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ABSTRACT: 

Introduction: The expansion of myeloid-derived suppressor cells (MDSCs) is common in both 

cancer and chronic inflammation. Notably, malignant myeloma plasma cells activate MDSCs to 

suppress T-cell function as a mechanism to evade the immune system. Myeloperoxidase (Mpo) is 

highly expressed by the granulocytic subset of MDSC and Mpo expression is increased in solid 

tumours. However, to date, a role for MDSC-derived Mpo has not been described in myeloma. 

This study will determine if MDSC are a source of tumour supportive Mpo in both myeloma and 

inflammation within the bone marrow. 

Methods: Gene expression within total bone marrow, and Cd11b+ (myeloid) enriched cells within 

myeloma-bearing and inflammation-induced tibiae of C57Bl/KaLwRij (KaLwRij) mice, 

respectively was analysed. Gene expression analysis was also conducted in enriched myeloid cells 

from naïve KaLwRij mice that was cultured in myeloma cell conditioned medium (MM CM). T-

cell suppression was assessed in MM CM-induced myeloid cells to confirm MDSC classification. 

Additionally, T-cell activation by Mpo was assessed by treating CD3+ T-cells with recombinant 

Mpo.  

Results: Mpo was upregulated in Cd11b+ myeloid cells cultured in myeloma cell conditioned 

medium in vitro (P = 0.0076, Student’s paired t test) but this result was not replicated in vivo. 

Recombinant Mpo was unable to activate T-cells.  

Conclusion: While our data demonstrates that myeloma conditioned media can upregulate Mpo in 

Cd11b+ myeloid cells, these cells did not display T-cell suppressive ability. Additionally, 

intracellular Mpo will need to be confirmed at a protein level. Whether Mpo can directly suppress 

cytotoxic T-cell activity requires further investigation.  
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INTRODUCTION: 

Multiple myeloma (MM) is a disease of the bone marrow (BM), characterised by the expansion of 

transformed monoclonal plasma cells1, 2. Clinical symptoms include an increase in serum calcium, 

renal complications, anaemia and osteolytic bone lesions3. Despite recent advances in treatment, 

MM remains incurable, resulting in 1062 Australian deaths in 20194.  

Monoclonal gammopathy of undetermined significance (MGUS) is the asymptomatic, precursor 

of MM. MGUS progresses to MM at a rate of approximately 1% per year5, however, it is currently 

unknown what drives the progression from MGUS to MM. Plasma cells from MGUS patients 

contain the same genetic lesions as found in MM, suggesting that intrinsic genetic mutations alone 

are insufficient to drive progression from MGUS to symptomatic MM2, 5. This highlights the 

importance of research into the role played by supportive cells within the BM microenvironment 

in myeloma disease progression. The BM microenvironment is comprised of many cells, 

growth/adhesion molecules and extracellular matrix proteins which provide survival/mitogenic 

signals and structural support, respectively6. Notably, MM plasma cell survival and 

chemoresistance is dependent on interactions with the BM microenvironment7. Furthermore, 

growing evidence suggests that host immune cells with a suppressive phenotype, aid cancer cell 

survival and may create a “permissive environment” that allows plasma cells to evade the immune 

system2, 8. One mechanism of immune suppression is by the inhibition of T-cell activity by 

activated myeloid-derived suppressor cells (MDSCs). 

MDSCs are a heterogenous population of pathologically activated myeloid cells united 

functionally by their capacity to suppress T-cell function. Their main function is to protect the host 

from excess tissue damage that is caused by an uncontrolled immune response to inflammation 

and/or infection8. It has been demonstrated that in many cancers, tumour cells produce immune-

modulating factors that reprogram immature myeloid cells to become immunosuppressive9.  

Tumour growth is associated with abnormal myelopoiesis, which includes the accumulation of 
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MDSCs10. MDSCs have been reported to accumulate in BM and peripheral blood of MM 

patients11-14, and in mouse models14, 15. Additionally, MDSC accumulation correlates with the 

myeloma stages and a poor clinical outcome16. MDSCs provide a supportive area (“niche”) for 

MM development. Specifically, the interaction between MDSC and MM plasma cells leads to T-

cell suppression, allowing for the survival of cancer cells that would otherwise be eliminated by 

host immune system17, 18. To date, MDSCs are known to suppress T-cells by arginase (Arg1) and 

nitric oxide synthase (iNOS) and they convert amino acids L-arginine and L-tryptophan, 

respectively; depleting the BM microenvironment of the amino acids required for T-cell activity2, 

8, 19.  

