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Abstract

Naïve and primed pluripotent hESCs bear transcriptional similarity to pre- and post-implantation 

epiblast and thus constitute a developmental model for understanding the earliest pluripotent 

stages in human embryo development. To identify new transcription factors that differentially 

regulate the unique pluripotent stages, we mapped open chromatin using ATAC-Seq and found 

enrichment of the AP2 transcription factor binding motif at naïve-specific open chromatin. We 

determined that the AP2 family member TFAP2C is upregulated during primed to naïve reversion 

and becomes widespread at naïve-specific enhancers. TFAP2C functions to maintain pluripotency 

and repress neuroectodermal differentiation during the transition from primed to naïve by 

facilitating the opening of enhancers proximal to pluripotency factors. Additionally, we identify a 

previously undiscovered naïve-specific POU5F1 (OCT4) enhancer enriched for TFAP2C binding. 
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Taken together, TFAP2C establishes and maintains naïve human pluripotency and regulates OCT4 

expression by mechanisms that are distinct from mouse.

Introduction

The broad contours of pre-implantation development are conserved between mice and 

humans1. After fertilization to create the zygote, the embryo undergoes cell divisions, 

compacts to form the morula, then undergoes further cell division and cavitation to form the 

fluid-filled blastocyst. At this point, the first three cell types, trophoblast, primitive 

endoderm, and epiblast are specified, with the epiblast destined to give rise to all embryonic 

tissues. Upon implantation, the epiblast undergoes dramatic changes in gene expression and 

epigenetic state, “priming” it to differentiate rapidly in response to external cues. As such 

the epiblast transitions from the naive pluripotent state to the primed pluripotent state. 

Gastrulation then occurs and pluripotency is lost altogether.

Despite this similar overall program, it has become clear that there are dramatic molecular 

differences between mouse and human embryo development2–8. However, given the 

significant limitations in research using human embryos, it has not been possible to 

rigorously compare the murine and human naïve epiblast.

In humans, the traditional approach for deriving and culturing human ESCs (hESCs) from 

pre-implantation embryos results in cells with primed pluripotency similar to EpiSCs. 

However, new media formulations for transitioning or deriving hESCs in the naïve state have 

now been developed9,10. Critically, naïve hESCs largely recapitulate the transcriptional and 

epigenetic program of human pre-implantation epiblast cells6,11,12. Therefore, naïve and 

primed hESCs are the only human cell-based models for understanding the critical fate 

transition between naïve and primed pluripotency in the human embryo and the contrast 

between murine and human epiblast.

Results

AP2-motifs are strongly enriched in naïve-specific regulatory elements

To identify transcription factors critical for naïve human pluripotency, we mapped open 

chromatin using assay for transposase-accessible chromatin (ATAC-seq13) in naïve and 

primed hESCs (Supplementary Figure 1A, Supplementary Table 1). Cells were cultured in 5 

inhibitors plus LIF, Activin A, and FGF2 (5iLAF) to recapitulate the naïve state and with 

FGF2 and Knockout serum replacement media (KSR) to recapitulate the primed state9,12. As 

expected, we observed strong enrichment of open chromatin at gene promoters 

(Supplementary Figure 1B), with enrichment associating with gene expression. We defined 

sets of ATAC-seq peaks in naïve and primed hESCs, as well as peaks specific to either the 

naïve or primed states (Supplementary Figure 1C, Supplementary Table 2, and Materials and 

Methods). While all sets showed enrichment of promoter sequence, this enrichment was 

much weaker for naïve and primed-specific open sites (Supplementary Figure 1C), 

consistent with the general trend that enhancer utilization rather than promoter openness is 

more variable between different cell types14,15.
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Broadly, we observed a strong correlation between the appearance of naive-specific ATAC-

seq peaks near a gene, and up-regulation of that gene in the naïve state, and between the 

appearance of a primed-specific ATAC peak near a gene and down-regulation in the naïve 

state (Figure 1A,B, Supplementary Figure 1D,E). This was true whether the ATAC-peak was 

upstream or downstream of the gene TSS (Supplementary Figure 1E,F). For example, naïve-

specific ATAC peaks are observed in the vicinity of the naïve-specific Krupple life factor 5 
(KLF5) while, primed-specific ATAC-seq peaks are observed in the vicinity of the primed-

specific genes ZIC2 and ZIC5 (Figure 1C,D). These observations are consistent with a high 

proportion of ATAC-seq peaks corresponding to enhancers that regulate nearby genes. 

Comparison to published ChIP-seq data in naïve and primed hESCs16 revealed enrichment 

of Mediator over naïve and primed specific ATAC-seq peaks in the corresponding cell type, 

and we observed strong enrichment of H3K27Ac at the boundaries of these peaks, with a dip 

in the middle likely explained by nucleosome depletion (Figure 1E). Mediator and 

H3K27Ac enrichment are predictive features of active enhancers17,18, further validating the 

ATAC-seq peaks as regulatory elements.

To identify transcription factors critical for the activity of enhancers in the naïve and primed 

states, we determined enrichment of known transcription factor binding motifs in the naïve 

and primed-specific ATAC peaks (Figure 1F, G)19. The strongest statistical enrichment in the 

naïve state corresponded to the KLF motif, consistent with the strong up-regulation of KLF 

family factors in naïve hESCs and the known role for KLF in naïve-state pluripotency in 

mouse and human9,10,20. Likewise, the motif of the primed-specific21 ZIC factors was 

enriched in the primed peaks. Unexpectedly, very strong enrichment for the AP2 

transcription factor motif was observed for naïve-specific open chromatin. AP2 transcription 

factors have been implicated in a number of developmental processes in mice, including 

placental development22–24, neural crest development25 and ectodermal patterning25–27, but 

are completely dispensable for murine epiblast formation and mouse pluripotent cell 

survival22–24,28. Hence, there may be a human-specific role for an AP2 factor in the naïve 

state.

Naïve-specific regulatory elements are present in vivo

To determine the in vivo relevance of our set of naïve-specific ATAC peaks, we performed 

ATAC-seq on eight pooled pre-implantation human blastocysts (Supplementary Table 3). We 

found dramatically increased openness in the human blastocyst over naïve-specific peaks, 

both relative to surrounding sequence and relative to primed peaks (Figure 2A–C, 

Supplementary Figure 2A), validating the biological relevance of these peaks. Nonetheless, 

there were marked differences between the open chromatin patterns in whole blastocyst and 

naïve hESCs. We reasoned that this was because the day 6 human blastocyst consists 

primarily of trophoblast, with a much smaller fraction of epiblast and hypoblast29. For 

example, we found that blastocyst showed lower ATAC-seq enrichment in the vicinity of the 

epiblast-specific gene Nanog but higher enrichment in the vicinity of the trophoblast-specific 

GATA3 (Figure 2D,E). This trend was apparent when we plotted ATAC-enrichment over 

epiblast and trophoblast-specific gene bodies as defined from published RNA-seq data 

(Figure 2F,G).
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We found AP2 and KLF motifs strongly enriched in blastocyst and naïve hESC chromatin, 

consistent with reported activation of AP2 and KLF-family transcription factors in morula 

and continued expression in human epiblast and trophoblast (Figure 2H,I). GATA TF motif 

was strongly enriched in blastocyst-specific chromatin while OCT4-SOX2 motif was 

strongly enriched in naïve and primed hESCs, consistent with preferential expression of 

GATA2 and GATA3 in the trophoblast and OCT4 in the inner cell mass and epiblast. Our 

data thus strongly support the idea that naïve hESCs have an open chromatin state similar to 

pre-implantation epiblast.

Using an alternate approach we further confirmed the in vivo relevance of the naïve-specific 

ATAC peaks by analyzing DNA methylation, given that regulatory elements are typically 

hypomethylated relative to surrounding sequence30,31. Consistent with this trend, we 

observe strong hypomethylation of naïve-specific ATAC-seq peaks in naïve hESCs cultured 

in 5iLAF or in t2iLGö10, a different culture method for generating naive hESCs6,12 

(Supplementary Figure 2B). Likewise, we observe a more pronounced drop in DNA 

methylation between the oocyte and blastocyst stages of human embryonic development at 

our defined set of naïve-specific ATAC peaks than over surrounding sequence or primed-

specific ATAC peaks (Supplementary Figure 2C,D). Thus, multiple lines of evidence support 

the proposition that the majority of putative regulatory elements identified in naive hESCs 

correspond to a hypomethylated regulatory element in human pre-implantation embryos.

