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ABSTRACT  

Background: The neuroinflammatory response of the body is a critical element of many 

spinal cord diseases, and understanding the impact of age and sex on the development of 

neuroinflammation in a non-disease state is an important element of the development of animal 

models of disease. Astrocytes are the most abundant cell type in the spinal cord, and they perform 

several immune functions, however their ability to function appropriately is impacted by the effects 

of age.  Methods: Male and Female sheep aged 1-2 (n=16), 3-4 (n=16), and 5-6 years (n=10) were 

saline perfused, spinal cord extracted and immerse fixed before being prepared for histological 

processing. Spinal cord sections from three levels (C2, C4, and T2) were prepared and stained for 

GFAP. Digital images of slides were analysed for GFAP positive astrocytes.  Results: No 

significant differences in GFAP immunoreactivity was observed between age or sex.  There was a 

significant decrease (p<0.05) in GFAP positive astrocytes at the C2 level compared to the C4 or T2 

levels. Significant differences were also observed between regions of the spinal cord, with greater 

GFAP immunoreactivity within the dorsal and ventral horns compared to the white matter regions.  

Conclusion: This study found no significant effect of age or sex, however significant differences in 

neuroinflammation were seen between levels and regions of the spinal cord. This understanding of 

neuroinflammation in the non-disease state of the spinal cord will inform the development of animal 

models of human spinal cord disease.  
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INTRODUCTION  

Numerous pathologies that affect the spinal cord are associated with an inflammatory 

response which can increase the level of damage to the spinal cord.  Given that these diseases can 

occur throughout life, it is important to understand how aging itself effects levels of inflammation 

within the spinal cord and thus may influence the progression of the disease. Disorders that involve 

inflammation within the spinal cord such as acute transverse myelitis, multiple sclerosis, spinal cord 

injury (SCI), Brown-Sequard syndrome, arachnoiditis, cauda equina syndrome, and Guillain-Barre 

syndrome are particularly debilitating as they involve damage to the central nervous system (CNS), 

and the loss or deterioration of neurological control over the body.  The investigation of 

neuroinflammatory levels in a non-disease state will inform the development of an accurate model 

of disease that is clinically applicable to humans, as the baseline will be better understood.   

Due to the critical nature of neuroinflammation on disorders of the spinal cord, changes to 

the body’s immune responses will impact the progression of the inflammation.  Therefore, age may 

be important to consider, given that the immune response of the body changes with age. This 

phenomenon has been termed “inflamm-aging” 1, which describes the progression of the body’s 

immune system to a chronic mild pro-inflammatory state, increasing cellular stress and inducing 

stress response pathways2, 3.  When immunosenescence (age-related immune alterations) occurs in 

the CNS, senescent cells express a “senescence-associated secretory phonotype”3 (SASP) which 

increases the secretion of pro-inflammatory cytokines, furthering the chronic inflammatory state3-5.  

With increasing age, the spinal cord displays increased apoptosis, an increase in neuronal cell body 

size, axonal loss and swelling, higher blood spinal cord barrier (BSCB) permeability, and overall 

decreased neuronal health and integrity6, 7. Furthermore, with increasing age, pro-inflammatory 

intracellular pathways such as nuclear factor kappa B (NFB) are activated in immune cells of the 

brain, which modulates the main immune-related gene expression changes, and also provides a 

direct link between aging and inflammation5. Distinct differences have been shown to exist between 

mature and developing spinal cords in pre-clinical studies where the inflammatory response differed 
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in profile and timeframe, in both the cellular and molecular response8.  For example, microglia are 

activated within 24 hours in all cases of SCI, however young mammals present a markedly less 

pronounced reaction compared with their adult counterparts8. Currently inflamm-aging has been 

primarily characterised in the brain, however there is some evidence to suggest a similar process 

occurs in the spinal cord at the cellular and molecular level6, 9, 10.  

Research to date focused on inflamm-aging has highlighted the role of microglia in 

inflamm-aging in the CNS1, 5, 11-14.  The changes to microglial function is an accurate marker of 

inflamm-aging due to their susceptibility to damage caused by age, stress or injury owing to their 

long lifespan and limited turnover capacity15. With increasing age, microglial cell size and 

granularity increases, as well as displaying an altered morphological profile to a more activated 

state, heightening the inflammatory status of the aged CNS7, 15.  This altered morphological profile 

causes an inability to produce a functional immune response, and instead microglia will produce an 

exaggerated pro-inflammatory response13.  The critical roles of microglia has been thoroughly 

researched in the brain, however the role of microglia and other glial cells essential to the 

inflammatory response, such as astrocytes, need to be investigated further in the spinal cord to 

provide information to inform development of models of disease for human spinal cord diseases.   

