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A New Strategy for Identifying 
Mechanisms of Drug-drug 
Interaction Using Transcriptome 
Analysis: Compound Kushen 
Injection as a Proof of Principle
Hanyuan Shen1, Zhipeng Qu1, Yuka Harata-Lee1, Jian Cui1, Thazin Nwe Aung   1, Wei Wang2, 
R. Daniel Kortschak1 & David L. Adelson   1*

Drug-drug interactions (DDIs), especially with herbal medicines, are complex, making it difficult 
to identify potential molecular mechanisms and targets. We introduce a workflow to carry out DDI 
research using transcriptome analysis and interactions of a complex herbal mixture, Compound 
Kushen Injection (CKI), with cancer chemotherapy drugs, as a proof of principle. Using CKI combined 
with doxorubicin or 5-Fu on cancer cells as a model, we found that CKI enhanced the cytotoxic effects 
of doxorubicin on A431 cells while protecting MDA-MB-231 cells treated with 5-Fu. We generated and 
analysed transcriptome data from cells treated with single treatments or combined treatments and 
our analysis showed that opposite directions of regulation for pathways related to DNA synthesis and 
metabolism which appeared to be the main reason for different effects of CKI when used in combination 
with chemotherapy drugs. We also found that pathways related to organic biosynthetic and metabolic 
processes might be potential targets for CKI when interacting with doxorubicin and 5-Fu. Through co-
expression analysis correlated with phenotype results, we selected the MYD88 gene as a candidate 
major regulator for validation as a proof of concept for our approach. Inhibition of MYD88 reduced 
antagonistic cytotoxic effects between CKI and 5-Fu, indicating that MYD88 is an important gene in the 
DDI mechanism between CKI and chemotherapy drugs. These findings demonstrate that our pipeline is 
effective for the application of transcriptome analysis to the study of DDIs in order to identify candidate 
mechanisms and potential targets.

Drug combinations or polypharmacy is a commonly used clinical strategy for elderly patients and chronic dis-
eases like diabetes, cardiovascular disease and cancer, in order to overcome unwanted off-target effects and com-
pensatory mechanisms for certain drugs1–3. However, the challenge for polypharmacy4 is how to estimate the 
effects of drug combinations compared to single drugs, and avoid potentially serious adverse effects resulting 
from drug-drug interactions (DDIs). The most common strategy for identifying DDIs is through pharmacoki-
netic approaches. This is because, by affecting transporters and metabolizing enzymes, one drug’s pharmacoki-
netic process (absorption, distribution, metabolism or excretion) can be changed by another drug. However, 
pharmacokinetic properties are not usually directly linked to pharmacodynamic effects and cannot show inter-
actions with treatment targets or potential side effects. Furthermore, pharmacodynamic assays may not provide 
enough information for detecting potential interaction effects and interpreting their mechanisms5. This is a par-
ticular concern for drug interactions involving complementary and alternative medicines (CAM), where herbal 
extracts can contain over a hundred different, potentially bioactive, compounds.

Public acceptance of combining complementary and alternative medicine (CAM) with conventional medi-
cines has increased significantly over the last few decades. In 2007, nearly 38% of American adults used CAM6, 
and in China, which has a long history of traditional herbal medicine, 93.4% of cancer patients use CAM7. These 
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medicines, especially traditional Chinese medicines (TCM) which are usually made from several herbs, can also 
exert their effects on conventional medicines both through pharmacokinetic and pharmacodynamic effects. The 
complexity of components in these CAMs make it extremely difficult to predict potential interactions with con-
ventional medicines and explain these rationally. By providing opportunities to examine a broad range of bio-
logical information, omics-related techniques provide a more comprehensive way for the study of drug-drug 
or herb-drug interactions8. In this report, we apply these methods to the identification of interactions between 
Compound Kushen Injection (CKI), a complex herbal extract mixture, and chemotherapy drugs.

In this study CKI is used as a model complementary medicine. CKI was approved by the State Food and Drug 
Administration (SFDA) of China in 1995, CKI is used by more than 30,000 patients every day as part of their treat-
ment for various types of cancers8. Previous reports have shown that CKI can sensitize cancer to chemotherapeutic 
drugs, and reduce side effects of chemotherapy and radiotherapy to improve treatment effects and quality of life for 
cancer patients9,10. CKI is extracted from two herbs, Kushen (Radix Sophorae flavescentis) and Baituling (Rhizoma 
Smilacis glabrae), which contain many natural compounds including, but not limited to alkaloids and flavonoids. 
Matrine and oxymatrine have been implicated as the primary active components for cancer treatment11, but this is 
not supported by our previous research that showed that CKI, but not oxymatrine, can inhibit cancer cell prolifer-
ation and cause apoptosis by perturbing the cell cycle and other cancer related pathways12–15. However, to date, no 
reports have revealed how CKI or its active components interact with cancer chemotherapy drugs.

In order to better understand DDIs and deal with the difficulties caused by complex components in herb-drug 
interactions, we propose a pipeline to apply transcriptome analysis for the study of DDIs. CKI was used as a test 
drug in combination with different chemotherapy agents, and was found to have different effects on cancer cells 
when combined with doxorubicin or 5-Fu (synergistic with doxorubicin and antagonistic with 5-Fu). Based on 
transcriptome data, we have identified hundreds of differentially expressed genes that are correlated with opposite 
effects of CKI and chemotherapy agents on cell viability or apoptosis. These genes indicate that several cancer 
related pathways, such as DNA replication and cell cycle, are perturbed differently by CKI under different medical 
circumstances. Compared to previous DDI studies focused on transporters, metabolizing enzymes and therapy 
targets, our methods can provide a comprehensive and deeper analysis of interactions, that may help to pinpoint 
potential therapeutic or side effects, and explain the mechanisms underlying DDIs.

