komei Fukuda in Feb 2018
suggested that a direct reduction from MaxFS to MAXCON is itself
infeasible, due to the intractability of bounding a hyperplane arrange-
ment (Fukuda et al. 1997, Theorem 5.1).

4 If one was ever interested in only, say, robust affine registration of
2D point sets, then one could say that robust 2D affine registration is
tractable, since the technique of Enqvist et al. (2012, 2015) can be used
to construct an O(N7) algorithm, which is polynomial in the number
of input correspondences N. However, robust fitting in general, where
N and d can both vary, is not tractable by the reasons already alluded
to above.

1.3 Differences to the Conference Version

This paper is an extension of the conference version (Chin
et al. 2018). The main differences to the conference version
are:

A correction is made to Algorithm 1 in Chin et al. (2018)

to ensure consistency with the FPT result. Briefly, the

previous Algorithm 1 conducts a depth-first tree search,
whereas FPT requires breadth-first tree search.

— The runtime complexity of Algorithm 1 is corrected to
O((d + 1)’poly(N, d)). In Chin et al. (2018), it was
shown as O(d’poly(N, d)). Note that this modification
does not change the FPT outcome.

— A faster FPT algorithm (Algorithm 2) with O((o +
?*1poly(N, d)) runtime is developed using the
repeated basis checking technique of Chin et al. (2015).

— The concept of kernelisation (Downey and Fellows 1999)
is explored for MAXCON (Sect. 3.5).

— Empirical validation of the FPT runtime bound is now

provided. The performance of the FPT algorithm on real

data is also investigated (Sect. 3.6).

The rest of the paper is devoted to developing the above
theoretical and empirical results.

2 NP-Hrdness

The decision version of MAXCON is as follows.

Problem 2 [MAXCON-D] Given data D = {(a;, bi)}lNzl, an
inlier threshold € € R, and a number i € N, does there
exist x € R? such that W (x | D) > ¢?

Another well-known robust fitting paradigm is least
median squares (LMS), where we seek the vector x that min-
imises the median of the residuals

min med <|alTx—b1|,..., |aIT\,x—bN|>. )
xeRd

LMS can be generalised by minimising the k-th largest resid-
ual instead

min kos (|alTx—b1|,..., |a,T\,x—bN|>, 3)
xeR4

where function kos returns its k-th largest input value.

Geometrically, LMS seeks the slab of the smallest width
that contains half of the data points D in R?*!. A slab in
R4+ is defined by a normal vector x and width w as

hy(X) = {(a, b) € R

1
la’x — b gzw} 4)

@ Springer
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Problem (3) thus seeks the thinnest slab that contains k of
the points. The decision version of (3) is as follows.

Problem 3 [k-SLAB] Given data D = {(a;, b;)}"_,, an inte-
ger k where 1 <k < N, and a number w’ € R, does there
exist X € R? such that k of the members of D are contained
in a slab A, (x) of width at most w’?

k-SLAB has been proven to be NP-complete in Erickson et al.
(2006).

Theorem 1 MAXCON-D is NP-complete.

Proof Let D, k and w’ define an instance of k-SLAB. This
can be reduced to an instance of MAXCON-D by simply
reusing the same D, and setting € = %w/ and Y = k. If the
answer to k-SLAB is positive, then there is an x such that k
points from D lie within vertical distance of %w’ from the
hyperplane defined by x, hence W, (x | D) must be at least
and the answer to MAXCON-D is also positive. Conversely,
if the answer to MAXCON-D is positive, then there is an x
such that ¥ points have vertical distance of less than € to
X, hence a slab that is centred at x of width at most w’ can
enclose k of the points, and the answer to k-SLAB is also
positive. O

The NP-completeness of MAXCON-D implies the NP-
hardness of the optimisation version MAXCON. See
Sect. 1.1 for the implications of NP-hardness.

3 Parametrised Complexity

Parametrised complexity is a branch of algorithmics that
investigates the inherent difficulty of problems with respect
to structural parameters in the input Downey and Fellows
(1999). In this section, we report several parametrised com-
plexity results of MAXCON.

First, the consensus set Cc(x | D) of x is defined as

Ccx | D) :={i €{l,..., N} |la/ x —b;| < €}. (5)
An equivalent definition of consensus (1) is thus

Ye(x | D) = [Ce(x | D). (6)
Henceforth, we do not distinguish between the integer subset
C C {1,..., N} that indexes a subset of D, and the actual
data that are indexed by C.

3.1 XP in the Dimension

The following is the Chebyshev approximation prob-

lem (Cheney 1966, Chapter 2) defined on the input data
indexed by C:

@ Springer

min max |a] x — b;] (7
xeRd  ieC

Problem (7) has the linear programming (LP) formulation

min Y
xeR4 yeR

s.t. |aiTx—bi|§Y,i€C,

(LPICT)

which can be solved in polynomial time. Chebyshev
approximation also has the following property.

Lemma 1 There is a subset B of C, where |B| < d + 1, such
that

min max r;(X) = min max r; (X 8
min max i (%) min ma i (%) 3)
Proof See Cheney (1966, Section 2.3). O

We call B a basis of C. Mathematically, B is the set of
active constraints to LP[C], hence bases can be computed
easily. In fact, LP[B] and LP[C] have the same minimisers.
Further, for any subset B of size d + 1, a method by de la
Vallée-Poussin can solve LP[B] analytically in time polyno-
mial to d; see Cheney (1966, Chapter 2) for details.

Let x be an arbitrary candidate solution to MAXCON, and
(X, ¥) be the minimisers to LP[C (x | D)], i.e., the Cheby-
shev approximation problem on the consensus set of x. The
following property can be established.

Lemma2 V. (x| D) > V. (x| D).

Proof By construction, ¥ < €. Hence, if (a;, b;) is an inlier
to X, i.e., |aiTx — bi| < €, then |ain( —bi| <V <€ ie,
(a;, b;) is also an inlier to X. Thus, the consensus of X is no
smaller than the consensus of x. m|

Lemmas 1 and 2 suggest a rudimentary algorithm for con-
sensus maximisation that attempts to find the basis of the
maximum consensus set, as encapsulated in the proof of the
following theorem.

Theorem 2 MAXCON is XP (slice-wise polynomial) in the
dimension d.

Proof Let x* be a witness to an instance of MAXCON-D
with positive answer, i.e., W (x* | D) > ¢. Let (X*, ") be
the minimisers to LP[C.(x* | D)]. By Lemma 2, X* is also
a positive witness to the instance. By Lemma 1, X* can be
found by enumerating all (d + 1)-subsets of D, and solving
Chebyshev approximation (7) on each (d 4 1)-subset. There
are a total of ( dﬁl) subsets to check; including the time to
evaluate W, (x | D) for each candidate, the runtime of this
simple algorithm is O(N¢+?poly(d)), which is polynomial
in N for a fixed d. d
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Theorem 2 shows that for a fixed dimension d, MAXCON
can be solved in time polynomial in the number of measure-
ments N [this is consistent with the results in Enqvist et al.
(2012, 2015)]. However, this does not imply that MAXCON
is tractable (following the standard meaning of tractability in
complexity theory Garey 1990; Downey and Fellows 1999).
Moreover, in practical applications, d could be large (e.g.,
d > 5), thus the rudimentary algorithm above will not be
efficient for large N.

3.2 W[1]-Hard in the Dimension

Can we remove d from the exponent of the runtime of a
globally optimal algorithm? By establishing W[1]-hardness
in the dimension, this section shows that it is not possible.
Our proofs are inspired by, but extends quite significantly
from, that of Giannopoulos et al. (2009, Section 5). First, the
source problem is as follows.

Problem 4 [k-CLIQUE] Given undirected graph G =
(V, E) with vertex set V and edge set £ and a parameter
k € N4, does there exist a clique in G with k vertices?

k-CLIQUE is W[l]-hard w.r.t. parameter k>. Here,
we demonstrate an FPT reduction from k-CLIQUE to
MAXCON-D with fixed dimension d.

3.2.1 Generating the Input Data
Given input graph G = (V, E),where V = {1, ..., M}, and

size k, we construct a (k + 1)-dimensional point set Dg =
{(a;, b))}, = Dy U Dg as follows:

— The set Dy is defined as

Dy = {(al. b} ©)
where
al =1[0,...,0,1,0,...,01" (10)

is a k-dimensional vector of 0’s except at the a-th element
where the value is 1, and

bl = . (11)

3 https://en.wikipedia.org/wiki/Parameterized_complexity.

— The set D is defined as

Dp = {@p. b | wo=1,....M,

o, B’
,U GE, U’ eE7
(u, v) (v, u) .
a,B=1,...k,
ot<,3},
where
agy =10,...,0,1,0,...,0,M,0,...,0" 13

is a k-dimensional vector of 0’s, except at the a-th ele-
ment where the value is 1 and the 5-th element where the
value is M, and

boh = u+ Mu. (14)

The size N of Dg is thus |Dy| + |Dg| = kM + 2| E|(5).
3.2.2 Setting the Inlier Threshold

Under our reduction, x € R¢ is responsible for “selecting” a
subset of the vertices V and edges E of G. First, we say that
x selects vertex v if a point (a}, by) € Dy, for some «, is an
inlier to x, i.e., if

@) x —bl| <e=xy€v—€v+el, (15)

where x,, is the «-th element of x. The key question is how
to set the value of the inlier threshold €, such that x selects
no more than k vertices, or equivalently, such that W, (x |
Dy) < k for all x.

Lemma3 Ife < %, then V.(x | Dy) < k, with equality
achieved if and only if x selects k vertices of G.

Proof For any u and v, the ranges [u — €, u + €] and [v —
€, v + €] cannot overlap if € < % Hence, x, lies in at most
one of the ranges, i.e., each element of x selects at most one
of the vertices; see Fig. 1. This implies that V. (x | Dy) < k.

O

Second, a point (aZ’;, bZ’g) from D is an inlier to x if

[y ) x = byl < €= (g —u) + M(xpg —v)| <e.
(16)

As suggested by (16), the pairs of elements of x are responsi-
ble for selecting the edges of G. To prevent each element pair
Xq, xg from selecting more than one edge, or equivalently, to
maintain W, (x | Dg) < (g), the setting of € is crucial.

@ Springer
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Fig. 1 The blue dots indicate the integer values in the dimensions x,
and xg. If € < %, then the ranges defined by (15) forallv =1,..., M
do not overlap. Hence, x, can select at most one vertex of the graph
(Color figure online)

Lemma4d Ife < %, then V.(x | Dg) < (g) with equality
achieved if and only if X selects (g) edges of G.

Proof For each «, 8 pair, the constraint (16) is equivalent to
the two linear inequalities

Xog + Mxg —u— Mv <e,

(17)
Xg +Mxg —u— Mv

\Y

—E€,

which specify two opposing half-planes (i.e., a slab) in the
space (xq, xg). Note that the slopes of the half-plane bound-
aries do not depend on u and v. For any two unique pairs
(u1, v1) and (u32, vp), we have the four linear inequalities

Xg +Mxg —uy — Mvy <e,
Xg + Mxg —u;p — Mvy > —¢,

(18)
Xg +Mxg —uy — Mvy <,
Xo + Mxg —up — Mvy > —e.
The system (18) can be simplified to
1
ylua—ur+ My —vl < e,
19)

1
E[ul —uy+ M —v2)] < e

Setting e < % ensures that the two inequalities (19) cannot be

consistent for all unique pairs (1, vy) and (13, v2). Geomet-
rically, withe < %, the two slabs defined by (17) for different
(u1, v1) and (u2, vp) pairs do not intersect; see Fig. 2 for an
illustration.

Hence, if € < %, each element pair x4, xg of X can select
at most one of the edges. Cumulatively, x can select at most
(g) edges, thus W, (x | D) < (g) o

@ Springer
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Fig. 2 The blue dots indicate the integer values in the dimensions xy
and xg. If € < %, then any two slabs defined by (17) for different

(uy,vy) and (uz, v2) pairs do not intersect. The figure shows two slabs
corresponding to u] = 1, vy =5, up =2, vo = 5 (Color figure online)

Up to this stage, we have shown thatif € < %, then W, (x |
Dg) <k + (g), with equality achievable if there is a clique
of size k in G. To establish the FPT reduction, we need to
establish the reverse direction, i.e., if V. (x | Dg) = k + (g),
then there is a k-clique in G. The following lemma shows
that this can be assured by setting € < ﬁ

Lemma5 If € < 37, then We(x | Do) < k + (5), with
equality achievable if and only if there is a clique of size k in

G.

Proof The ‘only if’ direction has already been proven. To
prove the ‘if” direction, we show thatif € < ﬁ and W, (x |
Dg) = k + (5), the subgraph Sx) = {[x11, ..., [x]} is
k-clique, where each |x,] represents a vertex index in G.
Since € < %, [xo] = u if and only if (aj, b%) is an inlier.
Therefore, S(x) consists of all vertices selected by x. From
Lemmas 3 and 4, when W, (x | Dg) = k+ (g), X is consistent
with k points in Dy and (g) points in Dg. The inliers in Dy
specifies the k vertices in S(x). The ‘if” direction is true if
all selected (g) edges are only edges in S(x), i.e., for each
inlier point (az:z, Z;) € Dg, (ag, by) and (ap, by) are
also inliers w.r.t. X. The prove is done by contradiction:

Ife < given an inlier (az:;, Z:;), from (16) we
have:

1
M+2°
[(xq —u) + M(xg —v)]

= [(Lxa] — ) + M(lxg] — 0]+ [(a — Lxa]) + M(xg — Lxg D (20)
S
M+2

Assume at least one of (aj, b%) and (a/'é, bg) is not an

inlier, from (15) and € < ﬁ, we have [xq] # uor [xg] #

v, which means thatatleast one of (| x, | —u) and (|xg]—v)is
not zero. Since all elements of x satisfy (15), both (|xq | —u)
and ([xg] — v) are integers between [—(M — 1), (M — 1)].
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Fig. 3 If ¢ <
(agjz, zg) € Dg, where (1, v) is an edge in G, does not intersect
with any grid region besides the one formed by (aj;, b};) and (ag, bg).
In this figure, u = 1 and v = 5 (Color figure online)

ﬁ, then the slab (17) that contains a point

If only one of (|xq] — u) and (|xg] — v) is not zero, then
[([xe1—u)+M(|xg]—v)| > |1+ M -0 = 1.If both are not
zero, then |([xq 1 —u)+M([xg]1—v)| > [((M—-D+M-1| =1
Therefore, we have

|(Lxa] —u) + M(lxg] —v)| = 1. 21

Also due to (15), we have

M+1

[(xe — [Xa]) +Mxg — [xgDI < (M +1)-€ = T

(22)
Combining (21) and (22), we have
I[(ral = w) + M(lxg] — )] + [(xa — lxa D) + M(xg — lxg DIl =
[[([xaT —u) + M(lxg1 — V]| = [[(xe — [xaD) + Mxp — [xg DIl = (23)
oMt

T M2 M+2

which contradicts (20). It is obvious that S(x) can be com-
puted within linear time. Hence, the ‘if” direction is true when

1
€< FESE O

To illustrate Lemma 5, Fig. 3 depicts the value of W, (x |
Dg) in the subspace (xq, xg) for € < ﬁ Observe that
W, (x | D) attains the highest value of 3 in this subspace
if and only if x, and xg select a pair of vertices that are
connected by an edge in G.

3.2.3 Completing the Reduction

We have demonstrated a reduction from k-CLIQUE to
MAXCON-D, where the main work is to generate data Dg
which has number of measurements N = k|V|+2|E| (g) that
is linear in |G| and polynomial in k, and dimension d = k.

In other words, the reduction is FPT in k. Setting € < ﬁ
and ¢ =k + (g) completes the reduction.

Theorem 3 MAXCON is W[1]-hard w.r.t. the dimension d.

Proof Since k-CLIQUE is W[1]-hard w.r.t. k, by the above
FPT reduction, MAXCON is W[1]-hard w.r.t. d. O

The implications of Theorem 3 have been discussed in
Sect. 1.1.

3.3 FPT in the Number of Outliers and Dimension

Let f(C) and X¢ respectively indicate the minimised objec-
tive value and minimiser of LP[C]. Consider two subsets P
and Q of D, where P C Q. The statement

f(P) = f(Q) (24)

follows from the fact that LP[P] contains only a subset of
the constraints of LP[Q]; we call this property monotonicity.

Let x* be a global solution of an instance of MAXCON,
and let Z* := C.(x* | D) C D be the maximum consensus
set. Let C index a subset of D, and let 13 be the basis of C. If
f(C) > €, then by Lemma 1

fD) = f(C) = f(B) >e. (25
The monotonicity property affords us further insight.
Lemma 6 At least one point in B do not exist in T*.

Proof By monotonicity,
e < f(B) < f(T*UB). (26)

Hence, Z* U 5 cannot be equal to Z*, for if they were equal,
then f(Z* U B) = f(Z*) < € which violates (26). O

The above observations suggest an algorithm for MAX-
CON that iteratively removes basis points to find a consensus
set, as summarised in Algorithm 1. This algorithm is a spe-
cial case of the technique of Chin et al. (2015). Note that in
the worst case, Algorithm 1 finds a solution with consensus
d (i.e., the minimal case to fit x), if there are no solutions
with higher consensus to be found.

Theorem 4 MAXCON is FPT in the number of outliers and
dimension.

Proof Algorithm 1 conducts a breadth-first tree search to find
a sequence of basis points to remove from D to yield a con-
sensus set. By Lemma 6, the longest sequence of basis points
that needs to be removed is 0 = N — |Z*|, which is also the
maximum tree depth searched by the algorithm (each descend

@ Springer
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Algorithm 1 FPT algorithm for MAXCON.
Require: D = {a;, b;}"_,, threshold €.

1 Co < {1..... NLT < {Co.
2: for eachC € T do
Solve LP[C] to obtain f(C), X¢, and the basis B of C.
if /(C) < € then
return Xc, C.
end if
for eachi € B do
Push {C \ i} into T. //Remove points from basis and save the
rest point set.
9:  end for
10: end for

A

of the tree removes one point). The number of nodes vis-
ited is of order (d + 1)?, since for non-degenerate problem
instances,® the branching factor of the tree is ||, and by
Lemma 1, |[B] <d + 1.

