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Abstract

Active noise control (ANC) is a popular choice for mitigating the acoustic noise in

the surrounding environment resulting from industrial and medical equipment, ap-

pliances, and consumer electronics. ANC cancels the low frequency acoustic noise by

generating a cancelling sound from speakers. The speakers are triggered by noise con-

trol filters and produce sound waves with the same amplitude and inverted phase to

the original sound. Noise control filters are updated by adaptive algorithms. Success-

ful applications of this technology are available in headsets, earplugs, propeller air-

craft, cars and mobile phones. Since multiple applications are running simultaneously,

efficiency of the adaptive control algorithms in terms of implementation, computations

and performance is critical to the performance of the ANC systems. The focus of the

present project is on the development of efficient adaptive algorithms that perform op-

timally in different configurations of ANC systems suitable for real world applications.
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Chapter 1

Introduction

ACTIVE noise control is a popular choice for cancelling the low fre-

quency noises using the secondary sources or speakers. This chap-

ter introduces the configurations of active noise control systems along with

the recent developments. The research motivations and contributions are

highlighted for each configuration followed by the outline of the remaining

chapters.
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Chapter 1 Introduction

1.1 Introduction

Increase in the use of mechanical and electronic devices in daily life, yield the noise

which has adverse effects on stress levels, health and productivity (Kajikawa et al.

2012). Currently available methods to mitigate this noise issue are categorised as ac-

tive and passive. Passive methods perform well at higher frequencies and are known

to become impractical for low frequencies as the dimension of passive materials is

selected in relation with the wavelength. Active noise control (ANC) is preferred

for performance against low frequency noises by generating a cancelling noise with

identical amplitude and opposite phase using a secondary source in a controlled man-

ner (Lueg 1936, Aslam et al. 2021, Aslam et al. 2019a). Recently, the ANC has gained

popularity in commercial products like automobiles, headphones and mobile phones

alongside numerous successful reported results including aircraft cabin noise, mag-

netic resonance imaging scanner, incubators and air conditioning ducts (Lee et al. 2021,

Aslam et al. 2019b, Aslam 2016).

The cancellation of the primary noise is primarily dependent on the closeness of the

amplitude and phase of the cancelling noise. In practice, noise sources and environ-

ment are time varying which means variations exist in the amplitude, frequency con-

tent and phase of the primary noise and adaptive filters are usually used to design con-

trol strategies to track the time varying problems (Kuo and Morgan 1996). Adaptive fil-

ters can be updated using Least mean square (LMS) and least squares (LS) algorithms.

The adaptive algorithms are designed to meet requirements including steady state er-

ror, convergence speed, computational complexity, robustness and tunable parameters.

Of these adaptive algorithms, LMS algorithm is extensively used for simplicity and

computational efficiency (Lopes et al. 2017, Aslam 2016, Lopes and Gerald 2015, Aslam

and Raja 2015, Ahmed et al. 2013b, Liao and Lin 2007, Lin and Liao 2008, Eriksson and

Allie 1989, Kuo and Vijayan 1997, Zhang et al. 2001, Zhang et al. 2003, Akhtar et al. 2006,

Akhtar et al. 2007, Carini and Malatini 2008, Davari and Hassanpour 2009, Basin et al.

2011). However, its performance is strongly dependent on the value of the step size

parameter and correlation of the input data (Diniz 2008). By contrast, LS algorithm

can be used to overcome the convergence speed and steady state issues, but at the cost

of increase in computations. Hence, there is a need for designing adaptive algorithms

that can combine best of LMS and LS algorithms and function efficiently.
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1.2 Literature Review

The aim of the present research is to design the adaptive control algorithms for ANC

systems that robustly acheive small steady state error at a relatively high convergence

speed with low computational demand and manageable tuning parameters. The ap-

proach to designing algorithms with such characteristics can involve efficient imple-

mentations of the LS algorithms with a selective updating mechanism to achieve fast

convergence with reduced computations (Diniz 2008). Alternative approach is to de-

sign multi-innovation or data-reusing algorithms (Diniz 2008) with self-adjusting step

sizes and selective updating strategy. These possibilities will be explored during this

research project.

1.2 Literature Review

The control mechanism of the ANC systems is classified as either feedforward or feed-

back. In a single channel feedforward ANC systems, a reference microphone is used

to detect reference noise, a secondary source or loudspeaker is used to generate a can-

celing noise and an error microphone to sense the residual noise. In contrast, the sin-

gle channel feedback ANC system only uses an error microphone and a loudspeaker.

Feedforward ANC systems can be used in a variety of general applications but feed-

back ANC is used in situations where sensing or internal generation of coherent ref-

erence signal is not possible. These situations include spatially incoherent turbulence

noise, multi-source noise, noise from multiple propagation paths and induced reso-

nance (Kuo and Vijayan 1997). In addition, controllable bandwidth of feedback sys-

tems is very limited compared to feedforward systems (Kajikawa et al. 2012, Kuo and

Vijayan 1997). Therefore, feedforward ANC systems are the primary focus of attention

in this research work.

1.2.1 Feedforward Active Noise Control Systems

This section considers the feedforward ANC systems and schematic of a basic feedfor-

ward ANC system is shown in Fig. 1.1, where reference signal x(n) is detected by a

reference microphone and one error microphone is used for residual signal e(n). Pri-

mary noise, d(n), results from x(n) passing through primary path P(z) (from digital

outcome of reference sensor to digital outcome of error sensor). Cancelling noise, d̂(n),

is formed by x(n) passing through adaptive noise controller W(z) and secondary path
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Reference 

microphone
Error microphone

P(z)

S(z)W(z)

+

-

𝑥 𝑛  
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𝑑 𝑛  

𝑑  𝑛  

𝑒 𝑛  

Figure 1.1. Feed-forward configuration of single channel ANC system

S(z) (digital trigger of the speaker to the digital outcome of error sensor). In this con-

figuration, noise controller is responsible for triggering the speaker by using the refer-

ence and error signals and design of noise controller is critical to the working of ANC

systems.

Owing to the time varying nature of the environment and noise sources, noise con-

trollers are updated online using adaptive algorithms to compensate for changes. Nu-

merous adaptive algorithms have been designed so far for noise control filters in ANC

systems, but least mean square (LMS) algorithm (Lopes et al. 2017, Aslam 2016, Lopes

and Gerald 2015, Aslam and Raja 2015, Ahmed et al. 2013b, Liao and Lin 2007, Lin and

Liao 2008, Eriksson and Allie 1989, Kuo and Vijayan 1997, Zhang et al. 2001, Zhang et al.

2003, Akhtar et al. 2006, Akhtar et al. 2007, Carini and Malatini 2008, Davari and Hassanpour

2009, Basin et al. 2011) and least squares (LS) algorithm (Bouchard 2002, Hong et al.

2007, Huffel et al. 2007, Söderström 2007, Reddy et al. 2011, Hong and Söderström

2009, Bouchard and Quednau 2000, Montazeri and Poshtan 2011, Söderström 2013)

are the most celebrated ones to date. Conventional LS and LMS algorithms need to

be modified to avoid convergence issues caused by S(z) at the output of W(z) (Kuo

and Morgan 1996). Consequently, filtered-x variants were developed in which x(n) is

filtered through an estimated secondary path Ŝ(z) before being used as input for con-

ventional adaptive algorithm (see Fig. 1.2). Filtered-x least mean square (FxLMS) algo-

rithm is the most preferred variant due to its computational simplicity, unbiased con-

vergence and robustness (Eriksson and Allie 1989, Kuo and Vijayan 1997, Zhang et al.

2001, Zhang et al. 2003, Diniz 2008).

The convergence speed and tracking capability of the LMS algorithm is degraded by

the increase in eigen-spread of the input signal (Diniz 2008, Glentis et al. 1999). One

possible solution is to use LS algorithm or LMS-Newton algorithm that have conver-

gence and steady-state error properties significantly better than the LMS algorithm

(Kuo and Morgan 1996). This solution, however, requires a relatively large number
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Online 

Secondary Path 

Modeling

Figure 1.2. Block diagram of the conventional feedforward ANC systems.

of computations to provide these improvements (Diniz 2008). It is worth mentioning

that researchers have designed methods that do not require secondary path identi-

fication (Chang and Chen 2010, Rout et al. 2012, George and Panda 2012, Shi et al.

2016, Shi et al. 2012, Wu and Bodson 2004). However, variations in acoustic paths

with time have restricted the application of such methods (Aslam 2016). The major

factors for these variations are known to include environmental, thermal and com-

ponent aging (Kuo and Morgan 1996). Consequently, online estimation of secondary

path is the most suitable option (Kuo and Morgan 1996, Eriksson and Allie 1989, Kuo

and Vijayan 1997, Zhang et al. 2001, Zhang et al. 2003, Davari and Hassanpour 2009,

Ahmed et al. 2013b, Aslam and Raja 2015, Lopes and Gerald 2015, Aslam 2016).

1.2.2 Secondary Path Estimation

It is evident from the above discussion that the performance of the adaptive noise

controller depends on the online estimation of the secondary path. Adverse influ-

ence of erroneous secondary path estimation error on stability and effective operation

of ANC systems is presented in (Snyder and Hansen 1994, Sato and Sone 1996, To-

bias et al. 2000, Ardekani and Abdulla 2012). This makes the identification of secondary

path a subject of prime importance for researchers (Eriksson and Allie 1989, Kuo and

Vijayan 1997, Zhang et al. 2001, Zhang et al. 2003, Akhtar et al. 2006, Akhtar et al. 2007,

Carini and Malatini 2008, Davari and Hassanpour 2009, Ahmed et al. 2013b, Gaiotto

2013, Aslam and Raja 2015, Aslam 2016) and technique utilized abundantly for this
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purpose involves injection of auxiliary noise with LMS adaptive algorithm as shown

in Fig. 1.2. Algorithms in (Eriksson and Allie 1989, Kuo and Vijayan 1997, Zhang et al.

2001, Akhtar et al. 2006, Aslam and Raja 2015) involve a continuous injection of fixed

power auxiliary noise which results in a high level noise at the error microphone, while

(Davari and Hassanpour 2009, Aslam 2016) also use similar approach but deactivate

auxiliary noise in steady state. In (Zhang et al. 2003, Akhtar et al. 2007, Carini and

Malatini 2008, Ahmed et al. 2013b, Lopes and Gerald 2015, Shi et al. 2013), different

power variation strategies are designed for auxiliary noise to acheive superior con-

vergence rate, online estimation and noise reduction. In (Carini and Malatini 2008,

Ahmed et al. 2013b, Aslam and Raja 2015) variable step size strategies are also designed

for fast convergence. Recently, a method is reported in (Lopes et al. 2017) that uses the

reference signal and the controller output to model the secondary and primary paths,

but is extremely unstable due to dependence on the frequency content of the reference

signal. The LMS algorithm is used in all previous algorithms for its simplicity, small

computations and ease of implementation. However, performance of the LMS algo-

rithm degrades for signals with high correlation or speech signals (Glentis et al. 1999).

Variable step size strategies are used by some methods to overcome these issues but

this increases the number of tunable parameters and decreases robustness. Improve-

ment in these properties is the highlight of this research project.

1.2.3 Acoustic Feedback Neutralization

In feedforward ANC systems, reflections of the sound generated by the speakers can

propagate upstream and can be detected by the reference microphone. This undesired

detection is the acoustic feedback from the secondary source to the reference micro-

phone. This undesired acoustic feedback makes system unstable. The signal detected

at the reference microphone includes the original reference signal x(n) and the feed-

back signal x f (n) (see Fig. 1.3). The feedback signal x f (n) forms a closed loop which

causes system instability if left unattended (Ahmed and Akhtar 2017, Ahmed et al.

2015, Ahmed et al. 2013a). The instability caused by acoustic feedback can be solved

by use of directional speakers and reference microphones, or by electronic neutraliza-

tion using a feedback compensation filter that also models the feedback path (from

the loudspeaker to the reference sensor) (Kajikawa et al. 2012, Kuo and Morgan 1996).

The latter approach has been explored by many researchers over the past few decades

(Ahmed and Akhtar 2017, Ahmed et al. 2015, Ahmed et al. 2013a, Kuo 2002, Kuo and
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Figure 1.3. Feed-forward configuration of single channel ANC system with acoustic feedback.

Luan 1994, Eghtesadi and Leventhall 1981, Eriksson 1987, Swinbanks 1973) and will be

addressed in this project. In this approach, x(n) is extracted from the signal detected

at the reference microphone by compensation of feedback path F(z) (digital trigger of

the speaker to the digital outcome of reference sensor) by using the estimated feedback

path F̂(z). A fixed feedback neutralization filter is introduced in (Warnaka et al. 1984)

to remove the feedback interference. However, time-varying properties of the acous-

tic feedback limit the scope of this solution and necessitate the techniques involving

online estimation and compensation of the feedback path (Ahmed and Akhtar 2017).

For online estimation, an auxiliary noise is introduced at the output of the control

filter (Ahmed and Akhtar 2017, Ahmed et al. 2015, Ahmed et al. 2013a, Akhtar and

Mitsuhashi 2011b, Kuo 2002). The method proposed in (Kuo 2002) use a constant

power auxiliary noise and fixed step size parameters for feedback path compensa-

tion and noise control. However, the continuous injection of the auxiliary noise limits

the robustness, convergerence speed and the steady state performance. A variable

step size is presented in (Akhtar and Mitsuhashi 2011b) for feedback path modeling

filter which improves the convergence speed with some compromise in the steady

state performance as the step size increases from small to large value with improve-

ment in estimation accuracy. Additionally, lower and upper bounds for the step size

of each feedback path estimation filter increase the tunable parameters. The methods

in (Akhtar and Mitsuhashi 2011b, Kuo 2002) use a fixed power auxiliary noise that

means its contribution in the residual error and reference signal stays through out the

operation time. The power variation of auxiliary noise is highlighted in (Ahmed and
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Chapter 1 Introduction

Akhtar 2017, Ahmed et al. 2015, Ahmed et al. 2013a) and gain scheduling is designed

for varying the power of auxiliary noise in relation with estimation accuracy. In terms

of step size parameter, the method in (Ahmed et al. 2013a) uses fixed step sizes for

adaptive filters, while a variable step size scheme is introduced for the single channel

ANC systems in (Ahmed et al. 2015) which is extended to the multi-channel systems

in (Ahmed and Akhtar 2017). The gain variation scheme in (Ahmed and Akhtar 2017,

Ahmed et al. 2015) is tuningless compared to (Ahmed et al. 2013a). Similar to (Akhtar

and Mitsuhashi 2011b), the step size strategy of (Ahmed and Akhtar 2017, Ahmed et al.

2015) also increases from a small value at the start up to a large value in the steady state,

which may lead to a large steady state error. The power variation schemes of (Ahmed

and Akhtar 2017, Ahmed et al. 2015, Ahmed et al. 2013a) have a noteworthy contribu-

tion in the residual error from the auxiliary noise in the steady state, which is a distur-

bance for the noise control filter and result in performance deterioration. Methods pre-

sented in (Ahmed and Akhtar 2017, Ahmed et al. 2015, Ahmed et al. 2013a, Akhtar and

Mitsuhashi 2011b, Kuo 2002) use a fixed step size in FxLMS algorithms for the noise

control filter, which limits the robustness and convergence properties of the noise con-

trol filter. Hence, there is a gap to fill for adaptive control algorithm that can achieve

fast convergence with minimum number of tunable parameters and computations.

There is a scope for modeling a scheme that stops auxiliary noise after the convergence

of modeling adaptive filter.

1.2.4 Hybrid Active Noise Control Systems for Disturbances

Hybrid ANC systems are used when reference signal is not available for all the pri-

mary noises detected at error microphone. These situation occurs when sensing or

internal generation of completely coherent reference signal is not possible which in-

clude spatially incoherent turbulence noise, multi-source noise, noise from multiple

propagation paths and induced resonance (Kuo and Vijayan 1997). In these situations,

Hybrid ANC (Sun and Kuo 2007, Akhtar and Mitsuhashi 2011a, Mokhtarpour and

Hassanpour 2012, Wu et al. 2015, Padhi et al. 2017) is most commonly used to com-

pensate for the periodic disturbances. Algorithms in (Sun and Kuo 2007, Akhtar and

Mitsuhashi 2011a, Wu et al. 2015) use fixed step size parameters which limits the con-

vergence speed of these methods. Empirical formulas are presented for step size vari-

ation in (Mokhtarpour and Hassanpour 2012), which also include additional tunable
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parameters. The variable step size scheme of (Padhi et al. 2017) is based on the min-

imization of mis-alignment vector of the adaptive filters which requires an estimate

of the disturbance signal variance. The variance of disturbance signal is not available

directly and offline estimation is not useful for time varying disturbances.

In summary, various methods discussed in this section for different control configura-

tions have margins of improvement in different performance measures which include

convergence speed, steady state error, computational complexity, tracking ability and

tunable parameters. This project is aimed at developing control algorithms with opti-

mality in these performance measures.

1.3 Motivation

Extensive research is witnessed in the different configurations of ANC systems with

commercial products launched in the last decade. The control algorithms developed

so far excel in some performance measures but lag in others (performance measures in-

clude convergence speed, steady state error, computational complexity, tracking abil-

ity and tunable parameters). The use of efficient algorithms can help in reducing the

processing needs in ANC applications which means reduction in the use of power

and processing resources. Numerous algorithms have been reported for single chan-

nel and multi-channel feedforward ANC systems which use LMS algorithms for low

computational cost, but these are poor performers for speech signals. So, such adap-

tive algorithms are in demand that converge at a fast rate to a small steady state error

without any additional computational cost and tunability issues. These types of al-

gorithms are the contribution of this research. Stable operation under disturbances of

any kind is another contribution. Algorithms that perform under disturbances and

mitigate these disturbances if they are correlated, are significant to the field of active

noise cancellation. In various control configurations mentioned in the literature re-

view, adaptive algorithms are updated even after reaching the convergence, which is

not useful. Development of pro-active algorithms that perform frequent updates in the

transition phase and fewer updates in the steady state, is the natural step in forward

direction. The algorithms will be designed to improve the performance without any

additional computations and this makes them suitable for higher order systems. The-

sis is focused on designing control strategies that converge to small steady state error

in reduced time with minimum computational effort and able to track the changes in
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the properties of the environment or noise source. The reduction in number and sim-

plicity of the associated tunable parameters is added advantage to simplify the use of

designed adaptive algorithms in various scenarios.

1.4 Methodology

Most commonly used algorithms for parameter estimation are: Least square (LS) algo-

rithm and least mean square (LMS) algorithm. LS algorithms are expensive in terms of

computations and are not suitable for high order systems. LMS algorithms are simple,

but perform poorly for highly correlated input signals. A number of methods can be

adopted to achieve the objectives mentioned in previous section. One approach is to

use data selective adaptive filtering based methods (Diniz 2008), like partial-update al-

gorithms and set-membership algorithms, can be used to reduce the computational

complexity of adaptive algorithms without any degrading effects on performance.

Self-adapting step size strategies can be developed on the basis of the statistics of the

observable data to make ANC system robust and easy to use in different scenarios.

Use of pro-active step size variation can alleviate the convergence issues of LMS algo-

rithms for speech signals and reduce the number of tunable parameters. Similarly, a

self adapting variable forgetting factor can be derived from the statistics of measured

data for LS algorithms. This can result in a fast convergence rate and small steady

state error, which are not possible with a fixed forgetting factor. Also, LS algorithms

with data selective filtering can result in reduced operations with high end noise re-

duction at a fast convergence rate. Further reduction in operations can be achieved

by use of efficient implementations of the LS algorithms like array LS algorithms or

fast recursive LS algorithms (Diniz 2008). The improved performance with reduced

computational requirements shall make the proposed algorithms an equally preferred

choice for lower and higher order ANC systems.

1.5 Contributions

Adaptive algorithms have been designed fore various configurations of ANC systems

that gives optimal performance in terms of steady state noise reduction level, con-

vergence speed, computational complexity, tracking and tunability. The contributions

achieved are
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• Selective updating least mean square algorithm and filtered-x LMS-Newton al-

gorithm are designed for secondary path estimation and noise control filter in

feed-forward active noise control systems. Variable thresholding mechanism is

used to reduces computations while maintaining estimation accuracy and con-

vergence speed.

• Power scheduling schemes designed for online secondary path estimation and

acoustic feedback path estimation discontinue auxiliary noise injection after the

convergence of the estimation filters. Therefore, contribution of auxiliary noise is

negligible in the normal operation of ANC systems.

• The proposed variable threshold selective updating methods work in a pro-active

manner to make designed methods suitable for devices where multiple appli-

cations are running simulateously. At the system startup and in the transition

phase, frequent coefficient updates are allowed while fewer coefficient updates

are performed in the steady state.

• For narrowband disturbances at the error microphone, an optimal weighting fac-

tor is derived for robust performance of feedforward and feedback noise con-

trollers. The designed method computes the weighting factor recursively and

updates the noise controllers when there is new information in the current data

to improve the noise reduction. Covariance matrices for noise control filters are

guaranteed to be non-increasing and positive-definite to ensure a non-increasing

and bounded error.

• For systems with acoustic feedback, self-adapting variable step sizes based adap-

tive algorithms are derived. Moreover, a tuningless power schedule is designed

for auxiliary noise to vary the gain in relation to the predictor filter output. In

the steady state, noise reduction performance is improved and computations are

reduced by discontinuing the feedback compensation and predictor filters.

• A numerically stable filtered-x fast recursive least squares algorithm is derived

using forward prediction only. Convergence analysis shows that the developed

method can deliver improved convergence speed and tracking.

• A new control structure is designed to neutrlize the acoustic feedback for nar-

rowband noises. A frequency estimation algorithm is designed to predict the

narrowband frequencies and generate the corresponding reference signals for
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noise control filters. The designed control structure does not require acoustic

feedback path estimation and therefore, offers improvement in noise reduction

performance.

1.6 Thesis outline

Organisation of the thesis is as follows.

Chapter 2 presents the variable threshold based selective updating least mean square

and filtered-x LMS-Newton algorithms designed for fast convergence and im-

proved noise reduction irrespective. A robust schedule has been designed for

auxiliary signal power to facilitate fast online estimation of secondary path with

negligible contribution to residual noise in the steady state.

Chapter 3 derives the numerically stable filtered-x fast recursive least squares algo-

rithm for noise control filter using forward prediction only. Convergence analysis

has also been performed along with the computational comparisons.

Chapter 4 derives the optimal weighting factor for feed-forward and feedback noise

controllers for ANC systems with narrowband disturbances at the error micro-

phone. Detailed analysis has been provided for the various properties of the

designed method.

Chapter 5 presents the derivation and analysis of the self-adapting variable step size

normalized least mean square algorithms for acoustic feedback neutralization

filter, predictor filter and noise control filter.

Chapter 6 provides the design of new control structure for ANC systems with acoustic

feedback that does not require feedback path estimation. A frequency estimation

algorithm has been implementated to internally generate the reference signals for

noise control filters. Steady state properties of frequency estimation algorithm

have also derived.

Chapter 7 provides the areas for further improvements along with possible methods

for achieving the optimal performance.
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Chapter 2

Variable Threshold-Based
Selective Updating

Algorithms in Feed-Forward
Active Noise Control

Systems

SELECTIVE updating based adaptive algorithms are introduced for sec-

ondary path estimation and noise control. A variable threshold mecha-

nism is used for selective updating to reduce the computations of filtered-x

LMS-Newton algorithm for noise control filter to allow quick convergence

to small steady state error. A variable threshold based selective updat-

ing least mean square algorithm is proposed for secondary path estimation

along with pro-active auxiliary noise variation scheme. The proposed vari-

able threshold allows frequent updates in the transition phase and fewer

updates in the steady state. Therefore reducing compuations without dert-

eriorating the performance as shown by comparison with established state-

of-the-art methods in terms of estimation accuracy, steady-state residual

error, convergence speed, number of tunable parameters and tracking ca-

pability.
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Variable Threshold-Based Selective Updating
Algorithms in Feed-Forward Active

Noise Control Systems
Muhammad Saeed Aslam , Peng Shi , Fellow, IEEE, and Cheng-Chew Lim , Senior Member, IEEE

Abstract— Selective updating (SU)-based adaptive algorithms
are proposed for secondary path estimation and noise control
in active noise control systems. Use of the proposed variable
threshold (VT) for noise control filter aids in reducing the
computational complexity of filtered-x LMS-Newton algorithm
to achieve fast convergence and improved noise reduction irre-
spective of the eigen-spread of input signal correlation matrix.
A VT-SU least mean square algorithm is presented for the online
estimation of the secondary path that reduces computational
cost while maintaining estimation accuracy and convergence
speed. A power scheduling scheme is presented that requires
only one tunable parameter and discontinues auxiliary noise
for power level below a predefined limit to reduce the residual
error signal. The proposed VT-SU algorithms allow frequent
updates in the transition phase and fewer updates in the steady
state. Simulations are performed under benchmark conditions
to validate the improved performance of the proposed method
in comparison with established state-of-the-art methods in terms
of estimation accuracy, steady-state residual error, convergence
speed, number of tunable parameters, tracking capability, and
computational complexity.

Index Terms— FxLMS-Newton, gain scheduling, active noise
control, selective filtering, online secondary path estimation,
parameter estimation.

I. INTRODUCTION

ACOUSTIC noise has become a critical issue with increase
in use of mechanical and electronic devices for its

adverse effects on stress levels, health and productivity. The
methods adopted to mitigate acoustic noise are categorized as
active and passive. Active noise control (ANC) is preferred for
performance against low frequency noises by generating a can-
celling noise with identical amplitude and opposite phase using
a secondary source in a controlled manner [1]. Recently, it has
gained popularity in commercial products like automobiles,
headphones and mobile phones while numerous successful
industrial applications are reported including aircraft cabin
noise, magnetic resonance imaging scanner, incubators and
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air conditioning ducts. A schematic of a basic ANC system
is shown in Fig. 1, where a reference microphone is used
to detect the reference signal x(n) which passes through the
primary path P(z) to form the primary noise, d(n). The noise
controller W (z) uses x(n) to produce the trigger signal for
speaker. The speaker is the secondary source used to produce
the cancelling noise, d̂(n). The objective of ANC system is to
adaptively update W (z) such that d(n) and d̂(n) have equal
magnitude but opposite phase. The resultant signal is detected
by an error microphone and is called residual error signal e(n).
Numerous variants of least mean square (LMS) algo-
rithm [2]–[4] and least squares (LS) algorithm [5]–[7] algo-
rithms are designed for noise control filters in ANC systems,
but filtered-x LMS (FxLMS) algorithm is usually preferred for
its computational simplicity, unbiased convergence and robust-
ness [8]–[10]. The convergence speed and tracking capability
of the LMS algorithm is primarily affected by eigen-spread
of the input signal [11], [12]. LS algorithm or LMS-Newton
algorithm offer superior convergence and steady-state error
properties with increased computations [13]. Consequently,
a proactive approach is presented in this paper for updating
filter coefficients using LMS-Newton algorithm that alleviates
the computational load without degrading the performance.

It can be seen in Fig. 1 that there is an estimate of secondary
path, Ŝ(z), in the update path of W (z) and adverse influence of
an erroneous secondary path estimate on system performance
is presented in [14]–[17]. Estimate of S(z) is usually obtained
by the auxiliary noise injection with LMS adaptive algorithm
as shown in Fig. 1. Algorithms in [3], [8], [9], [18], and [19]
use fixed power auxiliary noise which results in high level
noise at the error microphone, while [2] and [20] also use a
similar approach but deactivate auxiliary noise in the steady
state. In [4], [10], and [21]–[24], different power variation
strategies are designed for auxiliary noise to achieve supe-
rior convergence rate, online estimation and noise reduction.
In [3], [4], and [23], variable step size strategies are also
designed for fast convergence. Recently, the reference signal
and the controller output are used to model the secondary and
primary paths in [25]. This method has strong dependence on
the frequency content of the reference signal [9]. In this paper,
a data dependent updating mechanism and simplistic power
variation strategy is devised for the efficient S(z) estimation.
The distinct contributions made in this paper are as follows

1) A variable threshold based selective updating
LMS (VT-SULMS) algorithm is derived for obtaining
Ŝ(z) online with following distinct properties

1549-8328 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Block diagram of the conventional feed-forward ANC systems.

• The computational requirements of the proposed
algorithm are less demanding than the algorithms
available in relevant literature while maintaining
estimation accuracy that does not compromise the
performance of noise controller.