Astrocytes are a critical element of inflamm-aging as they have several immune functions, 

including possessing  several pattern-recognition receptors, as well as secreting cytokines and 

chemokines3, 16.  The innate immunity capacity of astrocytes can be activated by a variety of insults, 

and so astrocytic activation is common in the CNS with disease or injury3, 16, 17.  Astrocytes in the 

aging brain display a pro-inflammatory phenotype and secrete cytokines which activate 

inflammatory neurodegeneration by triggering oxidative stress, and reactive oxygen species-

mediated dysfunction in mitochondria and the endoplasmic reticulum3, 18, 19.  In this way, astroglial 

senescence likely has more profound effects in CNS pathobiology than microglial senescence as the 

role and function of astrocytes in maintaining CNS homeostasis is so varied3.  Astrocytes perform a 

variety of functions in both physiological and pathological conditions, particularly in maintaining 
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the metabolic and ionic homeostasis of neuronal cells, structural stability, myelin maintenance, and 

maintenance of the BSCB and blood-brain barrier (BBB)3, 20, 21.  It is due to these critical roles that 

the aging of astrocytes in the CNS is so notable and merits further investigation.  

The aging process is linked to an accumulation of nuclear DNA damage caused by a 

reduced capacity for DNA repair, thus it is particularly noticeable in neurons due to the limited cell 

proliferation3, 22-24.  Many of the observed characteristics of the aging brain are functions that are 

regulated by astrocytes (such as synaptic plasticity and metabolic balance), and yet age-related 

changes in astrocytes have received much less attention than neuronal alterations3.  A rodent study 

of the brain by Campuzano et al saw clear indications that astrocytes express a pro-inflammatory 

phenotype in the CNS through the process of aging3, 25.  Additionally, Pertusa et al demonstrated 

that astrocytes in a long-term cell culture lost neuroprotective capacity, which indicate that, at least 

in vitro, astrocytes can initiate cellular senescence programs that triggers the pro-inflammatory 

response3, 26. It has also been observed that with increasing age, an accumulation of iron can occur 

in perivascular astrocytes which enhances BSCB and BBB disruption3, 27. Glial fibrillary acidic 

protein (GFAP) is a specific marker protein of activated astrocytes in the CNS3.  The expression of 

GFAP is indicative of inflammation, hence an increase in GFAP is the most common change 

observed in astrocytes with aging3, 28-31.  Thus, it has been shown that the functional immune 

response capabilities of astrocytes are depleted with age, which can be measured by changes in 

GFAP positive cells with neuroinflammation and age.   

In addition to age, studies have shown that neuroinflammation can also vary in a sex-

dependant manner as the expression of key inflammatory genes for microglial activation display 

sexual dimorphisms, as well as changing with increasing age32, 33.  This has been shown in several 

rodent studies of inflammation in the spinal cord, which highlight the differences in the regulation 

of pro- and anti-inflammatory gene expression between sexes, which causes higher microglial 

activation and increased cytokine production in females compared to age-matched males34-37.  

Additionally, the expression of a number of the genes involved in neuroinflammation are influenced 
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by the activation of oestrogen receptors in neurons, which is linked to the known stronger 

inflammatory responses in females and generally more pronounced inflamm-aging in females than 

males32, 34, 38.  Given the delicate interactions between the nervous system, the inflammatory 

response and the impact of age and sex, it is important to utilise an appropriate research model to 

gain an accurate understanding of these processes relative to the same responses in humans.   

Studies on neurological conditions require particular consideration as to the model of 

disease to be used.  As this study will investigate the non-disease state of the CNS, it is pertinent to 

choose an animal model that will provide results that are translatable to human neurological 

pathophysiology.  Although there are many advantages of using rodents as an animal model of 

disease, in the case of the CNS, it is appropriate to consider the use of large animal models.  The 

use of large animal models is particularly important for studies of the brain due to the structural 

similarity of the large gyrencephalic brains to human brains39, 40.  The size of the brain and spinal 

cord and relative matter ratios of large animals are more comparable to humans, as well as the 

ability to utilise clinical monitoring equipment and magnetic resonance imaging during the study41.  

It is also necessary to consider the similarity of the brain to humans when studying the spinal cord, 

due to the systemic nature of inflammation in the CNS and the fact that damage to one element of 

the CNS can cause changes in another, influencing the overall response of the immune system42. It 

is also known that the anatomy of the rodent spinal cord differs significantly from that of the 

human, particularly the location of the cortical spinal tracts, which significantly limits the 

translatability of results43.  Thus, this study utilised an ovine model which has a similar brain 

structure and organisation of spinal tracts to determine the non-disease inflammatory state of the 

spinal cord with age.  

