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Abstract
Consider a proper, isometric action by a unimodular locally compact group G on a Rieman-
nian manifold M with boundary, such that M/G is compact. Then an equivariant Dirac-type
operator D on M under a suitable boundary condition has an equivariant index indexG(D) in
the K -theory of the reduced groupC∗-algebraC∗

r G ofG. This is a common generalisation of
the Baum–Connes analytic assembly map and the (equivariant) Atiyah–Patodi–Singer index.
In part I of this series, a numerical index indexg(D) was defined for an element g ∈ G, in
terms of a parametrix of D and a trace associated to g. An Atiyah–Patodi–Singer type index
formula was obtained for this index. In this paper, we show that, under certain conditions,

τg(indexG(D)) = indexg(D),

for a trace τg defined by the orbital integral over the conjugacy class of g. This implies that
the index theorem from part I yields information about the K -theoretic index indexG(D). It
also shows that indexg(D) is a homotopy-invariant quantity.
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1 Introduction

This paper is about a K -theoretic index defined for Dirac operators on manifolds with bound-
ary, equivariant with respect to proper, cocompact actions by locally compact groups. It is
a companion paper to part I [23] of this series of two papers, in which numerical indices
were defined for such operators, and an index formula was proved for those indices. The
main result in this paper is Theorem 2.7, stating that, under certain conditions, numerical
invariants extracted from the K -theoretic index via orbital integral traces equal the indices
from [23]. In that way, the index formula from [23] applies to the K -theoretic index as well.

Consider a unimodular, locally compact group G acting properly and isometrically on
a Riemannian manifold M , with boundary N , such that M/G is compact. Let D be a G-
equivariant Dirac-type operator on aG-equivariant,Z2-graded Hermitian vector bundle E =
E+ ⊕ E− → M . Suppose that all structures have a product form near N . In particular,
suppose that near N , the restriction of D to sections of E+ equals

σ
(

− ∂

∂u
+ DN

)

, (1.1)

where σ : E+|N → E−|N is an equivariant vector bundle isomorphism, u is the coordinate
in (0, 1] in a neighbourhood of N equivariantly isometric to N × (0, 1], and DN is a Dirac
operator on E+|N .

We initially assume DN to be invertible, and later show how to weaken this assumption
to 0 being isolated in the spectrum of DN . If DN is invertible, then we use the construction
of an index

indexG(D) ∈ K0(C
∗
r G) (1.2)

from [18], where C∗
r G is the reduced group C∗-algebra of G. This index was defined in [18]

in a more general setting, and applied to, for example, Callias-type operators and positive
scalar curvature [19] and the quantisation commutes with reduction problem [20].
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To extract relevant numbers from this K -theoretic index,we apply traces defined by orbital
integrals. Let g ∈ G, let Zg be its centraliser, and suppose that G/Zg has a G-invariant
measure d(hZg). Then the orbital integral with respect to g of a function f ∈ Cc(G) is the
number

τg( f ) :=
∫

G/Zg

f (hgh−1) d(hZg). (1.3)

If the integral on the right hand side converges absolutely for all f in a dense subalgebra
A ⊂ C∗

r G, closed under holomorphic functional calculus, then this defines a trace τg on A.
That trace induces

τg : K0(C
∗
r G) = K0(A) → C. (1.4)

Orbital integrals for semisimple Lie groups are fundamental to Harish-Chandra’s devel-
opment of harmonic analysis on such groups. They also play an important role in Bismut’s
work on hypo-elliptic Laplacians [6]. The map (1.4) on K -theory is given by evaluating char-
acters at g if G is compact. One can also use (1.4) to recover the values at elliptic elements
g of characters of discrete series representation of semisimple groups [24]. This was used to
link index theory to representation theory in [24]. Higher cyclic cocycles generalising orbital
integrals and capturing all information about classes in K∗(C∗

r G) were developed by Song
and Tang [39].

For discrete groups, where they are sums over conjugacy classes, orbital integrals and the
map (1.4) have found various applications to geometry and topology in recent years, see for
example [26,40,41,43].

Applying (1.4) to (1.2) yields the number

τg(indexG(D)), (1.5)

which is the main object of interest in this paper. The index (1.2) and the number (1.5)
generalise various earlier indices.

• If N = ∅, then (1.2) is the image of D under the Baum–Connes analytic assembly map
[4], see Corollary 4.3 in [18]. That is the most natural and widely-used generalisation of
the classical equivariant index to proper, cocompact actions. It has been applied to various
problems in geometry and topology, such as questions about positive scalar curvature
and the Novikov conjecture. In this context, the number (1.5) was shown to be relevant
to representation theory, orbifold geometry and trace formulas [22,24,25,40].

• If M and G are compact, then (1.2) becomes the equivariant APS index used in [14], and
(1.5) is the evaluation of that index at g. (See Lemma 2.9 in [23].) If G is trivial, then
this index reduces to the usual APS index.

• In the casewhereM/G is a compactmanifoldwith boundary,M is its universal cover, and
G is its fundamental group, the number τe(indexG(D)) is the index used by Ramachan-
dran in [37], see Remark 2.14. In this setting, the index (1.2) was introduced in Section
3 of [42]. Indices with values in K∗(C∗

r G) in this setting were also defined in [27–30],
via operators on Hilbert C∗

r G-modules and in [34] in terms of Roe algebras. We expect
these to be special cases of (1.2), because they generalise the case of manifolds without
boundary [32], a special case of the Baum–Connes assembly map; see also for example
Proposition 2.4 in [34]. (In this context, a K -theoretic index theorem involvingYu’s local-
isation algebras, and where M/G is not necessarily compact, was obtained by Zeidler.
See Theorem 6.5 in [44].)
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1336 P. Hochs et al.

These special cases suggest that the index (1.2) and the number (1.5) are natural objects to
study. They generalise to the case where 0 is isolated in the spectrum of DN , as discussed in
Sect. 6.

In [23], the notion of a g-Fredholm operator was introduced. Such operators have a
numerical g-index, defined in terms of a parametrix of the operator and a trace related to
τg . It was shown that for several classes of groups and actions, the Dirac operator D on the
manifold with boundary M is g-Fredholm, and hence has a g-index, denoted by indexg(D).
An index formula was proved for this index. In the case where D is a twisted Spinc-Dirac
operator, this index formula takes the form

indexg(D) =
∫

Mg
χ2
g
Â(Mg)ec1(L|Mg )/2 tr(ge−RV |Mg /2π i )

det(1 − ge−RN /2π i )1/2
− 1

2
ηg(DN ).

The first term in the right hand side is a direct generalisation of the right hand side of the
Atiyah–Segal–Singer fixed point formula [2,3,5]. The number ηg(DN ) is a delocalised η-
invariant. These were first constructed by Lott [30,31].

The main result in this paper, Theorem 2.7, states that, under certain conditions,

indexg(D) = τg(indexG(D)).

This links the index indexg(D) to K -theory, and allows us to apply the index formula from
[23] to the number (1.5). This generalises the index theorems in [1,14,37], for example.
Furthermore, homotopy invariance of indexG implies homotopy invariance of indexg in
these cases.

After this paper appeared, Piazza, Posthuma, Song and Tang [35] obtained an index
theorem for τg(indexG(D)) in the case where G is a semisimple Lie group. Their result
applies even when DN is not invertible, or 0 is not isolated in its spectrum. They used a
construction of the index (1.2) in terms of b-calculus.

Outline of this paper

The index (1.2), and the Roe algebras needed to define it, are introduced in Sect. 2. There we
also recall the definition of the index indexg from [23], and state themain result, Theorem 2.7.

We prepare for the proof of Theorem 2.7 in Sect. 3, by introducing a parametrix for the
operator D, and discussing some properties of the g-trace and of heat kernels. Then we prove
the two main steps in the proof of Theorem 2.7 in Sects. 4 and 5, Propositions 4.1 and 5.1.
Combining these with a last extra step, Proposition 5.12, we obtain a proof of Theorem 2.7.
In Sect. 6, we show how to weaken the assumption that the boundary Dirac operator DN in
(1.1) is invertible, to the assumption that 0 is isolated in its spectrum.

2 Preliminaries and results

For a proper, cocompact action by a general locally compact group G, the most widely-used
equivariant index of equivariant elliptic operators is theBaum–Connes analytic assemblymap
[4]. (Here an action is called cocompact if its quotient is compact.) This is a generalisation of
the usual equivariant index in the compact case, and takes values in K∗(C∗

r G), the K -theory
of the reduced group C∗-algebra of G. In [18], a generalisation of the assembly map was
constructed and studied, which applies to possibly non-cocompact actions, as long as the
operator it is applied to is invertible outside a cocompact set in the appropriate sense. This
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index also generalises the Gromov–Lawson index [16], an equivariant index of Callias-type
operators [17], the (equivariant) APS index onmanifolds with boundary [1,13], and the index
used byRamachandran formanifoldswith boundary [37]. This index is an equivariant version
of the localised coarse index of Roe [38], for actions by arbitrary locally compact groups.
For actions by fundamental groups of manifolds on their universal covers, this index was
constructed in [42].

We briefly review the construction of the index in [18] in Sect. 2.2, in the case we need
here. This involves localised Roe algebras, which we discuss in Sect. 2.1. The index takes
values in the K -theory of the reduced C∗-algebra of the group. Using traces on subalgebras
of this algebra defined by orbital integrals, defined in Sect. 2.3, we extract numbers from
that index. The main result in this paper is Theorem 2.7, which states that, under certain
conditions, those numbers equal the numbers for which an index formula was proved in [23].

2.1 The localised equivariant Roe algebra

Let (X , d) be ametric space inwhich all closed balls are compact. LetG be a locally compact,
unimodular group acting properly and isometrically on X . Let Z ⊂ X be a nonempty, closed,
G-invariant subset such that Z/G is compact. Fix aG-invariant Borelmeasure on X forwhich
every open set has positivemeasure. Let E → X be aG-equivariant Hermitian vector bundle.

The Hilbert space L2(E) of square-integrable sections of E has a natural unitary repre-
sentation of G, and an action by C0(X) given by pointwise multiplication of sections by
functions. In this sense, it is a G-equivariant C0(X)-module. We will not define the various
types of such modules here, but always work with concrete examples. Apart from L2(E),
we will also use the module L2(E) ⊗ L2(G), where G acts diagonally (acting on L2(G)

via the left regular representation), and where C0(X) acts on the factor L2(E) via point-
wise multiplication. If X/G is compact, then L2(E) ⊗ L2(G) is an admissible equivariant
C0(X)-module, under the non-essential assumption that either X/G or G/K , for a maximal
compact subgroup K < G, is infinite. See Theorem 2.7 in [18]. This type of C0(X)-module
is central to the constructions in [18].

We denote the algebra of G-equivariant bounded operators on a Hilbert space H with a
unitary representation of G by B(H)G .