• It performs equally well in transient and steady state.
Therefore, it requires the auxiliary noise injection
for a small number of iterations.

• It requires tuning of one parameter.
2) A scheme is formulated for the gain variation of auxil-

iary noise that takes into account the level of secondary
path estimation. The important features of this scheme
are

• In this scheduling scheme, the noise injection is
stopped when power falls below a minimum pre-
defined limit. As a weak auxiliary noise signal is
not contributing in secondary path estimation, then
there is no significant advantage in injecting it and
updating the estimation filter.

• It has one tunable parameter which is a forgetting
factor.

• It improves the convergence speed for secondary
path estimation and thus auxiliary noise is injected
for small number of iterations.

• It requires less computations compared to previous
schemes and its impact accumulates as gain of
auxiliary noise is continuously calculated.

• It helps the system in maintaining stability in case
of perturbations in acoustic paths.

3) Variable threshold based filtered-x selective updat-
ing LMS-Newton (VT-FxSULMS-Newton) algorithm
is derived for W (z) to improve the noise reduction
performance with significantly reduced computational
requirements while maintaining fast convergence and
small steady state error.

The comparative study of the proposed methods with
their counterparts validate the supremacy for different ANC
scenarios in terms of residual noise, estimation accuracy,

convergence speed, response to perturbations, computational
complexity and number of tuning parameters.

The organization of upcoming sections is as follows:
Section II describes the system model. VT-SULMS algo-
rithm and variation of G(n) for online estimation of S(z)
are derived in section III along with convergence analy-
sis. Section IV derives a VT-FxSULMS-Newton algorithm
for W (z). Section V presents the computational require-
ments. Computer simulation results are analyzed in section VI
followed by concluding remarks in section VII.

II. ANC SYSTEM MODEL

A schematic of the proposed methodology is given in Fig. 2.
The objective is to reduce e(n) by using the noise control fil-
ter W (z) which has to model primary path P(z) and inversely
model secondary path S(z) for optimal noise control filter [9].
The reference signal x(n) and residual error signal e(n)
are detected by reference microphone and error microphone
respectively. Primary signal, d(n), can be written as

d(n) = p(n) ∗ x(n), (1)

where ∗ denotes linear convolution and p(n) is the impulse
response of primary path P(z) at time n. The control
signal, y(n), is

y(n) = wT (n)xw(n), (2)

where w(n) is the coefficient vector for W (z)

w(n) = [w0(n),w1(n), · · · , w(Lw−1)(n)]T , (3)
xw(n) = [x(n), x(n − 1), · · · , x(n − (Lw − 1))]T , (4)

and Lw is the length of w(n). A gain modulated auxiliary
signal, vg(n), is added to the output of W (z) for S(z) estima-
tion and is obtained by

vg(n) = G(n)v(n), (5)

where G(n) is a variable gain function (discussed in
section III) and v(n) is a white noise sequence with zero mean
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Fig. 2. Block diagram of the proposed method for feed-forward ANC systems.

and unit variance (uncorrelated with x(n)). The secondary
cancellation signal comprises of d̂(n) and vs(n). The primary
noise canceling signal d̂(n) is obtained by

d̂(n) = s(n) ∗ y(n), (6)

and vs(n) can be given as

vs(n) = s(n) ∗ vg(n), (7)

where s(n) is the impulse response of S(z) at time n. The
residual error signal, e(n), can be given as

e(n) = d(n)− d̂(n)+ vs(n). (8)

The objective of the ANC system is to minimize the e(n)
signal through use of noise control filter W (z). The adaptive
algorithm used for updating the W (z) requires the estimate
of secondary path. Therefore, on-line estimation of secondary
path using VT-SULMS algorithm will be addressed in the
upcoming section, which is followed by the design of adaptive
algorithm for W (z).

III. VT-SULMS ALGORITHM FOR ONLINE

SECONDARY PATH MODELING

The proposed VT-SULMS algorithm is based on the con-
cepts of the set-membership filtering (SMF) [11], [26]–[29]
which is based on a set consisting of coefficients that lead to
absolute estimation errors falling below a prescribed threshold.
SMF is focused on estimation of this set or its member [11].
The SU mechanism results in significant savings in compu-
tations and power since the coefficient updates are performed
only for estimation error greater than the pre-defined threshold.
This results in frequent updates during the early iterations

when errors are large, and fewer updates in the steady state.
The power of the auxiliary signal, v(n) is crucial for the
convergence speed of secondary path modeling filter and noise
conrtol filter. Therefore, the power of v(n), G(n), should vary
in relation with status of secondary path modeling and should
become negligible in the steady state. VT-SULMS algorithm
is presented in the following subsections along with a scheme
to vary G(n) and convergence analysis.

A. Threshold Based Selective Updating LMS Algorithm
This section derives the computationally efficient T-SULMS

algorithm that updates the coefficient vector, ŝ(n), of Ŝ(z).
Its output is given by

v̂s(n) = ŝT (n)vg(n), (9)

where

ŝ(n) = [ŝ0(n), ŝ1(n), · · · , ŝ(Ls−1)(n)]T , (10)

vg(n) = [vg(n), vg(n − 1), · · · , vg(n − (Ls − 1))]T . (11)

The vectors vg(n) and ŝ(n) ∈ R
Ls , where R represents the set

of real numbers. The estimation error, f (n), can be written as

f (n) = e(n)− v̂s(n)

= e(n)− ŝT (n)vg(n), (12)

where vg(n) is the auxiliary input vector. The objective of the
SU is to design ŝ(n) that upper bounds | f (n)| by a prescribed
threshold γs . There are several valid solutions of ŝ(n) for a
properly chosen value of γs . For a set, S̄, of all possible data
pairs

{
vg(n), e(n)

}
, let feasibility set, H (n), contains all vector

ŝ(n) that have | f (n)| upper bounded by γs

H (n) =
{

ŝ(n) ∈ R
Ls : | f (n)| ≤ γs,

{
vg(n), e(n)

} ∈ S̄
}
.

(13)
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The goal of SMF is to adaptively find a member of H (n). The
simplest approach is to compute a filter using the information
provided by the constraint set Hk . Assume ŝ(n) is trained with
k data pairs

{
vg(i), e(i)

}
for i = 1, · · · , k, then Hk denotes

the set of all vectors ŝ(n) for which | f (n)| is bounded by γs

Hk =
{

ŝ(n) ∈ R
Ls :

∣
∣
∣e(n)− ŝT (n)vg(n)

∣
∣
∣ ≤ γs

}
. (14)

The key idea of the T-SULMS algorithm is to check the
previous estimate ŝ(n) for existence outside the constraint
set Hk . If

∣
∣∣e(n)− ŝT (n)vg(n)

∣
∣∣ > γs , the new estimate ŝ(n+1)

will be obtained to bring error to the closest boundary of Hk.
Orthogonal projection of ŝ(n) is used to obtain the update.
NLMS algorithm for obtaining ŝ(n + 1) is

ŝ(n + 1) = ŝ(n)+ μs(n)

vg
T (n)vg(n)

f (n)vg(n), (15)

where μs(n) is the variable step size parameter. The update is
obtained either if

f (n) = e(n)− ŝT (n)vg(n) > γs, (16)

or

f (n) = e(n)− ŝT (n)vg(n) < −γs, (17)

and the a-posteriori error can be given by

�(n) = e(n)− ŝT (n + 1)vg(n) = ±γs

= e(n)− ŝT (n)vg(n)− μs(n)

vg
T (n)vg(n)

f (n)vg
T (n)vg(n)

= f (n)− μs(n)

vg
T (n)vg(n)

f (n)vg
T (n)vg(n), (18)

where �(n) equals ±γs for updated coefficients. The equality
obtained from (18) is

�(n) = e(n) [1 − μs(n)] = ±γs, (19)

The above equation leads to

1 − μs(n) = ± γs

f (n)
, (20)

where (+) sign is applicable for f (n) > 0 and (−) sign applies
for the case where f (n) < 0. Therefore, μs(n) can be written
as

μs(n) = 1 − γs

| f (n)| , if | f (n)| > γs

= 0, otherwise (21)

Now G(n) in (5) is variable and can have a value close
to 0 (explained in section III-C). This means that the nor-
malizing term, vg

T (n)vg(n), in (15) can become very small
that can result in a very large update in ŝ(n + 1). This large
update may make ŝ(n + 1) to become unstable. To avoid this,
we use

ŝ(n + 1)= ŝ(n)+ μs(n)

max
(
vT (n)v(n), vg

T (n)vg(n)
) f (n)vg(n),

(22)

where max(·) means maximum of the values separated by
comas and

v(n) = [v(n), v(n − 1), · · · , v(n − (Ls − 1))]T . (23)

Use of max
(
vT (n)v(n), vg

T (n)vg(n)
)

in (22) does not require
much computations as

vT (n + 1)v(n + 1)

= vT (n)v(n)− v2(n − (Ls − 1))+ v2(n + 1). (24)

Similar implementation is also possible for vg
T (n)vg(n). This

completes the derivation of threshold based SULMS algorithm
for secondary path modeling. A VT parameter, γs , is used
in (21), and the scheme for its variation is presented in detail
in the next section.

B. Variable Threshold Parameter γs(n)
It is crucial to choose a flexible γs(n) to avoid over-

bounding and under-bounding. This subsection proposes a
variable γs(n) that meets the conflicting demands of the
transition phase and the steady state. Using (8) and (9),
the error signal of expression (12) can be given by

f (n) = vs(n)− v̂s(n)+ fw(n), (25)

where fw(n) is disturbance for secondary path modeling and
can be defined as

fw(n) = d(n)− d̂(n), (26)

where d(n) and d̂(n) are already defined using expressions
(1) and (6). As a result, expression (8) becomes

e(n) = fw(n)+ vs(n). (27)

For the secondary path identification, the effect of under mod-
eling and an estimate of the additional noise, fw(n), can be
obtained from the estimation error signal f (n) [11]. As aux-
iliary signal, vg(n), is a white noise, then the mean square
error (MSE), ξs = E[ f 2(n)], can be calculated as

ξs = E

{[
sT (n)vg(n)− ŝT (n)vg(n)

]2 + f 2
w(n)

}
, (28)

where E [.] denotes statistical expectation. Assume vg(n) is
uncorrelated with the additional noise fw(n) which means that
the expected value of the modeling filter and the unknown
secondary path impulse response will coincide. Thus

ξs = E

{[
sT (n)vg(n)− ŝT (n)vg(n)

]2
}

+ ο 2
fw, (29)

where ο 2
fw(n) represents

ο 2
fw(n) = E[ fw

2(n)]. (30)

The VT parameter, γs(n) can be written as

γs(n + 1) = αγs(n)+ (1 − α)
√
βsο

2
fw(n), (31)

where α and βs are selected for an acceptable compromise
between mis-adjustment and convergence rate. Now, ο 2

fw(n) is
unknown as fw(n) is not a directly available signal. The
estimate of ο 2

fw(n) can be obtained by

ο̂ 2
fw(n + 1) = αο̂ 2

fw(n)+ (1 − α) f 2(n), (32)

and expression (31) becomes

γs(n + 1) = αγs(n)+ (1 − α)
√
βs ο̂

2
fw(n). (33)
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TABLE I

VT-SULMS ALGORITHM FOR ONLINE SECONDARY PATH MODELING

The proposed VT-SULMS algorithm is summarized in Table I.
In (5) and (11), a variable gain G(n) is used and the scheme
for its variation is discussed in the next subsection.

C. Time-Varying Gain G(n)
A suitable time varying gain should have a large value

when the estimation of the secondary path is poor and should
decrease with improvement in estimation accuracy. In addition,
the gain should be zero in steady state which means sufficient
estimation accuracy is obtained to ensure the stable noise
control performance. The signal e(n) contains information
required for estimation as well as noise cancellation. The
sub-signal necessary for noise control is fw(n) given in (26)
while vs(n) is necessary for secondary path estimation. Two
important points worth mentioning here are

• Presence of fw(n) in e(n) is a disturbance for ŝ(n) and
vs(n) is a disturbance for w(n). So, continuous injection
of v(n) is not favourable towards noise cancellation.

• Under-modeling of secondary path may affect the perfor-
mance of noise control filter due to its presence in update
path. So, v(n) of sufficient power should be introduced
to achieve fast convergence of ŝ(n) which is desired for
effective operation of w(n).

A time-varying gain of v(n) is an effective approach to achieve
these goals. Gain scheduling scheme in [23] aims at keeping
R(n) constant for all n

R(n) = E
[

fw2(n)
]

E
[
vs

2(n)
] , (34)

where G(n) is

G(n) =
√

Pe(n)

(R + 1)Ps(n)
, (35)

where

Pe(n) = αPe(n − 1)+ (1 − α)e2(n), (36)

Ps(n) = αPs (n − 1)+ (1 − α)ŝT (n)ŝ(n), (37)

and 0.9 < α < 1.0. In [23], R ≡ 1, which means

E
[

fw
2(n)

]
= E

[
vs

2(n)
]
, (38)

is always satisfied, and G(n) is proportional to
√

E
[

fw2(n)
]

at steady state for method in [23]. This makes an unnec-
essary contribution to e(n). The proposed scheme utilizes
an approach to terminate the auxiliary noise at steady state,
reduce the number of tunable parameters and avoid redundant
computations. When the accuracy of ŝ(n) is insufficient, like
after initialization or after encountering a perturbation in the
acoustic paths, then Pf (n) > Px (n) and

G(n) =
√

Pf (n − 1)

ŝT (n)ŝ(n)
, (39)

where Pf (n) and Px(n) are obtained using the following
approximators

Pf (n) = αP f (n − 1)+ (1 − α) f 2(n), (40)

Px (n) = αPx (n − 1)+ (1 − α)x2(n). (41)

Rewriting equation (25) as

f (n) = vs(n)− v̂s(n)+ fw(n)

= fs(n)+ fw(n). (42)

Now, Pf (n) can be given as

Pf (n) = Pf s(n)+ Pfw(n), (43)

where Pf s(n) is the power of fs(n) and Pfw(n) is the power
of fw(n). When ŝ(n) is not close to ŝ(n), G(n) will increase
due to Pf s(n) in (43) to ensure fast convergence. Increase in
accuracy of ŝ(n) reduces Pf s(n) in (43) and as a result G(n)
reduces. However, (39) can only reduce the gain to a level of
R(n) = 0 dB. Consequently, a different scheme is used for
conditions near the steady state, P f (n) ≤ Px (n)

G(n) =
{√

Px (n), if k(n) > Px (n)

k(n), otherwise
(44)

where

k(n) = αk(n − 1)+ Pf d
2(n), (45)

and Pf d (n) is the estimate of E[ f (n) f (n − 1)], which results
in a small gain in steady state

Pf d(n) = αP f d (n − 1)+ (1 − α) f (n) f (n − 1). (46)

Conditions in (44) keep G(n) in check to avoid divergence of
w(n) and maintain stable operation in the events like acoustic
perturbation or uncorrelated interference at error sensor [4].
Lastly, a check is placed on G(n) that if it falls below certain
lower limit, ε, then substitute G(n) = 0. The reason is to avoid
injection of auxiliary noise when it is not powerful enough
to contribute in secondary path estimation. A reasonable
choice for ε is an estimate of measurement noise at the
reference or error microphone. Flow diagram for the selection
of G(n) is provided in Fig. 3. The proposed method for online
secondary path modeling along with gain variation scheme
is complete here, and the convergence analysis is presented
in next subsection to highlight the stability of the proposed
methodology.
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Fig. 3. Flow diagram for time varying gain G(n).

D. Convergence of the Misalignment
This section presents the convergence analysis of ŝ(n).

Define the misalignment vector at time n as

m(n) = s(n)− ŝ(n). (47)

Rewriting (22) in terms of the misalignment gives

m(n + 1) = m(n)− μs(n)

Lsο 2
vg

f (n)vg(n), (48)

where ο 2
vg

is the auxiliary signal power and the approximation

used is vT
g (n)vg(n) = Lsο

2
vg

= LsE
{
v2

g(n)
}

for Ls � 1.
Taking the l2 norm and the mathematical expectation of (48)
yields

E
[�m(n + 1)�2

2

] = E
[�m(n)�2

2

]

− 2μs(n)

Lsο 2
vg

E
[
vT

g (n)m(n) f (n)
]

+ μ2
s (n)

L2
sο

4
vg

E
[

f 2(n)vT
g (n)vg(n)

]
. (49)

Using (7), (9) and (47) the modeling error signal from (25)
can be written as

f (n) = vT
g (n)m(n)+ fw(n). (50)

For the second term on the right hand side of (49), take (50)
into account and remove the uncorrelated product to obtain

E
[
vT

g (n)m(n) f (n)
] = E

[
vT

g (n)m(n)v
T
g (n)m(n)

]

= E
[
(vT

g (n)m(n))
2]. (51)

Using independence and weakly-dependent assumptions [30],
(51) can be written as

E
[
(vT

g (n)m(n))
2] = tr

[
E
[
mT (n)Rvgvg m(n)

]]

= E
[
tr
[
m(n)mT (n)Rvgvg

]]

= tr
[
E
[
m(n)mT (n)

]
Rvgvg

]
, (52)

where Rvgvg = E[vg(n)vT
g (n)] and tr[·] denotes the trace

of a matrix. Expectation and trace are linear operators and
are exchanged in (52). The identity used in penultimate line
of (52) is, tr[AB] = tr[BA], where A and B are matrices of
order N × M and M × N respectively. Two assumptions are
considered at this point. The a posteriori misalignment, m(n),
at n is uncorrelated with vg(n) at n + 1 and the correlation
matrix E[m(n)mT (n)] is close to a diagonal matrix. This
is valid in the steady-state, since error of the individual
coefficients become uncorrelated. Under these assumptions,
(52) becomes

E
[
vT

g (n)m(n) f (n)
] = ο 2

vg
E
[�m(n)�2

2

]
. (53)

For the last expectation term from (49), substitute (50) and
remove uncorrelated terms to

E
[

f 2(n)vT
g (n)vg(n)

]

= tr
[
E[ f 2

w(n)v
T
g (n)vg(n)]

+ E[vg(n)vT
g (n)m(n)m

T (n)vg(n)vT
g (n)]

]
. (54)

Using the independence property of vg(n) and m(n), the sec-
ond expectation term on right side of (54) can be written as

E[vg(n)vT
g (n)m(n)m

T (n)vg(n)vT
g (n)]

= E[vg(n)vT
g (n)K(n)vg(n)vT

g (n)], (55)

where K(n) = E[m(n)mT (n)]. Using the procedure of [30],
expression (55) can be written as

E[vg(n)vT
g (n)K(n)vg(n)vT

g (n)] = ο 4
vg

E
[�m(n)�2

2

]
ILs

+ 2ο 4
vg

E[m(n)mT (n)],
(56)

where ILs is an identity matrix of order Ls . Substitute (56)
in (54) results in

E
[

f 2(n)vT
g (n)vg(n)

]

= tr
[
ο 4
vg

E
[�m(n)�2

2

]
ILs

+ 2ο 4
vg

E[m(n)mT (n)]] + Lsο
2
vg
ο 2

fw

= (Ls + 2)ο 4
vg

E
[�m(n)�2

2

] + Lsο
2
vg
ο 2

fw, (57)

where E[ f 2
w(n)] = ο 2

fw
, for all n. Substitute (53) and (57)

in (49). Rearrange the resulting expression

E
[�m(n + 1)�2

2

] = g(μs(n), Ls)E
[�m(n)�2

2

]

+ h(μs(n), Ls , ο
2
vg
, ο 2

fw ), (58)

where

g(μs(n), Ls)= 1−2
μs(n)

Ls
+ (Ls + 2)μ2

s (n)

L2
s

, (59)

h(μs(n), Ls , ο
2
vg
, ο 2

fw ) = μ2
s (n)

Lsο 2
vg

ο 2
fw . (60)
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Expression (58) illustrates the relationship of misalignment
with two distinct components: convergence rate and mis-
adjustment. The term g(μs(n), Ls ) influences the convergence
rate of the algorithm. It depends on the normalized step size
value μs(n) and the filter length Ls . The fastest convergence
is obtained when g(μs(n), Ls) reaches its minimum. Taking
μs(n) as the reference parameter, result obtained is

μs(n) |FC= Ls

Ls + 2
, (61)

where subscript FC is used to denote fast convergence. For
long filters Ls � 2, the fastest convergence is possible for
μs(n) ≈ 1, which is an established result [30], [31]. Let us
evaluate the proposed μs(n) from (21) and G(n) from (39).
It is clear from (50) that f (n) is greater than fw(n) for
large estimation errors, s(n)− ŝ(n). This occurs at the system
start up or in case of perturbation in s(n). At this stage,
G(n) is large resulting in f (n) � fw(n). This makes μs(n) ≈
1 from (21) which is required for fast convergence. Thus,
the proposed method matches the desired functionality at the
system start up and perturbation phases.

The stability condition can be expressed by the non-
increasing nature of E

[�m(n + 1)�2
2

]
in (58). The decreasing

E
[�m(n + 1)�2

2

]
can be obtained by getting g(μs(n), Ls)

in (58) to be less than 1, which from (59) leads to

g(μs(n), Ls) |stable= 2Ls

Ls + 2
. (62)

For Ls � 2, condition in (62) reduces to μs(n) |stable< 2.
Applying this condition to μs(n) in (21) results in

[
1 − γs(n)

| f (n)|
]
< 2. (63)

This condition is always true since filter update is only
performed when | f (n)| is greater than γs(n). The minimum
value of | f (n)| happens when s(n) ≈ ŝ(n) and this leads
to | f (n)| ≈ γs(n), which means μs(n) ≈ 0. Moreover,
the gain G(n) switches to small value from expression (44).
Similarly, when estimation error is large, f (n) � γs(n), then
μs(n) ≈ 1. It follows that the proposed μs(n) is always within
the stability limit.

The term h(μs(n), Ls , ο
2
vg
, ο 2

fw
) in (58) influences the mis-

adjustment of the proposed algorithm. As expected, the mis-
adjustment decreases with decrease in ο 2

fw
and increase in ο 2

vg
.

The mis-adjustment is minimum when the function in (60)
reaches its minimum. Take μs(n) as the reference parameter,
the lowest mis-adjustment is obtained for μs(n) ≈ 0 [31].
The minimum mis-adjustment is a desirable property in the
steady state and it is clear from (21) that μs(n) ≈ 0 and ο 2

vg
also becomes small as G(n) is set to a small value k(n) as
given in (44) in the steady state. Similarly, when modeling
accuracy is poor then μs(n) ≈ 1 and ο 2

vg
is large as G(n)

is set to a large value as given in (39). This limits the mis-
adjustment and proves that the proposed algorithm provides
the desired properties of fast convergence and small steady
state error. This completes the discussion on the proposed
secondary path modeling, and the next section is focused on
the adaptive algorithm design for W (z).

IV. VARIABLE THRESHOLD BASED FXSULMS-NEWTON

ALGORITHM FOR NOISE CONTROL FILTER

This section introduces a variable threshold based filtered-x
selective updating LMS-Newton (VTFxSULMS-Newton)
algorithm which incorporates estimates of the second-order
statistics with significant reduction in computations. The
objective is to avoid the slow convergence of the LMS algo-
rithm for highly correlated input signal [11], [12]. Estimated
inverse of the input signal auto-correlation matrix is used for
this improvement which results in a significant elevation in
the computational requirements. Therefore, SU mechanism is
proposed to reduce the computations by using a VT to allow
frequent updates in transition state and fewer updates in steady
state. Expressions for LMS-Newton algorithm can be written
as [11]

w(n + 1) = w(n)+ 2μe(n)Q̂
−1
(n)x̂s(n), (64)

where

Q̂
−1
(n) = 1

1 − α

[

Q̂
−1
(n − 1)− ψ (n) ψT (n)

1−α
α + x̂T

s (n)ψ (n)

]

, (65)

ψ (n) = Q̂
−1
(n − 1)x̂s(n), (66)

and 0 < α < 1 is weighting factor, μ is a factor introduced to
protect the algorithm from divergence resulting from the use
of noisy estimates Q̂(n) and ĝw(n) and

x̂s(n) = [
x̂s(n), x̂s(n − 1), · · · , x̂s(n − (Lw − 1))

]T
, (67)

x̂s(n) = ŝ(n) ∗ x(n). (68)

Computations required for (65) are significantly large and
can be reduced by using a SU mechanism. A threshold
based scheme is proposed for this purpose which means that
coefficient vector for noise control is updated only when
|e(n)| > γw(n). It is crucial to choose a flexible γw(n)
as selecting a very large value will not allow sufficient filter
updates, and updates without any improvement will occur
for a small value. The proposed variable γw(n) meets the
conflicting demands of the transition phase and the steady
state. For the noise control filter, the effect of under estimation
and an estimate of the additional noise can be obtained from
the e(n) [11]. The MSE, ξw = E[e2(n)], can be calculated as

ξw = E

{[
d(n)− wT (n)x̂s(n)

]2 + v2
s (n)

}
. (69)

Assume x(n) is uncorrelated with vs(n) which means that the
expected value of the noise control filter will coincide with
actual solution. Thus

ξw = E
{

d(n)− wT (n)x̂s(n)
}

+ ο 2
f s , (70)

where ο 2
fw(n) represents

ο 2
f s(n) = E[vs

2(n)]. (71)

The VT parameter, γw(n) can be written as

γw(n + 1) = αγw(n)+ (1 − α)
√
βwο

2
f s(n), (72)

where α and βw are selected for an acceptable com-
promise between mis-adjustment and convergence rate.
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TABLE II

VARIABLE THRESHOLD BASED FILTERED-X SELECTIVE UPDATE
LMS-NEWTON ALGORITHM FOR NOISE CONTROL FILTER

Now, ο 2
f s(n) is unknown as vs(n) is not a directly available

signal. The estimate of ο 2
f s(n) is

ο̂ 2
f s(n + 1) = αο̂ 2

f s(n)+ (1 − α)e2(n), (73)

and expression (72) becomes

γw(n + 1) = αγw(n)+ (1 − α)
√
βwο̂

2
f s(n). (74)

Substitute 2μ = 1 − α in (65) and (64) to reduce the
number of tunable parameters. Steps for implementation of
VTFxSULMS-Newton algorithm are summarized in Table II.

V. COMPUTATIONAL COMPLEXITY

Comparison of the proposed and established methods in
terms of computational complexity is presented in this section.
Number of multiplications and additions is the figure of merit
considered for comparison. Divisions are not considered here
as the considered algorithms do not involve significant number
of divisions. Table III lists the computational complexity for
algorithms, where there are two entries in the case of [4]
since it chooses between two functions to calculate the gain
of auxiliary noise. Algorithms proposed in [4] and [20]–[23]
use variants of LMS for secondary path modeling and noise
controller to keep computations on a low level. In [2], noise
controller is updated through LMS algorithm, but least squares
algorithm is used for modeling purpose which is responsible
for increase in computations. The proposed VT-SULMS and
VT-FxSULMS-Newton algorithm use a proactive approach for
updating filter coefficients that alleviates the computational
load without any negative impact on the performance. Com-
putations of VT-FxSULMS-Newton algorithm are calculated

TABLE III

COMPUTATIONAL REQUIREMENTS FOR ANC SYSTEMS
DICUSSED IN THIS PAPER

for implementation scheme provided in [31]. There are four
possible states for the proposed algorithm in terms of
computations

• In state 1, both ŝ(n) and w(n) are being updated. There
are two enteries for this state as calculation of ŝT (n)ŝ(n)
is required in (39) only when Pf (n) > Px (n).

• Only w(n) is updated in state 2 which means | f (n)| > γs

is not satisfied. This reduces computations by stopping
the evaluation of expressions (21) and (22). Furthermore,
there is only one entry for this state as secondary path
estimation filter is not getting updated, so there is no need
to calculate ŝT (n)ŝ(n) in (39) when Pf (n) > Px (n).

• Condition | f (n)| > γs is valid and |e(n)| > γw(n)
is invalid. Therefore, VT-SULMS algorithm is updating
ŝ(n) in state 3. Once again there are two enteries in this
state due to the occurance of ŝT (n)ŝ(n) in (39) when
Pf (n) > Px (n). The enteries in this state are less than
the methods in [4] and [20]–[23] due to VT-FxSULMS-
Newton algorithm being inactive. This means compu-
tationally expensive expressions (65) and (64) are not
executed.