Ateach node, LP[C] is solved, with the largest of these LPs
having d + 1 variables and N constraints. Algorithm 1 thus
runs in O((d + 1)°poly(N, d)) time, which is exponential
only in the number of outliers 0 and dimension d. O

3.4 A Faster FPT Algorithm

In Algorithm 1, repeated bases might be traversed, which
may cause redundant branches being generated during the
tree search. While this does not affect the FPT outcome of
Algorithm 1, it does suggest a faster FPT algorithm can be
constructed of the redundant paths can be avoided.

Algorithm 2 describes the redundancy avoidance variant
of Algorithm 1. Following Chin et al. (2015), the idea is to
use a hash table H to store all the previously visited bases
for efficient repetition detection. Given a basis B3, we branch
(i.e., generate child bases thereof) only when it is not in H.
Theorem 5 provides the worst case runtime of this algorithm
(note that while the main structure of Algorithm 2 is similar
to thatin Chin et al. (2015), the runtime analysis in Theorem 5
is novel).

Theorem 5 MAXCON is solvable by Algorithm 2 in O((o +
1)@+ Dpoly(N, d)) time.

Proof According to (MatouSek 1995, Theorem 2.3 (i)), the
number of unique bases on and before level o is O((o +
1)(@+D). And since branching is not allowed for repeated
bases, the parent basis of any repeated basis must be unique.
Therefore, the number of bases traversed by Algorithm 2 is
O((041)@*D . (d41)), which is the number of unique basis
O((o + 1)“@*D) times the size d + 1 of a branch. And since
the runtime spent on each basis is poly(N, d), the runtime
of Algorithm 2 is O((o + 1)@*D) . (d 4+ 1) - poly(N, d) <
O((o + D@ Dpoly(N, d)). O

6 This can be ensured by infinitesimal data perturbations (Matousek
1995).
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Algorithm 2 FPT algorithm for MAXCON with repetition
avoidance.
Require: D = {a;, b;}"_,, threshold €.

i=1°
1: Co < {1,..., N}, X < NULL, ¢ < 0, T < {Co}.
2: Initialize hash table H to NULL.

3: for eachC € T do

4:  Solve LP[C] to obtain f(C), X¢, and the basis B of C.
5:  if f(C) < € then

6: return Xc, C.

7. end if

8: if B does not exist in H then
9: Hash B into H.

10: for cachi € Bdo

11: Push {C \ i} into T.
12: end for

13:  endif

14: end for

Note that in the context of parametrised complexity,
O((o + DDy £ O((o + 1?) or O+ D) since both o
and d are parameters. Also, in computer vision applications,
o can be much larger than d. Therefore, O((0 + 1)@+
is generally much smaller than O((d + 1)?). The empirical
validity and tightness of these two bounds will be shown later
in Sect.3.6.1.

3.4.1 Further Speedups with Heuristics

In Chin et al. (2015), an admissible heuristic is used to
guide the tree search. This effectively changes the breadth
first regime in Algorithm 2 to A*-tree search (Hart et al.
1968). While in practice, this significantly speeds up con-
vergence, the worst case time complexity of the technique is
not improved. Thus, for brevity we will not describe the A*-
tree search algorithm here, and instead refer the interested
reader to Chin et al. (2015). In the experiments in Sect. 3.6.1,
however, we will use the A* version for practical reasons.

3.5 Relation Between FPT and Kernelisation

An important indication of a problem being FPT is the exis-
tence of the kernel, which is defined as follows for MAXCON
following (Cygan et al. 2015, Definition 2.1).

Definition 1 A kernelisation algorithm for MAXCON is a
polynomial time algorithm whereby given an instance of
MAXCON with size |Z|, returns an equivalent instance—
called a kernel - whose size |Z'| < g(o,d) for some
computable function g : N x N — N.

Intuitively, a kernel is a polynomial time algorithm that
finds the “core” structure of a given problem instance whose
size is bounded by a function that depends only on the param-
eters of the problem. The existence of a kernel indicates that
when o and d are small (such that g(o, d) < |Z|), we might
still be able to solve MAXCON efficiently. The following
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lemma specifies the relationship between an FPT algorithm
and the kernel.

Lemma 7 MAXCON admits a kernel with g(o,d) = O((o+
1)(d+1)),

Proof According to the proof of Theorem 5, MAXCON
can be solved in g(o, d) - poly(N, d) time by Algorithm 2.
Assume the input size is |Z|, following the proof of Cygan et
al. (2015, Lemma 2.2), we can construct the kernel by sim-
ply running Algorithm 2 and limit the maximum number of
(unique) bases to traverse to |Z]|.

First, since |Z| = O(N - d) is the number of bits required
to represent all points,” which is polynomial to N and d, the
constructed algorithm runs in polynomial time. Meanwhile,

cl If Algorithm 2 solves MAXCON before traversing |Z|
bases, the global optimal solution can be returned as the
output of the kernel.

¢2 Otherwise, we have g(o,d) = O((o + D@Dy < |7].
Hence, we can directly return the input itself as the output
of the kernel since its size is already smaller than g (o, d).

Therefore, the output size |Z'| of this constructed algorithm
is less than g(o, d). |

Though unlike the polynomial sized kernel (Cygan et al.
2015, Chapter 2) (where g(o, d) is polynomial and is usu-
ally derived from some heuristics), the kernel constructed
from FPT algorithms cannot reduce the size of the problem,
it indicates a way to test the practicality of an FPT algorithm.
Namely, we can run the constructed kernel and see how often
case ¢l happens in practice. If it happens for most of the prob-
lem instances, we can still hope to solve MAXCON exactly
in polynomial time. The result of this test on real-world data
will be demonstrated later in Sect.3.6.2.

3.6 Experiment

All experiments in this section were executed on a laptop
with Intel Core 2.60GHz i7 CPU and 16GB RAM. The code
is written in MATLAB 2017a and available online.®

3.6.1 Empirical Tightness of the FPT Bounds

To show the validity and tightness of the two FPT bounds
derived in Sect. 3.3, we test on synthetic data the difference
between the number of unique nodes generated by the state-

7 https://en.wikipedia.org/wiki/Computational_complexity_theory#
Measuring_the_size_of _an_instance.

8 https://github.com/ZhipengCai/Demo---MAXCON-hardness.

1025\
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aximum number Of unique bases generate y -tree searcl
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verage number of unique bases generated by A*-tree searc|
A b f uni b ted by A*-t h

10"

10"

Number of unique basis (log scale)

Fig.4 Two FPT bounds and the actual number of unique bases gener-
ated by the A*-tree search. For each fixed o and d, both the maximum
and the average number of unique bases generated over all 100 synthetic
data are shown (Color figure online)

of-the-art FPT algorithm9 (Chin et al. 2015) (called A*-tree
search in the rest of this paper) and the two bounds. Specif-
ically, the exact value of the bound for Algorithm 1 is the
maximum number of (repeated) nodes traversed during tree
search, which is

(o+1) _
Wflzl+(d+l)+-~-+(d+l)” 27)

And the bound for Algorithm 2 is e - (0 + 1)“@*D (see
the proof of MatousSek (1995, Theorem 2.3 (i)) for details),
where e is the exponential constant.

The synthetic data was generated randomly with d €
{1,...,10} and 0o € {1,...,20}. For each fixed d and o,
we generated 100 problem instances with N = 200. To con-
trol o, we first sampled N points from a random linear model.
Then we added noise uniformly distributed in [—e, €] to the
b; channel of all randomly selected inliers. Finally, outliers
were created by adding truncated Gaussian noise distributed
between [—o0, —€) U (€, 00].

As shown in Fig.4, the FPT bound for Algorithm 2 was
much tighter than the one for Algorithm 1. Both FPT bounds
were valid and the A*-tree search algorithm generated much
smaller number of unique bases for all problem instances.
This indicates that in practice, MAXCON can be solved much
faster than the theoretical bounds.

9 We do not report the result of Algorithm 1 or 2 since they are too slow
even for small o and d (both algorithms did finish in 2 hours for one
data instance when d > 7 and o > 7).
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(b) Example data with frame gap = 5.

Fig.5 Example inputs to the kernel of A*-tree search for linearised fundamental matrix estimation. The inliers and outliers are rendered respectively
in green and red. The outliers in b were estimated by the sub-optimal method of Cai et al. (2018), since A*-tree search was too slow in this case

(Color figure online)

3.6.2 Is Exact Solution Practical?

Since the A*-tree search was much faster than the worst case
runtime, a natural question to ask is that “is it fast enough to
solve MAXCON exactly in practice?” To answer this ques-
tion, we used the kernel constructed in Sect. 3.5. Specifically,
we ran the corresponding kernel of A*-tree search and com-
puted the frequency that case ¢l (in the proof of Lemma 7)
happened. Theoretically, the size of the problem |Z|, which
was the maximum number of nodes allowed to be generated
by the kernel, should be the number of bits required to rep-
resent the input data, which was 32 - N - d following the
single-precision floating-point format.'?

The experiment computed the linearised fundamental
matrix (Hartley and Zisserman 2003) (d = 8 and the rank-2
constraint was ignored) for a sequence of image pairs from
the KITTI odometry dataset (Geiger et al. 2012). For each
image pair, the input to the kernel was a set of SIFT (Lowe
1999) correspondences (with N varied from 150 to 400) com-
puted by VLFeat toolbox (Vedaldi et al. 2010). The inlier
threshold was set to 0.04.

To examine the practicality of A*-tree search on image
pairs with both small and large relative motions, the experi-
ment was executed on two sequences of image pairs. In the
first sequence, each image pair was made of two consecutive
frames, while in the second sequence, the two images in each
pair were 5 frames away. The example inputs generated from
both 1-frame-gap data and 5-frame-gap data are provided in
Fig.5.

10" https://en.wikipedia.org/wiki/Single-precision_floating-
point_format.
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Table 1 Practicality of A*-tree search for linearised fundamental
matrix estimation. The data was generated using the images in the “00”
sequence of the KITTI odometry dataset. 0ax and Omean Were respec-
tively the mean and max of 0 among all data with 5 frame gap. Note
that when c1 happened, the deepest tree level traversed by the kernel
was exactly o

Frame gap 1 5

Number of tested image pairs 1000 200

Number of ¢l 1000 0O

Average runtime (s) of the kernel 0.03 4340.70

Max of the deepest tree level 8 16 (Omax = 114)

traversed by the kernel

Mean of the deepest tree level 0.04 13.15 (0mean = 70.29)

traversed by the kernel

As shown in Table 1, the kernel terminated quickly and
c1 happened for all 1000 image pairs with 1 frame gap. This
was because the relative motion was too small (see Fig.5a
for an example) and almost all SIFT correspondences were
inliers (0 = 0 for most pairs), as shown by the deepest tree
level (= o if ¢l happens) traversed by the kernel.

On the other hand, when the frame gap =5 and the relative
motion became large, ¢l never happened. To estimate the
difference between o and the deepest tree level traversed by
the kernel (< 16 as shown in Table 1), we computed the
upper bound o of o using the state-of-the-art deterministic
local method (Cai et al. 2018), whose results were shown to
be usually close to optimal. As shown in Table 1, the average
value of 0, Omean = 70.29, was much larger than 16. Hence,
the kernel was still far from finding the optimal solution when
terminated. Note that, the kernel took in average more than 1 h
to terminate, which was unacceptable already even though it
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could find the optimal solution at the end. Therefore, solving
MAXCON exactly is unlikely to be practical in general.

4 Approximability

Given the inherent intractability of MAXCON, it is natural to
seek recourse in approximate solutions. However, this section
shows that it is not possible to construct PTAS (Vazirani
2001) for MAXCON.

Our development here is inspired by Amaldi and Kann
(1995, Sec. 3.2). First, we define our source problem: given
a set of k Boolean variables {vj}];.:] , a literal is either one
of the variables, e.g., v}, or its negation, e.g., =v;. A clause
is a disjunction over a set of literals, i.e., v V —vy V v3. A
truth assignment is a setting of the values of the k variables.
A clause is satisfied if it evaluates to true.

Problem 5 [MAX-2SAT]Given M clauses KC = {ICi}f‘il over
k Boolean variables {v j}’]‘.: |» Where each clause has exactly
two literals, what is the maximum number of clauses that can
be satisfied by a truth assignment?

MAX-2SAT is APX-hard,!' meaning that there are no
algorithms that run in polynomial time that can approxi-
mately solve MAX-2SAT up to a desired error ratio. Here,
we show an L-reduction!? from MAX-2SAT to MAXCON,
which unfortunately shows that MAXCON is also APX-hard.

4.1 Generating the Input Data

Given an instance of MAX-2S AT with clauses K = {K; }f‘i 1
over variables {v j}’;: 1» let each clause K; be represented as
(£vy,) V (£vg,), where o4, B; € {1, ..., k} index the vari-
ables that exist in K;, and = here indicates either a “blank”
(no negation) or — (negation). Define

+1 if vy, occurs without negation in /C;,
sgn(w;) =

—1 if vy, occurs with negation in K;;
(28)

similarly for sgn(g;). Construct the input data for MAXCON
as

D = (@, b5, (29)

where there are six measurements for each clause. Namely,
for each clause K;,

" https://en.wikipedia.org/wiki/2-satisfiability.
12 https://en.wikipedia.org/wiki/L-reduction.

- ai1 is a k-dimensional vector of zeros, except at the «;-

th and g;-th elements where the values are respectively
sgn(e;) and sgn(pB;), and bl.1 =2.

- a’=al and b} =0.

- 31'3 is a k-dimensional vector of zeros, except at the «;-th
element where the value is sgn(c; ), and b? =—1.

- al =a} and b} = 1.

- ai5 is a k-dimensional vector of zeros, except at the §;-th
element where the value is sgn(g;), and bi5 =—1.

- a?:a? andb?: 1.

The number of measurements N in Dy is 6M.

4.2 Setting the Inlier Threshold

Given a solution x € R¥ for MAXCON, the six input
measurements associated with /C; are inliers under these con-
ditions:

(a}, b)) is an inlier

> [sgn(ai)xe; +sgn(Bi)xg — 2| <,

. (30)
(aj, b;) is an inlier
< [sgn(@;)xqy; + sgn(Bi)xp | < e,
(al, b}) is an inlier <= |sgn(a;)xy + 1] < e, a1
(a}, b?) is an inlier <= |sgn(a;)xy — 1] <€,
(a3, bY) is an inlier <= |[sgn(B;)xp, + 1| <, o)

@, b?) is an inlier <= [sgn(B)xg — 1| <,

where x, is the a-th element of x. Observe that if € < 1,
then at most one of (30), one of (31), and one of (32) can
be satisfied. The following result establishes an important
condition for L-reduction.

Lemma8 Ife < 1, then
OPT(MAXCON) < 6 - OPT(MAX-2SAT), (33)

OPT(MAX-2SAT) is the maximum number of clauses that
can be satisfied for a given MAX-2SAT instance, and
OPT(MAXCON) is the maximum achievable consensus for
the MAXCON instance generated under our reduction.

Proof 1If € < 1, for all x, at most one of (30), one of (31),
and one (32), can be satisfied, hence OPT(MAXCON) cannot
be greater than 3M. For any MAX-2SAT instance with M
clauses, there is an algorithm (Johnson 1974) that can satisfy
at least [ of the clauses, thus OPT(MAX-2SAT) > [47.
This leads to (33). |

Note that, if ¢ < 1, rounding X to its nearest bipolar vector
(i.e,, a vector that contains only —1 or 1) cannot decrease the

@ Springer
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consensus w.r.t. Dic. It is thus sufficient to consider x that are
bipolar in the rest of this section.

Intuitively, x is used as a proxy for truth assignment: set-
ting x; = 1 implies setting v; = frue, and vice versa.
Further, if one of the conditions in (30) holds for a given
x, then the clause K; is satisfied by the truth assignment.
Hence, for x that is bipolar and € < 1,

V. (x| Dx) =2M + o, (34)

where o is the number of clauses satisfied by x. This leads
to the final necessary condition for L-reduction.

Lemma9 Ife < 1, then

|OPT(MAX-2SAT) — SAT (t(x))| 35)
= |OPT(MAXCON) — V(x| Dx)|,
where t(X) returns the truth assignment corresponding to X,
and SAT(t(x)) returns the number of clauses satisfied by
t(x).

Proof For any bipolar x with consensus 2M + o, the truth
assignment t(x) satisfies exactly o clauses. Since the value
of OPT(MAXCON) must take the form 2M + o*, then
OPT(MAX-2SAT) = o*. The condition (35) is immediately
seen to hold by substituting the values into the equation. O

We have demonstrated an L-reduction from MAX-2SAT
to MAXCON, where the main work is to generate Dy in
linear time. The function t also takes linear time to compute.
Setting € < 1 completes the reduction.

Theorem 6 MAXCON is APX-hard.

Proof Since MAX-2SAT is APX-hard, by the above L-
reduction, MAXCON is also APX-hard. m]

See Sect. 1.1 for the implications of Theorem 6.

5 Conclusions and Future Work

Given the fundamental difficulty of consensus maximisation
as implied by our results (see Sect. 1.1), it would be pru-
dent to consider alternative paradigms for optimisation, e.g.,
deterministically convergent heuristic algorithms (Le et al.
2017; Purkait et al. 2017; Cai et al. 2018) or preprocessing
techniques (Svirm et al. 2014; Parra Bustos and Chin 2015;
Chin et al. 2016).
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Abstract. Consensus maximization is one of the most widely used ro-
bust fitting paradigms in computer vision, and the development of al-
gorithms for consensus maximization is an active research topic. In this
paper, we propose an efficient deterministic optimization algorithm for
consensus maximization. Given an initial solution, our method conducts
a deterministic search that forcibly increases the consensus of the initial
solution. We show how each iteration of the update can be formulated
as an instance of biconvex programming, which we solve efficiently using
a novel biconvex optimization algorithm. In contrast to our algorithm,
previous consensus improvement techniques rely on random sampling or
relaxations of the objective function, which reduce their ability to signifi-
cantly improve the initial consensus. In fact, on challenging instances, the
previous techniques may even return a worse off solution. Comprehen-
sive experiments show that our algorithm can consistently and greatly
improve the quality of the initial solution, without substantial cost.*

Keywords: Robust fitting - Consensus maximization - Biconvex pro-
gramming

1 Introduction

Due to the existence of noise and outliers in real-life data, robust model fitting
is necessary to enable many computer vision applications. Arguably the most
prevalent robust technique is random sample consensus (RANSAC) [11], which
aims to find the model that has the largest consensus set. The RANSAC algo-
rithm approximately solves this optimization problem, by repetitively sampling
minimal subsets of the data, in the hope of “hitting” an all-inlier minimal subset
that gives rise to a model hypothesis with high consensus.