Results
Pipeline for the study of DDIs using transcriptome analysis.  Figure 1 shows the flowchart for tran-
scriptome analysis of DDIs. First, assays for DDIs are selected that are suitable for RNA sequencing and pheno-
type readouts. Second, shared differentially expressed (DE) genes from treatment with the primary drug only 
and combined treatment of primary drug and interacting drug are identified and further classified based on their 
manner of regulation. Gene co-expression analysis can then be used to identify groups of genes whose regulation 
is correlated with phenotype. Finally, different annotation methods can be used to propose mechanisms for DDIs 
and predict potential interactions.

The differentially regulated genes for single drug treatment are calculated with respect to untreated samples, 
while combined treatments are compared to single treatment. In addition, to identify types of interactions, genes 
consistently up or down regulated in single treatment and in combined treatment are classified as positively inter-
acting (in other words, the expression level of primary chemotherapy agent treatment is intermediate between 
untreated and combined treatment). Negatively interacting genes have expression levels where the primary 
chemotherapy treatment causes either the highest or lowest expression compared to untreated cells, or combined 
treatment).

CKI enhances the effects of doxorubicin but protects cells when co-administered with 5-Fu.  
CKI alone can inhibit proliferation, induce apoptosis and alter the cell cycle for various cancer cell lines12–14. 
In order to determine whether CKI can potentiate the anticancer effects of chemotherapy agents, we used the 
XTT assay as a preliminary screen for the interaction of CKI with different chemotherapy drugs (Supplementary 
Fig. 1). Results showed that CKI could have opposite effects in different chemical contexts. These effects were 
most obvious at relatively low doses of CKI and chemotherapy agents to treat MDA-MB-231(with 5-Fu) and 
A431 cells (with doxorubicin) for 48 hours. CKI increased the apoptotic effects of doxorubicin whereas it antago-
nized the cytotoxicity of 5-Fu (Fig. 2A). Flow cytometric analysis of propidium iodide (PI) stained cells was also 
used to assess alterations to the cell cycle and apoptosis for different treatment groups. In MDA-MB-231 cells, 
treatment with CKI caused the increased percentages of apoptosis from 5-Fu to be drawn back to the same level as 
untreated cells. However, the proportion of apoptotic cells increased significantly when CKI was combined with 
doxorubicin on A431 cells (Fig. 2B). Also, compared to slight changes in the cell cycle caused by the combination 
of CKI and 5-Fu, CKI caused large decreases in G1 and S phases of the cell cycle compared to doxorubicin only 
treatment (Fig. 2C). Altogether, these data suggest that CKI has opposite interactions with doxorubicin and 5-Fu 
in vitro.

Selecting DE genes involved in drug-drug interactions.  In order to understand the molecular mecha-
nisms of the opposite interactions of CKI with doxorubicin and 5-Fu, we carried out transcriptome profiling from 
chemotherapy agents’ treatment, CKI treatment and combined CKI+ chemotherapy using high-depth next gen-
eration sequencing. In order to correlate the gene expression results with phenotype results, we selected 48 hours 
as the treatment time with three biological replicates. The mapping rates are sufficient for the following analysis 
(Supplementary Table 1). After preliminary multidimensional scaling of all the samples, every treatment group 
clustered, and clusters were clearly separated, indicating that combined CKI treatment can change the transcrip-
tome of cancer cells compared to chemotherapy or CKI alone (Supplementary Figs 2 and 3).
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Because we were primarily interested in determining the changes in gene expression between combined and 
single chemotherapy treatments, we identified DE genes by comparing the combined treatment to treatment with 
chemotherapy drug alone. We also compared single chemotherapy treatments to untreated. This gave 4 sets of 
DE genes (A431 cell line: doxorubicin compared to untreated and doxorubicin + CKI compared to doxorubicin, 
MDA-MB-231 cell line: 5-Fu compared to untreated and 5-Fu + CKI compared to 5-Fu) with each set containing 
thousands of DE genes (Fig. 3A and Supplementary Table 2).

Identification of DE genes based on interaction and direction of regulation.  From the original 
four gene sets, we refined our results to get DE gene subsets related to drug interactions. Because of our primary 
focus on the mechanisms underlying opposite effects of CKI combined with doxorubicin or 5-Fu in different 
cell lines, we identified the set of shared DE genes across the four sets of DE genes identified above. This subset 
of 2926 genes were selected for further analysis (Fig. 3A). Because differential expression can result from up or 
down regulation, we included the direction of interaction as a means to separate DE genes involved in DDIs. If 
one gene’s change in expression level from untreated to single chemotherapy treatment was consistent with its 
direction of regulation for the combined treatment (either up regulated or down regulated) then we defined it as 
a positive interaction gene, either additive or synergistic. In contrast, if its direction of regulation was opposite in 
the single chemotherapy treatment compared to the combined treatment, it was defined as a negative interaction. 
When these criteria were applied to our subset of 2926 genes, while most of the DE genes underwent negative 
interaction across both cell lines/treatments, the proportion of positive interaction genes differed between treat-
ment groups. In A431 cells treated with doxorubicin, CKI induced 30.9% positive interaction genes, whereas only 
12.9% of the genes positively interacted with CKI in MDA-MB-231 cells treated with 5-Fu (Fig. 3B).