• Adaptive algorithms for both ŝ(n) and w(n) are inactive
in state 4. This state also has a single entry and requires
least number of multiplications and additions.

The computations in the proposed algorithm switch between
these four states. At start up and during perturbations, com-
putations switch to high end while the proposed method
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TABLE IV

PARAMETERS VALUES USED IN SIMULATIONS

requires least computations in the steady state by proactive
use of VT-SU scheme. Alternate forms of the LMS-Newton
algorithm like fast traversal filters [11] can also be explored
with selective updating mechanism for superior convergence
and steady state error performance with significantly reduced
computational requirements.

VI. CASE STUDIES

In this section, the performance of the proposed algo-
rithm is demonstrated by conducting simulations under
standard conditions. The performance is compared with
Akhtar et al. (AM) [22], Carini (CM) and Malatini [23],
Davari (DM) and Hassanpour [20], Ahmed et al. [4],
Lopes (LM) and Gerald [21] and Saeed’s method (SaM) [2]
in terms of secondary path identification error


S(n) = 10 log10

(∥
∥s(n)− ŝ(n)

∥
∥2

�s(n)�2

)

, (75)

MSE at the error microphone E[e2(n)], convergence speed,
number of tunable parameters and computational complexity.
Recently, an overall modeling based technique is also pre-
sented in [25]. Its results are not included for strong depen-
dence on the frequency content of the reference signal. The
values used for various parameters are provided in Table IV
while sampling frequency is kept at 2 kHz and v(n) is a
zero mean white noise of unit variance. The parameter α in
the proposed method is the forgetting factor and value used
for it is same as used in the previous methods. Primary and
secondary paths are obtained from experimental data provided
in [13]. For all cases, W (z) remains in inactive state for the
first 5000 iterations to ensure stable operation [2], [4]. Also,
simulation results are obtained by averaging over 20 runs.

A. Case 1
In this case, reference signal is formed by the mixture of

two types of signals: multi-tonal and broadband signals. Multi-
tonal noise is produced by machines like fans, generators
and compressors [2], [20] while broadband noise occur in
ducts [13]. Multi-tonal part is formed by combining sinusoids
of frequencies: 100, 200, 300, and 400 Hz and adjusting the

Fig. 4. Surfaces against tuning parameters for: (a) Iteration (n).
(b) Multiplications. (c) Additions.

Fig. 5. Performance results for Case 1: (a) The mean-squared error (dB).
(b) The relative modeling error (dB). (c) Total multiplications at n. (d) Total
additions at n. (e) Load percentage (f) PM/DM ratio.

variance to 2.0. For broadband part, a bandpass filter with
250-500 Hz passband is used to filter a zero mean white
Gaussian noise with variance 2.0. Finally, Gaussian noise is
mixed to achieve a SNR of 30 dB. The range tested for tunable
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Fig. 6. Power spectra of the primary noise, d(n), and residual noise, e(n),
in Case 1. (a) DM. (b) CM. (c) SM. (d) LM. (e) SaM. (f) PM.

parameters is 0.5 ≤ βw ≤ 6.0 and 0.6 ≤ βs ≤ 2.0. This
range ensures convergence with performance similar to when
adaptive filters are allowed to update at each iteration. The
plots of iterations, total multiplications and total additions at
convergence are shown in Fig. 4 for the same level of modeling
accuracy and noise reduction. Some observations regarding
this figure are

• For βs > 1.4 and any value of βw, iterations required for
convergence start to increase (see Fig. 4(a)). This means
that updates are happening less frequently than desired
and result in rise in iterations to reach steady state despite
small numbers of computations (Fig. 4(b) and (c)). Simi-
lar behavior is visible for βw > 4.5 and any value of βs .

• Fast convergence with minimum computations is a desir-
able and difficult task. Suitable range for parameters is:
2.0 ≤ βw ≤ 4.5 and 0.6 ≤ βs ≤ 1.4.

Simulation results with parameter values provided in Table IV
are presented in Fig. 5. The proposed algorithm converges
in 3800 iterations and there is an improvement of about
2.5 dB in steady state value of E[e2(n)] with a modeling
error of −30 dB. Fig. 5 (c) and (d) demonstrate total compu-
tations performed up to n iterations. In terms of computations,
the proposed method is least expensive requiring at least 16%
less computations than the previous methods at n = 95000.
PMmax in Fig. 5 (c) and (d) represents the computations
required if the proposed algorithm is allowed to update at each
iteration.

Fig. 7. Performance results for Case 2: (a) The mean-squared error (dB).
(b) The relative modeling error (dB). (c) Total multiplications at n. (d) Total
additions at n. (e) Load percentage. (f) PM/DM ratio.

Comparing PMmax with PM shows that proposed VT
scheme has reduced computational cost to less than 50% in
first 350 iterations and less than 11% in 45000 iterations (see
Fig. 5(e)). Since there are two VT parameters, the individ-
ual savings can be achieved for SULMS and Fx-SULMS-
Newton algorithm. The second least expensive method in
terms of computations is DM. Therefore, ratios of compu-
tations between PM and DM are presented in Fig. 5(f) and
computations of both become equal in 21500 iterations and
the blue line corresponds to ratio equal to 1. For n > 21500,
PM requires less computations than previous methods and
by n = 95000 it saves at least 17% computational cost as
compared to previous methods. The desired functionality of
ANC system is to reduce e(n) in reduced iterations with
minimum computations. The proposed method has shown
improvement in all desirable areas. Moreover, power spectra
of the primary noise, d(n), and residual noise, e(n), are shown
in Fig. 6 to compare the behavior of the proposed method with
established methods.

B. Case 2
This case addresses the situation of perturbation in both

primary and secondary paths during operation with reference
signal of case 1. This perturbation in acoustic paths is modeled
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Fig. 8. Performance results for Case 3: (a) The mean-squared error (dB).
(b) The relative modeling error (dB). (c) Total multiplications at n. (d) Total
additions at n. (e) Load percentage. (f) PM/DM ratio.

by

s(n + 1) = 0.9s(n)+ 0.1R1(n),

p(n + 1) = 0.9p(n)+ 0.1R2(n),

where R1(n) and R2(n) are random vectors. The perturbations
are introduced at n = 35000 and n = 60000. Simulation
results are provided in Fig. 7. The proposed algorithm shows
improvement in convergence speed and steady state value of
E[e2(n)] (at least 2.5 dB) while maintaining a steady state
modeling error of −30 dB. The proposed method achieves
noise reduction level of −16 dB while previous methods
reach the steady state value of −13.5 dB. In case of acoustic
changes, the noise reduction performance of the proposed
method is consistent in terms of convergence speed as well
as the steady state error (see Fig. 7(a)). As expected, there
are small jumps at perturbation instants in the plots for mul-
tiplications and additions, still the proposed method achieves
low computational cost owing to a flexible VT scheme (see
Fig. 7(c) and (d)). Comparing PMmax with PM shows that
computational cost reduces to half in first 350 iterations and
decimates in next 50000 iterations (see Fig. 7(e)). There is
an increase of less than 2% due to perturbations in acoustic
paths. Ratios of computations between PM and second least
expensive method, DM, are presented in Fig. 7(f). The first

Fig. 9. Power spectra of the primary noise, d(n), and residual noise, e(n),
in Case 3. (a) DM. (b) CM. (c) SM. (d) LM. (e) SaM. (f) PM.

perturbation causes a rise from 0.95 to 1.07 and second one
produces fluctuation from 0.95 to 1.03. The proposed method
still achieves a ratio of 0.92 at n = 95000. This means at
least 8% less computations even in the presence of acoustic
perturbations. The proposed VT scheme works efficiently
by allowing frequent updates during perturbations and fewer
updates in the steady state without compromising the noise
reduction performance highlights the superior performance
and robustness of the proposed method.

C. Case 3
Broad-band signal used in this case is formed by addi-

tion of signals obtained by filtering a zero mean Gaussian
noise with variance 5.0 through two bandpass filters with
passbands: 200-400 Hz and 600-800 Hz. Finally, Gaussian
noise is mixed to achieve a SNR of 30 dB. Performance
results are presented in Fig. 8. The proposed method con-
verges in 4000 iterations to a steady state value of −15 dB
which is an improvement of at least 3 dB from previous
methods. The computational requirements of various methods
are presented in Fig. 8 (c) and (d). The proposed method
requires reduced operations with improved noise reduction
performance which is a significant improvement. Proactive use
of VT in the proposed method is evident from comparison
with PMmax in Fig. 8(e). The VT parameters allowed frequent
updates in the transition phase and fewer updates in the
steady state. Ratios of computations between PM and DM
in Fig. 8(f) demonstrate a pattern similar to first two cases.
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Fig. 10. Performance results for Case 4: (a) The mean-squared error (dB).
(b) The relative modeling error (dB). (c) Total multiplications at n. (d) Total
additions at n. (e) Load percentage. (f) PM/DM ratio.

Thereby, saving a minimum of 18% computations after
100000 iterations. The computational savings become more
prominent with the increase in the iterations which is a
preferable characteristic for long term operation. Power spectra
for various methods is provided in Fig. 9 for further analysis.

D. Case 4

Tonal signals with frequencies from 100 to 200 Hz with a
20 Hz step are combined and the variance of resulting signal
is adjusted to 2.0 to form the reference signal. Also, SNR
of 30 dB is achieved by adding Gaussian noise. The simulation
results are shown in Fig. 10. The proposed VT-FxSUMLMS-
Newton algorithm converges in 3600 iterations to a steady
state value of −21 dB and there is an improvement of about
2.5 dB in steady state value of E[e2(n)] with a modeling
error of −30 dB. The convergence speed of the proposed
method is prominent in comparison with previous methods.
Fig. 10 (c) and (d) demonstrate total computations performed
up to n iterations. In terms of computations, the proposed
method is least expensive requiring at least 16% less compu-
tations compared to the previous methods at n = 95000 (see
Fig. 10(f)). Influence of the proposed VT parameters is evi-
dent from the noise reduction performance and computational
efficiency. The proposed VT scheme allowed frequent updates

Fig. 11. Power spectra of the primary noise, d(n), and residual noise, e(n),
in Case 4. (a) DM. (b) CM. (c) SM. (d) LM. (f) SaM. (g) PM.

in the transition phase and fewer updates in the steady state.
The least operations in the steady state without sacrificing the
noise reduction performance mark the improvement achieved
by the proposed algorithm. Power spectra for methods under
discussion are presented in Fig. 11 and the proposed method
shows noteworthy improvement.

VII. CONCLUSIONS

This paper introduces two computationally efficient VT
schemes for SU based adaptive algorithms used in sec-
ondary path estimation and noise control. The proposed
VT-FxSULMS-Newton algorithm for noise control filter pro-
vides balance between fast convergence and reduced computa-
tions while providing improved steady state performance and
tracking that is independent of eigen-spread of input signal
correlation matrix, which is the cause of deterioration in the
performance of LMS based algorithms. In addition, a gain
variation method is presented for auxiliary noise that responds
effectively to the acoustic changes with reduced number of
tunable parameters. The proposed method improves the mean
square error by more than 2.5 dB for multi-tonal, broadband
and mixed type noise. Similarly, the computational cost of
VT-SULMS adaptive algorithm and VT-FxSULMS-Newton
algorithm is less than the previous methods by significant mar-
gin due to efficient use of separate VT parameter designed for
secondary path estimation filter and noise control filter. Com-
putational savings are more than 10% after 100000 iterations
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even with acoustic changes. These savings increase in long
term operational conditions. In addition, there are only
three tunable parameters for the proposed algorithm. Hence,
improvements achieved in convergence rate, steady state mean
square error, computational cost, tracking ability and num-
ber of tunable parameters highlight the contributions of the
proposed method. The use of fuzzy control [32], [33] and
finite frequency properties [34] may be good alternative to be
exploited in future for better performance.
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Chapter 3

Novel Fast Recursive Least
Squares Filter Design for

Active Noise Control

NOVEL fast least squares algorithm is derived for noise control filter

which is numerically stable to quantization errors. Thus, making it

suitable for finite precision implementation. Only forward prediction is

used to calculate updation gain which reduces the computational complex-

ity significantly. Convergence analysis of the proposed method is given to

demonstrate the stability, robustness and convergence speed. Simulation

examples are provided to demonstrate the effectiveness and improved per-

formance achieved by the proposed method.
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Novel Fast Recursive Least Squares Filter Design
for Active Noise Control

Muhammad Saeed Aslam, Peng Shi, Fellow, IEEE, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—Fast transversal recursive least squares (FTRLS) al-
gorithms have numerical stability issues arising from parameters
in backward prediction. In this paper, a novel filtered-x fast RLS
algorithm is derived to address numerical stability for finite-
precision implementation. Unlike FTRLS algorithms which use
forward and backward predictors simultaneously, the approach
presented uses forward prediction only to avoid stability issues
arising from the backward prediction. The new method is robust
and stable in the presence of quantization errors while delivers
performance similar to that by FTRLS and RLS algorithms.
Convergence analysis of the developed method is also presented.
It is shown that lower bound for forgetting factor is smaller
than that for standard FTRLS algorithm, that indicates the
designed method can achieve improved convergence rate and
tracking performance. Also the computational requirement of
the new algorithm is significantly less than existing algorithms.
Furthermore, a variable threshold based updating mechanism
is deployed to further reduce the computations in the long
term operation sense. Simulation examples are provided to
demonstrate the effectiveness and better performance of the
proposed new algorithm.

Index Terms—active noise control; adaptive filter; fast algo-
rithms; recursive least squares.

I. INTRODUCTION

ACTIVE noise control (ANC) is an attractive approach for
cancelling noises from low frequency band by generat-

ing a similar amplitude and opposite phase cancelling noise
through a secondary source [1]. Apart from popular consumer
products such as headphones, mobile phones and automobiles,
ANC is applied in numerous applications including incuba-
tors, aircraft cabin, transformers [2]–[4]. In most applications,
feedforward ANC systems are used to drive the controlled
secondary source [5]–[7]. In a single channel feedforward
ANC system, two microphones are used: one to detect the
reference signal x(n) and other to detect residual error signal
e(n) (see Fig. 1(a)). Primary noise, d(n) results from x(n)
passing through primary path P (z). Cancelling noise, d̂(n) is
produced by the speaker. The speaker is a secondary source
which is triggered by the adaptive noise controller W (z). The
adaptive algorithm used to update W (z) makes use of x(n)
and e(n) to reduce the noise at the error microphone.

Least mean square (LMS) algorithm is widely used for
reasons including simple implementation, small computational
requirements, convergence to the Wiener solution in the mean
sense, and guaranteed convergence under stationary conditions
[8]. However, convergence rate for LMS is dependent on the

Authors are with the School of Electrical and Electronic Engineering,
The University of Adelaide, Adelaide, SA, 5005, Australia. E-mail: muham-
mad.aslam; peng.shi; cheng.lim@adelaide.edu.au. This work is supported by
the Australian Research Council (DP170102644).

eigenvalue spread of correlation matrix for input signal [2]–
[4], [8]. On the other hand, recursive least squares (RLS)
algorithms exhibit fast convergence independent of the eigen-
value spread of correlation matrix for input signal [4], [8].
RLS algorithms recursively minimize the sum of the squares
of error between the desired and the filter outputs at each
iteration. Also, RLS algorithms have superior performance
in time-varying environments [8], [9]. The downside of RLS
algorithms includes high computations to calculate correlation
matrix, and stability issues [10], [11]. Among algorithms
developed for W (z), filtered-x LMS (FxLMS) algorithms in
[2], [12] use fixed step size for updating the noise filter
coefficients, while [5], [13]–[16] employ various variable
step size schemes to improve the performance of FxLMS
algorithm. The main disadvantage of FxLMS algorithm is slow
convergence for input signals with high correlation [3], [4].
On the contrary, filtered-x recursive least squares (FxRLS)
algorithms [3], [4], [6] provide fast convergence response
irrespective of spectral properties of input signal. Standard
FxRLS algorithm requires significantly higher computations
per sample for improved performance [6]. Algorithm designed
in [3] makes use of selective updating mechanism to reduce
the overall computations required for long term operation of
ANC system. In [4], a variable weighting factor is devised to
accelerate the convergence rate and to decide the coefficient
vector update of W (z).

Amid various algorithms that solve the least squares (LS)
problem recursively, fast transversal recursive least-squares
(FTRLS) algorithms offer performance similar to RLS al-
gorithms [8], [9]. Derivation of FTRLS algorithms involves
simultaneous solution to the forward and backward prediction
problems, along with an auxiliary filter and a joint-process
estimator. The predictors are used to model the input signal,
which allows the vector and scalar expressions contrary to
matrix relations for RLS algorithms. In terms of performance
and computations, FTRLS algorithms offer a good substitute
for LMS and RLS algorithms [8], [10].

FTRLS algorithms are computationally attractive, but have
stability issues which arise from backward predictor as proven
in [10]. The numerically stabilized FTRLS algorithm in-
troduced in [10] involves calculation of backward predictor
error signal from alternate formulas. A weighted sum of
these redundant error signals is used to update backward
predictor and maintain stability. This algorithm gives suitable
performance for stationary signals, but may become unstable
for non-stationary signals [8]. Also, after the convergence of
FTRLS algorithms with the speech signals, likelihood variable
and Kalman gain decay to zero as shown in [17]. These values
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Fig. 1. ANC System with different adaptive control algorithms.

restrict the adaptability of FTRLS algorithms. Therefore, the
algorithm is rescued by reinitializing the variables whenever
likelihood variable and Kalman gain decay to zero as explained
in [8], [11]. The objective of this paper is to design a stable
and effective FTRLS algorithm by removing the backward
predictor.

This contribution proposes a filtered-x efficient fast RLS
(FxEFRLS) algorithm where variables from only forward
predictor are used to obtain the adaptation gain. Numerical
instability arises mainly from variables of backward predictor.
Therefore, backward prediction is completely avoided. The
proposed algorithm uses variables from forward predictor,
a leakage factor, and a regularization constant to deliver
performance similar to RLS and FTRLS algorithms while
being robust and numerically stable to quantization errors. The
computational demands of the presented method are less than
that of standard FTRLS algorithm, and these requirements are
further reduced by using a variable threshold developed in
[3]. The proposed algorithm combines the strengths of LMS
and LS algorithms along with numerical stability to deliver
a performance that is desirable and an improvement to the
previous methods.

The prominent attributes of the presented method are as
follows

1) The presented algorithm uses variables from forward
predictor only to obtain the adaptation gain. The vari-
ables from backward predictor are completely avoided
for numerical stability which is verified by convergence
analysis and extensive simulations.

2) The use of forward predictor reduces the computational
demands of the proposed method compared with RLS
and FTRLS algorithms. Moreover, variable threshold is
used to further reduce the computations.

3) For the proposed method, lower bound on forgetting
factor is derived, and is found to be smaller than that of
the standard FTRLS algorithm. A small valued lower
bound for proposed method can result in improved
convergence rate and tracking performance.

Performance measures used to compare the various algo-
rithms discussed in this paper are convergence rate, steady
state error, computational complexity, stability under numeri-
cal errors from finite-precision implementation, and tracking

ability. Moreover, E{·} denotes expected value, ∗ represents
the linear convolution, and ≈ is stands for approximation.

This paper is organized as follows: Section II gives a sys-
tem description. Standard filtered-x fast transversal recursive
least squares (FxFTRLS) algorithm is presented in Section
III. Derivation of variable threshold filtered-x efficient fast
recursive least squares (VTFxEFRLS) algorithm and stability
analysis are presented in Section IV. Section V discusses
the computational and memory demands of various methods
discussed in this paper. Simulation results are analyzed in
Section VI with conclusions summarized in Section VII.

II. MODEL DESCRIPTION

In the proposed ANC system as given in Fig. 1(b), residual
error, e(n), is reduced by recursively updating the noise
control filter W (z). Let n denote the number of iterations
and z denote the z-transform. The error microphone detects
the signal, e(n),

e(n) = d(n) + d̂(n), (1)

where d(n) is the primary noise and d̂(n) is the noise
cancelling signal. Signal d(n) can be written as

d(n) = p(n) ∗ x(n), (2)

where x(n) is the reference signal detected at the reference
microphone. Impulse response of primary path P (z) is repre-
sented by p(n). Signal d̂(n) in (1) can be written as

d̂(n) = s(n) ∗ y(n), (3)

where s(n) represents the impulse response of secondary path
S(z). Let w(n) be the coefficient vector of W (z), then control
signal, y(n), can be given as

y(n) = wT (n)x(n), (4)

where
w(n) = [w1(n), w2(n), · · · , wK(n)]T , (5)

x(n) = [x(n), x(n− 1), · · · , x(n− (K − 1))]T , (6)

T denotes matrix transpose, and K represents the number of
weights in w(n). This paper addresses the derivation of a novel
adaptive algorithm to update w(n) and therefore, standard and
proposed fast recursive least squares algorithms for W (z) are
discussed in the upcoming sections.
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III. FILTERED-X FAST TRANSVERSAL RECURSIVE LEAST
SQUARES ALGORITHM

This section presents a brief overview of the standard
filtered-x fast transversal recursive least squares (FxFTRLS)
algorithm [9], [10] for w(n). FxFTRLS algorithm uses the
divergence control parameter presented in [10] to address the
unstable behavior. The divergence control parameter modifies
the error signal for the backward predictor to stabilize the
FxFTRLS algorithm. The recursive expression for updating
w(n) is

w(n) = w(n− 1)−Ψ(n,K)γ(n)e(n), (7)

where γ(n) is the likelihood variable [18]

γ(n) = 1
1−ΨT (n,K)x̂s(n) , (8)

and Ψ(n,K) is a dual Kalman gain vector of length K

Ψ(n,K) = −Q
−1(n−1,K)x̂s(n)

λ , (9)

x̂s(n) = [x̂s(n), x̂s(n− 1), · · · , x̂s(n− (K − 1))]
T
, (10)

x̂s(n) = ŝ(n) ∗ x(n). (11)

0 < λ ≤ 1, Q(n,K) represents the covariance matrix of x̂s(n)
with dimension K×K, and ŝ(n) represents impulse response
of an estimate of secondary path Ŝ(z). This paper addresses
the derivation of a novel adaptive algorithm to update w(n)
and for simplicity, assuming that secondary path has already
been estimated (recent developments are available in [2], [5],
[16]).

Efficient estimation of Ψ(n,K) and γ(n) in (7) is critical
for the development of FxFTRLS algorithm. For Ψ(n,K) in
(9), expressions for Q−1(n,K + 1) with respect to forward
predictor wf (n) and backward predictor wb(n) are

Q−1(n,K + 1) =

[
0 0
0 Q−1(n− 1,K)

]
+[

1
−wf (n)

] [
1 −wT

f (n)
]
α−1(n),

(12)

Q−1(n,K + 1) =

[
Q−1(n− 1,K) 0

0 0

]
+[

−wb(n)
1

] [
−wT

b (n) 1
]
β−1(n),

(13)
α(n) = λα(n− 1) + γ(n− 1)e2f (n), (14)

β(n) = λβ(n− 1) + γ(n− 1)e2b(n), (15)

where α(n) is the variance of forward predictor error
ef (n), and β(n) is the variance of backward prediction
error eb(n). Coefficient vectors for predictors, wf (n) and
wb(n), are of length K. Post-multiply (12) and (13) with
−λ−1[x̂Ts (n), xs(n−K)], rearrange the resulting expressions
and use (9) to obtain Ψ(n,K) recursively[

Ψ(n,K)
Ψ(n,K + 1)

]
=

[
0

Ψ(n− 1,K)

]
− ef (n)

λα(n−1)

[
1

−wf (n− 1)

]
+ eb(n)
λβ(n−1)

[
−wb(n− 1)

1

]
.

(16)

where
ef (n) = x̂s(n)−wT

f (n)x̂s(n− 1), (17)

eb(n) = x̂s(n−K)−wT
b (n)x̂s(n), (18)

and Ψ(n,K + 1) is used to calculate the divergence control
parameter for stable backward predictor [10]

ζ(n) = eb(n) + λ−K+1γ(n− 1)α(n− 1)Ψ(n,K + 1).
(19)

By using (8) and (16)–(19), wf (n) and wb(n) can be obtained
recursively by

wf (n) = wf (n− 1)−Ψ(n− 1,K)γ(n− 1)ef (n), (20)

wb(n) = wb(n− 1)−Ψ(n,K)γ(n)eb1(n),

eb1(n) = eb(n) + µζ(n),

where µ is used to control the propagation of numerical error
in the computation of wb(n). For a Gaussian input signal with
µ = 1, the stability condition for wb(n) is [17]:

λ >
√

K+1
K+2 , (21)

which in turn limits the convergence rate and tracking capa-
bility.

IV. VARIABLE THRESHOLD FILTERED-X EFFICIENT FAST
RECURSIVE LEAST SQUARES ALGORITHM

In the proposed VTFxEFRLS algorithm, forward prediction
is used to obtain the adaptation gain for W (z). Using forward
predictor only helps in avoiding instability arising from back-
ward predictor. The proposed method is completely different
from methods given in [9], [10], which use both forward and
backward predictors. In this section, a detailed analysis is
carried out to consolidate the stable behavior claim regard-
ing the proposed method. The stability condition is derived
for the presented method to depict significant improvement
in convergence rate and tracking. The computations of this
method are reduced by using forward predictor only and by
using a variable threshold developed in [3].

Consider Ψ(n,K) of (16) in the absence of prediction
components (wf (n) and wb(n))[

Ψ(n,K)
0

]
=

[
− x̂s(n)
λα(n−1)

Ψ(n− 1,K)

]
.

After K iterations, all the components of Ψ(n,K) are delayed
versions of the first element as shown below

Ψ(n,K) = −


x̂s(n)

λα(n−1)
x̂s(n−1)
λα(n−2)

...
x̂s(n−K+1)
λα(n−K)

 . (22)

In the steady state, approximation of α(n) for stationary x̂s(n)
can be given as

α(n) = λα(n− 1) + γ(n− 1)x̂2s(n)

≈ γss σ2
x

1−λ ,
(23)
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where γss denotes steady state of slowly varying γ(n), and
σ2
x is the variance of x̂s(n). Thus, terms λα(n − i) in (22)

converge to a value proportional to σ2
x

γ(n)Ψ(n,K) ≈ −c0
x̂s(n)

σ2
x

,

where constant c0 > 0. Coefficient update expression from
(7) and (23) is similar to that of NLMS algorithm. This
observation means that FxFTRLS algorithm should perform
similar to NLMS in the absence of wf (n) and wb(n).

In practice, impulse responses of physical systems have
significant starting entries. The later entries decrease in signif-
icance with increase in index. For backward predictor, the end
elements in wb(n) are the significant ones. The significant end
coefficients of wb(n) contribute strongly in the end terms of
Ψ(n,K) in (16) [8], [10], [17]. The significant contribution
from end elements in wb(n) does not propagate to other
terms of Ψ(n,K) due to the down-shift property [17], [19],
[20]. Therefore, initial significant terms of w(n) come from
−ef (n)/λα(n − 1) and the initial terms of wf (n) (from
(7) and (16)). Overall, wb(n) majorly contributes to the last
coefficients of w(n) which are insignificant. Therefore, wb(n)
can be discarded from (16) without causing deterioration in
performance. The proposed algorithm uses wf (n) only to
update Ψ(n,K)[

Ψ(n,K)
0

]
=

[
0

Ψ(n− 1,K)

]
− ef (n)

λα(n−1)

[
1

−wf (n− 1)

]
,

(24)
where γ(n) is defined in (8), α(n) is defined in (14) and
wf (n) is defined in (20). It would be interesting to analyze
the proposed algorithm, when input signal becomes very small
or zero. The associated terms can be written as

ef (n) = 0,
Ψ(n,K) = 0,

α(n) = λα(n− 1),
wf (n) = wf (n− 1),

γ(n) = 1.


From (14), we can see that α(n) = λα(n − 1) → 0. This
results in instability in all FTRLS algorithms due to division
by α(n) for Ψ(n,K) (see (24) for the proposed method). This
situation can be avoided by adding a small positive constant
c0

ef (n)

λα(n− 1)
replaced with

ef (n)

λα(n− 1) + c0
.

The updated expression for Ψ(n,K) becomes[
Ψ(n,K)

0

]
=

[
0

Ψ(n− 1,K)

]
− ef (n)

λα(n−1)+c0

[
1

−wf (n− 1)

]
.

