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Abstract. There exists a long standing discrepancy of around 3.5σ between
experimental measurements and standard model calculations of the magnetic
moment of the muon. Current experiments aim to reduce the experimental
uncertainty by a factor of 4, and Standard Model calculations must also be
improved by a similar factor. The largest uncertainty in the Standard Model
calculation comes from the QCD contribution, in particular the leading order
hadronic vacuum polarisation (HVP). To calculate the HVP contribution, we
use lattice gauge theory, which allows us to study QCD at low energies. In order
to better understand this quantity, we investigate the effect of QED corrections
to the leading order HVP term by including QED in our lattice calculations,
and investigate flavour breaking effects. This is done using fully dynamical
QCD+QED gauge configurations generated by the QCDSF collaboration and a
novel method of quark tuning.

1 Introduction

The anomalous magnetic moment of the muon, aµ = g−2
2 , is one of the most precisely mea-

sured quantities in particle physics [1]. Despite the precision, there currently exists a 3.5−4
standard deviation discrepancy between theoretical Standard Model (SM) predictions and
experimental determinations. This persistent discrepancy leads the anomalous magnetic mo-
ment of the muon to be considered as a potential candidate to observe physics beyond the
Standard Model [2]. At present, the experimental Ref. [3] uncertainty and the total theoretical
uncertainties are of comparable magnitude. The Muon g−2 Experiment at Fermilab Ref. [4]
aims to reduce the experimental uncertainty to 140 parts-per-billion, a 4 times improvement.
Thus it is essential to get the theoretical uncertainties down to a comparable precision. It is
well known that the theoretical uncertainty of aµ is dominated by the hadronic contribution,
in particular the Hadronic Vacuum Polarisation (HVP) and hadronic light-by-light scattering
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Ensemble L3×T N f muū mdd̄ mss̄ mmin
qq̄ L mπ+ mK+

1 323×64 2+1 430 405 405 4.4 435 435
2 323×64 2+1 360 435 435 4.0 415 415
3 323×64 1+1+1 290 300 585 3.2 320 470
4 483×96 2+1 430 405 405 6.7 435 435
5 483×96 2+1 360 435 435 5.9 420 420
6 483×96 1+1+1 290 300 580 4.8 320 470

Table 1: Ensembles used in this work. All masses are in MeV.

contributions ([5]). In this study we will focus on the HVP term. Currently, the best results for
HVP come from e+e− scattering cross sections, which contribute a 0.5% uncertainty. Lattice
simulations of the HVP term have received a surge of interest over the past few years, with
results now being quoted at the physical point with O(1%) errors [6, 7], and are predicted to
soon offer the most precise results for the HVP term. Traditionally, these lattice calculations
have only been done using pure QCD, or have included QED though various methods such
as partially quenched QED. As we are pushing for a very high level of precision, the ques-
tion arises of whether we need to start including the full electromagnetic (EM) corrections to
our lattice calculations of the HVP term. In this work we employ six ensembles of fully dy-
namical QCD+QED lattice configurations generated by the QCDSF collaboration, including
simulations on two different volumes, shown in Table 1. These ensembles are tuned using a
novel scheme such that the average quark mass is kept constant at the average physical quark
mass using the Dashen scheme, as described in Ref. [8].

2 Time-moment representation

We use the time-momentum representation proposed in Ref. [9] to calculate the HVP con-
tribution to the anomalous magnetic moment of the muon. We can calculate aHV P

µ from the
vacuum subtracted polarisation function Π̂(Q2) using

aHV P
µ =

(
α

π

)2 ∫ ∞

0
dQ2K(Q2;m2

µ)Π̂(Q2), (1)

where K(Q2;m2
µ) is a known kernel function (Ref. [10]),

K(Q2;m2
µ) = m2

µ Q2Z3(Q2)
1−Q2Z(Q2)

1+m2
µ Q2Z2(Q2)

, (2)

Z(Q2) =

(√
(Q2)2 +4m2

µ Q2−Q2
)
/(2m2

µ Q2). (3)

In the time-moment representation, the vacuum subtracted polarisation function, Π̂(Q2),
is obtained from the spatially summed two-point correlator, G(t),

Π̂(Q2) = 4π
2
∫

∞

0
dt G(t)

(
t2− 4

Q2 sin2
(

Qt
2

))
, (4)

G(t) =−
∫

d3x〈Ji(x)Ji(0)〉 , (5)
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where
Ji(x) =

2
3

ū(x)γiu(x)−
1
3

d̄(x)γid(x)−
1
3

s̄(x)γis(x)+ ... (6)

Substituting this into Equation 1, we can rewrite it as

aHV P
µ =

(
α

π

)2 ∫ ∞

0
dtG(t)K̃(t;mµ), (7)

where K̃(t;mµ) is given by

K̃(t;mµ) = 4π
2
∫

∞

0
dQ2K(Q2;mµ)

[
t2− 4

Q2 sin2
(

Qt
2

)]
, (8)

and K(Q2;mµ) is the same kernel function as in Equation 1. Here we employ the analytic
form for K̃(t;mµ) derived in Ref. [11].