Definition 2.1 Let T ∈ B(L2(E) ⊗ L2(G)). Then T is locally compact if the operators T f
and f T are compact for all f ∈ C0(X). The operator T has finite propagation if there is
a number r > 0 such that for all f1, f2 ∈ C0(X) whose supports are further than r apart,
we have f1T f2 = 0. Finally, T is supported near Z if there is an r ′ > 0 such that for all
f ∈ C0(X)whose support is further than r ′ away from Z , the operators T f and f T are zero.
The localised equivariant Roe algebra of X is the closure in B(L2(E) ⊗ L2(G)) of

the algebra of locally compact operators in B(L2(E) ⊗ L2(G))G with finite propagation,
supported near Z . It is denoted by C∗(X , Z)G .

The algebra C∗(X , Z)G is independent of the cocompact set Z . (It is denoted by C∗(X)Gloc
in [18]). And, assuming either Z/G or G/K is an infinite set,

C∗(X , Z)G ∼= C∗
r G ⊗ K, (2.1)

where C∗
r G is the reduced group C∗-algebra of G, andK is the algebra of compact operators

on a separable, infinite-dimensional Hilbert space. See (5) in [18]. (If Z/G and G/K are
both finite, then (2.1) still holds with K replaced by a matrix algebra.) This equality implies
that C∗(X , Z)G is also independent of E . (In fact, it is independent of the choice of a more
general kind of admissible module.)
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1338 P. Hochs et al.

Remark 2.2 There is no reason a priori to assume that Z/G is compact. The resulting localised
Roe algebra will then depend on Z . We always assume that Z/G is compact, so that we have
the isomorphism (2.1), and we can apply the traces of Sect. 2.3 to classes in the K -theory of
C∗(X , Z)G .

We will also use a version of the localised equivariant Roe algebra defined with respect to
theC0(X)-module L2(E), instead of L2(E)⊗L2(G). This is defined exactly as in Definition
2.1, with L2(E) ⊗ L2(G) replaced by L2(E) everywhere. The resulting algebra is denoted
by C∗(X , Z; L2(E))G . This algebra is less canonical than C∗(X , Z)G , and is not stably
isomorphic to C∗

r G in general. If X/G itself is compact, then we omit Z from the notation,
since being supported near Z then becomes a vacuous condition.

2.2 The localised equivariant coarse index

Suppose, from now on, that X = M is a complete Riemannian manifold, and E is a smooth,
Z2-graded, G-equivariant, Hermitian vector bundle. Let D be an elliptic, odd-graded, essen-
tially self-adjoint, first order differential operator on E . Suppose that

D2 ≥ c (2.2)

on M\Z , for a positive constant c. Let b ∈ C(R) be an odd function such that b(x) = 1 for
all x ≥ c. Lemma 2.3 in [38] states that b(D)2 − 1 ∈ C∗(X , Z; L2(E))G . By Lemma
2.1 in [38], the operator b(D) lies in the multiplier algebra M(C∗(X , Z; L2(E))G) of
C∗(X , Z; L2(E))G . Hence the restriction of b(D) to even-graded sections defines a class

[b(D)] ∈ K1
(M(C∗(X , Z; L2(E))G)/C∗(X , Z; L2(E))G

)

.

Let

∂ : K1
(M(C∗(X , Z; L2(E))G)/C∗(X , Z; L2(E))G

) → K0(C
∗(X , Z; L2(E))G)

be the boundarymap in the six-termexact sequence associated to the idealC∗(X , Z; L2(E))G

of M(C∗(X , Z; L2(E))G). We set

indexL
2(E)

G (D) := ∂[b(D)] ∈ K0(C
∗(X , Z; L2(E))G). (2.3)

To obtain an index in K0(C∗
r G), let χ ∈ C∞(M) be a cutoff function, in the sense that it is

nonnegative, its support has compact intersections with all G-orbits, and that for allm ∈ M ,
∫

G
χ(gm)2 dg = 1. (2.4)

The map

j : L2(E) → L2(E) ⊗ L2(G), (2.5)

given by

( j(s))(m, g) = χ(g−1m)s(m),

for s ∈ L2(E), m ∈ M and g ∈ G, is a G-equivariant, isometric embedding. Let

⊕ 0 : C∗(X , Z; L2(E))G → C∗(X , Z)G (2.6)

be given by mapping operators on L2(E) to operators on j(L2(E)) by conjugation with j ,
and extending them by zero on the orthogonal complement of j(L2(E)). We denote the map
on K -theory induced by ⊕0 be the same symbol.

123



An equivariant Atiyah–Patodi–Singer index theorem... 1339

Definition 2.3 The localised equivariant coarse index of D is

indexG(D) := indexL
2(E)

G (D) ⊕ 0 ∈ K0(C
∗
r G).

Remark 2.4 In [18], the localised equivariant coarse index is defined slightly differently from
Definition 2.3, but also in terms of j . The two definitions agree by (13) in [18]. In that
paper, a version for ungraded vector bundles, with values in odd K -theory, is also defined.
An illustration of how (representation theoretic) information that may not be encoded by

indexL
2(E)

G (D) is recovered through the map ⊕0 is Example 3.8 in [18].

The index of Definition 2.3 simultaneously generalises various other indices; some are
mentioned in the introduction. For example, ifM/G is compact, then it reduces to the analytic
assembly map from the Baum–Connes conjecture [4]. See Sect. 3.5 in [18] for other special
cases. In this paper, we apply the index to manifolds with boundary, to generalise the APS
index and its generalisations in [1,13,37].

2.3 Orbital integrals

Fix an element g ∈ G. Let Zg < G be its centraliser. Suppose that G/Zg has a G-invariant
measure d(hZg) such that for all f ∈ Cc(G),

∫

G
f (h) dh =

∫

G/Zg

∫

Zg

f (hz) dz d(hZg),

for fixed Haar measures dh onG and dz on Zg . (This is the case, for example, ifG is discrete,
or if G is real semisimple and g is a semisimple element).

The orbital integral of a function f ∈ Cc(G) is

τg( f ) :=
∫

G/Zg

f (hgh−1) d(hZg).

We assume that there is a dense subalgebraA ⊂ C∗
r G, closed under holomorphic functional

calculus, such that τg extends to a continuous linear functional on A. Then it defines a trace
on A. Existence of A is a nontrivial question. For semisimple Lie groups, such an algebra
was constructed by Harish-Chandra, see Theorem 6 in [8]. For discrete groups, there are
constructions by Connes–Moscovici for groups with polynomial growth (see Lemma 6.4 in
[12]), and by Puschnigg [36] for word hyperbolic groups. See also [26] for conjugacy classes
with polynomial growth in discrete groups.

The trace τg on A defines a map

τg : K0(C
∗
r G) = K0(A) → C.

Consider the setting of Sect. 2.2. Then we have the number

τg(indexG(D)).

In part I [23], we used a trace related to τg to define the notion of a g-Fredholm operator,
and the g-index of such operators. We briefly recall the definitions here.

Let χ ∈ C∞(M) be a cutoff function for the action, as in (2.4). Consider the bundle

End(E) := E � E∗ → M × M .
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1340 P. Hochs et al.

Definition 2.5 A section κ ∈ 	∞(End(E))G is g-trace class if the integral
∫

G/Zg

∫

M
χ(hgh−1m)2 tr(hgh−1κ(hg−1h−1m,m)) dm d(hZg) (2.7)

converges absolutely. Then the value of this integral is the g-trace of κ , denoted by Trg(κ).
If T is a bounded, G-equivariant operator on L2(E), with a g-trace class Schwartz kernel κ ,
then we say that T is g-trace class, and define Trg(T ) := Trg(κ).

Definition 2.6 Let D be a G-equivariant, elliptic differential operator on E , odd with respect
to aZ2-grading on E . Let D+ be its restriction to even-graded sections. Then D is g-Fredholm
if D+ has a parametrix R such that the operators

S0 := 1 − RD+;
S1 := 1 − D+R; (2.8)

are g-trace class.
The g-index of a g-Fredholm operator D is the number

indexg(D) := Trg(S0) − Trg(S1), (2.9)

with S0 and S1 as in (2.8).

The g-index is independent of the parametrix R by Lemma 2.5 in [23].

2.4 Manifolds with boundary

We now specialise to the case we are interested in in this paper. The setting is the same as in
Sect. 2.2 in [23].

Slightly changing notation from the previous subsections, we let M be a Riemannian
manifold with boundary N . We still suppose that G acts properly and isometrically on M ,
preserving N , such that M/G is compact. We assume that a G-invariant neighbourhood U
of N is G-equivariantly isometric to a product N × (0, δ], for a δ > 0. To simplify notation,
we assume that δ = 1; the case for general δ is entirely analogous.

As before, let E = E+ ⊕ E− → M be a Z2-graded G-equivariant, Hermitian vector
bundle. We assume that E is a Clifford module, in the sense that there is a G-equivariant
vector bundle homomorphism, the Clifford action, from the Clifford bundle of T M to the
endomorphism bundle of E , mapping odd-graded elements of the Clifford bundle to odd-
graded endomorphisms.We also assume that there is aG-equivariant isomorphismofClifford
modules E |U ∼= E |N × (0, 1].

Let D be a Dirac-type operator on E ; i.e. the composition of a Clifford connection with
the Clifford action. Let D+ be the restriction of D to sections of E+. Suppose that

D+|U = σ
(

− ∂

∂u
+ DN

)

, (2.10)

where σ : E+|N → E−|N is a G-equivariant vector bundle isomorphism, u is the coordinate
in the factor (0, 1] in U = N × (0, 1], and DN is an (ungraded) Dirac-type operator on
E+|N . We initially assume that DN is invertible, and show how to remove this assumption
in Sect. 6.

Consider the cylinder C := N × [0,∞), equipped with the product of the metric on M
restricted to N , and the Euclidean metric. Because the metric, group action, Clifford module
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and Dirac operator have a product form on U , all these structures extend to C . We form the
complete manifold

M̂ := (M  C)/ ∼,

where m ∼ (n, u) if m = (n, u) ∈ U = N × (0, 1]. Let Ê → M̂ and D̂ be the extensions
of E and D to M̂ , respectively, obtained by gluing the relevant objects on M and C together
along U .

Since DN is invertible, there is a c > 0 such that

D2
N ≥ c. (2.11)

This implies that D̂2 ≥ c outside the cocompact set M , so that Definition 2.3 applies to D̂.
This gives us the localised coarse index

indexG(D̂) ∈ K0(C
∗
r G), (2.12)

which is the main object of study in this paper. Our goal is to give a topological expression
for the number τg(indexG(D̂)).

The index (2.12) and the number τg(indexG(D̂)) simultaneously generalise several
widely-used indices, as mentioned in the introduction. The index generalises to a case where
DN is not invertible, as discussed in Sect. 6.

2.5 Themain result

In the case where G = 	 is discrete and finitely generated, let l be a word length function on
	 with respect to a fixed, finite, symmetric, generating set. Because 	 is finitely generated,
there are C, k > 0 such that for all n ∈ N,

#{γ ∈ 	; l(γ ) = n} ≤ Cekn . (2.13)

Fix m0 ∈ M . By the Svarc–Milnor lemma, there are a1, a2 > 0 such that for all γ ∈ 	,

d(γm0,m0) ≥ a1l(γ ) − a2. (2.14)

Let c be as in (2.11).

