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Abstract
Human speech produces acoustic waves that carry information about the speaker’s
gender, physiological condition, and pathophysiological state. Bio-acoustic
properties obtained by speech signal processing show promise for the analysis of
psychiatric illnesses. Alterations of acoustic measures associated with major
depressive disorder (MDD) could potentially provide objective biomarkers for
depression detection. Understanding bio-acoustic features stability is essential to
best design sampling and analysis frameworks. Still, the impact of sample duration
on bio-acoustic features’ reproducibility has not been systematically explored.
Classification performance of depressed and non-depressed bio-acoustic features
measured at different speech durations remains to be investigated.

This thesis evaluates the reproducibility of bio-acoustic features against changes in
speech durations and speech tasks in depressed and non-depressed English
speakers. It also investigates the classification potential, in a binary manner, of
bio-acoustic features quantified at short speech durations for MDD detection.
Thus, source, spectral shape, cepstral, prosodic, and formants features were
extracted from speech signals. The intraclass correlation coefficients were
calculated to measure feature reproducibility. Support vector machines with radial
basis function kernel were employed to evaluate the effect of speech duration on
classification performance. Experimental results indicate that the number of
reproducible features (out of 125) decreased stepwisely with duration reduction in
both depressed and non-depressed speakers. Gender differences had a significant
impact on the reproducibility of some features (e.g., pitch). The results also showed
a slight improvement in the classification performance (accuracy, weighted F1
score, recall, and precision) when shortening the duration.

In conclusion, bio-acoustic characteristics are less reproducible in shorter speech
samples and are affected by gender. Classification metrics are also influenced by
speech data duration. Designing speech samples and building classification models
to potentially assist medical practitioners in depression diagnosis have to consider
the duration effects and gender differences.
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Chapter 1

Introduction

Recent progress in computational speech analysis will potentially enable the
application of powerful and effective tools for the analysis of mental disorders in
clinical settings. Speech disturbances have been linked to many mental disorders
and have been used as an objective biomarker. Previous studies show positive
steps toward investigating automatic systems that can diagnose an individual’s
mental state.

1.1 Speech in Clinical Mental Health Settings

The diagnosis and monitoring of mental health disorders routinely involve
self-assessment questionnaires and/or clinicians’ opinions [1]. These approaches
are prone to a wide range of biases and subjective outcomes [2], [3], leading to
inconsistencies in the diagnosis. The potential benefits of implementing a reliable
method and an accessible tool for objective assessments have been widely studied.
Of these benefits, complementing clinical assessments, enhancing health care
quality, and facilitating remote patient monitoring [1]. Artificial intelligence
techniques combined with sensor-collected health-related data are used to evaluate
mental health conditions automatically [1]. Some of these techniques are based on
behavioural descriptors, such as speech.

Human speech carries verbal (linguistic) content such as words, along with non-
verbal (paralinguistic) information such as speech tone. It also produces acoustic
waves that reflect information about an individual’s physiological condition and
mental state. The generation of these waves requires enough air pressure to vibrate
the vocal folds and produce an acoustic source signal. This signal is then filtered and
modulated based on the vocal tract’s shape, which is determined by the position of
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the speech articulators [4]–[6]. The coordination of speech production is facilitated
by several brain areas (e.g., Broca’s area, Wernicke’s area, and angular gyrus) and
the musculoskeletal system [7]. Broca’s area is responsible for speech production
and articulation, Wernicke’s area is responsible for language comprehension, and
angular gyrus is associated with auditory and visual information [8].

The neurophysiological changes in the brain associated with mental conditions can
potentially disrupt the articulators’ coordination and affect the controlling ability
of the speech production process. Such changes are encoded into acoustic speech
signals, which can be measured through acoustical properties such as source,
spectral, prosodic, and formants features [9]–[12]. Disturbances in muscular control
of the vocal fold vibration affect source feature values (e.g., jitter and shimmer).
The relationship between changes in the vocal tract configuration and speech
articulator movements is reflected by spectral characteristics [13]. Spectral features,
particularly Mel-frequency cepstral coefficients (MFCCs), are useful in
distinguishing mood states [14], [15]. Prosodic measurements, including
fundamental frequency (F0) and intensity, are sensitive to changes in an
individual’s mental conditions. Inappropriate positioning of speech articulators
impacts the vocal resonance frequencies (formants location) of the vocal tract.
These features can be robustly computed using computerised analysis of the
speech waveform [16] and analysed using artificial intelligence techniques [1].

Bio-acoustic properties for applications in the diagnose and monitoring of mental
disorders has been showing a growing interest recently. The feasibility and validity
of automated assessment of major depressive disorder (MDD) [17]–[19], bipolar
disorder [20], schizophrenia [21], and Alzheimer’s disease [22] were examined in
previous studies. Findings clearly showed the effectiveness of analysing
bio-acoustic parameters in diagnosing mental disorders. The assessment methods
adopted in these studies were based on machine learning models such as K-nearest
neighbour (KNN), support vector machines (SVM), and regression models, as well
as on deep learning models such as convolutional neural networks (CNN), and
long short-term memory networks.

1.2 Depression

Depression is one of the most common mental disorders [2]. It is characterised by
physical, emotional, cognitive, and behavioural symptoms due to the difficulties
that patients experience in coping with a stressful life [23], [24]. According to the
World Health Organization (WHO), more than 264 million people worldwide are
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affected by depression [25]. It has also been predicted that depression will occupy
the first place in terms of the global disease burden by 2030 [26]. In Australia,
depression is considered the third leading cause of disease burden and the leading
cause of non-fatal disability [27], [28]. The diagnosis, evaluation, and treatment of
depression in its early stages are essential to ensure effective treatment and
improve the quality of human life [19], [29], [30].

Similar to most mental disorders, the diagnosis of depression relies almost
exclusively on patients’ self-reports and clinicians’ opinions. These methods are
still the gold standard in clinical assessment for depression, which could lead to a
wide range of biases and subjective outcomes. Lack of resources, and trained
practitioners are also reported as barriers to effective depression diagnosis [26].
The absence of objective clinical examination in this field has motivated researchers
to investigate a more systematic analysis approach based on human speech.
Extracting and analysing acoustic speech features potentially will assist in
diagnosing depressed patients [1], [2], [17], [23]. Automatic detection systems for
MDD have been proposed to enhance the diagnostic efficiency and better
characterise this disorder.

1.3 Motivation

Given the growing prevalence of MDD worldwide, the creation of valid, reliable,
and objective diagnostic biomarkers has recently been a topic of interest in clinical
research. Differences in speech characteristics between depressed and
non-depressed individuals have been suggested as a potential biomarker [17],
[31]–[33]. Advances in computational speech processing have contributed to the
more systematic analysis of speech by means of artificial intelligence [34].
Depression detection studies on the association of speech have formed an active
research area for many years. Nevertheless, no standardisation of the acquired
speech data in terms of sample length and location is observed. For example,
studies have used speech samples that differ regarding speech task type and
duration [2], [3], [17], [20], [35], which renders comparability very difficult.
Obtaining reproducible and repeatable outcome measurements in acoustic analysis
is increasingly important.

Still, no comprehensive analysis has been carried out to study the influence of
speech task length on the stability of bio-acoustic qualities obtained from
depressed and non-depressed speakers. Thus, the motivation behind this thesis is
to investigate the effect of speech sample duration on the reproducibility of
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bio-acoustic characteristics in depressed and non-depressed individuals. It also
investigates how speech sample length impacts the classification performance of
these features. This enables us to understand the stability of bio-acoustic
parameters and, therefore, best design speech samples, which potentially improve
the reproducibility of speech-based future clinical research.

1.4 Thesis Aim and Objectives

1.4.1 Aim

This thesis aims to evaluate the reproducibility of bio-acoustic features against
changes in speech task durations and speech task types in depressed and
non-depressed English speakers.

1.4.2 Objectives

The specific objectives of this thesis are to:

• Evaluate the reproducibility of bio-acoustic features in depressed and
non-depressed English speakers against changes in speech durations and
speech task types.

• Find significant bio-acoustic features that could discriminate between speech
with and without depression and which of these are affected by duration
reduction.

• Investigate the effect of speech data length on the classification performance
of depressed and non-depressed bio-acoustic features measured at different
durations.

1.5 Thesis Organisation

This thesis encompasses six chapters, including this introduction. A brief outline of
the remaining chapters is as follows:

Chapter 2: This chapter provides the reader with an introductory background on
speech as an objective biomarker, starting from the speech production process,
moving to the source-filter model, and then providing a deeper review of
bio-acoustic features. It also gives a general review of major depressive disorder, its
clinical definition, symptoms, diagnostic and assessment tools, and its effect on
bio-acoustic features.
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Chapter 3: This chapter is dedicated to examining the reproducibility of
bio-acoustic features in normal speakers. It highlights the important studies that
investigated the stability of bio-acoustic features on the association of the speech
task type, speech task duration, and gender. It also describes the dataset used in
this evaluation. Besides, the general methods that have been implemented in this
thesis to extract features are explained in detail. This chapter concludes with
information that help in understanding the reproducibility of features.

Chapter 4: Bio-acoustic features’ reproducibility in depressed and non-depressed
English speakers is evaluated in this chapter. The main steps used in this
examination are also summarised, including dataset, preprocessing, features
extraction, and statistical method. This chapter concludes by presenting and
discussing reproducibility results of spontaneous speech task.

Chapter 5: In this chapter, the effects of depression on bio-acoustic features are
explored. The influence of speech duration on classification metrics for depression
detection are also examined. It starts with a summarisation of speech-based studies
that investigate depression detection mainly from short durations. Then, it
describes the general methods used to build a depression detection system. This
chapter concludes by presenting the most significant bio-acoustic features,
showing the classification results, and discussing these findings.

Chapter 6: Summary of the main contributions of this thesis is presented in this
chapter. Future directions for future researches from this thesis are discussed.
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Chapter 2

Literature Review

2.1 The Biological Process of Speech Production

The complexity of neural processing involved in speech production makes speech
sensitive to slight changes in the speaker’s physiological condition and
pathophysiological state [8], [11]. The use of speech-based data as a potential
biomarker in MDD diagnostic systems has received considerable attention for
many years. Understanding human speech production mechanism is necessary to
comprehend speech parameters and then the development of speech-based
diagnostic systems.

2.1.1 Speech Production

Human speech production is a complex activity. It involves a three-level process,
including cognitive planning, muscular actions, and sound generation (Fig. 2.1).
The process starts cognitively by formulating the message and setting up phonetic
and prosodic information in the speaker’s brain. Phonetic information represents
the changes in voice quality. Prosodic information characterises the style and
manner of speech. These information, with the help of other brain areas,
contributes to establishing the vocalisation plan. This plan is then conveyed to the
precentral gyrus in the brain’s motor cortex to coordinate muscle activity [7], [36].

Motoric muscular actions require the coordination of around 100 muscles with
significant temporal precision. This coordination is uniquely advanced by the
control signals transmitted from the motor cortex to motor nuclei (in the brainstem
and spinal cord), which moves the articulatory organs in a manner that is
consistent with the desired speech sounds. The speech articulators, including the
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Fig. 2.1 Speech production entails a three-level process: cognitive planning
level [37], physiological level (muscular actions) [38], and acoustic level (sound
generation). The vocalisation plan is originated in the speaker’s brain. Motor
nuclei in the brainstem and spinal cord transmit the instructions necessary for
muscles coordination activity. The vocal folds vibration generates source sound,
which is modulated in the vocal tract area—an area include speech articulators.

Finally, speech sounds are radiated from the lips.

lower jaw, tongue, lips, and velum, give resonances to the sound source by
changing the shape of the vocal tract [7], [36], [39].

The sound source is produced as a result of quasi-periodically modulating and
balancing the pressurised air across the glottis (in the larynx) by vibrating the vocal
fold [36], [39]. This vibration happens when the air expelled from the lungs builds
up pressure behind the closed glottis until it crosses a threshold; the glottis is
pushed apart, rushing out the air. The released air vibrates the fold in a pulsed
manner known as glottal flow pulses, pitch pulses, or vocal excitation pulses. The
lungs and larynx are phonatory organs that adjust voice quality and the prosody of
speech [36]. Both the phonatory and articulatory organs mutually impact each
other during speech production [39]. The resulting speech sound (acoustic wave) is
radiated from the oral and nasal cavities after the sound source is shaped in the
vocal tract [40]. A schematic drawing of the speech production process is shown in
Fig. 2.1.

2.1.2 Acoustic Theory of Voice Production

To conduct a detailed analysis of the speech production process and vocal
acoustics, a source-filter model was devised as a two-stage process [36]. The first
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stage assumes that the excitation signal e(t), a periodic pulse train with pulse
spacing τp, is a model of the sound source originated at the glottis. In the second
stage, this signal is amplified and attenuated by a filter [23], [36], [40] with a
continuous impulse response, peaking at specific resonances. The filter response
represents the transfer function (TF) of the vocal tract v(t) resonant properties [36],
[40]. The resulting speech signal s(t), which is periodic with period τp, is be
obtained by convolving e(t) with v(t) in the time-domain as follows:

s(t) = e(t) ∗ v(t). (2.1)

In the frequency domain, this involves multiplying the Fourier transform (FT) of the
excitation signal and the FT of the vocal tract as follows:

S(jω) = E(jω) · V(jω). (2.2)

The shape of the vocal tract determines its frequency response, which in turn
specifies the frequency spacing in the line spectrum and the envelope of the speech
signal [40]. Thus, the excitation/source signal (input) is passed through the vocal
tract/filter (linear-time invariant (LTI) system). The speech signal is the output of
the LTI system [41]. An illustration of the model is shown in Fig. 2.2.

2.1.3 Bio-acoustic Features

Bio-acoustic speech features can be divided into four groups: source, spectral,
prosodic, and formants features [1]. These features are described in detail in this
section.

2.1.3.1 Source Features

Source features reflect information about the sound source at the glottis during
natural voice production [23]. There are two basic categories of source features:
glottal features, which model the glottal flow; and voice quality features, which
measure vocal fold vibration [1]. Jitter and shimmer are well-established voice
quality measures for objectively, non-invasively, and quantitatively evaluating
different physiological characteristics of the vocal folds [44]. The cycle-to-cycle
variations in glottal period duration (jitter) and amplitude (shimmer) measure the
micro-perturbations in vocal fold vibration [45], [46] (Fig. 2.3). This vibration is
affected by biomechanical factors (asymmetric vocal cords), neurogenic factors
(involuntary movement of the larynx muscles), and aerodynamic factors (airflow
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Fig. 2.2 The source-filter model of speech production comprises the
glottis as the source of the excitation signal and the vocal tract [42] (i.e.,
nasal and oral cavities) as the filter. The model also shows the temporal
and spectral representations [43] of the source, vocal tract, and resulting

speech signal [40].

and sub-glottal pressure fluctuations) [39]. The lack of control over vocal fold
vibration influences jitter, while glottal resistance and mass lesions on the vocal
folds influence shimmer [47]. A typical jitter during sustained voiced sound in
adults ranges between 0.50% and 1.00% [47] and shimmer ranges between 0.05 dB
and 0.22 dB [48].

Estimation of voice perturbation is generally based on pitch-mark detection [49];
temporal location of short-time peaks in each glottal cycle (pitch period) [50].
Pitch-marks are positioned pitch-synchronously [50] to define cycle boundaries.
Some of the common time-domain pitch marking approaches are
waveform-matching, which estimates the time of best-matching cycle-to-cycle
waveforms, and peak-picking, which locates the instantaneous peaks of the
waveform [49]. The consensus is in favour of waveform-matching due to its
robustness against noise variations compared to peak-picking [51]–[53]. However,
the waveform-matching approach implicitly assumes periodicity constraints that
are insufficient to characterise the low-periodicity of pathological and breathy
voices [54].
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Fig. 2.3 Representation of jitter and shimmer measures; cycle-to-
cycle variations in glottal period duration (Ti) and amplitude (Ai),

respectively.

The detection of the Glottal Closure Instant (GCI) offers opportunities for a reliable
approach to localise pitch-marks [36], [49], [55] while maintaining
pitch-synchronisation and ignoring periodicity variations of the source signal [54],
[56]. Physiologically, GCI is the closing moment of the glottis [36], which marks the
glottal closure completion phase [55]. It is also known as the prominent peaks of
the time-derivative of the glottal flow signal [57] (Fig. 2.4). The Dynamic
Programming Projected Phase-Slope Algorithm (DYPSA) is a popular algorithm
for automatic GCI estimation, which correctly identified more than 93% of GCIs
[58]. This identification is based on the complex dynamics of speech, such as
quasi-stationarity [36], [58]. Knowledge of GCIs location, as pitch-marks, is the
foundation of jitter and shimmer measurements in this research.