(25)
In (20), wf (n) holds on to its last values when input signal
disappears. After some time, input signal reappearance may
cause divergence due to poor initialization or non-zero wf (n).
In the presented method, wf (n) is brought back to zero by

wf (n) replaced with ηwf (n),

TABLE I
VTFXEFRLS ALGORITHM TO UPDATE w(n).

VTFxEFRLS algorithm

Initialize:
w(0) = x̂s(0) = [0, 0, · · · , 0]T

x(0) = [0, 0, · · · , 0]T

Ψ(0,K) = 0, σ2
t (0) = γt(0) = 0, γ(0) = 1, α(0) = 10−6,

β(0) = 10−6, c0 = 10−3,λ, αt, βt, η

Do for n > 0{
Obtain e(n) and x(n)
x̂s(n) = s(n) ∗ x(n) (expression (11))
Update x̂s(n) = [x̂s(n), x̂s(n− 1), · · · , x̂s(n− (K − 1))]T

(expression (10))
σ2
t (n+ 1) = αtσ2

t (n) + (1− αt)e2(n) (expression (28))

γt(n+ 1) = αtγt(n) + (1− αt)
√
βtσ2

t (n) (expression (27))

if (|e(n)| > γt(n)){
ef (n) = x̂s(n)−wT

f (n)x̂s(n− 1) (expression (17))

α(n) = λα(n− 1) + γ(n− 1)e2f (n) (expression (14))[
Ψ(n,K)

0

]
=

[
0

Ψ(n− 1,K)

]
− ef (n)

λα(n−1)+c0

[
1

−wf (n− 1)

]
(expression (25))

wf (n) = η[wf (n− 1) + γ(n− 1)ef (n)Ψ(n− 1,K)]

(expression (26))
γ(n) = 1

1−ΨT (n,K)x̂s(n)
(expression (8))

w(n) = w(n− 1)−Ψ(n,K)γ(n)e(n) (expression (7))
}
}

where 0 << η < 1 [19], [20]. Therefore, wf (n) of (20) can
be written as

wf (n) = η[wf (n− 1) + γ(n− 1)ef (n)Ψ(n− 1,K)].
(26)

Without any impact on performance, computations for Fx-
EFRLS algorithm can be significantly minimized by using
the variable threshold mechanism presented by authors in [3].
Condition for updating wf (n) can be given as |e(n)| > γt(n),
where γt(n) is the variable threshold parameter. A variable
γt(n) allows suitable updates in the transition phase and steady
state to achieve improved performance. The variable threshold
parameter can be written as

γt(n+ 1) = αtγt(n) + (1− αt)
√
βtσ2

t (n), (27)

σ2
t (n+ 1) = αtσ

2
t (n) + (1− αt)e2(n), (28)

where αt and βt are positive constants selected for small mis-
adjustment and fast convergence rate. The proposed VTFxE-
FRLS algorithm is summarized in Table I.

A. Stability Analysis

The stability analysis of the proposed method is performed
using procedure provided in [10], [17]. Error propagation in
the prediction stage of the proposed method is studied. The
linear model used to approximate the error propagation can be
written as

∆Φ(n) = T(n)∆Φ(n− 1) + V(n), (29)
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where ∆Φ(n) is the error vector, T(n) is the transition matrix
and V(n) is the round off error vector. Error vector ∆Φ(n)
can be defined as

∆Φ(n) =

[
∆P(n)
∆G(n)

]
, (30)

∆P(n) =

[
∆wf (n)
∆α(n)

]
, (31)

∆G(n) =

[
∆Ψ(n,K)

0

]
. (32)

Vector ∆wf (n) denotes error in wf (n), ∆α(n) denotes error
in α(n), and ∆Ψ(n,K) represents error in Ψ(n,K). Errors
in Ψ(n,K) are declared in ∆G(n).

Steady state stability of (29) in the mean sense can be guar-
anteed, if magnitudes of all the eigenvalues of E{T(n)} are
less than one [10]. Matrix T(n) is obtained by using (31), (32)
and the corresponding definitions in Table I. Differentiating
wf (n) and α(n) provided in Table I results in

∆wf (n) = η∆wf (n− 1)− ηγ(n− 1)Ψ(n− 1,K)∆ef (n)
−ηef (n)γ(n− 1)∆Ψ(n− 1,K)−
ηef (n)∆γ(n− 1)Ψ(n− 1,K),

(33)
∆α(n) = λ∆α(n− 1) + 2ef (n)γ(n− 1)∆ef (n)+

e2f (n)∆γ(n− 1),
(34)

where
∆ef (n) = −x̂Ts (n− 1)∆wf (n− 1), (35)

∆γ(n) = γ2(n)x̂Ts (n)∆Ψ(n,K). (36)

Similarly, ∆G(n) can also be obtained as[
∆Ψ(n,K)

0

]
=

[
0

∆Ψ(n− 1,K)

]
+ c1ef (n)

[
0

∆wf (n− 1)

]
−c1∆ef (n)

[
1

−wf (n− 1)

]
+

c21λef (n)

[
1

−wf (n− 1)

]
∆α(n− 1),

(37)
where

c1 = 1
λα(n−1)+c0

. (38)

Rearranging (37) results in

∆G(n) =

[
0 0
IK 0

]
∆G(n− 1)+

c1ef (n)

[
0
IK

]
∆wf (n− 1)−

c1

[
1

−wf (n− 1)

]
x̂Ts (n− 1)∆wf (n− 1)+

c21λef (n)

[
1

−wf (n− 1)

]
∆α(n− 1),

(39)
where IK is an identity matrix of dimensions K × K. Sub-
stitute (33)-(36) and (39) in (29), and simplify the resulting
expression to obtain T(n)

T(n) =

[
T1 T2

T3 T4

]
, (40)

with

T1(n) =

[
η(IK + C(n− 1)) 0

−2γ(n− 1)ef (n)x̂Ts (n− 1) λ

]
, (41)

T2(n) = γ(n− 1)×[
−ηef (n)(IK + C(n− 1)) 0

γ(n− 1)e2f (n)x̂Ts (n− 1) 0

]
,

(42)

T3(n) = c1×[
x̂Ts (n− 1) λc1ef (n)

−wf (n− 1)x̂Ts (n− 1) + ef (n)IK −λc1ef (n)wf (n− 1)

]
,

(43)

T4(n) =

[
0 0
IK 0

]
, (44)

C(n− 1) = γ(n− 1)Ψ(n− 1,K)x̂Ts (n− 1), (45)

where c1 is given in (38). Average analysis of (29) is deter-
mined by obtaining the steady state value of E[T(n)] from (39)
assuming signals x̂s(n) and ef (n) are zero-mean, stationary,
and independent of each other. Steady state values for slowing
varying quantities in (41)-(45) are

C(n− 1) = −Q−1(n− 1,K)x̂s(n− 1)x̂Ts (n− 1),
= −Q−1(n− 1,K)[Q(n− 1,K)− λQ(n− 2,K)],
≈ λIK − IK ,

(46)
γ(n) = λK det(Q(n−1,K))

det(Q(n,K)) ≈ λ
K , (47)

γ(n− 1)e2f (n) = α(n)− λα(n− 1) ≈ (1− λ)αss, (48)

where αss is the steady state value of α(n). Similarly, ap-
proximation of Q(n,K) in the steady state is (1− λ)

−1
Q

where Q =E{x̂s(n)x̂Ts (n)}. Using steady state values (46)-
(48), E[T(n)] obtained from (40) is

E{T(n)} =


[
ηλIK 0

0 λ

]
0

0

[
0 0
IN 0

]
 . (49)

It is clear from (49) that all the eigenvalues of E{T(n)} are
less than one for 0 < λ < 1 and 0 < η < 1. The errors
in forward prediction subsystem ∆P(n) have K eigenvalues
equal to ηλ and one equal to λ. All the eigenvalues of ∆G(n)
are zero due to the down-shift property used for calculating
Ψ(n,K) as numerical errors do not integrate in the same
element , instead they pass on from one element to the next
element of Ψ(n,K). As all the eigenvalues of E[T(n)] are
less than one, numerical stability of the system is established
in the mean sense.

For the condition on λ and η, first order linear approxima-
tions for errors in wf (n) and α(n) are [17]

∆wf (n) = η(IK − F1(n− 1))∆wf (n− 1) + Pwf (n),
(50)

∆α(n) = λ∆α(n− 1) + aα(n), (51)

F1(n) = Q−1(n,K)x̂s(n)x̂Ts (n),

where Pwf (n) in (50) depends on ∆G(n−1), ∆α(n−1) and
V(n). Term aα(n) in (51) depends on ∆G(n−1), ∆wf (n−1)
and V(n).
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Independence hypothesis between ∆α(n − 1) and aα(n)
makes it simple to verify the stability of E[∆α(n)∆α(n)]
from (51). Assuming independence between errors ∆wf (n−
1) and the additive term Pwf (n), covariance matrix
R(n) =E[∆wf (n)∆wT

f (n)] can be written as

R(n) = η2R(n− 1)− 2η2E{F1(n− 1)}R(n− 1)
+η2F2(n− 1) + E{Pwf (n)PT

wf (n)}.
(52)

where F2(n) =E{F1(n)∆wf (n)∆wT
f (n)FT1 (n)}. Replace

Q(n− 1,K) in (52) with asymptotic value (1− λ)−1Q,

R(n) = η2R(n− 1)− 2η2(1− λ)R(n− 1)
+η2(1− λ)2Q−1F3(n− 1)Q−1 + E{Pa(n)PT

a (n)}.
(53)

where F3(n) =E{x̂s(n)x̂Ts (n)∆wf (n)∆wT
f (n)x̂s(n)x̂Ts (n)}.

Elements of F3(n) are fi,j =
∑K
k=1

∑K
l=1 E{∆wf,k(n −

1)∆wf,l(n − 1)x̂s(n − k)x̂s(n − l)x̂s(n − j)x̂s(n − i)},
where ∆wf,j(n) is jth element of ∆wf (n). For Gaussian
input signal, elements of ∆wf (n) and x̂s(n) are independent.
Therefore, fi,j can be written as

fi,j =

{
0 i 6= j,

(K + 2)σ2
XR

2
i,j(n− 1) i = j,

(54)

where Ri,j(n) are the elements of R(n). Substitute (54) in
(53) results in

R(n) = h(λ, η,K)R(n− 1) + E{Pwf (n)PT
wf (n)}, (55)

where the quantity h(λ, η,K) is given by

h(λ, η,K) = η2(1− 2(1− λ) + (K + 2)(1− λ)2).

The system in (55) is stable for

0 ≤ h(λ, η,K) < 1. (56)

For 0 < η ≤ 1, condition in (56) can be satisfied for the
following λ

λ ≥ K+1
K+2 −

√
1+(K+2)( 1

η2
−1)

K+2 . (57)

From (57), it can be seen that lower limit on λ is smaller than
that in (21). The lower bound for proposed method can result
in improved convergence rate and tracking performance.

V. COMPUTATIONAL COMPLEXITY

This section discusses the recent developments in the ANC
systems in terms of computational complexity. The standard
measures for computations are the numbers of multiplications
and additions required by respective algorithms at each itera-
tion, and are given in Table II [2]–[4], [8], [13]. Importance
of small computational complexity is a desirable feature for
battery powered systems and systems with multiple appli-
cations sharing same resources. LMS algorithms presented
in [2], [13], [14] require small computations while [3], [4]
require more computations in the transition state for using RLS
algorithm variations. The second rows for [3], [4] denote the
computations required when controller update is not performed
by using a threshold parameter. The proposed algorithm also
has two entries due to use of a variable threshold parameter

TABLE II
COMPUTATIONS REQUIRED FOR ANC SYSTEMS UNDER DISCUSSION.

Additions Multiplications

FxFTRLS algorithm 9K + L+ 4 9K + L+ 17

Shakeel’s method [13] 4K + 2L− 1 4K + 2L+ 5

Lopes’s method [14] 4K + 2L− 1 4K + 2L+ 5

Saeed’s method [2] 2K + L− 2 2K + L+ 1

Saeed’s method [3]
w(n) is updated K2 + 3K + L+ 1 K2 + 5K + L+ 3

No filter update K + L+ 1 K + L+ 3

Saeed’s method [4]
w(n) is updated K2 + 3K + L− 1 K2 + 5K + L+ 1

No filter update K + L− 1 K + L

Proposed method
w(n) is updated 6K + L+ 3 7K + L+ 14

No filter update K + L K + L+ 7

TABLE III
NUMBER OF VARIABLES TO BE STORED FOR ANC SYSTEMS UNDER

DISCUSSION.

Number of variables

FxFTRLS algorithm 6K + 2L+ 10

Shakeel’s method [13] 3K + 2L+ 9

Lopes’s method [14] 3K + 2L+ 10

Saeed’s method [2] 3K + 2L+ 4

Saeed’s method [3] K2 + 3K + 2L+ 7

Saeed’s method [4] K2 + 3K + 2L+ 9

Proposed method 5K + 2L+ 14

given in (29). In either row, the presented method requires
computations very similar to the LMS algorithm, but perfor-
mance is similar to RLS algorithm as demonstrated in the
next section. Computing tasks can be significantly accelerated
by using frequency-domain block processing [21], as time-
domain convolution can be converted to multiplication in
the frequency domain. In addition to operations, memory
requirements are also compared in terms of variables stored
at each iteration (see Table III). Algorithms designed in [3],
[4] demand more memory than the algorithms in [2], [13],
[14] and the proposed method. The presented design provides
optimal solution in terms of computational complexity and
convergence performance. For the proposed system, the mem-
ory demand remains constant throughout the operation while
computations vary between two values provided in Table III.
Therefore, only operations are compared in the Section VI.

VI. CASE STUDIES

The proposed method (PM) is compared with Shakeel (SM)
[13], Lopes (LM) [14], Saeed (SaM1) [2], Saeed (SaM2) [3],
Saeed (SaM3) [4] under standard performance measures which
include mean-squared error, convergence rate, steady state
residual error and computational complexity. The methods
in [2]–[4], [13], [14] represent the recent research work on
the relevant topic. Parameter settings are given in Table IV
for all established cases [2]–[4], [13], [14] with sampling



7

TABLE IV
PARAMETER VALUES FOR SIX METHODS DISCUSSED IN THIS PAPER.

Parameters

FxFTRLS λ = 0.9995

Shakeel’s method
[13]

µ1 = 3 × 10−1, µ2 = 8 × 10−2, λ =
0.99, α = 0.997, γmax = 0.9, γmin = 0.3

Lopes’s method [14] µ = 0.5, µs = 0.5, λ = 0.9, kr = 0.1, β =
40, A = 2

Saeed’s method [2] µw = 1× 10−4, λ = 0.99

Saeed’s method [3] α = 0.99, βw = 1.5

Saeed’s method [4] λ = 0.99, γf = γb = 0.05

Proposed method λ = 0.995, αt = 0.995, βt = 1.0, η = 0.995

Fig. 2. Mean-squared error for two methods under Case 1 setting.

frequency set to 4 kHz and ensemble-average obtained over
20 independent runs. Benchmark acoustic channels, P (z) and
S(z), are obtained from [6]. The corresponding lengths for
coefficient vectors of P (z), S(z) and W (z) are 256, 64 and
192. Using these coefficient vectors and parameter values from
Table IV, the pseudo-code for the proposed method given in
Table I can be implemented for various x(n) and conditions
addressed in subsequent cases.

A. Case 1

A real-world scenario is considered in this case to compare
the proposed method with FxFTRLS algorithm. The data used
for x(n) is from a washing machine with frequency band
50-650Hz (available in MATLAB Audio library). Washing
machine is a common household appliance and produces
considerable noise during operation. Cancelling such noise
by ANC can be a strong selling feature. Both methods, PM
and FxFTRLS, converge to a similar steady state value as
demonstrated in Fig. 2. PM has slightly better convergence rate
than FxFTRLS algorithm which is coherent with the stability
condition derived for PM in (57). The results from real data
verify that removing the backward predictor has insignificant
impact on the performance of PM.

B. Case 2

A multi-tonal x(n) is obtained by combining sinusoids of
frequencies 165, 235, 290, 315, 410 and 600 Hz, and adjusted
the variance to 2.0 [4]. Gaussian noise is added to x(n) for
maintaining a signal-to-noise ratio of 30 dB [2]–[4], [13],
[14]. The proposed method converges at a similar rate to a

(a) Mean-squared error

U
pd

at
es

 (
%

)

(b) Update percentage

(c) Total multiplications

(d) Total additions

Fig. 3. Performance measures for six methods under Case 2 setting.
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(a) SaM1 (b) SaM2

(c) SaM3 (d) PM

Fig. 4. Steady state power spectra for various methods under Case 2 setting.

same steady state value as [3], [4] as demonstrated in Figs. 3
and 4. Similar performance is achieved as methods in [3],
[4] use RLS algorithm, and PM delivers stable and efficient
fast implementation of RLS algorithm. The computational
requirements of proposed method are very close to [2] which
uses a fixed step LMS algorithm for W (z) (see Fig. 3(b)-
(d)). Therefore, the proposed method offers fast convergence
using fewer computations than achieved by RLS and LMS
algorithms, respectively.

C. Case 3

The response of the proposed method to a change in primary
path is addressed in this case. The perturbation is introduced
at n = 50000, and modeled by

p(n+ 1) = 0.9p(n) + 0.1r(n)

where r(n) is a random vector. Before the occurrence of
perturbation in P (z), performance of all methods is similar
to Case 1 as same reference signal is used (see Fig. 5). After
change in P (z), the proposed method converges faster than
the previous methods as shown in Fig. 5(a). The operations
required for PM are similar to the LMS variants [2], [13], [14].
Thus, PM delivers the prominent features of both LMS and
RLS.

D. Case 4

The reference signal is a mixture of multi-tonal and broad-
band signals. The multi-tonal signal has variance 2.0 and
consists of sinusoids with frequencies: 300 and 400 Hz. The
broadband signal is a Gaussian noise of zero mean and
variance 2.0 passing through a band-pass filter of passband
500-800 Hz. Measurement noise is added to maintain a SNR
of 30 dB. The proposed method and RLS methods of [3], [4]

(a) Mean-squared error

U
pd

at
es

 (
%

)

(b) Update percentage

(c) Total multiplications

(d) Total additions

Fig. 5. Performance measures for six methods under Case 3 setting.
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SM
LM
SaM1
SaM2
SaM3
PM

(a) Mean-squared error

U
pd

at
es

 (
%

)

SaM2
SaM3
PM

(b) Update percentage

Fig. 6. Performance measures for six methods under Case 4 setting.

(a) SaM3 (b) PM

Fig. 7. Steady state power spectra for various methods under Case 4 setting.

converge at similar rate to a same steady state value as shown
in Figs. 6(a) and 7. The LMS based methods of [2], [13], [14]
converge at significantly slower rate than LS based methods
(SaM2, SaM3 and PM).

E. Case 5

A broadband signal, x(n), is obtained by filtering a Gaus-
sian noise with a zero mean and variance 2.0 through a band-
pass filter: 400-800 Hz. The proposed algorithm exhibits noise
reduction performance similar to [3], [4] and significantly
improved compared to [2], [13], [14] (see Figs. 8(a) and 9).
The proposed method provides the convergence rate and
steady state error of RLS algorithms [3], [4] while requiring
computations similar to LMS algorithms [2], [13], [14]. Thus,
the designed method provides desirable properties of fast con-

(a) Mean-squared error

U
pd

at
es

 (
%

)

(b) Update percentage

Fig. 8. Performance measures for six methods under Case 5 setting.

(a) SaM3 (b) PM

Fig. 9. Steady state power spectra for various methods under Case 5 setting.

vergence and ease of implementation which are individually
available in RLS and LMS algorithms, respectively.

F. Case 6

This case illustrates the stable performance of the proposed
method under finite precision implementation. A multi-tonal
x(n) is obtained by combining sinusoids of frequencies 100,
200, 300 and 400 Hz, and adjusted the variance to 2.0. The
quantized environment used for simulation is adopted from
[11]. Noise reduction performance of the proposed algorithm
for various word-lengths is given in Fig. 10. Word-length
includes the sign bit, and is used for both coefficients and
data. The stable behavior exhibited by the proposed method
under finite precision conditions verifies its robustness to
quantization errors.
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(a) Mean-squared error

Fig. 10. Mean-squared error curves for PM under Case 6 setting.

VII. CONCLUSIONS

The new recursive least squares algorithm algorithm derived
in this paper obtains adaptation gain only from parameters
in the forward prediction stage. Convergence analysis is per-
formed to establish the stable behavior in the mean sense along
with estimating bound on the forgetting factor. For the pro-
posed method, lower bound on forgetting factor is smaller than
FTRLS algorithms that means the proposed method can offer
better convergence rate and tracking performance. The com-
putational demands for the proposed method are significantly
less than the RLS based methods, and comparable to the LMS
based methods. Simulations show that the proposed method
is numerically stable to finite-precision implementation, and
provides improved performance in all standard measures.
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Chapter 4

Robust Active Noise
Control Design by Optimal

Weighted Least Squares
Approach

AN optimal weighting factor based least squares algorithm is derived

for noise controllers in active noise control systems with a bounded

narrowband disturbance. The proposed method updates the weighting

factor in relation to the new information in the current data to improve

the convergence speed and steady state error. The weighting factor is also

used to vary the frequency of the feed-forward and feedback filter updates.

Detailed analysis is provided for stability and robustness of the proposed

method.
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Robust Active Noise Control Design by Optimal
Weighted Least Squares Approach

Muhammad Saeed Aslam , Peng Shi , Fellow, IEEE, and Cheng-Chew Lim , Senior Member, IEEE

Abstract— An optimal strategy is derived for robust perfor-
mance of feedforward and feedback noise controllers in active
noise control systems with a bounded narrowband disturbance.
The designed recursive algorithm updates the weighting factor to
make sure that controller updates are performed when the cur-
rent measurement data contain new information to improve the
estimation quality. This significantly reduces the computational
complexity by allowing fewer updates in the steady state and
persistent updates otherwise. The presented algorithm can guar-
antee non-increasing and positive-definite covariance matrices for
feedforward and feedback filters, and this results in a bounded
and non-increasing estimation error. Moreover, the proposed
algorithm achieves fast convergence with improved performance
in steady-state noise reduction. In simulations, the comparison
of the proposed method with the established methods under
benchmark conditions demonstrates the improvement in the
overall performance.

Index Terms— Robust active noise control, selective filtering,
weighted least squares algorithm, hybrid control.

I. INTRODUCTION

ACTIVE noise control (ANC) is a popular technique for
attenuating low frequency noises by using a controlled

secondary source that generates a similar amplitude cancelling
noise with opposite phase [1]. Last decade has seen the com-
mercialization of numerous products using ANC, such as head-
phones, mobile phones and automobiles. In addition, ANC
has been used in diverse applications ranging from aircraft
cabin noise, air conditioning ducts, incubators to magnetic res-
onance imaging scanner [2]. Prominent control strategies used
for triggering the secondary source are feedforward control
[2]–[6] and feedback control [5], [7]–[10]. A single channel
feedforward ANC system uses an error microphone and a
reference microphone. The error microphone detects the resid-
ual error which is also used to oversee the performance of
ANC system. The reference microphone detects the primary
noise that needs to be cancelled. The feedback control strategy
requires only an error microphone to cancel the predictable
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2019; date of current version September 27, 2019. This paper was recom-
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Fig. 1. Block diagram of a hybrid ANC system.

noise components in the primary noise [5]. The use of
both strategies is dependent on the application circumstances.
Feedforward control is commonly implemented when avail-
able reference noise is independent, and correlated with the
primary noise. Feedback control is used when sensing or inter-
nal generation of completely coherent reference signal is not
possible which include spatially incoherent turbulence noise,
multi-source noise, noise from multiple propagation paths and
induced resonance [5].

In practice, situations arise where disturbances are detected
at error microphone that are uncorrelated with the reference
signal. These disturbances can result from different reasons
like noise generated by other automobiles in electronic muffler
case or a neighboring machinery in an industrial applica-
tion [5], [8]. In such cases, a combination of feedforward and
feedback schemes is used. This control structure is referred as
hybrid ANC system in which the cancelling signal is calcu-
lated based on the outputs of both the reference microphone
and the error microphone as shown in Fig. 1. The primary
noise correlated with the reference signal is attenuated by the
feedforward controller, and the feedback controller removes
the narrowband components of primary noise that are not
detected by the reference microphone. Besides, the periodic
components are most intense in many ANC applications, and
the feedback controller enforces the reduction of spectral peaks
in the primary noise, which eases the operation of feedforward
controller.

Numerous methods exist in the literature addressing the
disturbances at the error microphone. An algorithm comprising
of two notch filters is presented in [11] to reduce the uncorre-
lated narrowband disturbance for single-frequency narrowband

1549-8328 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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ANC systems. To address the multi-frequency narrowband
ANC systems, the use of a high-order adaptive filter is
proposed in [12]. This method improves the convergence of the
feedforward filter without mitigating the disturbance detected
by the error microphone. In [13], a feedback controller scheme
is included in the system of [12] to mitigate the narrowband
disturbance. This method uses an additional filter, apart from
feedforward and feedback noise controllers, to obtain the
appropriate error signals for each noise controller. In contrast,
conventional hybrid ANC systems [14] uses the same error
signal for adapting both feedforward and feedback controllers.
The presence of both feedforward and feedback controllers
makes the design of ANC system more flexible, and often
improves the system performance even when there is an
uncorrelated narrowband disturbance detected by the error
microphone. A variable step size scheme was proposed in [10]
for a conventional hybrid system to improve the convergence
characteristics. In conventional hybrid systems, feedforward
and feedback systems are coupled which means that simulta-
neous optimization of both filters is required for stable system
design, and this issue is resolved in [9] by modifying the error
signal used for feedforward controller, and the reference signal
for feedback controller. In [8], the decoupling technique of [9]
is modified for the hybrid structure of [13], and a variable step
size scheme is developed for the additional filter to enhance
the convergence speed.

All the techniques mentioned above use the filtered-x least
mean square (FxLMS) adaptive algorithm [14] for updating
the noise filters. This variant of LMS algorithm is usually
preferred due to its attractive features like computational
simplicity, unbiased convergence and robustness [14]–[18].
However, eigen-spread of the input signal can critically alter
the convergence properties of the LMS algorithm [18], [19].
Apart from [10], all the algorithms compromise the system
flexibility by using fixed step sizes for noise control filters.
A suitable solution is to use the least squares (LS) algorithm
that has convergence speed and steady-state error significantly
better than the LMS algorithm [2], [5]. These algorithms
require relatively large number of computations for improved
performance. Recently, LMS-Newton algorithm is proposed
in [2] for feedforward control filter. The computational com-
plexity is reduced by use of selective updating.

The motivation for developing the proposed algorithm is
to achieve the advantages of LMS and LS algorithms without
inheriting the negative aspects. More specifically, the desirable
features of LMS algorithm include ease of implementation and
small computations, while LS algorithm converges at a rela-
tively fast rate. LMS algorithm convergence speed is relatively
slower than LS algorithm and depends on the eigen-spread of
the input signal. LS algorithm requires relatively high compu-
tations than LMS algorithm. The proposed algorithm design
focuses on achieving fast convergence independent of input
signal characteristics with relatively reduced computations.
These characteristics can be achieved by using optimal weight-
ing factor. As a small valued forgetting factor results in fast
convergence but large steady state mis-adjustment. Similarly,
a large forgetting factor slows down the convergence speed
to reduce the steady state mis-adjustment. The motivation for

the proposed algorithm is to derive a variable factor that has a
small value during transition phase for fast convergence, and
a large value in the steady state to achieve small steady state
error. The derivation of the proposed variable factor makes use
of new information in the data. Therefore, reliable decision
regarding filter updates can be made to reduce the overall
computations with fast convergence and low steady state
error.

The distinct features of the proposed algorithm are as
follows

1) The derived algorithm has an optimal adaptive strategy
which updates the weighting factor to achieve fast
convergence in the transition phase and small steady
state error. In conventional LS approaches, the filter
updates are performed with a fixed parameter. The
performance of LMS algorithms is compromised by the
characteristics of the input signal [2].

2) The designed algorithm presents an optimal scheme to
make decision on the filter updates. The decision is
calculated on the basis of sufficient new information
in the current observed data to improve the controller
performance. A significant reduction in computations
is achieved by avoiding controller updates which do
not contribute to system performance. In conventional
approaches, the filter updates are performed on each
iteration irrespective of improvement achieved in the
outcome.