As such, this project sought to address the gap in knowledge associated with the effect of 

age and sex on neuroinflammation within the spinal cord in an ovine model.  It is hypothesised that 

greater neuroinflammation will be observed in the spinal cords of older compared to younger sheep 

and females compared to males, as measured by the number of activated astrocytes. This project 
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aimed to (1) characterise the age-related alterations in the neuroinflammation of the spinal cord of 

an ovine model using immunohistochemistry (IHC), and (2) investigate the difference in age-related 

changes in neuroinflammation between sexes in an ovine model, to gain an understanding of these 

changes in a non-disease state to inform the development of an appropriate model of disease similar 

to humans.   
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MATERIALS AND METHODS 

Animals  

The use of animals in this study was approved by the animal ethics committees of the South 

Australian Health and Medical Research Institute (SAM402.19) and complied with the National 

Health and Medical Research Council code for the care and use of animals for scientific purposes 

(8th edition, 2013).  The study design involved using animals of three age groups, and both ewes 

and wethers as shown in Figure 1.  

Figure 1: Study design and animal allocation to three age groups. 

Animal perfusion  

Animals were induced with ketamine (5mg/kg; Ceva Animal Health Pty Ltd) and diazepam 

(Pamlin Injection; 0.1mg/kg; Ceva Animal Health Pty Ltd).  The animal was then intubated and 

anaesthesia maintained with a 3-5% isoflurane with a 100% oxygen mixture administered via an 

endotracheal tube. 

Once deeply anesthetised and shorn, the animal was placed in a supine position and a 

midline incision made on the ventral surface of the neck. Common carotid arteries were exposed 

and string loosely tied at both proximal and distal ends of the artery.  This was repeated on the 

second carotid artery. 10mL of heparinised saline solution (25,000 UI) was administered through 

the jugular vein. Following a 10-minute wait time, the proximal string was tied, occluding the 

vessel.  A small incision was made in the vessel rostrally, and a catheter attached to a perfusion 

pump was inserted, with the proximal string tied to keep the catheter in place.  This procedure was 
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repeated on the remaining artery. Driving pressure was applied to the perfusion pump, which 

delivered 10L of tris-buffered saline through the animal’s brain vasculature. Incisions in the jugular 

veins were made bilaterally, allowing perfusate to drain from the animal.  After the animal was 

declared dead, indicated by white gums, the intubation equipment was removed.  

Spinal cord extraction 

The animal was moved to a prone position to allow for spinal cord extraction.  An incision 

was made through the skin, down the entire midline of the spine.  After folding the skin back to 

reveal the muscle mass (see Figure 2A), two parallel incisions were made either side of the spine 

and the muscle tissue removed to expose the spinous processes (see Figure 2B).  The spinous 

processes were removed, and an oscillating saw fitted with a circular blade was used to saw 

longitudinally between the lateral surface of the spinous processes and medial to the articular 

processes, see Figure 2C. The spinal cord was then exposed, and a scalpel used to separate the 

spinal cord from the spinal nerves and other connective tissue.  To prevent the tissue drying out, 

saline was applied during the process.  Starting from the most cranial point available, the spinal 

cord was gently lifted to view the vertebrae, returned to the canal, and a lateral incision made across 

the width of the cord in line with the intervertebral disk, see Figure 2D.  As the spinal cord was 

extracted in anatomical level sections, it was placed in cassettes and immersed in 10% buffered 

formalin.  

Tissue fixing and cutting  

The entire lengths of the spinal cords were fixed, processed, and embedded into paraffin 

wax in approximately 1cm lengths, with the face of the block being the coronal end of the section.   

The cervical and upper thoracic regions of the spinal cord – specifically C2, C4 and T2– comprised 

the focus of the analysis and thus 5μm cross sectional slices were cut using a Leica microtome and 

placed on slides for immunohistochemistry (IHC).  
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Figure 2: Images of spinal cord extraction procedure, specifically (A) removing skin, (B) removing 

muscle to expose spine, (C) sawing either side of spinous processes, and (D) cutting and removing 

sections of the spinal cord.  

Immunohistochemistry 

For IHC, slides were dewaxed and immersed in a 1.5% hydrogen peroxide/methanol 

solution to block endogenous peroxidase activity and washed in phosphate-buffered solution (PBS).  

Heat-induced epitope retrieval was done with a citrate buffer to recover antigen reactivity. Blocking 

occurred with 3% normal horse serum (NHS; Vector Laboratories) in PBS. Slides were incubated 

overnight at room temperature in primary antibody GFAP (1:100,000; Dako #Z0334).  Following 

washing slides had biotinylated horse anti-rabbit IgG (1:250; Vector laboratories; Cat No. BA-

1100) applied as a secondary for 30 minutes at room temperature.  Finally, a tertiary antibody was 

applied following washing for 60 minutes in horseradish streptavidin peroxidase conjugate (1:1000; 
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Vector laboratories; Cat No. SA-5004), and then washed again.  3,3-Diaminobenzidine (DAB) 

solution was then applied for 7 minutes before the slides were washed in running water.  Finally, 

the slides were counterstained with haematoxylin and cover-slipped using DePex glue.   