2.1.3.2 Spectral Features

Spectral features capture prosodic, phonetic, and articulatory information
associated with speech motor control [23]. They also reflect the relationship
between vocal tract configuration and the movement of speech articulators [13],
[59]. Changes in these features are correlated with the speaker’s mental state [59],
relating to the disturbances in muscle tension and psychomotor retardation [60].
Spectral features characterise the speech spectrum; the spectral distribution of the
speech waveform for a given time [1]. This spectrum is calculated either along the
frequency-domain with a linear scale (Hz) or along the Mel-bands with a
non-linear scale (Mel) [61]. Spectral features, in this research, are divided into two
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Fig. 2.4 Glottal flow waveform (top) with marking three phases
(opening, closing and closed phase) of the glottal cycle, and Glottal
Closure Instant (GCI). The derivative of the glottal flow (bottom) is also

shown.

main categories: frequency-domain (physical) features and cepstral-domain
(perceptual) features.

Frequency-domain features (e.g., spectral shape descriptors) are computed by
converting a time-domain signal into a frequency-domain signal using short-time
Fourier transform (STFT). Spectral shape descriptors, also called timbrel attributes,
are one of the major frequency-domain features [62]. They describe the shape of the
magnitude spectrum [63]. Most of these descriptors are related to the timbrel
characteristics of the speech signal [61], [64]. Timbre is the perceptual attribute of
auditory sensation that helps a listener discriminate between sounds, even if they
have a similar pitch and loudness [65]. In psychoacoustics, timbre is often referred
to as the colour, or quality of sound [63]. The following spectral shape descriptors
are employed in this thesis:

• Spectral centroid (SC): This descriptors is well-correlated with the perceived
timbrel brightness of a sound signal [62]. Higher centroid values correspond
to brighter sounds (or more nasal sounds) with more energy in the
high-frequencies [63], [66]. This measure is included in the MPEG-7 standard
(i.e., contains a set of low-level audio descriptors useful in describing audio
and designing higher-level audio applications) for audio descriptors [67].

• Spectral skewness (SS): This refers to spectral tilt in phonetic terms. SS is used
with other spectral moments to distinguish the articulation place. It is a
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measure of a distribution’s symmetry around its centroid [68]. The SS value
drops to zero during pauses and increases for voiced parts [62]. A skewness
of zero describes a symmetrical distribution, whereas positive skewness
describes a further extension of the distribution’s right “tail” than the left tail;
negative skewness describes a further extension of the distribution’s left
“tail” than the right tail [68].

• Spectral kurtosis (SK): This descriptor is used to identify the manners of
articulation. SK represents the “peakedness” of a distribution. Positive values
indicate a distribution with a relatively acute peak, negative values indicate a
relatively flat distribution, and zero indicates a Gaussian distribution [68].

• Spectral entropy (SE): This is a method used to measure the amount of
information present in a signal (Shannon’s information theory). It is also used
to describe the peakiness of the spectral distribution [28], [69]. Speech
segments have lower SE values compared to noise or non-speech segments,
which is attributable to the non-uniform distribution of energy across the
frequency (concentrated in specific frequency bands). Noise or non-speech
segments have higher SE values because the segment’s energy is flat (i.e.,
uniformly distributed).

• Spectral flatness (SF): SF refers to the perceptual quality of tone-likeness. It is a
method for quantifying the noise-like or tone-like aspects of sound. This
quantity also reflects the stability of the speech signal [70]. A high SF value
(close to one) indicates noise, while a lower value (close to zero) indicates
tonality [62]. This measure is part of the MPEG-7 audio descriptors standard
[67].

• Spectral roll-off points (SR): This descriptors is the frequency below which a
certain amount of energy in a signal is concentrated. In a speech signal, the
energy tends to be lower at high frequencies [28]. A low scalar value of SR
indicates the presence of a tone, while a high value indicates the presence of
noise-filled pauses [63]. Thus, the SR descriptor is useful for discriminating
between voiced and unvoiced sounds [66]. Voiced sounds are generated by
vibrating the vocal folds during the phoneme pronunciation, while unvoiced
sounds the vocal cords do not engage.

Cepstral domain analysis, based on homomorphic analysis, has been largely
employed in speech-related applications. It is a method for temporal separation of
the source-filter model components, described by a convolution relation (Equ. 2.1).
By exploiting properties of the FT, this convolution can be expressed by
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multiplication in the frequency-domain (as shown in Equ. 2.2). Taking the
magnitude of the speech spectrum S(jω) yields to:

|S(jω)| = |E(jω)| · |V(jω)|. (2.3)

To linearly combine E(jω) and V(jω) in the frequency-domain, the logarithm is
applied to both sides of Equ. 2.3 as follows:

log |S(jω)| = log |E(jω)|+ log |V(jω)|. (2.4)

Hence, the source and filter components can be separated by taking the inverse of
Fourier transform (IFT), denoted by F−1{·}, of the above equation:

F−1{log |S(jω)|} = F−1{log |E(jω)|}+F−1{|V(jω)|}. (2.5)

Obtaining the IFT of the log spectrum is called “Cepstrum”. The new cepstral
representation domain is called quefrency domain [71]. Cepstrum can be defined as a
complex, power, phase, and real cepstrum. Cepstrum for a power spectrum is the
most relevant to the speech signal processing [62]. The following relationship can
define it:

Cp = |F−1{log
(
|F{s(t)}|2

)
}|2, (2.6)

where Cp is a power cepstrum, F{·} indicates FT or a discrete Fourier transform
(DFT), and s(t) is a speech signal in the time-domain.

In the quefrency domain, liftering operation is performed on the speech cepstrum
to independently extract the vocal tract impulse response, represented by low
quefrency components, and the excitation signal, represented by high quefrency
components [72]. Fig. 2.5 shows the speech signal components in the quefrency
domain. Accordingly, this technique can be used to describe the vocal tract
coordination that corresponds to the magnitude of the speech cepstrum [73], [74].

MFCC is the most common short-term cepstral features [1], [76]. It is proposed to
create a perceptually relevant representation of the vocal tract spectral shape at any
specific time [73], [74]. MFCC is based on the physiological properties of the
human auditory system. Human hearing has a non-linear relationship with
frequencies higher than 1 kHz [40]. Similarly, MFCC maps a linear frequency scale
(Hz) into a non-linear Mel-Scale (Mels) [66]. Measuring MFCC filters out not
audible frequencies by removing redundant information in STFT [39], [74].
Sensitivity of MFCC to additive noise is one of the most notable downside [77]
because it uses both formant and non-formant regions of the power spectrum [78].
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Fig. 2.5 Cepstrum of a speech segment shows the excitation and vocal
tract components of speech [75].

The computation steps of MFCCs is described in Section 3.2.2.2.

Since speech is inherently a dynamic signal, regularly changes over time, the time
derivative (first- and second-order derivatives) of cepstrum coefficients proposed
to capture temporal dynamic information [79]. These derivatives are expressed as
MFCC delta and MFCC delta-delta, denoted as ∆MFCC and ∆∆MFCC,
respectively. ∆MFCC reflect information about the speech rate, while ∆∆MFCC
provides information about speech acceleration.

2.1.3.3 Prosodic Features

Prosody is responsible for controlling variations in pitch, loudness, stress, and
rhythmic speech organisation [80]. Prosodic features (or long-term features)
describe these variations [81] and reflect the differences in an individual’s speaking
style [23]. Prosody is adversely influenced by the neurological conditions and
psychological states of a speaker [82]. Pitch and loudness are the most commonly
used perceptual prosodic descriptors.

Pitch is a subjective psycho-acoustical attribute of sound. It characterises the glottal
excitation rate [14]. Physically, it is known as F0 represented by the number of
vocal fold vibration cycles per second [80]. Paralinguistically, it is responsible for
the expressiveness of speech and known as major carrier of prosodic information
[83]. In adult speakers, the measure is usually higher in women (200–220 Hz), who
typically have short and thin vocal folds, compared to men (100–120 Hz), who have
long and thick vocal folds [84]. Differences in F0 values mainly depend on vocal
fold anatomy, larynx size, and aerodynamic adjustment factors [39]. Several
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algorithms in the time-domain, frequency-domain, and time-frequency domain,
have been proposed to estimate the F0 value and detect the periodicity of a given
speech frame. Auto-correlation function (ACF) is a well-known time-domain
method for estimating F0. It measures the signal’s self-similarity at given
discrete-time lags or delays (τ) [41]. The ACF for an infinite signal length (N) is
given by:

ACF(τ) =
N−1

∑
n=0

x(n + τ)x(n). (2.7)

The robustness of this method against a white noisy environment has been
reported in previous research [85]. However, ACF may lead to pitch halving or
pitch doubling errors when the first formant masking effects impact the
identification of F0 [86]. The error rate of pitch estimation using this method is also
significantly influenced by the characteristics of the vocal tract [85]. To overcome
these limitations, the normalised correlation function (NACF) for pitch estimation
with higher accuracy was proposed, where peaks are more prominent and less
impacted by rapid changes in speech signal amplitude [86]. Other popular
methods for pitch estimation include, but are not limited to, short time cepstrum
analysis, peak picking, and sub-harmonic summation. In this work, NACF
method, a good candidate for estimating F0, is employed.

Loudness represents the perceived intensity of a speech signal—loudness is a
perceptual attribute, while intensity is a physical attribute. It is governed by
physiological characteristics (e.g., glottal excitation strength, sub-glottal pressure,
and the vocal tract’s resonant properties) and the speaker’s behavioural
characteristics (e.g., mood state) [36], [87]. Human perception of loudness is
non-linear with respect to changes in frequency and intensity [63], as given in
Fig. 2.6. Each curve, known as equal-loudness contour, represents the sound
pressure level (SPL) in dB and intensity in W/m2 at which sounds of various
frequencies are equally loud. The curves are labelled with the loudness level (LL)
in phons, which is numerically equal to SPL at 1 kHz [40], [88]. The perceived
loudness of sounds (in sones) is not directly equal to LL. It is defined as having a
value of 1 sones at a LL of 40 phons. Loudness, as a function of LL, can be
approximated above 40 phons by the following [40]:

Loudness (sones) = 2(LL−40)/10. (2.8)

An earlier set of equal-loudness contours for the auditory sensation was published
in 1933 by Fletcher and Munson [89]. Later, these curves have been standardised
under an international standard (ISO 226) and called “isophonic curves”.
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Examination of these curves in Fig. 2.6 indicates that the ear seems to be more
sensitive within the frequency range of 3 kHz and 4 kHz [88], [90]. Generally, the
sound level of a conversation in normal speech is about 60 dB [40].

The lowest curve in Fig. 12–6 (labeled 0) represents the sound level, as a
function of frequency, for the threshold of hearing, the softest sound that is just
audible by a very good ear. Note that the ear is most sensitive to sounds of fre-
quency between 2000 and 4000 Hz, which are common in speech and music. Note
too that whereas a 1000-Hz sound is audible at a level of 0 dB, a 100-Hz sound
must be nearly 40 dB to be heard. The top curve in Fig. 12–6, labeled 120 phons,
represents the threshold of pain. Sounds above this level can actually be felt and
cause pain.

Figure 12–6 shows that at lower sound levels, our ears are less sensitive to the
high and low frequencies relative to middle frequencies. The “loudness” control
on some stereo systems is intended to compensate for this low-volume insensitivity.
As the volume is turned down, the loudness control boosts the high and low 
frequencies relative to the middle frequencies so that the sound will have a more
“normal-sounding” frequency balance. Many listeners, however, find the sound
more pleasing or natural without the loudness control.

12–4 Sources of Sound: Vibrating
Strings and Air Columns

The source of any sound is a vibrating object. Almost any object can vibrate and
hence be a source of sound. We now discuss some simple sources of sound, partic-
ularly musical instruments. In musical instruments, the source is set into vibration
by striking, plucking, bowing, or blowing. Standing waves are produced and the
source vibrates at its natural resonant frequencies. The vibrating source is in contact
with the air (or other medium) and pushes on it to produce sound waves that travel
outward. The frequencies of the waves are the same as those of the source, but
the speed and wavelengths can be different. A drum has a stretched membrane
that vibrates. Xylophones and marimbas have metal or wood bars that can be 
set into vibration. Bells, cymbals, and gongs also make use of a vibrating metal.
Many instruments make use of vibrating strings, such as the violin, guitar, and
piano, or make use of vibrating columns of air, such as the flute, trumpet, and
pipe organ. We have already seen that the pitch of a pure sound is determined 
by the frequency. Typical frequencies for musical notes on the “equally tempered
chromatic scale” are given in Table 12–3 for the octave beginning with middle C.
Note that one octave corresponds to a doubling of frequency. For example, middle C
has frequency of 262 Hz whereas (C above middle C) has twice that frequency,
524 Hz. [Middle C is the C or “do” note at the middle of a piano keyboard.]

C¿
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TABLE 12–3 Equally
Tempered Chromatic Scale

Frequency 
Note Name (Hz)

C do 262
or 277

D re 294
or 311

E mi 330
F fa 349

or 370
G sol 392

or 415
A la 440

or 466
B ti 494

do 524
† Only one octave is included.
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Fig. 2.6 Sensitivity of the human ear as a function of frequency. Each
curve represents the sound level (dB) and intensity (W/m2) as a
function of frequency for a fixed loudness level (phons) for pure tones

[88].

Several loudness measures have been proposed based on physiological and
acoustic characteristics. Of these measures, SPL and sub-glottal pressure levels
have been shown to be strongly correlated with perceived loudness. Other
measures such as maximum flow declination rate, which is derived primarily from
the acoustic signal, utilise the characteristics of vocal fold vibrations for loudness
estimation [87]. Loudness estimation, in this thesis, is based on SPL measurement.

Another time-domain prosodic feature is the zero-crossing rate (ZCR) [80]. ZCR
identifies the presence of human speech in a speech sample, where unvoiced
portions have a high ZCR and voiced segments usually show a low ZCR [62]. This
feature can be used to estimate the frequency at which the speech energy is
concentrated in the spectrum. It is also considered a good indicator of short and
loud sounds [91]. Voicing probability (VP) determines the speech-silence pattern in
the participants’ speech by estimating the percentage of voiced and unvoiced
energy for each harmonic.
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2.1.3.4 Formant Features

Vocal tract resonances, which spectrally shape the glottal excitation signal in the
speech production process, vary over several pitch periods. The dynamics of vocal
resonance are governed by speech articulators and reflected in formant frequency
locations in the speech spectrum [14]. Tracking resonant frequencies mainly
captures information about the coordination of speech articulators [73].

Formant (or filter) features are distinctive frequency components (peaks) at which
the acoustic energy of a speech signal is concentrated [28], [92]. Theoretically, an
acoustic signal contains an infinite number of formants, but only three to four
formants are within the range of human hearing [93]. The first- and
second-formant frequencies, or simply F1 and F2 play a key role in determining the
vowel quality [39], while the upper three (F3, F4, and F5) determine the colour of
an individual voice [94]. Formant locations do not disrupt with additive
white-noise, leading to a higher signal-to-noise ratio in formant regions than in
non-formant regions [78]. Fig. 2.7, as an example, shows six distinct formant peaks
of a short-time speech. Formant frequencies provide information pertaining to the
vocal tract’s shape, while formant amplitudes reflect vocal intensity levels. Most
often, differences in vocal anatomy between adult men and women affect the
position of formant frequencies. Accordingly, the formant feature is a well-known
gender-dependent acoustic measure [84].

Typical approaches to track and estimate formant frequencies involve peak-picking
of speech spectral representations, usually from STFT, cepstrum, and linear
prediction coding (LPC) analysis. LPC (or all-pole filter) is capable of providing an
accurate estimation of the speech spectral envelope using a linear prediction
model, which is not the case in the STFT and cepstrum methods. It predicts the
next values by linearly combining the previously known coefficients. However,
increasing the amount of noise in the speech signal significantly influences LPC
[62], [95]. The most recent method using deep learning algorithms to obtain
formants is proposed. In this method, the speech signal is represented by either
spectrogram or cepstral coefficients derived from LPC, as well as
quasi-pitch-synchronous [96] (detailed in Section 3.2.2.2).
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Fig. 2.7 Spectrum shows the distinct formant peaks of a speech frame
with 20 ms duration of woman voice ( ‘a’ vowel) and computed using
LPC method. It also shows that spectral energy falls between two

adjacent formants.

