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The spatial geological heterogeneity of an aquifer significantly affects groundwater storage,
flow and the transport of solutes. In the particular case of coastal aquifers, spatial
geological heterogeneity is also a major determining factor of the spatio-temporal
patterns of water quality (salinity) due to seawater intrusion. While the hydraulics of
coastal hydrogeology can be modeled effectively by various density flow equations,
the aquifer geology is highly uncertain. A stochastic solution to the problem is to
generate numerical realisations of the geology using sequential stratigraphy,
geophysical models or geostatistical approaches. The geostatistical methods (two-
point geostatistics, Markov chain models and multiple-point geostatistics) have the
advantage of minimal data requirements, e.g., when the only data available are from
cores from a few sparsely located boreholes. We provide an extension of sequential
indicator simulation by including the uncertainty of the hydrofacies proportions in the
simulation approach. We also deal with the problem of variogram estimation from sparse
boreholes and we discuss the implicit transition probabilities and the connectivity of
simulated realisations of a number of categorical variables. The variogram model used in
the simulation of hydrofacies significantly influences the degree of connectivity of the
hydrofacies in the simulated model. The choice of model is critical as connectivity
determines the amount and extent of seawater intrusion and hence the environmental
risk. The methodology is illustrated with a case study of the Andarax river delta, a coastal
aquifer in south-eastern Spain. This is a semi-arid Mediterranean region in which the
increasing use of, and demand for, groundwater is exacerbated by a transient tourist
population that reaches its peak in the summer when the demand for the permanent
population is at its highest. The work reported here provides a sound basis for designing
flow simulation models for the optimal management of groundwater resources. This paper
is an extended version of a presentation given at the 2012 GeoENV Conference held in
Valencia, Spain.
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INTRODUCTION

Half of the world’s population lives in coastal areas and the
transient and permanent populations of these areas continue to
increase. This generates increasing, and often competing, demands
for water. To meet demand, or allocate limited supply, and satisfy
environmental and sustainability constraints in these coastal zones
requires optimal management of water resources in general and
groundwater resources in particular. The problem is exacerbated in
the Mediterranean region because of the combined effects of semi-
arid climate (high evapotranspiration and low rainfall) and
seasonal tourism that increases the demand for water during
the summer, which is the period of lowest aquifer recharge. The
result is increased depletion of groundwater with the risk of over-
extraction.

In coastal areas, over-extraction not only depletes the aquifer
but also causes seawater intrusion leading to deterioration of
water quality that may ultimately render the aquifer water unfit
for human consumption and other uses such as agriculture. In
general, mathematical models of aquifers comprise two parts: the
medium (the geological materials that comprise the aquifer) and
the passage of water (hydraulics) through the geological medium.
The hydraulics are modeled effectively by various density flow
equations but the geology, particularly the spatial distribution of
the hydrofacies, introduces a major source of variability and
uncertainty in any model or assessment of an aquifer. In general,
the geology is heterogeneous and is unknown apart from limited
direct data from sparse boreholes or the indirect geophysical
information. Apart from borehole cores, the aquifer is not
observable on any meaningful scale and the only realistic
approach in such cases is via a stochastic model informed by
sparse data and/or surface analogues (outcrops). The prediction
of seawater intrusion is thus a stochastic problem.

The spatio-temporal patterns of groundwater quality in
coastal aquifers are determined by the spatial heterogeneity
and spatial distribution of hydrofacies (Eaton, 2006) as well as
by different hydrologic settings and forcings. A general way to
address the stochastic seawater intrusion problem is to
accommodate the stochastic character of the geology by
generating stochastic simulations of aquifer heterogeneity.

Although the techniques discussed here are generally
applicable to different sedimentary environments, the focus in
this paper is on deltaic environments. The three most common
means of generating three-dimensional geological models (in this
case, 3D models of hydrofacies) of deltas are sequential
stratigraphy (Cabello et al., 2007), geophysical methods
(Tercier et al., 2000; Deidda et al., 2006; Barakat, 2010) and
geostatistical techniques (dell’Arciprete et al., 2012; Perulero et
al., 1997). A good overview of statistical grid-based sedimentary
facies reconstruction and modeling methods can be found in
Falivene et al. (2007).

In an ideal situation, all of these techniques could be used to
integrate all available information to generate a model that is as
realistic as possible. However, the amount, type and quality of the
available data constrain the choice of method. Of the three
methodologies, geostatistical methods are the least demanding
in terms of data requirements because they are based on the

estimated underlying structural model and its uncertainty
(Pardo-Igúzquiza et al., 2009) and they can be applied even
when only a few sparsely located boreholes are available.