3) The proposed weighting factor is simple to compute, and
is also used to decide on filter update.

4) The presented algorithm can guarantee positive definite
covariance matrices which results in a bounded and non-
increasing error in filter estimates which strengthens the
reliability of the system.

5) The filter estimates obtained by the proposed algorithm
are shown to converge to a region containing the actual
filter. Moreover, upper bound for filter estimation error
is derived for detailed convergence analysis.

The organization of this paper is as follows: In Section II,
ANC system model is described. Filtered-x optimally weighted
recursive least squares (FxOWRLS) algorithm and its conver-
gence properties are derived in Section III for feedforward
control filter. FxOWRLS algorithm for feedback control filter
is provided in Section IV. The computational requirements are
discussed in Section V. Analysis of the computer simulations
is given in Section VI with concluding remarks in Section VII.

II. ANC SYSTEM MODEL

The block diagram of the proposed methodology is given
in Fig. 2. The objective of the ANC system is to attenuate
residual error, e(n), using the feedforward noise control filter
W f (z) and feedback noise control filter Wb(z) (where n is for
iteration, and z is for z-transform). Outputs of both W f (z)
and Wb(z) are used to generate the control signal y(n).
The reference signal for W f (z) is x f (n) which is detected
by the reference microphone, while estimated signal xb(n)
is the reference signal for Wb(z). The control signal, y(n),
is obtained by summing the control signals, y1(n) and y2(n),
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Fig. 2. Block diagram of the proposed method.

from W f (z) and Wb(z), respectively

y(n) = y1(n)+ y2(n)

= wT
f (n)x f (n)+ wT

b (n)xb(n), (1)

where w f (n) and wb(n) are the coefficient vectors of W f (z)
and Wb(z), respectively, with

w f (n) = [w f,1(n),w f,2(n), · · · , w f,L f (n)]T , (2)

wb(n) = [wb,1(n),wb,2(n), · · · , wb,Lb(n)]T . (3)

The lengths of w f (n) and wb(n) are L f and Lb, respectively.
Signal vectors x f (n) and xb(n) constitute the recent samples
of x(n) and xb(n), respectively

x f (n) = [x(n), x(n − 1), · · · , x(n − (L f − 1))]T , (4)

xb(n) = [xb(n), xb(n − 1), · · · , xb(n − (Lb − 1))]T . (5)

and xb(n) is the reference signal for Wb(z)

xb(n) = e(n)+ ŝ(n) ∗ y2(n), (6)

where ∗ denotes the linear convolution and ŝ(n) is the
impulse response of estimated secondary path Ŝ(z). Signal,
e(n), is detected by an error microphone

e(n) = d(n)+ v(n)− (d̂(n)+ v̂(n))

= p(n) ∗ x(n)+ v(n)− s(n) ∗ y(n), (7)

where p(n) is the impulse response of primary path P(z),
and s(n) is the impulse response of secondary path S(z). The
uncorrelated disturbance, v(n), in (7) is the noise component
detected by the error microphone that is uncorrelated with
x(n), and d̂(n)+ v̂(n) is the noise cancelling signal. Filtered
forms of reference signals, x̂ f (n) and x̂b(n), are used to
update the coefficients of W f (z) and Wb(z), respectively.
The filtered-x weighted recursive least squares (FxWRLS)
algorithm [20] for W f (z) can be given as

w f (n) = w f (n − 1)+ λ f P−1
f (n)x̂s(n)e(n),

where λ f is the weighting factor and

Pf (n) = P f (n − 1)+ λ f x̂s(n)x̂
T
s (n),

x̂s(n) = [
x̂s(n), x̂s(n − 1), · · · , x̂s(n − (L f − 1))

]T
,

x̂s(n) = ŝ(n) ∗ x(n). (8)

Using the matrix inversion lemma [18] and (8), P−1
f (n) can

be written as

P−1
f (n) = P−1

f (n − 1)−λ f P−1
f (n−1)x̂s(n)x̂

T
s (n)P

−1
f (n−1)

1 + λ f G f (n)
,

G f (n) = x̂T
s (n)P

−1
f (n − 1)x̂s(n).

The FxWRLS algorithm for Wb(z) with weighting factor, λb,
can be given as

wb(n) = wb(n − 1)+ λb P−1
b (n)x̂b(n)e(n),

Pb(n) = Pb(n − 1)+ λbx̂b(n)x̂
T
b (n),

P−1
b (n) = P−1

b (n−1)−λb P−1
b (n − 1)x̂b(n)x̂

T
b (n)P

−1
b (n − 1)

1 + λbGb(n)
,

Gb(n) = x̂T
b (n)P

−1
b (n − 1)x̂b(n),

x̂b(n) = [
x̂b(n), x̂b(n − 1), · · · , x̂b(n − (Lb − 1))

]T
,

x̂b(n) = ŝ(n) ∗ xb(n).

For the conventional hybrid ANC system, the optimal filters
are: Wb(z) = −1/S(z) and W f (z) = −P(z)/[S(z)(1 +
S(z)Wb(z))] [9]. Thus, filters Wb(z) and W f (z) are coupled,
and the phase difference between S(z)/[1 + S(z)Wb(z)] and
S(z) may become greater than π/2 radians to cause the
divergence of W f (z) [5], [8], [9]. This issue is resolved in the
proposed algorithm. From Fig. 2, z-transform of the residual
error signal can be expressed as

E(z) = D(z)− D̂(z)+ V (z)

= P(z)X (z)− S(z)Y (z)+ V (z). (9)

Expression (1) becomes

Y (z) = W f (z)X (z)+ Wb(z)Xb(z). (10)

Expression (6) can be written as

Xb(z) = E(z)

1 + Ŝ(z)Wb(z)
. (11)

Substitute (10) and (11) in (9) and simplify the resulting
expression

E(z) = 1+ Ŝ(z)Wb(z)

1+[Ŝ(z)−S(z)]Wb(z)
[P(z)X (z)+V (z)+S(z)Y (z)].

(12)

In this paper, the design of adaptive algorithms for noise
control filters, W f (z) and Wb(z), is addressed. Therefore,
it is assumed that exact estimate of secondary path has
been obtained, i.e., Ŝ(z) = S(z). Details on secondary path
estimation can be found in [3], [4], [21]–[24]. If Ŝ(z) = S(z),
expression (12) becomes

E(z) = [1 + S(z)Wb(z)]V (z)
+[1 + S(z)Wb(z)][P(z)+ S(z)W f (z)]X (z). (13)
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The first term in (13) is responsible for cancelling disturbance
v(n) and results in optimal Wb(z) to be

Wb(z) = − 1

S(z)
. (14)

The second term in (13) is responsible for the cancellation of
d(n), and optimal W f (z) is

W f (z) = − P(z)

S(z)
. (15)

From (14) and (15), it is clear that the feedforward and
feedback filters in the proposed method are decoupled, and can
be updated independently. It can be observed from the second
term in (13) that W f (z) and Wb(z) are cascaded. The term
[1 + S(z)Wb(z)][P(z) + S(z)W f (z)] is a product of both
control structures. Filter W f (z) approximates (15) to achieve a
negligible [P(z)+ S(z)W f (z)], and Wb(z) approximates (14)
to mitigate the term [1 + S(z)Wb(z)]. Therefore, both filters
are able to attenuate the noise independently.

III. FILTERED-X OPTIMALLY WEIGHTED RECURSIVE

LEAST SQUARES ALGORITHM FOR W f (z)

In practical parameter estimation schemes, the observation
data is corrupted by noise. Normally, the noise is modeled as
a stochastic process described by mean, covariance and noise
autocorrelation model. The stochastic approach has two limita-
tions. First, it is difficult to give an accurate statistical features
to model the noise if it is not random. Second, the samples of
the observation data, in most circumstances, are insufficient to
determine the statistics [25]. An appropriate assumption is to
consider the noise to be unknown but bounded. This situation
arises frequently in control and signal processing. In speech
processing systems, a similar bound is obeyed by disturbances
in speech-band signals [20], [26]. In this section, FxOWRLS
algorithm for feedforward noise control filter W f (z) is derived.
The problem of interest for W f (z) is to cancel d(n) in (7) and
it can be written as [5]

e(n) = p(n) ∗ x(n)− s(n) ∗ y(n)+ v(n)

= d(n)− s(n) ∗ [wT
f (n)x f (n)+ wT

b (n)xb(n)] + v(n)

≈ d(n)− wT
f (n)xs(n)+ v f (n)

= d f (n)− wT
f (n)xs(n), (16)

where v f (n) acts as disturbance for W f (z) and

xs(n) = [
xs(n), xs(n − 1), · · · , xs(n − (L f − 1))

]T
,

xs(n) = s(n) ∗ x(n).

Feedforward subsystem controlled by W f (z) can be given by

d f (n) = d(n)+ v f (n)

= wT
f xs(n)+ v f (n), (17)

where d(n) is written in terms of the desired filter coefficients.
Assume that v f (n) is bounded in magnitude for each n

v2
f (n) ≤ γ 2

f . (18)

and γ f is a known bound. Let S f (n) be a subset of R
L f

defined by

S f (n) = {w f : (d f (n)− wT
f xs(n))

2 ≤ γ 2
f ,w f ∈ R

L f }.
The subset S f (n) is a convex polytope from a geometrical
perspective [20]. Thus, a convex polytope in parameter space
can be obtained from recent observation data, (17) and (18).
Each S f (n) can be regarded as a degenerate ellipsoid in
R

L f [20], [26]. Thus, the set of w f after n measurements
is uniform with the measured data and the system. The set
can be given by

� f (n) =
n⋂

i=1

S f (i).

Modeled controller, w f , must be contained by this intersection
and any bounding ellipsoids. The recursive algorithm begins
with adequately large ellipsoid that has all possible values
of w f . After acquiring (e(1), x(1)), it identifies an ellipsoid,
E f (1) bounding the intersection of S f (1) and initial ellipsoid.
Similarly, a sequence of bounding ellipsoids, E f (n) can be
obtained. The center of E f (n) defines the estimate for w f at
iteration n. Assume that the actual coefficient vector w∗

f lies
within ellipsoid E f (n −1) at instant (n −1) which is given by

E f (n − 1) = {w f : (w f − w f (n − 1))T Pf (n − 1)

×(w f − w f (n − 1)) ≤ σ 2
f (n − 1)},

where Pf (n − 1) is a L f × L f positive definite symmetric
matrix and σ f (n − 1) is a scalar. The estimate of the desired
controller coefficients at instant (n − 1), w f (n − 1), is also
the center of the ellipsoid E f (n − 1). Now, the set of w f

which is consistent with S f (n), E f (n − 1), and the system is
S f (n)∩E f (n−1). Generally, S f (n)∩E f (n−1) is not a regular
convex set. Therefore, it is desired to obtain an ellipsoid E f (n)
with E f (n) ⊃ (E f (n−1)∪S f (n)). Consequently, an ellipsoid
bounding S f (n) ∪ E f (n − 1) can be defined as

(w f − w f (n − 1))T P f (n − 1)(w f − w f (n − 1))

+λ f (n)(d f (n)− wT
f xs(n))

2 ≤ σ 2
f (n − 1)+ λ f (n)γ

2
f ,

(19)

where variable weighting factor λ f (n) ≥ 0.
Theorem 1 The ellipsoid defined in (19) along with (16)

and the following equalities

w f (n) = w f (n − 1)+ λ f (n)P
−1
f (n)xs(n)e(n), (20)

P f (n) = = Pf (n − 1)+ λ f (n)xs(n)xT
s (n), (21)

xs(n) = [
xs(n), xs(n − 1), · · · , xs(n − (L f − 1))

]T
, (22)

xs(n) = s(n) ∗ x(n), (23)

P−1
f (n) = P−1

f (n − 1)

(
1 − λ f (n)xs(n)xT

s (n)P
−1
f (n−1)

1+λ f (n)G f (n)

)
,

(24)

G f (n) = xT
s (n)P

−1
f (n − 1)xs(n), (25)

σ 2
f (n) = σ 2

f (n − 1)+ λ f (n)γ
2
f − λ f (n)e2(n)

1 + λ f (n)G f (n)
, (26)
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is analogous to the ellipsoid

E f (n) = {w f :(w f − w f (n))
T Pf (n)(w f −w f (n)) ≤ σ 2

f (n),

(27)

where P f (n) is a L f × L f positive definite symmetric matrix,
λ f (n), σ f (n), σ f (n − 1), γ f , e(n) and x(n) are scalars, and
w f (n), w f (n − 1) and xs(n) are L f dimensional vectors.

Proof: Expand the left hand side of (19) and substitute
Pf (n − 1) from (21)

wT
f P f (n)w f − 2wT

f Pf (n − 1)w f (n − 1)+ λ f (n)d
2
f (n)

+wT
f (n−1)Pf (n−1)w f (n−1)−2λ f (n)d f (n)wT

f (n)xs(n)

≤ σ 2
f (n − 1)+ λ f (n)γ

2
f . (28)

The first term in wT
f P f (n)w f can be written as

wT
f Pf (n)w f = (w f − w f (n))

T Pf (n)(w f − w f (n))

+2wT
f P f (n)w f (n)− wT

f (n)P f (n)w f (n).

(29)

Substitute (29) into (28) and simplify the resulting expression

(w f − w f (n))
T Pf (n)(w f − w f (n))− wT

f (n)Pf (n)w f (n)

+wT
f (n−1)Pf (n−1)w f (n − 1)+ λ f (n)d

2
f (n) ≤ σ 2

f (n − 1)

+λ f (n)γ
2
f . (30)

Substitute (24) into (20) and simplify the resulting expression

w f (n) = w f (n − 1)+ λ f (n)P
−1
f (n − 1)xs(n)e(n)

1 + λ f (n)G f (n)
. (31)

Multiply both sides of (24) with Pf (n − 1)w f (n − 1) +
λ f (n)xs(n)d f (n) results in

P−1
f (n)

[
Pf (n − 1)w f (n − 1)+ λ f (n)xs(n)d f (n)

]

= w f (n − 1)+ λ f (n)P
−1
f (n − 1)xs(n)e(n)

1 + λ f (n)G f (n)
, (32)

Compare (31) and (32) to obtain

w f (n) = P−1
f (n)

[
P f (n−1)w f (n−1)+ λ f (n)xs(n)d f (n)

]
.

(33)

From (33), obtain the expression for wT
f (n − 1)Pf

(n − 1)w f (n − 1) by using (20)

wT
f (n − 1)Pf (n − 1)w f (n − 1) = wT

f (n)Pf (n)w f (n)

− λ f (n)wT
f (n)xs(n)e(n)− λ f (n)wT

f (n − 1)xs(n)d f (n),

(34)

Substitute (34) into (30) to obtain

(w f − w f (n))
T P f (n)(w f − w f (n))+ λ f (n)d

2
f (n)

− λ f (n)wT
f (n)xs(n)e(n)− λ f (n)wT

f (n − 1)xs(n)d f (n)

≤ σ 2
f (n − 1)+ λ f (n)γ

2
f .

Using (31)

(w f − w f (n))
T P f (n)(w f − w f (n)) ≤ σ 2

f (n − 1)+ λ f (n)γ
2
f

− λ f (n)e2(n)

1 + λ f (n)G f (n)
,

which is equivalent to (27) with the definition of
σ 2

f (n) in (26). �

A. Optimum Value for λ f (n)

It is established in Theorem 1 that (27), with the equalities
provided in (20)-(26), is a bounding ellipsoid. An optimal
bounding ellipsoid corresponds to a minimum σ 2

f (n) in (26),
since σ 2

f (n) stands for the bound on the filter estimation error.
From analytical perspective, a natural bound on a Lyapunov
function (see Theorem 2) is also σ 2

f (n). Thus, minimization
of σ 2

f (n) with respect to λ f (n) can improve the convergence
with a computationally simple evaluation criterion.

It is clear from (26), σ 2
f (n) = σ 2

f (n−1) for λ f (n) = 0. This
means σ 2

f (n) ≤ σ 2
f (n − 1) for the optimum value of λ f (n).

Thus if

dσ 2
f (n)

dλ f (n)
≥ 0, for λ f (n) ≥ 0,

then the new data does not have information to improve σ 2
f (n),

and filter update is not required. Hence zero is the optimum
value for λ f (n). From (26)

dσ 2
f (n)

dλ f (n)
= γ 2

f − e2(n)
(
1 + λ f (n)G f (n)

)2 ,

and

d2σ 2
f (n)

dλ2
f (n)

= 2e2(n)G f (n)
(
1 + λ f (n)G f (n)

)3 .

If e2(n)G f (n) 
= 0, the positive definiteness of P−1
f (n)

implies that d2σ 2
f (n)/dλ

2
f (n) has the same sign as (1 +

λ f (n)G f (n)). Therefore, d2σ 2
f (n)/dλ

2
f (n) ≥ 0 and σ 2

f (n) is
minimized for positive λ f (n). Set dσ 2

f (n)/dλ f (n) = 0 and
write the expression in terms of λ f (n)

λ f (n) = |e(n)| − γ f

γ f G f (n)
, if |e(n)| > γ f (35)

where the positive value of λ f (n) is guaranteed by the if-
check. Similarly, λ f (n) = 0 for |e(n)| < γ f . FxOWRLS
algorithm for W f (z) can be implemented by (20) to (26) with
optimal weighting factor λ f (n) provided in (35).

B. Convergence Analysis

The convergence properties of the proposed algorithm are
established in this section. The filter estimate obtained by
the proposed algorithm is shown to converge to a region
containing the actual filter. The derived method can guarantee
positive definite covariance matrix which results in a bounded
and non-increasing error in filter estimate. Finally, upper
bound for error in filter estimate is derived. These properties
strengthen the reliability of the system.

Theorem 2: Suppose w∗
f ∈ E f (0), then w∗

f ∈ E f (n) for
all n.

Proof: Consider using the Lyapunov function

V f (n) = �wT
f (n)Pf (n)�w f (n) (36)
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where �w f (n) = w∗
f −w f (n). Using (16), (17), (20) and (21),

expression (36) can be written as

V f (n) = V f (n − 1)+ λ f (n)v
2
f (n)

−λ f (n)e
2(n)[1 − λ f (n)xT

s (n)P
−1
f (n)xs(n)]. (37)

From (24), xT
s (n)P

−1
f (n)xs(n) can be given by

xT
s (n)P

−1
f (n)xs(n) = G f (n)

1 + λ f (n)G f (n)
. (38)

Substitute (38) in (37) and simplify the resulting expression

V f (n) = V f (n − 1)+ λ f (n)
[
v2

f (n)− e2(n)

1 + λ f (n)G f (n)

]

≤ V f (n − 1)+ λ f (n)
[
γ 2

f − e2(n)

1 + λ f (n)G f (n)

]
, (39)

Using (26)

V f (n)− σ 2
f (n) ≤ V f (n − 1)− σ 2

f (n − 1).

Note that

V f (n − 1) ≤ σ 2
f (n − 1) if and only if w∗

f ∈ E f (n − 1)

which implies

V f (n) ≤ σ 2
f (n) implies w∗

f ∈ E f (n).

This completes the proof of Theorem 2. �
Remark 1: The proposed method is established on w∗

f ∈
E f (0) and the filter estimates obtained by the proposed
algorithm converge to a region containing the actual filter.

Theorem 3: For any bounded filtered-x vector sequence
xs(n), the proposed algorithm exhibits the following properties

1) ||�w f (n)|| is bounded and non-increasing
2) limn→∞||�w f (n)−�w f (n − 1)||2 = 0
3) e2(n) is bounded
4) limn→∞λ f (n) = 0

Proof: Each of the aforementioned properties are proven
in sequence.

(1): Define

f (λ f (n)) = λ f (n)
[
γ 2

f − e2(n)

1 + λ f (n)G f (n)

]
. (40)

Then (39) can be written as

V f (n) ≤ V f (n − 1)+ f (λ f (n)). (41)

Term f (λ f (n)) ≤ 0 for

λ f (n) ∈ [0, 1

γ 2
f G f (n)

(e2(n)− γ 2
f )].

This means that

V f (n) ≤ V f (n − 1),

or

�wT
f (n)Pf (n)�w f (n) ≤ �wT

f (n − 1)Pf (n − 1)�w f (n − 1).

From (21), we have

Pf (n) ≥ Pf (n − 1),

which means

||�w f (n)||2 ≤ ||�w f (n − 1)||2. (42)

Thus, ||�w f (n)|| is bounded and non-increasing. This is the
most desirable property for selective updating of adaptive
filters [18].

(2): From (41)

V f (n) ≤ V f (0)+
n∑

i=1

f (λ f (i)) ≤ V f (0).

This implies bounded and non-increasing property of V f (n).
Therefore, limn→∞V f (n) exists. Thus

−
∞∑

i=1

f (λ f (i)) ≤ ∞ and limn→∞ f (λ f (n)) = 0. (43)

Using λ f (n) from (35), expression (24) becomes

P−1
f (n) = P−1

f (n − 1)

− P−1
f (n − 1)xs(n)xT

s (n)P
−1
f (n − 1)

G f (n)

(
1− γ f

|e(n)|
)
,

(44)

for γ f < |e(n)|, and otherwise P−1
f (n) = P−1

f (n − 1).
Similarly, by using (35) and (44), expression (20) can be
written as

w f (n) = w f (n − 1)+ P−1
f (n − 1)xs(n)

|e(n)|G f (n)
(|e(n)| − γ f )e(n),

(45)

for |e(n)| > γ f . Therefore, ||�w f (n)−�w f (n −1)||2 can be
obtained from (45)

||�w f (n)−�w f (n − 1)||2

≤ xT
s (n)K

2
f (n − 1)xs(n)(|e(n)| − γ f )

2

G2
f (n)

≤ λmax(P
−1
f (n − 1))

G f (n)
(|e(n)| − γ f )

2

≤ λmax(P
−1
f (0))

G f (n)
(|e(n)| − γ f )

2, (46)

where K f (n − 1) = P−1
f (n − 1). Writing (46) in terms of

λ f (n) gives

||�w f (n)−�w f (n − 1)||2 ≤ λmax(P
−1
f (0))λ f (n)

×(|e(n)| − γ f )γ f . (47)

In the derivation of (35), it was mentioned that filter update is
not performed when γ 2

f ≥ e2(n) and this means ||�w f (n)−
�w f (n − 1)||2 = 0. Otherwise (35) is used to obtain optimal
λ f (n). Using (35), expression (40) can be written as

f (λ f (n)) = λ f (n)(γ f − |e(n)|)γ f , (48)

and (47) becomes

||�w f (n)−�w f (n − 1)||2 ≤ −λmax(P(0)) f (λ f (n)),
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TABLE I

COMPUTATIONAL REQUIREMENTS FOR VARIOUS HYBRID ANC SYSTEMS

and

limn→∞||�w f (n)−�w f (n − 1)||2 = 0.

This proves (2).
(3): From (16) and (17), we get

e(n) = xT
s (n)�w f (n − 1)+ v f (n), (49)

and

|e(n)| ≤ ||xs(n)||||�w f (n − 1)|| + |v f (n)|. (50)

From (18) and (42), |v f (n)| ≤ γ f and ||�w f (n − 1)||2 ≤
||�w f (0)||2. Filtered-x reference vector xs(n) is also bounded.
It follows from (50) that e2(n) is bounded.

(4): From (43) and (48), it can be seen that limn→∞
λ f (n) = 0. �

Remark 2: It should be noted that the proposed method
can guarantee positive definite covariance matrix and results
in a bounded and non-increasing error in filter estimate. The
reliability of the system strengthens as e2(n) remains bounded.
The small value of λ f (n) with large iteration shows that
the system has reached the steady state and updating the
noise control filter will not improve the system performance.
Therefore, computations can be avoided without compromis-
ing the system performance.

A condition of persistent excitation is imposed to establish
the result on the convergent region. The filtered-x reference
vector {xT

s (n)} is said to be persistently exciting, if there exist
positive constants a1 and a2 for some constant integer M and
all k such that [20]

0 < a1I ≤
k+M∑

j=k

xs( j)xT
s ( j) ≤ a2I < ∞. (51)

Theorem 4: If the filtered-x reference vector {xT
s (n)} is

persistently exciting, then the noise filter estimate given by the
proposed algorithm converges to a region as specified below

limn→∞||�w f (n)||2 ≤ 4Mγ 2
f

a1
.

TABLE II

COMPUTATIONAL REQUIREMENTS FOR VARIOUS
FEEDFORWARD ANC SYSTEMS

TABLE III

NORMALIZED MEMORY REQUIREMENTS FOR VARIOUS ANC SYSTEMS

TABLE IV

PARAMETER VALUES USED IN THE SIMULATIONS

Proof: Define

é(n) = xT
s (n)�w f (n)+ v f (n).

Using (45) and (49)

é(n) = e(n)

1 + λ f (n)G f (n)
.
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Fig. 3. Performance comparison for Case 1. (a) The mean-squared error.
(b) Update percentage. (c) Total multiplications. (d) Total additions.

Thus |é(n)| ≤ |e(n)| and

|xT
s (n)�w f (n)| ≤ |xT

s (n)�w f (n − 1)|
≤ |xT

s (n)�w f (n − 1)+ v f (n)| + |v f (n)|
≤ |e(n)| + γ f .

From the fact that

limn→∞λ f (n) = limn→∞
1

γ f G f (n)
[|e(n)| − γ f ] = 0

we have

lim supn→∞|e(n)| ≤ γ f ,

and

lim supn→∞(xT
s (n)�w f (n))

2 ≤ lim supn→∞(|e(n)| + γ f )
2

≤ 4γ 2
f .

That is

lim supn→∞
n+M∑

i=n

�wT
f (i)xs(i)xT

s (i)�w f (i) ≤ 4Mγ 2
f .

Using Schwartz’s inequality [26], we get

lim supn→∞�wT
f (n)

( n+M∑

i=n

xs(i)xT
s (i)

)
�w f (n) ≤ 4Mγ 2

f .

From (51), we obtain

a1limn→∞||�w f (n)||2 ≤ limn→∞�wT
f (n)

×( n+M∑

i=n

xs(i)xT
s (i)

)
�w f (n)

≤ 4Mγ 2
f .

This completes the proof and gives a bound for error in filter
estimates in terms of persistent excitation condition (51) and
disturbance bound γ f (n). �

Fig. 4. Power spectra comparison for Case 1. (a) HM. (b) AM. (c) LM.
(d) WM. (e) TM. (f) PM.

Remark 3: For a controllable and observable system, persis-
tent excitation can be guaranteed by {xs(n)} if the frequency
of the input signal x(n) is sufficiently rich, and either x(n) and
noise are uncorrelated or excitation level of x(n) is enough to
outdo the effect of the noise signal [20], [26].

IV. FILTERED-X OPTIMALLY WEIGHTED RECURSIVE

LEAST SQUARES ALGORITHM FOR Wb(z)

Following the procedure for W f (z), FxOWRLS algorithm
for Wb(z) can be written as

wb(n) = wb(n − 1)+ λb P−1
b (n)xb(n)e(n), (52)

Pb(n) = Pb(n − 1)+ λb(n)xb(n)xT
b (n), (53)

P−1
b (n) = P−1

b (n − 1)

(
1 − λb(n)xb(n)xT

b (n)P
−1
b (n − 1)

1 + λb(n)Gb(n)

)
,

(54)

Gb(n) = xT
b (n)P

−1
b (n − 1)xb(n), (55)

xb(n) = [xb(n), xb(n − 1), · · · , xb(n − (Lb − 1))]T , (56)

xb(n) = s(n) ∗ xb(n), (57)

λb(n) = |e(n)| − γb

γbGb(n)
, if |e(n)| > γb. (58)

where γb is a scalar bound for disturbance to Wb(z).
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Fig. 5. Performance comparison for Case 2. (a) The mean-squared error.
(b) Update percentage. (c) Total multiplications. (d) Total additions.