2.2 Major Depressive Disorder

2.2.1 Clinical Definition and Symptoms

Clinical depression, also known as MDD, is a common and serious mental
disorder. The American Psychiatric Association (APA) defines clinical depression
as a medical condition that lasts for at least two consecutive weeks consisting of a
persistently depressed mood, negativity, feelings of sadness, and/or loss of interest
in activities, which causes significant impairment in coping with daily life.
Environmental, psychological, biochemical, and genetic factors may all be involved
in the pathophysiology of depression [97].

The APA has outlined diagnostic criteria for mental disorders, including
depression, to provide a common ground and improve the classification of these
disorders. These criteria are defined in the Diagnostic and Statistical Manual of
Mental Disorders (DSM) [98]. The DSM criteria encompass a wide range of
recognisable symptoms of MDD. For a positive diagnosis of depression, five (or
more) of the defined symptoms, in combination with either a depressed mood or
markedly diminished interest, must be present nearly every day over a two-week
period. Some of these symptoms include [98]:
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• Psychomotor agitation or retardation,

• Fatigue or loss of energy,

• Feelings of worthlessness or inappropriate guilt,

• Recurrent thoughts of death and suicide,

• Changes in appetite, including significant weight loss or gain unrelated to
dieting.

Although the DSM criteria have standardised the diagnosis of psychiatric disorders
based on empirical evidence, criticisms have also highlighted the heterogeneity of
its definition of depressive syndrome [99], the possibility of cultural bias [100], and
the reliability and validity of DSM-based depression diagnoses [101]. Based on
these criteria, Østergaard et al. calculated at least 1, 497 unique profiles of
depression [99]. Freedman et al. found fair reliability of MDD diagnoses, with a
kappa statistic of 0.28; this indicates a high level of disagreement on MDD
diagnoses between clinicians [101]. Singer reported different manifestations of
depressive disorder in Western cultures (cognitive symptoms) compared to
non-Western cultures (somatic symptoms) [100]. Hence, the complexity level of
fitting the clinical profile of a depressed individual into an objective level is
considerable [23], which suggests the usefulness of narrowly redefining clinical
depressive syndrome [99]. However, these criteria still constitute the most widely
used and standard definition available, where a broad range of the existing
assessment tools are scored based on depression symptoms listed in the DSM.

2.2.2 Diagnostic and Assessment Tools for Depression

Depression diagnosis in primary care settings primarily relies on patient responses,
which are typically impacted the professionals’ evaluations or self-assessment
questionnaires. This approach is often subject to a significant variation depending
on each clinician’s expertise and the diagnostic test used [1], [19]. Although these
methods have the potential for a wide range of biases and subjective outcomes,
they are still the gold standard of clinical assessments of depression [1].

Common assessment tools used for depression diagnosis are clinical interviews,
rating scales, and self-assessment reports. The eight-item Patient Health
Questionnaire (PHQ-8), a self-reported questionnaire, is established as a valid
screening measure of MDD severity [102]. It comprises eight criteria for depression
assessments derived from the DSM. Each criterion is scored on a scale from 0 to 3,
providing a 0 to 24 depression severity score, where PHQ-8 score ≥ 10 represents a
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significant depression level (see Appendix A for details). This test is used in this
thesis as a ground truth score of the depressed speech database.

Other diagnostic tools include the Hamilton Rating Scale for Depression (a
clinician-rated questionnaire) [103], the Quick Inventory of Depressive
Symptoms-Self Report (self-reported questionnaire) [104], and the Beck Depression
Inventory (self-reported questionnaire) [105]. These tests rate the severity of
depression symptoms by scoring a patient’s depression level. Each scale uses a
different number of items, a different set of symptoms, and a different weighting
scheme, which leads to inconsistencies in depression diagnoses. Accordingly, an
objective marker (i.e., speech) is needed for depression diagnose to enhance the
available tools and support clinical practice [23]. Several studies investigated
biological (e.g., blood and saliva) [106], physiological (e.g., biosignals) [107] and
behavioural (e.g., facial expressions) [33] measures to detect depression. Results
reported the feasibility of using these biomarkers in diagnosing depression as a
complement to the clinical assessments. This thesis is focused on the extraction and
analysing of behavioural measures, particularly bio-acoustic features.

2.2.3 Depression and Bio-acoustic Features

Qualitative changes of speech with depression have been reported decades ago
[108]. In the clinic, speech behaviours and communicative defects associated with
depression are well-documented. Kraepelin, in 1921, described speech
characteristics in depressed patients as follows: “patients speak in a low voice,
slowly, hesitatingly, monotonously, sometimes stuttering, whispering, try several
times before they bring out a word, become mute in the middle of a sentence”
[109]. In fact, neural changes in a depressed patient’s brain manifest behaviourally
during the speech production process, which changes the acoustic quality of the
produced speech [31], [73]. The bio-acoustic characteristics of human speech have
previously been identified as a possible marker to objectively discriminate between
depressed and non-depressed speech [17], [31]–[33].

Studies on vocal-source biomarkers have reported a noticeable acoustic
abnormalities in both jitter and shimmer in patients with depression [1], [31], [110].
This abnormality is due to neuro-physiological changes in muscle tension,
laryngeal control, and the movement of the vocal folds [31]. Quatieri and Malyska,
in 2012, reported a significant increase in jitter and shimmer values with increasing
depression severity and psychomotor retardation [31]. Similarly, in 2017, Kiss and
Vicsi observed higher jitter and shimmer values in depressed individuals
compared to healthy controls [111]. A study in 2019 found an increase in shimmer
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values of men and women and an increase in jitter rate values in men only, when
depressed to non-depressed individuals were compared [112]. More recently, in
2021, Silva et al. showed higher mean values of both jitter and shimmer in patients
diagnosed with depression than those without depression [113], which is generally
agreed with previous studies [31], [111], [112]. However, increased shimmer and
jitter values have not been consistently observed in depressed speech studies. For
example, Hönig et al. found a strong negative correlation between shimmer and
depression levels [110]. Discrepancies across these studies might be due to the
differences in signal processing methods for source feature extraction and
differences in the utilised speech segments—jitter and shimmer measures are more
accurate during steady voices and more periodic signals (e.g., vowel). These
signals are produced stable F0 and loudness to maintain a stable articulatory
condition for voice quality assessment, avoiding confounds results from
interactions between the larynx and vocal tract [114].

The relative shift in energy is one of the main spectral effects investigated in
depressed speech studies. This shifting results from increasing muscle tension,
limiting articulatory movements, which affects the physiological coordination of
the vocal tract and, hence, its resonance properties. France et al. reported an energy
shift from lower to higher frequency bands, leading to a significant increase in
energy in the higher band for a speech with depression. Kiss and Vicsi found that
in depressed speech, the mean energy value of the low-frequency region
(65–400 Hz) is relatively shifted to a higher value, while that of the high-frequency
region (1,330–5,735 Hz) is shifted to a lower value [111]. A similar shifting trend
was observed by Yingthawornsuk et al., where the lower band was defined as
0–500 Hz and the higher band was defined as 500–1,000 Hz [115]. Typically, in an
adult’s voice, the majority of the energy is contained in the frequency band
between 0 Hz and 2000 Hz [116]. In addition, a flattening pattern in the speech
spectrum was observed in patients experiencing MDD [60]. Spectral centroid and
spectral entropy were found to be higher in non-depressed speech, with higher
timbre brightness and richer spectral information [69].

MFCCs are significantly impacted by speech content and have been effectively
used in speech content characterisation and automatic speech recognition [117],
[118]. These coeffecients represent perception-based sound where the same words
are not strongly influnced by changes that occur while being voiced [119].
Measuring MFCC parameters, as distinguishing features, was carried out to
maximise the depressed and control classification performance with an accuracy of
80% [15]. Taguchi et al. reported that while depression is associated with a
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significant increase in MFCC2, other MFCC features remained stable [120]. Wang et
al., in contrast, found that MFCC5 and MFCC7 can distinguish between people
with and without depression; higher mean values are found in healthy individuals
[121]. We speculate that the differences between the two studies may be relevant to
the language differences and speech task type. Additionally, differences in MFCC3
between depressed and non-depressed speakers depends on speech scenarios (e.g.,
speech task type and voice expressions) [121].

Changes in prosodic features in relation to depression have been widely studied.
An increase in vocal tract tension during depression tightens the vocal folds [83]
and alteration in salivation and mucus secretion affects vocal tract and articulatory
movements [122], which results in monotone and less variable speech [23]. In 1980,
Hollien characterised depressed patient’s speech by a reduction in both pitch and
speaking intensity [123]. Later, numerous studies found a negative correlation of
these descriptors with depression [1], [111], [120], [121], supporting Hollien’s
findings. However, in 2012, Quatieri and Malyska highlighted a reduction in pitch
(variance and average) with decreasing depression severity [31]. In 2021, a higher
standard deviation F0 parameter was also found in depressed than in
non-depressed individuals [113]. Similarly, Ellgring and Scherer found that
minimum F0 decreased in women voices in a recovered state [83], meaning that
they had a higher and less variable pitch in depression. In 2015, Hussenbocus and
Allen reported a decreased in F0 values for men in depression and an increased on
those of depressed women [69]. A potential reason for this difference is the
heterogeneity of depression symptoms [23]. Furthermore, Wang et al. found a
reduction in VP measure. However, this reduction was not significant in most
speech scenarios. A similar ZCR was reported when voices of non-depressed and
depressed individuals were compared [120], [121].

Formant’s behaviour has been shown to be sensitive to depression, where it reveals
the articulatory effort reduction and psychomotor disturbances [124]. Thus, it is
considered a significantly distinguishable feature for depression classification [60].
Generally, Kiss and Vicsi observed a reduction trend associated with depression in
the mean values of formant frequencies (F1, F2) [111]. Flint’s result also indicated a
decrease in F2 location during periods of depression [124]. Similarly, Vicsi et al.
reported a decrease in formants locations of depressed individuals in comparison
with healthy controls [125]. The identified decreasing trend of formant frequencies
is inconsistent with the results presented by France; his result showed an increase
in F1 and F2 locations in the case of depressed participants [60]. The potential
cause of this discrepancy might be the complex relationship between source and
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Table 2.1 DIRECTION EFFECT OF BIO-ACOUSTIC FEATURES’ VALUES WITH
DEPRESSION.

Feature a Direction changed
Increased References Decreased References

Jitter ✓ [31], [111]–[113]
Shimmer ✓ [31], [111]–[113] ✓ [110]
Energy shift ✓ [60], [111], [115] ✓ [31]
SC ✓ [69]
SE ✓ [69]
MFCC2 ✓ [120] ✓ [121]
MFCC5 ✓ [121]
MFCC7 ✓ [121]
Pitch ✓ [31], [83], [113] ✓ [111], [120], [121], [123]
Intensity ✓ [111], [123]
Loudness ✓ [121]
VP ✓ [121]
F1 ✓ [60] ✓ [111], [125]
F1 ✓ [60] ✓ [111], [124], [125]

a SC: Spectral centroid; SE: spectral entropy; MFCC: Mel-frequency cepstral coefficients; VP: Voicing probability; F1: First
formant; F2: Second formant.

filter dynamics [23].

2.2.4 Automated Depression Detection Systems

The application of computational acoustical analysis to mental disorder assessment
has gained increasing interest recently [126]. Studies on depression have been
performed to identify depressed speech using artificial intelligence techniques [2],
[3], [17]–[19]. The discrepancies across these studies that have been observed are
attributable to differences in speech samples, the set of bio-acoustic features, and
machine learning algorithms, rendering direct comparability between them
impossible. In this section, a summary is given of some of the investigations that
have been undertaken into the automatic analysis of acoustic characteristics as a
predictor of depression.

To identify depression severity, Cohn et al. analysed vocal prosodic expression,
particularly pitch, and speaker switch duration in a sample of 28 participants [33].
The authors used a logistic regression classifier that achieved an accuracy of 79%.
Prosodic qualities were measured with the help of publicly available computer
software called Praat [92]. Another study, performed in 2011, investigated speech
with depression on a 47-speaker sample (23 depressed patients and 24 healthy
controls), where each participant was asked to read a two set of sentences. Some
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prosodic features and detailed spectral information were measured using VoiceBox
[127]. Using Gaussian mixture models (GMM), classification accuracy approached
80% when MFCC and formant features were analysed [15].

Helfer et al., in 2013, used audio data obtained from 35 subjects (using the James
Mundt 35-speaker Database) to explore depression classification of GMM and SVM
classifiers by analysing the first three formant frequencies and their dynamics.
They reported an optimal classification performance with sensitivity/specificity of
0.86/0.64 and 0.77/0.77 for GMMs and SVMs, respectively [10]. An investigation of
voice quality features for depression detection was conducted by Scherer et al.
[128]. Features were extracted from 36 participants, representing a subset of the
Distress analysis interview corpus (DAIC) [129]. An accuracy of 75% was achieved
using the SVM classifier to identify depression. Alghowinem et al. used a balanced
dataset of 60 subjects (30 depressed and 30 non-depressed) to extract voice
parameters using the openSMILE computer software [130]. Their results showed a
remarkable performance with an average recall of 81.61% in depression detection
when a hybrid classifier consisting of GMM and SVM was used, and the
classification performance of four classifiers was compared [131].

In 2016, Valstar et al. used clinical interview samples from the DAIC [129] to
identify non-verbal indicators of depression [132]. They extracted prosodic, voice
quality, and spectral features using the Cooperative Voice Analysis Repository for
Speech Technologies [133], which is open source and freely available. A linear SVM
with stochastic gradient descent was fit on the training set and validated on the
development set. They reported the following baseline results for depression
classification on a test set of depressed and non-depressed classes, respectively:
F1-scores were 0.410 and 0.582; precision values were 0.267 and 0.941; and recall
values were 0.889 and 0.421.

Jiang et al. investigated the discriminative power of different classifiers (KNN,
GMM, and SVM) for depression identification using balanced speech samples of
170 speakers, modelling males and females separately. The authors used
openSMILE to quantify several acoustic features [130]. Their results showed that
SVM achieved the best classification performance, resulting in accuracies of 65.68%
and 65.78% for females and males, respectively [2]. Another study employed a
parallel SVM algorithm to examine the classification accuracy of a set of
bio-acoustic features obtained from 74 speakers (37 depressed and 37
non-depressed) [134]. Measured bio-acoustic characteristics mainly include source,
prosodic, spectral, and formants features. Results showed a high classification
performance with an accuracy of 78.02%.
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In 2018, Stolar et al. investigated adolescent depression identification in a clinical
speech data sample consisting of 63 speakers (29 depressed and 34 non-depressed).
A set of the extracted acoustic parameters was fed into a SVM classifier to
discriminate between depressed and non-depressed speech characteristics. On
average, classification accuracies of 82.2% and 70.5% were achieved for males and
females, receptively [28]. In 2019, McGinnis et al. used speech data of 71 children
that was recorded during a speaking task of three minute duration. They
implement a different machine learning models (logistic regression, SVM, and
random forest) to detect depression, resulting in a good identification accuracy
(around 80%) [135].

A study analysed the vocal acoustic of 33 individuals (22 diagnosed with
depression and 11 healthy controls) to detect MDD [136]. Voice data were
submitted to GNU OctaveTM, an open-source computer software for the extraction
of vocal features. Mean accuracy of 87.55% was reported using random tree models
with 100 trees. Additionally, Saidi et al. employed a hybrid model combing CNN
and SVM to detect depression [137]. The authors evaluated the model on speech
samples from the DAIC and reported an accuracy of 68%, which outperformed the
CNN model’s accuracy of 58.57%. Aharonson et al. implemented two machine
learning architectures, trained on acoustic features extracted from DAIC-WOZ
speech samples, for depression analysis [138]. First they used a binary classifier
followed by a regression model, then compared a five-class classifier followed by a
regression model. They reached 78.84% and 82.22% of classification accuracy,
respectively.