MDSCs can be divided into two subtypes – monocytic MDSC (M-MDSC) or granulocytic (or 

polymorphonuclear) MDSC (PMN-MDSC). In mice, these subsets can be identified by flow 

cytometry based on the cell surface expression of specific phenotypic markers. Specifically, M-

MDSC are identified as  CD11b+Ly6ChiLy6Gneg and PMN-MDSC as CD11b+Ly6CintLy6Ghi8. 

Importantly, M- and PMN- MDSCs are phenotypically and morphologically similar to monocytes 

and neutrophils, respectively, and it is their immune suppressive ability that separates them from 

their normal counterparts.  

MDSC expansion is common in cancer and chronic inflammation, and MDSCs can be induced by 

pro-inflammatory mediators in the BM microenvironment in both of these conditions20. Interleukin 

(IL)-6 and IL-1β are known drive MDSC activation, accumulation and MM pathogenesis2, 21. 

Moreover, it is reported that chronic inflammation can promote tumour growth and survival by 

MDSC immunosuppression18, 22. Additionally, tumour-promoting inflammation is a hallmark of 

cancer and there is a strong correlation between inflammation and cancer incidence18, 23.  

Myeloperoxidase (MPO) is a peroxidase enzyme released into extracellular fluid during 

inflammation to destroy invading microorganisms24. MPO is predominantly found in the granular 

component of neutrophils but is also present in monocytes and, to a lesser extent, macrophages24, 
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25. It has been shown to play a role in the progression of lung and breast cancer26, 27. MPO possesses 

pro-angiogenic properties, aligning with MDSC ability to promote angiogenesis28, 29. Interestingly, 

Mpo is seen to be expressed over 57-fold higher by PMN-MDSC than in neutrophils19, however 

the consequence of MDSC-derived Mpo is unknown.  
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GAP IN KNOWLEDGE: 

MDSC are activated in both chronic inflammation and in myeloma, however whether 

inflammation-induced MDSC activation provides a “permissive” immune-suppressive 

environment that drives tumour progression is unknown. Furthermore, MPO expression is 

increased in PMN-MDSC relative to normal neutrophils17,19. However, whether MDSC-derived 

MPO possess immunosuppressive abilities and plays a role in driving myeloma progression has, 

to date, not been described. This study will explore if the pro-inflammatory or tumour-induced 

activation of MDSC upregulates MPO expression in the BM. It will also examine the concept that 

inflammation can initiate and drive MM progression. 

HYPOTHESIS: 

[A] MDSC activation following inflammation and MM development results in up-regulation of 

MPO  

[B] MDSC accumulate within the BM in response to local trauma, providing a “permissive” 

environment for the progression and development of MM. 

AIMS: 

1. To determine the role of MM tumour cells on MDSC differentiation and activation in vitro 

2. To characterise the MDSC populations increased with MM tumour development in the 

5TGM1 KaLwRij model of MM  

3. To identify and characterise MDSC populations increased in response to local 

trauma/inflammation within the BM 
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MATERIALS AND METHODOLOGY: 

Ethics statement and mice: 

All animal studies were conducted with the approval of the South Australian Health and Medical 

Research Institute’s Animal Ethics Committee. This research conformed with the 8th edition of the 

Australian Code for the Care and Use of Animals for Scientific Purposes (2013), ethics no. 

SAM356. C57BL/KaLwRij (KaLwRij) mice were bred, housed and maintained at the SAHMRI 

Bioresources Facility. Mice were euthanised by CO2 inhalation followed by cervical dislocation. 

The KaLwRij mouse strain has a predisposition to develop myeloma, which possesses similar 

clinical features to human MM30,31. 

For tumour experiments, 6-8-week-old mice (n = 4-8 mice/group) were injected with 5×105 

luciferase/GFP 5TGM1 tumour cells in 100 μl PBS via the tail vein32. Mice were euthanised 1- 

and 3-weeks post tumour cell inoculation. Naïve (non-tumour-bearing mice) were included as a 

negative control.  