The tissue sections were digitally scanned using a NanoZoomer (2.0-HT), to be viewed on 

Hamamatsu NDP.view 2 (v2.7.52).  Regions of interest (shown in figure 3) were identified, and 

representative images for each region captured and exported to Fiji ImageJ (v1.53c).  Due to 

differences in size and shape of regions, the number and magnification of images were specific to 

each region, as shown in Table 1.  Images were processed through a macro to detect GFAP positive 

(GFAP+ve) cells with a set threshold and particle size, as per Table 1.  

Regions  Number of images 

per region 

Magnification  Threshold  Min particle 

size (pixels) 

3-6 4 40 130 240 

1-2 2 40 130 240 

7-12 3 20 100/160 150/175 

Table 1: Image number, magnification, and processing values for ImageJ per region 

Due to differences in the strength of staining, the majority of the images were analysed with one set 

threshold, however some images within the white matter (regions 7-12) showed a total cell count of 

0, where cells could be visually observed in these images (shown in Figure 4).  These images were 

separated and utilised a different threshold and minimum particle size to ensure that the GFAP+ve 

cells were detected as per Table 1.  

 

Figure 3: Regions of interest: (1-2) intermediate grey region, (3-4) dorsal horn, (5-6) ventral horn, (7-8) 

dorsal column, (9-10) lateral column, and (11-12) ventral column. 
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Figure 4: Differences in strength of GFAP staining (A) shows clear staining, analysed using initial 

thresholding values, and (B) showing fainter staining which was separated and analysed using the second 

set of thresholding values. 

Statistical analysis  

The data produced by ImageJ was the number of GFAP positive astrocytes in each 

representative image.  This data was analysed using a mixed factorial ANOVA with age, sex, 

region, and level of spinal cord as the four main effects (SPSS, IBM).  The Bonferroni post-hoc test 

was used to analyse the main effects or interactions that showed significance.  Data is presented as 

mean ± standard error of the mean (SEM) and a result of significance where the p value is less than 

0.05.   
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RESULTS  

Age and sex 

The mixed factorial ANOVA showed no significance in the main effects of age (F (2,32) = 

0.3696, p=0.697) or sex (F (1,32) = 0.950, p=0.337), shown in Figure 5.  

 

Figure 5: Histogram of the mean number of GFAP positive astrocytes per age group, by sex of the animal. 

Using multivariate ANOVA there was no significant difference in either main effect (P>0.05).  

Level  

Statistical analysis demonstrated a significant main effect of level (F (2,64) = 11.987, 

p=<0.001) and upon Bonferroni post-hoc analysis, the average astrocyte number at level C2 

(34±3.7 GFAP+ cells) was shown to be significantly less than C4 (52±5.4 GFAP+ cells, p<0.001) 

and T2 (54±5.3 GFAP+ cells, p=0.001), as shown in Figure 6A.   

Region  

There was also a significant main effect of region (F (5,106) = 17.99, p<0.001).  The post-

hoc test indicated the average number of grey matter astrocytes in the dorsal horn (68±6.7 GFAP+ 

cells) and the ventral horn (62±7.3 GFAP+ cells) is significantly higher than all white matter 

regions, as shown in Figure 6B. Within the white matter, the number of astrocytes in the lateral 

column (29±1.8 GFAP+ cells) is significantly lower than the ventral column (38±2.8 GFAP+ cells, 
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p<0.001).  There was no significant difference in astrocyte number between regions within the grey 

matter.  Figure 7 shows representative images of the specific grey and white matter regions. 

 

Figure 6: (A) The number of GFAP positive astrocytes at each anatomical level of the spinal cord. Using 

Bonferroni post-hoc test, a significant difference (p≤0.001) was found between the number of astrocytes at 

C2 and those at C4 and T2. (B) Number of GFAP positive astrocytes in each region of interest. DH = dorsal 

horn, IR = intermediate region, VH = ventral horn, DC = dorsal column, LC = lateral column, and VC = 

ventral column. Bonferroni post-hoc test showed a significant difference between: DH and DC, LC, and VC; 

and VH and DC, LC, VC. (C) Histogram of GFAP positive astrocytes in each region of interest, by 

anatomical level. * = p<0.05; mean SEM 
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Figure 7: Representative images of (A) DH, (B) IR, (C) VH, (D) DC, (E) LC, and (F) VC.  

Level and region interaction 

A significant interaction was found between level and region (F (10,320) =2.1, p=0.024) 

indicating that there is a significant difference in the pattern of regional difference in astrocytes 

differed as a function of level of the spinal cord, which can be seen in Figure 6C.  

Level, region and sex interaction 

A three-way interaction was found between region, level, and sex (F (10,320) =1.813, 

p=0.057) which approached, but did not reach statistical significance, see Figure 8.  This indicated 

that there may be a trend in the data that the way that the level of the spinal cord affects the regional 

differences differs between males and females.  