TFAP2C supports reversion to the human naïve state

Of the five AP2-family transcription factors present in humans, only TFAP2C is highly 

expressed in the naïve state (Figure 3A). TFAP2C is upregulated in naïve cells at both the 

RNA and protein level (Figure 3A, B) and is expressed in human morula and pre-

implantation epiblast3,8,32. ChIP for TFAP2C showed strong enrichment over naïve-specific 

ATAC-seq peaks (Figure 3C, D), especially those containing AP2 motifs (Figure 3D). 

Furthermore, TFAP2C showed stronger enrichment at naïve-specific ATAC-seq peaks than 

at regions open in both the primed and naïve state (Figure 3E), even though both ATAC peak 

sets show similar ATAC-seq enrichment in the naïve cells (Figure 3F). Combined with our 

observation that AP2-motifs are specifically enriched in naïve-specific peaks, this data 

indicates that TFAP2C may facilitates the opening of regulatory elements during reversion.

We used CRISPR to target TFAP2C in the primed state, and lines containing null mutations 

of both alleles were confirmed karyotypically normal (Supplementary Figure 3A, B). In the 

primed state these lines showed normal expression of pluripotency genes and markers 

(Supplementary Figure 3C–F). The TFAP2C−/− cells were able to exit pluripotency normally 

with spontaneous embryoid body (EB) differentiation and showed a skew toward neural 

lineage, consistent with a known role for TFAP2C in regulating the formation of neural vs. 

non-neural ectoderm27 (Supplementary Figure 3G).

Upon reversion in naïve 5iLAF media, we observed a dramatic morphological change in the 

TFAP2C−/− hESC lines (Figure 4A, Supplementary Figure 4A, B). Consistent with this 

rapidly-emerging phenotype we discovered that at day 3 of reversion, TFAP2C protein is 

strongly induced in the control cells, while being absent in the TFAP2C−/− lines (Figure 4B, 

C). TFAP2C ChIP and ATAC-seq at day 5 of reversion shows opening of naïve-specific 
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enhancers and enrichment of TFAP2C at these sites but no opening of these enhancers in 

TFAP2C−/− (Figure 4D,E). Initially, the TFAP2C−/− cells divided rapidly in 5iLAF, but after 

one passage, round naïve-like colonies were identified only in controls (Figure 4A). Instead, 

sparse clusters of small cells were observed in the TFAP2C−/− lines after the first passage 

that ceased to divide and disappeared from culture. By day 5 of reversion, the TFAP2C−/− 

cells showed dramatic loss of pluripotency factors and upregulation of neural lineage factors 

(Figure 4F–J), a result confirmed by GO-analysis33 (Supplementary Figure 4C). Likewise 

ATAC-seq showed a loss of AP2 and pluripotency transcription factor motifs in open 

chromatin in the TFAP2C−/− cells after five days of reversion and instead, a gain of peaks 

enriched for motifs related to neural development such as SOX and ZIC (Supplementary 

Figure 4D, E).

To confirm that this finding was human specific, we performed ATAC-seq on mESCs 

cultured in the naïve state (2i+LIF) as well as primed Epiblast Like cells (EpiLCs)34 

(Supplementary Table 4). We discovered that AP2 sites were enriched in naïve-specific open 

chromatin in 2i + LIF mESCs. However, the degree of enrichment was far lower than human 

naïve cells (Figure 4K, L). We generated Tfap2c−/− and Tfap2a−/−Tfap2c−/− mESCs 

(Supplmentary Figure 4F,G) and found normal expression of pluripotency markers in 2i+LIF 

(Figure 4M). Furthermore, comparing ATAC-seq in control and Tfap2a−/−Tfap2c−/− double 

knockout mESCs, we found only 373 control-specific ATAC-seq peaks, and this set was 

only moderately enriched for AP2 sites (Figure 4N). Thus, AP2 transcription factors play a 

more modest role in murine than human naïve states.

Withdrawal of TFAP2C in naïve state causes shift toward primed state

Next, we generated a TFAP2C−/− mutant line capable of expressing TFAP2C in a 

doxycycline-dose dependent manner (Figure 5A). Overexpression of TFAP2C in primed 

media did not result in a pronounced shift toward naïve-gene expression, and TFAP2C 

primarily honed to regions of chromatin that were already open in primed hESCs 

(Supplementary Figure 5A,B), arguing that the combinatorial activity of multiple factors is 

necessary for primed to naïve reversion.

We then reverted the TFAP2C−/− Dox-inducible line, using 5iLAF media supplemented with 

various quantities of doxycycline. Induction of TFAP2C rescued the morphological 

abnormality observed in the mutant, preserved OCT4 expression, repressed SOX1 induction, 

and allowed formation of colonies with naïve-morphology (Figure 5B–E, Supplementary 

Figure 5C).

To determine the effect of acute loss of TFAP2C, we cultured cells in 5iLAF + doxycycline 

until naïve morphology colonies were apparent, then switched to media without 

doxycycline. No acute phenotype was observed, instead a gradual loss of cells from culture 

occurred (Supplementary Figure 5D,E). Cells remaining 12 days after doxycycline 

withdrawal showed increased staining for the primed surface marker SSEA4 and closing of 

naïve-specific ATAC peaks, especially the subset containing AP2 sites but no KLF sites 

(Figure 5F, Supplementary Figure 5F). These findings indicate that TFAP2C is essential for 

maintenance as well as establishment of the naïve state.
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TFAP2C−/− in low O2

Because low oxygen conditions can stabilize the pluripotent state and promote human 

embryogenesis35, we conducted two independent reversions in 5% oxygen. Similar to the 

results obtained with reversions under ambient (~20%), morphological differences, loss of 

OCT4, and gain of SOX1 and PAX6 were all apparent upon culture in 5iLAF in 5% O2 

(Figure 6A,B, Supplementary Figure 6A). However, approximately two weeks after onset of 

culture in 5iLAF under 5% O2 conditions, round colonies appeared in the TFAP2C−/− 

cultures and these putative colonies were capable of self-renewal (Figure 6B, Supplementary 

Figure 6A). However, almost all TFAP2C−/− cells had high SSEA4 surface expression 

(Figure 6A), consistent with primed identity 12. The second reversion featured a substantial 

population of cells with SSEA4 negative identity, but these cells showed gain of neural and 

loss of pluripotency markers, indicating that they were differentiated rather than naive (see 

RPKM in Supplementary Table 5). ATAC-seq of TFAP2C−/− cells persisting in 5iLAF under 

5% O2 showed reduced openness over naïve-specific peaks, and increased openness over 

primed-specific ATAC-seq peaks compared with controls (Figure 6C). Moreover, principle 

component analysis of the ATAC-Seq data sets showed a closer similarity to primed cells 

(Figure 6D), with the transcriptome of the persisting TFAP2C−/− cells present in 5% O2 

shifted toward expression of primed-specific genes (Figure 6E, Supplementary Figures 

6B,C). In further support of the finding that persistent TFAP2C−/− colonies in 5% O2 are 

more primed-like, we compared the RNA-Seq to published primate RNA-seq6 and found a 

global reduction in genes specific to pre-implantation epiblast and an increase in genes 

specific to post-implantation epiblast (Supplementary Figures 6D,E). Finally, we reverted 

the TFAP2C−/− in t2iLGöY naïve media36 in 5% O2, and similar to the results in 5iLAF, the 

TFAP2C−/− cells lacked nuclear KLF17, a marker of naïve cells (Supplementary Figure 6F, 

G). In total, these data support an essential role for TFAP2C in reversion of primed hESCs to 

the human naïve state.

TFAP2C promotes expression of pluripotency genes

The simple presence of a transcription factor at a locus does not prove a role in regulating 

nearby genes, and we observe 14,367 distinct TFAP2C peaks throughout the genome (Figure 

7A,B), making it difficult to discern which binding events are important for gene regulation. 