For inflammation experiments, intratibial injections were performed. Briefly, a 26-gauge needle 

was inserted in a drill-like fashion into the left tibia from the patella to induce local inflammation 

(n = 4 mice/timepoint). At time of BM collection (24- and 72-hour timepoints), tibias were isolated 

separately for comparison of the damaged vs undamaged tibia. 

Murine Cd11b+ cell enrichment by magnetic separation.  

BM was harvested from the hind limbs (tibiae and femora) of mice by the crush method as 

previously described33, and red blood cells were removed by red cell lysis. A total of 5×107 murine 

BM cells were pre-enriched with Cd11b microbeads (Miltenyi Biotec) and passed through an LS 

column (Miltenyi Biotec) aided by cold buffer (1x PBS + 0.5% BSA + 2mM EDTA), as previously 

described15. The pre- and post- magnetic separation fractions were analysed by Flow Cytometry 

(BD LSR Fortessa) to confirm Cd11b+ cell enrichment/depletion (Supplementary Figure 1).  
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In vitro Cd11b+ cell culture:  

MM conditioned medium (MM CM) was generated from 5TGM1 cells (5x106 cells/mL) cultured 

in Isocove’s Modified Dulbecco’s Medium (IMDM) (Sigma Aldrich, St. Louis, MI, USA) + 10% 

foetal calf serum (FCS) (Hyclone, QLD, Australia) supplemented with 50 μm 2-Mercaptoethanol 

(Sigma Aldrich, St Louis, MI, USA), 1 mM sodium pyruvate, 2 mM L-glutamine, 15 mM HEPES, 

50 U/ml penicillin and 50 μg/ml streptomycin. After 2 days, culture medium was collected, filtered 

through a 40 μm filter and stored in aliquots at -80°C. 

Cd11b+ myeloid cells enriched from the BM of naïve KaLwRij mice were seeded in a 12-well 

plate at 1x106 cells per well with IMDM, 10% FCS and 2 μm 2-Mercaptoethanol ± 50% MM CM. 

Cells were collected after 72 hours and were subjected to subsequent analysis as described below. 

Quantitative Real-Time PCR (qRT-PCR)  

Total cellular RNA was isolated using TRIzol (Ambion) as per manufacturer’s instructions. Total 

RNA (500ng) of was reverse transcribed to cDNA using Random Hexamers (50 μm), Oligo (dT, 

50 μm), deoxyribonucleotide triphosphate (dNTPs; 10 mM), Dithiothreitol (DTT; 100 mM) and 

Superscript IV Reverse Transcriptase (Invitrogen) as per manufacturer’s instructions. Gene 

expression analysis was assessed by qRT-PCR (CFX Connect BioRad, California, USA).  The 

SYBR Green ROX reagent (Qiagen) with forward and reverse primer pairs (Table 1) were used 

to amplify cDNA samples (performed in triplicate). Gene expression was normalised relative to 

β-actin before comparison with treatment conditions. Data presented as fold change compared to 

controls. 

Table 1 qRT-PCR primers: 

Gene Forward (5’-3’) Reverse (5’-3’) 

B-actin GATCATTGCTCCTCCTGAGC GTCATAGTCCGCCTAGAA GCAT 

MPO TCCCACTCAGCAAGGTCTT TAAGAGCAGGCAAATCCAG 
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Arg1 GTCCCTAATGACAGCTCCTTTC CCACACTGACTCTTCCATTCTT 

IL-6 TAGTCCTTCCTACCCCAATTT TTGGTCCTTAGCCACTCCTTC 

IL-1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG 

IL-10 AAGGCAGTGGAGCAGGTGAA CCAGCAGACTCAATACACAC 

 

T-cell proliferation assay:  

A 96-well U-bottom plate was coated with anti-CD3 (1 μg/mL) and anti-CD28 (5 μg/mL; 

Biolegend) for 24 hours and washed with dH20 prior to adding cells. A single cell suspension was 

generated in PBS from the spleen of a naïve mouse followed by red cell lysis. Splenocytes were 

stained with 5 μM CellTrace solution (Life Technologies) for 20 minutes at 37°C, centrifuged and 

resuspended in IMDM supplemented with 10% FCS + 50 μM 2-mercaptoethanol. After a 5-minute 

incubation at room temperature, splenocytes were seeded in a 96-well plate (2x105 cells/well) and 

co-cultured with Cd11b+ myeloid cells cultured in the presence or absence of MM CM at a ratio 

of 1:1, 1:2, 1:4 (myeloid cells:splenocytes) and incubated for 3 days in IMDM + 10% FCS at 37°C.  