 

Figure 8: Histogram of the mean number of GFAP positive astrocytes by matter type, anatomical level and 

sex. Using multivariate ANOVA there was differences approaching but not reaching statistical significance 

(p=0.057).   
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DISCUSSION  

The overall aim of this study was to investigate the impact of age on  neuroinflammation in the 

spinal cord of sheep, to understand the non-disease state in order to inform the development of an 

appropriate model of disease which is clinically translatable to humans.  The results of this study 

showed no significant effect of age or sex on the level of astrocytic activation as shown by number 

of GFAP positive astrocytes.  A significant difference was found however between levels of the 

spinal cord, where the C2 level had significantly less activated astrocytes than the C4 or T2 levels.  

There was also a significant decrease between the dorsal and ventral horns of the grey matter in 

comparison to the white matter.  A significant interaction was also seen between level and region, 

meaning that the pattern of regional difference in astrocytes differed as a function of level of the 

spinal cord.  

Age  

Our analysis showed non-significant changes in astrocyte activation with age.  This 

suggests, contrary to research3, 25, 26, that age may not impact astrocyte activation in an ovine model, 

however the relatively young age of our cohort, even in the oldest group, may have contributed to 

this insignificant result.  

Pre-clinical rodent research showing age-dependant changes in inflammatory cell numbers, 

specifically microglia, in the spinal cord were significantly different only between the youngest 

(approximately two months) and oldest (approximately two years) age groups44-46.  However, some 

studies were unable to see any significant cellular change in inflammation, and saw little change in 

pro-inflammatory cytokines, concluding that the aging spinal cord differs significantly from the 

aging brain6.  This is an important distinction, as many of the inflamm-aging studies that include the 

CNS focus specifically on the brain and on microglia, and thus it is not unexpected that no 

significance was found in the number of astrocytes in the spinal cords of sheep that only reached 

middle age relative to their lifespan. 
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The age at which human neurophysiology changes to display clear signs of inflamm-aging is 

from approximately 65 years onwards, which is furthered by the increased prevalence of 

neurological and neurodegenerative disorders in Australians of this age group47.  In pre-clinical 

models, ‘aged’ is a relative term associated with the lifespan of the animal being studied.  The 

lifespan of merino sheep is approximately 12 years48, and the oldest group of animals used for this 

study was 5-6 years, the animals were approximately middle aged.  As such, it is not unexpected 

that this study did not find a significant difference in the number of activated astrocytes between 

age groups. Accordingly, further studies are warranted that utilise older cohorts to better investigate 

the impact of age.  

Sex  

Contradictory to previous studies, the current analysis showed no significant changes in 

astrocyte activation between the male and female groups.  Indeed, rodent studies that have 

determined that inflamm-aging occurs in a sex-dependant manner34, 35, 37, 49.  Nacka-Aleksić et al, 

measured microglial activation and the level of interleukin 6 (IL-6) in the plasma of young and old 

rats, determining that both microglial activation and IL-6 levels were significantly higher in older 

rats and higher in females than males regardless of age34.  As these studies have focused on 

outcome measures other than astrocytes, and used different animals at larger age intervals, it is not 

unprecedented that this study found no statistical significance in the number of activated astrocytes 

between the sexes.  

Level  

This study showed a significant difference in inflammation between levels of the spinal 

cord, with C2 containing significantly few astrocytes compared to C4 and T2.  The cervical and 

thoracic regions of the spinal cord are neuroanatomically distinct, with notable differences in the 

composition of grey and white matter, the organisation of axonal tracts, and the presence of limb-

specific motor pathways50.  Compared to the thoracic spine, the cervical spine has smaller 

vertebrae, increased motility, higher vascular supply and flow, and a higher grey-white matter ratio, 
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which results in different pathophysiological responses to stress and injury51, 52.  The sheep spine in 

general is incredibly flexible, and it requires extensive stabilisation, which occurs mainly at the C2-

C3 level53.  Due to the flexibility of the sheep spine at the C2 level, the spinal cord is at increased 

risk of injury due to the increased range of motion and strain53.  As a role of astrocytes in the spinal 

cord is to regulate the BSCB by encapsulating all blood vessels, the combination of higher 

vascularity and increased risk of injury in the upper cervical (C2) level, the results of this study are 

in direct contrast to the literature51-53.   

Nevertheless, these results raise potential issues in the use of quadrupeds as animal models 

for disorders of the spinal cord due to the differences in the structure of the skeletal, vascular and 

neurological anatomy mentioned above, which could potentially impact the results seen in levels of 

inflammation, due to differences in physical functionality.  A potential future direction would be the 

comparison of the cervical neuroanatomy of the ovine model and rodent model to the human 

cervical spinal cord to provide an understanding of differences that exist and may need to be taken 

into consideration when studying the neuroinflammatory response of the cervical spinal cord.  

Region 

This study demonstrated a significant regional difference, with a greater number of 

astrocytes in the grey matter (dorsal and ventral horn) compared to all white matter regions.  