Compared with the striking correlation observed between presence of a naïve-specific 

enhancer and upregulation of a nearby gene (Figure 1A), we observed only a modest 

correlation between the presence of a TFAP2C ChIP-peak near a gene and the up-regulation 

of that gene in the naïve state or downregulation in TFAP2C−/− (Figure 7A). To the extent an 

effect was discernable, the presence of a TFAP2C peak at an enhancer adjacent to the gene 

was predictive of upregulation in the naïve state, but the presence of a TFAP2C peak at a 

gene TSS had a very little effect on the expression of that gene, which was surprising given 

that the promoter is a key site of gene regulation.

We therefore sought to identify direct targets of TFAP2C by combining RNA-seq, ATAC-seq 

and ChIP-seq data. First, we looked at the set of genes specific to the naïve or primed state 

and focused on the subset that showed >4-fold changes in expression in TFAP2C−/− (Figure 

7C). Second, we defined a set of TFAP2C-dependent regulatory elements: TFAP2C ChIP-

seq peaks that overlapped with naïve-specific ATAC-peaks and showed reduced openness in 
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TFAP2C−/− (Figure 7D,E). We found an extremely strong relationship between 

downregulation of a gene in TFAP2C−/− and the presence of a TFAP2C-dependent 

regulatory element nearby (Figure 7F, Supplementary Table 6). The vast majority of 

TFAP2C-dependent regulatory elements did not overlap with a gene TSS and were thus 

likely to be enhancers rather than promoters (Figure 7G). By contrast, TFAP2C ChIP-seq 

peaks in regions of openness conserved between naïve and primed state, had virtually no 

predictive effect on gene expression in TFAP2C−/− (Supplementary Figure 7A,B). In other 

words, TFAP2C’s primary effect in naïve hESCs is most likely to open a discreet set of 

regulatory elements, mainly enhancers (Figure 7H).

GREAT analysis37 showed that genes within 50kb of a TFAP2C-dependent regulatory 

element were upregulated in Theiller stage 3 and 4 embryos (morula and early blastocyst) 

and that mutations of these genes were associated with abnormal embryogenesis 

(Supplementary Tables 6,7). Adjacent genes included CBFA2T2, TFCP2L1, KLF5, SOX2, 
FGF4, NANOG, DPPA3, DPPA5 and TFAP2C itself (Figure 7I, Supplementary Figure 7C–

E, Supplementary Table 7), supporting a role for TFAP2C in directly promoting the naïve 

pluripotent program.

An intronic enhancer for OCT4 is active in naïve hESCs

One of the characteristic properties that distinguishes naive and primed states is different 

enhancer utilization at POU5F1 (OCT4). In mouse, the proximal enhancer upstream of 

POU5F1 is critical for expression in the post-implantation epiblast while the distal enhancer 

farther upstream drives expression in primordial germ cells and ICM38. In human pre-

implantation blastocyst however, neither enhancer appears open, whereas two putative 

enhancers appear downstream of the POU5F1 TSS (Figure 8A). Each of these peaks 

contains a cluster of AP2 sites and a KLF site, indicating that they could be opened by the 

combinatorial activity of these transcription factors during pre-implantation development 

(Figure 8B). “Intron element 1” shows evolutionary conservation across placental mammals 

(Supplementary Figure 8A) and is open and enriched for TFAP2C in naïve hESCs (Figure 

8A,B) but is not open in naïve mESC (Figure 8C). We do not observe any reads emanating 

from this element spliced into the OCT4 transcript, ruling out the possibility that it is 

actually an alternative promoter (Supplementary Figure 8B). Furthermore, we observe 

enhancer activity for this region in a luciferase assay, which is largely eliminated by the loss 

of either the AP2 or KLF site (Figure 8D).

To examine the role of this enhancer in naïve pluripotency, we ablated this sequence using 

CRISPR/Cas9 and confirmed normal karyotype (Figure 8B, Supplementary Figure 8C). We 

found normal expression of OCT4 (Supplementary Figure 8D) and self-renewal in the 

primed state, but a dramatic loss of OCT4 expression accompanied by differentiation upon 

reversion to the naïve state (Figure 8E,F). This indicates a potential direct role for TFAP2C 

in regulating the pluripotency master-regulator OCT4 by binding to a previously unknown 

enhancer, which in turn is likely to be important for pre-implantation OCT4 expression.
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Discussion

We present strong evidence that TFAP2C is critical for the opening of a set of enhancers in 

naïve hESCs. Furthermore, we show that most of these enhancers are present in human 

embryo and therefore biologically relevant, and likely to directly regulate genes critical for 

human naïve pluripotency.

TFAP2C has been implicated in both activation and repression of target loci39–41, which 

may explain the limited effect of TFAP2C at promoters where it is already present. However, 

the enrichment of AP2 motifs in naïve-specific ATAC-peaks, the failure of many of these 

enhancers to open in the absence of TFAP2C, and the strong association between TFAP2C-

dependent enhancers and expression of nearby genes is indicative of a critical role for 

TFAP2C in regulating gene expression by opening enhancers. TFAP2C is known to interact 

with members of the CITED family of proteins, which in turn recruit the histone 

acetyltransferase p30042–44, suggesting a model in which TFAP2C facilities enhancer 

opening by promoting histone acetylation. Because TFAP2C is expressed in the morula 

before blastocyst formation, it could have a role in resetting the chromatin landscape prior to 

the establishment of naïve pluripotency, analogous to what happens in the artificial system 

of in vitro reversion.

The observation that TFAP2C is critical in naïve hESCs in vitro would lead us to predict that 

TFAP2C is critical for gene regulation in pre-implantation epiblast in vivo. This is surprising 

in light of results in mouse, where TFAP2C is clearly dispensable for ICM and epiblast 

specification. Tfap2c homozygous null mice develop to the blastocyst stage22–24, as do 

mutants generated using Tfap2cfl/fl Zp3-Cre in which the maternal Tfap2c transcript is 

absent23. Tfap2c deficient mESCs have been successfully derived from embryos22,28 and 

generate viable mice in tetraploid complementation22, indicating that the gene is non-

essential in ICM. Redundancy with other AP2 factors is unlikely to explain this non-

essential role, as Tfap2a−/− Tfap2c−/− double mutant embryos also develop an epiblast, and 

the other AP2 factors are expressed at very low levels in morula and blastocyst23. The major 

role for Tfap2c in mouse pre-implantation embryo development is specification and 

differentiation of trophoblast, with Tfap2c null mutant mice dying from placental defects45. 

Notably, while Tfap2c is strongly enriched in the trophoblast relative to ICM in mouse 

blastocysts, human ICM and pre-implantation epiblast retain high levels of TFAP2C3,8,32. 

Tfap2c has also been reported in porcine ICM46, indicating that loss of Tfap2c from the 

ICM may be specific to mice. TFAP2C direct targets in human embryos include both genes 

general to pre-implantation embryo as well as genes specific to epiblast such as CBFA2T2, 
FGF4, and MEG3.

TFAP2C-dependent regulation of OCT4 may also be different in mouse and human, as is 

role of OCT4 itself. In mice, OCT4 is essential for pluripotency and for repression of 

trophoblast genes in the ICM47. CRISPR ablation of OCT4 in human embryos by contrast 

results in outright failure to form blastocyst or express genes associated with trophoblast or 

epiblast lineage48. Thus, OCT4 plays an essential role in humans as early as morula. Our 

data are consistent with a model in which OCT4 expression is initially regulated by TFAP2C 

and KLF family TFs via the intronic enhancers and only later is regulated from the naïve-
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specific distal enhancer. However, alternative possibilities cannot be ruled out, such as the 

distal enhancer being active in morula and decommissioned in trophoblast, which makes up 

the bulk of early blastocyst.

Morphological and molecular evidence supports the phenomenon of the “developmental 

hourglass”, the idea that the developmental program is actually most evolutionarily 

conserved in mid-embryogenesis, and both early and late stages of development feature high 

levels of variation across different species49,50. The discovery of a human-specific naïve 

pluripotency factor fits into this paradigm, and therefore model organisms may only reveal 

some of the story of how human embryos develop.

Methods

Human cell culture

Culture of primed and naïve hESCs, and reversion from primed to naïve state, were 

conducted as previously reported12, the only modification being the inclusion of 1x 

Primocin (Invivogen) in all medias. All cells were cultured in 5% CO2 and ambient oxygen 

unless otherwise indicated. Where indicated, doxycycline was added.