Splenocytes were stained with PE anti-CD3 antibody (Biolegend) and analysed for CTV 

incorporation with BD LSR Fortessa for a time 0 control. Following incubation, splenocytes were 

blocked for non-specific binding with mouse gamma globulin (Jackson ImmunoResearch, 

Pennsylvania, USA) and stained with PE anti-CD3 antibody before performing the flow cytometry 

analysis (BD LSR Fortessa). Data is shown as a percentage of divided cells since time 0.    

Mpo and T-cell activation:  

Total splenocytes from naïve mice were stimulated with anti-CD3 (1 μg/mL) and anti-CD28 (5 

μg/mL) for 4 hours in the presence or absence of recombinant mouse MPO (R&D systems, MN, 

USA) in triplicate at concentrations of 0.5, 1 and 2 μg/mL. T-cell activation was determined by 
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flow cytometry after cells were stained with PE anti-CD3 and BV 605 anti-CD69 (Biolegend).  

Data is presented as percentage of CD69+ cells within total CD3+ splenocyte population.  

Flow cytometry: 

To assess the proportions of myeloid cell populations within the BM, single cell suspensions were 

generated (as described above), cells were mouse gamma globulin (Jackson ImmunoResearch, 

Pennsylvania, USA) and cells were stained with antibodies CD11b APC Cy7, Ly6C BV-421 and 

Ly6G PE-Cy7 (Biolegend). Following washing, samples were analysed on BD LSR Fortessa, and 

subsequent analysis performed using FlowJo software v10.6.2 (Tree star). The gating strategy is 

presented in Supplementary Figure 2. Data is presented as the percentage of myeloid cell 

subpopulations within total CD11b+ myeloid cells. 

Statistics: 

Statistical analysis was performed with GraphPad Prism 7 v7.03 (La Jolla, California, USA, 

www.graphpad.com) and presented in the following style (*P < 0.05, **P < 0.01, ***P < 0.0001). 

Statistical significance was determined by Student’s t test or an analysis of variance (One-Way 

ANOVA & Two-Way ANOVA). All graphs are expressed as the mean ± SD.   

  

http://www.graphpad.com/
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RESULTS: 

Mpo expression is upregulated in myeloid cells following culture with myeloma cell 

conditioned media 

MDSC can inhibit the T-cell activity through the production of Arg1, Il-6 and Il-10 18, 34 35, 36. In 

addition, increased Mpo and Arg1 have previously been implicated in the function of MDSCs in 

tumour bearing mice19. To investigate the effects of myeloma cell conditioned media (MM CM) 

on Cd11b+ myeloid (MDSC precursors) cell gene expression in vitro, Cd11b+ myeloid cells were 

enriched from the BM of naïve mice and cultured in the presence or absence of 5TGM1 MM CM 

for 72 hours. Gene expression analysis revealed that Mpo expression was significantly upregulated 

3.2-fold (**P=0.0076; paired t test) in Cd11b+ cells cultured in MM CM compared to controls 

(Figure 1A), while Arg1 expression (Figure 1B) was inconsistent among the replicates. Il-6, Il-

1β and Il-10 expression were also assessed to explore if MM CM could stimulate the expression 

of these important inflammatory mediators. The results presented in Figure 1 show that, while not 

significant, Il-6 expression was decreased in the presence of MM CM (Figure 1C), while no 

change in Il-1β expression (Figure 1D) and a significant 0.48-fold decrease (**P = 0.0013) in Il-

10 expression was observed (Figure 1E).  
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Figure 1: Myeloma cell conditioned media causes an upregulation in Mpo expression. 