4 Matlab demo program is available at https://github.com/ZhipengCai/Demo—--
Deterministic-consensus-maximization-with-biconvex-programming.
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Many variants of RANSAC have been proposed [7]. Most variants attempt to
conduct guided sampling using various heuristics, so as to speed up the retrieval
of all-inlier minimal subsets. Fundamentally, however, taking minimal subsets
reduces the span of the data and produces biased model estimates [20, 27]. Thus,
the best hypothesis found by RANSAC often has much lower consensus than the
maximum achievable, especially on higher-dimensional problems. In reality, the
RANSAC solution should only be taken as a rough initial estimate [9].

To “polish” a rough RANSAC solution, one can perform least squares (LS)
on the consensus set of the RANSAC estimate (i.e. the Gold Standard Algo-
rithm [12, Chap. 4]). Though justifiable from a maximum likelihood point of
view, the efficacy of LS depends on having a sufficiently large consensus set to
begin with.

A more useful approach is Locally Optimized RANSAC (LO-RANSAC) 9,
18], which attempts to enlarge the consensus set of an initial RANSAC estimate,
by generating hypotheses from larger-than-minimal subsets of the consensus set.?
The rationale is that hypotheses fitted on a larger number of inliers typically lead
to better estimates with even higher support. Ultimately, however, LO-RANSAC
is also a randomized algorithm. Although it conducts a more focused sampling,
the algorithm cannot guarantee improvements to the initial estimate. As we will
demonstrate in Sec. 5.2, often on more challenging datasets, LO-RANSAC is
unable to significantly improve upon the RANSAC result.

Due to its combinatorial nature, consensus set maximization is NP-hard [4].
While this has not deterred the development of globally optimal algorithms [21,
30, 19,10, 6,5, 25, 3], the fundamental intractability of the problem means that
global algorithms are essentially variants of exhaustive search-and-prune pro-
cedures, whose runtime scales exponentially in the general case. While global
algorithms have their place in computer vision, currently they are mostly con-
fined to problems with low-dimensions and/or small number of measurements.

1.1 Deterministic algorithms—a new class of methods

Recently, efficient deterministic algorithms for consensus maximization are gain-
ing attention [17,22]. Different from random sampling, such algorithms begin
with an initial solution (obtained using least squares or a random sampling
method) and iteratively performs deterministic updates on the solution to im-
prove its quality. While they do not strive for the global optimum, such algo-
rithms are able to find excellent solutions due to the directed search.

To perform deterministic updating, the previous methods relax the objective
function (Le et al. [17] use ¢; penalization, and Purkait et al. [22] use a smooth
surrogate function). Invariably this necessitates the setting of a smoothing pa-
rameter that controls the degree of relaxation, and the progressive tightening of
the relaxation to ensure convergence to a good solution. As we will demonstrate
in Sec. 5.4, incorrect settings of the smoothing parameter and/or its annealing
rate may actually lead to a worse solution than the starting point.

5 This is typically invoked from within a main RANSAC routine.
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1.2 Owur contributions

We propose a novel deterministic optimization algorithm for consensus maxi-
mization. The overall structure of our method is a bisection search to increase
the consensus of the current solution. The key to the effectiveness of our method
is to formulate the feasibility test in each iteration as a biconvex program, which
we solve efficiently via a biconvex optimization algorithm. Unlike [17,22], our
method neither relaxes the objective function, nor requires tuning of smoothing
parameters. On both synthetic and real datasets, we demonstrate the superior
performance of our method over previous consensus improvement techniques.

2 Problem definition

Given a set of N outlier contaminated measurements, consensus maximization
aims to find the model x € D that is consistent with the largest data subset

nige T 1
maximize (x), (1)

where D is the domain of model parameters (more details later), and

N
I(x) = Y I(r(x) < ¢) (2)

i=1

counts the number of inliers (consensus) of x. Function r;(x) gives the residual
of the i-th measurement w.r.t. X, € is the inlier threshold and I is the indicator
function which returns 1 if the input statement is true and 0 otherwise.

Fig. 1 illustrates the objective function Z(x). As can be appreciated from the
inlier counting operations, Z(x) is a step function with uninformative gradients.

2.1 The update problem

Let % be an initial solution to (1); we wish to improve X to yield a better solution.
We define this task formally as

find x € D, suchthat Z(x) >, (3)

domain D z |

Fig. 1: Illustrating the update problem. Given the current solution x and a target
consensus 0, where ¢ > Z(X), the update problem (3) aims to find another solu-
tion x with Z(%) > 4. Later in Sec. 4, problem (3) will be embedded in a broader
algorithm that searches over § to realize deterministic consensus maximization.
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where § > Z(X) is a target consensus value. See Fig. 1 for an illustration. For
now, assume that ¢ is given; later in Sec. 4 we will embed (3) in a broader
algorithm to search over 4.

Also, although (3) does not demand that the revised solution be “close” to
X, it is strategic to employ X as a starting point to perform the update. In Sec. 3,
we will propose such an algorithm that is able to efficiently solve (3).

2.2 Residual functions and solvable models

Before embarking on a solution for (3), it is vital to first elaborate on the form
of r;(x) and the type of models that can be fitted by the proposed algorithm.
Following previous works [14, 15, 5], we focus on residual functions of the form

gi(x)
ri(x) = : 4
G Di (X) ( )
where ¢;(x) is convex quadratic and p;(x) is linear. We also insist that p;(x) pos-
itive. We call r;(x) the quasiconvex geometric residual since it is quasiconvex |2,
Sec. 3.4.1] in the domain

D={xecR¥|pi(x)>0,i=1,...,N}, (5)

Note that D in the above form specifies a convex domain in R

Many model fitting problems in computer vision have residuals of the type (4).
For example, in multiple view triangulation where we aim to estimate the 3D
point x € R? from multiple (possibly incorrect) 2D observations {u;}¥,,

P2 | p@)g
Ti(X): ”( i w; )XHQ (6)

PPk
is the reprojection error in the i-th camera, where x = [x 1]7,
P(_1:2)
Pi=| b | € R34 (7)

is the i-th camera matrix with P§1:2) and PES) respectively being the first-two
rows and third row of P. Insisting that x lies in the convex domain D = {x €
R? | PEB)X > 0,Vi} ensures that the estimated x lies in front of all the cameras.
Other model fitting problems with quasiconvex geometric residuals include
homography fitting, camera resectioning, and the known rotation problem; see [14]
for details and other examples. However, note that fundamental matrix estima-
tion is not a quasiconvex problem [14]; in Sec. 5, we will show how the proposed
technique can be adapted to robustly estimate the fundamental matrix.

3 Solving the update problem

As the decision version of (1), the update problem (3) is NP-complete [4] and
thus can only be approximately solved. In this section, we propose an algorithm
that works well in practice, i.e., able to significantly improve Xx.
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3.1 Reformulation as continuous optimization
With quasicovex geometric residuals (4), the inequality 7;(x) < € becomes
qi(x) — epi(x) < 0. (8)

Since ¢;(x) is convex and p;(x) is linear, the constraint (8) specifies a convex
region in D. Defining

ri(x) = qi(x) — epi(x) 9)

and introducing for each r(x) an indicator variable y; € [0, 1] and a slack variable
s; > 0, we can write (3) using complementarity constraints [13] as

find xeD (10a)
subject to Zyz >0, (10Db)
Yi € [07 1]7 Vi7 (1OC)
S5 — Tg(x) > Oa VZ, (106)
s: >0, Vi (10f)

Intuitively, y; reflects whether the i-th datum is an inlier w.r.t. x. In the following,
we establish the integrality of y; and the equivalence between (10) and (3).

Lemma 1. Problems (10) and (3) are equivalent.

Proof. Observe that for any x,

al: If ri(x) > 0, the i-th datum is outlying to x, and (10d) and (10e) will force
s; > ri(x) > 0and y; = 0.

a2: If ri(x) < 0, the i-th datum is inlying to x, and (10f) and (10d) allow s; and
y; to have only one of the following settings: a2.1: s; > 0 and y; = 0; or
a2.2: s; = 0 and y; being indeterminate.

If x is infeasible for (3), i.e., Z(x) < §, condition al ensures that (10b) is violated,
hence x is also infeasible for (10). Conversely, if x is infeasible for (10), i.e.,
> ¥i <0, then Z(x) < §, hence x is also infeasible for (3).

If x is feasible for (3), we can always set y; = 1 and s; = 0 for all inliers
to satisfy (10b), ensuring the feasibility of x to (10). Conversely, if x is feasible
for (10), by al there are at least ¢ inliers, thus x is also feasible to (3). O

From the computational standpoint, (10) is no easier to solve than (3). How-
ever, by constructing a cost function from the bilinear constraints (10d), we
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arrive at the following continuous optimization problem

o s, 1
e S e 2 v (1)
subject to Z yi > 0, (11b)

Yi € [07 ”a Vi’ (11C)
s; —ri(x) >0, Vi, (11d)
s; >0, Vi, (11e)
where s = [sq,..., sN]T andy = [y, ... ,yN]T. The following lemma establishes

the equivalence between (11) and (3).

Lemma 2. If the globally optimal value of (11) is zero, then there exists x that
satisfies the update problem (3).

Proof. Due to (11c) and (11e), the objective value of (11) is lower bounded by
zero. Let (x*,s*,y*) be a global minimizer of (11). If 7, y¥*s¥ = 0, then x*
satisfies all the constraints in (10), thus x* is feasible to (3). O

3.2 Biconvex optimization algorithm

Although all the constraints in (11) are convex (including x € D), the objective
function is not convex. Nonetheless, the primary value of formulation (11) is to
enable the usage of convex solvers to approximately solve the update problem.
Note also that (11) does not require any smoothing parameters.

To this end, observe that (11) is in fact an instance of biconver program-
ming [1]. If we fix x and s, (11) reduces to the linear program (LP)

. N 12
mlynelﬂgpl\}ze ;yzsz (12a)
subject to Zyi >4, (12b)

y; €10,1], Vi, (12c¢)

which can be solved in close form.% On the other hand, if we fix y, (11) reduces
to the second order cone program (SOCP)

L N 13
e 2 v (132
subject to si—ri(x) >0, Vi, (13b)

s; >0, Vi. (13c)

6 Set y; = 1 if s; is one of the d-smallest slacks, and y; = 0 otherwise.
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Algorithm 1 Biconvex optimization (BCO) for the continuous problem (11).

Require: Initial solution X, target consensus 9.
1: Initialize X < X, set § using (14).

2: while not converged do

3:  § <« solve LP (12).

4:  (%,8) < solve SOCP (13).

5: end while

6: return X, S and y.

Note that s; does not have influence if the corresponding y; = 0; these slack
variables can be removed from the problem to speed up optimization.”

The proposed algorithm (called Biconver Optimization or BCO) is simple:
we initialize x as the starting X from (3), and set the slacks as

s; = max {0,7;(X)}, Vi. (14)

Then, we alternate between solving the LP and SOCP until convergence. Since (11)
is lower-bounded by zero, and each invocation of the LP and SOCP are guaran-
teed to reduce the cost, BCO will always converge to a local optimum (%,8,y).

In respect to solving the update problem (3), if the local optimum (%,8§,¥)
turns out to be the global optimum (i.e., Y, 9;8; = 0), then X is a solution
to (3), i.e., Z(x) > 4. Else, X might still represent an improved solution over
x. Compared to randomized search, our method is by design more capable of
improving %. This is because optimizing (11) naturally reduces the residual of
outliers that “should be” an inlier, i.e., with y; = 1, which may still lead to a
local refinement, i.e., Z(X) > ¢, = Z(X), regardless of whether problem (3) is
feasible or not. In the next section, we will construct an effective deterministic
consensus maximization technique based on Algorithm 1.

4 Main algorithm—deterministic consensus maximization

Given an initial solution x(¥) to (1), e.g., obtained using least squares or a ran-
dom sampling heuristic, we wish to update x(©) to a better solution. The main
structure of our proposed algorithm is simple: we conduct bisection over the
consensus value to search for a better solution; see Algorithm 2.

A lower and upper bound §; and d; for the consensus, which are initial-
ized respectively to 7 (x(o)) and N, are maintained and progressively tightened.
Let X be the current best solution (initialized to x(?)); then, the midpoint
0 = |0.5(6; + d5) ] is obtained and the update problem via the continuous bicon-
vex formulation (11) is solved using Algorithm 1. If the solution % for (11) has a
higher quality than the incumbent, X is revised to become x and ¢; is increased
to Z(x). And if Z(X) < 4§, dj, is decreased to §. Algorithm 2 ends when d;, = 6;+1.

" Given the optimal % for (13), the values of the slack variables that did not participate
in the problem can be obtained as s; = max{0, r;(X)}.



8 Z. Cai, T.-J. Chin, H. Le and D. Suter

Algorithm 2 Bisection (non-global) for deterministic consensus maximization.

Require: Initial solution x(*) for (1) obtained using least squares or random sampling.
1 X x©, 6, « N, 6 + Z(x).
2: while 6, > 9, +1 do

3: b L0'5(6l + 5h)J-

4:  (%,8,y) + BCO(x, 0) (see Algorithm 1).
5. if Z(x) > Z(x) then

6: X X, 0 < I(%).

7:  end if

8: if Z(x) < 6 then

9: 6h — 0.

10:  end if

11: end while
12: return X, d;.

Since the “feasibility test” in Algorithm 2 (Step 4) is solved via a non-convex
subroutine, the bisection technique does not guarantee finding the global so-
lution, i.e., the quality of the final solution may underestimate the maximum
achievable quality. However, our technique is fundamentally advantageous com-
pared to previous methods [9,17,22] since it is not subject to the vagaries of
randomization or require tuning of hyperparameters. Empirical results in the
next section will demonstrate the effectiveness of the proposed algorithm.

5 Results

We call the proposed algorithm IBCO (for iterative biconvex optimization). We
compared IBCO against the following random sampling methods:

— RANSAC (RS) [11] (baseline): the confidence p was set to 0.99 for computing
the termination threshold.

— PROSAC (PS) [8] and Guided MLESAC (GMS) [26] (RS variants with guided
sampling): only tested for fundamental matrix and homography estimation
since inlier priors like matching scores for correspondences were needed.

— LO-RANSAC (LRS) [9]: subset size in inner sampling was set to half of the
current consensus size, and the max number of inner iterations was set to 10.

— Fixing LO-RANSAC (FLRS) [18]: subset size in inner sampling was set to 7x
minimal subset size, and the max number of inner iterations was set to 50.

— USAC [23]: a modern technique that combines ideas from PS and LRS.® USAC
was evaluated only on fundamental matrix and homography estimation since
the available code only implements these models.

Except USAC which was implemented in C++, the other sampling methods were
based on MATLAB [16]. Also, least squares was executed on the final consensus
set to refine the results of all the random sampling methods.

8 Code from htts://http://www.cs.unc.edu/~rraguram/usac/USAC-1.0.zip.
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Convex subproblem LP |SOCP
Solvers used Gurobi|Sedumi
Methods using the solver|EP, SS| IBCO

Table 1: Convex solvers used in deterministic methods.

In addition to the random sampling methods, we also compared IBCO against
the following deterministic consensus maximization algorithms:

— Exact Penalty (EP) method [17]: The method? was retuned for best perfor-
mance on our data: we set the penalty parameter a to 1.5 for fundamental
matrix estimation and 0.5 for all other problems. The annealing rate x for
the penalty parameter was set to 5 for linear regression and 2D homography
estimation and 1.5 for triangulation and fundamental matrix estimation.

— Smooth Surrogate (SS) method [22]: Using our own implementation. The
smoothing parameter v was set to 0.01 as suggested in [22].

For the deterministic methods, Table 1 lists the convex solvers used for their
respective subproblems. Further, results for these methods with both FLRS and
random initialization (x(°) was generated randomly) were provided, in order to
show separately the performance with good (FLRS) and bad (random) initial-
ization. We also tested least squares initialization, but under high outlier rates,
its effectiveness was no better than random initialization. All experiments were
executed on a laptop with Intel Core 2.60GHz i7 CPU and 16GB RAM.

5.1 Robust linear regression on synthetic data

Data of size N = 1000 for 8-dimensional linear regression (i.e., x € R®) were
synthetically generated. In linear regression, the residual takes the form

ri(x) = [laf x = bil,, (15)

which is a special case of (4) (set p;(x) = 1), and each datum is represented by
{a; € R®, b; € R}. First, the independent measurements {a;}¥, and parameter
vector x were randomly sampled. The dependent measurements were computed
as b; = al'x and added with noise uniformly distributed between [—0.3,0.3]. A
subset of n% of the dependent measurements were then randomly selected and
added with Gaussian noise of 0 = 1.5 to create outliers. To guarantee the outlier
rate, each outlier is regenerated until the noise is not within [-0.3,0.3]. The inlier
threshold e for (1) was set to 0.3.

Fig. 2 shows the optimized consensus, runtime and model accuracy of the
methods for n € {0,5,...,70,75}, averaged over 10 runs for each data instance.
Note that the actual outlier rate was sometimes slightly lower than expected since
the largest consensus set included some outliers with low noise value. For n = 75
the actual outlier rate was around 72% (see Fig. 2(a)). To prevent inaccurate
analysis caused by this phenomenon, results for n > 75 were not provided.

9 Code from https://cs.adelaide.edu.au/~huu/.
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Fig. 2: Robust linear regression results with varied n (approx. outlier rate).