The geostatistical methods can be classified either as object-
based methods (Gouw, 2007) or models based on pixels and
voxels (Dubrule and Damsleth, 2001). The latter are the more
flexible and, in turn, they can be classified as two-point
geostatistical models (Deutsch and Journel, 1998), Markov
chain models (Carle and Fogg, 1996) or multiple-point
geostatistical models (Strebelle, 2002; Comunian et al., 2011).
Multiple-point geostatistical methods require detailed three-
dimensional training images, which are not usually available
for groundwater applications although other sources such as
surface analogues (e.g., Comunian et al., 2011), outcrops,
geophysical images, outputs of numerical models can be used.
Markov chain models tend to give simulations that are less
realistic than the other methods; in particular, the hydrofacies
are often too disconnected. For these reasons, we have chosen to
use basic, second-order stationary geostatistical models and, in
the work presented here, we have used sequential indicator
simulation to generate realisations of categorical variables
(Goovaerts, 1997). We also considered using truncated pluri-
gaussian simulation (Le Loc’h et al., 1994; Le Loc’h and Galli,
1996; Dowd et al., 2003; Mariethoz et al., 2009) but decided
against it because of the inability to infer facies contact
relationships with an acceptable level of accuracy from cores
from sparse boreholes. This method is more suitable for cases in
which there are reliable surface analogues from which detailed
contacts can be observed. A comparison of geostatistical methods
for hydrofacies simulation is given in dell’Arciprete et al. (2012).
The work presented here differs from the latter, which simulates
alluvial sediments using vertical facies maps of five almost
orthogonal quarry faces and no borehole data whereas we
simulate deltaic sediments in a flat area for which there are no
outcrops and the only data available are from a few sparsely
located boreholes. Dell’Arciprete et al. (2012) compare sequential
indicator simulation, transition probability geostatistical
simulation and multiple point simulation. We have not used
multiple point simulation because of the requirement for 3D
training images or at least orthogonal 2D training images. We
have not used transition probability simulation because, as can be
seen in dell’Arciprete et al. (2012), it can generate unrealistic
images of spatial heterogeneity, although its successful use has
been reported by other authors (Lee et al., 2007; Bianchi et al.,
2011). We have extended sequential indicator simulation to
include the uncertainty of the proportions of the hydrofacies.
The uncertainty in proportions is propagated as uncertainty in
the variograms and thus uncertainty in the connectivity of the
hydrofacies. This extended methodology is presented in the
following section.

METHODOLOGY

The focus here is on the spatial distribution of hydrofacies in
coastal aquifers, which is the major determining factor in
seawater intrusion. The physical heterogeneity of the
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geological materials that comprise the aquifer is evident from the
distribution of hydrofacies that can be observed in outcrops and
in borehole cores. In many cases there are no outcrops and, in any
case, the distribution of hydrofacies between boreholes remains
unknown. Geostatistical simulation is used to generate possible
images (as many as desired) of such unknown realities. These
simulated images reproduce the experimentally observed (from
core samples) spatial variability of the hydrofacies, which is
modeled by direct and cross-variograms. These simulations are
also conditioned to the experimental data (Chilès and Delfiner,
1999).

A spatial category (or hydrofacies for the applications
discussed here) Fi is defined as:

Fi � {u| f (u) � i} (1)

where f (u) is the function that assigns to each spatial location
u � {x, y, z} a unique hydrofacies from the set {i � 1, . . . , N}.

Suppose there are N hydrofacies that are mutually exclusive
(that is, at each location u, there is a unique hydrofacies) and
defined exhaustively in the three-dimensional space:

Fi∩Fj � ∅ ∀i, j � 1, . . . ., N; i≠ j (2)

∪
N

i�1
Fi � R3 (3)

In practice, only a part of the three-dimensional space is of
interest χ ⊂ R3. For each category define an indicator variable:

Ii(u) �
⎧⎪⎨⎪⎩

1 if u ∈ Fi
i � 1, . . . ., N

0 if u ∉ Fi
(4)

From which it follows that:

∑N
i�1

Ii(u) � 1 ∀ u ∈ χ (5)

It is assumed that each indicator variable is a second-order
stationary random function (Myers, 1989), that is, the spatial
mathematical expectation is constant, and the spatial covariance
is a function solely of the distance vector h. The mathematical
expectation of each indicator function is equal to the global
proportion of the hydrofacies:

E{Ii(u)} � pi (6)

with 0< pi < 1, i � 1, . . . . , N . The variogram is defined as:

ci(h) � 1
2
E{[Ii(u) − Ii(u + h)]2} (7)

which is related to the non-centred covariance (Journel and
Alabert, 1989) by:

Ci(h) � pi − ci(h) (8)

where

Ci(h) � E{Ii(u) Ii(u + h) � P{u ∈ Fi and u + h ∈ Fi}} (9)

In a similar way the cross-variograms, cij(h), and cross-
covariances can be defined as in Dowd et al. (2003). The

condition in Eq. 5 imposes certain relationships among direct,
and cross, variograms (Dowd et al., 2003):

ci(h) � − ∑N
j�1
j≠ i

cij(h) (10)