Primary murine myeloid cells were cultured in the presence or absence of 50% MM CM for 72 

hours. RNA was isolated and quantitative RT-PCR was performed on Mpo (A), Arg1 (B), Il-6 (C), 

Il-1β (D) and Il-10 (E). Untreated MDSC cells served as control and graph is presented as mean ± 

SD. (**PA = 0.0076; PB = 0.50; PC = 0.080; PD = 0.35; **PE = 0.0013; paired t test; n = 8). 
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Myeloid cells cultured in MM CM did not reduce T-cell proliferation.   

To further investigate whether Cd11b+ myeloid cells cultured in MM CM functioned as MDSCs, 

their ability to suppress T-cell proliferation was investigated. Given that MDSCs are expanded in 

large numbers within the tumour microenvironment18, 37, 38, it was postulated that increased MDSC 

numbers would, in turn, inhibit T-cell proliferation. To model the tumour microenvironment in 

vitro, Cd11b+ myeloid cells were first cultured in the presence or absence of MM CM for 72 hours 

and subsequently co-cultured with splenocytes (a rich source of T-cells) at a ratio of 1:1; 1:2 and 

1:4 splenocytes (T-cells):Cd11b+ myeloid cells for 3 days. No significant difference in 

proliferation of T-cells was observed when cultured with control or MM CM induced Cd11b+ 

cells. Interestingly however, a significant reduction in T-cell proliferation was observed in MM 

CM-treated myeloid cells with an increasing myeloid cell to splenocyte ratio (*P=0.027; multiple 

comparison) (Figure 2). 
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Figure 2: Cd11b+ cells cultured in MM CM increased T-cell proliferation in a dose-

dependent manner with splenocyte to myeloid cell co-culture. Cd11b+ myeloid cells were 

treated with MM CM for 72 hours and co-cultured with CD3+ T-cells at various ratios 1:1; 1:2 

and 1:4 splenocytes:myeloid cells. Untreated myeloid cells served as control and graph presents 

T-cell proliferation as a percentage of divided cells from time 0. Statistical significance not 

observed between the overall conditions and ratio relationship (P = 0.082) but seen in MM CM 

1:1 and 1:4 ratios by multiple comparison (*P = 0.027; n = 1). 

Mpo does not affect T-cell activation in vitro.  

In order to further explore increased Mpo expression as a potential mechanism underpinning 

MDSC-mediated T-cell suppression, we investigated whether Mpo functionally suppressed T-cell 

activation. A preliminary study from our laboratory showed that a reduction in cytotoxic T-cell 

activity was evident when 5TGM1 myeloma cells were pre-treated with Mpo in a dose dependent 

manner (Supplementary Figure 3). Therefore, a reduction in T-cell activation was expected with 

the addition of recombinant Mpo. Total splenocytes from naïve C57BL/6 mice were stimulated 

with anti-CD3 and anti-CD28 for 4 hours and subsequently treated with Mpo at concentrations of 

0.5, 1, 2 μg/mL. While a significant increase in T-cell activation was observed when exposed to 

anti-CD3 and anti-CD28 activation, Mpo did not inhibit T-cell activation.  
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Figure 3: Mpo dosage showed no change in CD3+ T-cell activation. CD3+ T-cells were treated 

with Mpo in triplicate and the percentage of activated (CD69+) CD3+ T-cells are shown in 

stimulated and unstimulated conditions. Stimulation significantly increased with percentage of 

CD69+ T-cells (**P=0.0012; unpaired t test), however Mpo had no effect on stimulation (P = 0.49; 

One-Way ANOVA; n = 1; mean ± SD).   
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MDSC populations are increased in myeloma-bearing mice: 

5TGM1 mouse MM cells were injected into C57BL/KaLwRij mice and the bone marrow (BM) 

was harvested at 1- and 3- week time points following tumour cell inoculation. BM cells were 

stained with the antibodies for the markers of CD11b, Ly6C, Ly6G and analysed by Flow 

Cytometry to identify monocytic and granulocytic myeloid cell populations.  

A preliminary study from our laboratory has found the granulocytic cell subset 

(Cd11b+Ly6CintLy6G+) to be expanded within the BM after 4 weeks of myeloma development 

(data not shown). Additionally, previous literature has identified an expansion of the PMN-MDSC 

subset in tumour-bearing mice17, 19, 20. Therefore, we anticipated that the PMN-MDSC (or 

granulocytic) subset would be expanded in these mice. This finding was supported by our results 

in Figure 4 which show no change in the overall myeloid cell (Cd11b+) population or the 

monocytic population (Cd11b+Ly6ChiLy6G-) (Figure 4A-B). However, consistent with previous 

results, a significant increase in the granulocytic cell subset was observed with tumour 

development (*PC = 0.037; One-Way ANOVA) (Figure 4).  
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         A.   