Furthermore, within the white matter, there was a significantly higher number of astrocytes in the 

ventral column compared to the lateral column.  

The grey matter (GM) of the spinal cord contains the cell bodies of somatic, visceral, and 

motor nuclei, as well as containing the synapses for nuclei of the spinal roots.  The large number of 

cell bodies in the GM requires greater astrocytic activity to regulate the BSCB, as well as the 

mediation of the synaptic clefts20.  In contrast, the white matter (WM) majorly consists of 

myelinated axons, forming neuronal tracts.  Therefore, given the higher numbers of astrocytes in the 

GM, and the impact of inflamm-aging being consistent activation across the cell type, the 

significant differences between the GM (dorsal and ventral horns) and the WM are expected.  
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Within the WM, the number of activated astrocytes was significantly higher in the ventral 

column than in the lateral column.  The localisation of specific neural tracts has not been thoroughly 

researched in the ovine model, and as such it is possible that this difference is due to a higher 

density of axons in particular tracts through the spinal cord, or locations of high cellularity.  This 

has been seen in other large animal models such as pigs, where the location and function of the 

corticospinal tract was more similar to that of humans than rodents43.  As astrocytes form a link 

between the blood vessels and neurons of the spinal cord, they are the primary storage site for 

energy metabolites, and it is now understood that in times of high neuronal activity, astrocytes 

provide energy substrates to continue neuronal activity54.  This suggests that there is a link between 

areas of high neuronal activity and a requirement for a larger number of astrocytes, which could 

potentially explain the regional differences in astrocyte numbers seen in this study.  This is another 

potential future direction as the location of specific tracts may be critical for developing models of 

spinal cord disorders to improve clinical translation.  

Conclusion 

This study has demonstrated that level and regional differences in astrocytes exist within 

sheep, an important finding for modelling of future spinal cord disorders within large animals. It is 

important to note the limitations of this study, such as (1) the small sample size, (2) perfusion 

methods resulting in primarily brain perfusion only, and (3) lack of phenotypic astrocyte 

characterisation. These may all have impacted the results and should be considered within future 

studies.   

To further elucidate the relationship between age and neuroinflammation within the spinal 

cord, evaluation of microglial activity and associated cytokines is needed. This would provide 

further evidence for the use of large animal models to potentially bridge the gap between 

experimental and clinical outcomes. Finally, the significant results of this study in relation to 

differences in inflammation between the anatomical spinal levels and regions provides an indication 

that differences in spinal structure and spinal tract location should be investigated between humans 
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and commonly used animal models, such as rodents, pigs and sheep, to confirm suitability of these 

animal models for spinal cord research.        4497 words  



21 
 

ACKNOWLEDGEMENTS  

This study was funded by the Neurosurgical Research Foundation and Perpetual research 

grants.  I would like to acknowledge the Translational Neuropathology Laboratory for their 

involvement and support of the study.  A special thank you to my supervisors Dr Anna Leonard, Dr 

Frances Corrigan, and A\Prof Lyndsey Collins-Praino for their support and guidance through the 

year.  

 

  



22 
 

REFERENCES:  

1. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E & De Benedictis G 

(2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad 

Sci 908, 244-54. 

2. Haigis MC & Yankner BA (2010). The aging stress response. Mol Cell 40, 333-44. 

3. Salminen A, Ojala J, Kaarniranta K, Haapasalo A, Hiltunen M & Soininen H (2011). 

Astrocytes in the aging brain express characteristics of senescence-associated secretory 

phenotype. 34, 3-11. 

4. Coppé JP, Desprez PY, Krtolica A & Campisi J (2010). The senescence-associated secretory 

phenotype: the dark side of tumor suppression. Annu Rev Pathol 5, 99-118. 

5. Cornejo F & von Bernhardi R (2016). Age-Dependent Changes in the Activation and 

Regulation of Microglia. Adv Exp Med Biol 949, 205-226. 

6. Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles 

M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R & Van Remmen H 

(2020). Molecular changes associated with spinal cord aging. Geroscience 42, 765-784. 

7. Ritzel RM, Patel AR, Pan S, Crapser J, Hammond M, Jellison E & McCullough LD (2015). 

Age- and location-related changes in microglial function. Neurobiol Aging 36, 2153-63. 

8. Sutherland TC, Mathews KJ, Mao Y, Nguyen T & Gorrie CA (2017). Differences in the 

Cellular Response to Acute Spinal Cord Injury between Developing and Mature Rats 

Highlights the Potential Significance of the Inflammatory Response. 10,  

9. von Leden RE, Khayrullina G, Moritz KE & Byrnes KR (2017). Age exacerbates microglial 

activation, oxidative stress, inflammatory and NOX2 gene expression, and delays functional 

recovery in a middle-aged rodent model of spinal cord injury. J Neuroinflammation 14, 161. 