In order to further characterise the genes with different directions of interaction, we performed functional 
enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for our set of shared 2926 
DE genes and calculated the number of genes for negative and positive interaction with CKI in both treatment 
groups/cell lines. The results showed that in every pathway, the proportion of DE genes positively regulated by 

Figure 1.  Experimental and data analysis workflow for applying omics to drug-drug interactions. (A) The 
overall design of the study. (B) Further details of 2 specific procedures indicated with broken-lined boxes in A. 
The black, blue and orange bars represent untreated, single treatment and combined treatment, respectively.
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CKI treatment with doxorubicin (A431 cells) was larger than by CKI treatment with 5-Fu (MDA-MB-231 cells) 
(Fig. 3C). Strikingly, there were four pathways related to cell cycle that had over 50% the genes positively regulated 
in the A431 cells, including: “Base excision repair”, “Cell cycle”, “DNA replication” and “Homologous recombina-
tion”. When we took into account the expectation that one third of the DE genes should fall into the positive inter-
action class (Fig. 1B), we used 33.33% as the cut off for distinguishing direction of interaction pathways. With this 
criterion, there were 13 pathways where CKI caused positive interactions with doxorubicin, but only 1 with 5-Fu 
(Fig. 3C). Furthermore, 9 pathways were consistently found to interact in a positive manner, including immune 
pathways (“Bacterial invasion of epithelial cells”, “Human papillomavirus infection”, “Viral carcinogenesis”) and 
metabolic pathways (“Glyoxylate and dicarboxylate metabolism”, “Steroid biosynthesis”) and others.

To have a comprehensive understanding of drug-drug interactions, samples treated with single chemother-
apy agents were also annotated with KEGG pathways. With the common regulated subset, genes in 8 cell cycle 
related pathways were primarily regulated in the same directions (mainly down-regulated in 6 pathways and 
up-regulated in 2 pathways) both by doxorubicin and 5-Fu (Fig. 3D).

DE genes related to phenotype.  Based on the direction of regulation in each combined treatment group, 
we separated the 2926 shared DE genes into four groups (Fig. 4A and Supplementary Table 3). Group C in which 
genes were negatively interacted in both cell lines, contained the largest number of genes (1815, 62% for total gene 
number) followed by group A genes with 732 that are negatively interacted for 5-Fu and positively interacted for 
doxorubicin. The other two groups (B and D) only contained 208 and 171 genes respectively. Based on the pheno-
type results, genes in group A were more likely to relate to our study purpose, while groups C and D might reveal 
CKI’s overall effects on chemotherapy cancer drugs.

Functional enrichment analysis was also performed for each of the four groups (Fig. 4B–D and Supplementary 
Table 3). For group A, the Gene Ontology terms for 732 genes (Fig. 4C) were mainly related to “cell cycle” and 
“nucleobase-containing compound metabolic process”. In KEGG pathway analysis, except for pathways closely 
related to cell growth like “Cell Cycle” and “DNA replication”, there were two cancer related pathways detected, 
“Bladder cancer” and “Chronic myeloid leukemia” and one immune related pathway “NF-kappa B signaling 
pathway”. Genes in these pathways, like cell cycle (Fig. 5A and Supplementary Fig. 4) are regulated in opposite 

Figure 2.  Opposite effects of CKI combined with doxorubicin or 5-Fu on cell viability and cell cycle. (A,B) 
The cell viability and percentage of apoptosis of the cancer cells treated with different drug combinations for 
48 hours. (C) Representative histograms of cell cycle phases for different treatments. Results are represented as 
means ± SEM (N = 3). Statistical analyses were performed by comparing treatments to untreated (***p < 0.001, 
****p < 0.0001) as well as ‘CKI + Chemotherapy Agent’ to ‘Chemotherapy Agent only’ (###p < 0.001, 
####p < 0.0001)with two-way ANOVA.
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direction by CKI compared to chemotherapy drugs. GO terms for 1815 genes in group C (Fig. 4D) were mainly 
clustered into “Organic substance biosynthetic process”, “regulation of cell cycle” and “organic substance catabolic 
process”, KEGG results also indicated that the majority of genes in this group belonged to pathways related to 
metabolism and biosynthesis. Gene numbers for groups B and D were much lower, with mainly immune related 
GO terms for group B and cell cycle related GO terms for group D. Only three KEGG pathways were signifi-
cantly enriched for group D; ‘Pathogenic Escherichia coli infection’, ‘Apoptosis’ and ‘Metabolism of xenobiotics 
by cytochrome P450’. No KEGG pathways were enriched for group B.

In order to validate the gene expression changes with different directions of regulation in the doxorubicin and 
5-Fu treatment groups, we estimated protein abundance using flow cytometry for 4 proteins in group A. Overall, 
the protein level changes were consistent with gene expression levels from transcriptome analysis (Fig. 5B).