Fig. 2(b) demonstrates for each method the relative consensus difference
to RS. It is evident that both IBCO variants outperformed other methods in
general. Unlike other methods, whose improvement to RS was low at high outlier
rates, both IBCO variants were consistently better than RS by more than 11%.
Though IBCO was only marginally better than EP for outlier rates lower than
65%, Fig. 2(a) shows that for most of the data instances, both IBCO variants
found consensus very close or exactly equal to the maximum achievable. The
cost of IBCO was fairly practical (less than 5 seconds for all data instances, see
the data tip in Fig. 2(c)). Also the runtime of the random sampling methods
(RS, LRS, FLRS) increased exponentially with 1. Hence, at high 1, the major
cost of FLRS+EP, FLRS+SS and FLRS+IBCO came from FLRS.

To demonstrate the significance of having higher consensus, we further per-
formed least squares fitting on the consensus set of each method. Given a least
squares fitted model x g, define the average residual on ground truth inliers (the
data assigned with less than 0.3 noise level) as:

D ez Tir (X18)

e (16)

G(XLS) =
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where Z* was the set of all ground truth inliers. Fig. 2(d) shows e(xg) for all
methods on all data instances. Generally, higher consensus led to a lower average
residual, suggesting a more accurate model.

5.2 Homography estimation

Five image pairs from the NYC Library dataset [29] were used for 2D homog-
raphy estimation. On each image pair, SIFT correspondences were produced by
the VLFeat toolbox [28] and used as inputs. Fig. 3 depicts examples of inputs, as
well as consensus sets from FLRS and FLRS+IBCO. The transfer error in one
image [12, Sec. 4.2.2] was used as the distance measurement. The inlier thresh-
old € was set to 4 pixels. The 4-Point algorithm [12, Sec. 4.7.1] was used in all
random sampling approaches for model fitting on minimal samples.

Fig. 4, shows the quantitative results, averaged over 50 runs. Though marginally
costlier than SS and random approaches, both IBCO variants found consider-
ably larger consensus sets than other methods for all data. Meanwhile, different
from the linear regression case, EP no longer had simiar result quality to IBCO.
Also note that for challenging problems, e.g., Ceilingl and Sign, the two IBCO
variants were the only methods that returned much higher consensus than RS.

5.3 Triangulation

Five feature tracks from the NotreDame dataset [24] were selected for triangu-
lation, i.e., estimating the 3D coordinates. The input from each feature track
contained a set of camera matrices and the corresponding 2D feature coordi-
nates. The re-projection error was used as the distance measurement [15] and
the inlier threshold € was set to 1 pixel. The size of minimal samples was 2
(views) for all RANSAC variants. The results are demonstrated in Fig. 5. For
triangulation, the quality of the initial solution largely affected the performance
of EP, SS and IBCO. Initialized with FLRS, IBCO managed to find much larger
consensus sets than all other methods.

5.4 Effectiveness of refinement

Though all deterministic methods were provided with reliable initial FLRS so-
lutions, IBCO was the only one that effectively refined all FLRS results. EP and
SS sometimes even converged to worse than initial solutions. To illustrate these
effects, Fig. 6 shows the solution quality during the iterations of the three deter-
ministic methods (initialized by FLRS) on Ceiling! for homography estimation
and Point 16 for triangulation. In contrast to EP and SS which progressively
made the initial solution worse, IBCO steadily improved the initial solution.

It may be possible to rectify the behaviour of EP and SS by choosing more
appropriate smoothing parameters and/or their annealing rates. However, the
need for data-dependent tuning makes EP and SS less attractive than IBCO.
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(a) Input correspondences (b) FLRS consensus set (¢) FLRS 4+ IBCO consen-
(N = 455). (consensus: 323). sus set (consensus: 353).

7

e) FLRS consensus set (f) FLRS + IBCO consen-
(N = 346). (consensus: 321). sus set (consensus: 331).

Fig.3: Data and results of robust homography estimation for Building! (top)
and Ceilingl (bottom). Consensus sets were downsampled for visual clarity.
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Fig. 4: Robust homography estimation results.

5.5 Fundamental matrix estimation

Image pairs from the two-view geometry corpus of CMP!? were used for funda-
mental matrix estimation. As in homography estimation, SIFT correspondences
were used as the input data. Since the Sampson error [12, Sec. 11.4.3] and the
reprojection error [12, Sec. 11.4.1] for fundamental matrix estimation are not
linear or quasiconvex, the deterministic algorithms (EP, SS, IBCO) cannot be

10 http://cmp.felk.cvut.cz/data/geometry2view/
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(a) Ceilingl in homography estimation. (b) Point 16 in triangulation.

Fig. 6: Consensus size in each iteration, given FLRS results as the initialization.
Observe that EP and SS converged to worse off solutions.

directly applied. Thus, we linearize the epipolar constraint and use the algebraic
error [12, Sec. 11.3] as the residual. The inlier threshold e was set to 0.006 for
all data.

Further, a valid fundamental matrix satisfies the rank-2 constraint [12, Sec.
11.1.1], which is non-convex. For EP, SS, IBCO, we impose the rank-2 constraint
using SVD after each parameter vector updates (for IBCO, after each BCO run).

Fig. 7 depicts sample image pairs and generated SIFT correspondences, as
well as consensus sets from FLRS and FLRS+IBCO. The seven-point method [12,
Sec. 11.1.2] was used in USAC and the normalized 8-point algorithm [12, Sec. 11.2]
was used in all other RANSAC variants.

As shown in Fig. 8(a), unlike EP and SS who failed to refine the initial FLRS
results for all the tested data, IBCO was still effective even though the problem
contains non-convex constraints.
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(a) Input correspondences (b) FLRS consensus set (¢) FLRS 4+ IBCO consen-
(N = 186). (consensus: 85). sus set (consensus: 97).

—

(d) Input correspondences (¢) FLRS consensus set (f) FLRS + IBCO consen-
(N =101). (consensus: 32). sus set (consensus: 36).

Fig. 7: Data and results of fundamental matrix estimation for zoom (top) and
shout (bottom).
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Fig. 8: Robust fundamental matrix estimation results.

6 Conclusions

We proposed a novel deterministic algorithm for consensus maximization with
non-linear residuals. The basis of our method lies in reformulating the decision
version of consensus maximization into an instance of biconvex programming,
which enables the use of bisection for efficient guided search. Compared to other
deterministic methods, our method does not relax the objective of consensus
maximization problem and is free from the tuning of smoothing parameters,
which makes it much more effective at refining the initial solution. Experiments
show that our method is able to greatly improve upon initial results from widely
used random sampling heuristics.

Acknowledgements This work was supported by the ARC grant DP160103490.
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Abstract

Consensus maximization is widely used for robust fitting
in computer vision. However, solving it exactly, i.e., finding
the globally optimal solution, is intractable. A* tree search,
which has been shown to be fixed-parameter tractable, is one
of the most efficient exact methods, though it is still limited to
small inputs. We make two key contributions towards improv-
ing A* tree search. First, we show that the consensus max-
imization tree structure used previously actually contains
paths that connect nodes at both adjacent and non-adjacent
levels. Crucially, paths connecting non-adjacent levels are
redundant for tree search, but they were not avoided previ-
ously. We propose a new acceleration strategy that avoids
such redundant paths. In the second contribution, we show
that the existing branch pruning technique also deteriorates
quickly with the problem dimension. We then propose a new
branch pruning technique that is less dimension-sensitive
to address this issue. Experiments show that both new tech-
niques can significantly accelerate A* tree search, making
it reasonably efficient on inputs that were previously out
of reach. Demo code is available at https://github.
com/ZhipengCai/MaxConTreeSearch.

1. Introduction

The prevalence of outliers makes robust model fitting
crucial in many computer vision applications. One of the
most popular robust fitting criteria is consensus maximiza-
tion, whereby, given outlier-contaminated data S = {s; f\Ll,
we seek the model € R that is consistent with the largest
subset of the data. Formally, we solve

N
maximize c(61S) = I{r(fls;) < e}, (1

i=1

where ¢(0|S) is called the consensus of 8. The 0/1 valued
indicator function I{-} returns 1 only when s; is consistent
with 0, which happens when the residual 7(0|s;) < e. The
form of r(0|s;) will be defined later in Sec. 2. Constant € is
the predefined inlier threshold, and d is called the “problem
dimension”. Given the optimal solution 6* of (1), s; is an
inlier if 7(0*|s;) < € and an outlier otherwise.

Tat-Jun Chin
The University of Adelaide

Vladlen Koltun
Intel Labs

Consensus maximization is NP-hard [4], hence, sub-
optimal but efficient methods are generally more practi-
cal. Arguably the most prevalent methods of this type are
RANSAC [11] and its variants [8, 26, 7, 24], which itera-
tively fit models on randomly sampled (minimal) data sub-
sets and return the model with the highest consensus. How-
ever, their inherent randomness makes these methods often
distant from optimal and sometimes unstable. To address this
problem, deterministic optimization techniques [23, 14, 2]
have been proposed, which, with good initializations, usually
outperform RANSAC variants. Nonetheless, a good initial
solution is not always easy to find. Hence, these methods
may still return unsatisfactory results.

The weaknesses of sub-optimal methods motivate re-
searchers to investigate globally optimal methods; however,
so far they are effective on only small input sizes (small d,
N and/or number of outliers 0). One of the most efficient
exact methods is tree search [15, 5, 6] (others surveyed later
in Sec. 1.1), which fits (1) into the framework of the LP-
type methods [25, 18]. By using heuristics to guide the tree
search and conduct branch pruning, A* tree search [5, 6]
has been demonstrated to be much faster than Breadth-First
Search (BFS) and other types of globally optimal algorithms.
In fact, tree search is provably fixed-parameter tractable
(FPT) [4]. Nevertheless, as demonstrated in the experiment
of [6] and later ours, A* tree search can be highly inefficient
for challenging data with moderate d (> 6) and o (> 10).

Our contributions. In this work, we analyze reasons be-
hind the inefficiency of A* tree search and develop improve-
ments to the algorithm. Specifically:

e We demonstrate that the previous tree search algorithm
does not avoid all redundant paths, namely, paths that
connect nodes from non-adjacent levels. Based on this ob-
servation, a new acceleration strategy is proposed, which
can avoid such non-adjacent (and redundant) paths.

e We show that the branch pruning technique in [6] is not
always effective and may sometimes slow down the tree
search due to its sensitivity to d. To address this prob-
lem, we propose a branch pruning technique that is less
dimension-sensitive and hence much more effective.

Experiments demonstrate the significant acceleration achiev-

able using our new techniques (3 orders of magnitude



faster on challenging data). Our work represents signifi-
cant progress towards making globally optimal consensus
maximization practical on real data.

1.1. Related Work

Besides tree search, other types of globally optimal meth-
ods include branch-and-bound (BnB) [16, 28, 22], whose
exhaustive search is done by testing all possible 8. However,
the time complexity of BnB is exponential in the size of
the parameter space, which is often large. Moreover, the
bounding function of BnB is problem-dependent and not
always trivial to construct. Another type of methods [20, 9]
enumerate and fit models on all possible bases, where each
basis is a data subset of size p, where p << N and p is usually
slightly larger than d, e.g., p = d + 1. The number of all
possible bases is (]z\vf ), which scales poorly with IV and d.
Besides differences in actual runtime, what distinguishes
tree search from the other two types of methods is that tree
search is FPT [4]: its worst case runtime is exponential in d
and o, but polynomial in N.

2. Consensus maximization tree search

We first review several concepts that are relevant to con-
sensus maximization tree search.

2.1. Application range
Tree search requires the residual 7(8|s;) to be pseudo-
convex [6]. A simple example is the linear regression residual

r(0]s;) = |azT9 — bl (2)

where each datum s; = {a;,b;}, a; € R? and b; € R.
Another example is the residual used in common multiview
geometry problems [21, 2], which are of the form

|AT0 b
v P
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where each datum s; = {A;,b;,c;,d;}, A; € RX™ b, €
R™, ¢; € R%and d; € R. Usually, p is 1, 2 or co.

2.2. LP-type problem

The tree search algorithm for (1) is constructed by solving
a series of minimax problems, which are of the form

minimize 0ls;). 4
grive ey TOls) @

Problem (4) minimizes the maximum residual for all data
in S, which is an arbitrary subset of S. For convenience,
we define f(S') as the minimum objective value of (4) com-
puted on data S*, and 8(S?) as the (exact) minimizer.

Throughout the paper, we will assume that r(-) is pseudo-
convex and S is non-degenerate (otherwise infinitestimal per-
turbations can be applied to remove degeneracy [18, 6]). Un-
der this assumption, problem (4) has a unique optimal solu-
tion and can be solved efficiently with standard solvers [10].
Furthermore, (4) is provably an LP-type problem [25, 1, 10],
which is a generalization of the linear programming (LP)
problem. An LP-type problem has the following properties:

Property 1 (Monotonicity). For
STC82CS, f(8) < f(S*) < [(S).
Property 2 (Locality). For every two sets S' C S2 C S
and every s; € S, f(SY) = f(S?) = f(S?U {s;}) =
F(8Y) = (ST U {si})

With the above properties, the concept of basis, which is
essential for tree search, can be defined.

Definition 1 (Basis). A basis B in S is a subset of S such
that for every B’ C B, f(B') < f(B).

For an LP-type problem (4) with pseudo-convex residuals,
the maximum size of a basis, which we call combinatorial
dimension, is d + 1.

every two sets

Definition 2 (Violation set, level and coverage). The vi-
olation set of a basis B is defined as V(B) = {s; € S|
r(0(B)|s;) > f(B)}. We call l(B) = |V(B)| the level of B
and C(B) = S\V(B) the coverage of B.

By the above definition,
c(0(B)|S) = |S] — U(B). )

An important property of LP-type problems is that solv-
ing (4) on C(B) and B return the same solution.

Definition 3 (Support set). The level-0 basis for S is called
the support set of S, which we represent as 7(S).

Assume we know the maximal inlier set Z for (1), where
|Z| = ¢(0*|S). Define B* = 7(Z) as the support set of Z;
B* can be obtained by solving (4) on Z. Then, I(B*) is the
size of the minimal outlier set. Our target problem (1) can
then be recast as finding the optimal basis

B* = argmin [(B), s.t. f(B) <, (6)
BCS

and 6(B*) is the maximizer of (1). Intuitively, B* is the
lowest level basis that is feasible, where a basis B is called
feasible if f(B) < e.

2.3. A* tree search algorithm

Matousek [18] showed that the set of bases for an LP-
type problem can be arranged in a tree, where the root node
is 7(S8), and the level occupied by a node B on the tree is
I(B) = |V(B)|. Another key insight is that there exists a
path from 7(8) to any higher level basis, where a path is
formed by a sequence of adjacent bases, defined as follows.



Algorithm 1 A* tree search of Chin et al. [6] for (6)

Algorithm 2 Admissible heuristic h;,s for A* tree search

Require: S = {s;}¥,, threshold e.
1: Insert B = 7(S) with priority e(B) into queue q.
2: Initialize hash table 7" to NULL.
3: while ¢ is not empty do

4 Retrieve from ¢ the B with the lowest e(B).
5: if f(B) < e then

6: return B* = B.

7 end if

8 B, < Attempt to reduce B by TOD method.
9: for each s € B, do

10: if indices of V(B) U {s} do not exist in T then
11: Hash indices of V(B) U {s} into T.
12: B+ 7(C(B)\{s}).

13: Insert B’ with priority e(B’) into g.
14: end if

15: end for

16: end while
17: Return error (no inlier set of size greater than p).

Definition 4 (Basis adjacency). Two bases B’ and B are
adjacent if V(B') = V(B) U {s;} for some s; € B.

Intuitively, B’ is a direct child of B in the tree. We say
that we “follow the edge” from B to B’ when we compute
T(C(B)\{si}). Chin et al. [6] solve (6) by searching the
tree structure using the A* shortest path finding technique
(Algorithm 1). Given input data S, A* tree search starts
from the root node 7(S) and iteratively expands the tree
until B* is found. The queue ¢ stores all unexpanded tree
nodes. And in each iteration, a basis I3 with the lowest
evaluation value e(B) is expanded. The expansion follows
the basis adjacency, which computes 7(C(B)\{s}) for all
s € B (Line 12 in Algorithm 1).

The evaluation value is defined as

e(B) =1(B) + h(B), @)

where h(B) is a heuristic which estimates the number of
outliers in C(B3). A* search uses only admissible heuristics.

Definition 5 (Admissibility). A heuristic h is admissible if
h(B) > 0 and h(B) < h*(B), where h*(B) is the minimum
number of data that must removed from C(BB) to make the
remaining data feasible.

Note that setting e(B) = I(B) (i.e., h(B) = 0) for all B
reduces A* search to breadth-first search (BFS). With an
admissible heuristic, A* search is guaranteed to always find
B* before other sub-optimal feasible bases (see [6] for the
proof). Algorithm 2 describes the heuristic h;,s used in [6].

Intuitively, the algorithm for A, s removes a sequence of
bases in the first round of iteration until a feasible subset
F C C(B) is found. After that, the algorithm iteratively in-
serts each removed basis point s back into F. If the insertion

Require: B
: If f(B) <, return 0.
O « 0.
while f(B) > edo
O+ OUB, B+ 7(C(B)\B).
end while
hins + 0, F + C(B).
for each B € O do
for each s € B do
B+ t(FuU{s}).
if f/(B’) < € then
F «— FU{s}.
12: else
13: Rins < hins + 1, F < F U {s)\B.
14: end if
15: end for
16: end for
17: return h;,.
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of s makes F infeasible, 7(F U {s}) is removed from the
expanded F and the heuristic value h;, is increased by 1.

The admissibility of h;,s is proved in [6, Theorem 4]. In
brief, denote F* as the largest feasible subset of C(B). If
F U {s} is infeasible, 7(F U {s}) must contain at least one
point in F*. Since we only add 1 to h;,,s when this happens,
then h*(B) > hins(B).