In 2021, Lee et al. developed a voice-based automated diagnostic system for
depression screening. Voice samples were derived from reading pre-defined
sentences by elderly people (61 diagnosed with depression and 143 without
depression) [139]. Acoustic measures were analysed using OpenSMILE computer
software. Significant discriminatory performances were found with 86% and 77%
accuracy for males and females, respectively [139]. Patil and Wadhai extracted
bio-acoustic features using Praat computer software [92], to study the performance
of different classifiers for depression detection [140]. They utilised spontaneous
speech samples (collected during an interview) of 54 depressed patients and 75
healthy controls. Their results showed that a hybrid classifier (GMM and SVM)
achieved the best overall classification accuracy with a mean of around 83% [140].

Recently, in 2022, Rejaibi et al. adopted a recurrent neural network structure to
identify depression and predict its severity level using acoustic speech
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characteristics (e.g., MFCCs), reporting an overall accuracy of 86% [141]. Speech
samples was taken from the DAIC-WOZ database.
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Table 2.2 A SUMMARY OF AUTOMATED DEPRESSION DETECTION SYSTEMS STUDIES.
Year Reference n a Features Classifier b Metricsc Values Confounders
2009 Cohn et al. [33] 11 ND

17 D
F0 variability
Latency

LR Accuracy 79% Gender: w, m (ND=2, D=2)
Language: 19% non-Caucasian
Task: Clinical interview
Duration: Avg. 10 min
Medication: Anti-depressant or
interpersonal psychotherapy
Treated over 7 weeks

2011 Cummins et al. [15] 24 ND
23 D

Prosodic
Spectral

GMM Accuracy 80% Gender: 50% m, 50% w
Task: Read 20 sentence
Duration: 40–60s

2013 Helfer et al. [10] 35 D Formants GMM
SVM

Sen./Spec. 0.86/0.64
0.77/0.77

Gender: 20 w, 15 m
Age: mean of 41.8 years
Language: English
Task: Conversation and
sustained vowels
Duration: 3–6 min per session
Medication: Pharmacotherapy
and/or psychotherapy
Treated over 6 weeks

Scherer et al. [128] 18 ND
18 D

Voice quality SVM Accuracy 75% Gender: Men and Women
Age: < 18 years
Language: English
Task: Interviews
Duration: 5–15min

Continued on next page
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Table 2.2 – continued from previous page
Year Reference n a Features Classifier b Metricsc Values d Confounders

Alghowinem et al. [131] 30 ND
30 D

Voice quality
Prosodic
Spectral
Formants

Hybrid
GMM+SVM

Accuracy 75% Gender: Matched subset
Age: Adults
Language: English
Task: Interview
Duration: 92 s

2016 Valstar et al. [132] 133 ND
56 D

Voice quality
Prosodic
Spectral

SVM F1-scores
Precision
Recall

0.41 D, 0.58 ND
0.26 D, 0.94 ND
0.88 D, 0.42 ND

Gender: ND (77 m, 56 w),
D (25 m, 31 w)
Language: English
Task: Clinical interviews
Duration: Avg. 16 min

2017 Jiang et al. [2] 85 ND
85 D

Source
Prosodic
Spectral

Best was
SVM

Accuracy
Sen./Spec.

Around 65%
Around 61%/70%

Gender: ND (34 m, 51 w),
D (32 m, 53w)
Age: 18–55 years
Language: Chinese
Task: interview, picture
description, and reading

Long et al. [134] 37 ND
37 D

Source
Prosodic
Spectral
Formants

Parallel
SVM

Accuracy Around 78.02% Gender: ND (19 m 18 w),
D (19 m, 18 w)
Age: 18–55 years
Language: Chinese
Task: Interview, picture
description, and reading

2018 Stolar et al. [28] 34 ND
29 D

Spectral
Formants

SVM Accuracies 82.2% m
70.5% w

Gender: D (24 w, 5 m),
ND (24 w, 10 m)
Age: 14–18 years
Task: Conversation
Duration: Around 1 hour

Continued on next page
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Table 2.2 – continued from previous page
Year Reference n a Features Classifier b Metricsc Values d Confounders
2019 McGinnis et al. [135] n=71 Prosodic

Spectral
Formants

LR

SVM

Accuracy
Sen./Spec.
Accuracy
Sen./Spec.

80%
54%/93%
80%
62%/89%

Gender: 63% w
Age: children; 3–7 years
Language: English
Task: Diagnostic interviews
Duration: 3 min

2020 Espinola et al. [136] 11 ND
22 D

Broad set of
vocal features

Best was RF Accuracy
Sen./Spec.

87.55%
0.9149/ 0.8354

Gender: 11 m, 22 w
(5 ND, 17 D)
Age: 30.1(±12.6) ND,
42.9(±13.0) D
Task: Interview
Duration: No duration limit

Saidi et al. [137] 133 ND
56 D

Extracted
using CNN

hybrid
CNN+SVM

Accuracy
Precision
Recall

68%
0.67
0.71

Gender: ND (77 m, 56 w),
D (25 m, 31 w)
Language: English
Task: Clinical interviews
Duration: Avg. 16 min

Aharonson et al. [138] 133 ND
56 D

Prosodic NN Accuracy 78.84%– 82.22% Gender: ND (77 m, 56 w),
D (25 m, 31 w).
Language: English
Task: Clinical interviews
Duration: Avg. 16 min

2021 Lee et al. [139] 143 ND
61 D

Spectral
Energy
Prosodic

AdaBoost Accuracy
Sen./Spec.
Accuracy
Sen./Spec.

86%m
0.95/0.88 m
77% w
0.73/0.86 w

Gender: 70% w
Age: 72(±6) years
Language: Elderly Koreans
Task: Read sentences

Patil and Wadhai [140] 75 ND
54 D

Source
Prosodic
Spectral

Hybrid
GMM+SVM

Accuracy Around 83% Age: Adolescents
Task: Spontaneous speech
Duration: 11min

Continued on next page
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Table 2.2 – continued from previous page
Year Reference n a Features Classifier b Metricsc Values d Confounders
2022 Rejaibi et al. [141] 133 ND

56 D
MFCCs
Formants
F0
Voice quality

RNN Accuracy 86% Gender: ND (77 m, 56 w),
D (25 m, 31 w)
Language: English
Task: Clinical interviews
Duration: Avg. 16 min

a ND: Non-depressed; D: Depressed.
b LR: Logistic Regression; GMM: Gaussian Mixture Models; SVM: Support Vector Machine; RF: Random Forest; CNN: Convolutional Neural Network;
NN: neural network; RNN: Recurrent Neural Network.
c Sen.: Sensitivity; Spec.: Specificity.
d m: Men; w: Women.
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Chapter 3

Bio-acoustic Features Reproducibility

3.1 Introduction

Experimental protocols and methodologies across studies on the association of the
speech with clinical outcomes vary significantly [17], [20], [35], limiting the
comparability of results. Studies on speech signal processing use speech samples
that differ in speech task type and duration. Some of the studies on depressed
individuals, for example, were conducted on three speaking tasks, including an
interview, reading-a-story, and picture description, with the overall recording
lengths differing 14.5 h, 5.9 h, and 4.5 h, respectively, and average duration of
speech recording was 18.3 s [2], [3]. Other researchers used only interview samples
with a duration range between 7 to 30 minutes [128], [142]. Therefore, it is critical
to determine whether differences in speaking tasks and task duration impact the
stability of bio-acoustic feature measurements.

Kiss and Vicsi reported that the measurement of speech features, mainly those
calculated over sustained vowels or voiced parts of reading-a-story, is affected by
the type of speech task [111]. It was also found that quantifying spectral and
cepstral acoustic features, whether from vowel or continuous speech, is dependent
on speech content [143]. A study of healthy speakers revealed that different speech
types, such as counting, reading passages, and spontaneous speech, impacted the
vibration frequency of the vocal folds in connected speech (speaking fundamental
frequency) [144].

Vogel and Morgan documented that the length of obtained speech data impacted
the measurement accuracy of bio-acoustic features [145]. Although several efforts
have been made to explore the accuracy of short-duration speech samples for
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detecting a disease or estimating a physical parameter [146]–[149], only a few
studies have explored the impact of voice sample length on speech characteristics
[150]–[152]. Scherer et al. have shown that, in sustained vowel tasks, the stability of
perturbation measurements, jitter and shimmer, is affected by the task duration. At
least 3 s of speech is required to provide accurate measurement [150]. Another
study also found that reducing the speech duration from 60 s to 30 s affects the
pitch measurements [153]. Additionally, there is high variability in optimal sample
duration across a type of predictive task, reflecting the complexity of the outcome
measure. For example, complex neurological phenotypes, such as dementia, may
take up to 12 minutes of interview speech [147], and one-minute picture
descriptions to distinguish individuals with dementia from healthy controls using
only acoustic features [154].

Variation in sampling accuracy may also be influenced by gender. Several
differences between men’s and women’s speech have been found related to the
vocal folds’ mass and vocal tract length, leading to significant differences in
phonetics and the quality of voice [84], [155]. Simpson reported that both vocal fold
vibration rate and the formants frequencies are higher in women than in men [84].

The first aim of this chapter is to examine the effect of speech duration on the
reproducibility of women and men adults’ bio-acoustic features by determining
whether there is a difference between the features extracted from a full-duration
task and those measured over shorter durations of the same task. The second aim
is to investigate the difference in these parameters between different speech tasks,
reading a predefined story versus counting.

3.2 Methods

3.2.1 Dataset

The database contained 796 audio recordings of 199 English speakers aged
between 18 and 45 years that were collected at the University of Adelaide as part of
a larger study. From every participant, four voice recordings were collected over
two separate assessment sessions, with sessions spaced at least three days and at
most two weeks apart, at a sampling rate of 44.1 kHz and 16-bit sampling depth in
uncompressed WAV format. By using a headset type microphone, the distance
between the speaker’s mouth and the microphone was kept constant. Each of the
four recordings contained a different speaking task: reading a pre-selected story,
re-telling the story in the participants’ own words, counting from 1 to 20, and
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Table 3.1 CHARACTERISTICS OF THE PARTICIPANTS ENROLLED IN
THE STUDY

Gender Men (n = 87) Women
(n = 98)

p-value a

Age (years) 26.16 (±6.66) 27.77 (±7.11) 0.1192

Mood score
(session 1) 2.32 (±2.04) 2.76 (±2.28) 0.2006

Mood score
(session 2) 2.30 (±2.02) 2.69 (±2.25) 0.2470

a p-values refer to the sex differences for each variable and measured using Wilcoxon rank sum.

telling the capital cities of Australia loudly. Speech was recorded in a 10 × 14 m
isolated room within a research facility. Only the investigators and participants
were present and the door remained closed at all times. Participants also
completed the Mood and Feeling Questionnaire (containing 13 items) before
speech recording.

Fourteen subjects were removed to match mood score and age between men and
women; nine of them had a mood score suggesting depression (>10 points), while
others were relatively older (= 45 years). Two types of structured, controlled
speech tasks were analysed: reading-a-story, with a mean duration of about 124.4 s
(standard deviation = 25.0 s), and counting, with a mean duration of about 26.0 s
(standard deviation = 7.7 s). Section 3.2.1 presents the basic characteristics of the
participants.

All procedures were approved by the University of Adelaide’s Human Research
Ethics Committee. All participants provided written informed consent in
compliance with the Declaration of the University of Helsinki.

3.2.2 Biomedical Speech Signal Processing

Speech analysis included preprocessing, bio-acoustic feature extraction and
statistical analysis of the extracted features to examine reproducibility (Fig. 3.1).

3.2.2.1 Preprocessing Steps

Several preprocessing steps were applied to the speech signals to improve the
performance of the feature extraction algorithm [93]. Linear down-mixing was
used to convert each recording from two channels (stereo) into a single channel
(mono). Silent pauses were eliminated from the input signal to avoid extracting
acoustic features from the background acoustical noise [156], [157], by detecting the
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Fig. 3.1 A block diagram illustrating the steps to examine bio-acoustic
features’ reproducibility. These steps mainly including preprocessing
steps, features extraction, and statistical analysis. Preprocessing steps
comprise down-mixing signal, removing silent pauses, resampling
speech signal (16 kHz), z-score normalisation, and signal pre-emphasis.
Moreover, the features extraction step focuses on quantifying acoustic
features. Statistical analysis using Intraclass Correlation Coefficient

tests was applied to the quantified features.

speech boundaries using the MATLAB® detectSpeech function (The MathWorks,
USA). The signals were then down-sampled to 16 kHz, commonly used for speech
processing, to reduce the computational load [41], [93]. Samples were then
normalised to eliminate differences from the recording environment using the
z-score method that centres data to have a zero mean and unit variance [158].
Finally, a pre-emphasis filter was implemented with a coefficient value equal to
0.97, commonly used for speech applications, to enhance the signal-to-noise ratio,
enhance higher frequency components (i.e., speech spectrum in the high-frequency
region has a steep roll-off), and suppress some of the glottal effects from the vocal
tract parameters [41], [159], [160]. The TF of pre-emphasis filter is given by the
following:

H(z) = 1 − 0.97z−1. (3.1)

Since the speech signal is non-stationary, due to articulation effect, and considered
stable only in short time intervals (typically 20–30 ms) [93], short-time analysis
(framing) is required for analysis. The speech signal is segmented into frames of
20 ms duration, as recommended [93], [161]. The frames were overlapped by 50%
to avoid introducing any spurious frequency components [93], [159] and track the
temporal characteristics of individual speech. Afterwards, the Hamming window
(Fig. 3.2), commonly used for speech processing, was applied to all frames to taper
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Fig. 3.2 Hamming window of 320 samples in time-domain and
frequency-domain.

the signal in time-domain, reduce spectral leakage, and enhance harmonics [93],
[159]. Owing to the windowing, information at the boundary of each frame is
attenuated. Hence, overlapping helps in preserving information of the original
signal.

3.2.2.2 Features Extraction

Speech feature extraction is at the core of the ability of speech processing systems to
derive descriptive attributes of the signal [159]. Speech features can be categorised
into two branches: acoustic and linguistic [162]. In this thesis, only acoustic features
is considered, which can be divided into source, spectral, prosodic, and formants
features [1]. Measuring these characteristics frame by frame is known as low level
descriptors (LLD), while applying statistical functions over the LLD is known as
statistical features [163]. A summary of the extracted features is provided in Table
3.2. The features were measured with the help of MATLAB®2021a (The MathWorks,
USA) [164].

Source Features

The source features calculated over voiced regions included jitter, which quantifies
the cycle-to-cycle variation in the glottal pulse timing period, and shimmer, which
quantifies the cycle-to-cycle variation in the amplitude of the glottal pulse [31], [36].
They are defined by the following equations:

Jitter(µs) =
1

N − 1

N−1

∑
i=1

|Ti − Ti−1|, (3.2)
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Table 3.2 SUMMARY OF THE EXTRACTED BIO-ACOUSTIC FEATURES.

Features
Category a

Features Statistical measurements

Source Jitter Mean, SD, percentile range (90–10%)

Shimmer Mean, SD, percentile range (90–10%)

Spectral

MFCC (1-13) Mean, SD, percentile range (90–10%),
skewness, kurtosis

∆MFCC Mean

∆∆MFCC Mean

SR Mean, skewness, kurtosis

SC Mean, percentile range (90–10%)

SE Mean, SD

SF Mean

SS Mean

SK Mean

Prosodic

Pitch Mean, SD, percentile range (90–10%),
skewness, kurtosis

Loudness Mean, SD

VP Mean

ZCR Mean, SD, skewness, kurtosis

Formants F1 Mean, SD, percentile range (90–10%)

F2 Mean, SD, percentile range (90–10%)

a MFCC: Mel-frequency cepstral coefficients; SR: Spectral roll-off; SC: Spectral centroid; SE: Spectral entropy; SF:
Spectral flatness; SS: Spectral skewness; SK: Spectral kurtosis; VP: Voicing probability; ZCR: Zero-crossing rate; F1:
First formant; F2: Second formant; SD: Standard deviation.

Shimmer(dB) =
1

N − 1

N−1

∑
i=1

|20 log10
Ai+1

Ai
|, (3.3)

where Ti denotes the time period of the glottal pulse, N denotes the number of
periods, and Ai represents the peak-to-peak amplitude [36], [165].