Integrating information to select genes for validation.  In order to select genes for experimental val-
idation with bench experiments, we constructed the co-expression networks for genes in group A. 732 genes in 8 
treatment groups were separated into 14 co-expression modules. By including data from the XTT and apoptosis 
assays, we calculated the correlation coefficients for each gene module with the phenotype results. The red, black 
and purple modules were more highly correlated with phenotype results than other modules. Because it had the 
highest correlation coefficients (Pearson correlation) with both traits, genes in the red module (45 genes) were 
picked for further investigation (Fig. 6A and Supplementary Table 4).

Protein interaction, GO and KEGG analyses were performed for genes in the red module (Figs 6B,C and 7A). 
From the protein interaction network, MYD88 was the most connected/interacting protein. Furthermore, it was 
associated with more functions or pathways in the GO and KEGG analyses than other genes in the red module 
(related to 5 GO and KEGG terms respectively). Considering that MYD88 is upstream of NF-kappa B which itself 
regulates the cell cycle and other cancer related pathways, we selected it as a candidate for validation by inhibition.

Inhibiting MYD88 partially affected the interaction between CKI and 5-Fu.  To validate our analy-
sis results, we performed the cell viability and apoptosis assays again and included an MYD88 inhibitory peptide 
or a control peptide (Fig. 7B). Because MYD88 is one of the key regulators in NF-kappa B pathway and occupies a 

Figure 3.  Selection of differentially regulated shared genes and percentage of genes regulated in different 
fashions and their related pathways. (A) Venn diagram showing the number of differentially regulated genes 
in cancer cells with different treatments. (B) Percentage of genes that were regulated in ‘synergistic’ (yellow) 
and ‘antagonistic’ (blue) fashion in A431 (doxorubicin) and MDA-MB-231 (5-Fu) cells. (C) Percentage of 
synergistically regulated genes in different KEGG pathways. (D) Percentage of up-regulated and down-
regulated genes for single chemotherapy drug treatment in different KEGG pathways.

https://doi.org/10.1038/s41598-019-52375-3


6Scientific Reports |         (2019) 9:15889  | https://doi.org/10.1038/s41598-019-52375-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

central position in the red module, we expected that inhibiting it would reduce cell proliferation and the opposite 
effects from CKI on chemotherapy drugs. Results showed that for the MDA-MB-231 cells, inhibiting MYD88 
does not affect the overall cell viability or apoptosis rates. However, compared to the control peptide, the inhibitor 
significantly reduced cell viability for 5-Fu and CKI combined treatment, by weakening the antagonistic effect of 
CKI. In the apoptosis assay, the apoptosis rate for 5-Fu treatment was significantly lower when treated with the 
inhibitor, also suggesting a similar reduction in the antagonistic effect. For the doxorubicin group, no significant 
changed interaction was found. However, unlike the MDA-MB-231 cell line, A431 cells were sensitive to the 
MYD88 inhibitor as shown by the overall lower cell viability values compared to the control peptide group.

In summary, we were able to dissect and characterise a DDI with transcriptome analysis. With CKI as a model, 
we identified candidate mechanisms behind its opposite effects compared to different chemotherapy agents and 
revealed potential interactions with them. We also identified and confirmed MYD88 as a target/key regulator for 
the negative effects between the interaction of CKI and 5-Fu. These results demonstrate the value of our pipeline 
for characterising and understanding the molecular basis of DDIs.

Discussion
Drug-drug interactions are one of the main reasons for adverse events associated with medication. The traditional 
pharmacokinetic methods for studying DDIs are inadequate for discovering potential side effects or explaining 
complicated interaction mechanisms. Furthermore, the complex components for many complementary med-
icines and herbal medicines that are often used in conjunction with pharmaceutical drugs pose a significant 
challenge research on DDIs. Although high-throughput omics-related techniques have been widely used for 
identifying novel disease biomarkers or potential drug targets16,17, very limited research has applied them to 
the investigation of DDIs. Because transcriptome based approaches generate very large data sets, we adopted a 
hierarchical approach for our analysis of DDIs between CKI and chemotherapy drugs. First, instead of compar-
ing every treatment sample to untreated control in order to identify DE genes, we decided to set the baseline for 
comparison of interactions as the main drug treatment. We then identified DE genes for the combined treatment 
based comparison to the main drug treatment. From the common set of DE genes found by comparing the main 
drug treatment to untreated control, and the combined treatment compared to the main drug treatment, we 
selected only genes that were differentially expressed and shared across the various comparisons. Second, we 
used “consistent directional regulation” to separate the DE genes between multiple treatments into positive and 

Figure 4.  Grouping of genes based on type of regulation and annotation results for different gene groups.  
(A) Criteria for separating 2926 genes into four groups. (B) Table for over-represented KEGG terms and 
associated p-values for different groups of genes. (C,D) Over-represented GO terms (Biological Process at 3rd 
level) for genes in groups A and C respectively.
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Figure 5.  Differentially regulated genes shown in pathway and validation of selected gene regulation. (A) 
Comparison of types of regulation for CKI with doxorubicin and 5-Fu in the “Cell Cycle” pathway. Left half of 
the rectangle for each gene represents CKI with doxorubicin in A431 cells and the right half represents CKI with 
5-Fu in MDA-MB-231 cells. Red and green colors mean synergistic and antagonistic regulation, respectively. 
(B) Validation of gene regulation at protein level. Four genes (HO-1, TNFAIP3, P21 and CBL) with opposite 
types of regulation in A431 and MDA-MB-231 cells identified by transcriptome sequencing were selected and 
validated by flow cytometry. ‘U’, ‘D’ and ‘C + D’ represent untreated, single chemotherapy drug treatment and 
CKI plus chemotherapy drug treatment, respectively. Data are represented as means ± SEM (N = 3). Statistical 
analyses were performed between single drug treated or combined treated to untreated with two-way ANOVA 
(*p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001).
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negative interaction classes. These are more informative with respect to drug-drug interaction than simply up or 
down regulation. This also allowed genes to be separated based on consistent directional regulation to focus the 
scope of investigation. Finally, we applied gene co-expression network analysis to provide useful information for 
candidate gene selection. These methods combined with typical gene annotation analysis and protein interaction 
analysis, provided a rich profile for investigation of DDIs.