Theorem 2.7 Suppose that D̂ is g-Fredholm. Suppose that an algebraA as in Sect. 2.3 exists.
If either

(a) G/Zg is compact; or

(b) G = 	 is discrete and finitely generated, and (2.13) holds for a k <
2a1

√
c

3 ,

then

τg(indexG(D̂)) = indexg(D̂).

Conditions for D̂ to be g-Fredholm were given in Theorem 2.11 and Corollaries 2.16, 2.19
and 2.21 in [23].

Remark 2.8 The growth condition on 	 in part (b) of Theorem 2.7 holds in particular if 	

has slower than exponential growth. In general, the condition depends on D, 	 and the group

action. The factor 2/3 in the bound 2a1
√
c

3 may be increased to any number smaller than 1.
This can be achieved if we replace the factors 1/3 on the right hand sides of (4.6) by other
factors smaller than 1/2.
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The first corollary of Theorem 2.7 is invariance of indexg(D̂) under a suitable notion of
homotopy. This follows by homotopy invariance of indexG(D̂).

Corollary 2.9 Suppose that D0 and D1 are Dirac operators on M like the operator D, and
let D̂0 and D̂1 be their extensions to M̂. Suppose that D0 and D1 both satisfy the conditions
of Theorem 2.7. Suppose that these operators are homotopic, in the sense that the Kasparov
(C,C∗

r G)-cycles representing their indices in K0(C∗
r G) are homotopic. Then indexg(D̂0) =

indexg(D̂1).

Proof In the setting of this corollary, indexG(D0) = indexG(D1). So Theorem 2.7 implies
that

indexg(D̂0) = τg(indexG(D0)) = τg(indexG(D1)) = indexg(D̂1).

�
CombiningTheorem2.7withCorollaries 2.16 and 2.19 in [23],we obtain an index formula

for τg(indexG(D̂)).

Corollary 2.10 Let D be a twisted Spinc-Dirac operator. Suppose that either

• g = e, or

• G = 	 is discrete and finitely generated, (2.13) holds for a k <
2a1

√
c

3 , and (g) has
polynomial growth.

Then

τg(indexG(D̂)) =
∫

Mg
χ2
g
Â(Mg)ec1(L|Mg )/2 tr(ge−RV |Mg /2π i )

det(1 − ge−RN /2π i )1/2
− 1

2
ηg(DN ). (2.15)

Notation is as in [23]; the integrand on the right hand side is the Atiyah–Segal–Singer
integrand [2,3,5] times a cutoff function χ2

g , and ηg(DN ) is the delocalised η-invariant of
DN , as in [30,31] and Sect. 2.3 of [23].

Remark 2.11 If G = 	 is discrete and finitely generated and has polynomial growth, then
(g) has polynomial growth for all g, and for all k > 0 there is a C > 0 such that (2.13) holds.
So Corollary 2.10 applies in this case.

If 	 does not necessarily have polynomial growth, then we assume a bound on the number
k in the growth condition (2.13) on the whole group 	, rather than just on the conjugacy class
(g), because our proof of Theorem 2.7 involves the notion of G-integrable or 	-summable
operators (see Definition 3.7). We use this notion, because it is well-behaved with respect to
compositions, as in Lemma 3.8. A different proof of case (b) of Corollary 2.10, not involving
	-summable operators, may be possible without the spectral gap assumption.

Theorem 2.7, combined with results from [10], also implies a version of Proposition 5.3
in [43] and Theorem 1.4 in [10] in the case of fundamental groups of compact manifolds
with boundary acting on their universal covers.

Corollary 2.12 Suppose that X is a compact Riemannian Spinc-manifold with boundary, with
a product structure near the boundary. Let M be the universal cover of X, and let N = ∂M
as before. Let G = 	 = π1(X). Let D be the lift to M of a twisted Spinc-Dirac operator
on X. Let g ∈ 	 be different from the identity element. Suppose that either that (g) has
polynomial growth, or that 	 satisfies (the surjectivity part of) the Baum–Connes conjecture.
If the constant c such that D2

N ≥ c is large enough, then

τg(indexG(D̂)) = −1

2
ηg(DN ).
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Proof If the constant c is large enough, then the delocalised η-invariant ηg(DN ) converges
by Theorem 1.1 in [10]. Furthermore, condition (b) in Theorem 2.7 also holds if c is large
enough.

If (g) has polynomial growth, then the index formula for indexg(D̂) in Corollary 2.19
in [23] applies. The interior contribution in this index formula now equals zero, because a
nontrivial group element has no fixed points because the action is free. Togetherwith Theorem
2.7, this implies the claim.

If (g) does not necessarily have polynomial growth, but the Baum–Connes assembly
map for 	 is surjective, then index	(D̂) ∈ K0(C∗

r 	) equals the index of an operator on
a cocompact 	-space. The latter index may be replaced by an index in K0(l1(	)); see for
example Remark A.2 in [43]. The trace τg converges on l1(	) without growth conditions
on the conjugacy class of g. So again, the claim follows from Corollary 2.19 in [23] and
Theorem 2.7. �
Remark 2.13 The index theorem in [23] also applies to semisimple Lie groups. So it is a
natural question if a version of Theorem 2.7 applies in that setting. We expect the techniques
needed to prove this (particularly Proposition 4.1) to be very different from the discrete case.
We have not looked into the details so far. In any case, the resulting version of Corollary 2.10
was obtained in [35].

Remark 2.14 The case of Theorem 2.7 where g = e, combined with Lemma 2.7 in [23],
shows that τe(indexG(D̂)) generalises the index used by Ramachandran in [37], and that
Corollary 2.10 generalises Ramachandran’s index theorem for manifolds with boundary.

Remark 2.15 Consider the setting of Corollary 2.12. Let DX be the twisted Spinc-Dirac
operator on X that lifts to the operator D on M . As a consequence of Theorem 3.9 in [20],
where reduced group C∗-algebras and Roe algebras are replaced by maximal ones (one can
also use l1(	) if 	 satisfies the Baum–Connes conjecture), we have

∑

(g)

τg(index	(D̂)) = index(DX ), (2.16)

where the sum runs over all conjugacy classes (g) in 	, and the index on the right hand side
is the APS index of DX . Since 	 acts freely on M , Corollaries 2.10 and 2.12 imply that the
left hand side of (2.16) equals

∫

M
χ2
e Â(M̃)ec1(L)/2 tr(ge−RṼ /2π i ) − 1

2

∑

(g)

ηg(DN ).

The first term is exactly the interior contribution to the topological side of the APS index of
DX . We conclude that

η(DY ) =
∑

(g)

ηg(DN ),

where DY is the Dirac operator on the boundary Y = N/	 of X corresponding to DN . In
other words, the delocalised η-invariants of DN are refinements of the η-invariant of DY .
This remains true in a case where DN is not invertible, but there is a large enough gap in the
spectrum of DN around zero. See Sect. 6. (See (I.6) in [13] for the case where G is finite.)

We expect Corollary 2.10, and its extension to non-invertible DN , to refine Farsi’s orbifold
APS index theorem (Theorem 4.1 in [15]) in a similar way.
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Remark 2.16 In [10], Chen, Wang, Xie and Yu proved convergence of delocalised and higher
η-invariants for Dirac operators with large enough spectral gaps around zero. The assumption
on k in case (b) of Theorem 2.7 is closely related to the spectral gap assumption in [10]. Fur-
thermore, there are analogous convergence results for certain integrals, compare for example
Propositions 3.12 and 3.13 in [10] with Lemma 4.3 and Proposition 4.4 in this paper. In [10],
these results are used to prove convergence of delocalised η-invariants; in the current paper
they are used to prove that the squares of certain g-trace class operators are again g-trace
class.

3 A parametrix and properties of the g-trace

We prepare for the proof of Theorem 2.7 by introducing a specific parametrix for D̂, and
discussing some properties of the g-trace and of heat operators. We will use these things in
Sect. 4 to prove that for the parametrix chosen, the squares of the remainder terms S j as in
(2.8) are g-trace class in the setting of Theorem 2.7.

3.1 A parametrix

Wewill use a parametrix of D̂ introduced in Sect. 5.1 of [23]. Consider the setting of Sect. 2.4.
As before, let M̃ be the double of M , and let Ẽ = Ẽ+ ⊕ Ẽ− and D̃ be the extensions of E
and D to M̃ , respectively. More explicitly, as on page 55 of [1], M̃ is obtained from M by
gluing together a copy of M and a copy of M with reversed orientation, while Ẽ is obtained
by gluing together a copy of E and a copy of E with reversed grading. To glue these copies
of E together along N , we use the isomorphism σ . Let D̃± be the restrictions of D̃ to the
sections of Ẽ±.

Let ψ1 : (0,∞) → [0, 1] be a smooth function such that ψ1 equals 1 on (0, ε) and 0
on (1 − ε,∞), for some ε ∈ (0, 1/2). Set ψ2 := 1 − ψ1. Let ϕ1, ϕ2 : (0,∞) → [0, 1] be
smooth functions such that ϕ1 equals 1 on (0, 1 − ε/2) and 0 on (1,∞), while ϕ2 equals 0
on (0, ε/4) and 1 on (ε/2,∞). Then ϕ jψ j = ψ j for j = 1, 2, and ϕ′

j and ψ j have disjoint
supports.

We pull back the functions ϕ j and ψ j to C along the projection onto (0,∞), and extend
these functions smoothly to M̂ by setting ψ1 and ϕ1 equal to 1 on M\U , and ψ2 and ϕ2

equal to 0 on M\U . We denote the resulting functions by the same symbols ψ j and ϕ j . (No
confusion is possible in what follows, because we will always use these symbols to denote
the functions on M̂ .) We denote the derivatives of these functions in the (0,∞) directions by
ϕ′
j and ψ ′

j , respectively. These derivatives are only defined and used on N × (0,∞) ⊂ M̂ .
Fix t > 0, and consider the parametrix

Q̃ := 1 − e−t D̃− D̃+

D̃− D̃+
D̃− (3.1)

of D̃+. (The partwithout the last factor D̃− is formedvia functional calculus, by an application
of the function x �→ 1−e−t x

x to D̃− D̃+; this does not require invertibility of D̃− D̃+.)
Let DC be the Dirac operator on N ×R given by (2.10). This operator is essentially self-

adjoint and positive. Hence its self-adjoint closure is invertible. Let QC be the restriction to
sections of E− of the inverse of that closure. We define

R := ϕ1 Q̃ψ1 + ϕ2QCψ2.
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Note that the operator Q̃ is well-defined on the supports of ϕ1 and ψ1, and that QC is well-
defined on the supports of ϕ2 and ψ2. The following two operators play key roles in this
paper.

S0 := 1 − RD̂+;
S1 := 1 − D̂+R.