The sill of the variogram is given by the variance of the indicator
variable:

ci(h) 				→
h → ∞

pi(1 − pi) (11)

and the sill of the cross-variogram is given by:

cij(h) 				→
h → ∞

pi pj (12)

From Eq. 12 it is evident that all cross-variograms must be
negative as the probabilities or proportions on the right-hand
side are positive. Furthermore, the non-centered cross-covariance
between the indicators of hydrofacies Fi and Fj gives the
probability that these two hydrofacies occur at a separation
distance h:

Cij(h) � E{Ii(u) Ij(u + h)} � P{u ∈ Fi and u + h ∈ Fj} (13)

Among the many geostatistical simulation methods, we have
chosen to use sequential indicator simulation largely because of
its simplicity. The method consists of estimating, at each location
of interest u (for example, the nodes of a three-dimensional grid),
the conditional probability of occurrence of each hydrofacies,
subject to the condition:

∑N
i�1

ppi (u) � 1 (14)

The conditional probability ppi (u) is estimated by kriging (simple
indicator kriging, indicator cokriging, or any other form) using
the conditioning data, which initially comprise only the
experimental data. A value is simulated by sampling the
estimated conditional probability distribution. The simulated
value is added to the conditioning data and the process is
repeated until values have been simulated at all locations. The
algorithm is explained in detail in Deutsch and Journel (1998)
and Goovaerts (1997).

As can be seen from Eqs 10–12 the proportion of each
hydrofacies significantly affects the forms of the direct, and cross,
variograms. Because the sill of the direct, and cross, variogram
depends on the hydrofacies proportions, the ranges fitted to the
experimental variograms will also depend on the proportions
because the parameters are not fitted independently but
simultaneously with a larger sill implying a larger range. In
practical applications the real proportions are unknown and
must be estimated from sparse data, thus introducing more
uncertainty. In order to reproduce the total variability, the
uncertainty of the estimated proportions of the hydrofacies
must be assessed and taken into account in the simulations.
We propose a resampling method to estimate the uncertainty of
the proportions. Themethodology is summarized in Figure 1 and
comprises the following steps:
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(1) There are M experimental data of N hydrofacies measured
along boreholes and piezometers.

(2) Vertical variograms are calculated and used to estimate the
effective number of samples n.

(3) A bootstrap algorithm is used to generate L samples of size n
by sampling at random and with replacement from the set of
M experimental data.

(4) For each bootstrap sample of size n the proportions of the N
hydrofacies are calculated to provide a bootstrap sample of
proportions.

(5) A variogram model is obtained from the bootstrap sample of
proportions.

(6) A realization is generated using sequential indicator
simulation and the variogram models.

(7) Go to step 5) using a different bootstrap sample of
proportions. Repeat until the desired number of
simulations is achieved.

A fundamental issue is the determination of the effective
number of samples from the correlated experimental data. We
use aligned, contiguous sequences of data, such as strings of
borehole cores, to determine the effective number of data to be
used for resampling. The effective range of the variogram in the
vertical direction is a key parameter because the variability along
the boreholes is much greater than the horizontal variability
between boreholes. An example of this determination is given in
the case study section.

Once the effective number of data is determined, a large
number of samples (several thousand) of that size is obtained

by sampling with replacement from the full data set. For each
sample the hydrofacies proportions are calculated and a
histogram is generated for each hydrofacies. Note that, as the
proportions of hydrofacies must be used jointly (for example, to
satisfy Eq. 14), it is the proportions of the resamples that are
retained, and each vector of proportions is used in the
geostatistical simulation rather than using the estimated
proportions from the data.

The sequential simulation algorithm uses the models fitted
to the experimental variograms. Emery (2004) provides a
critical appraisal of the limitations of sequential indicator
simulation in general; those that relate to categorical
variables are addressed in the approach described in this
paper. There are several possibilities for estimating the
probabilities in Eq. 14. These range from simple indicator
kriging, in which each indicator variable has an anisotropic
variogram specific to each indicator variable, to full indicator
cokriging. Although the latter is the best and most complete
approach, there are serious issues around model inference and
some simplification is required. For example, a common model
could be used for all cross-variograms with a scaling factor
applied to each of them so that the correct sill, as given in Eq.
12, is assigned. However, this approach is constrained by the
need to satisfy the model validity requirement for a positive
definite coregionalization model. For categorical variables a
valid model has a very clear physical meaning. Once an
arbitrary facies, Fi � {u|f (u) � i} is fixed at an arbitrary
location u then the same hydrofacies, Fi, occurs at any other
arbitrary location u + h with conditional probability

FIGURE 1 | Flowchart for the proposed methodology.
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Cij(h)
pj