V. COMPUTATIONAL COMPLEXITY

This section presents the computational complexity of var-
ious methods discussed in this paper using standard fig-
ure of merit which is the number of multiplications and
additions per iteration as given in Table I [2], [3], [18], [23].
Computational complexity could be a secondary issue with
the evolution of economical and powerful signal processing
hardware, but reduced computational demand is a preferred
feature for processors running multiple applications such as
mobile phones and noise cancelling headphones. Moreover,
reduced operations can contribute to lowering power consump-
tion for long battery life. Algorithms in [8]–[10], [13], [14] use
LMS variants with low computational needs. In the proposed
algorithm, expressions (24) and (54) require high computa-
tions. Computations of the FxOWRLS algorithms for W f (z)
and Wb(z) are calculated by implementation scheme of [27].
In Table I, there are two possible entries for the proposed
algorithm at each iteration. In the maximum entry, both W f (z)
and Wb(z) are updated and the operations for the proposed
method are large in comparison with the previous methods.
In the minimum entry, no filter update is performed and the
proposed method requires less computations than previous
methods. Computational complexity of the proposed method
with only feedforward filter and the previously established
feedforward ANC systems [2], [3], [23], [24] is presented
in Table II. At start-up and during perturbations, computations
for the proposed method switch to maximum entry while
minimum entry is valid in the steady state. The decision to
switch between maximum and minimum entry is based on
expressions (35) and (58). Apart from the operations required
per iteration, memory usage is a reasonable measure taking
into account the adaptive algorithms discussed in this paper.

Fig. 6. Power spectra comparison for Case 2. (a) HM. (b) AM. (c) LM.
(d) WM. (e) TM. (f) PM.

In terms of normalized memory requirements, the number of
variables to be stored at each iteration are listed in Table III.
The term normalized refers to number of variables used
as unit of memory instead of bytes. Method in [2] and
the proposed method require more variables due to the LS
method than the methods reported in [3], [8]–[10], [13], [14],
[23], [24]. The high memory requirement is the cost for
improving the convergence and steady state performance. The
memory requirements are fixed throughout the operation while
multiplications and additions performed at each iteration may
be different. Therefore, only multiplications and additions are
considered in Section VI.

VI. CASE STUDIES

The performance of the proposed algorithm, under standard
disturbance conditions, is compared with Hybrid (HM) [14],
Akhtar (AM) [13], Laleh (LM) [10], Wu (WM) [9] and
Trideba (TM) [8] in terms of mean-squared error, conver-
gence speed, computational complexity and number of tunable
parameters. Simulations are performed using parameter values
listed in Table IV and sampling frequency is 4 kHz. Bench-
mark acoustic paths are taken from [5]. Coefficient vectors of
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Fig. 7. Performance comparison for Case 3. (a) The mean-squared error.
(b) Update percentage. (c) Total multiplications. (d) Total additions.

length 256, 64, 192 and 192 are taken for P(z), S(z), W f (z)
and Wb(z), respectively. The cases presented for demonstrating
the improved performance are general and adopted from the
relevant literature [2], [3], [8]–[10]. Moreover, simulation
results are obtained by averaging over 20 independent runs.

A. Case 1

The reference signal used in this case is a multi-tonal signal
consisting of frequencies 165, 235, 290, 315, 410 and 600 Hz,
and the disturbance signal is a multi-tonal signal consisting of
frequencies 195, 250, 350, 385, 500 and 550 Hz [8], [13].
The variances of both x(n) and v(n) are adjusted to 1.0.
Reference signal is mixed with Gaussian noise to achieve a
SNR of 30 dB. The proposed method converges in 8000 itera-
tions to a mean-squared error of -37 dB as shown in Fig. 3(a).
The convergence rate is more than twice than existing results
in literature, and the steady state error is improved by 6 dB.
The optimal weighting factor plays a big role to improve the
convergence rate and steady state error. The variable weighting
factor has helped in reducing the frequency of the filter updates
by 90% as can be seen from the plot of the percentage
updates in Fig. 3(b). The reduction in updates is translated
into a considerable reduction in computations as can be seen
in Fig. 3(c) and (d), where PMmax is used for computations
if updates are performed at each iteration. Power spectra
in Fig. 4 compares the steady state performance in frequency
to highlight the contribution of the proposed method.

B. Case 2

For this case, a broadband reference signal is formed by
filtering a zero mean unit variance Gaussian noise through

Fig. 8. Power spectra comparison for Case 3. (a) HM. (b) AM. (c) LM.
(d) WM. (e) TM. (f) PM.

a bandpass filter with passband 100-350 Hz, and a Gaussian
noise is added to attain the SNR of 30 dB. Broadband
noise occurs in ducts [5]. The disturbance signal is a
unit variance multi-tonal signal consisting of frequencies
165 and 250 Hz [8], [13]. Results for various performance
measures are given in Fig. 5. The presented method converges
in 10000 iterations to a mean-squared error of −28.5 dB,
which is a reduction of at least 6.5 dB over the previous
residual noise levels as shown in Fig. 5(a). The noteworthy
improvement in convergence speed not only highlights the
superior performance of the proposed algorithm but helps
to reduce the computational requirements as fewer updates
are required in the steady state (see Fig. 5(b), (c) and (d)).
The noise reduction performance of various methods can be
observed from the power spectra provided in Fig. 6.

C. Case 3

This case investigates the reference signal comprising of
multi-tonal and broadband signals. The multi-tonal part is
a unit variance signal consisting of tones with frequencies:
165, 290 and 410 Hz. The broadband part is obtained by
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Fig. 9. Performance comparison for Case 4. (a) The mean-squared error.
(b) Update percentage. (c) Total multiplications. (d) Total additions.

filtering a zero mean unit variance Gaussian noise through
a 100-300 Hz bandpass filter. SNR of 30 dB is achieved by
adding reference signal with Gaussian noise. The disturbance
signal is a unit variance multi-tonal signal consisting of
frequencies 250, 350 and 500 Hz [8], [13]. The designed
weighting factor exhibits improved performance by superior
convergence rate and reduced steady state mean-squared error
(see Fig. 7(a)). Iterations required for convergence are reduced
by half compared to existing results in literature. In steady
state, the noise reduction performance is improved by at least
6 dB with comparable computational requirements as can
be seen in Fig. 7. The corresponding power spectra in the
steady state is presented in Fig. 8 to highlight the improved
performance achieved by the proposed method.

D. Case 4

In this case, the proposed algorithm investigates the feed-
forward ANC systems: Shakeel (SM) [23], Lopes (LM) [24],
Saeed (SaM1) [3] and Saeed’s method (SaM2) [2]. There-
fore, the disturbance is not considered in this case. The
reference signal is the same multi-tonal signal as used in
case 1. The proposed algorithm with only feedforward noise
controller is labeled as PM f , and with hybrid configuration
is referred as PMh . The methods, SM and LM, improve the
convergence speed with slightly high residual noise, while
SaM1 and SaM2 reduce the steady state residual noise by
taking relatively more iterations (see Fig. 9(a)). Simulation
results show that both, PM f and PMh , exhibit notewor-
thy improvement in the convergence speed. PM f converges
to the same steady state E[e2(n)] as SaM2 with superior

Fig. 10. Power spectra comparison for Case 4. (a) SM. (b) LM. (c) SaM1.
(d) SaM2. (e) PM f . (f) PMh .

convergence rate as shown in Fig. 9(a). PMh improves the
convergences speed with at least 5 dB improvement in the
noise reduction (see Fig. 9(a)). The proposed method, PMh ,
achieves significant improvement in all performance aspects.
The rate of filter updates decreases with iterations, but still the
computational complexity of PM f and PMh is lower than the
method reported in [2] and slightly higher than the previous
methods [3], [23], [24] as shown in Fig. 9, where PM f max and
PMhmax represent the computations if updates are performed
on every iteration for PM f and PMh . Power spectra in the
steady state are shown in Fig. 10 and the proposed method
demonstrates significant enhancement.

VII. CONCLUSIONS

This paper derives filtered-x optimal weighting recursive
least squares algorithms for feedforward and feedback noise
control filters in hybrid ANC systems with bounded nar-
rowband disturbances. The proposed algorithms use optimal
weighting factors that are adjusted at each iteration on the
basis of new information in the recent observation data.
These weight factors are also used to decide on effective
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filter updates. Therefore, reducing computational complexity
in the long term operation of the ANC system by avoiding
the filter updates that do not improve the system performance.
In the presence of bounded narrowband disturbance, cessation
of filter updates is ensured once the absolute residual error
becomes less than the disturbance bound. For the proposed
algorithm, the filter estimation error is bounded and non-
increasing which reinforces the reliability of the filter esti-
mates. The filter estimates of the proposed algorithm are
shown to converge to a region containing the actual filter
along with derivation of upper bound on filter estimation error.
The presented algorithm for feedforward and feedback noise
control filters provide fast convergence, reduced computations
and improved steady state performance independent of input
signal eigen-spread which slows down the LMS algorithms.
In comparison with the previous methods, the proposed design
reduces the mean-squared error by at least 6 dB for broadband,
multi-tonal and their mixture reference noises in the pres-
ence of multi-tonal disturbance noise. Future work includes
detailed analysis on application of the proposed algorithm for
multi-channel systems and exploring new controller design
techniques [28].
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Chapter 5

Self-adapting variable step
size strategies for active

noise control systems with
acoustic feedback

SELF-ADAPTING variable step size based normalized least mean square

algorithms are derived and analyzed for the active noise control systems

with acoustic feedback path. The proposed variable step size is designed

for rapid convergence and low mis-adjustment. Morover, auxiliary noise

power is varied in relation with status of the predictor filter to introduce

auxiliary noise at startup or in case of perturbation only. A low auxiliary

noise gain in the steady state improves noise reduction. Feedback compen-

sation and predictor filters are not updated in the steady state to reduce

computations.
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Self-adapting variable step size (SAVSS) normalized least mean square (NLMS) algorithms are derived
and analysed for the active noise control systems with acoustic feedback path. The objective of the
proposed SAVSS scheme is to resolve the conflicting requirements of rapid convergence and low mis-
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1. Introduction1

Active noise control (ANC) is a technique preferred for atten-2
uating the low frequency noises by generating a cancelling noise3
with the identical amplitude and opposite phase by using the4
controlled secondary sources (Lueg, 1936). Generally, reference5
microphones are used to obtain reference of primary noises to6
adapt noise control filters. The outputs of noise control filters7
trigger the speakers to cancel the primary noise at the error8
microphones. Sometimes, acoustics from speakers reflect back to9
the reference microphones and destabilize the system. Consider10
the basic configuration of ANC system with acoustic feedback11
in Fig. 1 to familiarize with the common structure and building12
blocks. Microphones are used for detecting the residual signal e(n)13
and the reference signal x(n) where n is the time variable. Pri-14
mary noise, d(n), results from x(n) passing through primary path15
P(z). Cancelling noise, d̂(n), is formed by x(n) passing through16
adaptive noise controller W (z) and secondary path S(z). Filtered-17
x least mean square (FxLMS) algorithm is used to update W (z)18
due to its computational simplicity, unbiased convergence and19
robustness (Aslam, 2016; Aslam & Raja, 2015; Aslam, Shi, & Lim,20
2019). When reflections of the output from speaker travel back21
towards the reference microphone through feedback path F (z),22

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Alessandro
Chiuso under the direction of Editor Torsten Söderström.
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the feedback signal xf (n) also becomes available at the reference 23
microphone. The signal xf (n) forms a closed loop which causes 24
instability if left unattended. Therefore, compensation of F (z) via 25
estimated feedback path F̂ (z) is a necessity. Overall, obtaining Ŝ(z) 26
and F̂ (z) is critical for the stable system operation. The estimation 27
of F̂ (z) is the issue addressed in this paper in detail. Therefore, it 28
is assumed that an exact Ŝ(z) is already available i.e., Ŝ(z) = S(z). 29
See Ahmed and Akhtar (2017), Kuo and Morgan (1996), Liao and 30
Lin (2007) and Zhang, Lan, and Ser (2001, 2003) for more details 31
on estimating Ŝ(z). 32

Time varying F̂ (z) is estimated online by inducing an auxiliary 33
noise signal at the output of W (z) (Ahmed & Akhtar, 2017; 34
Ahmed, Akhtar, & Zhang, 2013, 2015; Akhtar & Mitsuhashi, 2011; 35
Kuo, 2002; Kuo & Luan, 1994). In Kuo (2002), fixed gain auxiliary 36
noise and fixed step size parameters are used for F̂ (z) and W (z). 37
Bounded step size parameter for F̂ (z) increases from small to 38
large value in Akhtar and Mitsuhashi (2011) to improve the 39
convergence speed. In Ahmed and Akhtar (2017) and Ahmed et al. 40
(2013, 2015), gain scheduling is designed for auxiliary noise in 41
relation with estimation accuracy. The method in Ahmed et al. 42
(2013) uses fixed step sizes for adaptive filters, therefore a vari- 43
able step size scheme is introduced for the single channel ANC 44
systems in Ahmed et al. (2015) which is extended to the multi- 45
channel systems in Ahmed and Akhtar (2017). Similar to Akhtar 46
and Mitsuhashi (2011), the step size strategy of Ahmed and 47
Akhtar (2017) and Ahmed et al. (2015) also increases from a 48
small value at the start up to a large value in the steady state, 49
which may lead to a large steady state error. The power variation 50
schemes of Ahmed and Akhtar (2017) and Ahmed et al. (2013, 51
2015) have a noteworthy contribution in the residual error from 52
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Fig. 1. Feed-forward ANC system with acoustic feedback.

the auxiliary noise in the steady state, which is a disturbance for1
the W (z). In Ahmed and Akhtar (2017), an increasing step size is2
used only for F̂ (z), and variable auxiliary noise gain is significant3
in the steady state which degrades the system performance. The4
proposed step size for F̂ (z) and W (z) varies appropriately to de-5
liver fast performance and low steady state error. Also, proposed6
auxiliary noise gain is negligible in the steady state to improve7
noise reduction. Filter updates are also stopped in the steady state8
to reduce computations.9

The distinct contributions made in this paper are10

(1) A self-adapting variable step size based normalized least11
mean square (SAVSS-NLMS) algorithm is derived for F̂ (z).12

• Unlike the previous methods (Ahmed & Akhtar, 2017;13
Ahmed et al., 2013, 2015; Akhtar & Mitsuhashi, 2011;14
Kuo, 2002; Kuo & Luan, 1994), the proposed step15
size parameter is time varying and self-adapts by16
using the statistical information to maintain stability17
and make system robust to perturbations in acoustic18
paths.19

• The proposed step size varies appropriately to deliver20
fast convergence along with small steady state error.21

• Unlike the previous works (Ahmed & Akhtar, 2017;22
Ahmed et al., 2013, 2015; Akhtar & Mitsuhashi, 2011;23
Kuo, 2002; Kuo & Luan, 1994), the proposed method24
reduces computational complexity by stopping the25
updates of F̂ (z) and B(z) along with their associated26
step sizes after system convergence.27

• Superior convergence speed of the presented method28
requires significant auxiliary noise for relatively re-29
duced iterations.30

(2) A scheme is formulated for the gain variation of auxiliary31
noise according to the accuracy of F̂ (z).32

• In the presented approach, the gain of the auxiliary33
noise is significant in learning phase and becomes34
negligible in the steady state. Thus, the approach re-35
sults in improved noise reduction.36

• Continuous auxiliary noise injection in Ahmed and37
Akhtar (2017), Ahmed et al. (2013, 2015), Akhtar and38
Mitsuhashi (2011), Kuo (2002) and Kuo and Luan39
(1994) slows down the convergence of W (z). In the40
proposed method, a negligible auxiliary noise in the41
steady state results in an accurate reference signal for42
improved W (z) performance.43

• It helps the system in maintaining stability when44
perturbations exit in acoustic paths.45

(3) A novel SAVSS based filtered-x normalized least mean46
square (SAVSS-FxNLMS) algorithm is derived for W (z). The47

Fig. 2. Block diagram of the proposed ANC system.

step size parameter adapts by using the statistical infor- 48
mation to achieve the fast convergence and improved noise 49
reduction properties. The proposed scheme is robust to the 50
perturbations in acoustic paths and offers reduced compu- 51
tational requirements in long term operation in compari- 52
son with (Ahmed & Akhtar, 2017; Ahmed et al., 2013, 2015; 53
Akhtar & Mitsuhashi, 2011; Kuo, 2002; Kuo & Luan, 1994). 54

The organization of upcoming sections is as follows: Section 2 55
describes the system model for the proposed ANC structure. The 56
SAVSS-NLMS algorithm is derived for the online identification 57
and compensation of F (z) in Section 3. The derivation of SAVSS- 58
NLMS algorithm for F̂ (z) is presented in Section 3.1 along with 59
the analysis and the practical considerations. The SAVSS-NLMS 60
algorithm is presented for prediction filter in Section 3.2. A strat- 61
egy for variable power auxiliary signal is provided in Section 4. 62
Section 5 derives a SAVSS-FxNLMS algorithm for W (z). Section 6 63
presents the computational requirements. Computer simulations 64
are discussed in Section 7 while concluding remarks are given in 65
Section 8. 66

2. Single channel ANC system model 67

The schematic of the proposed methodology for single channel 68
ANC system is given in Fig. 2. The impulse response vectors for 69
the primary path P(z), the secondary path S(z) and the feedback 70
path F (z) are 71

p(n) = [p(n), p(n − 1), . . . , p(n − Lp + 1)]T , ∈ RLp 72

s(n) = [s(n), s(n − 1), . . . , s(n − Ls + 1)]T , ∈ RLs 73

f(n) = [f (n), f (n − 1), . . . , f (n − Lf + 1)]T , ∈ RLf 74

The primary signal, d(n), is 75

d(n) = pT (n)xp(n), (1) 76

where xp(n) = [x(n), x(n − 1), . . . , x(n − Lp + 1)]T and x(n) is the 77
primary noise. The reference signal, xr (n), is 78

xr (n) = x(n) + xf (n), (2) 79

where xf (n), the acoustic feedback signal, is given as

xf (n) = fT (n)yf (n), (3)

yf (n) = [yt (n), yt (n − 1), . . . , yt (n − Lf + 1)]T , (4)

yt (n) = y(n) + vg (n), (5)

2
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and y(n) is the output of the noise control filter W (z) and the1
modified gain auxiliary signal, vg (n), is2

vg (n) = G(n)v(n), (6)3

where G(n) is a variable gain function (G(n) is discussed in Sec-4
tion 4) and v(n) is a white noise sequence that has zero mean with5
unit variance. It is assumed that x(n) and v(n) are uncorrelated.6
The residual error signal, e(n), is7

e(n) = d(n) − d̂(n), (7)8

where d̂(n) = sT (n)ys(n), ys(n) = [yt (n), yt (n − 1), . . . , yt (n −9
Ls + 1)]T , and yt (n) is provided in (5). Control signal, y(n), can10
be computed as11

y(n) = wT (n)xw(n), (8)12

where w(n) = [w0(n), w1(n), . . . , w(Lw−1)(n)]T , xw(n) = [xc(n),13
xc(n−1), . . . , xc(n−(Lw −1))]T , and feedback compensated signal14
xc(n) is15

xc(n) = xr (n) − x̂f (n). (9)16

Reference signal xr (n) is provided in (2) and x̂f (n) is the output of17
F̂ (z)18

x̂f (n) = f̂T (n)yd(n), (10)19

where f̂(n) = [f̂0(n), f̂1(n), . . . , f̂(Lf −1)(n)]T and20

yd(n)(n) = yf (n − 1)
= [yt (n − 1), yt (n − 2), . . . , yt (n − Lf )]T .

(11)21

In the next section, SAVSS-NLMS algorithms are derived for F̂ (z)22
and B(z).23

3. Feedback path compensation24

The functionality of feedback compensation is to remove the25
effects of F (z) from xr (n) i.e., xc(n) ≈ x(n). For this purpose, two26
filters are used. Filter F̂ (z) is used to neutralize the contribution27
of F (z), while filter B(z) is employed to provide a suitable error28
signal for adapting F̂ (z). Signal vg (n) is introduced for estimating29
F̂ (z). The error signal for the adaptive algorithm is the signal30
obtained after filtering xc(n), which has vg (n) along with x(n) and31
filtered x(n). Using (2), (3), (10) and (11), Eq. (9) can be written32
as33

xc(n) = xr (n) − f̂ (n) ∗ yt (n − 1)
= x(n) + δf (n) ∗ [w(n) ∗ xc(n − 1) + vg (n − 1)],

(12)34

where ∗ denotes linear convolution and δf (n) stands for the35
feedback path estimation error. The inherent delay for feedback36
is also incorporated in this expression. Terms like δf (n) ∗ vg (n)37
carry the desired error signal for F̂ (z) and this is addressed by38
a predictor filter B(z). This filter has xc(n) as input, and its error39
signal is40

ef (n) = xc(n) − bT (n)xb(n), (13)41

where b(n) = [b0(n), b1(n), . . . , b(Lb−1)(n)]T and42

xb(n) = [xc(n − D), xc(n − D − 1), . . . , xc(n − D − Lb + 1)]T . (14)43

Delay D ensures that vg (n) components required for F̂ (z) are44
decorrelated while the narrowband components remain corre-45
lated in xc(n), and D can be selected from the correlation between46
xc(n) and xc(n − D)47

E[xc(n)xc(n − D)] = E[
(
x(n) + δf (n) ∗ y(n − 1)+

δf (n) ∗ vg (n − 1)
)(
x(n − D) + δf (n) ∗ y(n − D − 1)

+δf (n) ∗ vg (n − D − 1)
)
].

(15)48

where E[·] denotes mathematical expectation and it is assumed 49
that the change in δf (n) is negligible in the interval D. From (8) 50
and (9) 51

y(n − 1) = w(n) ∗
(
x(n − 1) + Cfw(n)

)
∗(

y(n − 2) + vg (n − 2)
)
,

(16) 52

where Cfw(n) = δf (n) ∗ w(n). It is clear from (16) that xc(n) will 53
become unbounded if F (z) is not neutralized. With improvement 54
in estimation accuracy, δf (n) will approach a null response and 55
terms like δf (n)∗ y(n−1) and δf (n)∗ y(n−D−1) in (15) become 56
negligible. As vg (n) is uncorrelated with x(n), (15) becomes (Kuo 57
& Vijayan, 1997) 58

E[xc(n)xc(n − D)] = E[x(n)x(n − D)]+
Lf −1∑
i=0

δfi(n)
Lf −1∑
j=0

δfj(n)E[vg (n − i − 1)vg (n − j − D − 1)]. (17) 59

Since v(n) is a zero mean white noise, the last term in (17) for 60
D ≥ Lf becomes (Kuo & Vijayan, 1997) 61

E[vg (n − i − 1)vg (n − j − D − 1)] = 0. for i < Lf , 0 ≤ j 62

Therefore, the auxiliary signal components in xc(n) and xc(n − 63
D) are uncorrelated for D ≥ Lf . Consequently, B(z) is able to 64
predict x(n) component that remains correlated in xc(n) for D ≥ 65
Lf . The correlated component will be absent in ef (n) after the 66
convergence of B(z), and (13) becomes ef (n) ≈ δf (n) ∗ vg (n − 67
1) which is equivalent to a modelling error without x(n), thus 68
preventing F̂ (z) from being interfered by the narrowband signal. 69
Therefore, F̂ (z) can model F (z) correctly. However, if delay D < 70
Lf , then the second term in (17) will not be zero, resulting in 71
cancelling the auxiliary signal components by B(z) and degrading 72
the convergence of F̂ (z). In the next subsection, derivation of the 73
proposed variable step size strategy is presented. 74

3.1. Self-adapting variable step size strategy for F̂ (z) 75

This section derives SAVSS-NLMS algorithm for F̂ (z). From (2)
and (3)

xr (n) = fT (n)vg (n) + vxx(n), (18)

vg (n) = [vg (n), vg (n − 1), . . . , vg (n − Lf + 1)]T , (19)

vxx(n) = fT (n)y(n) + x(n), (20)

and vxx(n) is disturbance for F̂ (z). 76

3.1.1. Derivation of the algorithm 77
The a priori error signal from (13) is

ef (n) = vTg (n)[f(n) − f̂(n)] + vx(n), (21)

vx(n) = vxx − bT (n)xb(n), (22)

where vxx(n) is given in (20) and xb(n) is defined in (14). The term 78
bT (n)xb(n) gives predictable part of xc(n). After the convergence of 79
B(z), x(n) terms become insignificant in vx(n), and ef (n) becomes 80
representative of the feedback path modelling error. Similarly, the 81
a posteriori error signal can be given as 82

εf (n) = vTg (n)[f(n) − f̂(n + 1)] + vx(n), (23) 83

where f̂(n + 1) can be written as 84

f̂(n + 1) = f̂(n) + µf (n)vg (n)ef (n), (24) 85

where µf (n) is the step size parameter. For NLMS algorithm, 86
replace (24) in (23) and substitute vx(n) = 0 with the requirement 87
εf (n) = 0. Assume ef (n) ̸= 0, for all n, then µNLMS(n) = 88
[vTg (n)vg (n)]−1 and is suitable for noiseless case. In the presence 89
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of vx(n), finding µf (n) that cancels (23) introduces disturbance in1
f̂(n + 1) since vTg (n)[f(n) − f̂(n + 1)] = −vx(n) ̸= 0, for all n. It2
is appropriate to have vTg (n)[f(n) − f̂(n + 1)] = 0, for all n. This3
means εf (n) = vx(n). For the proposed µf (n), consider4

E[ε2
f (n)] = σ 2

vx
, for all n (25)5

where σ 2
vx

= E[v2
x (n)]. Use (21), (23) and (24) to obtain6

εf (n) = [1 − µf (n)vTg (n)vg (n)]ef (n). (26)7

From (26), E[ε2(n)] can be written as (Benesty, Rey, Vega, &8
Tressens, 2006)9

E
{
ε2
f (n)

}
=

[
1 − µf (n)Lf σ 2

vg

]2
σ 2
ef (n), (27)10

where σ 2
vg

= E[v2
g (n)] and σ 2

ef (n) = E[e2f (n)]. Equating (27) with11
(25) results in12

σ 2
vx

=
[
1 − µf (n)Lf σ 2

vg

]2
σ 2
ef (n). (28)13

Solve (28) for µf (n)

µf (n) =
αf (n)
Lf σ 2

vg

, (29)

αf (n) =

[
1 −

σvx

σef (n)

]
, (30)

where 0 ≤ αf (n) ≤ 1. During the transition phase, σef (n) ≫ σvx ,14
which is appropriate for fast convergence. While, σef (n) ≈ σvx15
and µf ≈ 0 in the steady state to result in a low misadjustment.16

3.1.2. Convergence of the misalignment17
The analysis in this section is based on the independence18

assumptions as the resulting predictions for LMS algorithm19
match for the simulations and practical performance (Farhang-20
Boroujeny, 1999).21

Independence Assumption22

(1) The auxiliary data vectors vg (1), vg (2), . . . , vg (n) are statis-23
tically independent.24

(2) At time k, desired output of F (z) is dependent on vg (k). The25
current desired output of F (z) and vg (k) are statistically26
independent of all past outputs of F (z), fT (i)vg (i) for i =27
1, 2, . . . , k − 1.28

Let the misalignment vector be mf (n) = f(n) − f̂(n). Subtract f(n)29
from both sides of (24)30

mf (n + 1) = mf (n) −
αf (n)
Lf σ 2

vg

vg (n)ef (n), (31)31

Take l2 norm and mathematical expectation32

E
[
∥mf (n + 1)∥2

2

]
=E

[
∥mf (n)∥2

2

]
− 2 αf (n)

Lf σ2
vg

E
[
vTg (n)mf (n)ef (n)

]
+

α2
f (n)

L2f σ4
vg
E
[
e2f (n)x

T
g (n)vg (n)

]
.

(32)33

Using mf (n) definition, (21) becomes34

ef (n) = vTg (n)mf (n) + vx(n). (33)35

Substitute (33) into (32) and remove uncorrelated terms36

E
[
vTg (n)mf (n)ef (n)

]
=E

[
vTg (n)mf (n)vTg (n)mf (n)

]
=E

[
(vTg (n)mf (n))2

]
.