2.4. Avoiding redundant node expansions

Algorithm 1 employs two strategies to avoid redundant
node expansions. In Line 8, before expanding B, a fast
heuristic called True Outlier Detection (TOD) [6] is used to
attempt to identify and remove true outliers from B (more
details in Sec. 4), which has the potential to reduce the size
of the branch starting from 5. In Line 10, a repeated basis
check heuristic is performed to prevent bases that have been
explored previously to be considered again (details in Sec. 3).

Our main contributions are two new strategies that im-
prove upon the original methods above, as we will describe
in Secs. 3 and 4. In each of the sections, we will first carefully
analyze the weaknesses of the existing strategies. Sec. 5 will
then put our new strategies in an overall algorithm. Sec. 6
presents the results.

3. Non-adjacent path avoidance

Recall Definition 4 on adjacency: for B and B’ to be
adjacent, their violation sets V(B8) and V(B’) must differ by
one point; in other words, it must hold that

[1(B") = (B)| = 1. ®)

Given a B, Line 12 in Algorithm 1 generates an adjacent
“child” basis of B by removing a point s from B and solving



(a) Root node Bioot-

(b) Level-1 node B.

(c) Level-1 node B. s2 € C(B).
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Figure 1. (a—c) Path between non-adjacent bases (B — B’). B’ can be generated from both 13 and B,..:, but it is not adjacent to B since
[(B") = I(B). Note that Line 10 in Algorithm 1 cannot avoid this non-adjacent path since V(B') U {s2} = {s1,s2} # V(B') = {s1}.
Panel (d) shows the relationship between the three bases during tree search. In the proposed Non-Adjacent Path Avoidance (NAPA) strategy,
the path drawn in red is not followed. As we will show in Sec. 6, this simple idea provides a massive reduction in runtime of A* tree search.

the minimax problem (4) on C(88)\{s}. In this way,
I(B) = 1(B) +1. )

Iterating the s to be removed thus generates all the adjacent
child bases of BB, which allows the tree to be explored.

However, an important phenomenon that is ignored in
Algorithm 1 is, while the above process generates all the
adjacent child bases of B, not all B' generated in the pro-
cess are adjacent child bases. Figure 1 shows a concrete
example from line fitting (2): from a root node B¢, two
child bases BB and B’ are generated by respectively removing
points s, and s;. However, by further removing s; from 5
and solving (4) on C(B\ {s1}), we obtain B’ again! Since
[(B") = I(B), these two bases are not adjacent.

In general, non-adjacent paths occur in Algorithm 1 when
some elements of V(B) are in C(B') after solving the mini-
max problem on C(B \ {s}). While inserting a non-adjacent
B’ into the queue does not affect global optimality, it does
reduce efficiency. This is because the repeated basis check
heuristic in Algorithm 1 assumes that the level of the child
node B’ is always lower than the parent /3 by 1; this assump-
tion does not hold if the generated basis B’ is not adjacent.
More formally, if B’ is not adjacent to 53, then

V(B) U{s} # V(B') (10)

and the repeated basis check in Line 8 in Algorithm 1 fails.
Since the same B’ could be generated from its “real” parent
(e.g., in Figure 1, B’ was also generated by B,.,0¢), the same
basis can be inserted into the queue more than once.

Since tree search only needs adjacent paths, we can safely
skip traversing any non-adjacent path without affecting the
final solution. To do this, we propose a Non-Adjacent Path
Avoidance (NAPA) strategy for A* tree search; see Fig. 1(d).
Given a basis B, any non-adjacent basis generated from it
cannot have a level that is higher than [(B). Therefore, we
can simply discard any newly generated basis B’ (Line 12) if
[(B") < I(B). Though one redundant minimax problem (4)

B B, =1{s:}) B (S5 = {s1,5})
Bf/ fl'\/% )X{S\Bg /El/{?\)\g\[)’g
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(a) TOD (b) DIBP

Figure 2. (a) In TOD, on current node B, if s2 is identified as the
true outlier, then the shortest path towards a feasible basis B must
pass through sz (path rendered in red). All the the other |B| — 1
branches (leading from s; and s3 in this example) can be skipped.
(b) In DIBP, instead of attempting to identify a single true outlier, a
group Sp that contains at least one true outlier (Sg = {s1,s2} in
this example) is identified; if this is successful, the other |B| — |Sz|
paths (corresponding to s3 in this example) can be skipped. DIBP
is more effective than TOD because it is easier to reject a subset
than a single point as outlier; see Sec. 4.2 for details.

still needs to be solved when finding B’, a much larger cost
for computing e(5’) (which requires to solve multiple prob-
lems (4)) is saved along with all the computation required
for traversing the children of B’. The effectiveness of this
strategy will be demonstrated later in Sec. 6.

4. Dimension-insensitive branch pruning

Our second improvement to A* tree search lies in a
new branch pruning technique. We first review the origi-
nal method (TOD) and then describe our new technique.

4.1. Review of true outlier detection (TOD)

Referring to Line 8 in Algorithm 1 [6], let F* be the
largest feasible subset of C(B). A point s € B is said to be
a true outlier if s ¢ F*, otherwise we call it a true inlier.
Given an infeasible node B, one of the elements in 5 must
be a true outlier. The goal of TOD is to identify one such
true outlier in B. If s € B is successfully identified as a



true outlier, we can skip the child generation for all the other
points in B without hurting optimality, since s must be on
the shortest path to feasibility via B; see Fig. 2(a). If such
an s can be identified, the reduced subset B, is simply {s}.

The principle of TOD is as follows: define h*(B|s) as the
minimum number of data points that must be removed from
C(B) to achieve feasibility, with s forced to be feasible. We
can conclude that s € B is a true outlier if and only if

h*(Bls) > h*(B); (11)

see [6] for the formal proof. Intuitively, if s is a true inlier,
forcing its feasibility will not change the value of A*. On
the other hand, if forcing s to be feasible leads to the above
condition, s cannot be a true inlier.

Bound computation for TOD. Unsurprisingly 7*(B]s) is
as difficult to compute as h*(B). To avoid directly comput-
ing h*(B|s), TOD computes an admissible heuristic ~(5]s)
of h*(B|s) and an upper bound g(1) of L*(B). Givens € B,
h(B|s) and g(B), if

h(Bls) > g(B), (12)
then it must hold that
W*(Bls) > h(Bls) > g(B) > h*(B), (13

which implies that s is a true outlier.

As shown in [6], g(B) can be computed as a by-product
of computing h;,s(B), and h(B|s) is computed by a con-
strained version of h;,s, which we denote as h;,s(B|s).
Computing h;,s(B]s) is done by the constrained version
of Algorithm 2, where all minimax problems (4) required to
solve are replaced by their constrained versions, which are
in the following form:

minimize a 0ls; 14a
1 max r(0]s;), (14a)

s.t. r(0]s;) <€, V¥sj €S (14b)

The only difference between (14) and (4) is the constraint
that all data in S’ must be feasible. And similar to (4), (14)
is also an LP-type problem which can be solved by standard
solvers [10]. Similar as in (4) we also define f(S'|S’) as
the minimum objective value of (14) and 6(S'|S’) as the
corresponding optimal solution.

With the above definition, changing Algorithm 2 to its
constrained version can be simply done by replacing f(B)
(Line 3) and f(B’) (Line 10) by f(B|{s}) and f(B'|{s}).

Why is TOD ineffective? The effectiveness of TOD in
accelerating Algorithm 1 depends on how frequent TOD
can detect a true outlier. When a true outlier for B is de-
tected, TOD prunes || — 1 branches; on the flipside, if TOD
cannot identify an s € B as the true outlier, the runtime to
compute h;ys(B]s) will be wasted. In the worst case where

no true outlier is identified for 53, Algorithm 2 has to be
executed redundantly for |B| times. Whether TOD can find
the true outlier is largely decided by how well h,s(B|s)
approximates h*(B|s).

We now show that h;,,s(B]s) is usually a poor estimator
of h*(B|s). Define O*(B|s) as the smallest subset that must
be removed from C(B)\s to achieve feasibility, with s forced
to be feasible, i.e., |O*(B|s)| = h*(B]|s). Then, hi,s(B|s)
and h* (B|s) will be different if a basis B;,, removed during
Algorithm 2 contains multiple elements in O*(B]s), since
we only add 1 to h;,s when actually more than 1 points in
Bi-em should be removed. And the following lemma shows
that the difference between h;,,s(B|s) and h*(B|s) will be
too large for TOD to be effective if the rate of true outliers

inC(B), i.e., %, is too large.

Lemma 1. Condition (12) is always false when

IC(B)| -1
B -

h*(B) _ 1.
cB) = o

where ¢ is the average size of all B,¢,, during Algorithm 2.

15)

Proof. Since h;,s(B|s) is the number of B;...,, during Algo-
rithm 2, h;p,5(Bls) - ¢ < |C(B)\{s}| = |C(B)| — 1. Hence,

-1
hins(Bls) < CEN =L (16)
¢
Therefore, condition (12) can never be true if
-1
h(s) > CBIZL a7
(0
Dividing both sides of (17) by C(B) leads to (15). O

Intuitively, when (15) happens, there are too many out-
liers in C(13) hence too many B,..,, that include multiple ele-
ments in O*(B|s), making h;,s(B|s) too far from h*(B|s).

In addition, ¢ is positively correlated with d, and in the
worst case can be d + 1, which makes TOD sensitive to d.
Figure 3 shows the effectiveness of TOD as a function of
d, for problems with linear residual (2). As can be seen,
the outlier rate where TOD can be effective reduces quickly
with d (< 15% when d > 7). Note that since g(13) is only an
estimation of h* (B), the actual range where TOD is effective
can be smaller than the region above the dashed line.

4.2. New pruning technique: DIBP

Due to the above limitation, TOD is often not effective in
pruning; the cost to carry out Line 8 in Algorithm 1 is thus
usually wasted. To address this issue, we propose a more
effective branch pruning technique called DIBP (dimension-
insensitive branch pruning).

DIBP extends the idea of TOD, where instead of search-
ing for one true outlier, we search for a subset Sg of B that
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Figure 3. Effectiveness of TOD as a function of d. All problem
instances are generated randomly and each solid curve contains
data with true outlier rates hc*(g) from 0 to 90%. Note that (15) is
true for a d when the solid curve for the d is below the dashed line.

150 || Pins(B|Br)

6 7

2 3

4 5
1B, |
Figure 4. Effectiveness of DIBP when d = 8. |C(B)| = 200.
hins(B|SB) increases stably along with |Sg| and is effective even
when the true outlier rate is 90%. Though only the 50% case
is shown, changing the outlier rate in practice merely affects the

values of hins(B|Sg) as long as the data distribution is similar.

must contain at least one true outlier. If such a subset can
be identified, the children of B corresponding to removing
points not in Sg can be ignored during node expansion—
again, this is because the shortest path to feasibility via B
must go via Sp; Fig. 2(b) illustrates this idea.

To find such an Sp, we greedily add points from B into
Sp to see whether enforcing the feasibility of Sg contradicts
the following inequality

which is the extension of (12), with A = h;,s. Similar
t0 Nins(BIS), hins(B|Si) is computed by the constrained
version of Algorithm 2 with 8’ = Sg in problem (14).

The insight is that by adding more and more constraints
into problem (14), the average basis size ¢ will gradually
reduce, making the right hand side of (15) increase until it
exceeds the left hand side, so that even with large d, branch
pruning will be effective with high true outlier rate. Fig-
ure 4 shows the effectiveness of DIBP for an 8§-dimensional
problem with linear residuals. Observe that h;,s(B|Sg) in-
creases steadily along with |Sg| and can tolerate more than
90% of true outliers when |Sg| = |B] — 1 = 8.

During DIBP, we want to add true outliers into Sp as soon
as possible, since (18) can never be true if Sp contains no
true outliers. To do so, we utilize the corresponding solution

04(5) that leads to g(B). During DIBP, the s € B with the
largest residual 7(0(;3)|s) will be added into Sp first, since
a larger residual means a higher chance that s is a true outlier.
In practice, this strategy often enables DIBP to find close to
minimal-size Sg.

For problems with linear residuals, we can further com-
pute an adaptive starting value z(B) of |Sg|, where DIBP
can safely skip the first z(13) —1 computations of h;,, s (B|Sg)
without affecting the branch pruning result. The value of
z(B) should be max{1,d + 2 — m}. The reason is

9(B)
demonstrated in the following lemma:

Lemma 2. For problems with linear residuals, (18) cannot
be true unless

IC(B)| —1
Sp|>d+1 - 272 (19)
i 4(8)
Proof. As in (16), we have h;,s(B|Sp) < IC(BdZ‘*l. To
ensure that (18) can be true, we must have g(B) < ‘C(qu‘fl,
which we rewrite as
IC(B)| -1
< —" (20)
¢ 9(B)

And for problems with linear residuals, (14) with S’ = Sg is
a linear program, whose optimal solution resides at a vertex
of the feasible polytope [19, Chapter 13]. This means that
for problem (14), the basis size plus the number of active
constraints at the optimal solution must be d + 1. And
since each absolute-valued constraint in (14b) can at most
contribute one active linear constraint, the maximum number
of active constraints is |Sg|. Thus during the computation
of hins(B|Sp), the average basis size ¢ > d + 1 — |Sg|.
Substituting this inequality into (20) results in (19). O

5. Main algorithm

Algorithm 3 summarizes the A* tree search algorithm
with our new acceleration techniques. A reordering is done
so that cheaper acceleration techniques are executed first.
Specifically, given the current basis B, we iterate through
each element s € B and check first whether it leads to a
repeated adjacent node and skip s if yes (Line 8). Otherwise,
we check whether the node B’ generated by s is non-adjacent
to B and discard B’ if yes (Line 11). If not, we insert 3/
into the queue since it cannot be pruned by other techniques.
After that, we perform DIBP (Line 14) and skip the other
elements in B3 if condition (18) is satisfied. Note that we can
still add s into Si even though it leads to repeated bases.
This strategy makes DIBP much more effective in practice.

6. Experiments

To demonstrate the effectiveness of our new techniques,
we compared the following A* tree search variants:



Algorithm 3 A* tree search with NAPA and DIBP
Require: S = {s;}¥,, threshold e.
1: Insert B = 7(S) with priority e(B) into queue q.
2: Initialize hash table 7" to NULL.
3: while ¢ is not empty do
4: Retrieve from ¢ the B with the lowest e(B).
5 If f(B) < e then return B* = B.
6: Si <+ 0; Sort B descendingly based on 7(0y(z)|s).
7
8
9

for eachs € Bdo
if indices of V(B) U {s} do not exist in 7" then
: Hash indices of V(BB) U {s} into T.
10: B« 7(C(B)\{s}).

11 if [(B') > I(B) then.

12: Sp «+— S U {S}

13: Insert B’ with priority e(5’) into g.

14: If |Sp| = |B| Vv (18) is true then break.
15: end if

16: else

17: S+ S U {S}

18: end if

19: end for

20: end while
21: Return error (no inlier set of size greater than p).

Original A* tree search (A*) [5].

A* with TOD for branch pruning (A*-TOD) [6].

A* with non-adjacenct path avoidance (A*-NAPA).
A*-NAPA with TOD branch pruning (A*-NAPA-TOD).
A*-NAPA with DIBP branch pruning (A*-NAPA-DIBP).

All variants were implemented in MATLAB 2018b, based
on the original code of A*. For problems with linear resid-
uals, we use the self-implemented vertex-to-vertex algo-
rithm [3] to solve the minimax problems (4) and (14). And
in the non-linear case, these two problems were solved by
the matlab function fminimax. All experiments were exe-
cuted on a laptop with Intel Core 2.60GHz i7 CPU, 16GB
RAM and Ubuntu 14.04 OS.

6.1. Controlled experiment on synthetic data

To analyze the effect of 0 and N to different methods,
we conducted a controlled experiment on the 8-dimensional
robust linear regression problem with different N and o.
The residual of linear regression is in the form of (2). To
generate data S = {a;,b;}Y,, a random model € R?
was first generated and N data points that perfectly fit the
model were randomly sampled. Then, we randomly picked
N — o points as inliers and assigned to the b; of these points
noise uniformly distributed between [—0.1,0.1]. Then we
assigned to the other o points noise uniformly distributed
from [—5,—0.1) U (0.1, 5] to create a controlled number of
outliers. The inlier threshold € was set to 0.1.

To verify the superior efficiency of tree search com-
pared to other types of globally optimal methods, we also
tested the Mixed Integer Programming-based BnB algorithm
(MIP) [28] in this experiment. The state-of-the-art Gurobi
solver was used as the optimizer for MIP. MIP was par-
allelized by Gurobi using 8 threads, while all tree search
methods were executed sequentially.

As shown in Figure 5, all A* tree search variants are much
faster than MIP, even though MIP was significantly acceler-
ated by parallel computing. Both NAPA and DIBP brought
considerable acceleration to A* tree search, which can be
verified by the gaps between the variants with and without
these techniques. Note that when N = 200, A*-NAPA had
similar performance with and without TOD, while DIBP
provided stable and significant acceleration for all data.

Interestingly, having a larger N made A* tree search
efficient for a much larger o. This can be explained by
condition (15). With the same o, a larger N meant a lower
true outlier rate, which made (15) less likely.

6.2. Linearized fundamental matrix estimation

Experiments were also conducted on real data. We ex-
ecuted all tree seach variants for linearized fundamental
matrix estimation [6], which used the algebaric error [13,
Sec.11.3] as the residual and ignored the non-convex rank-
2 constraints. 5 image pairs (the first 5 crossroads) were
selected from the sequence 00 of the KITTI Odometry
dataset [12]. For each image pair, the input was a set of
SIFT [17] feature matches generated using VLFeat [27].
The inlier threshold € was set to 0.03 for all image pairs.