Both jitter and shimmer were determined by utilising the GCIs within each glottal
cycle, which were detected automatically, over 60 ms frame duration, using the
DYPSA algorithm built in the VoiceBox [58], [127]. Frame duration was chosen
based on the closure onset time after glottal opening occurs in connected speech of
approximately 60 ms.
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Spectral Features

STFT is commonly used to analyse the frequency content of a non-stationary signal
(i.e., speech signal). It is implemented to map a one-dimensional time-domain signal
into a two-dimensional representation of time and frequency. In STFT, the DFT is
applied to each windowed data of the speech signal, resulting in a matrix of complex
numbers (magnitude and phase) for each point in time and frequency (Fig. 3.3). The
kth element of STFT matrix can be expressed as follows:

Fig. 3.3 An overview of Short-time Fourier transform (STFT) of a speech
signal.

Sk( f ) =
∞

∑
n=−∞

s(n)w(n − kR)e−jπ f n, (3.4)

where Sk( f ) is the DFT spectrum of the windowed data centred at kR time, s(n)
is the speech signal to be transformed, w(n) is the window function; selectively
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determine the analysed portion, and R is called the hop size; the number of samples
between successive DFTs.

Since human hearing is relatively phase-insensitive [166], spectral shape
descriptors are derived from the amplitude spectrum of the STFT, either a
“magnitude” or “power” spectrum. The power spectrum is the magnitude squared
of each frequency component. It characterises the signal’s energy distribution over
the frequency. One-sided power spectrum is used to estimate these descriptors.

For the power spectrum value Sk at bin k, the frequency fk (in Hz) at bin k, and
the band edges (bins) b1 and b2, the spectral shape descriptors are quantified as
described below (i.e., STFT parameters: window size of 20 ms and overlap of 50%).

Spectral centroid, the first-order spectral moment, indicates the “centre of mass” of
the spectrum. It is computed as the ratio between the sum of the weighted (by
frequency) to the unweighted power spectrum [167]. This descriptor is defined in
Hz as follows:

SC =
∑b2

k=b1
fkSk

∑b2
k=b1

Sk
. (3.5)

Spectral spread is known as spectral standard deviation. It is also considered the
second-order spectral moment (denoted µ). This feature describes the spread of the
power spectrum around its spectral centroid; closely related to the signal’s
bandwidth. Mathematically, spectral spread is defined as [167]:

µ =

√√√√∑b2
k=b1

( fk − SC)2Sk

∑b2
k=b1

Sk
. (3.6)

Spectral skewness is the third-order spectral moment. This descriptor characterises
the asymmetry of spectrum distribution around its centroid value. For a given
signal, SS can be calculated as follows [167]:

SS =
∑b2

k=b1
( fk − SC)3Sk

µ3 ∑b2
k=b1

Sk
. (3.7)

Spectral kurtosis is the fourth-order spectral moment. It is a measure of
“non-Gaussianity”; indicating the flatness and peakiness of the spectrum around its
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centroid. SK is defined as [167]:

SK =
∑b2

k=b1
( fk − SC)4Sk

µ4 ∑b2
k=b1

Sk
. (3.8)

Spectral entropy is a useful parameter for quantifying the regularity “peakiness” of
power spectrum of speech signal [168]. It is calculated as:

SE =
−∑b2

k=b1
Sk log(Sk)

log(b2 − b1)
. (3.9)

Spectral flatness corresponds to measuring the frequency distribution uniformity of
a power spectrum [62]. It is obtained by taking the ratio of spectral distribution’s
geometric mean to its arithmetic mean. Spectral flatness, typically measured in dB,
is determined according to Johnston [169] as follows:

SF =
(∏b2

k=b1
Sk)

1
b2−b1

1
b2−b1

∑b2
k=b1

Sk
. (3.10)

Spectral roll-off points defines the frequency below which a certain percentage p
(usually between 80% and 90%) of the total energy is concentrated [170]. For i
roll-off point and p of 95%, SR (in Hz) is calculated by the following equation:

i

∑
k=b1

|sk| = p
b2

∑
k=b1

Sk. (3.11)

MFCC is a collection of coefficients used as features; they are constructed to
represent the short-time power spectrum of a speech signal. These coefficients are
obtained by computing DFT values of windowed speech data. These values are
then grouped in critical bands and weighted by a bank of band-pass filters [39],
[40]. Filters are designed to map the frequency range of human hearing. They are
linearly spaced overlapped triangular filters in the Mel-scale and logarithmically
spaced at frequencies higher than 1 kHz in linear frequency scale [14], [93]. The
frequency axis is warped and evenly spaced with more weight (i.e., higher
resolution) on lower frequency values according to the following equation [66]:

fmel = 1127.01048 ln
(

fl
700

+ 1
)

, (3.12)
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where fmel is the frequency in mel-scale, and fl is the linear frequency in Hz.

The outputs of the filter bank are logarithmised and then decorrelated by means of
the discrete cosine transform (DCT) [39], [40], instead of the IFT. Typically, the first
8 to 13 DCT components, identified by human hearing, represent the MFCC feature
vector. Higher-order coefficients mainly contain the source signal because the vocal
tract impulse response rapidly decays. Fig. 3.4 shows a typical block diagram
representing the extraction steps of MFCC features. MFCCs omit temporal

Fig. 3.4 Block diagram of mel-frequency-cepstrum coefficients
(MFCCs) computation steps [75].

information of speech signals and are considered static features. ∆MFCC, the
difference between the current and the previous coefficients, and ∆∆MFCC, the
difference between the current and the previous delta values, are computed. In this
thesis, I obtained the first 13 MFCCs, ∆MFCC, and ∆∆MFCC [40].

∆MFCCm = MFCCm(n)− MFCCm−1(n). (3.13)

∆∆MFCCm = ∆MFCCm(n)− ∆MFCCm−1(n). (3.14)

Prosodic Features

Pitch, expressed in Hz, is the auditory sensation of a sound frequency. It is closely
related to F0, the lowest frequency component of quasi-periodic vibration of vocal
folds, but they are not equivalent. It can be estimated by measuring the F0. A
high pitch sound corresponds to a high-frequency sound wave, whereas a low pitch
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sound corresponds to a low-frequency sound wave. Pitch is estimated in the short-
time domain via the NACF method [171], defined as follows:

NACF(τ) =
∑N−1

n=0 x(n + τ)x(n)√
∑N−1

n=0 x2(n + τ)∑N−1
n=0 x2(n)

, (3.15)

where N is the frame length, τ is the time lags or delays, and x(n) is the
corresponded speech frame signal.

The NACF has the greatest value of one at zero time lag, at which the similarity of
a signal with itself is 100%. An example NACF of a speech data frame is shown in
Fig. 3.5. In this example, the next greatest peak after a lag of zero corresponded to
the fundamental period.

Fig. 3.5 Normalised correlation function (bottom) of a speech segment
sampled at 16 kHz (top), resulting in a pitch value of 296.3 Hz.

Pitch floor and ceiling parameters are set to the interval [75–300 Hz] for male voices
and [100–500 Hz] for female voices as recommended [92]. These boundaries are
appropriate for analysing adult voices and avoiding pitch tracking errors that are
generated due to inappropriate extreme values [172].

Sound pressure level is a physical value commonly used as indicator of the acoustic
wave strength (i.e., sound intensity). It measures the acoustic pressure of a sound
(denoted P) relative to a reference pressure (denoted P0), where P0 corresponds to
the human hearing threshold 20 micro Pascal (µPa) at 1 kHz. This measure (i.e.,
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SPL) is expressed as [40]:

SPL(dB) = 20 log10(
P
P0

). (3.16)

Since the human ear is not equally sensitive to sounds with the same SPL and
different frequencies, the perceived loudness of a sound is not directly equal to its
SPL. Thus, the A-weighting curve filter has been adopted to weight SPL as a
function of frequency, approximately in agreement with the frequency response
properties of the human hearing for a pure tone [90]. The characteristic of
A-weighting filter corresponds well with the perceived loudness and with the
isophonic curve of 40 phons [90], [173]. The frequency response of this filter is
shown in Fig. 3.6. On the A-weighted dB scale (dBA), low and high frequencies are
given a relatively less weight compared to the mid-frequency range [88].
Consequently, A-weighted SPL is used as a proxy estimation of perceived loudness
(in dBA).

Fig. 3.6 The frequency response of A-weighting filter.

Zero-crossing rate, the number of times the speech signal passing the zero [93], is
also extracted on a frame level. For the signal (s) and frame (i) of length N, the ZCR
is defined by the following:

ZCR(i) =
1

2N

N

∑
n=1

|si(n)− si(n − 1)|, (3.17)



3.2. Methods 45

where si(n)=1 when the signal has a positive amplitude (>0) at n and 0 otherwise.

Voicing probability is obtained by applying a voice activity detector algorithm,
introduced by Sohn et al. [174], over a windowed speech signal, in the frequency
domain to detect speech-present. The probability threshold of transition from
voiced to unvoiced frames is set to 0.2, while the transition from unvoiced to
voiced frames is set to 0.1.

Formant Features

Formant frequencies (F1 and F2) are tracked frame-by-frame throughout a speech
sample—after down-sampling, down-mixing, and removing silent pauses from the
signal—using the automated formant tracking tool. This tool was built by Dissen et
al. [96] to take in the raw speech signal and applied several preprocessing steps on
it, including framing, overlapping, pre-emphasis filter, and windowing. Two sets
of spectral features are then extracted from LPC analysis and pitch-synchronous
spectra to parametrised the envelop of STFT. A recurrent neural network
architecture is employed to consider temporal information of a signal’s frames in
the tracking process. The output layer of this network consists of the formant
frequencies. This method was outperformed both Praat and WaveSurfer, as
reported in [96].

Statistical Functions

Once bio-acoustic features are extracted across each a speech sample on a frame
basis, several statistical functions are applied over these frames. These functions
include the mean, standard deviation (SD), third- and fourth-order statistical
moments (skewness and kurtosis), and percentile range (90–10%) value, leading to
125 bio-acoustic features per speech sample. These statistical functionals are
relatively stable which helps in excluding the influence of tracking errors (e.g.,
pitch-halving or pitch-doubling errors). Because psychological investigations are
concerned with the overall patterns of speech and classification results were not
statistically significant between features measured at low-level, on a frame basis,
and those measured by statistical functions [175], statistical function features was
used in this thesis.

3.2.3 Statistical Analysis

Statistical analysis was carried out to determine how speech task length and speech
task type affected bio-acoustic features reproducibility in men and women. Each
speech sample was segmented three times at different percentages of speech
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Table 3.3 DURATION OF SHORTENED SUB-SAMPLES OF TOTAL
SAMPLE DURATION.

Sub-samples 75% 50% 25%

Duration (s) 93 (±19) 62 (±12) 31 (±6)

recording length (25%, 50%, and 75%) with a 25% sliding window, resulting in nine
speech sub-samples. Table 3.3 summarises the duration in seconds of these
sub-samples. Features calculated over 25% sub-samples were correlated with those
obtained from 25%, 50%, and 75% non-overlapping randomly selected
sub-samples. The correlation between features calculated over 25% randomly
selected sub-samples and the full-length recording were also tested. Features
extracted from a similar duration of 50% from the beginning and end of each
recording were correlated. Therefore, correlation of five-pair sub-samples were
examined: 25% vs. 25%, 25% vs. 50%, 25% vs. 75%, 25% vs. 100%, and 50% vs.
50%. Additionally, the speech characteristics calculated over the first ten seconds of
the counting task were correlated to those extracted from the same duration of the
reading-a-story task.

To assess the agreement level of the extracted features, intraclass correlation
coefficients (ICC) [176] were calculated for individual features. ICC values of
0.00–0.39, 0.40–0.59, 0.60–0.74, and 0.75–1.00 were used to indicate poor, fair, good,
and excellent agreement, respectively. Features with an excellent agreement level
(ICC≥0.75) were considered reproducible in this study. A two-way analysis of
variance (ANOVA) test was performed over the ICC values to determine
significant differences within the five correlation measurements and gender.

3.3 Results

3.3.1 Effect of Speech Task Duration

Fig. 3.7 summarises the number of reproducible features (ICC≥0.75) at different
lengths of speech data for the reading-a-story task. Comparing features obtained at
25% with 100% speech duration, 82 and 81 acoustic features were deemed
reproducible in men and women, respectively. The number of reproducible
features decreased to 53 in men and 57 in women when the same duration (25%
sub-samples) were correlated. There was no statistical difference between men and
women (P=0.52) in ICC values (out of 625) across five paired measurements (i.e., to
consider effect of speech duration and genders on features reproducibility, in
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Fig. 3.7 Comparison of the number of reproducible bio-acoustic
features as a function of correlated percentages speech data for men
(left) and women (right). Data were extracted for different durations of

the reading-a-story task.

general, two-way ANOVA test was applied on all measured ICCs across both
genders).

The ICC values for feature categories are shown in Fig. 3.8. The duration had a
considerable impact on source features’ reproducibility. Jitter parameters (out of 3)
achieved poor to fair reproducibility (ICC<0.59) across different speech durations
(P=0.30; Fig. 3.8a); gender difference is significant (P=0.05). Shimmer parameters’
agreement level (ICC<0.71) was similar (P=0.38) when considering different
speech lengths; there was no significant difference between men and women
(P=0.33; Fig. 3.8b).

MFCC coefficients, ∆MFCC, and ∆∆MFCC contributed about 73% to the total of
measured features (91 out of 125). MFCC parameters were affected by speech
duration (P<0.05). Gender has no effect on ICC values of these parameters
(P=0.73). MFCC features also had fair-to-excellent reproducibility, with a mean
ICC value around 0.75 in each measurement (Fig. 3.8c). Both ∆MFCC, and
∆∆MFCC attributes were influenced by reducing speech task length, resulting in a
poor agreement level (ICC<0.32; Fig. 3.8d, Fig. 3.8e). Gender has a significant
impact on ICCs of ∆MFCC (P=0.02), but it has no effect on ICCs of ∆∆MFCC
(P=0.60).

Spectral shape characteristics showed high stability across reduction in speech task
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lengths. SR parameters (out of 3) achieved excellent reproducibility (ICC>0.75)
when speech duration decreased from full recording to 25%, with no significant
gender difference was found (P=0.23; Fig. 3.8f). SC parameters (out of 2) had
excellent and good-to-excellent agreement level in men and women, respectively,
when speech duration is shortened (Fig. 3.8g). No significant difference was
observed in SC ICCs between men and women (P=0.14). SE and SF were
reproducible across different speech durations; no gender effect was found
(P>0.05; Fig. 3.8h, Fig. 3.8i). SS and SK showed excellent reproducibility across
duration reduction in men and women, as shown in Fig. 3.8j and Fig. 3.8k; only a
statistical difference was found in SS between genders (P<0.05).

In terms of prosodic features, gender and speech duration reduction had a
significant impact on ICCs of pitch parameters (P=0.0002 and P=0.001,
respectively); however, pitch achieved an excellent agreement level (ICC>0.75)
across all comparisons in both genders (Fig. 3.8l). A wide variation in loudness
parameters was found, ranged from fair-to-excellent agreement; no gender effect
was observed (P=0.75; Fig. 3.8m). ICC values of ZCR parameters showed
fair-to-excellent agreement (>0.40) in both men and women, with no statistical
difference was found between genders (P=0.20; Fig. 3.8n). VP attributes were
varied and considered non-reproducible in men, while women maintained
good-to-excellent ICC values (Fig. 3.8o).

ICC values of formants features’ in men and women were statistically different at
P<0.05. Although F1 and F2 parameters were considered reproducible across all
duration comparisons (ICC>0.75), duration reduction impacted ICC values
(P<0.05). At full sample duration, the ICCs of F1 parameters was around 0.95 for
men and 0.93 for women. These values decreased gradually to nearly 0.90 and 0.83
for men and women, respectively, at the shortest speech length (Fig. 3.8p). Higher
stability was observed in men than in women in ICCs of F2 parameters (Fig. 3.8q).