(34)37

Using the independence assumption to evaluate (34), then (vg (n),38
xr (n)) are independent of {(vg (n−1), xr (n−1)), (vg (n−2), xr (n−39
2)), . . . } (Ardekani & Abdulla, 2013; Farhang-Boroujeny, 1999).40
Similarly, mf (n+ 1) is independent of vg (n) and depends only on41

{(vg (n−1), xr (n−1)), (vg (n−2), xr (n−2)), . . . }. Vectors vg (n) and 42
vg (n−1) have (Lf −1) common terms. Nevertheless, anticipations 43
by the independence assumption match the actual performance 44
and the simulations of the LMS algorithm (Farhang-Boroujeny, 45
1999). Explanation by weakly-dependence assumption states that 46
affect on f̂(n) by {(vg (n− 1), xr (n− 1)), (vg (n− 2), xr (n− 2)), . . . } 47
becomes negligible for small µf (n). Thus, f̂(n) and mf (n) are 48
independent of fT (k)vg (k) and vg (k). Therefore, (34) becomes 49

E
[
(vTg (n)mf (n))2

]
= E

[
tr

[
mT

f (n)Rvgvgmf (n)
]]

= tr
[
E
[
mf (n)mT

f (n)
]
Rvgvg

]
,

(35) 50

where Rvgvg = E[vg (n)vTg (n)] and tr[·] denotes the trace of a 51
matrix. In the steady state, [mf (n)mT

f (n)] is close to a diago- 52
nal matrix, since errors of the individual coefficients become 53
uncorrelated. Therefore, (35) becomes 54

E
[
vTg (n)mf (n)ef (n)

]
=σ 2

vg
E
[
∥mf (n)∥2

2

]
. (36) 55

The last expectation term from (32) can be expressed as 56

E
[
e2f (n)v

T
g (n)vg (n)

]
= tr

[
E
[
e2f (n)vg (n)v

T
g (n)

]]
. 57

Substitute (33) and remove uncorrelated terms 58

E
[
e2f (n)v

T
g (n)vg (n)

]
= tr

[
E[v2

x (n)vTg (n)vg (n)]+
E[vg (n)vTg (n)mf (n)mT

f (n)vg (n)v
T
g (n)]

]
.

(37) 59

Using independence assumption, the last expectation term on the 60
right hand side of (37) can be written as 61

E[vg (n)vTg (n)mf (n)mT
f (n)vg (n)v

T
g (n)] =

E[vg (n)vTg (n)K(n)vg (n)vTg (n)],
(38) 62

where K(n) = E[mf (n)mT
f (n)]. Using the procedure proposed 63

in Farhang-Boroujeny (1999), (38) can be written as 64

E[vg (n)vTg (n)K(n)vg (n)vTg (n)] = σ 4
vg
E
[
∥mf (n)∥2

2

]
ILf +

2σ 4
vg
E[mf (n)mT

f (n)],
(39) 65

where ILf is an identity matrix of order Lf . Substitute (39) in (37) 66
results in 67
E
[
e2f (n)v

T
g (n)vg (n)

]
= tr

[
σ 4

vg
E
[
∥mf (n)∥2

2

]
ILf +

2σ 4
vg
E[mf (n)mT

f (n)]
]
+ Lf σ 2

vg
σ 2

vx

= (Lf + 2)σ 4
vg
E
[
∥mf (n)∥2

2

]
+ Lf σ 2

vg
σ 2

vx
.

(40) 68

Substituting (36) and (40) in (32) results in 69

E
[
∥mf (n + 1)∥2

2

]
= g(αf (n), Lf )E

[
∥mf (n)∥2

2

]
+

h(αf (n), Lf , σ 2
vg

, σ 2
vx
), (41) 70

where

g(αf (n), Lf ) = 1 − 2
αf (n)
Lf

+
(Lf + 2)α2

f (n)

L2f
, (42)

h(αf (n), Lf , σ 2
vg

, σ 2
vx
) =

α2
f (n)

Lf σ 2
vg

σ 2
vx

. (43)

Expression (41) relates misalignment with convergence rate and 71
misadjustment. The term g(αf (n), Lf ) influences the convergence 72
rate of the algorithm, and its minimum value results in fastest 73
convergence with αf (n) as the reference parameter 74

αf (n) |FC=
Lf

Lf +2 , 75

where subscript FC denotes fast convergence. For long filters Lf ≫ 76
2, the fastest convergence is possible for αf (n) ≈ 1, which is an 77
established result (Haykin & Widrow, 2003; Sulyman & Zerguine, 78
2003). For the proposed αf (n) in (30), (21) shows that ef (n) > 79
vx(n) for large estimation errors, f(n) − f̂(n). This happens at the 80
system startup or in case of perturbation in f(n). If ef (n) ≫ vx(n), 81
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then σef (n) is also greater than σvx and αf (n) ≈ 1 from (30) which1
ensures fast convergence.2

The stability condition is expressed by the non-increasing3
E
[
∥mf (n + 1)∥2

2

]
in (41). The decreasing trend in (41) can be4

obtained by g(αf (n), Lf ) < 1. From (42), we get5

g(αf (n), Lf ) |stable=
2Lf
Lf +2 , (44)6

where subscript ’stable’ denotes stability condition. For Lf ≫ 2,7
(44) reduces to αf (n) |stable< 2 and using (30)8 [
1 −

σvx

σef (n)

]
< 2.9

This condition is always true since σef (n) > σvx . The minimum10
value of σef (n) occurs at f(n) ≈ f̂(n), which means σef (n) ≈ σvx11
and αf (n) ≈ 0. When ef (n) ≫ vx(n), then αf (n) ≈ 1. Thus, αf (n)12
is always within the stability limit.13

The term h(αf (n), Lf , σ 2
vg

, σ 2
vx
) in (41) influences the misad-14

justment which increases with increase in σ 2
vx

and decreases15
with increase in σ 2

vg
. The misadjustment is minimum when (43)16

reaches its minimum for αf (n) ≈ 0 (Haykin & Widrow, 2003).17
Desired minimum misadjustment occurs when σ 2

ef ≈ σ 2
vx

in the18
steady state and αf (n) ≈ 0 from (30).19

3.1.3. Practical considerations20
The first consideration is to avoid the divisions by small num-21

bers by adding a positive constant ϵf to the denominator in (29).22
Normally, σef (n) ≥ σvx and αf (n) ≥ 0. For implementation, σ 2

ef (n)23
is24

σ 2
ef (n) = βσ 2

ef (n − 1) + (1 − β)e2f (n), (45)25

where β is a forgetting factor. Also, (45) may give σef (n) <26
σvx and αf (n) < 0. The safety check is to set µf (n) = 027
for αf (n) < 0. Moreover, (30) is not implementable due to28
unavailable term σvx . Therefore, we derive the disturbance signal29
energy estimate, σ̂ 2

vx
(n), to implement (30). The cross-correlation30

between vg (n) and ef (n) is rf (n) = E[vg (n)ef (n)]. Use (33) and31
remove uncorrelated terms to get32

rf (n) = Rvgvgmf (n), (46)33

where Rvgvg = E[vg (n)vTg (n)] and mf (n) = f(n)− f̂(n). The variance34
of ef (n) is35

σ 2
ef (n) = E[ef 2(n)]

= mT
f (n)Rvgvgmf (n) + σ 2

vx
(n),

(47)36

where σ 2
vx
(n) is the power of the part of ef (n) that is contributed37

by x(n). From (46) and (47), the term σ 2
vx
(n) can be written38

as (Iqbal & Grant, 2008)39

σ 2
vx
(n) = σ 2

ef (n) −
rTf (n)rf (n)

σ2
vg (n)

, (48)40

where σ 2
vg
(n) is the variance of the auxiliary noise. Estimated

values of σ 2
f (n), rf (n) and σ 2

vg
(n) are used in (48) to evaluate σ̂ 2

vx
(n)

by using the exponential recursive weighting algorithm

σ̂ 2
vx
(n) = βσ̂ 2

vx
(n − 1) + (1 − β)

(
σ̂ 2
ef (n) −

r̂Tf (n)r̂f (n)
σ̂ 2

vg
(n)

)
, (49)

σ̂ 2
ef (n) = βσ̂ 2

ef (n − 1) + (1 − β)e2f (n), (50)

σ̂ 2
vg
(n) = βσ̂ 2

vg
(n − 1) + (1 − β)vg

2(n), (51)

r̂f (n) = β r̂f (n − 1) + (1 − β)vg (n)ef (n). (52)

Expressions (24), (29), (30) and (49) to (52) can be used to41
implement the SAVSS-NLMS algorithm for F̂ (z).42

3.2. Self-adapting VSS-NLMS algorithm for B(z) 43

The SAVSS-NLMS algorithm for B(z) is obtained by following 44
the procedure given in Section 3.1. Corresponding analysis is also 45
valid. Filter B(z) predicts the contribution of x(n) in xc(n). The 46
update expression for B(z) is 47

b(n + 1) = b(n) + µb(n)xb(n)ef (n), (53) 48

where ef (n) and xb(n) are defined in (13) and (14) respectively. 49
From (21) and (22) 50

ef (n) = vgb + vx(n), (54) 51

where vgb = vTg (n)[f(n) − f̂(n)] is the disturbance term and vx(n) 52
is the error signal for B(z). After the convergence of F (z), vgb 53
becomes very small and ef (n) becomes the prediction error. This 54
means F (z) and B(z) reduce disturbance for each other. Parameter 55
µb(n) in (54) is 56

µb(n) =

[
1 −

σ̂vgb

σ̂ef (n)

]
1

Lbσ 2
xb

. (55) 57

Similar to (49)–(52), σ̂ 2
vgb

(n) can be written as

σ̂ 2
vgb

(n) = βσ̂ 2
vgb

(n − 1) + (1 − β)
(

σ̂ 2
eb (n) −

r̂Tb (n)r̂b(n)
σ̂ 2
xb (n)

)
, (56)

σ̂ 2
eb (n) = βσ̂ 2

eb (n − 1) + (1 − β)e2f (n), (57)

σ̂ 2
xb (n) = βσ̂ 2

xb (n − 1) + (1 − β)xc2(n − D), (58)

r̂b(n) = β r̂b(n − 1) + (1 − β)xb(n)ef (n). (59)

Expressions (53)–(59) are implementable for B(z), and a scheme 58
for G(n) is designed in the next section. 59

4. Design of auxiliary noise gain G(n) 60

A suitable G(n) should have a large value when F̂ (z) estimation 61
is poor, and be negligible in the steady state. The error signal for 62
the effective performance of F̂ (z) is ef (n) as it has information for 63
estimating F̂ (z) as well as x(n). In Ahmed and Akhtar (2017), G(n) 64
is obtained by 65

G(n) =

√
σ̂ 2
ef (n − 1)

f̂T (n)f̂(n)
, (60) 66

where σ̂ 2
ef (n) is provided in (50). Expression (60) makes the power 67

of vTg (n)f̂(n) equal to σ̂ 2
ef (n−1), and maintains significant auxiliary 68

noise in e(n) in the steady state. In order to reduce G(n) in the 69
steady state, 70

fef ,k(n) = βfef ,k(n − 1) + (1 − β) | ef (n) |
k, for k = 2, 5. (61) 71

where | · | denotes the absolute value. It is clear from (61) that 72
fef ,5(n) < fef ,2(n) for | ef (n) |< 1. Hence, fef ,5(n) is preferred for 73
small ef (n) in the steady state. Therefore, we propose 74

G(n) =

√
fef ,5(n)

f̂T (n)f̂(n)
, if min(fef ,2(n), fef ,5(n)) = fef ,5(n) (62) 75

where min(·) selects the minimum of the available values. By
using (62), G(n) becomes negligible by switching to fef ,5(n) in the
steady state. Values k > 5 are equally valid for (61) and (62)
in the steady state. Therefore, k = 5 is used. For | ef (n) |> 1,
fef ,5(n) > fef ,2(n). Therefore, fef ,2(n) may be selected for | ef (n) |>

1 as is used in Ahmed and Akhtar (2017). However, this selection
does not ensure the improvement in F̂ (z) without considering the

5



AUT: 109354

M.S. Aslam, P. Shi and C.-C. Lim Automatica xxx (xxxx) xxx

power of x(n) in xc(n). Therefore, the proposed G(n) at the system
initialization or in case of perturbation is

G(n) =

√
σ̂ 2
yb (n)

f̂T (n)f̂(n)
, (63)

σ̂ 2
yb (n) = βσ̂ 2

yb (n − 1) + (1 − β)(bT (n)xb(n)), (64)

where σ̂ 2
yb (n) is the power of the output of B(z). Use of (63) during1

the large error times is advantageous as this signal only contains2
the predictable part of xc(n) and it cannot inflate with increase in3
the accuracy of F̂ (z). The proposed method introduces a bounded4
gain during poor estimation stage and negligible auxiliary noise5
in the steady state. When G(n) is small for min(fef ,2(n), fef ,5(n)) =6
fef ,5(n), it is reasonable to stop updating F̂ (z) and B(z). The validity7
of convergence analysis for proposed G(n) in Section 3.1.2 can8
be established intuitively for the maximum value of G(n) as is9
demonstrated in Ahmed and Akhtar (2017) with the same max-10
imum value. The convergence analysis in Section 3.1.2 is valid11
for variable gain. However, detailed convergence analysis with12
explicit G(n) term is complex and will be addressed in a future13
work.14

5. Self-adapting FxNLMS algorithm for W (z)15

The SAVSS-FxNLMS algorithm for W (z) is obtained by fol-
lowing the procedure used for F̂ (z) and B(z). Therefore, only
implementable expressions are presented. The expression for
updating the coefficient vector is

w(n + 1) = w(n) + µw(n)xs(n)e(n), (65)

xs(n) = [xs(n), xs(n − 1), . . . , xs(n − Lw + 1)]T ,

xs(n) = s(n) ∗ xc(n), (66)

where µw(n) is step size, and e(n) from (7) becomes16

e(n) = d(n) − s(n) ∗ y(n) + vgw(n), (67)17

where vgw(n) = s(n) ∗ vg (n) is the disturbance for W (z), d(n) −18
s(n) ∗ y(n) is the desired error signal for W (z), and µw(n) in (65)19
is20

µw(n) =

[
1 −

σ̂vgw

σ̂e(n)

]
1

Lwσ 2
xs

. (68)21

Similar to (49)–(52), σ̂ 2
vgw

(n) can be written as

σ̂ 2
vgw

(n) = βσ̂ 2
vgw

(n − 1) + (1 − β)
(
σ̂ 2
e (n) −

r̂Tw(n)r̂w(n)
σ̂ 2
xs (n)

)
, (69)

σ̂ 2
e (n) = βσ̂ 2

e (n − 1) + (1 − β)e2(n), (70)

σ̂ 2
xs (n) = βσ̂ 2

xs (n − 1) + (1 − β)xs2(n), (71)

r̂w(n) = β r̂w(n − 1) + (1 − β)xs(n)e(n). (72)

6. Computational complexity22

The computational complexity of the proposed and the estab-23
lished methods is compared in terms of the number of multi-24
plications and additions, which is standard in relevant literature25
and established research work (Ahmed & Akhtar, 2017; Ahmed26
et al., 2015; Diniz, 2008; Kuo & Morgan, 1996). Reduction in27
computational complexity is preferred for processors running28
multiple applications and to reduce power consumption for long29
battery life. Table 1 lists the computational complexity for the30
algorithms, where there are two entries for the proposed method31
since it stops updating F̂ (z) and B(z) when G(n) is negligible. The32
algorithm in Akhtar and Mitsuhashi (2011) is simple and com-33
putationally least expensive of the previous methods. In Ahmed34

Table 1
Computational requirements for various ANC systems.
Method Additions Multiplications

Kuo (2002) 3Lf + 2Lw + Ls + 2Lb 3Lf + 2Lw + Ls + 2Lb + 3

Akhtar and
Mitsuhashi (2011)

2Lf + 2Lw + Ls + 2Lb + 6 2Lf + 2Lw + Ls + 2Lb + 11

Ahmed et al. (2013) 3Lf + 2Lw + Ls + 2Lb 3Lf + 2Lw + Ls + 2Lb + 9

Ahmed and Akhtar
(2017)

3Lf + 2Lw + Ls + 2Lb − 1 3Lf + 2Lw + Ls + 2Lb + 7

Proposed
Maximuma 5Lf + 4Lw + Ls + 4Lb + 11 5Lf + 4Lw + Ls + 4Lb + 22
Minimumb Lf + 2Lw + Ls + Lb Lf + 2Lw + Ls + Lb + 5

aFilters f̂(n), b(n) and w(n) are updated.
bOnly w(n) is updated.

Table 2
Normalized memory requirements for various ANC systems.
Method Number of variables to be stored

Kuo (2002) 3Lf + 2Lw + Ls + 2Lb + LD + 7a

Akhtar and Mitsuhashi (2011) 2Lf + 2Lw + Ls + 2Lb + 16
Ahmed et al. (2013) 2Lf + 2Lw + Ls + 2Lb + 15
Ahmed and Akhtar (2017) 4Lf + 2Lw + Ls + 2Lb + 14
Proposed 4Lf + 3Lw + Ls + 3Lb + 27

aLD is length of decorrelation delay.

and Akhtar (2017), Ahmed et al. (2013), G(n) calculation increases 35
computations compared with Akhtar and Mitsuhashi (2011). For 36
the proposed method 37

• SAVSS-NLMS algorithms are used for F̂ (z), B(z) and W (z), 38
which increases the computational cost compared with the 39
fixed step size. 40

• Lf σ 2
vg

or vTg (n)vg (n) can be used to normalize in (29). Eval- 41
uating Lf σ 2

vg
using (51) requires 4 multiplications and 1 42

addition. For vTg (n)vg (n) 43

vTg (n+1)vg (n+1) = vTg (n)vg (n)+ v2
g (n+1)− v2

g (n− Lf +1), 44

which requires only 1 multiplication and 2 additions. Similar 45
implementation can be used for (55) and (68). 46

• At the system start up or in case of perturbation, F̂ (z) update 47
and G(n) calculation is required. This stage requires maxi- 48
mum computations as labelled in Table 1. However, min- 49
imum computations are required during the steady state. 50
This also saves Lf multiplications and Lf − 1 additions for 51
the calculation of G(n). 52

Memory usage is also taken into account by the number of vari- 53
ables stored at each iteration as listed in Table 2. The proposed 54
method and Ahmed and Akhtar (2017) require slightly more 55
variables. It is difficult to intuitively decide on methods from 56
Tables 1 and 2. Therefore, computations are plotted against time 57
using Table 1 in the next section. 58

7. Case studies 59

Simulation studies are conducted for the proposed algorithm 60
(PM), Kuo (KM) (Kuo, 2002), Akhtar (AM) (Akhtar & Mitsuhashi, 61
2011), Shakeel (SM1) (Ahmed et al., 2013) and Shakeel (SM2) 62
(Ahmed & Akhtar, 2017) under standard conditions to compare 63
the performance in terms of the mean squared-error E[e2(n)], the 64
relative F (z) identification error 65

∆F (n) = 10log10

⎛⎜⎝
f(n) − f̂(n)

2

∥f(n)∥2

⎞⎟⎠ , (73) 66

6
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Fig. 3. Amplitude response for acoustic paths.

Table 3
Parameter values used in simulations.
Method Case 1 Case 2

Kuo (2002) β = 0.99, µw = 3e−5, β = 0.99, µw = 1e−5,

µh = 5e−4, µf = 5e−3 µh = 2e−4, µf = 3e−3

Akhtar and Mitsuhashi
(2011)

β = 0.99, µw = 3e−5, β = 0.99, µw = 1e−5,

µh = 5e−4, µfmin =

3e−4, µfmax = 5e−3
µh = 2e−4, µfmin =

5e−4, µfmax = 3e−3

Ahmed et al. (2013) µh = 5e−4, µf = 1e−3, µh = 2e−4, µf = 8e−4,

β = 0.99, µw = 3e−5 β = 0.99, µw = 1e−5

Ahmed and Akhtar
(2017)

β = 0.99, µw = 3e−5, β = 0.99, µw = 1e−5,

µh = 5e−4, µf = 1e−3 µh = 2e−4, µf = 8e−4

Proposed β = 0.99,D = Lf β = 0.99,D = Lf

convergence speed, number of tunable parameters, computa-1
tional complexity, G(n) and interference in the gradient for2
W (z)3

I(n) = βI(n − 1) + (1 − β)
xs(n)e(n) − xs,a(n)ea(n)

, (74)4

where xs,a(n)ea(n) is the gradient in the absence of F (z). The5
sampling frequency is 2 kHz and v(n) is a zero mean white6
noise of unit variance. Primary {P1(z), P2(z)} paths, secondary7
{S11(z), S12(z), S21(z), S22(z)} paths, feedback {F1(z), F2(z)} paths,8
and W (z) are considered as FIR filters of order 48, 16, 32 and9
32 respectively. Like Ahmed and Akhtar (2017) and Akhtar and10
Mitsuhashi (2011), acoustic paths are the experimental data pro-11
vided in Kuo and Morgan (1996) (see Fig. 3). Similar to Ahmed12
and Akhtar (2017), F̂ (z) is initialized with a ∆F (n) of −5 dB. The13
values for various parameters are provided in Table 3 and results14
are obtained by averaging over 20 runs.15

7.1. Case 116

In this case, x(n) is a tone of 500 Hz with variance of 2.0.17
Such noise is produced by machines like fans, generators and18
compressors (Aslam, 2016). Gaussian noise is mixed to have SNR19
= 30 dB. The acoustic paths used are P(z) = P1(z), S(z) =20
S11(z), F (z) = F1(z). In Fig. 4, the proposed method reduces21
E[e2(n)] to a steady state value of −35 dB in 4600 iterations,22
which is an improvement of at least 11 dB. Accurate ∆F (n)23
with considerably reduced computations can be seen in Fig. 4(b),24
(e) and (f). The improvement in E[e2(n)] is imminent from Fig. 4(c)25
and (d). Term I(n) is reduced by at least 10 dB, and G(n) is reduced26
by at least 15 dB in the steady state. KM and AM have a fixed27
G(n) of 0.05. The proposed method requires at least 24% less28
computations after 100,000 iterations (see Fig. 4(e) and (f)). The29
proposed ANC system reduces e(n) in minimum iterations and30

Fig. 4. Performance results for Case 1.

Fig. 5. Power spectra of d(n) and e(n) in Case 1.

computations. Power spectra for various methods are shown in 31
Fig. 5. 32

7.2. Case 2 33

In this case, x(n) is a multi-tonal signal of frequencies: 100, 34
150, 300, 400 and 450 Hz, with variance of 2.0. Gaussian noise 35
is mixed for SNR = 30 dB. The acoustic paths at startup are 36

7
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Fig. 6. Performance results for Case 2.

Fig. 7. Power spectra of d(n) and e(n) in Case 2.

P(z) = P1(z), S(z) = S11(z), F (z) = F1(z) which change to1
P(z) = P2(z), S(z) = S22(z), F (z) = F2(z) at n = 50,000.2
In Fig. 6, the proposed algorithm converges in 3000 iterations3
at start up with an improvement of at least 5.5 dB in E[e2(n)]4
and ∆F (n) = −34 dB. The convergence speed is significantly5
improved by using PM as shown in Fig. 6(a). In Fig. 6(c) and (d),6
PM reduces I(n) by at least 10 dB and G(n) by at least 15 dB in the7

steady state. KM and AM have G(n) = 0.05. The computations for 8
PM in Fig. 6(e) and (f) are at least 17% less after 100,000 iterations 9
with acoustic perturbation. The robustness of PM is validated by 10
a similar performance before and after the perturbation in the 11
acoustic paths. The proposed method has shown improvement in 12
all desirable areas. Moreover, the power spectra shown in Fig. 7 13
validate the improved performance of PM. 14

8. Conclusions 15

This paper introduces SAVSS-NLMS adaptive algorithms used 16
for F̂ (z), B(z) and W (z). In the proposed schemes, the step size 17
varies according to the system requirement unlike the previ- 18
ous methods which use either fixed or an increase only type 19
step sizes. A novel and simple G(n) is presented that responds 20
effectively to the acoustic changes with negligible steady state 21
power. Filter updates for F̂ (z) and B(z) and their corresponding 22
step sizes are discontinued when G(n) is negligible to significantly 23
reduce the operational needs of the proposed algorithm. Also, 24
small G(n) reduces interference at the input and output of W (z) 25
and improves the noise reduction. The proposed method provides 26
unprecedented balance between fast convergence and reduced 27
computations while providing significantly improved steady state 28
performance and robustness to acoustic path perturbation. 29
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Chapter 6

New control structure for
estimation-less acoustic

feedback neutralization in
active noise control

systems

A new control structure is designed to cancel out narrowband noises

in active noise control systems with acoustic feedback. Unlike the

conventional approach which involves the estimation of feedback path, the

proposed method involves frequency estimation algorithm to generate the

reference signal internally. A two-tap noise controller is used for each tone.

Performance analysis is provide to demonstrate the undiased frequency es-

timate, error in time varying frequency estimation and noise reduction per-

formance.
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noise control systems ?
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Abstract

A new control structure is proposed to cancel out narrowband noises for ANC
systems with acoustic feedback. The proposed control structure does not require
estimate of feedback path to neutralize it. Instead, a frequency estimation algo-
rithm is designed to estimate the frequencies of tones in the reference signal. Using
each frequency estimate, reference signals are internally generated for a two-tap
noise controller. Performance analysis is provided for proposed frequency estima-
tion algorithm to establish unbiased estimates and good tracking ability. Finally,
simulations are performed for benchmark conditions to demonstrate the contribu-
tion of the proposed control structure.

Key words: Parameter estimation, notch filter, feedback path neutralization,
active noise control.

1 Introduction

Active noise control (ANC) systems are popular choice for reducing the low
frequency noises in numerous daily use applications including headphones, mo-
bile phones, incubators and automobiles[1–3]. In a conventional ANC system,
reference and error microphones are used to obtain reference and error signals
respectively. Adaptive algorithm uses the reference and error signals to update
the noise control filter coefficients. Noise control filter derives the speaker to
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produce the cancelling acoustics at the error microphone. In certain scenar-
ios, reflections of acoustics from speaker reach the reference microphones and
this phenomenon is referred as acoustic feedback. Acoustic feedback forms a
de-stablizing closed loop of reference signal.

The de-stablizing acoustic feedback is neutralized by using specialized equip-
ment (directional reference microphone and speaker) or electronically by es-
timating the acoustic feedback path [1,4]. Electronic acoustic feedback neu-
tralization is a challenging task and numerous methods have been developed
in the recent past [1,5–10]. The general structure for an ANC system with
acoustic feedback is given in Fig. 1 where n is the time, x(n) is the reference
signal, xf (n) is the acoustic feedback signal, x̂f (n) is the acoustic feedback
neutralization signal, xc(n) is the input signal for noise controller, d(n) is the
primary noise, e(n) is the residual error signal, y(n) is the controller output
signal, and d̂(n) is the cancelling signal. P (z) represents the primary acoustic
path, S(z) represents the secondary path, F (z) represents the feedback path,
F̂ (z) represents the estimated feedback path, and W (z) represents the noise
control filter. Signal x(n) passes through P (z) to form d(n) and d̂(n) results
from y(n) passing through S(z). Acoustic reflections of y(n) corrupt x(n) in
the form of xf (n). In order to obtain x(n), x̂f (n) is obtained by passing y(n)

through F̂ (z). Signal x̂f (n) neutralizes xf (n) to provide a genuine x(n) for

W (z). Therefore, accuracy of F̂ (z) is critical for the performance of W (z).

Apart from the dependence on the accuracy of F̂ (z), there are some critical as-
pects of the use of FIR noise control filter to bear in mind. When the reference
signal has a large number of frequencies or the frequencies are closely spaced,
the filter length needs to be large to provide good filtering (Lw >> 2M where
Lw is the length of noise control filter and M is the number of sinusoids).
However, a high-order filter normally suffers from large excess mean square
error, slow convergence and high numerical error [4]. In the authors’ view, all
the previous methods [1,5–8,11] obtain F̂ (z) to neutralize the acoustic feed-
back. In this paper, a new control structure is proposed to cancel narrowband
noises in ANC systems with acoustic feedback that does not require the es-
timation of F̂ (z). A frequency estimation algorithm is proposed to estimate
the frequencies of narrowband noises in the reference signal. Then, sinusoids
corresponding to estimated frequencies are generated internally. These refer-
ence signals are used to derive the noise controllers for each tone. The distinct
features presented in this paper in comparison with the previous established
methods are as follows

(1) A new robust control structure is proposed to cancel narrowband noises
without acoustic feedback path estimation.

(2) Since F̂ (z) is not obtained for the proposed method, auxiliary noise is
not introduced at any time. This reduces the noise level by significant
margin.
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Fig. 1. ANC system with acoustic feedback.

(3) Simple two-tap controllers are used to cancel each tone. Therefore, any
number of tones can be handled without suffering poor convergence or
numerical error.