       

    B.                    C   

 

          

 

Figure 4: Monocytic and granulocytic subpopulations of Cd11b+ myeloid cells in GFP 

negative gate. The proportion of myeloid cell populations within the BM in response to myeloma 

development at 1- and 3-weeks post inoculation are shown in (A-C). Non-tumour (naïve) mice 

serves as control and mean ± SD (PA = 0.59; PB = 0.23; *PC = 0.037; One-Way ANOVA; n = 4-

8/group). 
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Total bone marrow cells from myeloma-burdened mice showed little change in Mpo 

expression 

As our in vitro experiments showed an upregulation in Mpo expression in Cd11b+ myeloid cells 

cultured in myeloma conditioned medium, we examined MDSC-related gene expression in non-

tumour cells recovered from BM of myeloma-bearing mice.  Given the reported overexpression 

of Mpo in PMN-MDSC compared to neutrophils19, and upregulation of Arg1  and Il-10 in MDSCs2, 

18, 39, these genes were expected to be upregulated with myeloma burden. Figure 5 illustrates that 

with tumour development, there is little change in Mpo (Figure 5A), an increase in Arg1 (Figure 

5B), an increase in Il-6 (Figure 5C), and little change in Il-10 expression (Figure 5D).  
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Figure 5: Myeloma development causes no change in Mpo expression. Gene expression 

analysis was performed in total BM of myeloma bearing mice and naïve controls. The expression 

of Mpo (A), Arg1 (B), Il-6 (C) and Il-10 (D) was investigated. Gene expression as a fold change 

compared to naïve control. (PA = 0.91; *PB = 0.022; *PC = 0.014; PD = 0.44; One-Way ANOVA; n 

= 4-8/group; mean ± SD).        
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Murine CD11b+ cells accumulate with inflammation:  

MDSC accumulation and activation can be driven by driven by the inflammatory mediators Il-1β 

and Il-618, and preliminary data from our laboratory has identified an increase in MDSC 

populations following induced inflammation within the BM (Supplementary Figure 4). To 

characterise MDSC populations in inflammation, we inserted a needle into one tibia of 

C57BL/KaLwRij mice to induce local inflammation. Tibial BM was harvested at 24- and 72-hour 

timepoints and stained with the antibodies for CD11b, Ly6C and Ly6G and analysed by flow 

cytometry. Figure 6 illustrates a significant 1.21-fold increase in total myeloid cells at 72 hours 

(*P = 0.023; One-Way ANOVA). However, only an increasing trend was observed in monocytic 

and granulocytic cells within BM with inflammation. Data analysed was compared to undamaged 

tibia in the same mouse.  
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         A. 

 

  B.              C. 

   

Figure 6: Cd11b+ myeloid cells are expanded following inflammation. Flow Cytometry was 

used to analyse myeloid (A), monocytic (B) and granulocytic (C) cells in total BM following the 

induction of inflammation. The fold change of each timepoint is calculated relative to the 

undamaged limb of the same mouse and graphs are illustrated as mean ± SD. (*PA = 0.023; PB = 

0.069; PC = 0.079; One-Way ANOVA; n = 4/group).   
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Mpo expression in Cd11b+ cells after local inflammation remains unchanged.  

We conducted gene expression analysis on Cd11b+ myeloid cells enriched from tibial BM 72 

hours after inflammation was induced. Mpo is released from the granular component of neutrophils 

into the extracellular environment during inflammation40, but whether Mpo is upregulated in 

myeloid cells following inflammation is unknown. No change in Mpo expression in tibial Cd11b+ 

myeloid cells was observed with inflammation (Figure 7A). Although not significant, there was a 

1.3-fold increase in Arg1 (Figure 7B), a 1.6-fold increase in Il-6 (Figure 7C), and a 0.72-fold 

decrease in Il-10. Gene expression was normalised to β-actin before comparison to paired 

undamaged tibia from the same mouse. 
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Figure 7: Local inflammation causes change in Mpo expression in Cd11b+ myeloid cells  