(3.2)

3.2 Properties of S0 and S1

Consider the setting of Sect. 2.5. In addition to the parametrix R and the remainder terms S0
and S1, we will also use the remainders

S̃0 := 1 − Q̃ D̃+ = e−t D̃− D̃+;
S̃1 := 1 − D̃+ Q̃ = e−t D̃+ D̃− .

(3.3)

We recall Lemmas 5.1 and 5.2 from [23].

Lemma 3.1 We have

S0 = ϕ1 S̃0ψ1 + ϕ1 Q̃σψ ′
1 + ϕ2QCσψ ′

2;
S1 = ϕ1 S̃1ψ1 − ϕ′

1σ Q̃ψ1 − ϕ′
2σQCψ2.

(3.4)

Lemma 3.2 The operators S0 and S1 have smooth kernels.

Lemma 3.3 The operators S0 and S1 lie in C∗(M̂, M; L2(Ê))G.

Proof The operators S0 and S1 have smooth kernels by Lemma 3.2. This implies that these
operators are locally compact.

The operator QC equals b(DC ), where b ∈ C0(R) satisfies b(x) = 1/x for all
x ∈ spec(DN ) �� 0. Hence, by Lemma 2.1 in [38], QC is a norm-limit of a sequence
(QC, j )

∞
j=1 operators with finite propagation. Similarly, Q̃ is a norm-limit of operators with

finite propagation. So S0 and S1 are norm-limits of operators with finite propagation.
Since ϕ′

2 and ψ ′
2 are supported near M and QC, j has finite propagation, the operators

ϕ′
2σQC, jψ2 and ϕ2QC, jσψ ′

2 are supported near M . Hence ϕ′
2σQCψ2 and ϕ2QCσψ ′

2 are
norm-limits of operators that are supported nearM . The other terms on the right hand sides of
(3.4) are supported near M because ϕ1 and ψ1 are. So S0 and S1 are norm-limits of operators
that are supported near M . �

3.3 Properties of the g-trace

We consider a general setting, where E → M is an equivariant, Hermitian vector bundle
over a complete Riemannian metric with a proper, isometric action by G. In Sect. 4.3, we
return to the setting of Sect. 2.4.

This trace property is Lemma 3.2 in [23].

Lemma 3.4 Let S and T are G-equivariant operators on 	∞(E). Suppose that S has a
distributional kernel supported on the diagonal, and T has a smooth kernel in	∞(End(E))G.
If ST and T S are g-trace class, then they have the same g-trace.
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Lemma 3.5 A section κ ∈ 	∞(End(E))G is g-trace class if and only if the integral
∫

G/Zg

∫

M
χ(m)2| tr(hgh−1κ(hg−1h−1m,m))| dm d(hZg) (3.5)

converges.

Proof In (2.7), substituting m′ = hgh−1m, using G-invariance of κ and the trace property
shows that (2.7) equals

∫

G/Zg

∫

M
χ(m′)2| tr(hgh−1κ(hg−2h−1m′, hg−1h−1m′))| dm′ d(hZg)

=
∫

G/Zg

∫

M
χ(m′)2| tr(κ(hg−1h−1m′,m′)hgh−1)| dm′ d(hZg)

=
∫

G/Zg

∫

M
χ(m′)2| tr(hgh−1κ(hg−1h−1m′,m′))| dm′ d(hZg).

�
Lemma 3.6 Let κ ∈ 	∞(End(E))G be such that there exists a cocompactly supported ϕ ∈
C∞(M)G such that either κ = (ϕ ⊗ 1)κ or κ = (1 ⊗ ϕ)κ . Suppose that G/Zg is compact.
Then κ is g-trace class.

Proof We prove the case where κ = (ϕ ⊗ 1)κ , the other case is analogous. The integral (3.5)
then equals

∫

G/Zg

∫

M
χ(m)2ϕ(m)| tr(hgh−1κ(hg−1h−1m,m))| dm d(hZg).

Because G/Zg and the support of χ2ϕ are compact, this integral converges. �
In the setting of Lemma 3.6, if κ2 is well-defined, then it has the same property as κ , so that
it is also g-trace class.

3.4 G-integrable kernels

The composition of two g-trace class operators need not be g-trace class. The notion of
G-integrability (or 	-summability for discrete groups 	) can be used to prove that such
compositions are g-trace class under certain conditions.

Definition 3.7 A section κ ∈ 	∞(End(E))G is G-integrable if for all ϕ,ψ ∈ C∞
c (M), the

integral
∫

G

(∫

M×M
ϕ(m)ψ(m′)‖xκ(x−1m,m′)‖2 dm dm′

)1/2

dx

converges.

Lemma 3.8 Let κ, λ ∈ 	∞(End(E))G beG-integrable, and such that there exist cocompactly
supported ϕ,ψ ∈ C∞(M)G such that either κ = (ϕ ⊗ 1)κ and λ = (ψ ⊗ 1)λ or κ =
(1 ⊗ ϕ)κ and λ = (1 ⊗ ψ)λ. Suppose that the composition κλ is a well-defined element of
	∞(End(E))G. Then the integral

∫

G

∫

M
χ(m)2| tr(x(κλ)(x−1m,m))| dm dx (3.6)

converges.
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Proof We prove the case where κ = (ϕ ⊗1)κ and λ = (ψ ⊗1)λ, the other case is analogous.
In this situation, the integral (3.6) equals

∫

G

∫

M
χ(m)2

∣

∣

∣

∣

∫

M
ϕ(m)ψ(m′) tr(xκ(x−1m,m′)λ(m′,m)) dm′

∣

∣

∣

∣

dm dx .

Inserting a factor 1 = ∫

G χ(ym′)2 dy and substituting m′′ = ym′, we find that this integral
equals at most

∫

G

∫

M

∫

M

∫

G
χ(m)2χ(ym′)2

∣

∣ϕ(m)ψ(m′) tr(xκ(x−1m,m′)λ(m′,m))
∣

∣ dy dm′ dm dx

=
∫

G

∫

M

∫

M

∫

G
χ(m)2χ(m′′)2

∣

∣ϕ(m)ψ(m′′) tr(xκ(x−1m, y−1m′′)λ

(y−1m′′,m))
∣

∣ dy dm′′ dm dx .

By Fubini’s theorem, the integral on the right converges if and only if
∫

G

∫

G

∫

M

∫

M
χ(m)2χ(m′′)2

∣

∣ϕ(m)ψ(m′′) tr(xκ(x−1m, y−1m′′)λ(y−1m′′,m))
∣

∣ dm′′ dm dx dy

converges. It is enough to consider the case where χ , ϕ and ψ are nonnegative. Then the
latter integral is at most equal to
∫

G

∫

G

∫

M

∫

M
χ(m)2ϕ(m)χ(m′′)2ψ(m′′)‖xκ(x−1m, y−1m′′)λ(y−1m′′,m))‖ dm′′ dm dx dy.

Using G-invariance of κ , subtituting z = xy−1 for x and applying the Cauchy–Schwartz
inequality, we see that this integral equals

∫

M

∫

M
χ(m)2ϕ(m)χ(m′′)2ψ(m′′)

∫

G

∫

G
‖xy−1κ(yx−1m,m′′)yλ(y−1m′′,m))‖ dx dy dm′′ dm

≤
∫

G

(∫

M×M
χ(m)2ϕ(m)χ(m′′)2ψ(m′′)‖zκ(z−1m,m′′)‖2

)1/2

dz

·
∫

G

(∫

M×M
χ(m)2ϕ(m)χ(m′′)2ψ(m′′)‖yλ(y−1m,m′′)‖2

)1/2

dy. (3.7)

The right hand side converges by G-integrability of κ and λ. �

If G = 	 is discrete, then we will call a G-integrable smooth kernel 	-summable.

Lemma 3.9 Suppose G = 	 is discrete. Let κ, λ ∈ 	∞(End(E))	 be 	-summable, and such
that there exist cocompactly supported ϕ,ψ ∈ C∞(M)	 such that either κ = (ϕ ⊗ 1)κ and
λ = (ψ ⊗ 1)λ or κ = (1 ⊗ ϕ)κ and λ = (1 ⊗ ψ)λ. Suppose that the composition κλ is a
well-defined element of 	∞(End(E))	 . Then κλ is γ -trace class for all γ ∈ 	.

Proof By Lemma 3.8,

∑

γ ′∈	

∫

M
χ(m)2| tr(γ ′(κλ)(γ ′−1m,m))| dm

converges. So the sum over the conjugacy class of γ also converges, which is (3.5) in this
case. �

123



1348 P. Hochs et al.

3.5 Basic estimates for heat operators

Let D be a Dirac operator on E → M .

Lemma 3.10 Let f ∈ S(R). Let r ≥ 0. Consider bounded endomorphisms � and � of E
whose supports are at least a distance r apart. Then

‖� f (D)�‖B(L2(E)) ≤ 1

2π
‖�‖‖�‖

∫

R\[−r ,r ]
| f̂ (ξ)| dξ.

Proof For D = √−�, with � the scalar Laplacian and f even, this is Proposition 1.1 in [9].
The arguments apply directly to D: the claim follows from the decomposition

f (D) = 1

2π

∫

R

f̂ (λ)eiλD dλ

and the fact that eiλD has propagation at most |λ|. See Propositions 10.3.5 and 10.3.1 in [21],
respectively. �
Corollary 3.11 In the setting of Lemma 3.10, for all t > 0,

‖�e−t D2
�‖B(L2(E)) ≤ 2√

π
‖�‖‖�‖e− r2

4t

‖�De−t D2
�‖B(L2(E)) ≤ 1√

π t
‖�‖‖�‖e− r2

4t .

Proof Applying Lemma 3.10 with f (x) = e−t x2 , we obtain

‖�e−t D2
�‖B(L2(E)) ≤ 1√

π t
‖�‖‖�‖

∫ ∞

r
e− λ2

4t dλ

= 2√
π

‖�‖‖�‖ erfc
(

r

2
√
t

)

.

The first inequality now follows form the inequality erfc(x) ≤ e−x2 for all x > 0.
For the second inequality, we take f (x) = xe−t x2 . Then Lemma 3.10 yields

‖�De−t D2
�‖B(L2(E)) ≤ 1

2
√

π t3/2
‖�‖‖�‖

∫ ∞

r
λe− λ2

4t dλ

= 1√
π t

‖�‖‖�‖e− r2
4t .

�
IfM has bounded geometry, then the Schwartz kernel κt of e−t D2

or De−t D2
has Gaussian

off-diagonal decay behaviour. More explicitly, for all t0 > 0, there are b1, b2, b3 > 0 such
that for all t ∈ (0, t0] and all m,m′ ∈ M ,

‖κt (m,m′)‖ ≤ b1t
−b2e−b3d(m,m′)2/t , (3.8)

where d is the Riemannian distance. Estimates of this type were proved in many places. A
classical result is the one by Chen–Li–Yau [11] for the scalar Laplacian. A general result,
which applies in our current setting, is Proposition 4.2 in [7].
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Lemma 3.12 If M has bounded geometry, then the operators e−t D2
ϕ and e−t D2

Dϕ are
Hilbert–Schmidt operators for all t > 0 and ϕ ∈ C∞

c (M).