10. Brown KM, Wolfe BB & Wrathall JR (2005). Rapid functional recovery after spinal cord 

injury in young rats. J Neurotrauma 22, 559-74. 



23 
 

11. Niraula A, Sheridan JF & Godbout JP (2017). Microglia Priming with Aging and Stress. 

Neuropsychopharmacology 42, 318-333. 

12. Norden DM & Godbout JP (2013). Review: Microglia of the aged brain: primed to be 

activated and resistant to regulation. 39, 19-34. 

13. Rawji KS, Mishra MK, Michaels NJ, Rivest S, Stys PK & Yong VW (2016). 

Immunosenescence of microglia and macrophages: impact on the ageing central nervous 

system. Brain 139, 653-61. 

14. Ritzel RM, Doran SJ, Glaser EP, Meadows VE, Faden AI, Stoica BA & Loane DJ (2019). 

Old age increases microglial senescence, exacerbates secondary neuroinflammation, and 

worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiol Aging 

77, 194-206. 

15. DiSabato DJ, Quan N & Godbout JP (2016). Neuroinflammation: the devil is in the details. 

J Neurochem 139 Suppl 2, 136-153. 

16. Farina C, Aloisi F & Meinl E (2007). Astrocytes are active players in cerebral innate 

immunity. Trends Immunol 28, 138-45. 

17. Garrison CJ, Dougherty PM, Kajander KC & Carlton SM (1991). Staining of glial fibrillary 

acidic protein (GFAP) in lumbar spinal cord increases following a sciatic nerve constriction 

injury. Brain Res 565, 1-7. 

18. Brown GC & Bal-Price A (2003). Inflammatory neurodegeneration mediated by nitric 

oxide, glutamate, and mitochondria. Mol Neurobiol 27, 325-55. 

19. Higgins GC, Beart PM, Shin YS, Chen MJ, Cheung NS & Nagley P (2010). Oxidative 

stress: emerging mitochondrial and cellular themes and variations in neuronal injury. J 

Alzheimers Dis 20 Suppl 2, S453-73. 

20. Rao VT, Ludwin SK, Fuh SC, Sawaya R, Moore CS, Ho MK, Bedell BJ, Sarnat HB, Bar-Or 

A & Antel JP (2016). MicroRNA Expression Patterns in Human Astrocytes in Relation to 

Anatomical Location and Age. J Neuropathol Exp Neurol 75, 156-66. 



24 
 

21. Benarroch EE (2005). Neuron-astrocyte interactions: partnership for normal function and 

disease in the central nervous system. Mayo Clin Proc 80, 1326-38. 

22. Møller P, Løhr M, Folkmann JK, Mikkelsen L & Loft S (2010). Aging and oxidatively 

damaged nuclear DNA in animal organs. Free Radic Biol Med 48, 1275-85. 

23. Rao KS (2007). DNA repair in aging rat neurons. Neuroscience 145, 1330-40. 

24. Enokido Y, Yoshitake A, Ito H & Okazawa H (2008). Age-dependent change of HMGB1 

and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun 

376, 128-33. 

25. Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B & Gonzalez B (2009). Increased 

levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine 

response after excitotoxic damage. J Neurosci Res 87, 2484-97. 

26. Pertusa M, García-Matas S, Rodríguez-Farré E, Sanfeliu C & Cristòfol R (2007). Astrocytes 

aged in vitro show a decreased neuroprotective capacity. J Neurochem 101, 794-805. 

27. Morita T, Mizutani Y, Sawada M & Shimada A (2005). Immunohistochemical and 

ultrastructural findings related to the blood--brain barrier in the blood vessels of the cerebral 

white matter in aged dogs. J Comp Pathol 133, 14-22. 

28. Nichols NR, Day JR, Laping NJ, Johnson SA & Finch CE (1993). GFAP mRNA increases 

with age in rat and human brain. Neurobiol Aging 14, 421-9. 

29. Unger JW (1998). Glial reaction in aging and Alzheimer's disease. Microsc Res Tech 43, 24-

8. 

30. Cotrina ML & Nedergaard M (2002). Astrocytes in the aging brain. J Neurosci Res 67, 1-10. 

31. Finch CE (2003). Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging 24 

Suppl 1, S123-7; discussion S131. 

32. Crain JM & Watters JJ (2015). Microglial P2 Purinergic Receptor and Immunomodulatory 

Gene Transcripts Vary By Region, Sex, and Age in the Healthy Mouse CNS. Transcr Open 

Access 3,  



25 
 

33. Crain JM, Nikodemova M & Watters JJ (2013). Microglia express distinct M1 and M2 

phenotypic markers in the postnatal and adult central nervous system in male and female 

mice. J Neurosci Res 91, 1143-51. 