Gene expression analysis was performed on enriched Cd11b+ myeloid cells from a damaged and 

undamaged tibia C57BL/KaLwRij mice. the expression of Mpo (A), Arg1 (B), Il-6 (C) and Il-10 

(D) was investigated. Gene expression is presented as a fold change between damaged and 

undamaged limb from the same mouse and graphed as mean ± SD (PA = 0.8461; PB = 0.3644; PC 

= 0.2744; PD = 0.1918; paired t test; n = 4). 
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DISCUSSION: 

A prominent feature of MM is the complex relationship between myeloma plasma cells and the 

BM microenvironment11. Immunosuppressive MDSC are present in the myeloma 

microenvironment and their immunosuppressive capacity is induced by myeloma cells35. MDSCs 

are routinely characterised by a combination of their phenotype and their T-cell suppressive ability 

in vitro15. In our studies, we simulated the myeloma environment in vitro by culturing myeloid 

cells in MM CM, based on previously reported methodology41. It was anticipated that these 

conditions would be sufficient to activate MDSC. However, Arg1 was not significantly 

upregulated in MM CM induced myeloid cells. As Arg1 is upregulated in activated MDSCs, this 

may suggest that the ‘MDSCs’ cultured with MM CM are other myeloid cells such as neutrophils, 

monocytes and macrophages. This is supported by the lack of T-cell suppression observed 

following co-culture with MM CM induced CD11b+ myeloid cells. However, these assays will 

need to be repeated as little change in proliferation was observed between stimulated and 

unstimulated splenocyte control (data not shown). Moreover, as myeloid cell activation is 

relatively short-lived and is terminated upon cessation of stimulus8, it is possible that Cd11b+ cells 

cultured in the presence of MM CM become deactivated when removed from conditioned media. 

Global transcriptome analysis from our laboratory show Il-6, a cytokine known to induce MDSC18, 

is not expressed in 5TGM1 cells (data unpublished). Therefore, myeloid cells cultured in vitro 

with MM CM may require further stimulus to be activated. Additionally, our simulation of the 

tumour microenvironment in vitro excludes other cells like stromal cells or macrophages that 

would otherwise be present and interact with MDSCs in the BM microenvironment.  

An increase in Arg1 expression was observed in both the tumour and inflammation in vivo 

experimental models, however, a T-cell proliferation assay is required to confirm the MDSC 

classification as gene expression alone is insufficient8. It should also be noted that L-arginine 

depletion by Arg1 is only one mechanism by which MDSCs are able to suppress T-cells. MDSCs 
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utilise different mechanisms of suppression and it is difficult to predict which mechanism MDSCs 

will employ to suppress T-cells8.  

We showed a consistent increase in Mpo expression by CD11b+ myeloid cells cultured in the 

presence of MM CM, but whether this Mpo is functional is yet to be elucidated. An Mpo activity 

assay and/or an immunofluorescent staining assay should be performed on Cd11b+ cells to 

confirm an increased release or presence of Mpo at a protein level. Furthermore, Youn and 

colleagues showed Mpo is overexpressed in PMN-MDSC compared with neutrophils, and spleen-

derived PMN-MDSC were able to inhibit antigen-specific T-cell responses by interferon gamma 

(IFNγ) production19. Together with pilot data from our laboratory that suggest Mpo treated 

myeloma cells co-cultured with T-cells reduced T-cell cytotoxic activity, we hypothesised that 

Mpo may reduce T-cell activation. Previous studies have shown that effector molecule expression 

by T-cells can be reduced in the absence of any effect on overt T-cell activation, as measured by 

induction of CD69 expression42. Therefore, measuring the cytotoxic activity or expression of 

effector molecules, such as IFNγ is required to determine if the release of Mpo can suppress the 

immune system.  

Alternatively, it is possible that myeloid cell derived Mpo may function by enhancing 

angiogenesis. This aligns with studies that link Mpo to the formation of blood vessels28. MDSC 

have been shown to promote angiogenesis by matrix metalloproteinase29, however further studies 

are required to investigate if MDSC-derived Mpo can stimulate angiogenesis in the context of 

MM. 