Proof Let κ be the Schwartz kernel of either e−t D2
D or e−t D2

. The bound (3.8) means that
κϕ can be bounded by a Gaussian function. Since M has bounded geometry, volumes of
balls in M are bounded by an exponential function of their radii. This implies that a Gaussian
function is square-integrable. �

4 S20 and S21 are g-trace class

Let S0 and S1 be as in (3.2). Ourmain goal in this section is to prove the following proposition.

Proposition 4.1 Under the conditions in Theorem 2.7, the operators S20 and S21 are g-trace
class.

In [23], it is shown that S0 and S1 are g-trace class in a general setting. An important subtlety
is that this is true for the notion of g-trace class operators in Definition 2.5, which is relatively
weak. For example, it does not reduce to the usual notion of trace class operators ifG is trivial,
and it is not preserved by composition with bounded, or even other g-trace class operators.
For this reason, Proposition 4.1 does not follow directly from the fact that S0 and S1 are
g-trace class, and the arguments in this section are needed to prove it.

4.1 Convergence of an integral for small t

In this subsection and the next, we consider a general setting,where E → M is an equivariant,
Hermitian vector bundle over a complete Riemannian manifold with bounded geometry, and
a proper, isometric action by G.

Let D be a Dirac operator on E , assuming a Clifford action is given. Because M has
bounded geometry, the kernels of e−t D2

and De−t D2
satisfy bounds of the type (3.8). We

choose t1 > 0 such that these bounds hold for t ∈ (0, t1].
We will use some calculus.

Lemma 4.2 Let a, b > 0, and t0 ∈ (0, b/a]. Then
∫ t1

0
t−ae−b/t dt ≤ t1 min(t0, t1)

−ae−b/t1 . (4.1)

Proof The function t �→ t−ae−b/t is increasing on (0, b/a], hence on (0, t0]. So
∫ t0

0
t−ae−b/t dt ≤ t0t

−a
0 e−b/t0 ≤ t1−a

0 e−b/t1 , (4.2)

and a similar estimate holds for the integral from 0 to t1 if t1 ≤ t0. If t1 ≥ t0, then

∫ t1

t0
t−ae−b/s ds ≤ (t1 − t0)t

−a
0 e−b/t1 . (4.3)

The claim (4.1) follows from a combination of (4.2) and (4.3). �
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Lemma 4.3 Let κt be the Schwartz kernel of either e−t D2
or e−t D2

D. Let ϕ,ψ ∈ C∞(M)	

have supports separated by a positive distance ε, and let ϕ̃, ψ̃ ∈ C∞
c (M). The integral

∑

γ∈	

(∫

M×M
ϕ̃(m)ϕ(m)ψ̃(m′)ψ(m′)

∫ t1

0
‖γ κt (γ

−1m,m′)‖2 dt dm dm′
)1/2

(4.4)

converges.

Proof For γ ∈ 	, set

r(γ ) := d(γ supp(ϕ̃ϕ), supp(ψ̃ψ)).

The Gaussian bound (3.8) on κt implies that for all γ ∈ 	 and t ∈ (0, t1],
∫

M×M
ϕ̃(m)ϕ(m)ψ̃(m′)ψ(m′)‖γ κt (γ

−1m,m′)‖2 dm dm′

=
∫

M×M
ϕ̃(γm)ϕ(γm)ψ̃(m′)ψ(m′)‖κt (m,m′)‖2 dm dm′

≤ b21t
−2b2e−2b3r(γ )2/t‖ϕ̃ϕ‖L1‖ψ̃ψ‖L1 .

So
(∫

M×M
ϕ̃(m)ϕ(m)ψ̃(m′)ψ(m′)

∫ t1

0
‖γ κt (γ

−1m,m′)‖2 dt dm dm′
)1/2

≤ b1‖ϕ̃ϕ‖1/2
L1 ‖ψ̃ψ‖1/2

L1

(∫ t1

0
t−2b2e−2b3r(γ )2/t

)1/2

.

The assumptions on ϕ and ψ imply that r(γ ) ≥ ε for all γ ∈ 	. Set t0 := b3ε2/b2. Then
by Lemma 4.2,

(∫ t1

0
t−2b2e−2b3r(γ )2/t

)1/2

≤ t1/21 min(t0, t1)
−b2e−b3r(γ )2/t1 .

The Svarc–Milnor lemma and compactness of the supports of ϕ̃ and ψ̃ imply that there
are a, b > 0 such that for all γ ∈ 	, r(γ ) ≥ al(γ ) − b, where l denotes the word length
with respect to a fixed, finite, symmetric, generating set. So there are α, β > 0 such that for
all γ ∈ 	,

e−b3r(γ )2/t1 ≤ e−b3(al(γ )−b)2/t1 ≤ αe−βl(γ )2/t1 .

The sum of the right hand side over γ ∈ 	 converges, because of (2.13). �

4.2 Convergence of an integral for large t

We still consider a Dirac operator D, and now assume that D2 ≥ c > 0.
As before, let l be a word length function on 	 with respect to a fixed, finite, symmetric,

generating set. Because 	 is finitely generated, there are C, k > 0 such that (2.13) holds for
all n ∈ N. Let ϕ,ψ ∈ C∞

c (M), and fix m0 ∈ supp(ψ). Let a1 and a2 be as in (2.14).
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Proposition 4.4 Suppose that M has bounded geometry. Suppose that (2.13) holds for a

k <
2a1

√
c

3 . Then for all t1 > 0, the expression

∑

γ∈	

(∫

M×M

∫ ∞

t1
ϕ(m)ψ(m′)‖γ e−sD2

D(γ −1m,m′)‖2 ds dm dm′
)1/2

(4.5)

converges.

By Lemma 3.12, the operators e−t D2
ϕ and e−t D2

Dϕ are Hilbert–Schmidt for all t > 0,
because M has bounded geometry.

Lemma 4.5 For all ϕ ∈ C∞
c (M), and all t1 > 0, there exists an a > 0 such that for all

t > t1,

‖e−t D2
ϕ‖HS ≤ ae−ct ;

‖e−t D2
Dϕ‖HS ≤ ae−ct .

Proof For t > 0, let At be either the operator e−t D2
or e−t D2

D. Then for all t > t1 > 0, and
all s ∈ L2(E),

‖Atϕs‖2 = ‖e−(t−t1)D2
At1ϕs‖2

= (

e−2(t−t1)D2
At1ϕs, At1ϕs

)

≤ e−2c(t−t1)‖At1ϕs‖2.
Let {e j }∞j=1 be an orthonormal basis of L2(E). Then by the above estimate,

‖Atϕ‖2HS =
∞
∑

j=1

‖Atϕe j‖2 ≤ e−2c(t−t1)‖At1ϕ‖2HS.

�
Let ϕ,ψ ∈ C∞

c (M), and suppose for simplicity that these functions take values in [0, 1].
For γ ∈ 	, set

r(γ ) := d(γ supp(ϕ), supp(ψ)).

(Here we note that r(γ ) may be zero.) Fix γ ∈ 	 and t > 0. Let ζ ∈ C∞
c (M) be a function

with values in [0, 1] such that
d(supp(ψ), supp(1 − ζ )) ≥ r(γ )/3;

d(γ supp(ϕ), ζ ) ≥ r(γ )/3.
(4.6)

Write

(γ · ϕ)e−t D2
Dψ = A(γ ) + B(γ ),

where

A(γ ) := (γ · ϕ)e−t D2/2ζe−t D2/2Dψ;
B(γ ) := (γ · ϕ)e−t D2/2(1 − ζ )e−t D2/2Dψ.
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Lemma 4.6 The operator A(γ ) is Hilbert–Schmidt, and there is a b > 0, independent of γ ,
such that for all t ≥ t1,

‖A(γ )‖HS ≤ be−r(γ )2/9t−ct .

Proof For all s ∈ L2(E) and γ ∈ 	,

‖A(γ )s‖ ≤ ‖(γ · ϕ)e−t D2/2ζ 1/2‖B(L2(E))‖ζ 1/2e−t D2/2Dψs‖.
By Corollary 3.11 and the second inequality in (4.6),

‖(γ · ϕ)e−t D2/2ζ 1/2‖B(L2(E)) ≤ 2√
π
e− r(γ )2

18t .

So, if {e j }∞j=1 is an orthonormal basis of L2(E),

‖A(γ )‖2HS ≤ 4

π
e− r(γ )2

9t

∞
∑

j=1

‖ζ 1/2e−t D2/2Dψe j‖2 ≤ 4

π
e− r(γ )2

9t ‖e−t D2/2Dψ‖2HS.

The claim now follows by Lemma 4.5. �
Lemma 4.7 The operator B(γ ) is Hilbert–Schmidt, and there is a b > 0, independent of γ ,
such that for all t ≥ t1,

‖B(γ )‖HS ≤ be−r(γ )2/9t−ct .

Proof The operator B(γ ) isHilbert–Schmidt if and only its adjoint is, and then these operators
have the same Hilbert–Schmidt norm. Now

B(γ )∗ = ψe−t D2/2D(1 − ζ )e−t D2/2(γ · ϕ)

= ψe−t D2/2(1 − ζ )De−t D2/2(γ · ϕ) − ϕe−t D2/2c(dζ )e−t D2/2(γ · ϕ).

The distance between the supports of ϕ and 1 − ζ is at least r(γ )/3. The support of dζ lies
inside the support of 1−ζ , so the distance between the supports of ϕ and dζ is at least r(γ )/3
as well. So Corollary 3.11 implies that

‖ψe−t D2/2(1 − ζ )‖ ≤ 2√
π
e− r(γ )2

18t ;

‖ψe−t D2/2c(dζ )‖ ≤ ‖dζ‖∞
2√
π
e− r(γ )2

18t .

And the Hilbert–Schmidt norms of

e−t D2/2(γ · ϕ) = γ e−t D2/2ϕγ −1

and

De−t D2/2(γ · ϕ) = γ De−t D2/2ϕγ −1

are independent of γ . So a similar argument to the proof of Lemma 4.6 applies to show that
there is a b > 0 such that for all t ≥ t1,

‖B(γ )‖HS = ‖B(γ )∗‖HS ≤ be−r(γ )2/9t−ct .

�
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Lemma 4.8 Let C, k, α1, α2, α3, t1 > 0, and suppose that (2.13) holds for all n ∈ N. Suppose
that k2 < 4α1α3. Then

∑

γ∈	

∫ ∞

t1
e−α1

(l(γ )−α2)2

s −α3s ds (4.7)

converges.