� (pi− ci(h))
pi

and hydrofacies Fj (for j≠ i) occurs with
conditional probability Cij(h)

pj
� −cij(h)

pj
. In addition, writing

Ci(h) � Cii(h), the total probability must be:

∑N
j�1

Cij(h)
pj

� 1 (15)

Equation (15), written in terms of the non-centred covariance,
can also be written in terms of variograms or in terms of centered
covariances, σ(h):

∑N
j�1

σ ij(h) + pipj
pj

� 1 (16)

FIGURE 2 | (A) Location of the study area in the Andaraxriver delta. The yellow square is the area of the case study in which there are 19 boreholes and three
clusters of four piezometers. The numeral 1 denotes detrital material from the Quaternary and 2 from the Pliocene. (B) Data for the five hydrofacies (F1 to F5) within
boreholes and piezometers. The color legend ranges from very permeable (dark blue � F1) to very impermeable (dark red � F5).
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−∑N
j�1

cij(h) � 0 (17)

Note that, by writing ci(h) � cii(h), Eqs 17 and 10 are equivalent.
That is, a valid model of covariance and cross-covariances implies
the occurrence probabilities are coherent.

From a practical perspective, there is also a need to
demonstrate that any improvement in results from the
complete cokriging method is sufficient to justify its use over
that of simpler approaches. Thus, simple indicator kriging, in
which each indicator variable has a specific anisotropic
variogram, was chosen for the work presented in this paper.

The technique is illustrated in detail by the case study in the
following section.

CASE STUDY

The study area (Figure 2A) is the detrital aquifer of the Andarax
river delta in the province of Almeria in southern Spain. The
aquifer comprises deltaic deposits from the Pleistocene overlain
by fluvial and deltaic deposits from the Quaternary (Sánchez-
Martos et al., 1999). The Andarax river is ephemeral, with flow
usually resulting from big storms, and is an example of rivers in
the semi-arid coastal regions of the Mediterranean. Within the
study area there are 19 boreholes and three clusters of four
piezometers each (Jorreto-Zaguirre et al., 2005) the locations
of which are shown in plan view in Figure 2A. Figure 2B shows
the spatial locations of the boreholes and piezometers together
with colour-coded plots of the recorded hydrofacies. The vertical
resolution of the boreholes and piezomenter cores is one m. The
borehole cores have been classified into five types of hydrofacies
according to their permeability: very permeable (F1), permeable
(F2), low permeability (F3), impermeable (F4), and very
impermeable (F5).

The proportions of each hydrofacies measured along the
boreholes are: 2.62, 43.72, 27.21, 18.57, and 7.87%,
respectively. The problem could be simplified by grouping the
hydrofacies into three broader types (aquifer, aquitard and
aquiclude) or even into only two types (permeable and
impermeable). However, there is value in retaining the five
hydrofacies because the very permeable hydrofacies could be
associated with high permeability channels while the very
impermeable facies could be associated with hydraulic barriers.
Figure 2B clearly shows the sparsity of the data, with very few
borehole cores to represent the total study volume, from which it
is reasonable to conclude that the real hydrofacies proportions
may differ significantly from the estimated values.

The data comprise hydrofacies observations made on
2,477 one-metre borehole cores. Classical (non-spatial)
statistics cannot be used to evaluate the uncertainty of the
proportions calculated from these data because spatial
correlation implies that neighboring samples are not
independent and, therefore, some of the information in the
values of these samples is redundant. Variograms can be used
to quantify the range of spatial correlation from which it is
possible to infer the effective number of (spatially

uncorrelated) samples. Variograms calculated along the
boreholes (Figure 3) indicate an effective range of spatial
correlation in this direction of around 8 m, i.e., samples
separated by distances greater than, or equal to, 8 m are
uncorrelated. Assuming that the average distance between
pairs of boreholes is greater than the ranges of spatial
correlation in all other directions, the effective number of data
can be inferred as approximately 300. The uncertainty of the
proportions can now be estimated by a bootstrap procedure, that
is, resampling with replacement with a sample size of 300 from
the full set of 2,477 data. A total of 5,000 bootstrap samples of size
300 were generated and the bootstrap distribution of the
proportion of each of the five categories was calculated.
Figure 4A shows the bootstrap distribution for the very
permeable (F1) hydrofacies. Confidence intervals can be
calculated from the bootstrap distributions. For example,
although the estimated proportion of the very permeable
hydrofacies (F1) is 2.62%, the lower and upper limits of the
95% confidence interval are, respectively, 1% and 4%. Figure 4B
shows the bootstrap distribution for the very impermeable
hydrofacies (F5). The complete results are shown in Table 1
from which the similarity between mean and median indicates
that the distributions are symmetrical.