The result is shown in Table 1. We also showed the
number of unique nodes (NUN) generated and the num-
ber of branch pruning steps (NOBP) executed before the
termination of each algorithm. A*-NAPA-DIBP found the
optimal solution in less than 10s for all data, while A* and
A*-TOD often failed to finish in 2 hours. A*-NAPA-DIBP
was faster by more than 500 times on all data compared
to the fastest method among A* and A*-TOD. For the ef-
fectiveness of each technique, applying NAPA to A* of-
ten resulted in more than 10x acceleration. And applying
DIBP further sped up A*-NAPA by more than 1000x on
challenging data (e.g. Frame-198-201). This signifi-
cant acceleration is because many elements in S were the
ones that led to redundant nodes, which made most non-
redundant paths effectively pruned. TOD was much less ef-
fective than DIBP and introduced extra runtime to A*-NAPA
onFrame-104-108 and Frame—-198-201. We also at-
tached op s, the estimated number of outliers returned from
LO-RANSAC [8], which is an effective RANSAC variant.
None of the LO-RANSAC results were optimal. A visual-
ization of the tree search result is shown in Figure 6.
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Figure 6. (Top) Fundamental matrix estimation result
70 of A*-NAPA-DIBP on Frame-738-742. (Bottom)

Homography estimation result of A*-NAPA-DIBP on

data BruggeTower. The inliers (in green) in the top
figure were down-sampled to 100 for clarity.

data Frame-104-108 Frame-198-201 Frame-417-420 Frame-579-582 Frame-738-742
d=8 0=13 (oLrs = 23); N = 302 0=13 (oLrs = 19); N = 309 0=19 (oLrs = 23); N = 385 0 =22 (oLrs = 25); N = 545 0=14 (oLrs = 32); N = 476
NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)
A* 163232/0 > 6400 169369/0 > 6400 144560/0 > 6400 136627/0 > 6400 160756/0 > 6400
A*-TOD 134589/119871 > 6400 129680/126911 > 6400 80719/92627 3712.99 55764/58314 2709.21 49586/50118 1729.34
A*-NAPA 35359/0 561.81 2377510 351.07 175806/0 5993.68 147200/0 > 6400 2957410 471.15
A*-NAPA-TOD 33165/22275 770.08 19308/13459 451.39 15310/10946 429.06 15792/12073 576.82 14496/10752 373.36
A*-NAPA-DIBP 205/311 7.63 105/160 3.88 172216 6.85 60/84 3.49 52177 2.00
A*-NAPA-DIBP vs | best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by
previous best method A*/A*-TOD > 839x A*/A*-TOD > 1648x A*-TOD 541x A*-TOD 775x A*-TOD 864x
The names of the data are the image indices in the sequence. or rs is the estimated

Table 1. Linearized fundamental matrix estimation result.

outlier number returned by LO-RANSAC. NUN: number of unique nodes generated. NOBP: number of branch pruning steps executed. The
last row shows how much faster A*-NAPA-DIBP was, compared to the fastest previously proposed variants (A* and A*-TOD).

data Adam City Boston Brussels BruggeTower
d=38 0 =38 (oLrs =40); N = 282 0=19 (oLrs = 22); N = 87 0 =43 (oLrs = 44); N = 678 0=9(oLrs =25); N =231 0=17 (orLrs = 26); N = 208
NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s) NUN/NOBP runtime (s)
A* 224/0 53891 7072/0 > 6400 406/0 2455.03 397/0 437.25 5003/0 > 6400
A*-TOD 38/37 156.98 462/514 910.51 716 74.63 359/281 499.77 333/260 298.39
A*-NAPA 168/0 404.77 6481/0 > 6400 234/0 1284.14 264/0 268.85 3731/0 4740.68
A*-NAPA-TOD 38/37 156.98 286/241 485.36 716 74.63 249/191 29791 201/151 161.95
A*-NAPA-DIBP 38/37 156.98 34/40 64.44 716 74.63 30/42 50.13 40/48 68.20
A*-NAPA-DIBP vs | best previous method faster by best previous method faster by best previous method faster by best previous method faster by best previous method faster by
previous best method A*-TOD same runtime A*-TOD 13.1x A*-TOD same runtime A* 7.7x A*-TOD 3.4x
NUN: number of unique nodes

Table 2. Homography estimation result. or rs is the estimated outlier number returned by LO-RANSAC.

generated. NOBP: number of branch pruning steps executed. The last row shows how much faster A*-NAPA-DIBP was, compared to the

fastest previously proposed variants (A* and A*-TOD).

6.3. Homography estimation (non-linear)

To test all methods on non-linear problems, another exper-
iment for homography estimation [13] was done on “homogr”
dataset!. As before, we picked 5 image pairs, computed the
SIFT matches and used them as the input data. The transfer
error in one image [13] was used as the residual, which was
in the form of (3). € was set to 4 pixels.

Table 2 shows the result of all methods. Compared to
the linear case, solving non-linear minimax problems (4)
and (14) was much more time-consuming (can be 100x
slower with fminimax). Thus with similar NUN and
NOBP, the runtime was much larger. However, the value
of ¢ in the non-linear case was usually also much smaller,
which made the heuristic h;,s and in turn all branch prun-

ing techniques much more effective than in the linear case.
And for easy data such as Boston and Adam, perform-

Inttp://cmp. felk.cvut.cz/data/geometry2view/
index.xhtml

ing either TOD or DIBP was enough to achieve the highest
speed. Nonetheless, DIBP was still much more effective
than TOD on other data. And DIBP never slowed down the
A* tree search as TOD sometimes did (e.g., in Brussels).
A*-NAPA-DIBP remained fastest on all image pairs. An
example of the visual result is provided in Figure 6.

7. Conclusion

We presented two new acceleration techniques for con-
sensus maximization tree search. The first avoids redundant
non-adjacent paths that exist in the consensus maximiza-
tion tree structure. The second makes branch pruning much
less sensitive to the problem dimension, and therefore much
more reliable. The significant acceleration brought by the
two techniques contributes a solid step towards practical and
globally optimal consensus maximization.

Acknowledgements. We thank Dr. Nan Li for his valu-

able suggestions.
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Chapter 6

Practical Optimal Registration of
Terrestrial LIDAR Scan Pairs

The work contained in this chapter has been published as the following papers

Zhipeng Cai, Tat-Jun Chin, Alvaro Parra Bustos, Konrad Schindler: Practical Optimal
Registration of Terrestrial LIDAR Scan Pairs. ISPRS Journal of Photogrammetry and
Remote Sensing 2019.

71






Statement of Authorship

Title of Paper

Practical Optimal Registration of Terrestrial LIDAR Scan Pairs

Publication Status

[/ Published [ Accepted for Publication

r Unpublished and Unsubmitted work written in

[ Submitted for Publication manuscript style

Publication Details

Cai, Zhipeng, Tat-Jun Chin, Alvaro Parra Bustos, and Konrad Schindler. "Practical optimal
registration of terrestrial LIDAR scan pairs." ISPRS journal of photogrammetry and remote
sensing 147 (2019): 118-131.

Principal Author

Name of Principal Author (Candidate)

Zhipeng Cai

Contribution to the Paper

Proposing the main idea. Conducting experiments. Paper writing.

Overall percentage (%)

55%

Certification:

This paper reports on original research | conducted during the period of my Higher Degree by
Research candidature and is not subject to any obligations or contractual agreements with a
third party that would constrain its inclusion in this thesis. | am the primary author of this paper.

Signature

Date 16/2/2020

Co-Author Contributions

By signing the Statement of Authorship, each author certifies that:

i the candidate’s stated contribution to the publication is accurate (as detailed above);

ii. permission is granted for the candidate in include the publication in the thesis; and

iii. the sum of all co-author contributions is equal to 100% less the candidate’s stated contribution.

Name of Co-Author

Tat-Jun Chin

Contribution to the Paper

Providing major discussions and suggestions about the method and experiments. Modifications
of the paper draft.

Signature

| bae [15/2/2020

Name of Co-Author

Alvaro Parra Bustos

Contribution to the Paper

Providing suggestions and important source code during the experiment.

Signature

[oate | 16/2/2020




Name of Co-Author

Konrad Schindler

Contribution to the Paper

Providing discussions and suggestions about the method and experiments. Modifications of the

paper draft.

Signature

| pate [17/02/2020




arXiv:1811.09962v3 [cs.CV] 30 Nov 2018

Practical optimal registration of terrestrial LIDAR scan pairs
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Abstract

Point cloud registration is a fundamental problem in 3D scanning. In this paper, we address the frequent
special case of registering terrestrial LIDAR, scans (or, more generally, levelled point clouds). Many current
solutions still rely on the Iterative Closest Point (ICP) method or other heuristic procedures, which require
good initializations to succeed and/or provide no guarantees of success. On the other hand, exact or optimal
registration algorithms can compute the best possible solution without requiring initializations; however,
they are currently too slow to be practical in realistic applications.

Existing optimal approaches ignore the fact that in routine use the relative rotations between scans are
constrained to the azimuth, via the built-in level compensation in LiDAR scanners. We propose a novel,
optimal and computationally efficient registration method for this 4DOF scenario. Our approach operates on
candidate 3D keypoint correspondences, and contains two main steps: (1) a deterministic selection scheme
that significantly reduces the candidate correspondence set in a way that is guaranteed to preserve the
optimal solution; and (2) a fast branch-and-bound (BnB) algorithm with a novel polynomial-time subroutine
for 1D rotation search, that quickly finds the optimal alignment for the reduced set. We demonstrate the

practicality of our method on realistic point clouds from multiple LiDAR surveys.

Keywords: Point cloud registration, exact optimization, branch-and-bound.

1. Introduction

LiDAR scanners are a standard instrument in con-
temporary surveying practice. An individual scan
produces a 3D point cloud, consisting of densely sam-
pled, polar line-of-sight measurements of the instru-
ment’s surroundings, up to some maximum range.
Consequently, a recurrent basic task in LiDAR sur-
veying is to register individual scans into one big
point cloud that covers the entire region of interest.
The fundamental operation is the relative alignment

*Corresponding author
Email addresses: zhipeng.cai@adelaide.edu.au
(Zhipeng Cai), tat-jun.chin@adelaide.edu.au (Tat-Jun
Chin), alvaro.parrabustos@adelaide.edu.au (Alvaro Parra
Bustos), schindler@ethz.ch (Konrad Schindler)

Preprint submitted to ISPRS Journal of Photogrammetry and Remote Sensing

of a pair of scans. Once this can be done reliably,
it can be applied sequentially until all scans are reg-
istered; normally followed by a simultaneous refine-
ment of all registration parameters.

Our work focuses on the pairwise registration:
given two point clouds, compute the rigid transfor-
mation that brings them into alignment. Arguably
the most widely used method for this now clas-
sical problem is the ICP (Iterative Closest Point)
algorithm (Besl and McKay, 1992; Rusinkiewicz
and Levoy, 2001; Pomerleau et al., 2013), which
alternates between finding nearest-neighbour point
matches and updating the transformation parame-
ters. Since the procedure converges only to a local
optimum, it requires a reasonably good initial regis-
tration to produce correct results.

December 3, 2018



Existing industrial solutions, which are shipped
either as on-board software of the scanner itself,
or as part of the manufacturer’s offline processing
software (e.g., Zoller + Frohlich!, Riegl?, Leica?),
rely on external aids or additional sensors. For in-
stance, a GNSS/IMU sensor package, or a visual-
inertial odometry system with a panoramic cam-
era (Houshiar et al., 2015) setup, to enable scan reg-
istration in GNSS-denied environments, in particular
indoors and under ground. Another alternative is to
determine the rotation with a compass, then perform
only a translation search, which often succeeds from a
rough initialisation, such as setting the translation to
0. Another, older but still popular approach is to in-
stall artificial targets in the environment (Akca, 2003;
Franaszek et al., 2009) that act as easily detectable
and matchable “beacons”. However, this comes at
the cost of installing and maintaining the targets.

More sophisticated point cloud registration tech-
niques have been proposed that are not as strongly
dependent on good initializations, e.g., (Chen et al.,
1999; Drost et al., 2010; Albarelli et al., 2010; Theiler
et al., 2014, 2015). These techniques, in particular
the optimization routines they employ, are heuristic.
They often succeed, but cannot guarantee to find
an optimal alignment (even according to their own
definition of optimality). Moreover, such methods
typically are fairly sensitive to the tuning of some-
what unintuitive, input-specific parameters, such as
the approximate proportion of overlapping points in
4PCS (Aiger et al., 2008), or the annealing rate of
the penalty component in the lifting method of (Zhou
et al., 2016). In our experience, when applied to new,
unseen registration tasks these methods often do not
reach the performance reported on popular bench-
mark datasets?®.

In contrast to the locally convergent algorithms

https://www.zf-laser.com/Z-F-LaserControl-
R.laserscanner_software_1.0.html7&L=1

2http://www.riegl.com/products/software-packages/
risolve/

Shttps://leica-geosystems.com/products/laser-
scanners/software/leica-cyclone

4For example, the Stanford 3D Scanning Repository (Turk
and Levoy, 1994).

and heuristics above, optimal algorithms have been
developed for point cloud registration (Breuel, 2001;
Yang et al., 2016; Campbell and Petersson, 2016;
Parra Bustos et al., 2016). Their common theme is
to set up a clear-cut, transparent objective function
and then apply a suitable exact optimization scheme
— often branch-and-bound type methods — to find
the solution that maximises the objective function®.
It is thus ensured that the best registration param-
eters (according to the adopted objective function)
will always be found. Importantly, convergence to
the optimal value independent of the starting point
implies that these methods do not require initializa-
tion. However, a serious limitation of optimal meth-
ods is that they are computationally much costlier
(due to NP-hardness of most of the robust objec-
tive functions used in point cloud registration (Chin
et al., 2018)), but also by the experiments in previ-
ous literatures, e.g., more than 4 h for only ~ 350
points in (Parra Bustos et al., 2016), and even longer
in (Yang et al., 2016). This makes them impractical
for LiDAR surveying.

1.1. Our contributions

In this work, we aim to make optimal registration
practical for terrestrial LiDAR scans.

Towards that goal we make the following observa-
tions:

e Modern LiDAR devices are equipped with a
highly accurate® level compensator, which re-
duces the relative rotation between scans to the
azimuth; see Figure 1. In most applications the
search space therefore has only 4 degrees of free-
dom (DOF) rather than 6. This difference is sig-
nificant, because the runtime of optimal methods

5As opposed to approximate, sub-optimal, or locally opti-
mal solutions with lesser objective values than the maximum
achievable.

6The tilt accuracy is 0.002° (see page 2 of
http://www.gb-geodezie.cz/wp-content/uploads/2016/
01/datenblatt_imager_5006i.pdf) for the Zoller&Frohlich
Imager 50061 used to capture datasets in our experiment.
Similar accuracy can be found in scanners from other compa-
nies, e.g., 7.275e-6 radians for the Leica P40 tilt compensator
(see page 8 of https://www.abtech.cc/wp-content/uploads/
2017/04/Tilt_compensation_for_Laser_Scanners_WP.pdf).
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Figure 1: 4DOF registration of two LiDAR scans (blue and
red). The level compensator forces scanners to rotate around
the vertical axis, resulting in the azimuthal relative rotation.

grows very quickly with the problem dimension,
see Figure 2.

e A small set of correspondences, i.e., correct point
matches referring to close enough locations in
the scene, is sufficient to reliably estimate the
relative sensor pose, see Figure 2. The prob-
lem of match-based registration methods is nor-
mally not that there are too few correspondences
to solve the problem; but rather that they are
drowned in a large number of incorrect point
matches, because of the high failure rate of ex-
isting 3D matching methods. The task would be
a lot easier if we had a way to discard many false
correspondences without losing true ones.

On the basis of these observations we develop a
novel method for optimal, match-based LiDAR reg-
istration, that has the following main steps:

e Instead of operating directly on the input match
set, a fast deterministic preprocessing step is ex-
ecuted to aggressively prune the input set, in a
way which guarantees that only false correspon-
dences are discarded. In this way, it is ensured
that the optimal alignment of the reduced set
is the same as for the initial, complete set of
matches.

e A fast 4ADOF BnB algorithm is then run on
the remaining matches to compute the optimal
alignment parameters. Our BnB algorithm con-
tains a deterministic polynomial-time subroutine
for 1IDOF rotation search, which accelerates the
optimization.

Figure 2 illustrates our approach. As suggested in
the figure and by our comprehensive testing (see Sec-
tion 6), our approach significantly speeds up optimal
registration and makes it practical for realistic Li-
DAR surveying tasks. For example, on the Arch”
dataset, it is able to accurately register all 5 scans in
around 3 min without any initializations to the reg-
istration; see Figure 3.

Please visit our project homepage® for the video
demo and source code.

2. Related work

Point-based registration techniques can be broadly
categorized into two groups: methods using “raw”
point clouds, and methods using 3D point matches.
Since our contribution belongs to the second group,
we will focus our survey on that group. Nonetheless,
in our experiments, we will compare against both raw
point cloud methods and match-based methods.

Match-based methods first extract a set of can-
didate correspondences from the input point clouds
(using feature matching techniques such as (Scovan-
ner et al., 2007; Glomb, 2009; Zhong, 2009; Rusu
et al., 2008, 2009)), then optimize the registration pa-
rameters using the extracted candidates only. Since
the accuracy of 3D keypoint detection and match-
ing is much lower than their 2D counterparts (Harris
and Stephens, 1988; Lowe, 1999), a major concern of
match-based methods is to discount the corrupting
effects of false correspondences or outliers.

A widely used strategy for robust estimation is
Random Sample Consensus (RANSAC) (Fischler and

"http://www.prs.igp.ethz.ch/research/completed_
projects/automatic_registration_of_point_clouds.html

Shttps://github.com/ZhipengCai/Demo---Practical-
optimal-registration-of-terrestrial-LiDAR-scan-pairs



- 99% Olitlier rate

“’ 1. Match generation

2."Match PruninQ

““BnB 4DOF (23. o7s)'~.
RANSAC 4DO (235 50s)" s

—-'.~

‘ , fnB GDOF*

/ / (10minutes

3. BnB 4DOF (0.725)

4DOF (7.575)

Figure 2: Method illustration. Given 2 point clouds (grey and blue), as shown by the solid arrows, we first generate a set
of matches/candidate correspondences (only a subset is shown for visual clarity), which have both inliers (green) and outliers
(red). The matches are quickly pruned without removing any inliers. Then, we run 4DOF BnB on the remaining matches to
find the optimal solution. The dashed arrows show some alternative optimization choices. Note that our two-step process is
much faster than directly optimising on the initial matches, and also more practically useful than its 6DOF counterpart (Bustos

and Chin, 2017).