Proof The sum (4.7) equals

∞
∑

n=0

∑

γ∈	;l(γ )=n

∫ ∞

t1
e−α1

(n−α2)2

s −α3s ds ≤ C
∞
∑

n=0

∫ ∞

t1
e−α1

(n−α2)2

s −α3s+kn ds

= Cekα2
∫ ∞

t1
e

(

k2
4α1

−α3

)

s

( ∞
∑

n=0

e
− α1

s

(

n−α2− ks
2α1

)2
)

ds. (4.8)

(Because all terms and integrands are positive, convergence does not depend on the order
of summation and integration.) Convergence of the right hand side of (4.8) is equivalent to
convergence of the double integral

∫ ∞

t1
e

(

k2
4α1

−α3

)

s

(

∫ ∞

0
e
− α1

s

(

x−α2− ks
2α1

)2

dx

)

ds. (4.9)

And for all s > 0,
∫ ∞

0
e
− α1

s

(

x−α2− ks
2α1

)2

dx ≤
∫

R

e
− α1

s

(

x−α2− ks
2α1

)2

dx =
√

πs

α1
.

We find that a sufficient condition for the convergence of (4.9) is convergence of
∫ ∞

t1
e

(

k2
4α1

−α3

)

s
√

πs

α1
ds.

This is equivalent to the condition k2 < 4α1α3. �
Proof of Proposition 4.4 The integral (4.5) equals

∑

γ∈	

∥

∥

∥

∥

∫ ∞

t1
ϕ ◦ γ ◦ e−sD2

D ◦ ψ ds

∥

∥

∥

∥

HS
≤

∑

γ∈	

∫ ∞

t1
‖ϕ ◦ γ ◦ e−sD2

D ◦ ψ‖HS ds. (4.10)

By Lemmas 4.6 and 4.7, there is a b > 0 such that for all t ≥ t1 and all γ ∈ 	,

‖ϕ ◦ γ ◦ e−sD2
D ◦ ψ‖HS = ‖(γ · ϕ) ◦ e−sD2

D ◦ ψ‖HS ≤ be−r(γ )2/9s−cs .

The condition (2.14) and compactness of supp(ϕ) and supp(ψ) imply that there is a3 > 0
such that for all γ ∈ 	, r(γ ) ≥ a1l(γ ) − a3. So

‖ϕ ◦ γ ◦ e−sD2
D ◦ ψ‖HS ≤ be− (a1l(γ )−a3)2

9s −cs .

So the right hand side of (4.10) is at most equal to

b
∑

γ∈	

∫ ∞

t1
e− (a1l(γ )−a3)2

9s −cs ds.

By Lemma 4.8, this converges if 	 satisfies (2.13) for some C, k > 0 with k2 <
4a21c
9 . �
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4.3 Proof of Proposition 4.1

We return to the setting of Sect. 2.4, where M is a manifold with boundary N , on which G
acts cocompactly, and M̂ is obtained from M by attaching a cylinder N × [0,∞).

The operators Q̃ and QC as in Sect. 3.1 do not have smooth kernels, but if ϕ,ψ ∈ C∞(M)

have disjoint supports, then ϕ Q̃ψ and ϕQCψ do.

Lemma 4.9 If ϕ,ψ ∈ C∞(M)	 have supports separated by a postive distance, then ϕ Q̃ψ

is 	-summable.

Proof We have

Q̃ = −
∫ t

0
e−s D̃+ D̃− D̃− ds.

Because M̃ has bounded geometry, the claim follows from Lemma 4.3. �

Proposition 4.10 Consider the setting of Theorem 2.7(b). If ϕ,ψ ∈ C∞(M)	 have supports
separated by a postive distance, then ϕQCψ is 	-summable.

Proof We have

QC =
∫ ∞

0
e−s(DC )+(DC )−(DC )− ds.

The operator

ϕ

∫ 1

0
e−s(DC )+(DC )−(DC )− ds ψ

is 	-summable by Lemma 4.3, because M̂ has bounded geometry. The operator

ϕ

∫ ∞

1
e−s(DC )+(DC )−(DC )− ds ψ

is 	-summable by Proposition 4.4. The coefficient that appears a1 in (2.14) and in the growth
condition on 	 is independent of the choice of m0 ∈ supp(ψ) by compactness of M/	 and
	-invariance of the distance on M . �

Let the functions ϕ j and ψ j , and the operator S0 be as in Sect. 3.1, and let S̃0 be as in
(3.3).

Proposition 4.11 Consider the setting of Theorem 2.7(b). The operator (ϕ1 Q̃ − ϕ2QC )ψ ′
1

has a smooth kernel, and is 	-summable.

Proof The operator S0 has a smooth kernel by Lemma 3.2, and ϕ1 S̃0ψ1 has a smooth kernel
as well. Hence so does

(ϕ1 Q̃ − ϕ2QC )ψ ′
1 = S0 − ϕ1 S̃0ψ1.
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As in the proof of Proposition 5.8 in [23],

(ϕ1 Q̃ − ϕ2QC )ψ ′
1 = (ϕ1 Q̃ − ϕ2Q

′
C )ψ ′

1 − ϕ2(QC − Q′
C )ψ ′

1

= (ϕ1 Q̃ − ϕ2Q
′
C )ψ ′

1 − ϕ2e
−DC,+DC,− QCψ ′

1

−
∫ t

0

(

ϕ1e
−s D̃+ D̃− − ϕ2e

−sDC,+DC,−)

D− ds σψ ′
1

−ϕ2

∫ ∞

t
e−sDC,−DC,+ DC,− ds σψ ′

1

(4.11)

The second term on the right hand side is 	-summable by Proposition 4.4, in which it is not
assumed that the functions ϕ andψ have disjoint supports. Here we again use the fact that the
coefficient a1 that appears in (2.14) and in the growth condition on 	 is independent of the
choice of m0 ∈ supp(ψ) by compactness of M/	 and 	-invariance of the distance on M .

We now focus on the first term on the right hand side of (4.11). As in the proof of Lemma
5.5 in [23], let ϕ ∈ C∞(M̂) be such that for j = 1, 2, ϕ equals 1 on the support of ψ ′

j , and
zero outside the support of 1−ϕ j . Since (1−ϕ) andψ ′

1 have supports separated by a positive
distance, Lemma 4.3 implies that

∫ t

0
(1 − ϕ)

(

ϕ1e
−s D̃+ D̃− − ϕ2e

−s(DC,+DC,−)
)

D−σψ ′
1 ds

is 	-summable.
Let ϕ̃, ψ̃ ∈ C∞

c (M). Then as in Lemma 5.4 in [23], for all m,m′ ∈ M

(

ϕ̃ϕ
(

ϕ1e
−s D̃+ D̃− − ϕ2e

−s(DC,+DC,−)
)

D−σψ ′
1ψ̃

)

(m,m′)

= 1

(2πs)dim(M)/2
e−d(m,m′)2/4s F(s,m,m′),

where F(s,m,m′) vanishes to all orders in s as s ↓ 0, uniformly in m,m′ in compact sets.
This implies that ϕ̃ϕ

(

ϕ1e−s D̃+ D̃− − ϕ2e−s(DC,+DC,−)
)

D−σψ ′
1 is 	-summable via a simpler

version of the proof of Lemma 4.3. �

Proof of Proposition 4.1 First suppose that G/Zg is compact. Because the functions ϕ1 and
ϕ′
2 are cocompactly supported, Lemma 3.1 implies that there is a cocompactly supported

function ϕ ∈ C∞(M)G such that ϕS1 = S1. So S21 is g-trace class by Lemma 3.6 and the
comment below it. And because ψ1 and ψ ′

2 are cocompactly supported, Lemma 3.1 implies
that there is a cocompactly supported function ϕ ∈ C∞(M)G such that S0ϕ = S0. So S20 is
g-trace class, again by Lemma 3.6. Part (a) follows.

For case (b) in Theorem 2.7, suppose that G = 	 is discrete. The operator S̃1 is 	-
summable, so Lemma 4.9 and Proposition 4.10 imply that the three terms in the expression
for S1 in Lemma 3.1 are all 	-summable. As in the proof of part (a), there is a cocompactly
supported function ϕ ∈ C∞(M)G such that ϕS1 = S1. So S21 is g-trace class by Lemma 3.9.

The operator S̃0 is 	-summable, so Proposition 4.11 and Lemma 3.1 imply that

S0 = ϕ1 S̃0ψ1 + (ϕ1 Q̃ − ϕ2QC )ψ ′
1

is 	-summable as well. As in the proof of part (a), there is a cocompactly supported function
ϕ ∈ C∞(M)G such that S0ϕ = S0. So S20 is g-trace class by Lemma 3.9. �
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5 The trace of the index

Our main goal in this section is to prove the following part of Theorem 2.7.

Proposition 5.1 If S20 and S21 are g-trace class, then

τg(indexG(D̂)) = Trg(S
2
0 ) − Trg(S

2
1 ). (5.1)

Together with Proposition 4.1, this is the main part of the proof of Theorem 2.7.

5.1 An explicit index

LetC∞(M̂, M; L2(Ê))G be the subalgebra of elements ofC∗(M̂, M; L2(Ê))G with smooth
kernels. Because D̂ is a multiplier of C∞(M̂, M; L2(Ê))G , Lemmas 3.2 and 3.3 imply that

e :=
(

S20 S0(1 + S0)R
S1 D̂+ 1 − S21

)

(5.2)

is an idempotent in C∞(M̂, M; L2(Ê))G . (The 2 × 2 matrix notation is with respect to the
decomposition Ê = Ê+ ⊕ Ê−.) See also page 353 of [12]. We write

p2 :=
(

0 0
0 1

)

.

Let

ι : C∞(M̂, M; L2(Ê))G → C∗(M̂, M; L2(Ê))G

be the inclusion map. Let

indexL
2(E)

G (D̂) ∈ K0(C
∗(M̂, M; L2(Ê))G)

be defined as in (2.3).

Lemma 5.2 We have

indexL
2(Ê)

G (D̂) = ι∗([e] − [p2]). (5.3)

Proof The right hand side of (5.3) equals ∂[D̂], where
∂ : K1(M(C∞(M̂, M; L2(Ê))G/C∞(M̂, M; L2(Ê))G → K0(C

∞(M̂, M; L2(Ê))G

is the boundary map in the six-term exact sequence. The image of ∂[D̂] in K0(C∗(M̂; Z;
L2(Ê))G) equals [ē]−[p2],where ē is the idempotent defined as the right hand side of (5.2),
with R replaced by R̄, and S j by S̄ j , for any multiplier R̄ of C∞(M̂; Z; L2(Ê)G such that
S̄0 := 1 − R̄ D̂+ and S̄1 := 1 − D̂+ R̄ are in C∞(M̂, M; L2(Ê))G . In other words, for any
such R̄,

[e] − [p2] = [ē] − [p2]. (5.4)

Let b be the function used in Sect. 2.2.We now choose b such that b(x) = O(x) as x → 0,
so that the function x �→ b(x)/x has a continuous extension to R. The function b is odd, and

the function x �→ b(x)/x is even. So the operator b(D̂)

D̂
is even with respect to the grading on
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E , whereas b(D̂) is odd. We denote restrictions of operators to sections of E± be subscripts
±, respectively. We choose

R̄ := b(D̂)−
(b(D̂)

D̂

)

−.