Variograms were calculated for each of the indicators. As
the sills of the direct and cross-variograms depend on the
hydrofacies proportions it is useful to standardize the
experimental variograms using the estimated proportions so
that they can be displayed on the same graph. Figure 3A shows
the standardized variograms calculated along the boreholes.
The variogram for hydrofacies F1 is noticeably different to
those of the other hydrofacies; the variogram for F5 also differs
from the others but by a smaller amount. None of the
variograms in Figure 3A reach the theoretical sill of 1.0,
which reflects the fact that the estimated proportions differ
from the true underlying proportions. The implication of this
observation is that models fitted to the sample variograms will
be different for each bootstrap sample of proportions. Table 2
lists the experimental proportions together with the
proportions calculated from the first ten bootstrap samples
and Figure 3B shows the experimental variograms for
hydrofacies F1. An indication of the effects of the
uncertainty of the proportions is given by comparing the
variograms of the experimental proportion of hydrofacies
F1 (2.62%) with, for example, the fifth bootstrap value of
3.00%. These two proportions would generate respective
variogram sills of 0.0255 and 0.0291 and weighted least
squares estimated ranges of 4.37 and 5.62 m, respectively, as
shown in Figure 4B. The weighted least squares estimated
ranges of exponential models for the experimental proportions
of the other hydrofacies are 3.00, 2.87, 2.73, and 2.05 m for F2,
F3, F4, and F5, respectively, and these values quantify the
differences that can be seen graphically in Figure 3A. Note that
for exponential model variograms the sill is reached
asymptotically and it is useful to define an effective, or
practical, range at which, for all practical purposes, the sill
is reached; the effective range is three times the range
parameter in the variogram model.
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Although the locations of the boreholes are not ideal for
detecting horizontal anisotropies, there is no evidence of
anisotropy in the horizontal plane as demonstrated by the
example of the east-west and north-south indicator variograms
for hydrofacies F5 in Figure 5. However, because of the physical
structure of deltaic deposits, anisotropies are expected between
vertical and horizontal directions and these should be evident in
the variograms, i.e., spatial correlation in the horizontal plane
should be greater than that in the vertical direction. Given the lack
of evidence for anisotropy in the horizontal plane, omni-
directional horizontal variograms were calculated and
modeled. The exponential models fitted by weighted least
squares to the omni-directional variograms in the horizontal
plane for the different hydrofacies have ranges of 6.8, 27.5,

35.8, 25.5, and 25.4 m for hydrofacies F1 to F5, respectively.
The very high permeability hydrofacies (F1) has an effective
range, or spatial correlation length, of 21 m and the rest of the
hydrofacies have effective ranges of 75–105 m.

A plausible explanation of these variograms is that the effective
ranges quantify the average horizontal extents of permeability
channels. If, for example, permeability is due to paleochannels
formed from meandering streams then the greater the horizontal
extent of the hydrofacies the greater is the likelihood for hydraulic
barriers to have formed. Thus, the highest permeability facies F1
has the smallest horizontal extent (21 m) and the lower
permeability facies have horizontal extents greater than 75 m.

For the co-regionalization model of the five hydrofacies,
Figure 6 shows the experimental indicator cross-variograms

FIGURE 3 | (A) Standardized indicator variograms calculated along the boreholes for the five hydrofacies and standardized by their variances. (B) Indicator
variogram of facies F1 along the borehole and the two best models fitted which were those for hydro facies F1 proportions of 2.62 and 3.00% which implies variances of
0.0255 and 0.0291, respectively, and fitted ranges of 4.37 and 5.62 m, respectively, for an exponential variogram model.
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FIGURE 4 | Histogram of the bootstrap distribution for (A) F1 hydrofacies and (B) F5 hydrofacies.

TABLE 1 | Statistics of the bootstrap distributions for the different hydrofacies.

Hydrofacies Mean (%) Median (%) 95% CI lower limit
(%)

95% CI upper limit
(%)

F1 Very permeable 2.65 2.67 1 4
F2 Permeable 43.70 43.60 38 49
F3 Low permeability 27.10 27.00 22 32
F4 Impermeable 18.50 18.60 14 23
F5 Very impermeable 7.80 7.70 5 11

TABLE 2 | Experimental proportions and first ten bootstrap realisations of proportions.

Experimental Bootstrap samples

F1 0.0262 0.0267 0.0233 0.0367 0.0333 0.0300 0.0233 0.0300 0.0300 0.0267 0.0333
F2 0.4373 0.4467 0.4200 0.4267 0.3967 0.4033 0.4367 0.4333 0.4633 0.3767 0.4000
F3 0.2721 0.2933 0.2867 0.2500 0.2700 0.2700 0.2500 0.2867 0.2533 0.3067 0.2867
F4 0.1857 0.1467 0.1867 0.2067 0.2100 0.2300 0.2033 0.1667 0.1833 0.2233 0.1933
F5 0.0787 0.0867 0.0833 0.0800 0.0900 0.0667 0.0867 0.0833 0.7000 0.0667 0.0867
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along the boreholes between hydrofacies F2 and the other four
hydrofacies and the models fitted to them. Figure 7 shows the
experimental indicator variogram along the boreholes of

hydrofacies F2 and the model fitted to it. The models were
fitted by taking account of the experimental proportions and
using weighted least squares to fit an exponential model with no

FIGURE 5 | Indicator variograms for hydrofacies F5 for the two perpendicular directions most likely to exhibit anisotropic behavior.