3.3.2 Effect of Speech Task Type

This experiment examined the reproducibility of bio-acoustic qualities calculated
over the first ten seconds of two different tasks; reading-a-story and counting.
Table 3.4 summarises the ICC values obtained by comparing these tasks for men
and women. Most features showed high variability. Source features lost their
reproducibility by changing speech tasks. The mean ICC values of jitter parameters
were −0.05 in men and 0.03 in women. Shimmer ICC values were ranged between
0.002 and 0.07 and between −0.03 and −0.22 for men and women, respectively. For
both genders, a poor agreement level was found in MFCC, ∆MFCC, and ∆∆MFCC
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Fig. 3.8 The ICC values of bio-acoustic features for both men and
women is shown in the scatter plot. The numbers on the x-axis can
be interpreted as follows; 1: ICC(25% vs. 25%), 2: ICC(25% vs. 50%), 3:

ICC(25% vs. 75%), 4: ICC(25% vs. 100%), 5: ICC(50% vs. 50%).

parameters. SR showed good-to-excellent stability in men (ICC>0.60) and
fair-to-excellent stability in women (ICC>0.47). For both genders, poor
reproducibility was found in SC and SE. Good and fair agreement levels were
observed in SS and SK for men and women, respectively. The ICC of SF was
around 0.5 for both genders. Speech task type impacted pitch reproducibility in
men (ICCs: 0.36–0.67) and women (ICCs: 0.27–0.58). Variation in loudness and
ZCR attributes was observed when comparing counting and reading tasks. VP was
not a reproducible feature in both genders when speech task type is changed. In
men and women, F1 parameters presented fair-to-good reproducibility, and F2
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parameters showed fair reproducibility.

Table 3.4 ICC VALUES OF MEASURED BIO-ACOUSTIC FEATURES
COMPARING TWO SPEECH TASKS: COUNTING AND READING-

A-STORY.

Feature Statistical measurements
ICC Value

Men Women

Jitter
Mean −0.12 −0.06

SD −0.13 −0.03
Percentile range 0.09 0.18

Shimmer
Mean 0.07 −0.22

SD 0.05 −0.07
Percentile range 0.002 −0.03

MFCCs
Mean, SD,

Percentile range,
Skewness, Kurtosis

0.36 (±0.21) 0.35 (±0.20)

∆MFCC Mean 0.13 (±0.16) 0.09 (±0.16)
∆∆MFCC Mean 0.03 (±0.08) −0.03 (±0.08)

SR
Mean 0.79 0.78

Skewness 0.80 0.72
Kurtosis 0.60 0.47

SC
Mean 0.68 0.54

Percentile range 0.48 0.37

SE
Mean 0.57 0.53

SD 0.35 0.47

SF Mean 0.55 0.54

SS Mean 0.74 0.52

SK Mean 0.62 0.45

Pitch

Mean 0.67 0.27
SD 0.68 0.58

Percentile range 0.60 0.41
Skewness 0.44 0.33
Kurtosis 0.36 0.33

Loudness
Mean −0.18 −0.25

SD 0.31 0.40

VP Mean −0.32 −0.30

ZCR
Mean 0.66 0.54

Continued on next page
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Table 3.4 – continued from previous page

Feature Statistical measurements
ICC Value

Men Women
SD 0.40 0.45

Skewness 0.60 0.59
Kurtosis 0.23 0.27

F1
Mean 0.46 0.56

SD 0.67 0.65
Percentile range 0.47 0.55

F2
Mean 0.51 0.47

SD 0.44 0.50
Percentile range 0.43 0.56

3.4 Discussion

In this chapter, the effects of speech task duration, speech task type, and gender on
the reproducibility of bio-acoustic features in normal adults were examined. The
main findings of this study are as follows: (i) the reproducibility of acoustic
features steadily reduces proportional to speech duration down to about 30 s across
gender; (ii) acoustic speech properties are less reproducible in less complex
counting versus reading-a-story tasks; and, (iii) Some spectral (spectral shape
descriptors), prosodic (pitch), and formants (F1, F2) features reached excellent
reproducibility in both genders at different speech duration. Some spectral features
(MFCC) and prosodic features (Loudness, ZCR) achieved excellent reproducibility
at a longer duration. The reproducibility of source (Jitter, Shimmer), and other
spectral (∆MFCC, and ∆∆MFCC) features were lost when speech duration was
changed. There were significant gender differences in jitter, ∆MFCC, SS, pitch, VP,
and formants (F1, F2).

Interview based diagnostic and prognostic assessments for common psychiatric
illnesses, such as major depression, have limited reliability and predictive accuracy
[177]. Examining reproducibility of acoustic features at different speech durations
has become of clinical interest to improve the accuracy of the assessment and
provide valuable insights that can drive the assessment. Few studies have explored
the impact of voice sample length on speech characteristics [150]–[152]. Previous
work has largely focused on evaluating only one type of acoustic property against
time. Scherer et al. suggested that at least 3 s of recording are required for accurate
reading of speech perturbations [150]. To the best of my knowledge, no study has
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systematically investigated the influence of decreasing the length of a speech signal
on the reproducibility of bio-acoustic features in healthy individuals.

The source features’ measurements were not reproducible when fewer voice
samples were considered. Perturbation measurement stability is dependent on the
components of speech in the location of the selected segments, for instance, there is
high variability between different vowels [150]. Selecting a more stable speech
segment, periodic (repetitive) or nearly periodic (nearly-repetitive) waves, leads to
a more consistent result [44]. Based on the measurements of logMel and MFCC
features of cropped signals from about 8 s to about 1 s, Neumann and Vu reported
that a system for emotion detection performed sufficiently, despite a slight loss in
accuracy compared to the use of full samples [151]. The current study found that
the reproducibility of MFCC features reduces as duration shortens, which might
cause a loss of prediction accuracy in such a system [151].

The results showed that the pitch parameters were reproducible with reduced
sample duration in both women and men. A study on German speakers showed a
substantial effect of utterance length on the variability of F0 measurements [152].
Zraick et al. also showed that the estimated pitch value of White women varied for
different speech durations [153]. Several factors may have contributed to the
differences between this study and prior investigations, including speech task type,
differences of speakers’ language, and method used to compute pitch. In this
study, the analysis was limited to English speakers who read a story, and the NACF
method was used to extract pitch. Nishinuma et al. report an effect of shorter
sample duration on the loudness measurement [178]. Similarly, the current study
showed a wide variation in loudness parameters across all duration comparisons.
We demonstrated the considerable impact of duration on VP feature
reproducibility in men and women [179], [180].

A study of French and German speakers has shown that decreasing the speech
duration influences both F1 and F2 as a function of vowel duration [181]. Although
a similar pattern is observed in this study, where short speech data impacted
formants’ qualities, the ICC values remained high (>0.75). For men and women,
formants measures were reproducible across durations. Results showed higher
stability in men’s formants than women’s.

Several studies have investigated the impact of the speech task on acoustic
parameters [143], [182], [183]. This study tested the reproducibility of a wide range
of voice parameters during counting and reading-a-story tasks. Results
demonstrate that changing speech tasks impacted at least 96% and 98% of the



3.5. Conclusion 53

measured acoustic qualities for men and women, respectively, even if the duration
was identical (10 s).

Several studies suggest that vowel type impacts shimmer parameters [114], [184].
Similarly, this study found that the shimmer feature was not reproducible between
tasks. Results indicate that although the task type had a significant effect on the
measurements of pitch features in women, it achieved good reproducibility in men.
This finding that is in line with Sandage’s et al. and Zraick et al. [144], [185]. Hence,
some spectral shape descriptors (i.e., SR and SC) are relatively stable across speaking
tasks.

Gender differences in speech arising from difference in vocal cord anatomy lead
to dissimilarities in some acoustic features such as F0 and jitter [84], [165]. In this
study, when men and women were analysed separately, significant differences in
the correlation analysis of some speech properties is found, including jitter, ∆MFCC,
SS, pitch, VP, and formants, suggesting that the pattern of reliable markers may be
different across gender.

This study has several limitations. First, this study assessed the reproducibility of
bio-acoustic features derived from native English speakers only and in a dataset
with an identical recording setup; findings did not validate on voice samples across
different datasets, languages or environments. Hence this study may have
overestimated real-world generalised reproducibility. Second, the reproducibility
of acoustic parameter examined in individuals with healthy voices. Furthermore,
conducted experiments in the current study are restricted to a sample of
participants aged 18 to 44 years (mean = 27 years), limiting generalisability to older
or younger individuals. Additionally, scripted speech tasks, while allowing
standardised comparisons, do not elicit natural speech [186]. Results need to be
validated with future studies on natural speech samples across more diverse age
groups, languages and environments, compared between clinical and healthy
control samples. Finally, given that the content of the speech data impact the
acoustic features, thus when 25% of full speech duration was correlated with the
full recording duration, speech content of 25% is included within the full recording,
which may affect the correlation results.

3.5 Conclusion

This study has examined the effect of speech duration and speech task on the
reproducibility of bio-acoustic qualities. Shortening the speech duration from full
duration to 25% of total speech duration reduces the reproducibility of measured
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speech features (out of 125) from 82 and 81 to 53 and 57 in men and women,
respectively. Spectral shape, pitch, and formants reached excellent reproducibility.
MFCCs, loudness, and ZCR achieved excellent reproducibility only at a longer
duration. Reproducibility of source, MFCC derivatives, and VP was poor.
Clinicians may have to collect a minimum of speech data to achieve a high number
of reproducible bio-acoustic features (at least one minute and a half in the case of
the reading-a-story task). In addition, changing the speech task has a significant
effect on the measurements of features; around 97% of features in both genders lost
reproducibility, in part due to the short counting task duration. Therefore,
researchers may have to build and train speech-task specific models
(classifier/regressor). Gender factor has a significant impact on the reproducibility
of jitter, ∆MFCC, SS, pitch, VP, and formants qualities. Bio-acoustic features are less
reproducible in shorter samples and are affected by gender.
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Chapter 4

Reproducibility of Bio-acoustic
Features in Non-depressed and
Depressed Speakers

4.1 Introduction

Bio-acoustic measures have been increasingly used in clinical and research pursuits
in an effort to analyse the voice [187]. Reflections of depression in bio-acoustic
characteristics of the patients’ speech have previously been explored [1], [111].
Assessment of these characteristics to identify depression requires a practical,
methodological, and statistical framework. Experimental and computational
approaches for the application of speech-based depression detection studies are
varied, challenging the comparability of their outcomes.

Previous studies on speech-based depression prediction task used different speech
samples length [10], [128], [136], [142]. Espinola et al. recorded interview speech
samples without setting a duration limit on their recordings, resulting in a mean
duration of control group 8.8 (±2.31) minutes, while that of depressed group
7.8 (±3.55) minutes [136]. Helfer et al. conducted their analysis on speech samples
with a duration ranged between 3 and 6 minutes per session [10]. Other
researchers used speech data of clinical interviews with a mean duration of
16 (±5) minutes [128], [142]. These differences make it imperative to understand
the impact of speech task duration on the stability of bio-acoustic measurements in
depressed and non-depressed voices.
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Few studies have explored duration effects on commonly used bio-acoustic
qualities (e.g., pitch, jitter, and shimmer) of individuals with normal voices [150],
[153]. However, to my knowledge, no study has systematically investigated the
influence of speech length on reproducibility of bio-acoustic properties in
depressed patients. Analysis of these qualities might be affected by speech tasks
duration. Alghowinem et al. used an equal amount of speech data (92 s) from each
subject to avoid the potential effects of duration differences on the analysis results,
comparing different classifiers and using spontaneous speech [131]. They showed a
best classification performance when a hybrid classifier, combing GMM and SVM,
was employed. Another study reported a better classification result when smaller
parts of speech data were used, from the beginning of the reading task, compared
to the whole speech sample [163].

As the duration of the reading-a-story task affects bio-acoustic metrics’
reproducibility of normal speakers (as shown in Chapter 3), efforts need to be
made to examine features’ reproducibility on depressed and non-depressed
individuals. Therefore, this chapter aims to assess the impact of speech durations
on the reproducibility of bio-acoustic features obtained from depressed and
non-depressed men and women during a spontaneous speech task.

4.2 Methods

4.2.1 Dataset

The database consists of a subset of DAIC and called the Wizard-of-Oz interviews
(DAIC-WOZ) [129]. It contains audio recordings from 189 clinical interviews of
English speakers. Most speakers (n = 133; 77 men, 56 women) were classified as
“non-depressed”, whereas 56 speakers (25 men, 31 women) were classified as
“depressed”. A virtual psychologist, operated by a human interviewer outside the
room, was used to interview the participants. A binary label and depression
severity level based on the PHQ-8 self-reported depression scale was assigned to
every participant. Transcription of each interview, including annotation of each
sentence’s start- and end-time, is also provided for verbal and non-verbal
indicators. Duration of speech data ranged from 7 to 33 minutes, with a mean
duration of about 16 (±5) minutes. All voice samples were recorded at a 16 kHz
sampling rate and saved as uncompressed WAV format.

Only participants who spoke for at least two minutes, after the interviewer speech
was removed, were included in this study. This allows for a comparison with the
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Table 4.1 CHARACTERISTICS OF THE PARTICIPANTS ENROLLED IN THE STUDY.

Class Gender n Mood score
(PHQ-8)

p-value a

Depressed (n = 56) Men
Women

25
31

14.28 (±3.09)
14.52 (±4.19) 0.96

Non-depressed (n = 131) Men
Women

76
55

3.52 (±2.90)
3.49 (±3.08) 0.84

a p-values refer to the comparison of mood score between men and women in each group.

results in Chapter 3. Consequently, two non-depressed participants (one from each
gender) were removed. Table 4.1 shows the basic information of the included
participants.

4.2.2 Biomedical Speech Signal Processing

Speech samples were passed through several pre-processing steps before the
feature extraction algorithm was performed. Segmentation was applied to isolate
participants’ speech segments by utilising the time points provided in the
transcript files. Once the pure participant speech had been extracted, speech data
from the first two minutes of each participant’s speech was extracted. Silent pauses
were removed from these sub-samples, and then z-score data normalisation was
applied. Filtering, framing, windowing, and overlapping were also applied to the
speech data. Pre-processing steps are detailed in Section 3.2.2.1.

A set of bio-acoustic features comprising 53 low-level descriptors were extracted
from short-time analysis windows. These windows span over the whole speech
sample and being processed at regular time steps (i.e., equal to half of the window
size). These features include source features (jitter and shimmer), cepstral features
(the first 13 MFCC, ∆MFCC, and ∆∆MFCC), spectral shape features (SR, SC, SE, SF,
SS, and SK), prosodic features (pitch, loudness, ZCR, and VP), and formants
features (F1 and F2). Once these descriptors had been extracted, five statistical
functions were applied over a feature’s frames to provide a representation of the
feature distribution across a speech sample, resulting in 125 features characterised
a speech sample. Section 3.2.2.2 includes a detailed methodology for bio-acoustic
features extraction.
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Table 4.2 INTERPRETATION OF INTRACLASS CORRELATION
COEFFICIENT VALUES.

ICC values Agreement Level

0.00 – 0.39 Poor

0.40 – 0.59 Fair

0.60 – 0.74 Good

0.75 – 1.00 Excellent

4.2.3 Statistical Analysis

Statistical analysis was performed to determine the effect of speech task duration
on bio-acoustic feature reproducibility in depressed and non-depressed men and
women. Bio-acoustic features calculated at 30 s sample duration were compared to
those obtained from non-overlapping randomly selected sub-samples shortened to
90 s, 60 s, and 30 s. Features quantified from 120 s speech sample length were also
compared to those measured at 30 s duration. Additionally, features measured
from a similar duration of 60 s from the beginning and end of each sample (i.e., a
total length of 120 s) were correlated. The ICC statistical test was performed to
calculate the agreement level of the extracted features at different speech durations.
Interpretation of ICC values is summarised in Table 4.2. Features are considered
reproducible at ICC≥0.75. A two-way ANOVA test was carried out over the ICCs
to determine significant differences between the correlation measurements and
gender. A similar statistical analysis is performed in Section 3.2.3.

4.3 Results

4.3.1 Effect of Speech Duration in Non-depressed Participants

Fig. 4.1 summarises the number of reproducible features at different speech data
lengths. Comparing acoustic features measured at 30 s with 120 s speech duration,
71 and 70 features were reproducible in men and women, respectively. These
numbers decreased to 38 in both genders when similar durations of 30 s were
correlated.

Fig. 4.2 shows the ICC values for feature categories. Jitters’ ICCs varied between
poor-to-good agreement in women and between poor and fair agreement in men
across different speech durations (Fig. 4.2a). A wide variation observed on ICCs of
shimmer parameters. In women, shimmer parameters achieved good agreement,
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Fig. 4.1 Comparison of the number of reproducible bio-acoustic
features as a function of correlated speech data duration for men (left)
and women (right). Data were extracted for different durations of the

spontaneous speech task.

while in men achieved excellent agreement (Fig. 4.2b). No significant gender
difference was observed on ICCs of jitter and shimmer parameters at P=0.90 and
P=0.66, respectively.