Then we obtain operators S̄0 and S̄1 which equal the restrictions of 1 − b(D̂)2 to even and
odd graded sections of E , respectively. We claim that S̄0 and S̄1 lie in C∞(M̂; Z; L2(Ê)G .
Indeed, by Lemma 2.3 in [38], these operators lie in C∗(M̂; Z; L2(Ê))G . And 1 − b2 is
compactly supported, so D̂ j (1 − b(D̂)2) is a bounded operator on L2(Ê) for all j ∈ N.
Hence, by elliptic regularity, 1−b(D̂)2 maps L2(Ê), and any Sobolev space defined in terms
of D̂, continuously into 	∞(E). So this operator has a smooth kernel.

For this choice of R̄, we have

ē =
(

S̄20 S̄0(1 + S̄0)b(D̂)−
(

b(D̂)

D̂

)

−
S̄1 D̂+ 1 − S̄21

)

For s ∈ [0, 1], we write

As :=
⎛

⎜

⎝

(

b(D̂)

D̂

)−s/2

+ 0

0
(

b(D̂)

D̂

)s/2

−

⎞

⎟

⎠
,

and consider the idempotent

es := AsēA
−1
s =

⎛

⎜

⎝

S̄20 S̄0(1 + S̄0)b(D̂)−
(

b(D̂)

D̂

)1−s

−
S̄1 D̂+

(

b(D̂)

D̂

)s

+ 1 − S̄21

⎞

⎟

⎠

inM2(C∗(M̂; Z; L2(Ê)G)). Via this continuous path of idempotents, we conclude from (5.4)
that

[e] − [p2] = [ē] − [p2] = [e1] − [p2].
By the definition (2.3) of indexL

2(Ê)
G (D̂), this index equals [e1] − [p2]. The map ι∗ may be

inserted here because the entries of e1 have smooth kernels. �

5.2 Themap ˜TR

In this subsection, we temporarily return to the general setting of Subsection 2.1. Because
Z/G is compact, the equivariant Roe algebra C∗(Z; L2(E |Z ))G equals the closure in
B(L2(E |Z )) of the algebra of bounded operators on L2(E |Z ) with finite propagation, and
G-invariant, continuous kernels

κ ∈ 	(Z × Z ,End(E |Z )). (5.5)

This can be proved analogously to the arguments in Section 5.4 in [18]. We will not need this
fact, however, since the operators inC∗(Z; L2(E |Z ))G weworkwith always have continuous
kernels.

Let χ ∈ C(X) be a cutoff function for the action by G, as in (2.4). Define the map

˜TR : C∗(Z; L2(E |Z ))G → C∗
r G ⊗ K(L2(E |Z ))
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by

˜TR(κ)(h) = T(χ⊗χ)h·κ ,

for h ∈ G and κ as in (5.5). Here T(χ⊗χ)h·κ is the operator whose Schwartz kernel is given
by

((χ ⊗ χ)h · κ)(z, z′) = χ(z)χ(z′)hκ(h−1z, z′),

for all h ∈ G and z, z′ ∈ Z . (The map ˜TR is not a trace, the notation is motivated by Lemma
5.4 below.)

Lemma 5.3 The map ˜TR is an injective ∗-homomorphism.
Proof The fact that ˜TR is a ∗-homomorphism follows from direct computations involving
G-invariance of κ . It follows from G-invariance of κ that κ = 0 if (χ ⊗ χ)h · κ = 0 for all
h ∈ G. �

Let C∗
Tr(Z; L2(E |Z ))G ⊂ C∗(Z; L2(E |Z ))G be the subalgebra of operators with kernels

κ such that ˜TR(κ) ∈ C∗
r G ⊗ L1(L2(E |Z )), where L1 stands for the space of trace-class

operators.
Analogously to Sect. 3.3 of [23], we define

TR(κ)(x) :=
∫

Z
χ(xm)2 tr(xκ(x−1m,m)) dm,

for κ ∈ 	∞(End(E |Z ))G and x ∈ G for which the integral converges.

Lemma 5.4 For all κ ∈ C∗
Tr(Z; L2(E |Z ))G and x ∈ G,

TR(κ)(x) = Tr(˜TR(κ)(x)).

Proof For any G-equivariant operator T on L2(E |Z ) with smooth kernel κ ∈ C∗
Tr(Z;

L2(E |Z ))G ,
and any x ∈ G, the trace property of the operator trace Tr and G-equivariance of T imply

that

TR(T )(x) = Tr(xχ2T ) = Tr(χxTχ) = Tr(˜TR(κ)(x)).

�
Lemma 5.5 For all κ ∈ C∗

Tr(Z; L2(E |Z ))G such that Tr ◦˜TR(κ) ∈ A,

τg ◦ Tr ◦˜TR(κ) = Trg(κ).

Proof It is immediate from the definitions that Trg = τg ◦ TR. So the claim follows from
Lemma 5.4. �

5.3 Twomaps from Roe algebras to C∗
r G ⊗ K

To apply τg to the localised coarse index of an operator, one needs a specific isomorphism
(2.1). The key step in the proof of Proposition 5.1 is the fact that two maps from localised
Roe algebras to groupC∗-algebras tensored with the algebra of compact operators lead to the
same result when one applies τg . See Proposition 5.6. One of these maps is the one applied in
[18] to map the localised equivariant coarse index into the K -theory of a group C∗-algebra.
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The other is defined in terms of the map ˜TR from Sect. 5.2, and is suitable for computing
g-traces.

Let X be a proper, isometric, Riemannian G-manifold, and let Z ⊂ X be a cocompact
subset. Suppose that Z = G ×K Y for a slice Y ⊂ Z and a compact subgroup K < G. (We
comment on how to remove this assumption in Remark 5.7.) Fix a Borel section φ : K\G →
G. The map

ψ : Z × G → G × K\G × Y (5.6)

given by

ψ(gy, h) = (

hφ(Kg−1h)−1, Kg−1h, φ(Kg−1h)h−1gy
)

for g, h ∈ G and y ∈ Y , is G-equivariant and bijective, with respect to the diagonal action by
G on Z × G and the action by G on the factor G on the right hand side of (5.6). We always
use the action by G on itself by left multiplication. The map ψ relates the measures dz dg
and dg d(Kg) dy to each other, as shown in Lemma 5.2 in [18].

Let E → X be a G-equivariant, Hermitian vector bundle. Write

H := L2(K\G) ⊗ L2(E |Y ).

Then pulling back along ψ defines a G-equivariant, unitary isomorphism

ψ∗ : L2(G) ⊗ H → L2(E |Z ) ⊗ L2(G). (5.7)

Let ψ1 and ψ2 be the projections of ψ onto G and K\G × Y , respectively. Define the
map

η : Z → K\G × Y

by

η(z) = ψ2(z, e).

This induces a unitary isomorphism

η∗ : H → L2(E |Z ).

Let C∗
ker(Z)G be the algebra as in Definition 5.10 in [18], of continuous kernels

κG : G × G → K(H)

with finite propagation, and the invariance property that for all g, g′, h ∈ G,

κG(hg, hg′) = κG(g, g′). (5.8)

Such a kernel defines an operator on L2(G) ⊗ H , which corresponds to an operator on
L2(E |Z ) ⊗ L2(G) via (5.7). This gives a map

a : C∗
ker(Z)G → C∗(Z)G

with dense image; see Proposition 5.11 in [18]. We also have an injective ∗-homomorphism

W : C∗
ker(Z)G → C∗

r G ⊗ K(H)
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with dense image, given by

W (κG)(g) = κG(g−1, e),

for κG ∈ C∗
ker(Z)G and g ∈ G.

There are natural maps

ϕ : C∗(Z)G → C∗(X , Z)G;
ϕE : C∗(Z; L2(E |Z ))G → C∗(X , Z; L2(E))G ,

(5.9)

defined by extending operators by zero outside Z , that induce isomorphisms on K -theory;
see Section 7.2 in [18]. Consider the map ⊕0 from (2.6).

Proposition 5.6 The diagram

C∗(X , Z; L2(E))G
⊕0 �� C∗(X , Z)G

C∗(Z; L2(E |Z ))G

ϕE

��

˜TR

��

C∗(Z)G

ϕ

��

C∗
ker(Z)G

a

��

W

��
Cc(G) ⊗ K(L2(E |Z ))

τg⊗1

��

Cc(G) ⊗ K(H)

τg⊗1

��
K(L2(E |Z ))

η∗
�� K(H).

(5.10)

commutes in the following sense: the maps a, ϕE and ϕ are injective, with dense images,
and the diagram commutes on the relevant dense subalgebras for the inverses of these maps.
More explicitly, if κ ∈ C∗(Z; L2(E |Z ))G, κG ∈ C∗

ker(Z)G and ϕE (κ)⊕0 = ϕ ◦a(κG), then

η∗ ◦ (τg ⊗ 1) ◦ ˜TR(κ) = (τg ⊗ 1) ◦ W (κG).

Remark 5.7 In general, Z is a finite disjoint union of subsets of the form Z j = G ×K j Y j ;
see [33]. We can generalise Proposition 5.6 to that setting, by viewing operators on L2(E |Z )

as finite matrices of operators between the spaces L2(E |Z j ), and comparing them with
analogous matrices of operators between the spaces Hj := L2(K j\G) ⊗ L2(E |Y j ).

5.4 Proof of Proposition 5.6

For simplicity, we will prove Proposition 5.6 in the case where E is the trivial line bundle.
The general case can be proved analogously.

By definition of the maps (5.9), as in [18], the diagram

C∗(X , Z; L2(E))G
⊕0 �� C∗(X , Z)G

C∗(Z; L2(E |Z ))G

ϕE

��

⊕0 �� C∗(Z)G

ϕ

��
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commutes. (This is in fact the only property of these maps that we use here.) For this reason,
we disregard the top line in (5.10), and only work with Roe algebras on Z .

Let an element of C∗(Z; L2(Z))G be given by a continuous kernel κ : Z × Z → C with
finite propagation.

Lemma 5.8 For all ζ ∈ L2(Z) ⊗ L2(G), g ∈ G and z ∈ Z,

((ϕE (κ) ⊕ 0)ζ )(z, g) =
(

∫

G

˜TR(κ)(h)(h−1g−1 · ζ(−, gh)) dh
)

(g−1z).

In this lemma, ζ(−, gh) ∈ L2(Z), on which G acts via its action on Z .

Proof Consider the map (2.5) in this setting,

j : L2(Z) → L2(Z) ⊗ L2(G).

Then⊕0 is given bymapping operators on L2(Z) to the corresponding operators on j(L2(Z))

by conjugation with j , and extending them by zero on the orthogonal complement of
j(L2(Z)). Let p : L2(Z) ⊗ L2(G) → j(L2(Z)) be the orthogonal projection. Then

ϕE (κ) ⊕ 0 = j ◦ ϕE (κ) ◦ j−1 ◦ p. (5.11)

One checks directly that for all ζ ∈ L2(Z) ⊗ L2(G) and z ∈ Z ,

( j−1 ◦ p)(ζ )(z) =
∫

G
χ(g−1z)ζ(z, g) dg. (5.12)

The lemma can now be proved via a straightforward computation involving (5.11), (5.12),
G-invariance of κ , and left invariance of the Haar measure on G. �

Next, fix κG ∈ C∗
ker(Z)G .