FIGURE 6 | Indicator cross-variograms between hydrofacies F2 and the other hydrofacies and models fitted to them: (A) F2-F1; (B) F2-F3; (C) F2-F4 and (D)
F2-F5.
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nugget. The model fitted to the indicator cross-variogram
between hydrofacies F2 and F1 has a range of 7.45 m while
the indicator direct-variograms of those hydrofacies have
ranges of 3.0 and 4.37 m, respectively. However, these ranges
are not compatible with the linear model of coregionalization in
which the range of the cross-variogram cannot be greater than the
ranges of the direct variograms. The consequence of failing to
meet this requirement can be demonstrated in terms of the
conditional probabilities of occurrence. If, for example,
hydrofacies F2 is observed at an arbitrary location u, what is
the probability that each of the hydrofacies occurs at, say, 5 m
further down the borehole?

These probabilities can be calculated from the models fitted to
the direct and cross variograms as follows:

Probability of F2 occurring:

C2(5)
p2

� (p2 − c2(5))
p2

� (0.4372 − c2(5))
0.4372

� 0.543

Probability of F1 occurring:

C21(5)
p21

� c21(5)
p1

� 0.213

Probability of F3 occurring:

C21(5)
p23

� −c23(5)
p3

� 0.347

Probability of F4 occurring:

C24(5)
p24

� −c24(5)
p4

� 0.361

Probability of F5 occurring:

C25(5)
p25

� −c25(5)
p5

� 0.394

The sum of these probabilities is 1.86 rather than 1.0 as it
should be and thus the models fitted in Figures 6, 7 are not
valid when taken jointly. The ranges could be modified to

ensure that the total probability is 1.0 by increasing the ranges
of the indicator cross-variograms. However, this is not a
general solution because the example given is very specific:
it is only for one hydrofacies, for the Z-direction variogram,
using only one conditioning point and for a specific distance of
5 m. Fitting models that would satisfy all possible constraints
would be very cumbersome.

If only the direct variograms are used, the probability of F2
occurring remains the same:

C2(5)
p2

� (p2 − c2(5))
p2

� (0.4372 − c2(5))
0.4372

� 0.543

and the complementary probability 1–0.543 � 0.457 is distributed
among F1, F3, F4, and F5 in proportion to their prior probabilities
of 0.0262, 0.2721, 0.1857, and 0.0787, respectively. Using these
values in the previous equation would reproduce the correct
variograms.

The following procedure was adopted for sequential
simulation:

(a) Retain each bootstrap realization of the hydrofacies
proportions that is inside the 95% confidence interval
{p̂i > 0, i � 1, . . . , 5} . This automatically satisfies the

requirement: ∑5
i�1

p̂i � 1.

(b) Using p̂i(1 − p̂i) for the sill of each direct variogram and −p̂ip̂j
for the sill of each cross-variogram, determine, by least
squares, the ranges that give the best fit of exponential
model variograms to the experimental variograms.

(c) Apply the sequential simulation algorithm.
(d) Go to (a) and repeat to generate a specified number of

simulations.

For the experimental proportions, the least squares fit to the
direct and cross-variograms of an exponential model without a
nugget gives the ranges shown in Table 3. The effective ranges, or
distances beyond which correlations are effectively zero, are three
times these values.

There are three general possibilities for modeling the
conditional probabilities of categorical variables (Goovaerts,
1994) for the purpose of simulating them by sequential
indicator simulation: median indicator kriging, multiple
indicator kriging and indicator co-kriging. Median
indicator kriging uses the same indicator variogram model

FIGURE 7 | Indicator variograms for hydrofacies F2 and fitted model.

TABLE 3 | Ranges of an exponential variogram model fitted to the experimental
variogram by weighted least squares taking into account the experimental
proportions.

Hydrofacies Range in
direction Z (m)

Range in
X-Y plane (m)

Sill

F1 (p1� 0.0262) 4.37 6.78 p1(1 − p1) � 0.0255
F2 (p2� 0.4373) 3.00 27.50 p2(1 − p2) � 0.2461
F3 (p3� 0.2721) 2.87 35.78 p3(1 − p3) � 0.1981
F4 (p4� 0.1857) 2.73 25.48 p4(1 − p4) � 0.1512
F5 (p5� 0.0787) 2.05 25.41 p5(1 − p5) � 0.0725

Frontiers in Earth Science | www.frontiersin.org November 2020 | Volume 8 | Article 56312210

Jorreto-Zaguirre et al. Spatial Heterogeneity of Deltaic Hydrofacies

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


for all categories; this common model is a type of mean, or
median, model. The second possibility is multiple indicator
kriging using variogram models fitted to each hydrofacies
indicator.