The reversion of primed hESCs to naïve t2iLGöY state was performed as previously 

described36, generating the t2iLGöY media as described in a previous report51. All cell lines 

were cultured in a 37°C, 5% O2 and 5% CO2 for the t2iLGöY reversion experiments.

Murine Cell culture

During routine passage and CRISPR editing, murine ESCs were cultured in Serum+LIF 

media: 15% Hyclone FBS (ThermoFisher), 1x Penicillin/Streptomycin/Glutamine 

(ThermoFisher), 1x Non-essential amino acids (ThermoFisher), 55μM β–mercaptoethanol 

(ThermoFisher), 1xPrimocin (Invivogen) and 1000U/mL ESGRO LIF (Millipore) in 

KnockOut DMEM (ThermoFisher). Cells were passaged with 0.25% Trypsin every three 

days and cultured on MEFs. Prior to all RNA-seq or ATAC-seq experiments, cells were 

cultured for at least five passages in 2i+LIF media: 1x N2 supplement, 1xB27 supplement, 

1x Penicillin/Streptomycin/Glutamine (ThermoFisher), 1x Non-essential amino acids 

(ThermoFisher), 55μM β–mercaptoethanol (ThermoFisher), 1xPrimocin (Invivogen), 3μM 

CHIR99021 (Stemgent), 0.5μM PD0325901 (Stemgent) and 1000U/mL ESGRO LIF 

(Millipore) in a 50%/50% mixture of DMEM/F12 without HEPES (ThermoFisher) and 

Neurobasal media (ThermoFisher). Cells passaged in 2i+LIF were passaged every three days 

with 0.25% trypsin and plated at 50k cells/well onto wells pretreated with poly-L-Ornithine 

(Sigma) and Laminin.

Murine EpiSCs were a gift from P. Tesar and were cultured in Primed hESC media12. 

EpiSCs were passaged with 1xCollagenase Type IV (Life Technologies) every three days.

Collecting cell populations for sequencing experiments

For sorting primed and naïve hESCs in steady state for RNA-seq and ATAC-seq TRA-1-85+ 

SSEA4+ and TRA-1-85+ SSEA4− cells were sorted as previously described12. For the first 

replicate of RNA-seq from day 5 reversion cells, MEFs were removed by twice plating the 
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cells for five minutes on a gelatinized plate to allow MEFs to attach, but for the second 

replicate of RNA-seq and for ATAC-seq, MEFs were removed by sorting for all TRA-1-85+ 

cells. The isolated human cells were then processed for sequencing as discussed below

To separate mESCs or EpiLCs from MEFs, cells were detached with 1xTrypsin, quenched 

and then washed with 1xFACS buffer, stained with 1:150 anti-SSEA1 in 1xFACS buffer, 

then washed and stained with DAPI immediately prior to sort. SSEA1+ SSClo DAPI− cells 

were sorted and then used for RNA-seq or ATAC-seq.

For human or murine ChIP experiments, cells were harvested using Accutase, quenched, and 

washed with 1xPBS prior to fixation.

Embryoid body differentiation

Primed human embryonic stem cells 7 days after plating were washed with 1xPBS and 

treated with 1xCollagenase Type IV at 37°C for 1hr, then removed from the plate with short 

strokes by a cells scraper. 4mL of MEF media (see above) was added to the well and the 

colonies were allowed to settle in a 50mL conical tube. Media was then aspirated by pipet, 

and the cells were resuspended in 3mL mTESR media with ROCKi and plated in a low 

attachment 6-well plate. At the 24 hour time point, the EBs were transferred into a 50mL 

conical tube and allowed to settle. Media was removed and replaced with primed hESC 

media12 lacking FGF. Media was changed again at hour 72 and the embryoid bodies were 

harvested at the 144 hour timepoint.

Embryo isolation and generation

Day 6 vitrified blastocysts were thawed using Vit Kit-Thaw (Irvine Scientific) according to 

manufacturer protocol. Embryos were cultured in drops of Continuous Single Culture media 

(Irvine Scientific) supplemented with 20% Serum Substitute Supplement (Irvine Scientific) 

under mineral oil for 2–3 hours at 37°C, 6% CO2 and 5% O2. Embryos with good 

morphology were used for ATAC-seq.

Targeting of loci with guide RNA

Guide RNA were designed using crispr.mit.edu. The highest scoring appropriately situated 

gDNA sequences were used, with bases removed from the 5’end as necessary so that the 

guide RNA sequence started with the base “G”. Human TFAP2C was targeted with the 

guide sequence GCTTAAATGCCTCGTTAC. The Human OCT4 intronic enhancer was 

targeted with the guides GGCACCCCTTGTAGAAAGC and 

GTAATGAGTGACCAGACCCT. Murine TFAP2C was targeted with the guide sequence 

GTTACTTTGTACTTCGACG. Murine TFAP2A was targeted with 

GGGACTATCGGCGGCACG.

CRISPR Editing of hESCs

UCLA1 hESCs52 were cultured at least two passages in mTESR1 media (StemCell 

Technologies) on Matrigel (Corning). Cells in exponential growth phase were harvested with 

Accutase, and 800k hESCs were electroporated with 4μg plasmid DNA using the CA-137, 

Primary Cell 3 program in the Amaxa 4-D Nucleofector X-subunit (Lonza). After 
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transfection, cells were transferred to a single well of a 24-well plate containing primed 

hESC media (see above) supplemented with 1x Y-27632 (Stemgent). Prior to transferring 

the electroporated cells, the 24-well plate was coated with gelatin and with MEFs. The 

hESCs were cultured in MEFs in all later steps.

For generation of the TFAP2C deficient hESC lines, cells were passaged with Accutase and 

plated on 10cm plates for colony picking the day after transfection. This resulted in 

heterogenous colonies, probably because CRISPR-mediated cleavage continued after single 

cells were plated for colony-picking, requiring later subcloning. Pure TFAP2C−/− lines were 

only generated later by subcloning. The OCT4 Intronic Enhancer line was plated with on 

10cm plates three days after transfection, and did not require later subcloning.

To obtain clonal and physically separate colonies, cells were harvested with Accutase and 

10k cells were plated on 10cm plates to allow physically separated colonies to grow. Cells 

were fed with primed hESC media starting two days after plating and media was 

subsequently changed every day. Nine to 11 days after plating, colonies were scored with a 

syringe and the pieces were transferred to a 24-well plate, where they were allowed to grow 

an additional 6–7 days in primed hESC media. Cells were then split with Accutase. Two 

thirds of the material was used for DNA extraction and screening (see Screening for 
mutations below), the remaining third was plated in primed hESC media with ROCKi in a 

well of a 12-well plate. After two days, media was changed to primed hESC media without 

ROCKi and the cells were passaged using normal primed conditions described above in the 

cell culture subsection above.

For the TFAP2C−/− lines, a further round of colony picking, expansion and genotyping was 

conducted to generate pure knockout populations. Both TFAP2C−/−Lines 1 and 2 were 

generated from the same round of transfection of UCLA1 hESCs. Control Line 1 was 

generated by transfection of UCLA1 hESCs with pMaxGFP plasmid and no CRISPR 

construct, with cloning and subcloning performed in parallel.

CRISPR Editing of mESCs

Murine ESCs were plated the day before transfection at a density of 150k cells per well in a 

6-well plate for each transfection sample. On day of transfection, cells were harvested with 

trypsin, precipitate, and then resuspended in 2.5mL of serum+LIF media (see above).

In a separate tube, 5μg of DNA (1.43μg GFP plasmid + 3.57μg CAS9/gDNA construct, 5μg 

GFP plasmid for controls) was diluted to 375μL with Opti-MEM media (ThermoFisher). In 

another separate tube 12.5μL of Lipofectamine 2000 (ThermoFisher) was combined with 

375μL Opti-MEM. The Lipofectamine/Opti-MEM solution was incubated 5 minutes, 

combined with the DNA solution, and incubated a further 20 minutes at room temperature. 

The DNA/Lipofectamine/Opti-MEM mix was added to the suspended cells and the cells 

were rotated for 4 hours at 37°C. The transfected cells were then spun down, resuspended in 

fresh serum+LIF media, and plated on MEFs.