34. Nacka-Aleksić M, Stojanović M, Simić L, Bufan B, Kotur-Stevuljević J, Stojić-Vukanić Z, 

Dimitrijević M, Ražić S & Leposavić G (2017). Sex as a determinant of age-related changes 

in rat spinal cord inflammation-oxidation state. Biogerontology 18, 821-839. 

35. Mangold CA, Wronowski B, Du M, Masser DR, Hadad N, Bixler GV, Brucklacher RM, 

Ford MM, Sonntag WE & Freeman WM (2017). Sexually divergent induction of microglial-

associated neuroinflammation with hippocampal aging. J Neuroinflammation 14, 141. 

36. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd 

G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR & Ransohoff 

RM (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9, 

917-24. 

37. Murtaj V, Belloli S, Di Grigoli G, Pannese M, Ballarini E, Rodriguez-Menendez V, 

Marmiroli P, Cappelli A, Masiello V, Monterisi C, Bellelli G, Panina-Bordignon P & 

Moresco RM (2019). Age and Sex Influence the Neuro-inflammatory Response to a 

Peripheral Acute LPS Challenge. Front Aging Neurosci 11, 299. 

38. Vegeto E, Benedusi V & Maggi A (2008). Estrogen anti-inflammatory activity in brain: a 

therapeutic opportunity for menopause and neurodegenerative diseases. Front 

Neuroendocrinol 29, 507-19. 

39. Sorby-Adams AJ, Vink R & Turner RJ (2018). Large animal models of stroke and traumatic 

brain injury as translational tools. Am J Physiol Regul Integr Comp Physiol 315, R165-r190. 

40. Dostovic Z, Dostovic E, Smajlovic D, Ibrahimagic OC & Avdic L (2016). Brain Edema 

After Ischaemic Stroke. Med Arch 70, 339-341. 



26 
 

41. Sorby-Adams AJ, Leonard AV, Elms LE, Marian OC, Hoving JW, Yassi N, Vink R, 

Thornton E & Turner RJ (2019). Determining the Temporal Profile of Intracranial Pressure 

Changes Following Transient Stroke in an Ovine Model. Front Neurosci 13, 587. 

42. Phillips MJ, Weller RO, Kida S & Iannotti F (1995). Focal brain damage enhances 

experimental allergic encephalomyelitis in brain and spinal cord. Neuropathol Appl 

Neurobiol 21, 189-200. 

43. Leonard AV, Menendez JY, Pat BM, Hadley MN & Floyd CL (2017). Localization of the 

corticospinal tract within the porcine spinal cord: Implications for experimental modeling of 

traumatic spinal cord injury. Neurosci Lett 648, 1-7. 

44. Fu Y, Yu Y, Paxinos G, Watson C & Rusznak Z (2015). Aging-dependent changes in the 

cellular composition of the mouse brain and spinal cord. Neuroscience 290, 406-20. 

45. Lee KY, Kang JY, Yun JI, Chung JY, Hwang IK, Won MH & Choi JH (2017). Age-related 

change of Iba-1 immunoreactivity in the adult and aged gerbil spinal cord. Anat Cell Biol 

50, 135-142. 

46. Xie F, Zhang JC, Fu H & Chen J (2013). Age-related decline of myelin proteins is highly 

correlated with activation of astrocytes and microglia in the rat CNS. Int J Mol Med 32, 

1021-8. 

47. Health AIo & Welfare, Older Australia at a glance. 2018, AIHW: Canberra. 

48. Western Australia Department of Education (2011). Animal Ethics: Sheep. 

49. Miller VM, Lawrence DA, Coccaro GA, Mondal TK, Andrews K, Dreiem A & Seegal RF 

(2010). Sex effects of interleukin-6 deficiency on neuroinflammation in aged C57Bl/6 mice. 

Brain Res 1318, 11-22. 

50. Wilcox JT, Satkunendrarajah K, Nasirzadeh Y, Laliberte AM, Lip A, Cadotte DW, Foltz 

WD & Fehlings MG (2017). Generating level-dependent models of cervical and thoracic 

spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function. 

Neurobiology of Disease 105, 194-212. 



27 
 

51. Ulndreaj A, Badner A & Fehlings MG (2017). Promising neuroprotective strategies for 

traumatic spinal cord injury with a focus on the differential effects among anatomical levels 

of injury. F1000Res 6, 1907. 

52. Hong J, Chang A, Zavvarian MM, Wang J, Liu Y & Fehlings MG (2018). Level-Specific 

Differences in Systemic Expression of Pro- and Anti-Inflammatory Cytokines and 

Chemokines after Spinal Cord Injury. Int J Mol Sci 19,  

53. DeVries NA, The biomechanics of the sheep cervical spine: an experimental and finite 

element analysis, in The biomechanics of the sheep cervical spine. 2011, University of Iowa. 

54. Sofroniew MV & Vinters HV (2010). Astrocytes: biology and pathology. Acta Neuropathol 

119, 7-35. 

 