The third possibility is indicator co-kriging in which the
main difficulty is to fit a valid coregionalization model. The
simplest coregionalization model is the linear model in which all
direct, and cross, variograms are linear combinations of a set of
basic direct variograms. The intrinsic coregionalization model is
a special case of the linear model in which the basic direct
variograms for each variable are identical. Allowing for the
noisy nature of the empirical variograms and cross-variograms
in Figures 8A,B for the horizontal plane (shown as dots in the
figure), it is reasonable to fit the same model for all directions as
shown by the red lines. A different model is fitted for the

variograms in the vertical direction, but the model is the
same for the direct and cross-variograms. As this model is an
intrinsic model of coregionalization and, because all variables
(the five indicators of the five hydrofacies) have been measured
at all locations, it has the property of auto-krigeability
(Wackernagel, 1994), which means that cokriging a variable
from the set of coregionalized variables yields the same value as
kriging.

The intrinsic correlation model can be written as:

Γ(h) � C c(h) (18)

where γ (h) is an exponential model variogram with range 25 m as
shown in Figure 8, and C is a positive definite matrix of
coefficients:

FIGURE 8 | (A) Standardized indicator direct variogram for the five hydrofacies and fitted model. (B) Standardized indicator cross-variograms for the five
hydrofacies: ten cross-variograms and fitted model. The fitted model is an intrinsic model of coregionalization. The model is exponential with range 25 m (effective range
of 75 m).
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C �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1(1 − p1) −p1p2 −p1p3 −p1p4 −p1p5
−p2p1 p2(1 − p2) −p2p3 −p2p4 −p2p5
−p3p1 −p3p2 p3(1 − p3) −p3p4 −p3p5
−p4p1 −p4p2 −p4p3 p4(1 − p4) −p4p5
−p5p1 −p5p2 −p5p3 −p5p4 p5(1 − p5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

Furthermore, from Eq. 10 these coefficients must be such that:

c1(h) � −c12(h) − c13(h) − c14(h) − c15(h)
c2(h) � −c21(h) − c23(h) − c24(h) − c25(h)
c3(h) � −c31(h) − c32(h) − c34(h) − c35(h)
c4(h) � −c41(h) − c42(h) − c43(h) − c45(h)
c5(h) � −c51(h) − c52(h) − c53(h) − c54(h)

(20)

Using median indicator kriging gives unrealistic outputs, in
particular hydrofacies models with connectivities that are too
low to generate observed flows. In this work, multiple
indicator kriging was used together with the auto-
krigeability model in which the cross-variogram of each
variable with all other variables is proportional to the
variogram of that variable.

This approach allows for different spatial variability for each
hydrofacies and it generates realisations with significantly higher
connectivity than those generated by median indicator kriging as
can be seen by comparing Figures 9A,B. Figure 10 shows three-
dimensional views of four simulations using the experimental
proportions; these views provide a better appreciation of the
relationships between the different hydrofacies and of the real
heterogeneity of the aquifer. This heterogeneity may influence the
spatial patterns of seawater intrusion and thus condition the
spatial distribution of water quality.

Some examples of the direct- and cross-variograms
reproduced by the method are shown in Figures 11, 12 for
the Z-direction and the horizontal plane, respectively. The
ergodic fluctuations of the variograms of the simulation may
not seem large enough to include the experimental variogram,
but it should be remembered that only the experimental
proportions were used and not the bootstrap proportions.
When the bootstrap proportions are used, the sills of the
variogram models used in the simulation change, as do the
ranges, and this increases the ergodic fluctuation to reflect the
unknown real variability of the hydrofacies. This would be
apparent in an application in which thousands of simulations
are used in order to include the spatial uncertainty of the
hydrofacies in the simulation.

Finally, Figures 13A,B show the connectivity function
(Pardo-Igúzquiza and Dowd, 2003) for the five hydrofacies
in the vertical direction and on the horizontal plane,
respectively. For hydrofacies facies F1, for example, there
are connectivities of up to 40 m in the vertical direction
and 100 m in the horizontal direction, which, because
these are very high permeability channels, may have
important consequences for water intrusion and/or for
rapid propagation of contaminants.

DISCUSSION

The conditional geostatistical simulation of hydrofacies provides
numerical models of aquifers that reproduce the observed spatial
variability of the geological structures. These patterns of spatial
variability significantly influence flow and transport modeling in
coastal aquifers and, as a consequence, influence the assessment
of seawater intrusion. This is because the spatial variability of the
hydrofacies influences the mechanical macro-dispersion of the
mixed zone in seawater intrusion.