After 48 hours, cells were harvested with Trypsin and GFP+ cells were sorted and cultured 

in 96-well plates on MEFs. Three days after sorting, media was changed. Six days after 
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sorting, wells with colonies were split with trypsin and split onto 24-well plates with MEFs. 

After another three days, cells were split again, with 12.5% of the cells split onto a 24-well 

plate with MEFs to propagate the line, 25% split onto a gelatin-treated plate without MEFs 

to grow cells for DNA extraction, and the rest frozen to create stocks. After another three 

days, the cells on gelatin were harvested for DNA extraction.

To obtain pure clonal population, the targeted mESCs were later subcloned by sorting for 

individual SSEA1+ cells and plated.

Screening for mutations

DNA was extracted using the Quick gDNA Miniprep kit and the region containing the 

targeted allele was amplified by PCR. To screen human TFAP2C−/− and murine TFAP2C−/− 

and TFAP2A−/− TFAP2C−/− mutant lines, the Surveyor Mutant Detection Kit (IDT) was 

used to identify point mutants, though some point mutations in the murine lines were large 

enough to be apparent by agarose electrophoresis even without Surveyor cutting. For 

targeting of the OCT4 Naïve Enhancer, mutant alleles were identified based on the reduced 

size of the targeted region.

To determine the identity of the mutations and confirm clonality of the targeted lines, several 

strategies were undertaken. First, bulk PCR product was subjected to Sanger sequencing, to 

determine if there was any visible trace from WT product. Second, PCR product was cloned 

into the TopoTA vector and at least eight clones sequenced to identify the mutations in both 

alleles and confirm no WT allele. Third, for human TFAP2C−/− and murine Tfap2c−/− lack 

of protein was confirmed by Western blot. For the OCT4 Intron element targeting, clonal 

deletion was also confirmed both by the lack of a WT-sized band in the initial screening 

PCR and by the failure to amplify with primers internal to the deleted region.

Generation of Doxycycline inducible line

TFAP2C was cloned into a construct facilitating expression under a doxycycline inducible 

(tetON) promoter, followed by an auto-cleaving “2A” linker and Red Fluorescent Protein 

(RFP) to allow detection. This tetON-TFAP2C-2A-RFP construct was made by cloning 

TFAP2C-2A-RFP to replace the hNANOG in FUW-tetO-lox-hNANOG (Addgene 60849). 

VSVG coated lentiviruses including tetON-TFAP2C-2A-RFP and FUW-lox-M2rtTA were 

generated in HEK293T cells. TFAP2C mutant line 1 hESCs were treated with Accutase to 

make single cell suspension in 100uL hESC media with ROCKi with 100,000 single cells. 

Cells were transduced with 1:1 ratio of tetON-TFAP2C-2A-RFP and FUW-lox-M2rtTA and 

plated in 10cM dishes at different concentrations. Individual colonies were picked and 

genotyped for tetON-TFAP2C-2A-RFP and FUW-lox-M2rtTA.

Reporter assay

The OCT4 intronic enhancer (hg19 chr6 31,137,269-31,137,697) was amplified and cloned 

into pGL3 Promoter vector (Promega). Versions with the three AP2 sites (hg19 

31,137,370-31,137,378, 31,137,529-31,137,537 and 31,137,547-31,137,555) or KLF site 

(hg19 31,137,477-31,137,485) deleted were synthesized by Genewiz and cloned into pGL3. 

200,000 naïve UCLA19n (first replicate) or UCLA20n (second replicate) hESCs were then 
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transfected with 800ng of either empty pGL3 promoter vector or one of the three constructs 

described above, along with 200ng of pRL-TK Renilla vector as a transfection efficiency 

control. We used Amaxa nucleofection with P3 buffer and the program CA-137 and plated 

the cells onto a 12-well plate well of MEFs. The cells were then detached from the well with 

Accutase and lysed, and luminescence was detected using the Dual-Glo Luciferase system 

(Promega).

Immunostaining

For Figures 4I and J, immunofluorescence was conducted as published12, with using anti-

TFAP2C (SantaCruz 8977, 1:100), anti-OCT4 (sc8628-X, 1:100), anti-PAX6 (R&D Systems 

AF3369, 1:100). For Supplementary Figure 6F, immunostaining was performed as 

previously described51. Primary antibodies used: rabbit anti-KLF17 polyclonal (1:500, 

Sigma HPA024629), mouse anti-TRA-1-60 IgM (1:300, BD), and secondary antibodies 

used: goat anti-rabbit IgG AF555 secondary (1:400, ThermoFisher), goat anti-mouse IgM 

AF488 secondary (1:400, ThermoFisher).

Western blotting

Western blots and quantitation with the Odyssey Infrared Imager (Licor) were conducted as 

described previously12. Antibodies used include anti-OCT4 (SantaCruz sc8628), NANOG 

(R&D Systems AF1997), TFAP2C (SantaCruz sc8977 and Abcam ab76007), SOX1 (R&D 

Systems AF3369), SOX2 (R&D Systems AF2018), PAX6 (R&D Systems AF2085). 

Western signals were normalized to signal from anti-H3 antibody (Abcam ab10799 or 

Abcam ab1791). All antibodies were used at concentrations of 1:1000 except Santa Cruz 

anti-TFAP2C (1:700) and H3 (1:3000).

RNA isolation and library generation

RNA was isolated using the RNeasy Mini Kit (Qiagen). 5ng to 50ng total RNA input was 

used to generate sequencing libraries using the Ovation Ultralow Library System V2 

(Nugen) and then Ovation Rapid Library System (Nugen) protocols.

ATAC-seq library preparation

In all experiments using cultured cells, between 25k and 50k sorted cells were subjected to 

ATAC-seq as previously reported53. To perform ATAC-seq on embryos, the embryos were 

incubated in the reported ATAC-seq lysis buffer for ten minutes, during which they were 

vortexed for ten seconds every three to four minutes, after which the protocol was conducted 

identically to the previous report.

ChIP protocol and library generation

Cells were fixed with 1% paraformaldehyde (Sigma) and incubated with rotation for 10 

minutes at room temperature. The paraformaldehyde was quenched by adding glycine to a 

final concentration of 0.14M and rotated another 10 minutes at room temperature. The cells 

were then centrifuged 735g for 5 minutes and then flash frozen with liquid nitrogen and 

stored at −80°C until ChIP was conducted.
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To lyse the cells for ChIP, cells were thawed and resuspended with 1mL lysis buffer (10mM 

TrisHCl pH 8.0, 0.25% Triton X-100, 10mM EDTA, 0.5mM EGTA, 1x Protease inhibitors 

(Roche) and 1mM PMSF), then rotated 15 minutes. Nuclei were pelleted by centrifugation 

at 1500g for 5 minutes at 4°C. Nuclei were then resuspended with 1mL 10mM TrisHCl pH 

8.0, 200mM NaCl, 10mM EDTA, 0.5mM EGTA, 1x Protease inhibitor, 1mM PMSF and 

rotated 10 minutes. Nuclei were then pelleted and resuspended in 650μL 10mM TrisHCl pH 

8.0, 10mM EDTA, 0.5mM EGTA,1x Protease inhibitor, 1mM PMSF and sonicated in a 

12mm × 12mm Sonication Tube (Covaris) in a Covaris S2 (Intensity = 5; Cycles/burst = 

200; Duty Cycle = 5%; 8× (30″ on/30″ off) for four minutes effective sonication). The 

sonicated lysate is then centrifuged for 10 minutes at 14200g, and the supernatant retained. 

10% of the supernatant is saved as “Input”, the rest is used for ChIP.

30μL of Protein A Dynabeads (ThermoFisher) are washed three times with ChIP buffer 

(16.7mM TrisHCl pH 8.0, 0.01% SDS, 1.1 Triton X-100, 1.2mM EDTA, 167mM NaCl), 

each wash consisting of addition of 1mL of buffer and collection of the beads on a magnetic 

rack (Diagenode). The 30uL of beads were then resuspended in 650μL of ChIP buffer and 

combined with the ChIP sample to pre-Clear the sample. Beads and chromatin were rotated 

2hrs at 4°C, and the beads were collected and the supernatant retained. 3μL of anti-TFAP2C 

antibody (sc-8977) was added to the ChIP sample. The samples were then rotated overnight 

at 4°C.