Bolles, 1981). However, the runtime of RANSAC in-
creases exponentially with the outlier rate, which is
generally very high in 3D registration,e.g., the input
match set in Figure 2 contains more than 99% out-
liers. More efficient approaches have been proposed
for dealing with outliers in 3D match sets, such as the
game-theoretic method of (Albarelli et al., 2010) and
the lifting optimization method of (Zhou et al., 2016).
However, these are either heuristic (e.g., using ran-
domisation (Albarelli et al., 2010)) and find solutions
that are, at most, correct with high probability, but
may also be grossly wrong; or they are only locally
optimal (Zhou et al., 2016), and will fail when ini-
tialized outside of the correct solution’s convergence
basin.

Optimal algorithms for match-based 3D registra-
tion also exist (Bazin et al., 2012; Bustos and Chin,
2017; Yu and Ju, 2018). However, (Bazin et al.,
2012) is restricted to pure rotational motion, while
the 6DOF algorithms of (Bustos and Chin, 2017; Yu
and Ju, 2018) are computationally expensive for un-
favourable configurations. E.g., (Bustos and Chin,
2017) takes more than 10 min to register the pair of
point clouds in Figure 2.

Recently, clever filtering schemes have been devel-

oped (Svarm et al., 2014; Parra Bustos and Chin,
2015; Chin and Suter, 2017; Bustos and Chin, 2017)
which have the ability to efficiently prune a set of
putative correspondences and only retain a much
smaller subset, in a manner that does not affect the
optimal solution (more details in Section 5). Our
method can be understood as an extension of the 2D
rigid registration method of (Chin and Suter, 2017,
Section 4.2.1) to the 4DOF case.

Beyond points, other geometric primitives (lines,
planes, etc.) have also been exploited for LiDAR
registration (Brenner and Dold, 2007; Rabbani et al.,
2007). By using more informative order structures
in the data, such methods can potentially provide
more accurate registration. Developing optimal reg-
istration algorithms based on higher-order primitives
would be interesting future work.

3. Problem formulation

Given two input point clouds P and Q, we first ex-
tract a set of 3D keypoint matches C = {(p;, q:)},
between P and Q. This can be achieved using fairly
standard means — Section 6.1 will describe our ver-
sion of the procedure. Given C, our task is to estimate



Figure 3: Registration result of our method for Arch dataset. The registration of all five scans (with 15k-20k input point
matches per pair, not shown) takes 187.53s, without requiring manual initializations. Note that our main contribution in this
paper is a fast optimal algorithm for registering LIDAR scan pairs. To register multiple scans (as achieved on the Arch dataset
in this figure), we sequentially register the individual scans; see Section 3.2 for details.

the 4DOF rigid transformation
fp|0:t) =R(O)p+t, (1)

parameterized by a rotation angle 6 € [0,27] and
translation vector t € R3, that aligns as many of the
pairs in C as possible. Note that

cosf sinf O
R(9) = —sinf cosf 0 (2)
0 0 1

defines a rotation about the 3rd axis, which we as-
sume to be aligned with gravity, expressing the fact
that LiDAR scanners in routine use are levelled.”
Since C contains outliers (false correspondences), f
must be estimated robustly. To this end, we seek the
parameters 0,t that maximize the objective

M
E(@,t|C0) =Y T(RO)P: +t—aif| <e), (3)

i=1

9The method is general and will work for any setting that
allows only a 1D rotation around a known axis.

where € is the inlier threshold, and I is an indicator
function that returns 1 if the input predicate is sat-
isfied and 0 otherwise. Intuitively, (3) calculates the
number of pairs in C that are aligned up to distance e
by f(p|6,t). Allowing alignment only up to € is vi-
tal to exclude the influence of the outliers. Note that
choosing the right € is usually not an obstacle, since
LiDAR manufacturers specify the precision of the de-
vice, which can inform the choice of an appropriate
threshold. Moreover, given the fast performance of
the proposed technique, one could conceivably run
multiple rounds of registration with different ¢ and
choose one based on the alignment residuals.

Our overarching aim is thus to solve the optimiza-
tion problem

E* = max E0,t]C,e) (4)
exactly or optimally; in other words we are searching
for the angle and translation vector 6*,t* that yield
the highest objective value E* = E(0*,t* | C,e). We
note that in the context of registration, optimality is
not merely an academic exercise. Incorrect local min-



Algorithm 1 Main algorithm.

Require: Point clouds P and Q with 1D relative
rotation, inlier threshold e.
1: Extract match set C from P and Q (Section 6.1).

2: Prune C into a smaller subset C’ (Section 5).

3: Solve (4) on C’ to obtain registration parameters
0*,t* (Section 4).

4: return Optimal solution 6*,t*.

ima are a real problem, as amply documented in the
literature on ICP and illustrated by regular failures
of the automatic registration routines in production
software.

3.1. Main algorithm

As shown in Algorithm 1, our approach to solve (4)
optimally has two main steps: a deterministic prun-
ing step to reduce C to a much smaller subset C’
while removing only matches that cannot be cor-
rect, hence preserving the optimal solution 6*,t* in
C' (Section 5); and a fast, custom-tailored BnB al-
gorithm to search for 6*,t* in C’ (Section 4). For
better flow of the presentation, we will describe the
BnB algorithm first, before the pruning.

3.2. Registering multiple scans

In some applications, registering multiple scans is
required. For this purpose, we can first perform pair-
wise registration to estimate the relative poses be-
tween consecutive scans. These pair-wise poses can
then be used to initialize simultaneous multi-scan reg-
istration methods like the maximum-likelihood align-
ment of (Lu and Milios, 1997) and conduct further
optimization.

To refrain from further polishing that would obfus-
cate the contribution made by our robust pair-wise
registration, all multi-scan registration results in this
paper are generated by sequential pair-wise registra-
tion only, i.e., starting from the initial scan, incre-
mentally register the next scan to the current one
using Algorithm 1. As shown in Figure 3 and later
in Section 6.2, our results are already promising even
without further refinement.

T

Figure 4: The intersection of circ; and ball;(e). The inter-

section part is rendered in red.

4. Fast BnB algorithm for 4DOF registration

To derive our fast BnB algorithm, we first
rewrite (4) as

Er = max Ut]C,e), (5)

where

U(t |C,e):mgux E0,t]C,e). (6)

It is not hard to see the equivalence of (4) and (5).
The purpose of (5) is twofold:

e As we will see in Section (4.1), estimating 6
giwven t can be accomplished deterministically
in polynomial time, such that the optimization
of 6 can be viewed as “evaluating” the function
U(t|C,e).

e By “abstracting away” the variable 6 as in (5),
the proposed BnB algorithm (Section 4.2) can be
more conveniently formulated as searching over
only the 3-dimensional translation space R3.



4.1. Deterministic rotation estimation

For completeness, the definition of U(t | C,€) is as
follows

M
Ut[Ce) = mgXZH(HR(@)m —ail<e), (7)

where q; = q; — t. Intuitively, evaluating this func-
tion amounts to finding the rotation R(¢) that aligns
as many pairs {(p;,@;)}, as possible.

Note that for each p;, rotating it with R(6) for all
6 € [0,27] forms the circular trajectory

circ; = {R(0)p; | 0 € [0,27]}. (8)

Naturally, circ; collapses to a point if p; lies on the
z-axis. Define

balli(e) = {q € R®| lq — &l < ¢} 9)

as the e-ball centered at q;. It is clear that the pair
(p:i,Q;) can only be aligned by R() if circ; and
ball,(e) intersect; see Figure 4. Moreover, if circ;
and ball;(e) do not intersect, then we can be sure
that the i-th pair plays no role in (7).

For each i, denote

int; = [O&l,ﬁt] C [0,271‘} (10)

as the angular interval such that, for all § € int,,
R(0)p; is aligned with §; within distance e. The lim-
its «; and (; can be calculated in closed form via
circle-to-circle intersections; see Appendix 9.1. Note
that int; is empty if circ; and ball;(e) do not in-
tersect. For brevity, in the following we take all int;
to be single intervals. For the actual implementation,
it is straight-forward to break int; into two intervals
if it extends beyond the range [0,27]. The function
U(t | C,€) can then be rewritten as

M
Ut|C,e) = mngH(e €lai, Bi]),  (11)

=1

which is an instance of the maz-stabbing prob-
lem (De Berg et al., 2000, Chapter 10); see Figure 5.
Efficient algorithms for max-stabbing are known, in
particular, the version in Algorithm 5 in the Ap-
pendix runs deterministically in O(M log M) time.
This supports a practical optimal algorithm.

0 27 0

Figure 5: The max-stabbing problem aims to find a vertical
line (defined by angle € in our case) that “stabs” the maximum
number of intervals, e.g., the dashed red line. Note that 0 and
27 refer to the same 1D rotation. To ensure their stabbing
values are equal, if an interval has only one end on one of
these two angles, an extra interval that starts and ends both
at the other angle is added to the input.

4.2. BnB for translation search

In the context of solving (5), the BnB method ini-
tializes a cube Sg in R® that contains the optimal
solution t*, then recursively partitions Sy into 8 sub-
cubes; see Algorithm 2. For each sub-cube S C Sy,
let ts be the center point of S. If tg gives a higher
objective value than the current best estimate t, the
latter is updated to become the former, t + tg; else,
either

e a decision is made to discard S (see below); or

e S is partitioned into 8 sub-cubes and the process
above is repeated.

In the limit, t approaches the optimal solution t*.
Given a sub-cube S and the incumbent solution t,

S is discarded if

TS |Ce<U®|Ce), (12)

where U(S | C,€) calculates an upper bound of U(t |
C,¢) over domain S, i.e.,

U(S|C,6)ZI{1&§X U(t|C,e). (13)
€

The rationale is that if (12) holds, then a solution
that is better than t cannot exist in S. In our work,
the upper bound is obtained as

T(S|Ce)=Ults | C,e+ds), (14)



Algorithm 2 BnB for 4DOF match-based registra-
tion (5).

Require: Initial matches C and the inlier threshold
€.
1: Set the priority queue w to ), Sy < the initial
translation cube, t < tg,.
2: Compute U(Sp | C,€) by Algorithm 5 and insert
(So,U(So | C,€)) into w.
3: while w is not empty do
4: Pop out the cube S with the highest U(S | C, ¢)
from w.
5:  Compute Ul(tg | C,€) by Algorithm 5; If U(ts |
C,e) =U(S|C,e), break.
6: IfU(ts | C,e) > U(t | C,e), t + tg and prune
w according to U(t | C,€).
7. Divide S into 8 sub-cubes {S,}%_; and compute
U(S, | C,€) by Algorithm 5 for all S,.
8. For each S,, if U(S, | C,e) > U(t | C, ), insert
(So, U(S, | C,€)) into w.
9: end while
10: return t.

where dg is half of the diagonal length of S. Note
that computing the bound amounts to evaluating the
function U, which can be done efficiently via max-
stabbing.

The following lemma establishes the validity
of (14) for BnB.

Lemma 1. For any translation cube S C R3,

US|C,e)=U(ts | C,e+ds) > mag Ut |C,e),
(15)

and as S tends to a point t, then

U |Ce) = U(t|Ce). (16)

See Appendix 9.2 for the proofs.

To conduct the search more strategically, in Algo-
rithm 2 the unexplored sub-cubes are arranged in a
priority queue w based on their upper bound value.
Note that while Algorithm 2 appears to be solving
only for the translation t via problem (5), implicitly
it is simultaneously optimizing the angle #: given the

output t* from Algorithm 2, the optimal 8* per the
original problem (4) can be obtained by evaluating
U(t* | C,e€) and keeping the maximizer.

5. Fast preprocessing algorithm

Instead of invoking BnB (Algorithm 2) on the
match set C directly, our approach first executes a
preprocessing step (see Step 2 in Algorithm 1) to re-
duce C to a much smaller subset C’, then runs BnB
on C'. Remarkably. this pruning can be carried out
in such a way that the optimal solution is preserved
inC', ie.,

0%, t* = argmax E(0,t |C,e) = argmax E(0,t|C¢).
0,t 0.t
(17)

Hence, BnB runs a lot faster, but still finds the opti-
mum w.r.t. the original, full match set.

Let Z* be the subset of C that are aligned by 6*,t*,
formally

IR(O)pi +t" —qil| <e V(pi,a) €T7. (18)
If the following condition holds
I*cc' cc, (19)

then it follows that (17) will also hold. Thus, the trick
for preprocessing is to remove only matches that are
in C\ Z*, i.e., “certain outliers”.

5.1. Identifying the certain outliers

To accomplish the above, define the problem
P[k]10:

max 1+ Z [(|R(O)pi +t —ail| <e¢)
€Tk
st [[R(O)pr +t —axl| <e

(20)

where k € {1,..., M}, and J, = {1,..., M} \ {k}.
In words, P[k] is the same problem as the original

10Note that the “1+” in (20) is necessary because we want
the optimal value E; of P[k] to be exactly equal to E* if the
k-th match is an inlier, which is the basis of Lemma 2.



registration problem (4), except that the k-th match
must be aligned. We furthermore define E} as the
optimal value of P[k]; E} as an upper bound on the
value of P[k], such that Ej > E}; and E as a lower
bound on the value of (4), so E < E*. Note that,
similar to E*, E}} can only be obtained by optimal
search using BnB, but we want to avoid such a costly
computation in the pruning stage. Instead, if we have
access to Ej and E (details in Section 5.2), the fol-
lowing test can be made.

Lemma 2. If B, < E, then (pr,qx) is a certain
outlier.

Proof. If (pg,qx) is in Z*, then we must have that
E} = E*, ie., P[k] and (4) must have the same solu-
tion. However, if we are given that E, < E, then

Ef<Ex<E<E" (21)
which contradicts the previous statement. Thus,
(pr, qx) cannot be in Z*. 0

The above lemma underpins a pruning algorithm
that removes certain outliers from C in order to re-
duce it to a smaller subset C’, which still includes
all inlier putative correspondences; see Algorithm 3.
The algorithm simply iterates over k = 1,..., M and
attempts the test in Lemma 2 to remove (pg, qr). At
each k, the upper and lower bound values Ej, and E
are computed and/or refined (details in the following
section). As we will demonstrate in Section 6, Algo-
rithm 3 is able to shrink C to less than 20% of its
original size for practical cases.

5.2. Efficient bound computation

For the data in problem P[k], let them be centered
w.r.t. pr and qg, i.e.,
—q, Vi (22)

P,=Pi— Pk d,=q

Then, define the following pure rotational problem

Olk]:

! i
- — g < .
max 1+ E [([R(0)p; — q;l < 2e¢)

€Tk

(23)

Algorithm 3 Fast match pruning (FMP) for ADOF
registration.

Require: Initial matches C, the inlier threshold e.
1: E+0,C «C.
2: for k=1,..,M do

3:  Compute Ej (Section 5.2).

4: if Ek < E then

5: C «+ C/\(pk, Qk)~

6: else

7 Re-evaluate E using the corresponding solu-

tion of Ej (Section 5.2).

8 end if

9: end for

10: Remove from C’ the remaining (pg,qx) whose
Ek < FE.

11: return C’

We now show that E;, and E in Algorithm 3 can be
computed by solving Q[k], which can again be done
efficiently using max-stabbing (Algorithm 5).

First, we show by Lemma 3 that the value of Q[k]
can be directly used as Ey, i.e., the number of inliers
in Q[k] is an upper bound of the one in P[k].

Lemma 3. If (p;,q;) is aligned by the optimal so-
lution 0F and t} of P[k], (P}, d}) must also be aligned
by 07 in Qlk].

Proof. To align (pk,qr) in P[k], t; must be within
the e-ball centered at qr — R(65)pk, i.e., t}, can be
re-expressed by qi — R(05)pr +t}/, where [[t}/|| <e.
Using this re-expression, when (p;,q;) is aligned by
0; and t}, we have

IR(07)pi + (ar — R(6;)pk + t;) — aill (24)
=[R(O;)p; +t;' —dif <e (25)
=|R(0;)p; — a;ll — lIt3[| < e (26)
=[R(0;)p; — qil — € < e = [[R(0;)p; — qil| < (226%)

(26) and (27) are due respectively to the triangle
inequality'? and to |[t}/|| < e. According to (27),
(p},d}) is also aligned by 65 in Q[k]. O

Uhttps://en.wikipedia.org/wiki/Triangle_inequality



On the other hand, E, the lower bound of E*, can
be calculated using the optimal solution 6, of Q[k].
Specifically, we set ty, =qr— R())px and compute
E=U(ty|C €)= Ef, ti | C', ), directly following
Equation (3).

In this way, evaluating E, and FE takes
O(Mlog M), respectively O(M) time. As Algo-
rithm 3 repeats both evaluations M times, its time
complexity is O(M?2log M).

6. Experiments

The experiments contain two parts, which show
respectively the results on controlled and real-world
data. All experiments were implemented in C++ and
executed on a laptop with 16 GB RAM and Intel Core
2.60 GHz i7 CPU.

6.1. Controlled data

To refer to our fast match pruning step (Algo-
rithm 3), we abbreviate it as FMP in the rest of this
paper. We first show the effect of FMP to the speed
of our method, by comparing

e FMP + BnB: Algorithm 2 with FMP for prepro-
cessing;

e BnB: Algorithm 2 without preprocessing;
e FMP: Algorithm 3;

on data with varied overlap ratios 7. Varying 7
showed the performance for different outlier rates.
And to preserve the effect of feature matching, we
chose to manipulate 7 instead of the outlier rate di-
rectly. 7 was controlled by sampling two subsets from
a complete point cloud (Bunny and Armadillo'? in
this experiment). Each subset contains [ 2] of all
points, and the second subset is displaced relative to
the first one with a randomly generated 4DOF trans-
formation. (3D translation and rotation around the
vertical). Moreover, the point clouds are rescaled to
have an average point-to-point distance of 0.05 m,

2http://graphics.stanford.edu/data/3Dscanrep/

10

and contaminated with uniform random noise of mag-
nitude [0...0.05] m.