(4) The proposed frequency estimation algorithm can estimate and track
closely spaced frequencies as well.

The organization of the paper is as follows: Section 2 presents the proposed
ANC structure with frequency estimation algorithm presented in Section 3.
Performance analysis of the proposed frequency estimation algorithm is pre-
sented in Section 4. Computations required for the proposed control structure
are given in Section 5. Simulation results and discussions are given in Section
6 with conclusions provided in Section 7.

2 Proposed ANC Structure

The structure of the proposed method is provided in Fig. 2, where p(n), f(n)
and s(n) represent the impulse responses for the primary path P (z), the feed-
back path F (z) and the secondary path S(z) respectively. At the reference
microphone, the corrupted reference signal x(n) is detected

x(n) = xr(n) + xf (n), (1)

where x(n) is the genuine reference signal in the absence of F (z) and xf (n) is
the signal contributed by F (z) at the reference microphone. Since narrowband
noises are considered in this paper, x(n) can be written as

x(n) =
∑M
i=1Ci[e

j(ωin+φxi) + e−j(ωin+φxi)] + v(n), (2)

where Ci, φxi and ωi represent the amplitude, phase and angular frequency,
respectively. Measurement noise, v(n), is considered as zero mean Gaussian
noise. ωi can be written as

ωi = 2π fi
fs
, (3)
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Fig. 2. Proposed control structure for ANC system with acoustic feedback.

where fi denotes the ith frequency and fs presents the sampling frequency.
Signal x(n) is used as an input to the frequency estimation algorithm. Let
ω̂1, ω̂2, · · · , ω̂M be the estimated frequencies obtained from the estimation al-
gorithm (where ω̂i = 2πf̂i/fs). A signal generator is used to obtain two peri-
odic signals corresponding to each ω̂i

rci(n) = cos(ω̂in), (4)

rsi(n) = sin(ω̂in). (5)

For each ωi, noise control signal is obtained by

yi(n) = wci(n)rci(n) + wsi(n)rsi(n), (6)

where wci(n) and wsi(n) are the noise control weights. The net control signal
for all frequencies ω̂1, ω̂2, · · · , ω̂M is

y(n) =
∑M
i=1 yi(n). (7)

The cancelling signal d̂(n) is obtained by

d̂(n) = s(n) ∗ y(n), (8)
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where ∗ denotes linear convolution. Signal d̂(n) is used to cancel out the pri-
mary noise d(n) at the error microphone

d(n) = p(n) ∗ xr(n). (9)

The error signal e(n) received at the error microphone is

e(n) = d(n)− d̂(n), (10)

Expressions (4), (5) and (8) are used to update the noise control weights in
(6)

wci(n+ 1) = wci(n) + µr̂ci(n)e(n), (11)

wsi(n+ 1) = wsi(n) + µr̂si(n)e(n), (12)

where

r̂ci(n) = ŝ(n) ∗ rci(n), (13)

r̂si(n) = ŝ(n) ∗ rsi(n), (14)

and µ is the step size parameter and ŝ(n) is the estimated secondary path
impulse response. Since acoustic feedback neutralization is the area of focus
in this paper, it is assumed that accurate ŝ(n) has already been obtained. In
the next section, estimation of ω̂1, ω̂2, · · · , ω̂M is addressed in detail.

3 Frequency Estimation

The block diagram for frequency estimation process is given in Fig. 3. For
each ω̂i for i = 1, 2, · · · ,M − 1, the following steps are conducted

(1) Let ui(n) be the input signal, then enhance ui(n) by passing through an
all-pole enhancing filter to produce ûi(n).

(2) Recursively calculate frequency ω̂i from ûi(n).
(3) Remove ω̂i from ui(n) using notch filter centered at ω̂i and use the re-

sulting signal as input for estimating frequency ω̂i+1.

The first step enhances the target frequency ω̂i by using[12]

Ei(q
−1) = 1

1+2αkiq−1+α2q−2 , (15)

where q−1 represents unit time delay, 0 < α < 1 and ki is defined as

ki = −cos(ω̂i), (16)
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Fig. 3. Frequency estimation algorithm.

In the second step, the Burg algorithm [13] is used to recursively estimate the
ω̂i from ûi(n) (output of Ei(q

−1)). Define the intermediate variables

Bi(n) = λBi(n− 1) + 2(1− λ)û2
i (n− 1), (17)

Ai(n) = λAi(n− 1) + (1− λ)ûi(n− 1)[ûi(n) + ûi(n− 2)], (18)

where 0.9 < λ < 1 is the forgetting factor. The angular frequency estimation
is as follows

k̂i(n) = − Ai(n)
Bi(n)+η

, (19)

where η is a small number added in the denominator to avoid division by zero.
Estimation from (19) is smoothen out by

ki(n) = γki(n− 1) + (1− γ)k̂i(n), (20)

where 0.9 < γ < 1. Finally, ω̂i can be written as

ω̂i = cos−1(ki(n)). (21)

The last step prepares the input signal for next frequency estimation. There-
fore, it is not required for i = M . The input signal for ω̂i+1 estimation is
obtained by removing the ω̂i frequency component using the notch filter cen-
tered at ω̂i

NFi(q
−1) = 1+2kiq

−1+q−2

1+2αkiq−1+α2q−2 . (22)
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For M frequencies, there will be M enhancing filters given in (15) and M − 1
notch filters given in (22). Notch filters are connected series to make the output
of ith notch filter to be the input of (i+ 1)th notch filter. In this way multiple
stages cannot converge to same frequency. As the frequencies are estimated,
the corresponding tones are eliminated. The already estimated frequencies
are not available to the next stage and this reduces the interference in the
frequency estimates as explained in Section 4.1.

4 Performance analysis

Performance of the frequency estimation algorithm is analysis in terms of off-
set, frequency deviation and noise reduction. The off-set, ζ, represents the bias
in frequency estimation resulting from interfering frequencies or low signal-
to-noise (SNR) ratio. Frequency deviation, ψ, results from the time-varying
frequencies.

4.1 Offset

Offset can be defined as the difference between −cos(ωi) and −cos(ω̂i) for ωi
in the steady state

ζi = −cos(ωi)− k̂m. (23)

The offset can result from the interference from other tones in ui(n) and the
measurement noise. From [14], (17)-(19) can be written as

Bi(n) = λBi(n− 1) + 2(1− λ)u2
i (n− 1), (24)

yu(n) = ui(n) + 2k̂i(n− 1)ui(n− 1) + ui(n− 1), (25)

k̂i(n) = k̂i(n− 1)− 1−λ
Bi(n)

ui(n− 1)yu(n), (26)

where yu(n) is obtained from the numerator in (22)

yu(n) = (1 + 2kiq
−1 + q−2)ui(n), (27)

For a slowly varying frequency, the convergence of k̂i(n) is conditioned by

E[ui(n− 1)yu(n)] = 0, (28)

In a steady state, let ki(∞) = k̂i(∞) → ki and substitute (22) and (27) into
(28)

E{ui(n− 1)[ui(n) + 2kiui(n− 1) + ui(n− 2)]} = 0, (29)
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Also, (29) can also be expressed as

Ru(0)k̂i +Ru(1) = 0, (30)

where Ru(l) = E[ui(n)ui(n− l)]. From [15], Ru(0), Ru(1) can be derived as

Ru(0) = D2
m|E(ejωm )|2

2
+ (1+α2)σ2

(1−α2)[(1+α2)2−4α2k̂2i ]
, (31)

Rx(1) = D2
mcos(ωm)|E(ejωm )|2

2
+ (2ασ2k̂i

(1−α2)[(1+α2)2−4α2k̂2i ]
, (32)

where σ2 represents the variance of measurement noise and D2
m is the variance

of tone with angular frequency ωm. Substitute (15), (31) and (32) into (30)

D2
m[k̂i+cos(ωm)]

2|1+2k̂iαe−jωm+α2e−2jωm |2 + k̂i(1−α)σ2

(1+α)[(1−α2)2+4α2(1−k̂2i )
= 0. (33)

Extending (33) to include impact of multiple tones with ωm where m =
1, 2, · · · ,M)

∑M
m=1

D2
m[k̂i+cos(ωm)]

2|1+2k̂iαe−jωm+α2e−2jωm |2 + k̂i(1−α)σ2

(1+α)[(1−α2)2+4α2(1−k̂2i )
= 0, (34)

For cases with high SNR, the second term in (34) becomes negligible

∑M
m=1

D2
m[k̂i+cos(ωm)]

|1+2k̂iαe−jωm+α2e−2jωm |2 = 0, (35)

It is clear from (35) that estimate k̂i is at a bias to one of cos(ωm). In order
to move forward with high order (35) for the explicit expression of bias, let k̂i
be close to −cos(ωi)

k̂i = −cos(ωi)] + ∆ki, (36)

where ∆ki is much smaller than unity. Substitute (36) in (35)

∑M
m=1

D2
m[−cos(ωi)]+∆ki+cos(ωm)]

|1+2k̂iαe−jωm+α2e−2jωm |2 = 0, (37)

The denominator in (35) for each m can be written as

|J(ejωm)|2 = |1 + 2k̂iαe
−jωm + α2e−2jωm|2

= |Fm + 2αe−2jωm∆m|2
(38)

where

Fm = 1− 2cos(ωm)αe−jωm + α2e−2jωm , (39)

∆m = cos(ωm)− cos(ωi) + ∆ki, (40)
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Expanding (38)

|J(ejωm)|2 = |Fm|2 + 4α2∆2
m + 4α(1− α)2cos(ωm)∆m. (41)

For m = i, (40) becomes

|J(ejωi)|2 = |Fi|2 + 4α2∆k2
i + 4α(1− α)2cos(ωi)∆ki. (42)

where |Fi|2 = (1− α)2[(1 + α)2 − 4αcos2(ωi)] and

|D(ejωm)|2 = (1− α)2[(1 + α)2 − 4αcos2(ωm)] + 4α2∆2
m + 4α(1− α)2cos(ωm)∆m,

(43)
for m 6= i. For (1− α) << 1 and ∆ki << 1, we assume

(1− α)2 << 1

∆k2
i << ∆ki

∆ki(1− α)2 << ∆ki

∆ki(1− α)2 << (1− α)2

(44)

Substitute (42) and (43) into (35) and use (44) to ignore the higher-order
terms of ∆ki and (1− α)

(1− α)2[(1 + α)2 − 4αcos2(ωm)]
∑M
m=1,m 6=i{D2

m[cos(ωm)− cos(ωi)]∏M
l 6=m,l>i 4α

2[cos(ωl)− cos(ωi)]2}+

D2
i∆ki

∏M
y=1,y 6=i 4α

2[cos(ωy)− cos(ωi)]2 = 0,

(45)

Rearranging (45) to obtain

∆ki = −[(1 + α)24αcos2(ωi)](1− α)2∑M

m=1,m 6=i{D
2
m[cos(ωi)−cos(ω1)]

∏M

l 6=m,l>i 4α2[cos(ωl)−cos(ω1)]2}

D2
i∆ki

∏M

y=1,y 6=i 4α2[cos(ωl)−cos(ωi)]2

− [(1+α)24αcos2(ωi)](1−α)2

4α2

∑M
m=1,m 6=i

D2
m

D2
i [cos(ωm)−cos(ωi)] ,

(46)

For small (1− α), expression for offset ζi in ωi can be obtained from (46)

ζi = −∆ki

≈ (1− α)2sin2(ωi)
∑M
m=1,m6=i

D2
m

D2
i [cos(ωm)−cos(ωi)] ,

(47)

where D2
m represents the variance of tones with ωm for m = 1, 2, · · · ,M in

signal ui(n) used for estimation of ωi. The proposed algorithm estimates the
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Fig. 4. Frequency estimation with compensation of interfering tones.

frequencies from ω1 to ωM in an orderly manner. Sinusoids with frequencies
ωi for i = 1, 2, · · · , l− 1 are removed from signal ul(n) used for detection of ωl
while M − l interfering frequencies are still present. Therefore, D2

m = 0,m < i
and bias ζi in (47) becomes

ζi = (1− α)2sin2(ωi)
∑M
m=i+1

D2
m

D2
i [cos(ωm)−cos(ωi)] ,

(48)

where i = 1, 2, · · · ,M − 1. For i = M , sinusoids with frequencies ωi for
i = 1, 2, · · · ,M − 1 are removed and estimation is unbiased for ωM . It is clear
from (48) that offset ζi can be reduced by choosing (1 − α) to a small value.
However, the convergence speed can deteriorate for α close to 1. For (i)th stage
of frequency estimation, the frequencies ω̂i+1, ω̂i+2, · · · , ω̂M are disturbance
frequencies which can lead to biased results and deteriorate performance of
the ANC system. To remove the interfering frequencies for any ωi, adaptive
filters are introduced as shown in Figs. 4 and 5. Similar to (11) and (12), these
adaptive filters are updated by

z1i(n+ 1) = z1i(n) + µzrci(n)(x(n)− x̂(n)), (49)

z2i(n+ 1) = z2i(n) + µzrsi(n)(x(n)− x̂(n)), (50)

where µz is the step size and signals {rci(n), rsi(n)} are given in (4) and (5),
respectively. The term for x̂(n) is the sum of outputs from {z1i(n+1), z2i(n+1)}
for i = 1, 2, · · · ,M

x̂(n) =
∑M
i=1 x̂i(n) =

∑M
i=1 z1i(n)rci(n) + z2i(n)rsi(n). (51)
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Signal x̂(n) is removed from x(n) before the use of any NFi(q
−1) and the input

signal for Ei(q
−1) are modified as (see Fig. 4)

ui(n) = xi(n) + x̂i(n). (52)

By introducing these changes, interfering frequencies for each ωi are eliminated
before frequency calculation. Therefore, D2

m → 0,m 6= i in (48)and estimates
for ωi are unbiased for i = 1, 2, · · · ,M in the steady state.

4.2 Frequency Estimation Error

For constant frequency, k̂i has the following form

k̂i = −cos(ω̂i), (53)

However, it is important to consider the time-delay for time-varying frequency

k̂i = −cos(ωi −∆ωi), (54)

where ωi is the target angular frequency and time-delay angular frequency
∆ωi results from varying frequency. From (17) and (18), (54) can be written
as [16]

cos(ωi −∆ωi) ≈
∑inf

j=1
λjcos(ω−jvωi )∑inf

j=1
λj

, (55)

where vωi denotes a constant rate of change in ωi. Sampling frequency can
be set to make vωi small. Then, a Taylor series approximation of (55) can be
expressed as

cos(ωi −∆ωi) ≈
∑inf

j=1
λjcos(ωi)∑inf

j=1
λj

+

∑inf

j=1
λjjvωisin(ωi)∑inf

j=1
λj

= cos(ωi) +
λvωisin(ωi)

1−λ ,

(56)
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From (56), the time-delay deviation becomes

ki − k̂i = −cos(ωi) + cos(ωi −∆ωi)

=
λvωisin(ωi)

1−λ .
(57)

Using (48) and (57), the error in estimation of frequency fi can be written as

∆fi = fs
2π

cos−1[cos(ωi) + (ζi +
λvωisin(ωi)

1−λ )]− fi, (58)

where fs denotes the sampling frequency. Frequency estimation is dependent
on ki − k̂i and can be reduced by setting a high sampling frequency.

4.3 Analysis of noise reduction

From [17], noise reduction for difference ∆ωi = 2π∆fi/fs = ωi − ω̂i can be
written as

NRi = D̂2
sD

2
s

2−2cos(∆ωi)
[µ− cos(∆φs)−cos(∆ωi−∆φs)

D̂sDs
]2 + cos2(2∆φs−∆ωi

2
), (59)

where NRi represents the mean square noise reduction for ∆ωi, ∆φs is the
estimated secondary path phase error, D2

s is the secondary path gain at ωi,
and D̂2

s is the estimated secondary path gain at ω̂i. For large µ and small ∆ωi
with accurate secondary path estimate available, it can be shown for (58) that
[17]

| cos(∆φs)−cos(∆ωi−∆φs)

D̂sDs
| ≈ |∆ωisin(∆φs)

D̂sDs
| << µ (60)

and

cos2(2∆φs−∆ωi
2

) ≤ 1 << D̂2
sD

2
sµ

2

2−2cos(∆ωi)
. (61)

Therefore, (59) becomes

NRi ≈ ρf
1−cos(∆ωi)

, (62)

where ρf represents a constant for fi. Substitute (58) into (62)

NRi =
ρf

1−cos{cos−1[cos(ωi)+(ζi+
λvωi sin(ωi)

1−λ )]−ωi}
, (63)

Therefore, noise reduction performance is related to the offset ζi and ki − k̂i.
The term ζi has been reduced in the proposed method while ki − k̂i can be
reduced by setting sampling frequency as high as possible.
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Table 1
Computational requirements for ANC systems dicussed in this paper.

Additions Multiplications

Kuo’s method [7] 3Lf + 2Lw + Ls + 2Lb 3Lf +2Lw+Ls+2Lb+3

Akhtar’s method [11] 2Lf+2Lw+Ls+2Lb+6 2Lf+2Lw+Ls+2Lb+11

Shakeel’s method [8] 3Lf + 2Lw + Ls + 2Lb 3Lf +2Lw+Ls+2Lb+9

Shakeel’s method [5] 3Lf+2Lw+Ls+2Lb−1 3Lf +2Lw+Ls+2Lb+7

Saeed’s method

maximum1 5Lf +4Lw+Ls+4Lb+
11

5Lf+4Lw+Ls+4Lb+22

minimum2 Lf + 2Lw + Ls + Lb Lf + 2Lw + Ls + Lb + 5

Proposed method (2Ls + 22)M (2Ls + 28)M

1 Filters f̂(n), b(n) and w(n) are updated.
2 Only w(n) is updated.

Table 2
Memory requirements for various ANC systems.

Number of variables

Kuo’s Method [7] 3Lf +2Lw+Ls+2Lb+LD+7*

Akhtar’s Method [11] 2Lf + 2Lw + Ls + 2Lb + 16

Shakeel’s Method [8] 2Lf + 2Lw + Ls + 2Lb + 15

Shakeel’s Method [5] 4Lf + 2Lw + Ls + 2Lb + 14

Saeed’s Method 4Lf + 3Lw + Ls + 3Lb + 27

Proposed Method 4Lf + 3Lw + Ls + 3Lb + 27

* LD is length of decorrelation delay.

5 Computational Complexity

The computational complexity of the proposed method is provided in Table
1 for comparison where Ls, Lw, Lf and Lb represent the length of secondary
path estimation filter, noise control filter, feedback path neutralization fil-
ter and predictor filter respectively. The proposed control structure requires
less computations compared to the previous methods which makes it suit-
able for implementation with high sampling frequency. Setting high sampling
frequency can help reduce the time-delay in frequency estimation as derived
in subsection 4.2. Moreover, reducing computations translates well into power
usage and processing resources required. The number of variables to be stored
in memory at each iteration is given in Table 2. For small number of tones,
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Table 3
Parameter values used in the simulations.

Case 1 Case 2

Kuo’s Method [7] β = 0.99, µw = 3e−5, µh =
5e−4, µf = 5e−3

β = 0.99, µw = 1e−5, µh =
2e−4, µf = 3e−3

Akhtar’s Method
[11]

β = 0.99, µw =
3e−5, µh = 5e−4, µfmin

=
3e−4, µfmax = 5e−3

β = 0.99, µw =
1e−5, µh = 2e−4, µfmin

=
5e−4, µfmax = 3e−3

Shakeel’s Method
[8]

µh = 5e−4, µf = 1e−3, β =
0.99, µw = 3e−5

µh = 2e−4, µf = 8e−4, β =
0.99, µw = 1e−5

Shakeel’s Method
[5]

β = 0.99, µw = 3e−5, µh =
5e−4, µf = 1e−3

β = 0.99, µw = 1e−5, µh =
2e−4, µf = 8e−4

Saeed’s Method β = 0.99, D = Lf β = 0.99, D = Lf

Proposed Method α = 0.995, λ = 0.99, γ =
0.99, η = 1e−6, µ =
1e−2, µz = 1e−4

α = 0.995, λ = 0.99, γ =
0.99, η = 1e−6, µ =
1e−2, µz = 1e−4
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Fig. 6. Amplitude responses for primary, secondary and acoustic feedback paths.

the proposed method requires less computations and memory for implementa-
tion. However, all the previous methods make use of FIR filters for secondary
path estimation filter, noise control filter, feedback path neutralization filter
and prediction filter. This means that these methods can only handle a small
number of well spaced frequencies [4]. The proposed method can handle large
number of frequencies and even if they are a few hertz apart.
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(a) (b)

Fig. 7. Case 1 plots for frequency estimation (a) SNR (b) Time-varying frequency.

6 Case Studies

The proposed method is simulated under standard conditions to demonstrate
its performance in comparison with Kuo (KM) [7], Akhtar (AM) [11], Shakeel
(SM1) [8], Shakeel (SM2) [5] and Saeed (SaM) [1]. The proposed method does
not involve acoustic feedback path estimation and auxiliary noise injection,
hence all the methods are compared in terms of mean squared-error E[e2(n)]
only. Impulse responses for primary paths, secondary paths, feedback paths
and W (z) are taken as FIR filters of length 48, 16, 32 and 32 respectively. Sim-
ilar to [1,5,11], acoustic paths are obtained from [4] with amplitude responses
provided in Fig. 6. Parameter settings are listed in Table 3 with fs = 2KHz
and ensemble average is obtained over 20 independent runs.

6.1 Case 1

In this case, the proposed frequency estimation algorithm is analyzed under
different conditions. In Fig. 7 (a), the proposed algorithm is tested for fre-
quency estimation under different SNR conditions and a single time-varying
frequency. Frequency estimation does not deteriorate with change in SNR
which validates the robust behavior. In Fig. 7 (b), there are two time-varying
tones that start from a different frequency but with time the frequencies get
close to each other and settle to well apart frequency values. The algorithm
demonstrates stable behavior and tracks both the tones with excellent preci-
sion.
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(a) (b)

Fig. 8. Case 2 plots for: (a) The mean-squared error E[e2(n)] (dB). (b) Frequency
estimation.

6.2 Case 2

In this case, xr(n) is a sinusoid with frequency 500 Hz and variance 2.0. Tonal
noise is typical of machines like fans, generators and compressors [1,18]. SNR
is adjusted to 30 dB and {P1(z), S1(z), F1(z)} are used as the acoustic paths.
Simulation results are provided in Fig. 8. The proposed method improves the
noise reduction performance by 15dB by reducing E[e2(n)] to 50dB in steady
state at a significantly improved convergence rate. Power spectra for various
methods are shown in Fig. 9 to highlight the contribution of the proposed
method. Unlike, the proposed method does not require the estimate of F (z)
or injection of auxiliary noise.

6.3 Case 3

In this case, xr(n) comprises of sinusoids with frequencies: 100, 150, 300, 400
and 450 Hz, and variance 2.0. SNR is set to 30 dB and perturbation is intro-
duced by changing acoustic paths from {P1(z), S1(z), F1(z)} to {P2(z), S2(z), F (z) =
F2(z)} at n = 50000. Simulation results are provided in Fig. 10. The proposed
algorithm improves the E[e2(n)] by more than 15dB in the steady state with
noticeably improved convergence speed. At the time of perturbation, the noise
levels stay much lower than the previous methods and convergence speed is
superior after the perturbation in acoustic paths. There is no significant im-
pact on the frequency estimates by the perturbations. Moreover, the power
spectra of the primary noise, d(n), and the residual noise, e(n), are shown in
Fig. 11 to validate the improved performance of the proposed method with
the established methods.
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(a) KM (b) AM

(c) SM1 (d) SM2

(e) SaM (f) PM

Fig. 9. Power spectra of d(n) and e(n) for various methods in Case 2.

7 Conclusions

This paper introduces a novel control structure to counter the narrowband
noises in ANC systems with acoustic feedback. The proposed control struc-
ture uses a frequency estimation algorithm to generate reference signals in-
ternally. There are two-tap noise control filter for each tonal frequency. Per-
formance analysis shows that proposed frequency estimation algorithm can
produce unbiased estimates with adequate tracking capability. The proposed

17



(a) (b)

Fig. 10. Case 3 plots for: (a) The mean-squared error E[e2(n)] (dB). (b) Frequency
estimation.

method does not require estimate of acoustic feedback path or introduction of
auxiliary noise. This contributes significantly in keeping the noise levels low.
The proposed control structure improves the noise reduction levels by more
than 15dB for single tone and multi-tonal noises. The robust performance un-
der perturbation, appreciable frequency tracking, improved convergence speed
and significantly reduced residual noise are prominent contributions of the pro-
posed control structure.
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Chapter 7

Thesis Conclusion

DESIGN of efficient control methods for various configurations of ANC

systems are the prime focus of this thesis. Efficiency of the presented

designs has been measured in terms of noise reduction, convergence rate,

robustness, memory usage and computational cost. Noise reduction, ro-

bustness and convergence rate are directly related to the performance of

the ANC systems, while computational requirements and memory usage

are related to implementation domain. Low memory and computational

requirements make the algorithm implementable in devices running mul-

tiple applications and use less power for estended battery life. Summary

of this thesis is provided in this chapter along with directions for future

research work.
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7.1 Summary

7.1 Summary

In Chapter 2, computationally efficient self updating adaptive algorithms are derived

for noise control and secondary path estimation filters. The proposed variable thresh-

old based filtered-x self updaing LMS-Newton algorithm provides fast convergence

and improved noise reduction while requiring reduced computations for noise control

filter. The proposed method performance is independent of the properties of input

signal, which sometimes degrade the performance of least mean squares algorithm.

For secondary path estimation, a simple auxiliary noise gain variation method is pro-

posed that injects noise only at the startup or for perturbations. During steady state,

auxiliary noise is negligible. Variable threshold effectively reduces the computations

without deteriorating the performance of the ANC system.

Development of new recursive least squares algorithm algorithmis further explored

in Chapter 3. The derived fast recursive least squares algorithm uses only forward

prediction to obtain the adatation gain. Using only forward prediction, eliminates

the instability arising from the backward prediction in the conventional fast recursive

least squares algorithm. Detailed convergence analysis establishes the stable behav-

ior along with fast convergence speed and tracking capability. Rigorous simulations

are performed to demonstrate the improved performance with low computations and

numerical stability under quantization errors.

Chapter 4 addresses the ANC systems with narrowband disturbances at the error

microphone. For feedforward and feedback noise control filters, filtered-x optimal

weighting recursive least squares algorithm is derived. Optimal weighting factors are

updated recursively in relation with new information in the current measurements.

Decision on filter updates is also based on these weight factors to reduce the compu-

tational complexity. The proposed method produces reliable estimates as estimation

error is bounded and nonincreasing as shown by detailed stability analysis. The pre-

sented algorithm delivers improved performance by combining the advantages of least

mean squares and least squares algorithm.

In Chapter 5, acoustic feeback at the reference microphone is addressed. For feedback

path neutralization filter, predictor filter and noise control filter, self adapting variable

step sizes are derived to achieve robust performance and fast convergence. Auxiliary

noise gain scheduling for feedback path estimation is designed to introduce minimum

noise in the steady state. This reduces the interference to the noise control filter and
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Chapter 7 Thesis Conclusion

helps improve the noise reduction performance. Feedback path neutralization filter,

predictor filter and their corresponding step size updates are discontinued for negligi-

ble auxiliary noise gain to reduce the computations.

In Chapter 6, a new control structure is designed to address narrowband noises in ANC

systems with acoustic feedback. The proposed structure does not require the feedback

path estimation. A frequency estimation algorithm is developed to internally generate

the reference signals for noise controllers. There is a two tap noise controller for each

frequency which works much better, interms of convergence and steady state error,

than the standard FIR noise controllers implemented in the relevant literature.

The research work presented in this thesis is focused on developing algorithms that

require minimum computations possible for superior noise reduction. Thus, making

them suitable for implementation with high sampling frequency to achieve fast con-

vergence and improved tracking capability.

7.2 Future work

The directions for future work are

• Designing the control structure that does not require estimation of secondary

path for the feed-forward controller and/or the acoustic feedback path estima-

tion.

• Developing control structure for disturbances at the error microphone that can

handle any number of tones. As normal FIR filter can handle small number of

tonal noises with well spaced frequencies.

• Scaling up the control structure presented in Chapter 6 to multi-channel systems.

• Developing mixed control structures to handle most kind of practical noises to

improve the robustness and noise reduction performance.
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