60μL of Protein A Dynabeads were then added to the ChIP samples and rotated 2 hours at 

4°C. The beads were then washed 2×4 minutes with 500μL Wash Buffer A (50mM HEPES 

pH 7.9, 1% TritonX-100, 0.1% Deoxycholate, 1mM EDTA, 140mM NaCl), 500μL Wash 

Buffer B (50m HEPES pH 7.9, 0.1% SDS, 1% Triton X100, 0.1% Deoxycholate, 1mM 

EDTA, 500mM NaCl), and 500μL TE buffer (10mM TrisHCl pH 8.0, 1mM EDTA). Each 

wash consists of resuspension in 500μL buffer and rotation at 4 minutes, followed by 

collection of beads and removal of supernatant. DNA was eluted in 100μL elution buffer 

(50mM TrisHCl pH 8.0, 1mM EDTA, 1% SDS) at 65°C for 10 minutes in a ThermoMixer 

(Eppendorf) shaking at 1400RPM. The eluent was collected and the beads were subjected to 

a second round of elution with 150μL elution buffer

The ChIP eluants were pooled, and the input sample was diluted to 250μL with elution 

buffer. These samples was incubated 65°C overnight to promote decrosslinking. The 

samples were then allowed to cool to room temperature, 15μg of RNAse A (Purelink, 

ThermoFisher) was added, and the samples were incubated 30 minutes at 37°C to degrade 

RNA. 100 μg Proteinase K was then added and the samples were incubated 56°C for two 

hours. DNA was purified using a MinElute PCR Purification kit (Qiagen).

DNA was sonicated again to 150bp average fragment size with a Covaris S2, concentrated 

with Agencourt AMPure XP beads (Beckman Coulter) and libraries were generated using 

the Ovation Ultralow Library System V2 (Nugen).

Replicates and data pooling

All replicates are listed in Supplementary Table 1 and are biological replicates except where 

otherwise noted. For determination of ChIP or ATAC-seq peaks or display of ChIP or ATAC 

Pastor et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2018 October 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data in figures, all reads from a given condition (e.g. d5 human ATAC-seq control samples) 

were merged to increase coverage. RNA-seq reads for a given condition were merged when 

comparing RPKM across conditions or analyzing splicing but were considered separately 

when calculating differentially expressed genes (see RNA-seq data analysis below).

RNA-seq data analysis

RNAseq data was mapped to hg19 using Tophat54 and read counts per gene were determined 

using HTSeq55 as previously described12. Differentially expressed genes were calculated 

using DESeq56, and RPKM values were calculated with a custom script. Once differential 

expressed genes were determined, they were analyzed for GO terms were called using 

GOrilla, which calculates p-values and q-values using a hypergeometric test33.

Correlation between changes in gene expression and proximity of ATAC and ChIP peaks 

was also calculated by a custom script.

ATAC-seq data analysis

ATAC-seq data was mapped using Bowtie as previously described53. Peaks were defined in 

each condition using MACS2 callpeaks tool57 with appropriate genome size. To find peaks 

specific to one condition (e.g. Naïve Specific), we use the predictd module of MACS2 to 

determine predicted extension size of each data set being compared, callpeaks for each 

dataset the –B and –- no model options and with the extension size specified as the average 

of the two samples, and the bgddiff module using the generated pileup and lambda files with 

the options –g 60 –l 120. An eight-fold relative enrichment cutoff was used to define peaks 

specific to each state, except when comparing murine WT and Tfap2a−/− Tfap2c−/−, in 

which a six-fold cutoff was used due to the relatively small number of peaks different in the 

two conditions.

To identify peaks in common between the primed and naïve states, and overlap between 

different peak sets, we used the Bedtools intersect tool58.

ChIP-seq data analysis

ChIP-seq data was mapped using Bowtie2 with default settings and clonal reads were 

removed using samtools rmdup. Reads from all replicates for a given condition were merged 

and peaks were using MACS2 callpeaks57, comparing ChIP against input reads and using 

appropriate genome size and default settings. To determine overlap with ATAC-seq peaks, 

we used the bedtools intersect tool58.

Motif Analysis

Enriched motifs in peak sets were identified using the HOMER findMotifsGenome tool with 

appropriate genome and default settings19.

Principal component analysis

For principal component analysis (PCA) for RNA-seq data, RPKM for each sample were 

used as input. Variance of each gene’s RPKM in different samples were then calculated 

(rowVars function in R). PCA analysis (prcomp function in R) was performed on genes with 
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the top 1000 variance across samples. PCA plot were then plotted with ggplot2 package in R 

(http://ggplot2.org).

For principal component analysis (PCA) for ATAC-seq data, peaks of in each ATAC-seq 

samples were first defined with MACS2(v.2.1.1) with default parameters. Then, ATAC-seq 

peaks cross all samples were merged into one union ATAC-seq peak set and ATAC-seq reads 

in each sample were calculated over the union ATAC-seq peak set. ATAC-seq reads in 

different samples were then normalized over its sequencing depth and this matrix is used as 

input for PCA analysis. Variance of normalized ATAC-seq reads over each peak were then 

calculated (rowVars function in R). PCA analysis (prcomp function in R) was performed on 

peaks with the top 1000 variance across samples. PCA were then plotted with ggplot2 

package in R (http://ggplot2.org).

Analysis of peak location

Annotation of peak location (Promoter, intragenic, intergenic etc.) and calculation of 

distance to nearest promoter was calculated using HOMER annotatepeaks tool with the 

appropriate genome19.

GREAT Analysis

We used GREAT analysis37 calling genes near the midpoints of the TFAPC dependent 

regulatory elements. We instructed the program to use the two nearest genes to the peaks, 

provided they are within 50kb of the peak. GREAT calculates p and q values using a 

binomial test, as well as a hypergeometric test for comparison37.

Reverse Transcription and real-time PCR

For Figure 8E, real time PCR was perfomed as described59. For Supplementary Figure 6G, 

RNA extraction and cDNA synthesis were performed as described previously51, RT-PCR 

was carried out on the 7500 Real-Time PCR system (ThermoFisher). TaqMan probes used: 

ACTB: Hs01060665_g1 (ThermoFisher) and KLF17: Hs00703004_s1 (ThermoFisher).

Alterations to images

Overall brightness of some brightfield microscopy images was increased to improve 

visibility, and Supplementary Figure 5C was converted to grayscale to improve visibility.

Animal work

MEFs were derived following UCLA institutional animal care and use committee (IACUC) 

approval.

Embryo donation

Use of human embryos in this research project followed California State law, which required 

review by two committees, the Institutional Review Board (IRB) and the human embryonic 

stem cell research oversight committee (ESCRO), which approved the process of informed 

consent, and experiments using human embryos for research purposes. Following approval 

and outreach to fertility clinics with a flyer advertising the study, individuals and couples 
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with stored frozen IVF embryos contacted us to donate surplus embryos either through 

referral or through initiating contact with the UCLA Broad Stem Cell Research Center. 

Patients were not paid for participation, and all donors were informed that the embryos 

would be destroyed as part of the research study. Participants were also informed that they 

could withdraw consent at any time and if the embryos had been shipped to UCLA, they 

would be destroyed. Participants were also informed that donated embryos would not be 

used to make a baby. All research with human embryos in this study complied with the 

principles laid out in the International Society for Stem Cell Research guidelines.

Statistics and reproducibility

Statistical analysis was performed using existing programs (MACS257, Homer19, DESeq56, 

GOrilla33). Mean and standard error were calculated using standard statistical formulas. 

Where the ratio of expression for two sets is shown, as in Figures 4H, 4M, and 5E, standard 

error is calculated by the formula SE(quotient) =quotient*SQRT((SE(Set1)/Mean(Set1))^2+ 

(SE(Set2)/Mean(Set2))^2).

The observation that TFAP2C is upregulated at the protein level in naïve over primed cells 

(as shown in Figures 3B and 4B) was observed for Western blots generated from five 

independent lysate preparations. Induction of TFAP2C within three days of culture in 5iLAF 

(as shown in Figure 4B) was observed in two independent reversions.

The finding that TFAP2C−/− hESCs express OCT4 normally in the primed state 

(Supplementary Figure 3C) was demonstrated in Western blots from three independent 

lysate preparations, similar findings for NANOG and SOX2 (Supplementary Figures 3D, E) 

were performed once. The flow cytometry plots in Supplementary Figure 3F showing 

pluripotency surface markers on TFAP2C−/− hESCs are representative of three experiments.