MFCC parameters affected by duration reduction (P<0.05), showing
fair-to-excellent reproducibility; gender had no effect on ICCs of these parameters
(P=0.90; Fig. 4.2c). When speech duration is shortened, ∆MFCC reached poor and
fair ICC values in women and men, respectively, and ∆∆MFCC showed poor ICC
values, with no gender impact was found (P=0.15 and P=0.09, respectively;
Fig. 4.2d, Fig. 4.2e).

SR parameters showed good-to-excellent agreement in women and fair-to-excellent
agreement in men across reduction of speech data (Fig. 4.2f); a significant gender
difference was observed (P=0.01). Duration reduction also had a significant impact
on ICCs of SC parameters (P=0.03; Fig. 4.2g); agreement level reduced from
excellent-to-fair in men and from good-to-fair in women. Both duration reduction
and gender had no significant impact on the agreement level of SE (P=0.85 and
P=0.51, respectively); ICCs of men and women >0.54 (Fig. 4.2i). SF and SS were
reproducible in men and lost their reproducibility in women across duration
reduction; no gender effect was found (P>0.05; Fig. 4.2h, Fig. 4.2j). SK was not
reproducible across all comparisons (Fig. 4.2k); no statistical difference was
observed between genders (P=0.20).
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Duration reduction and gender significantly impacted F0 parameters (P<0.05). F0
achieved good-to-excellent agreement in men and fair-to-excellent agreement in
women when duration is reduced (Fig. 4.2l). A wide variation in loudness
parameters was found and no gender effect was observed (P=0.14; Fig. 4.2m).
ICCs of ZCR parameters showed poor-to-excellent agreement (ICCs>0.25) in men
and fair-to-good agreement in women (ICCs>0.40), with no statistical difference
was found between men and women (P=0.60; Fig. 4.2n). VP attributes maintained
excellent ICCs in women while showed good-to-excellent ICCs in men; gender
differences significant (P=0.01; Fig. 4.2o). Gender difference had no significant
impact on ICCs of F1 and F2 at P=0.90 and P=0.80, respectively. During duration
reduction, in both men and women, ICC values of F1 parameters achieved
good-to-excellent agreement, while those of F2 achieved fair-to-excellent
agreement (Fig. 4.2p, Fig. 4.2q). Table 4.3 summarised p-values of the two-way
ANOVA test for comparing features’ (i.e., obtained from non-depressed speakers)
reproducibility at different speech duration and across men and women.

4.3.2 Effect of Speech Duration in Depressed Participants

Fig. 4.3 summarises the number of reproducible features across different speech
lengths. The number of reproducible features (out of 125) decreased from 70 to 31
in men and from 59 to 42 in women with a shorter sample length.

Fig. 4.4 shows the ICC values for feature categories. Jitter parameters achieved
poor-to-good agreement (ICC=0.06–0.64) at different speech durations (Fig. 4.4a);
gender difference was significant (P<0.05). Shimmer parameters’ agreement level
was similar (P=0.94) when different speech lengths were considered; gender had
no significant effect (P=0.30; Fig. 4.4b). Sample duration had a significant impact
on the reproducibility of MFCC parameters, with a mean ICC value around 0.8 in
each measurement (Fig. 4.4c); no statistical difference was found between men and
women at P=0.73. ∆MFCC attributes influenced by reducing speech task length,
resulting in poor-to-fair agreement (ICC<0.50; Fig. 4.4d); a significant difference
between men and women was observed (P=0.01). Although duration reduction
and gender had no significant impact on ICCs of ∆∆MFCC attributes (P=0.43 and
P=25, respectively; Fig. 4.4e), ∆∆MFCC is a non-reproducible feature.

SR parameters achieved fair-to-excellent agreement (ICC>0.43) when speech
duration is decreased, with no significant gender difference was found (P=0.96;
Fig. 4.4f). ICC values of SC parameters varied between poor-to-excellent in men
and women when speech duration is shortened (Fig. 4.4g); no genders difference
was found on ICCs (P=0.10). Duration reduction and gender had no significant
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Fig. 4.2 The ICC values of bio-acoustic features for both non-depressed
men and women is shown in the scatter plot. The numbers on the x-
axis can be interpreted as follows; 1: ICC(30 s vs. 30 s), 2: ICC(30 s vs.

60 s), 3: ICC(30 s vs. 90 s), 4: ICC(30 s vs. 120 s), 5: ICC(60 s vs. 60 s).

impact on ICCs of SE, SF, and SS (P>0.05; Fig. 4.4h, Fig. 4.4i, Fig. 4.4j). SK reached
excellent reproducibility in women and fair reproducibility in men when
considering shorter speech samples; gender differences was significant (Fig. 4.4k).

Lengths of speech data and gender had a significant impact on ICCs of F0
parameters (P<0.05). Across all comparisons, F0 showed good-to-excellent
agreement in men and poor-to-excellent agreement in women (Fig. 4.4l); higher
stability was observed in men than in women. ICC values of loudness parameters
varied from poor-to-excellent in women and between poor and fair in men; no
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Fig. 4.3 Comparison of the number of reproducible bio-acoustic
features as a function of correlated duration of speech data for men
(left) and women (right). Data were extracted for different durations of

the spontaneous speech task.

gender effect was observed (P=0.61; Fig. 4.4m). ZCR parameters showed
poor-to-excellent ICCs (>0.40) in men and poor-to-good ICCs (>0.30) in women; a
statistical difference was found between genders (P=0.01; Fig. 4.4n). VP attribute
was reproducible in women and lost its reproducibility in men across duration
reduction (Fig. 4.4o).

Gender had a significant impact on ICCs of F1 parameters at P<0.05, but had no
significant impact on those of F2 at P=0.17. Although F1 parameters were
reproducible across all durations (ICC>0.75), a significant effect of duration
reduction was observed on F1 ICCs (P=0.04; Fig. 4.4p). Shortening speech samples
significantly affect F2 parameters (P<0.05), where some parameters lost their
reproducibility in both genders (Fig. 4.4q). Table 4.3 summarised p-values of the
two-way ANOVA test for comparing features’ (i.e., obtained from depressed
speakers) reproducibility at different speech duration and across men and women.

4.3.3 Bio-acoustic Features’ Reproducibility Comparison between

Depressed and Non-depressed Participants

Table 4.3 also shows p-values of the two-way ANOVA test, comparing the effects
of group factor (i.e., depressed and non-depressed) and speech task duration factor
on ICC values of bio-acoustic features. Group and duration differences were not
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Fig. 4.4 The ICC values of bio-acoustic features for both depressed men
and women is shown in the scatter plot. The numbers on the x-axis can
be interpreted as follows; 1: ICC(30 s vs. 30 s), 2: ICC(30 s vs. 60 s), 3:

ICC(30 s vs. 90 s), 4: ICC(30 s vs. 120 s), 5: ICC(60 s vs. 60 s).

significant in ICCs of jitter parameters at P=0.30 and P=1.00, respectively. Shimmers’
agreement levels were impacted by participants group (P=0.05); no effect of speech
duration was found on ICCs of these parameters (P=0.95). MFCC had similar ICC
values when comparing speech with and without depression. Similarly, ∆MFCC
ICCs were similar when depressed and non-depressed participants were compared.
Task duration had a significant impact on ICCs of MFCC (P< 0.05), but it did not
affect ICCs of ∆MFCC (P=0.14). Agreement level of ∆∆MFCC descriptors impacted
by groups and shortening speech durations. A similar level of reproducibility in
spectral shape features was found when depressed and non-depressed participants
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and different speech durations were compared. No differences observed in ICC
values of pitch, loudness, and ZCR parameters at group and duration levels. VP
ICCs affected by duration changes (P> 0.05); no significant difference was found on
ICCs of both depressed and non-depressed groups. While groups differences were
significant on the agreement level of F1 parameters, it was not significant on the
agreement level of F2 parameters. Duration influenced ICC values of both F1 and
F2 parameters at P<0.05.

4.4 Discussion

This study investigated the reproducibility of bio-acoustic measures in depressed
and non-depressed individuals across different speech durations of a spontaneous
speech task. Reproducibility of bio-acoustic features decreases with speech duration
reduction among depressed and non-depressed men and women. In depressed and
non-depressed individuals, source (jitter and shimmer), some cepstral (∆MFCC and
∆∆MFCC), some spectral shape (SR, SC, SE, SF, and SK), some prosodic (loudness
and ZCR) features are less reproducible when speech duration is changed. MFCC,
SS, VP, and F2 achieved excellent reproducibility at a longer duration in both groups
(i.e., depressed and non-depressed) and among both genders. Pitch parameters are
less reproducible at shorter speech duration, with higher stability is observed in
men than in women. F1 had excellent reproducibility in both depressed and non-
depressed voices and across men and women. Furthermore, gender differences are
statistically significant in SR, pitch, and VP for non-depressed voices, while it is
significant in jitter, ∆MFCC, SK, pitch, ZCR, VP, and F1 for depressed voices.

In the clinical evaluation of patients’ voices, it is essential to understand the stability
of acoustical voice parameters. Previous studies investigated the influence of speech
duration on some acoustic measurements of normal speakers. Still, a validation and
generalisation of reproducibility findings of features measured from a reading-a-
story task (Section 3.3.1) have to be explored on a different dataset and/or a different
speech task type (i.e., spontaneous task).

Generally, the effect of speech sample length on bio-acoustic measures’
reproducibility is consistent with the study in Chapter 3. In this study, the
reproducibility analysis indicates a similar reduction pattern in the number of
reproducible features when speech duration is shortened among depressed and
non-depressed men and women. This reduction is higher in spontaneous speech
compared to the reading task (Section 3.3.1). A potential reason behind this could
be the nature of the spontaneous speech task, which is highly variable (i.e.,
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acoustically and linguistically) and difficult to control [163], [188]. In a reading
task, a lower articulation rate, more F0 variation, and less shimmer were reported
compared to a spontaneous speech [189].

The results clearly show that shortening speech duration substantially impacts the
stability of source parameters measured from the spontaneous speech; a similar
finding was observed on those of reading-a-story (shown in Section 3.3.1). Usually,
perturbation analysis is preferably performed on sustained vowels as it is expected
to be steady and quasi-periodic [44]. However, continuous speech tasks present
essential information about the coordination of the respiratory and laryngeal
subsystems, which is important to evaluate a speaker’s voice [182]. Jitter and
shimmer measurements are significantly influenced by extraneous variables such
as loudness of voice signal and speech content (e.g., vowel type) [183], which
might be related to the instability observed in this study.

Results revealed that the reproducibility of spectral shape features quantified from
the spontaneous speech task among depressed and non-depressed participants is
sensitive to the changes of speech duration. However, this result was not
consistently observed on those extracted from normal speakers and read a
pre-defined story (Section 3.3.1). Furui et al., characterised a spontaneous speech by
a reduction in the spectral distribution compared to that of reading task [188]. Such
a factor might be contributed to this difference in results. Although Nakamura et al.
found an acoustic reduction of the MFCC spectrum as the speech becomes more
spontaneous [190], the reproducibility of MFCC parameters was similar between
participants’ speech samples, regardless of speech task type, gender, and whether
participants are depressed or not.

In terms of prosodic features, the reproducibility of pitch parameters gradually
reduced as spontaneous speech sample is shortended (non-depressed participants);
in contrast to the reading task, they remained reproducible across all duration
comparisons (normal voices; as presented in Section 3.3.1). Hudson and Holbrook
identified differences in F0 measures between reading and spontaneous speech
samples [191], which could be a possible explanation for differences in the
reproducibility findings. Differences in recording environments may also affect this
result. Draxler et al. reported the dependency of F0 variability on both speaking
task and duration [152], which is in line with my results (i.e., pitch is affected by
speech duration). Further, stability of pitch parameters was higher for men than for
women speakers, regardless of speaking tasks and whether participants were in
depression or not. Gender differences in F0 are reported in a previous study [84]
and have to be considered in future predictive speaking tasks. An earlier study
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characterised continuous speaking contexts by frequent fluctuations in pitch and
loudness to reflect intonation patterns, and emphatic stress [182]. My results
showed a relatively strong effect of duration on the reproducibility of loudness
attributes in depressed and non-depressed spontaneous speech; the same pattern
was obtained from individuals with healthy voices and who read a story
(Section 3.3.1).

My results also found that variation in duration had significant influences on both
F1 and F2 qualities in depressed and non-depressed speech. F1 parameters
maintained good to excellent reproducibility, while F2 was not reproducible in
shorter speech duration. Although a similar pattern was observed in
reading-a-story, where short speech data impacted formants’ qualities, these
parameters remained reproducible (Section 3.3.1). Vocal tract resonances are
affected by changes in phonation [183], which might lead to a substantial difference
in formants’ reproducibility among different speech tasks; conversational speech is
spoken more rapidly and less carefully articulated.

This study has several limitations. First, bio-acoustic features are derived from a
restricted sample of English speakers; my results have to be investigated on voice
samples of different challenges (languages and/or environments) and different
contexts. Second, knowing that age impact acoustic characteristics of voice, I
conducted this experiment without considering the age factor, suggesting a
replication on matched age and another for a more diverse age. Furthermore,
reproducibility assessment was performed using only the first two minutes of each
recording, allowing standardised comparisons between speech samples. Hence,
my findings remain to be confirmed by further research on longer speech durations
and at different parts of speech samples. Finally, given that the content of the
speech data impact the acoustic features, thus when 30 s speech duration was
correlated with 120 s duration, speech content of 30 s is included within 120 s,
which may affect the correlation results.

4.5 Conclusion

This study shows the impact of spontaneous speech duration on bio-acoustic
features’ reproducibility in depressed and non-depressed men and women. Results
indicate that the reproducibility of bio-acoustic measures is largely affected by
speech duration and speaker gender. For non-depressed participants, the number
of reproducible features (out of 125 features) decreased from 71 to 38 in men and
from 70 to 38 in women when speech sample length is decreased from 120 s to 30 s.
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Similarly, in depressed voices, this number is reduced from 70 and 59 to 31 and 42
for men and women, respectively. Understanding the stability of acoustic measures
is essential. Speech duration and gender have to be considered when acoustical
measurements are used in the clinical setting.
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Table 4.3 P-VALUES OF ICCs OF BIO-ACOUSTIC PARAMETERS COMPARING FEATURES’
REPRODUCIBILITY IN DEPRESSED AND NON-DEPRESSED SPEAKERS SEPARATELY AND

GROUPED AT DIFFERENT SPEECH DURATIONS AND ACROSS BOTH GENDERS.

Category Features
p-value for comparing features reproducibility a

Non-depressed Depressed Non- and depressed
Duration Gender Duration Gender Group Duration

Source Jitter 0.34 0.90 0.03 0.01 0.30 1.00

Shimmer 0.42 0.66 0.95 0.27 0.05 0.95

Cepstral
MFCC 0.00 0.90 0.00 0.73 0.12 0.00

∆MFCC 0.15 0.20 0.10 0.18 0.50 0.14

∆∆MFCC 0.11 0.09 0.43 0.26 0.09 0.02

Spectral

SR 0.05 0.01 0.83 0.96 0.40 0.65

SC 0.03 0.84 0.94 0.11 0.25 0.52

SE 0.51 0.85 0.77 0.46 0.94 0.48

SF 1.00 1.00 1.00 1.00 1.00 1.00

SS 0.23 0.90 0.42 0.29 0.50 0.10

SK 0.28 0.20 0.60 0.01 0.32 0.40

Prosodic

Pitch 0.00 0.00 0.003 0.00 0.12 0.75

Loudness 0.81 0.14 0.94 0.61 0.97 0.80

VP 0.25 0.01 0.17 0.02 0.90 0.004

ZCR 0.00 0.60 0.80 0.01 0.09 0.13

Formants F1 0.00 0.90 0.04 0.01 0.003 0.00

F2 0.02 0.80 0.00 0.18 0.54 0.01

a Bold p-value represents a significant difference.



69

Chapter 5

Automated Depression Detection
System

5.1 Introduction

Human speech is sensitive to slight changes in the speaker’s mental state.
Neurophysiological changes associated with depression influence the laryngeal
dynamics and then controlling ability of the vocal folds vibration [31]. Cognitive
and physiological changes in a depressed individual’s affect the speech production
process [192]. Such changes potentially impact the acoustic qualities of the
produced speech in a measurable way.