3 Results and discussion

3.1 Time Moment

We calculate aHV P
µ from Equation 7, following the method outlined in Ref. [11]. At large

times, the 2 point function G(t) suffers from a loss of signal into statistical noise, and is
contaminated by the backwards propagating state. Since Equation 7 requires G(t) to be
known to infinite time, this issue is overcome by only using the 2 point function data, Gdata(t)
up to some value of t = tcut . At this point we perform a cut, after which we replace the lattice
correlator with a fitted form in order to extrapolate to large time. For this fit we use a series
of exponentials to represent the correlator, such that

G(t) =
{

Gdata(t) t ≤ tcut ,

∑i Aie−Eit t > tcut .
(9)

The first exponential in the series represents the ground state, and the second and subsequent
exponentials represent the first excited state and so on. We have performed these fits with
1, 2 and 3 states, that is, the ground state and up to 2 excited states included. These fits are
performed on a window starting at tcut , and extending until the signal is lost to noise or the
backwards propagating state, based on a covariance χ2 metric.

As multiple exponential fits can be unstable on some of the ensembles considered, we
choose to use the 1 stage fit for our analysis. This also takes advantage of the lower statistical
uncertainty of our lattice data at early Euclidean times t. We use the 2 and 3 state fits to
ensure that our 1 state fit window has minimal excited state contamination. Figure 1a shows
that the ground state dominates the signal as long as tcut is sufficiently large. By choosing
values of tcut large enough we can accurately represent the data using a 1 state fit with little
excited state contamination.

For the region t < tcut we use a cubic spline over the lattice data to compute the contribu-
tion of this region to the integral in Equation 7.

An example of our fitting method is shown in Figure 1b, where we have used the raw
lattice data before tcut , and then our exponential fit after. The datapoints in grey show the
lattice data after tcut , which are not used. These are closely reflected in the fit within the
fit window, but are dominated by the backwards propagating state towards the larger time
values. Note that this is a plot of the full integrand in Equation 7, not just the correlator G(t).

Repeating this fitting scheme over all our ensembles, we can then calculate aHV P
µ for all

our different quark charges and masses. We use the meson mass flavour-breaking expansion
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(a) 1, 2 and 3 state fits, with the earliest time-
slice included in the fit (tcut ) for each fit shown
by the dashed line. Correlator data is shown by
black markers. Note that higher state contribu-
tion is minimal after the cut point.
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(b) Plot showing the full integrand of Equation 7.
Blue crosses are the integrand data points used
in constraining a cubic spline (blue curve). The
magenta line in the tail is from our exponen-
tial function fit for the t > tcut region, with the
fit window indicated by the two vertical lines
Greyed crosses are integrand points after tcut ,
which are replaced by the fitted exponential.

Figure 1

detailed in Refs. [8] and [12], adapted for the SU(3)-flavour properties of aHV P
µ to extrapolate

to the physical masses.
Figure 2 shows our values for aHV P

µ plotted against the Dashen mass, µD
q . Note that for

ease of plotting, we have compressed the direction relevant to the variation of aHV P
µ with

sea quark mass by shifting all points to the physical sea quark masses δmq = δmphys
q . The

physical values for the valence quark masses are given by the red (up), green (down) and blue
(strange) vertical dashed lines. The final value for aHV P

µ is obtained by taking the appropriate
charge-weighted combination of all three quark flavour contributions at their physical masses,

aHV P
µ =

4
9
(u)+

1
9
(d)+

1
9
(s) . (10)

By doing this we find a value for aµ on each volume. For the 323× 64 volume we find
aHV P,LO

µ = 492±15×10−10, and on the 483×96 volume aHV P,LO
µ = 579±23×10−10. The

difference between the two volumes is not unexpected due to the significant finite volume
effects mentioned in Ref. [9, 13].

Even so, we still find the value on our larger volume to be smaller than expected when
comparing to other lattice studies using similar setups and methods. However, as finite vol-
ume corrections are not included, we estimate the consistency of our results with other studies
by comparing to those other results on a similar volume, without finite volume corrections

applied. Ref [11] find
(

aHV P,LO
µ

)uds
= 602.4(24.8)(28.9)×10−10 before applying finite vol-

ume corrections which is consistent with our results.
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Figure 2: aHV P
µ against Dashen mass, left: 323× 64, right: 483× 96. Note that points are

shifted to δm = δmphys line. Colours refer to quarks with different charges, red: Up quark,
green: Down/strange quarks, cyan: ‘Neutral’ quark. Vertical lines mark the physical quark
mass

3.2 Charge Contribution

We can note in Figure 2 the difference in slopes between the red (up quarks with charge + 2
3 e)

and green (down/strange quarks with charge − 1
3 e) curves, which is purely an EM effect. To

quantify the significance of this effect we can look at the deviation of the charged curves from
the neutral (in blue, using quarks with charge 0e) curve, and normalising it against the neutral
curve. We do this in Figure 3 by taking the ration

au
µ−an

µ

an
µ

, and similar for the down quark. A
quantitative result will be coming in a future publication soon, but it is clear that there is a
non-zero EM effect due to quark charge.

As the aim is for lattice to reach a level of precision with errors less than 1%, controlling
these EM effects looks to be of increasing importance going forwards.
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Figure 3: Deviation of charged contribution from neutral, normalised to the neutral contribu-
tion, on each volume. left: 323×64, right: 483×96
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