Diseases treated with drug combinations are usually complex and related to multiple genetic pathways. 
Furthermore, multiple active compounds in drug combinations, such as herbal medicines can affect a variety of 
targets18,19. Therefore, by integrating the effects of interacting genes, analysis of pathways or networks may pro-
vide more useful evidence for characterising the mechanisms of drug interactions. In terms of the mechanisms 
responsible for the opposite effects generated by CKI in combination with drugs, the pathways related to DNA 
synthesis and metabolism, like “Base excision”, “DNA replication” “homologous recombination”, interact in oppo-
site fashion in the two treatment groups. Because both chemotherapy drugs down regulate genes in these path-
ways, the opposite interactions caused by CKI enhance effects from doxorubicin while reducing 5-Fu’s effects. 
Closely linked to these pathways, “cell cycle” and “apoptosis” also show large differences in their interactions 
between the two groups. By correlating the results from cell viability and apoptosis assays, we can propose that 
the opposite effects from CKI in combination with doxorubicin or 5-Fu are primarily based on pathways related 
to DNA synthesis and metabolism. As 5-Fu and doxorubicin both target DNA replication and CKI’s cytotoxic 
effects have also been shown to increase DNA Double Strand Breaks, this indicates that therapeutic results from 
drug combinations targeting the same or similar bioprocesses can be very different compared to what we might 
predict12,20,21.

Furthermore, by performing annotation analysis for functional or expression level clustering of gene groups, 
more information about interactions between CKI and chemotherapy drugs can be acquired. For group A, the 
annotation results are similar with opposite interacted results as discussed in the last paragraph, which is closely 
related to the phenotype results. In addition, the other three groups can help us to discover potential interac-
tions which are not shown in our limited experiments. Group C displayed negative interaction of CKI to both 
doxorubicin and 5-Fu and most annotation terms belonged to organic biosynthetic and metabolic processes. 
Many shared side effects from these two chemotherapy drugs are linked to disorders of metabolism, for example, 

Figure 6.  Co-expression analysis for genes in group A and related functional annotation. (A) Clustering 
dendrogram for genes in group A and relationships with cell viability and apoptosis for each color module (red 
module is indicated by arrows). (B,C) Over-represented GO (Biological Process at 3rd level) and KEGG terms 
for genes in the red module.
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cardiovascular and mucosal toxicity caused by cancer therapies are mainly caused by free radicals and oxida-
tive stress22–24. Therefore, although more validation is needed, the results for group C might support the clinical 
reports that CKI can reduce the adverse effects of chemotherapy and radiotherapy in cancer treatment. In addi-
tion, we observed two pathways “steroid biosynthesis” and “Fluid shear stress and atherosclerosis” that suggest 
that doxorubicin and 5-Fu affect atherosclerosis in a manner opposite to that of CKI. We could find no existing 
literature that would corroborate this finding. Furthermore, KEGG results in group D also indicate CKI caused an 
overall increase in apoptosis and activity of cytochrome P450, which means CKI can both enhance the cytotoxic 
effects and speed up the metabolism of chemotherapy drugs. Our results indicate that transcriptome analysis 
can not only reveal candidate molecular mechanisms altered by specific drugs, but can also provide clues about 
potential drug-drug interactions.

Transcriptome analysis can provide a far more comprehensive and complex candidate gene list than tradi-
tional approaches used in drug-drug interaction research. This makes it difficult to screen target genes for further 
study because of the gene specific assays required. In group A, we generated a list of 732 genes, including heme 
oxygenase 1 (HO-1) and E3 ubiquitin-protein ligase (CBL), which are involved in metabolism pathways, that were 
oppositely regulated when CKI was combined with doxorubicin or 5-Fu. In addition, genes like tumor necrosis 
factor alpha-induced protein 3 (TNFAIP3) and myeloid differentiation primary response protein (MYD88) from 
the NF-kappa B pathway and cyclin-dependent kinase inhibitor 1A (P21) in the cell cycle are regulated in the 
same manner. Although their functions are different, all these genes are important in carcinoma25–28. By using 
gene co-expression and protein interactions analysis, we chose MYD88 as a proof of concept for validation as it 

Figure 7.  Validation of MYD88 function. (A) All proteins for genes in the red module in Fig. 6 and their 
interactions as based on the STRING database (minimum required interaction score: 0.4). (B) Cell viability 
and percentage of apoptosis as a result of different treatments combined with MYD88 inhibitor peptide or 
control peptide. Results are represented as means ± SEM (N = 3). Statistical analysis was performed with t-test 
(*p < 0.05, **p < 0.01).
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was highly correlated with phenotype results and interacted with more proteins in its WGCNA color module than 
others. Our prediction was that inhibiting MYD88 would decrease the antagonistic effect of CKI on 5-Fu and this 
prediction was confirmed. By using our approach, transcriptome analysis can not only be used for generating 
comprehensive gene lists for candidate mechanisms, it can also identify specific, potential targets for modulating 
drug-drug interactions.