Lemma 5.9 For all ζ ∈ L2(Z) ⊗ L2(G), g ∈ G and z ∈ Z,

((ϕ ◦ a)(κG)ζ )(z, g)

=
(

∫

G
W (κG)

(

ψ1(z, g)
−1hψ1(z, g)

)

ζ(ψ−1(hψ1(z, g),−)) dh
)

(ψ2(z, g)).

Proof This is a straightforward computation involving G-invariance of κG and right invari-
ance of the Haar measure on G. �
Lemma 5.10 Let η : X1 → X2 be a measurable bijection between measure spaces (X1, μ1)

and (X2, μ2), such that η∗μ2 = μ1. Let σ : X1 → G be any map. Define

� : Cc(G) ⊗ K(L2(X2)) → Cc(G) ⊗ K(L2(X1))

by
(

(�( f )(g))u
)

(x) = ((

η∗ ◦ f (σ (x)−1gσ(x)) ◦ (η−1)∗
)

u
)

(x)

for all f ∈ Cc(G) ⊗ K(L2(X2)), g ∈ G, u ∈ L2(X1) and x ∈ X1. Then the following
diagram commutes:

Cc(G) ⊗ K(L2(X1))

τg⊗1

��

Cc(G) ⊗ K(L2(X2))
���

τg⊗1

��
K(L2(X1))

η∗
�� K(L2(X2)).
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Proof This is a straightforward computation, involving G-invariance of the measure d(hZg)

on G/Zg . �

Remark 5.11 The map � in Lemma 5.10 is not a homomorphism in general, unless σ is
constant.

Applying Lemma 5.10 with X1 = Z , X2 = K\G × Y and σ(z) = ψ1(z, e), we obtain a
commutative diagram

Cc(G) ⊗ K(L2(Z))

τg⊗1

��

Cc(G) ⊗ K(H)
���

τg⊗1

��
K(L2(Z))

η∗
�� K(H).

(5.13)

Proof of Proposition 5.6 As before, fix an element of C∗(Z; L2(Z))G given by a continuous
kernel κ : Z × Z → C with finite propagation, and κG ∈ C∗

ker(Z)G . Suppose that

(ϕ ◦ a)(κG) = (ϕE (κ) ⊕ 0) ∈ C∗(X , Z)G . (5.14)

Then Lemmas 5.8 and 5.9, applied with g = e, imply that for all ζ ∈ L2(Z) ⊗ L2(G) and
z ∈ Z ,

(

∫

G

˜TR(κ)(h)(h−1 · ζ(−, h)) dh
)

(z)

=
(

∫

G
η∗ ◦ W (κG)

(

ψ1(z, e)
−1hψ1(z, e)

)

ζ(ψ−1(hψ1(z, e),−)) dh
)

(z). (5.15)

One has for all z ∈ Z and h ∈ G,

ψ(hz, h) = (hψ1(z, e), η(z)).

(Recall that ψ1 is the projection of ψ onto G.) Hence the right hand side of (5.15) equals

(

∫

G
η∗ ◦ W (κG)

(

ψ1(z, e)
−1hψ1(z, e)

) ◦ (η−1)∗(h−1 · ζ(−, h)) dh
)

(z).

Therefore, if ζ = u ⊗ v, for u ∈ L2(Z) and v ∈ L2(G), then (5.15) implies that for all
z ∈ Z ,

∫

G
v(h)˜TR(κ)(h)(h−1 · u) dh

)

(z)

=
(

∫

G
v(h)

(

η∗ ◦ W (κG)
(

ψ1(z, e)
−1hψ1(z, e)

) ◦ (η−1)∗
)

(h−1 · u) dh
)

(z).

Hence for all u ∈ L2(Z), h ∈ G and z ∈ Z ,

(

˜TR(κ)(h)u
)

(z) =
(

η∗ ◦ W (κG)
(

ψ1(z, e)
−1hψ1(z, e)

) ◦ (η−1)∗(u)
)

(z)

= (

�(W (κG))(h)u
)

(z).

So �(W (κG)) = ˜TR(κ), and commutativity of diagram (5.13) implies the claim. �
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5.5 Proof of Proposition 5.1

The isomorphism C∗(X , Z)G ∼= C∗
r G ⊗ K used in [18] to identify localised coarse indices

with classes in K∗(C∗
r G) is the map

W ◦ a−1 ◦ ϕ−1,

defined on a dense subalgebra and extended continuously. Hence we explicitly have

indexG(D̂) = (W∗ ◦ a−1∗ ◦ ϕ−1∗ )(indexL
2(E)

G (D̂) ⊕ 0) ∈ K0(C
∗
r G). (5.16)

Therefore, Lemma 5.2 and Proposition 5.6 (see Remark 5.7) imply that

τg(indexG(D̂)) = τg
(

˜TR ◦ (ϕE )−1∗ ([e] − [p2])
)

.

The trace map on the sub-algebra of trace-class operators in K(L2(E |Z )) induces the iso-
morphism

K∗(C∗
r G ⊗ K(L2(E |Z ))) ∼= K∗(C∗

r G).

Hence Proposition 5.1 follows by Lemma 5.5.

5.6 Proof of Theorem 2.7

Proposition 5.12 If the operators e−t D̃2
and e−t D̃ D̃ and S20 and S21 are g-trace class, then

Trg(S
2
0 ) − Trg(S

2
1 ) = Trg(S0) − Trg(S1). (5.17)

Proof We have S0R = RS1, and hence

S0 − S20 = S0(1 − S0) = RS1 D̂+;
S1 − S21 = S1(1 − S1) = S1 D̂+R.

Because e−t D̃2
and e−t D̃ D̃ are g-trace class, Lemma 5.3 and Proposition 5.8 in [23] imply

that S0 and S1 are g-trace class. So the operators RS1 D̂+ and S1 D̂+R are g-trace class.
By Lemma 3.1,

S1 D̂+ = ϕ1 S̃1 D̃+ψ1 − ϕ1 S̃1σψ ′
1 − ϕ′

1σ Q̃ D̃+ψ1 + ϕ′
1σ Q̃σψ ′

1

−ϕ′
2σQCDC,+ψ2 + ϕ′

2QCσψ ′
2. (5.18)

Since S̃1 and σ−1 S̃1 D̃+ are g-trace class by assumption, ϕ′
j has disjoint support fromψ j , and

all operators occurring are pseudo-differential operators, and therefore have smooth kernels
off the diagonal, we find that σ−1S1 D̂+ is g-trace class. (And the last four terms on the right
hand side of (5.18) have g-trace zero.) And Rσ is has a distributional kernel, so Lemma 3.4
implies that

Trg(RS1 D̂+) = Trg(Rσσ−1S1 D̂+) = Trg(σ
−1S1 D̂+Rσ) = Trg(S1 D̂+R).

Hence (5.17) follows. �

Theorem 2.7 follows from Propositions 4.1, 5.1 and 5.12.
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6 Non-invertibleDN

We have so far assumed that the Dirac operator DN on the boundary N is invertible. We
now discuss how that assumption can be weakened to the assumption that 0 is isolated in the
spectrum of DN . The arguments are related to those in Section 6 of [23].

6.1 A shifted Dirac operator

Let ε > 0 be such that ([−2ε, 2ε]∩spec(DN ))\{0} = ∅. Letψ ∈ C∞(M̂)G be a nonnegative
function such that

ψ(n, u) =
{

u if n ∈ N and u ∈ (1/2,∞);
0 if n ∈ N and u ∈ (0, 1/4);

ψ(m) = 0 if m ∈ M\U .

(Recall that U ∼= N × (0, 1] is a neighbourhood of N in M .)
As in Section 6 of [23], we consider the G-equivariant, odd, elliptic operator

D̂ε := eεψ D̂e−εψ .

The operator D̂ε isG-equivariant, essentially self-adjoint, odd-graded and elliptic. Its restric-
tion to M̂\M equals

σ
(

− ∂

∂u
+ DN + ε

)

. (6.1)

It therefore satisfies the condition (2.2), and has a well-defined index

indexG(D̂ε) ∈ K0(C
∗
r G).

Let a1 be as in (2.14). Theorem 2.7 generalises as follows.

Theorem 6.1 Suppose that D̂ε is g-Fredholm, and that the Schwatrz kernels of e−t D̂2
ε and

D̂εe−t D̂2
ε have Gaussian off-diagonal decay behaviour as in (3.8). If either

(a) G/Zg is compact; or
(b) G = 	 is discrete and finitely generated, and (2.13) holds for a k < 2a1ε

3 ,

then

τg(indexG(D̂ε)) = indexg(D̂ε).

Conditions for D̂ε to be g-Fredholm were given in Theorem 6.2 and Corollary 6.3 in [23].
Corollary 2.10 also generalises to this setting. This involves Corollary 6.3 in [23].
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6.2 A shifted parametrix

Let ψ̃ be any smooth, G-invariant extension of ψ |M to the double M̃ of M . As in Sect. 6.2
of [23], we use the operators

D̃ε = eεψ̃ D̃e−εψ̃ ;

Q̃ε := 1 − e−t D̃ε,− D̃ε,+

D̃ε,− D̃ε,+
D̃ε,−;

S̃ε,0 := 1 − Q̃ε D̃ε,+ = e−t D̃ε,− D̃ε,+;
S̃ε,1 := 1 − D̃ε,+ Q̃ε = e−t D̃ε,+ D̃ε,− .

Let DC,ε be the restriction of D̂ε to N×(1/2,∞), and let QC,ε be the inverse of its self-adjoint
closure, restricted to sections of E−.

Let the functions ϕ j and ψ j be as in Sect. 3.1, with the difference that they change values
between 0 and 1 on the interval (1/2, 1) rather than on (0, 1). Set

Rε := ϕ1 Q̃εψ1 + ϕ2QC,εψ2;
Sε,0 := 1 − Rε D̂ε,+;
Sε,1 := 1 − D̂ε,+Rε.

From this point on, the proof of Theorem 6.1 is analogous to the proof of Theorem 2.7.
The starting point is that, as in Lemma 3.1,

Sε,0 = ϕ1 S̃ε,0ψ1 + ϕ1 Q̃εσψ ′
1 + ϕ2QC,εσψ ′

2;
Sε,1 = ϕ1 S̃ε,1ψ1 − ϕ′

1σ Q̃εψ1 − ϕ′
2σQC,εψ2.

As noted in Sect. 6.2 of [23], the arguments showing that S0 and S1 are g-trace class imme-
diately generalise to show that Sε,0 and Sε,1 are g-trace class. Similarly, Propositions 4.1,
5.1 and 5.12 generalise to the current situation, and imply Theorem 6.1. We now use the

assumption that the Schwartz kernels of e−t D̂2
ε and D̂εe−t D̂2

ε have Gaussian off-diagonal
decay behaviour, for example to apply a version of Lemma 3.12. This decay behaviour does
not follow from bounded geometry of M̂ , because D̂ε is not a Dirac-type operator as in
Sect. 2.4.
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