We observed an increase in the granulocytic subset but no change in overall myeloid populations 

in myeloma-bearing mice compared to naïve controls. Monocytes have been reported to 

differentiate into granulocytes and interestingly, these monocyte-derived granulocytes are 

immunosuppressive43,  aligning with the idea that monocytic populations can differentiate into the 

granulocytic population within the BM with tumour development. Unlike previous reports44, the 
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present studies were unable to confirm the suppressive ability of myeloma induced BM cells. 

However, the upregulation of Arg1 with tumour development suggests active MDSC may be 

present within the BM. Interestingly, Mpo expression of myeloid cells within the BM in myeloma-

burdened mice did not match that of our in vitro study. This difference may be attributed to the 

exclusion of other BM microenvironment cells in our in vitro simulation of the tumour 

microenvironment, as previously mentioned. In addition, Mpo activity can be measured in vivo by 

luminol45 and preliminary research from our laboratory has shown an increase in Mpo activity at 

sites of tumour growth in vivo (data not shown). This data suggests gene expression may not reflect 

Mpo activity. 

Finally, we wanted to characterise the MDSC populations in response to inflammation. We have 

reported an increase in myeloid populations, supporting the pilot study from our laboratory. 

Further, we showed the proportions of monocytic and granulocytic subsets within the myeloid cell 

population remain the same. Monocytes and neutrophils are traditionally considered to be 

inflammatory immune cells46, therefore, measuring suppression is required to distinguish these 

cells from MDSC. As such, our results show little change in Mpo expression in CD11b+ myeloid 

cells 72 hours after inflammation. It is possible that Mpo expression may be upregulated rapidly 

after trauma is induced, thus it is necessary for future studies to examine gene expression changes 

at earlier time points. In addition, an Mpo expression may not reflect Mpo release into the BM, 

highlighting the need to assess intracellular protein presence or protein function. Moreover, our 

results showed a non-significant increase in Il-6 and Arg1 expression 72 hours following 

inflammation. Although the increase in Arg1 may suggest these Cd11b+ cells can suppress T-cells, 

confirmation of their suppressive ability is required. Notably, an increase in sample size may show 

a significant upregulation of Arg1 and Il-6. Future studies should also consider measuring MDSC 

populations and gene expression within CD11b+ myeloid cells using a more chronic model.  
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Overall, we were able to show the upregulation Mpo in myeloid cells cultured in MM CM in vitro 

but this result was not reflected in the BM of myeloma-bearing mice or in inflammation-induced 

tibiae of KaLwRij mice. Further studies are required to confirm functional activity of Mpo. 

Moreover, we were unable to characterise these cells as ‘MDSC’ as they showed no effect on T-

cell proliferation in vitro. Our data also shows that Mpo has no effect on T-cell activation. 

However, this does not rule out an alternative mechanism for myeloid cell derived Mpo within the 

tumour microenvironment. Finally, our results did show an increase in myeloid cell populations 

within the BM following inflammation. Further studies are required to determine if this alteration 

to the microenvironment is sufficient to provide a “permissive” immune-suppressive environment 

that drives tumour progression and if these results are similar in humans.   
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SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

Supplementary Figure 1: Shows Confirmation of Cd11b+ enrichment where without magnetic 

separation, only 69.9% of cells were Cd11b+ (A) however, with magnetic separation 99.1% of 

cells were Cd11b+ (B).  
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Supplementary Figure 2: The following gating strategy was used to characterise MDSC 

populations (in order of A-E) from the BM of myeloma bearing mice. After initial clean up, 

Cd11b+ myeloid cells were gated from the GFP- cells gate. PMN- and M- MDSC subsets were 

identified as Ly6G high and low, respectively, with the PE-Cy7 antibody as per phenotypic 

markers previously described in methodology.     
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Supplementary figure 4: T-cells were treated with Mpo in triplicate, and then co-cultured with 

5TGM1 myeloma cells. Graph shows a significant (One-Way ANOVA) reduction in cytotoxicity 

after Mpo pre-treatment in a dose dependent manner (P = 0.02, n = 1).  
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Supplementary Figure 3: MDSC populations are increased within the BM of damaged tibiae 

compared to undamaged control tibiae following the induction of inflammation in one tibia 

(P<0.02, unpaired t test, n = 3/group) 