The finding that TFAP2C−/− hESCs colonies showed morphological abnormality in 5iLAF 

(as shown in Figures 4A and Supplementary Figure 4 A,B) by day 5 was observed in nine 

independent reversions. Four of these reversions were continued long enough to confirm loss 

of TFAP2C−/− upon prolonged culture, as shown in Figures 4A and 5D. Loss of TFAP2C in 

TFAP2C−/− mutant (as shown in Figure 4C) was shown by Western blot from five 

independent reversions and by immunofluorescence (as shown in Figure 4I) in two 

independent reversions. Loss of pluripotency factors. and gain of neural factors was shown 

in by Western blot (as shown in Figure 4F and J) in four independent reversions and by 

immunofluorescence (as shown in Figure 4I and 4J) in two independent reversions. Loss of 

Tfap2c in Tfap2C−/− murine ESCs (as shown in Supplementary Figure 4G) was confirmed 

via Western blots from two independent lysate preparations.

Rescue of the TFAP2C−/− differentiation phenotype in 5iLAF by doxycycline inducible 

TFAP2C expression (as shown in Figure 5A–D and Supplementary Figure 5C) was observed 

in four experiments. Reduced cell proliferation after withdrawal of doxycycline (as shown in 

Supplementary Figure 5D and 5E) was observed in two experiments.

Bulk differentiation of TFAP2C−/− in 5iLAF at 5% O2, with a small population maintaining 

self-renewal (as shown in Figure 6, Supplementary Figure 6) was observed in two 
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independent reversions. Loss of KLF17 in TFAP2C−/− t2iLGöY in Supplementary Figure 6F 

was demonstrated from two reversions.

The finding that OCT4 protein is expressed normally in the OCT4 ΔIntronic enhancer 

mutant, as shown in Supplementary Figure 8D, was based on one Western blot. Loss of cells 

in the OCT4 ΔIntronic enhancer mutant upon treatment with 5iLAF (as shown in Figure 8F) 

was observed in three independent reversions, with qRT-PCR data (as shown in Figure 8E) 

derived from one such reversion.

Code Availability

Custom scripts used for demultiplexing NGS reads, calculating RPKM, generating DNA 

methylation metaplots and comparing distribution of peaks to expression of nearby genes 

will be made available upon request.

Data Availability

All high throughput sequencing datasets described in Supplementary Table 1 have been 

deposited in the Gene Expression Omnibus (GEO) under the accession number GSE101074. 

RNA-seq data from naive and primed hESCs was gleaned from our previously published 

data12 (GSE76970). ChIP-seq data on H3K4me3, H3K27Ac3 and Mediator from naïve and 

primed hESCs was obtained from published sources9,16 (GSE69647). Peaks sets used in this 

paper are included in Supplmentary Tables 2 and 4, and RPKMs from RNA-seq data are 

included in Supplementary Table 5. Source data for Figures 3A, 4H, 4M, 5E and 

Supplementary Figures 3G, 5A and 6B are available in Supplementary Table 8. Additional 

data is available upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Determination of regulatory elements specific to the naïve and primed states in humans
a,b Percentage of the time a gene whose transcriptional start site is a given distance from a 

naïve-specific ATAC-peak (a) or primed-specific ATAC-peak (b) is upregulated or 

downregulated in the naïve state. c,d Many naïve-specific ATAC-seq peaks appear proximal 

to KLF5 (c), a gene highly upregulated in the naïve state, while primed-specific ATAC-peaks 

are present near the primed-specific ZIC genes. Note the strong enrichment of H3K27Ac 

near ATAC-seq peaks. H3K4me3 and H3K27Ac ChIP-seq data come from published 

sources9,16. e, Metaplot of H3K27Ac and Mediator over naïve-specific (left) and primed 

specific (right) ATAC-peaks. f,g Most statistically significant transcription factor binding 

motifs enriched in naïve-specific (f) or primed-specific (g) ATAC peaks were calculated 

using a cumulative binomial distribution19. Pooled data from 4 naïve and 4 primed 

biological replicates were used.
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Figure 2. Most naïve-specific ATAC-peaks are present in other naïve human cells and the human 
embryo
a, Normalized ATAC-seq reads from the human blastocyst plotted relative to Naïve-specific 

and primed-specific peaks. Note far greater enrichment over naïve-specific peaks. b, 
Blastocyst ATAC-seq plotted relative to all Naïve-specific ATAC peaks. Note enrichment 

over almost all naïve-specific peaks, indicating that they are open in the blastocyst. c, Most 

Naïve-specific ATAC-seq peaks overlap with a blastocyst-ATAC peak, but most primed-

specific peaks do not. d,e ATAC-seq signal for primed hESCs, naïve hESCs and blastocyst 

in the viscinity of NANOG (d) and GATA3 (e). Peak height is normalized to total number of 

reads in each sample. f,g Metaplot of ATAC-seq read density over the gene bodies of 100 

genes most highly specific to trophoblast or epiblast, as defined from single-cell RNA-seq 

data in human3, as well as all genes. h, Venn diagram showing overlap of all ATAC-seq 

peaks in blastocyst, naïve hESCs and primed hESCs. i, Enrichment of GATA, AP2, KLF and 

OCT-SOX motifs in each set identified in part e. Note enrichment of AP2 and KLF motifs in 

both blastocyst and naïve hESCs, stronger enrichment of GATA in blastocyst and stronger 

enrichment of OCT-SOX in ESCs.
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Figure 3. TFAP2C is highly enriched over naïve-specific open chromatin in humans
a, TFAP2C is highly expressed in naïve cells, both relative to other AP2 transcription factors 

and relative to primed cells. Mean and standard deviation are shown, with dots representing 

each replicate (n=4 independent experiments). b, TFAP2C protein is highly upregulated in 

the naïve-pluripotent state. Data represent 1 out of 5 independent experiments with similar 

results. c, Strong co-enrichment of TFAP2C with naïve-specific ATAC peaks at the 

CBFA2T2 locus. d, Global enrichment of TFAP2C relative to the summits of different 

categories of naïve-specific ATAC peaks. TFAP2C is enriched over naïve-specific ATAC 

peaks, especially those with AP2 motifs. e,f TFAP2C is strongly enriched over Naïve-

specific ATAC peak summits compared with enrichment over regions that show ATAC 

enrichment in both naïve and primed cells (Naïve-primed Intersect) (e), even though both 

peak sets show similar ATAC enrichment (f). Uncropped Western blot images are available 

in Supplementary Figure 9. Source data for a is available in Supplementary Table 8.
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Figure 4. TFAP2C−/− cells differentiate in naïve media
a, TFAP2C−/− hESCs, self-renew in primed conditions but differentiate and fail to self-

renew upon treatment in naïve (5iLAF) media. Scale bars indicate 100 μm. Data represent 1 

out of 4 independent experiments with similar results. b, Western blot of TFAP2C upon 

culture in primed or 5iLAF conditions. TFAP2C is strongly induced within three days of 

treatment with 5iLAF. Data represent 1 out of 2 independent experiments with similar 

results. c, Western blot for TFAP2C after five days of 5iLAF culture. TFAP2C is absent 

from TFAP2C−/− deficient lines. d, ATAC-seq openness of Naïve, d5 5iLAF WT and 

TFAP2C−/−, and primed cells over naïve-specific ATAC peaks. Note that after five days of 

reversion, substantial opening of the naïve-specific ATAC peaks has already occurred, but 

not in the TFAP2C−/−cells. e, TFAP2C ChIP enrichment shown over naïve and d5 5iLAF 

samples. ChIP input for each set is shown as a dashed line. f, Western blot for OCT4 and 

NANOG in control and TFAP2C−/− cells after five days of culture in 5iLAF. Quantitation 

normalized to histone below. g, Western Blot for SOX1 and PAX6 in control and TFAP2C−/− 

cells. h, Relative RPKM of pluripotency and neural markers in RNA-seq. Data is from n=3 