Given two point clouds, the initial match set C was
generated (here and in all subsequent experiments)
by

1. Voxel Grid (Lee et al., 2001) down-sampling and
ISS (Zhong, 2009) keypoint extraction;

FPFH feature (Rusu et al., 2009) computation
and matching on keypoints. p; and q; were se-
lected into C if their FPFH features are one of
the A nearest neighbours to each other. Empiri-
cally, A needs to be a bit larger than 1 to generate
enough inliers. We set A = 10 in all experiments.

The inlier threshold € was set to 0.05 m according to
the noise level.

Figure 6 reports the runtime of the three algo-
rithms and the number of matches before and after
FMP, with 7 varied from 0.1 to 0.9. See Table 1 for
the input size. As shown in Figure 6(a) and 6(b), due
to the extremely high outlier rate, BnB was much
slower when 7 is small, whereas FMP + BnB re-
mained efficient for all 7. This significant acceleration
came from the drastically reduced input size (more
than 90% of the outliers were pruned) after execut-
ing FMP (Figure 6(c) and 6(d)), and the extremely
low overhead of FMP.

Note that the data storing order of C was used
as the data processing order (the order of k in the
for-loop of Algorithm 3) in FMP for all registration
tasks in this paper. Though theoretically the data
processing order of FMP does affect the size |C’] of
the pruned match set, in practice, this effect is mi-
nor. To show the stability of FMP under different
data processing orders, we executed FMP 100 times
given the same input match set, but with randomly
shuffled data processing order in each FMP execu-
tion. Figures 6(¢) and 6(f) report the median, mini-
mum and maximum value of |C’| in 100 runs, and the
value of |C’| using the original data storing order as
the data processing order. As can be seen, the value
|C’| is stable across all instances.

To show the advantage of our method, we also
compared it against the following state-of-the-art ap-
proaches, on the same set of data.
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Figure 6: The effect of FMP on data with varied overlapping ratios 7. The runtime of only FMP was reported to show the

portion of runtime in FMP + BnB spending on FMP.

e 4DOF RANSAC (Fischler and Bolles, 1981),
using 2-point samples for 4DOF pose estima-
tion,and with the probability of finding a valid
sample set to 0.9913;

e 4DOF version of the lifting method (LM) (Zhou
et al., 2016), a match-based robust optimization

BC4+4 code in https://bitbucket.org/Zhipeng_Cai/
isprsjdemo/src/default/.
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approach'®. The annealing rate was tuned to 1.1
for the best performance;

e The Game-Theory approach (GTA) (Albarelli
et al., 2010), a fast outlier removal method!?;

1 C4+ implementation based on the code from http://
vladlen.info/publications/fast-global-registration/.

15C+4+ implementation based on the code from http://
www.isi.imi.i.u-tokyo.ac.jp/~rodola/sw.html and http:
//vision.in.tum.de/_media/spezial/bib/cvpri2-code.zip.



Data Bunny Armadillo
T [P] Q [Preyl | [Qreyl | IC] [P Q Preyl | [Qreyl | [C]

0.10 15499 15499 233 140 954 77927 77927 1410 820 5097
0.15 15918 15918 248 139 1019 80033 80033 1478 863 5369
0.20 16360 | 16360 257 147 846 82256 82256 1554 922 5846
0.25 16827 16827 266 153 842 84606 84606 1613 967 6185
0.30 17322 17322 276 155 778 87095 87095 1676 981 6010
0.35 17847 | 17847 290 160 924 89734 89734 1745 1045 6558
0.40 18405 18405 298 173 1011 92538 92538 1809 1083 6744
0.45 18999 18999 307 170 1233 95524 95524 1862 1136 7000
0.50 19632 | 19632 321 175 1270 98708 98708 1923 1140 7417
0.55 20309 20309 332 182 1328 102111 102111 1969 1198 7472
0.60 21034 21034 340 190 1289 105758 105758 2033 1216 7725
0.65 21813 | 21813 348 193 1153 | 109675 | 109675 2053 1284 7957
0.70 22652 22652 380 200 1227 113894 113894 2114 1284 7953
0.75 23558 | 23558 390 205 1231 | 118449 | 118449 2160 1360 8444
0.80 24540 | 24540 400 221 1574 | 123385 | 123385 2253 1407 8741
0.85 25607 25607 413 228 1404 128749 128749 2297 1441 8706
0.90 26771 | 26771 426 227 1466 | 134602 | 134602 2352 1475 8664

Table 1: Size of the controlled data. |P| and |Q]: size of the input point clouds. |Pyey| and |Qpey|: number of keypoints.
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on data with varied overlapping ratios 7.

e Super 4PCS (S4PCS) (Mellado et al., 2014), a The first three approaches are match-based and the

fast 4PCS (Aiger et al., 2008) variant!S.

e Keypoint-based 4PCS (K4PCS) (Theiler et al.,
2014), which applies 4PCS to keypoints'”.

6C++ code from
projects/2014/super4PCS/
7C+4+ code from PCL: http://pointclouds.org/

http://geometry.cs.ucl.ac.uk/
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last two operates on raw point sets (ISS keypoints
were used here). The 4DOF version of RANSAC
and LM were used for a fair comparison, since they
had similar accuracy but were much faster than their
6DOF counterparts. We note that, when working
with levelled point clouds, the translation alone must
already align the z-coordinates of two points up to
the inlier threshold e. This can be checked before
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Figure 8: The log scaled runtime of all methods with (up) and without (bottom) input genreration (only generating keypoints
for K4PCS and S4PCS) on controlled data.

(a) Bunny. (b) Armadillo. (¢) Dragon.

Figure 9: Registered controlled data (7 = 0.1). 10k points are shown for each point cloud.

sampling/applying the rotation. Where applicable, versions for 6DOF had to be used, since it is not ob-
we use this trick to save computations (for all meth- vious how to constrain the underlying algorithms to
ods). For GTA as well as 4PCS variants, the original 4DOF.
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Arch

Data [P Q] [Prey| | [Qreyl IC]
s01-s02 | 23561732 | 30898999 7906 4783 19879
s02-s03 | 30898999 | 25249235 4783 7147 19344
s03-s04 | 25249235 | 29448437 7147 5337 22213
s04-s05 | 29448437 | 27955953 5337 4676 15529

Facility

Data ] Q[ [Pro, [ Qe [ [ €
s05-s06 | 10763194 | 10675580 2418 2727 10679
s09-s10 | 10745525 | 10627814 2960 1327 7037
s12-s13 | 10711291 | 10441772 1227 2247 6001
s18-s19 | 10541274 | 10602884 1535 2208 7260

Table 2: Size of the real-world data. [Pge,| and |Qpey|: num-
ber of keypoints.

Figure 7 shows the accuracy of all methods, which
was measured as the difference between the estimated
transformation and the known ground truth. As ex-
pected, BnB and FMP + BnB returned high quality
solutions for all setups. In contrast, due to the lack
of optimality guarantees, other methods performed
badly when 7 was small. Meanwhile, Figure 8 shows
both the runtime including and not including the in-
put generation (keypoint extraction and/or feature
matching). FMP + BnB was faster than most of its
competitors. Note that most of the total runtime
was spent on input generation. Other than some-
times claimed, exact optimization is not necessarily
slow and does in fact not create a computational bot-
tleneck for registration. Figure 9 shows some visual
examples of point clouds aligned with our method.

6.2. Challenging real-world data

To demonstrate the practicality of our method,
comparisons on large sale LiDAR datasets'® were
also performed. Figure 10 reports the accuracy of
all methods on an outdoor dataset, Arch, and an in-
door dataset, Facility. Among the datasets used in
(Theiler et al., 2015), these are the most challenging
ones, which most clearly demonstrate the advantages
of our proposed method. We point out that both are
not staged, but taken from real surveying projects
and representative for the registration problems that
arise in difficult field campaigns. For completeness,
Appendix 9.3 contains results on easier data, where

18http://www.prs.igp.ethz.ch/research/completed_
projects/automatic_registration_of_point_clouds.html

most of the compared methods work well). The ac-
curacy was again measured by the difference between
the estimated and ground truth (provided in the se-
lected datasets, see (Theiler et al., 2015) for details)
relative poses. Similar as before, at a reasonable er-
ror threshold!® of 15 cm for translation, respectively
1° for rotation, our method had 100% success rate;
whereas failure cases occurred with all other meth-
ods. And as shown in Figure 11, FMP + BnB showed
comparable speed than its competitors on all data. It
successfully registered millions of points and tens of
thousands of point matches (see Table 2) within 100
s, including the match generation time. We see the
excellent balance between high accuracy and reliabil-
ity on the one hand, and low computation time on the
other hand as a particular strength of our method.

Figures 12-15 visually show various large scale
scenes (pair-wise and complete) registered by our
method; more detailed demonstrations can be found
in the video demo in our project homepage. Note that
the runtime for registering a complete dataset (in Fig-
ure 3 and 17 to 19) was slightly less than the sum of
pair-wise runtimes, since a scan forms part of multi-
ple pairs, but keypoints and FPFH features need to
be extracted only once and can then be reused.

7. Conclusion

We have described a practical and optimal solution
for terrestrial LiDAR scan registration. The main
characteristic of our approach is that it combines a
reliable, optimal solver with high computational ef-
ficiency, by exploiting two properties of terrestrial
LiDAR: (1) it restricts the registration problem to
4DOF (3D translation 4+ azimuth), since modern
laser scanners have built-in level compensators. And
(2) it aggressively prunes the number of matches used
to compute the transformation, realising that the sen-
sor noise level is low, therefore a small set of corre-
sponding points is sufficient for accurate registration,

19Note, the threshold refers to errors after initial alignment
from scratch. Of course, the result can be refined with ICP-
type methods that are based on all points, not just a sparse
match set.
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Figure 10: The accuracy of all registration methods on real-world data.
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Figure 11: The log scaled runtime of all methods with (up) and without (bottom) input genreration (only generating keypoints
for K4PCS and S4PCS) on real-world data.
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(c) s9-s10—Facility. (d) s18-s19—Facility.

Figure 12: Registered pairwise real-world data. 10k points are shown for each point cloud.
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Figure 13: Complete registration result— Facade. All 7 scans
were registered in 134.95s.

Figure 14: Complete registration result—Courtyard. All 8
scans were registered in 84.02s.

so long as they are correct. Given some set of candi-
date correspondences that may be contaminated with
a large number of incorrect matches (which is often
the case for real 3D point clouds); our algorithm first
applies a fast pruning method that leaves the opti-
mum of the alignment objective unchanged, then uses
the reduced point set to find that optimum with the
branch-and-bound method. The pruning greatly ac-
celerates the solver while keeping intact the optimal-
ity w.r.t. the original problem. The BnB solver ex-
plicitly searches the 3D translation space, which can

17

Figure 15: Complete registration result—Trees. All 6 scans

were registered in 142.72s.

be bounded efficiently; while solving for 1D rotation
implicitly with a novel, polynomial-time algorithm.
Experiments show that our algorithm is significantly
more reliable than previous methods, with competi-
tive speed.
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9. Appendix

9.1. Compute int; and solve the mazx-stabbing prob-
lem

Algorithm 4 shows how to compute int; = [ay, §;]
for each (pi, q;) during rotation search. As shown in
Figure 16, circ; and ball;(¢) intersect if and only if
the closest distance d; from q; to circ; is within e,
where

di = J(IPill, = i].,)2 + (Pi(3) — @(3))2. (28)

In the above equation, p;(3) is the 3rd channel of
p; and [|psl[,, = /Pi(1)* + pi(2)? is the horizontal
length of p;. And the two intersecting points of circ;
and ball;(e), namely R(«;)p; and R(B;)p;, have the
same azimuthal angular distance v to q;. And by



Z ball;(e)

E

P

Figure 16: Illustration of Algorithm 4, int; is rendered in red.

Algorithm 4 Compute the angle interval that aligns

Require: p;, q; and €, such that d; < e.

1o €gy < \/62 - (pz(g) - (iz(3))2
2 3 |[Billy, + il | < €y then
3:  return [0,27].
4: else
5 Q = azi(q;)) — azi(p:),y =
arccos PRI 2, —ery
20pill oy l19illay
6: return [Q—v, Q4+ 7]
7. end if

computing the azimuth Q from p; to q;, ie.,
azi(q;) — azi(p;), where azi(-) is the azimuth of a
point, int; is simply [Q — v, Q + 7]. Note that when
circ; is inside ball,(e) (Line 2), int; is [0, 27].

~ is computed by the law of cosines?’, because
it is an interior angle of the triangle whose three
edge lengths are ||p;ll,, . |G, and €y, where €5 is
the horizontal distance between q; and R(a;)p; (or
R(B:i)pi)-

After computing all int;’s, the max-stabbing prob-

Ohttps://en.wikipedia.org/wiki/Law_of_cosines

Algorithm 5 Max-Stabbing algorithm for 1D rota-
tion estimation

Require: U = {int;}},, where int; = [ay, Bi].
M
1: 'V « U{[e,0],[6i, 1]}, sort V ascendingly ac-
=1

cording to al and a2.
60,0« 0.
for each v € V do
if v(2) =0 then
§+ 6+1. And if § > 4, then & < 6,0 «
v(1).
6 else
7: 0+ 06—1.
8
9

end if
: end for o
return 9, 0.

lem (11) can be efficiently solved by Algorithm 5. Ob-
serve that one of the endpoints among all int;’s must
achieve the max-stabbing, the idea of Algorithm 5 is
to compute the stabbing value § for all endpoints and
find the maximum one.

We first pack all endpoints into an array V =
M
U {[:,0],[Bi,1]}. The 0/1 label attached to each
i=1
endpoint represents whether it is the end of an int;,
i.e., B;. Then, to efficiently compute each §, we sort
V so that the endpoints with

al: smaller angles;

a2: and the same angle but are the start of an int;

(the assigned label is 0);

are moved to the front. After sorting, we initialize
0 to 0 and traverse V from the first element to the
last. When we “hit” the beginning of an int;, we
increment ¢ by 1, and when we “hit” the end of an
int;, ¢ is reduced by 1. The max-stabbing value §
and its corresponding angle 6 are returned in the end.

Since the time complexity for sorting and travers-
ing V is respectively O(M log M) and O(M), the one
for Algorithm 5 is O(M log M). The space complex-
ity of O(M) can be achieved with advanced sorting

18



algorithms like merge sort?!.
9.2. Proof of Lemma 1
First, to prove (15), we re-express t*(S)
argmax U(t | C, €) as ts+t*'(S), where |[t*/(S)|| < ds.
tes

Using this re-expression, we have

IR(O)p: +ts +t7(S) —qul| < ¢ (29a)
=[R(O)p; +ts —ail — [t7(S) <e  (29b)
=[|R(0)p:i + ts — qul| — ds < e (29¢)
S[|R(0)p; + ts — qil| < €+ ds. (29d)

(29a) to (29b) is due to the triangle inequality. Ac-

cording to (29a) and (29d), as long as (p;,q;) con-

tributes 1 in max Ut | Coe) =Ul(ts +t*(S) | C,e),
€

it must also contribute 1 in U(ts | C,e + dg), i.e.,
Ults | C,e+ds) > max U(t|C,e).

And when S tends to a point t, ds tends to 0.
Therefore, U(S | C,e) = U(ts | C,e + ds) — U(t |
C,e).

9.3. Further results

Figure 17 to 19 show the accuracy and runtime of
our method and all other competitors in Section 6.2
for Facade, Courtyard and Trees. The inlier threshold
e were set to 0.05 m for Facade, 0.2 m for Courtyard
and 0.2 m for Trees.

= 0 e ) e Ty e T

(¢) Runtime for optimization.

(d) Total runtime.

Figure 17: Accuracy and log scaled runtime for Facade.

2Inttps://en.wikipedia.org/wiki/Merge_sort
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Chapter 7

Conclusion

In previous chapters, we proposed several new theories of, and algorithms for, consensus
maximization. In particular, the NP-hardness result in Chapter 3 tells us that a general,
tractable and globally optimal solver for consensus maximization does not exist, given
that it is likely that P # NP. The APX-hardness prohibits even approximate solvers.
Note that none of the existing efficient algorithms, including RANSAC variants and
deterministic optimization approaches, can guarantee an approximation ratio, which is
required for them to become an approximate solver. Though slightly negative, these

theories motivates several interesting research directions:

1. Replace/complement RANSAC variants with deterministic algorithms that conduct

efficient local optimization. Chapter 4 presented an effective approach of this type.

2. Use structures that exist in special applications to simplify the problem, such
that we can develop an application-oriented, efficient and optimal algorithm. For
example, in Chapter 6, we utilized the rotation axis obtained by the sensors to
reduce the rotation search problem from 3D to 1D. And we demonstrated that
1D consensus maximization (for rotation search) can be efficiently solved by a

polynomial-time algorithm.

3. Design pre-processing algorithms (such as [8, 31] and FMP in Chapter 6) that can
efficiently identify (some but not necessarily all) true outliers, such that we can
reduce the problem size for consensus maximization without affecting the optimal

solution.

Chapter 3 also proved the prametrized-complexity, i.e., consensus maximization is W[1]-
hard in the problem dimension, but FPT in the number of outliers. W[1]-hard means

that the problem is not FPT. And being FPT in a certain parameter means that as
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long as the value of this parameter is small, consensus maximization can still be solved
efficiently. Therefore, choosing the right parametrization is important. Currently, the
only available parameter for FPT algorithms is the number of outliers. More efficient
algorithms may naturally appear if better parametrizations can be discovered. Meanwhile,
the development of better FPT algorithms for the existing parametrization, i.e., number
of outliers, is also important. The work of Chapter 5 significantly accelerates the tree

search algorithm, which represents a solid step in that direction.

7.1 Limitation and future work

The algorithms proposed in this thesis are mainly designed for single model fitting. An
interesting future research direction is to consider the case of multi-model fitting. In the
meantime, experiments done in the previous chapters are mostly on small/medium scale
problems, such as two-view geometry and pair-wise point cloud registration. Extending
the proposed algorithms to larger scales (e.g., for large scale structure-from-motion with

a large number of views) is also an important future direction.
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