In summary, we introduced a pipeline to integrate omics techniques into research for DDIs. By using tran-
scriptome analysis to identify candidate mechanisms that might account for CKI’s opposite effects on doxorubicin 
or 5-Fu in cancer cells, we have shown that our methods are effective and can be applied to complex situations, 
including drug interactions with complex mixtures or to compare different drug-drug interaction groups.

Materials and Methods
Cell culture and drugs.  A431 and MDA-MB-231 cells were purchased from ATCC (VA, USA) and cul-
tured in DMEM (Thermo Fisher Scientific, MA, USA) with 10% fetal bovine serum (Thermo Fisher Scientific) at 
37 °C with 5% CO2. CKI (total alkaloid concentration of 26.5 mg/ml) was provided by Zhendong Pharmaceutical 
Co.Ltd (China) and used at a final concentration of 1 mg/ml. Fluorouracil (5-Fu) and doxorubicin were purchased 
from Sigma-Aldrich (MO, USA) and used at final concentrations of 10 ug/ml and 1 ng/ml, respectively. MYD88 
inhibitor and control peptides were synthesised by GenScript (Hong Kong, China) with the following amino 
acid sequences with purity >95%29,30; inhibitor: DRQIKIWFQNRRMKWKKRDVLPGT and control peptide: 
DRQIKIWFQNRRMKWKK.

For all in vitro assays 6-well or 96-well plates were used. The seeding density for both A431 and MDA-MB-231 
cells was 4 × 105 cells/well for 6-well plates. For 96-well plates, A431 cells were seeded at 8 × 104 cells/well and 
MDA-MB-231 cells were 1.6 × 105 cells/well. After seeding, cells were cultured overnight before being treated.

Cell viability assay.  Cells were seeded in 96-well plates with 50 μl of medium. For the MYD88 validation 
assay, the inhibitor or control peptide was added at the same time as cell seeding. After overnight culturing, 50 μl 
of CKI and/or chemotherapeutic agent at appropriate concentration were added and incubated for 48 hours. In 
order to measure the cell viability, 50 μl of XTT:PMS (at 1 mg/ml and 1.25 mM, respectively, and combined at 50:1 
ratio, Sigma-Aldrich) was added and incubated 4 hours before detecting absorbance of each well with a Biotrack 
II microplate reader at 492 nm. Wells without cells were set up for each treatment for subtracting background 
absorbance.

Cell cycle assay.  Cells were cultured and treated in 6-well plates. After 48 hours of drug treatment, cells were 
harvested and stained with propidium iodide (PI) to examine cell cycle phases as previously described31. Stained 
cells were acquired on BD LSRFortessa-X20 (BD Biosciences, NJ, USA) and the data were analysed using FlowJo 
software (TreeStar Inc., OR, USA).

Flow cytometric quantification of protein expression.  Cells were cultured in 6-well plates and treated 
with drugs for 48 hours. The cells were subsequently harvested and stained with antibodies to detect intranuclear/
intracellular protein levels. The antibodies were purchased from Abcam (UK) unless otherwise indicated: rabbit 
anti-CBL and rabbit IgG isotype control (Cell Signaling Technologies) detected with anti-rabbit IgG-PE (Cell 
Signaling Technologies); mouse anti-p21 and mouse IgG2b isotype control detected with anti-mouse IgG-Alexa 
Fluor 488; rabbit anti-TNFAIP3-Alexa Fluor 488 and rabbit IgG isotype control-Alexa Fluor 488; rabbit anti-HO-
1-Alexa Fluor 568 and rabbit IgG isotype control-Alexa Fluor 568. Data was acquired with a BD Accuri (BD 
Biosciences) and analysed with FlowJo software.

RNA extraction and sequencing.  After being treated with drugs in 6-well plates for 48 hours, cells were 
harvested and snap-frozen with liquid nitrogen then stored at −80 °C. Total RNA was isolated with the RNA 
extraction kit (Thermo Fisher Scientific) and quantity and quality were measured with a Bioanalyzer at the 
Cancer Genome Facility of the Australian Cancer Research Foundation (Australia) to ensure RINs > 7.0. Samples 
were sent to Novogene (China) and sequencing was carried out on an Illumina HiSeq X platform with paired-end 
150 bp reads. Data were submitted to NCBI Gene Expression Omnibus (Accession Number GSE130359).

Transcriptome data analysis.  Trim_galore (v0.3.7, Babraham Bioinformatics) was used to trim adaptors 
and low-quality sequences in raw reads with parameters:–stringency 5–paired. Then trimmed reads were aligned 
to reference genome (hg19, UCSC) using STAR (v2.5.3a) with parameters:–outSAMstrandField intronMotif–
outSAMattributes All–outFilterMismatchNmax 10–seedSearchStartLmax 3032. Differentially expressed genes 
between two groups were identified with edgeR (v3.22.3). Genes with more than 2 read counts in all samples were 
selected for analysis and no cut-off setting was used for fold changes. Differentially expressed genes were selected 
with a false discovery rate (FDR) < 0.0533.