This work shows that the uncertainty in hydrofacies
proportions estimated from sparse data can be included in
sequential simulation. These proportions condition the sills of
the variogrammodels, the variability of which provides a measure
of the impact of the uncertainty in fitting theoretical models.

Various approaches have been used to simulate categorical
variables using indicators. Each of these uses different types of
indicator kriging in the sequential simulation algorithm. The
work presented in this paper uses indicator kriging, in which each
hydrofacies has its own model, as a compromise between simpler
options and the most complete option of full cokriging. The

FIGURE 9 | 3D view of a realization generated by using the experimental
proportions and (A)median indicator kriging and (B)multiple indicator kriging.
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connectivity function given in Pardo-Igúzquiza and Dowd (2003)
has been used as a measure of connectivity although other
connectivity indices could have been used, for example,
Vassena et al. (2010) and Renard and Allard (2013).

Although the work presented here is limited to the simulation
of categorical variables, it can easily be extended to include the
generation of quantitative variables (e.g., hydraulic conductivity,
porosity) by assigning a probability density function of the
variable to each categorical hydrofacies. Borehole logging
(natural gamma and resistivity are available) could be used to
construct the probability functions. Another extension would be
to use pumping test data for screening the simulated realisations.
All these lines of research are left open for future work.

A fundamental question that arises from this study is whether
the inclusion of the uncertainty of the hydrofacies proportions in
the simulation (a large number of realisations considering the
bootstrap proportions) gives results that are significantly
different to those that would be obtained from a standard
simulation (i.e. a large number of realisations with the same
global proportion, but ignoring the uncertainty of the
hydrofacies proportions). To answer this question, we used a
simplified experiment to compare the outputs from the
proposed extended sequential indicator simulation with those
that would be obtained from standard sequential indicator
simulation. The experiment comprised:

• A two-dimensional problem.
• Only two facies: the most permeable phase (0) and all

others (1).
• Non-conditional simulations.
• 1,000 independent simulations.

• Identical variograms for the proposed extended sequential
indicator simulation and the standard sequential indicator
simulation.

• The same experimental proportions were used for all of the
1,000 standard sequential indicator simulations.

• 1,000 bootstrapped proportions were used for the 1,000
simulations using the proposed extended sequential
indicator simulations.

An assessment of the connectivity of the two approaches
showed that the means of the connectivity function statistics
and the means of the connectivity function itself are very
similar. However, the minimum and maximum numbers of
connected components in a single simulation are significantly
different with a greater range of variation in the simulations
generated by the proposed extension. The minimum and
maximum number of connected components for a standard
sequential indicator simulation were 19 and 65, respectively
whereas for the extended sequential indicator simulation they
were 4 and 95, respectively. Thus, the variability is
significatively larger when the uncertainty of the facies
proportions is included. In addition, the same constant
variograms (type of variogram and range) were used in both
sets of 1,000 realisations. However, the ranges of the variograms
will change in the proposed approach because the proportions are
related to the sill and thus the ranges fitted to the experimental
variograms may be different. This would further increase the
variability of the extended sequential indicator simulations.

In this test, the propagation of uncertainty from the facies
proportions into the set of simulations is significant and we
conclude that the same must be so in the three-dimensional

FIGURE 10 | 3D views of four simulations using the experimental proportions (A) simulation 1; (B) simulation 2; (C) simulation 3; (D) simulation 4.
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FIGURE 11 | Variograms of the borehole data (solid line) and the simulations (dashed lines) calculated for the vertical direction. (A) Variogram of hydrofacies
F1. (B) Variogram of hydrofacies F2 and (C) Cross-variogram of hydrofacies F2 and F3.
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FIGURE 12 | Variogram of the borehole (solid line) data and from the simulations (dashed lane) calculated along the horizontal direction. (A) Variogram of
hydrofacies F1. (B) Variogram of hydrofacies F2 and (C) cross-variogram of hydrofacies F2 and F3.
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case with significantly more hydrofacies than were used in this
demonstration.

CONCLUSIONS

An extension of sequential indicator simulation for
simulating realisations of the three-dimensional
distribution of deltaic hydrofacies has been proposed in
this paper. The extension is the inclusion of the
uncertainty of the proportions of each hydrofacies by using
a bootstrap algorithm that generates feasible realisations of
the proportions using an effective number of samples to
evaluate that uncertainty. The actual proportions of the
hydrofacies influence the direct and cross-variograms of
the hydrofacies (using indicators) and thus affect the
connectivity between them. This extension will allow a

more realistic evaluation of the uncertainty of the
underground geological medium which, in turn, will affect
the simulation of flow and transport in coastal aquifers.
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