WT and n=4 TFAP2C−/− independent biological replicates (mean +/− s.e). i,j, 
Immunofluorescent staining for TFAP2C, OCT4 (i) and PAX6 (j) in control and TFAP2C−/− 

cells. Scale bar indicates 20 μm. k,l Fold enrichment for AP2 motifs in the specified peak 

sets in humans (k) and mouse (l). Asterix indicates no enrichment. Although AP2 motifs are 

enriched in naïve-specific peaks in both species, the enrichment is much stronger in the 
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human naïve-specific set. m, Expression of key pluripotency markers in WT, Tfap2c−/−, and 

Tfap2a−/− Tfap2c−/− cells in 2i+LIF conditions. n=4 biological replicates in for Tfap2c−/− 

and controls and n=6 biological replicates for Tfap2a−/− Tfap2c−/− and controls (mean +/− 

s.e.) n, ATAC-seq peaks specific to WT and Tfap2a−/− Tfap2c−/− were calculated and 

enrichment for AP2 motifs determined. Asterisk indicates no enrichment. Uncropped 

Western blots in Supplementary Figure 9. Source data for h and m in Supplementary Table 

8.
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Figure 5. Ectopic expression of TFAP2C partially rescues TFAP2C−/− phenotype
a, Quantitative western blot showing tunable TFAP2C induction in TFAP2C−/− background 

in primed conditions. b,c Western blots show rescue of OCT4 expression and SOX1 

repression upon doxycycline inducible TFAP2C expression. Lysates were collected after five 

days of treatment with 5iLAF and the indicated concentration of doxycycline. d, Appearance 

of round naïve-like colonies in lines with ectopic TFAP2C expression. Scale bar indicates 

100μm. Results represent 1 out of 4 independent experiments with similar results. e, Partial 

rescue of upregulation of naïve pluripotency factors, downregulation of primed-factors with 

ectopic TFAP2C expression. 1 replicate for dox induction samples and primed control, 4 for 

naïve samples and primed control. f, TFAP2C was ectopically expressed for the first 15 days 

of reversion, then removed in some cells to induce acute loss of TFAP2C. ATAC-seq plotted 

from these cells is plotted over naïve-specific peaks (5032 peaks), a subset that contained an 

AP2 motif but no KLF motif (1054 peaks), a subset that contained a KLF motif but no AP2 

motif (1551 peaks) and primed-specific peaks (2562 peaks). Reduced ATAC-seq density 

over naïve specific peaks and increased density over primed-specific peaks, in the sample in 

which doxycycline had been withdrawn. Closing of naïve specific peaks is especially 

pronounced over the subset of peaks that contain AP2 sites but no KLF sites (AP2+ KLF-). 

Peaks subsets are listed in Supplementary Table 2. Uncropped Western blot images are 

available in Supplementary Figure 9. Source data for e is available in Supplementary Table 8
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Figure 6. TFAP2C−/− cells survive in 5iLAF in 5% O2 conditions but do not transition to naïve 
state
a, Western blots for the pluripotency marker OCT4 and the neural markers SOX1 and PAX6 

in WT and TFAP2C−/− cells after 5 days in 5iLAF at 5% O2. b,c Brightfield images of 

control and TFAP2C−/− cells in 5iLAF culture. Initially the TFAP2C−/− cells show 

morphology similar to what is observed in ambient oxygen concentration conditions 

(compare to Figure 4A). However, some colonies are observable after passaging. These 

colonies show a shift toward SSEA4+ (primed) state. Scale bars indicates 100μm. c, ATAC-

seq data from control and TFAP2C−/− cells in 5% O2 plotted over ATAC-seq peak sets. d, 
Principle component analysis comparing ATAC-seq datasets generated in this work. Blue 

dots: after five days in 5iLAF, WT control cells show an ATAC-seq landscape part-way 

between primed and naïve, whereas TFAP2C−/− cells show no change toward naïve. Green 

dots: although TFAP2C−/− cells survive in low oxygen conditions, they have an ATAC-seq 

landscape much more similar to primed than naïve cells. Red dots: ectopic doxycycline 

dependent-expression of TFAP2C in TFAP2C−/− partially rescues the naïve-landscape, and 

withdrawal of doxycycline induces a shift toward primed identity. Shown for comparison are 

control cells reverted at the same time. e, Genes differentially regulated in naïve vs. primed 

hESCs are plotted. Note that genes higher expressed in naïve cells are lower expressed in 

TFAP2C−/−. The RPKM values correspond to SSEA4− cells in control (average of 2 
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biological replicates) and SSEA4+ in TFAP2C−/− (average of 3 biological replicates). 

Uncropped Western blot images are available in Supplementary Figure 9.
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Figure 7. Identifying direct regulatory targets of TFAP2C
a, Percentage of the time a gene whose transcriptional start site is a given distance from a 

TFAP2C ChIP-seq peak is upregulated or downregulated in naïve hESCs. Notice the much 

weaker correspondence compared with Figure 1A, and the lack of any effect at the promoter. 

b, Distance of TFAP2C ChIP-seq peak to nearest promoter. c, To identify pluripotency-state 

genes positively or negatively regulated by TFAP2C, we identified the subset of naïve-

specific genes downregulated <4 fold in TFAP2C−/− (positively related by TFAP2C) and 

primed-specific genes upregulated >4 fold in TFAP2C−/− (negatively regulated by TFAP2C). 

Because they were the predominant pluripotent populations, we compared expression of 

SSEA4− control cells (n=2 biological replicates) to SSEA4+ TFAP2C−/− cells (n=3 

biological replicates) d, To identify TFAP2C-dependent enhancers, we identified the overlap 

of the naïve-specific and TFAP2C ChIP-seq peaks, then took the subset of peaks that 

showed >50% density reduction in TFAP2C−/− SSEA4+ as compared with control SSEA4− 

cells, normalized for total read depth. These were classified as TFAP2C-dependent 

regulatory elements. e, ATAC-seq read density over all naïve-specific ATAC-peaks, naïve-

specific ATAC peaks overlapping with TFAP2C ChIP-seq peaks, and the TFAP2C-

dependent regulatory element set identified in (d). Note dramatic loss of signal in TFAP2C
−/− over the TFAP2C-dependent set. f, Frequency with which a gene a given distance from a 
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TFAP2C-dependent ATAC-seq peak is positively or negatively regulated by TFAP2C. g, 
Distance of TFAP2C-dependent ATAC-seq peak to nearest gene. Note that the vast majority 

of such elements are enhancers. h, Schematic demonstrating the typical regulatory role of 

TFAP2C in naïve hESCs. Where TFAP2C facilitates the opening of a new enhancer, it has a 

positive regulatory role. Where it hones to chromatin that is already open, it has no tangible 

effect on transcription. i, ATAC-seq and ChIP-seq data are shown in the vicinity of naïve-

pluripotency factor TFCP2L1.
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Figure 8. A TFAP2C+ intronic enhancer of OCT4
a, Chromatin landscape of OCT4. Two putative enhancers “intron element 1” and “intron 

element 2” are present in blastocyst. Intron element 1 is also strongly enriched in naïve cells 

and lost in TFAP2C−/ −. b, The location of consensus motifs for key pre-implantation 

transcription factors is shown in the vicinity of Intron Elements 1 and 2. Note the clustering 

of AP2 sites at each element. The control low O2 track is the SSEA4− population, the 

TFAP2C−/− low O2 is the SSEA4+ population. The region targeted for CRISPR deletion is 

shown. c, ATAC-seq reads over the murine POU5F1 locus in naïve (2i+LIF) conditions. 

Note the absence of either intronic enhancer. d, Luciferase activity from a pGL3 construct in 

which WT or mutant Intron Element 1 had been cloned, normalized to signal from a pGL3 

construct with no enhancer. Results are shown from two independent experiment, except for 

the ΔAP2 sample, for which there are n=3 replicates from two experiments. All signals were 

first normalized for Renilla signal. e, OCT4 expression is lost over time upon reversion of 

the intron element 1-deleted mutant, indicating differentiation. Sorting for SSEA4− cells in 

5iLAF culture typically produces a pure population of naïve hESCs, but this population has 

lost OCT4 expression in the intron element 1-deleted mutant. Mean of n=2 technical 

replicates is shown. f, A line in which the intron element 1 is deleted appears normal in 

primed conditions but fails to yield naïve colonies upon reversion. Scale bar indicates 

200μm. Images are representative of 3 independent reversions. Source data for d is available 

in Supplementary Table 8.
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