ClueGO was used to perform the GO and KEGG over-representation analyses with following parameters: 
right-sided hypergeometric test for enrichment analysis; p values were corrected for multiple testing according 
to the Benjamini-Hochberg method and biological process at 3rd level for GO terms34,35. Then Cytoscape v3.6.0 
was used to visualise selected terms or pathways36. Regulation profiles for specific pathways were visualised with 
the R Pathview package37.

Co-expression network analysis was performed with WGCNA with “16” as soft thresholding power and “5” 
as minimum gene size for module reconstruction38. String (V11.0) was used to show protein interactions with 
0.4 for minimum interaction score and all active interaction sources were selected (text-mining, experiments, 
databases, co-expression, neighborhood, gene fusion, co-occurrence)39.

https://doi.org/10.1038/s41598-019-52375-3


1 1Scientific Reports |         (2019) 9:15889  | https://doi.org/10.1038/s41598-019-52375-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Statistical analysis.  All experiments were repeated three times with three technical replicates performed 
by independent operators (N = 3). Statistical analyses were carried out using GraphPad Prism 8.0 (GraphPad 
Software Inc., CA, USA). ANOVAs (two-way) and t-test were performed as indicated. All data were shown as 
mean ± SEM.

Received: 11 July 2019; Accepted: 24 September 2019;
Published: xx xx xxxx

References
	 1.	 Lehár, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 

(2009).
	 2.	 Guthrie, B., Makubate, B., Hernandez-Santiago, V. & Dreischulte, T. The rising tide of polypharmacy and drug-drug interactions: 

population database analysis 1995–2010. BMC Med. 13 (2015).
	 3.	 van Leeuwen, R. W. F. et al. Drug-drug interactions in patients treated for cancer: a prospective study on clinical interventions. Ann. 

Oncol. 26, 992–997 (2015).
	 4.	 van Leeuwen, R. W. F., van Gelder, T., Mathijssen, R. H. J. & Jansman, F. G. A. Drug–drug interactions with tyrosine-kinase 

inhibitors: a clinical perspective. Lancet Oncol. 15, e315–e326 (2014).
	 5.	 Website. Available at: National Center for Complementary and AlternativeMedicine, http://nccam.nih.gov/about. (Accessed: 9th 

January 2019).
	 6.	 Teng, L. et al. Use of complementary and alternative medicine by cancer patients at Zhejiang University Teaching Hospital Zhuji 

Hospital, China. Afr. J. Tradit. Complement. Altern. Med. 7, 322–330 (2010).
	 7.	 Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 4, 682–690 (2008).
	 8.	 Wu, L. et al. Synthesis and biological evaluation of matrine derivatives containing benzo-α-pyrone structure as potent anti-lung 

cancer agents. Sci. Rep. 6, 35918 (2016).
	 9.	 Wang, X.-Q., Liu, J., Lin, H.-S. & Hou, W. A multicenter randomized controlled open-label trial to assess the efficacy of compound 

kushen injection in combination with single-agent chemotherapy in treatment of elderly patients with advanced non-small cell lung 
cancer: study protocol for a randomized controlled trial. Trials 17, 124 (2016).

	10.	 Wang, S., Lian, X., Sun, M., Luo, L. & Guo, L. Efficacy of compound Kushen injection plus radiotherapy on non-small-cell lung 
cancer: A systematic review and meta-analysis. J. Cancer Res. Ther. 12, 1298–1306 (2016).

	11.	 Wang, W. et al. Anti-tumor activities of active ingredients in Compound Kushen Injection. Acta Pharmacol. Sin. 36, 676–679 (2015).
	12.	 Qu, Z. et al. Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional 

genomics. Oncotarget 7, 66003–66019 (2016).
	13.	 Zhao, Z. et al. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways. 

Cancer Lett. 355, 232–241 (2014).
	14.	 Cui, J. et al. Cell cycle, energy metabolism and DNA repair pathways in cancer cells are suppressed by Compound Kushen Injection. 

BMC Cancer 19, 103 (2019).
	15.	 Nourmohammadi, S. et al. Effect of Compound Kushen Injection, a Natural Compound Mixture, and Its Identified Chemical 

Components on Migration and Invasion of Colon, Brain, and Breast Cancer Cell Lines. Front. Oncol. 9, 314 (2019).
	16.	 Barrett, C. L. et al. Systematic transcriptome analysis reveals tumor-specific isoforms for ovarian cancer diagnosis and therapy. Proc. 

Natl. Acad. Sci. USA 112, E3050–7 (2015).
	17.	 Ciriello, G. et al. Comprehensive Molecular Portraits of Invasive Lobular Breast. Cancer. Cell 163, 506–519 (2015).
	18.	 Leite, P. M., Martins, M. A. P. & Castilho, R. O. Review on mechanisms and interactions in concomitant use of herbs and warfarin 

therapy. Biomed. Pharmacother. 83, 14–21 (2016).
	19.	 Zhou, W. et al. Systems pharmacology exploration of botanic drug pairs reveals the mechanism for treating different diseases. Sci. 

Rep. 6, 36985 (2016).
	20.	 Momparler, R. L., Karon, M., Siegel, S. E. & Avila, F. Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems 

and intact cells. Cancer Res. 36, 2891–2895 (1976).
	21.	 Longley, D. B., Harkin, D. P. & Johnston, P. G. 5-fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer 3, 

330–338 (2003).
	22.	 Mitry, M. A. & Edwards, J. G. Doxorubicin induced heart failure: Phenotype and molecular mechanisms. Int J Cardiol Heart Vasc 

10, 17–24 (2016).
	23.	 Focaccetti, C. et al. Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in 

endothelial cells and cardiomyocytes. PLoS One 10, e0115686 (2015).
	24.	 Aghamohamamdi, A. & Hosseinimehr, S. J. Natural Products for Management of Oral Mucositis Induced by Radiotherapy and 

Chemotherapy. Integr. Cancer Ther. 15, 60–68 (2016).
	25.	 Jozkowicz, A., Was, H. & Dulak, J. Heme oxygenase-1 in tumors: is it a false friend? Antioxid. Redox Signal. 9, 2099–2117 (2007).
	26.	 Sanada, M. et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature 460, 904–908 (2009).
	27.	 Lerebours, F. et al. NF-kappa B genes have a major role in inflammatory breast cancer. BMC Cancer 8, 41 (2008).
	28.	 Abbas, T. & Dutta, A. p21 in cancer: intricate networks and multiple activities. Nat. Rev. Cancer 9, 400–414 (2009).
	29.	 Loiarro, M. et al. Peptide-mediated Interference of TIR Domain Dimerization in MyD88 Inhibits Interleukin-1-dependent 

Activation of NF-κB. J. Biol. Chem. 280, 15809–15814 (2005).
	30.	 Derossi, D., Joliot, A. H., Chassaing, G. & Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through 

biological membranes. J. Biol. Chem. 269, 10444–10450 (1994).
	31.	 Riccardi, C. & Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458–1461 (2006).
	32.	 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
	33.	 Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene 

expression data. Bioinformatics 26, 139–140 (2010).
	34.	 Bindea, G. et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. 

Bioinformatics 25, 1091–1093 (2009).
	35.	 Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).
	36.	 Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 

2498–2504 (2003).
	37.	 Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 

29, 1830–1831 (2013).
	38.	 Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9 (2008).
	39.	 Jensen, L. J. et al. STRING 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37, 

D412–6 (2009).

https://doi.org/10.1038/s41598-019-52375-3
http://nccam.nih.gov/about


1 2Scientific Reports |         (2019) 9:15889  | https://doi.org/10.1038/s41598-019-52375-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledgements
This work was supported by the special international cooperation project of traditional Chinese medicine 
(GZYYGJ2017035) and The University of Adelaide, Zhendong Australia China Centre for Molecular Chinese 
Medicine.

Author contributions
Hanyuan Shen, Zhipeng Qu, Yuka Harata-Lee and David L. Adelson contributed to conception and design of the 
study; Hanyuan Shen conducted the experiments and analysed the data; Jian Cui and Thazin Nwe Aung assisted 
the experiments; Wei Wang provided the injections used in the study; Hanyuan Shen, R. Daniel Kortschak and 
David L. Adelson wrote the manuscript. All authors contributed to manuscript revision, read and approved the 
submitted version.

Competing interests
The authors declare that the research was conducted in the absence of any commercial or financial relationships 
that could be construed as a potential conflict of interest. We wish to draw the attention of the Editor to 
the following facts which may be considered as potential conflicts of interest and to significant financial 
contributions to this work. While a generous donation was used to set up the Zhendong Centre by Shanxi 
Zhendong Pharmaceutical Co Ltd, they did not determine the research direction for this work or influence the 
analysis of the data. J.C.: no competing interests, Z.Q.: no competing interests, Y.H.L.: no competing interests, 
H.S.: no competing interests, T.N.A.: no competing interests, W.W.: is an employee of Zhendong Pharma 
seconded to Zhendong Centre to learn bioinformatics methods, R.D.K.: no competing interests, D.L.A.:Director 
of the Zhendong Centre which was set up with a generous donation from the Zhendong Pharmaceutical Co 
Ltd. Zhendong Pharmaceutical has had no control over these experiments, their design or analysis and have not 
exercised any editorial control over the manuscript.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-52375-3.
Correspondence and requests for materials should be addressed to D.L.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-52375-3
https://doi.org/10.1038/s41598-019-52375-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A New Strategy for Identifying Mechanisms of Drug-drug Interaction Using Transcriptome Analysis: Compound Kushen Injection  ...
	Results

	Pipeline for the study of DDIs using transcriptome analysis. 
	CKI enhances the effects of doxorubicin but protects cells when co-administered with 5-Fu. 
	Selecting DE genes involved in drug-drug interactions. 
	Identification of DE genes based on interaction and direction of regulation. 
	DE genes related to phenotype. 
	Integrating information to select genes for validation. 
	Inhibiting MYD88 partially affected the interaction between CKI and 5-Fu. 

	Discussion

	Materials and Methods

	Cell culture and drugs. 
	Cell viability assay. 
	Cell cycle assay. 
	Flow cytometric quantification of protein expression. 
	RNA extraction and sequencing. 
	Transcriptome data analysis. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Experimental and data analysis workflow for applying omics to drug-drug interactions.
	Figure 2 Opposite effects of CKI combined with doxorubicin or 5-Fu on cell viability and cell cycle.
	Figure 3 Selection of differentially regulated shared genes and percentage of genes regulated in different fashions and their related pathways.
	Figure 4 Grouping of genes based on type of regulation and annotation results for different gene groups.
	Figure 5 Differentially regulated genes shown in pathway and validation of selected gene regulation.
	Figure 6 Co-expression analysis for genes in group A and related functional annotation.
	Figure 7 Validation of MYD88 function.