Computerised acoustic analysis could objectively evaluate speech with depression
[187]; however, this analysis is affected by acoustic content and speech duration.
Studies involving bio-acoustic characteristics, addressing depressed and
non-depressed speakers, used different speaking task and different durations [10],
[128], [136], [142]. Although many previous studies investigated the impact of
speech task type on depression prediction [2], [163], [193], a relatively few studies
has investigated the influence of short speech segments on the classification
performance of acoustic measurements of depressed and non-depressed
individuals [163], [194], [195].

Low et al. optimised the length of test data (i.e., 0.5, 1, 2, and 3 minutes) to
maximise the classification accuracy of their model. They extracted acoustic
descriptors based on Teager energy operator. The highest accuracy was reported
for utterance length of one minute [118]. Alghowinem et al. studied the
discriminative power of a classifier when smaller parts of speech are used; selected
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from the beginning of a reading task. Their results showed a better classification
performance for those parts compared to the whole speech sample [163]. Another
study reported a good predicting accuracy (reached 73%) of voice parameters (26
LLD) extracted form short voice recordings (10 s) [59].

Afshan et al. trained a classifier on voice quality features and i-vectors derived
from the full lengths of interview recordings (1.8 minutes). They then examined the
predictive power of their classifier on a test data with shorter speech durations
(40 s, 30 s, 20 s, and 10 s). Their findings revealed that the classification accuracy
decreases when the speech length is shortened [194]. More recently, Huang et al.
found that the speech file length influences the performance of depression
detection, showing a higher F1 score at longer speech files. Their evaluation was
based on convolutional neural networks and using vocal tract coordination
features (e.g., MFCC and formants) [195].

Speech duration could affect the acoustic measurement outcomes, and therefore,
classification results. Analysing acoustic parameters as a function of speech
duration and its relation to depression identification may ultimately yield to a
better understanding about the behaviour of these features and then the most
informative speech segments.

Hence, this chapter aims to evaluate the association between depression and
acoustic vocal qualities measured at different lengths of speech data. It also aims to
explore the predictive ability of those qualities (i.e., quantified at different speech
durations) with application to depression detection.

5.2 Methods

Fig. 5.1 illustrates the employed approach to identify MDD by utilising
bio-acoustic features in this thesis. It mainly consists of features engineering and
machine learning algorithm. Feature engineering is a process applied to extract the
most discriminative descriptors from the raw audio signal, resulting in a numeric
feature vector that characterise the input sample. This vector is then provided as an
input to the machine learning algorithms (e.g., SVM) to construct and validate the
classification model [81].

Speech samples from the DAIC-WOZ dataset (explained in Section 4.2.1) were also
used in this study. Four sub-samples were obtained from the beginning of each
spontaneous speech sample with durations of 120 s, 90 s, 60 s, and 30 s. Several
pre-processing steps were applied on these sub-samples (detailed in
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Section 3.2.2.1). Bio-acoustic characteristics were then computed, based on 53 LLD,
for further analysis. Descriptive statistics were applied over features’ frames,
leading to a feature vector with 125 features per a speech sample (see Table 3.2).
Most of these characteristics have been verified to be useful for depression
detection [1], [118], [163] and quantified in the same way as described in
Section 3.2.2.2.

Fig. 5.1 A framework illustrates the employed approach for Major
Depressive Disorders detection, considering bio-acoustic speech
features extraction and machine algorithm. Output is a binary
classification of speech characteristics of depressed or non-depressed

participants.

5.2.1 Statistical Analysis

Two-way ANOVA followed by Tukey-Kramer post-hoc test (i.e., pairwise
comparisons) was carried out on each voice descriptor obtained at four different
speech durations. Two-way ANOVA test was used to determine whether the
differences in bio-acoustic descriptors of participants groups (i.e., depressed and
non-depressed) and different speech durations were statistically significant.
Post-hoc was applied to identify where the differences in time occurred. The
significance level was defined at α = 0.05.
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5.2.2 Machine Learning Algorithm

5.2.2.1 Data Preprocessing

Data preprocessing, which is a crucial step in machine learning analysis, removes
irrelevant and redundant information and enhances the generalisation
performance of learning models [196]. Several preprocessing steps were performed
on the dataset, including data preparation, splitting the dataset, feature scaling,
and feature selection.

Data Preparation

Spending time preparing and cleaning a dataset enhances the quality of the data
and improves model performance [197]. Dataset exploration, outlier identification,
and checking for missing values were performed.

Dataset Split

Dataset is commonly divided into two random and non-overlapping sets, which are
referred to as training set and test set. The training set is used to train the models,
while the test set is used to evaluate the generalisation performance of these models.
A sample of the training set is held out (i.e., the validation set) to tune the model’s
hyperparameters. Using cross-validation techniques, a model is iteratively trained
on the reduced training set (i.e., the full training set minus the validation set), after
which it is validated on the validation set while tuning the hyperparameters. The
purpose of this process is to estimate how the model’s results will generalise to an
independent dataset. Lastly, the model with the best performance on the validation
set is selected and subjected to a generalisation assessment using the test set [197].

In this study, 75% of the dataset samples was used for the training set and 25% was
held out for the test set. To mitigate the impact of the limited amount of data, as
well as maximise the use of the data [163], [198], a leave-one-out (LOO)
cross-validation strategy was used. LOO is an exhaustive cross-validation
approach that uses a single observation from the training set as the validated data,
while the rest are used as the training data. Besides, this strategy also capable of
overcoming overfitting of the training data (i.e., the model “well explained” the
training data), while improving the generalisation ability [199].

Feature Scaling

Feature scaling is a common requirement for many machine learning algorithms.
Scaling feature values ensures that all numerical attributes are set within the same
range and reduces bias towards the higher values. The most widely adopted
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scaling techniques are normalisation and standardisation. In normalisation, data
values are mapped to a range from 0 to 1, whereas in standardisation, data values
are mapped to a distribution with a zero mean and unit variance [197]. In SVM, as
an example, the objective function (i.e., the optimal hyperplane with the widest
margin) is influenced by the scale of the input features [198]; as described in
Section 5.2.2.2. In this study, the feature standardisation approach was applied.
Scaling parameters were calculated on the training set and then applied to the test
set and validation set, where one observation per experiment was left out (i.e.,
LOO), which helped to avoid data leakage during the model testing process.

Feature Selection

Feature selection techniques are primarily performed to eliminate irrelevant,
redundant, and noisy features. This results in a compact subset of the most
promising and informative qualities [196], [197]. Employing these techniques
improves the generalisation performance of learning algorithms [59], [196]. Feature
selection methods are divided into two categories: subset feature selection and
feature transformation [200].

Subset feature selection aims to select a subset of features that minimise
redundancy and maximise relevance to the class label. The three main categories of
subset feature selection method are filters (i.e., a ranking-based statistical test),
wrappers (i.e., a machine learning-based classifier), and embedded (i.e., also a
machine learning-based classifier) [201]. Filtering techniques are more suitable for
small datasets due to their ability to avoid overfitting problems [202]. Using this
method, features are ranked based on certain criteria (e.g., Fisher Score), where the
highest ranked features are chosen for further processing [201].

Transformation-based dimensionality reduction, also known as feature extraction,
is used to remove noisy and redundant features. It transforms the original features
into a new feature set with a lower-dimensional space [201]; knowledge of the class
labels is not required. Principal component analysis (PCA) is the most popular
dimensionality-reduction algorithm [197]. Statistically, PCA utilises orthogonal
transformation to transform correlated features data into principal components (PCs)
through an eigen-analysis [203], the aim of which to create uncorrelated
components.

In this study, ANOVA and PCA method were performed on the standardised (i.e.,
scaled) dataset in each LOO cross-validation; their parameters are determined on
the training set and then applied on the test set. PCA was applied to reduce feature
space dimensionality, while preserving 98% of the original dataset variance.
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5.2.2.2 Support Vector Machines

The SVM algorithm, introduced in the late 1970s by Vapnik and his collaborators, is
considered a state-of-the-art classifier [163]. Evidence indicates that SVM classifier
can robustly handle small datasets and achieve favourable generalisation
properties [163], [192]. Compared to the most widely used machine learning
approaches [2], [131], SVM has been effectively shown a great performance in the
mental state prediction and classification tasks on the association of speech [192].

SVM establishes an optimal decision boundary in feature space to separate the
training data points (or instances) into two discrete classes, while maintaining the
widest distance (or maximum margin) between them. This boundary, known as a
hyperplane, is represented as a function of support vectors; training points lie on the
margin [204] (shown in Fig. 5.2). Boundary violations and training errors permitted
by slack variables (denoted ζ) are penalised by the regularisation parameter
(denoted C). This parameter controls the trade-off between the margin
maximisation and training error minimisation [2]. Relaxing the margin constraints,
softly penalising training points, and permitting a certain amount of training errors
are useful for dealing with complex and overlapping real-world data [204].
Mathematically, such an optimisation problem can be represented as follows [205]:

minimisew,b,ζ :
1
2

wTw + C
n

∑
i=1

ζi,

subject to : yi(wTϕ(xi) + b) ≥ 1 − ζi,

ζi ≥ 0 , for all i = 1, . . . , n,

where w is the vector normal to the hyperplane, C is the regularisation parameter, ζi

is the slack variable, yi ∈ {1,−1} is the target value, ϕ(xi) is the mapping function,
xi ∈ Rn is the training vector, and b is a scaler bias.

Training data points of the two classes are not always linearly separable. Kernel
techniques have been introduced to address the limitation of linear SVM and
makes it applicable to complex real-world problems. These kernel functions, such
as radial basis function (RBF), map feature space into a higher-dimensional space to
find a non-linear decision boundary [204], where separability between the classes is
achieved. SVM with RBF (Gaussian) kernel is employed in this study in a binary
(i.e., depressed vs. non-depressed) gender independent modelling using LibSVM
toolbox. Mathematically, RBF kernel can be represented as follows [205]:

ϕ(xi, xj) = exp
(
−γ||xi − xj||2

)
, (5.1)
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Fig. 5.2 Basic Support Vector Machine classifier of linearly separable
data with soft margin hyperplane, permitting a number of training
errors. An optimal hyperplane separating data points of two classes
(i.e., class 1 and class 2), and support vectors lies closest to the

hyperplane.

where ||xi − xj|| is the distance between two points xi and xj and γ is the gamma
hyperparameter.

Optimisation of SVM can also be achieved by manipulating γ parameter. It
measures the range of influence of training points at which decision boundary is
defined. Increasing γ value causes a smaller influence range of training points,
resulting in an irregular decision boundary and wiggling around individual point.
Conversely, decreasing γ value causes a wider range of influence of the training
points, resulting in a smoother decision boundary [197]. Fig. 5.3 presents
implementation of SVM classifiers using a RBF kernel, showing the impact of
increasing and decreasing both γ and C hyperparameters.

SVM training involves tuning a number of hyperparameters (γ and C). Finding the
optimal hyperparameters could enhances the classification performance and
predicting independent data accurately (i.e., the test data). C hyperparameter
(tested values: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 10000]) was optimised
using a grid search method with LOO cross-validation, while γ hyperparameter
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Fig. 5.3 SVM classifiers using a radial basis function kernel [206].

was kept in a default setting “scale”, based on the following equation:

γ =
1

nfeatures × X · var()
, (5.2)

where nfeatures is the number of features and X · var() is features variances.

In this study, since the used dataset is unbalanced (i.e., 131 non-depressed and
56 depressed), the class-weight parameter was set to be in “balanced” mode to
adjust the weights of each class automatically. Although gender independent
classifier was employed, the gender of each participant was added as a feature to
the extracted set of bio-acoustic features, resulting in 126 features. Discriminative
power of these features in a binary (i.e., depressed/non-depressed) manner using
RBF SVM was investigated multiple times for different lengths of speech data,
abbreviated at 30 s, 60 s, 90 s, and 120 s from the beginning of each speech
recording.

Additionally, four representations from every speakers with 30 s speech duration
and 30 s sliding window were extracted from each speech recording, resulting in a
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Table 5.1 CONFUSION MATRIX FOR BINARY CLASSIFICATION.

Actual/
Predicted Positive class Negative class

Positive class True positive (tp) False negative ( fn)

Negative class False positive ( fp) True negative (tn)

748 (187×4) speech samples. For these samples, RBF SVM calssifier was employed
and 5-fold cross-validation technique was used to fit the large amount of data.

5.2.2.3 Evaluation metrics

Several statistical methods based on the confusion matrix (shown in Table 5.1) were
used to evaluate the classification performance [197]. In this study, accuracy,
precision, recall, and weighted-averaged F1 score were computed.

Accuracy measures the ratio of correctly predicted instances to the total number of
instances evaluated. It can be calculated as follows:

Accuracy =
tp + tn

tp + fp + tn + fn
. (5.3)

Precision is used to measure the ratio of correctly predicted positive instances over
the positive class predictions. It is defined as follows [197]:

Precision =
tp

tp + fp
. (5.4)

Recall, also called sensitivity, is used to measure the ratio of positive instances that
are correctly classified. Recall can be computed as follows [197]:

Recall =
tp

tp + fn
. (5.5)

Weighted F1 score is a weighted harmonic mean of the precision and recall. In this
study, each label was given a weight equal to its support (i.e., the number of true
instances for every label) [197]. This metrics can be measured by the following
equation [207]:

Fβ = (1 + β2)
Precision × Recall

β2Precision + Recall
, (5.6)

where β is the relative importance given to recall over precision.
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5.3 Results

5.3.1 Association of bio-acoustic features with depression and

duration

Table 5.2 summarises the statistically significant bio-acoustic characteristics
associated with depression and which of these were significantly affected by
duration changes. It also shows the specific source of significance among the four
investigated speech durations if task duration is significant. Of 125 bio-acoustic
features, only 37 were significantly different between depressed and
non-depressed individuals. Among those 37 features, seven qualities showed a
significant change over speech duration. Fig. 5.4 shows the mean and standard
error of these qualities at different speech durations.

Mean jitter feature in depressed patients was significantly (P=0.007) lower than
that of non-depressed participants. Mean pitch values increased in depressed
compared to non-depressed individuals; no significant effect of speech duration
was observed (P=0.543). Both group and duration had a significant (P<0.05)
impact on mean SF descriptor, with a slightly higher mean value for non-depressed
group in comparison with depressed group (as shown in Fig. 5.4a). A significant
difference, indicated by post-hoc test, found between mean SF feature measured at
30 s speech duration and those measured at 60 s, 90 s, and 120 s. Eleven out of 13
mean MFCCs affected by depression (P< 0.05). Most of these coefficients did not
impact by changes in duration. Only mean MFCC1 values were significantly
influenced by speech task duration (P=0.040); differences in feature values were
observed between 30 s and 120 s speech segments (Fig. 5.4d). In depressed group,
mean VP feature values showed a significant reduction (P=0.011) compared to
non-depressed group. Mean F1 parameter was significantly higher in depressed
than in non-depressed individuals; changes in task duration were not significant.

Depression significantly affected SD jitter quality (P=0.007), showing a lower value
in depressed group; no significant speech duration differences was found
(P=0.596). Depressed participants’ voices had a significant (P=0.024) reduction in
SD ZCR feature as compared to those of non-depressed speakers (Fig. 5.4c). Speech
sample length influenced the value of this feature (P=0.009); differences were
observed between the samples of 30 s duration and those with 90 s and 120 s
durations. SD MFCC7, MFCC9, MFCC10, and MFCC13 values increased in
depressed than non-depressed speakers; duration changes had no significant
impact on these measurements.
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Higher values of skewness pitch parameter observed in depressed participants
compared to non-depressed participants (Fig. 5.4d); changes of value of this
parameter across different durations was significant (P=0.001). Skewness of
MFCC8 and MFCC13 was significantly lower in speech with depression (P< 0.020)
and was not affected by sample length. Like skewness pitch, kurtosis pitch was
increased with depression; duration factor affected this measure where differences
found between 30 s duration and those at 90 s and 120 s (P=0.014; Fig. 5.4e).
Depression and speech duration influenced kurtosis ZCR parameter (P=0.032 and
P=0.004, respectively; Fig. 5.4f). Some kurtosis MFCCs properties were affected by
depression (MFCC4, MFCC5, MFCC9, and MFCC10), while others did not show a
statistically significant difference.

Percentile range shimmer quality was significantly higher in speech with
depression; no duration effect was observed (P=0.626). Percentile range MFCC7,
MFCC10, and MFCC13 values increased significantly with depression (P< 0.05),
with no significant duration impact was found. Both depression and speech length
impacted percentile range SC feature at P=0.045 and P=0.0004, respectively. This
measure at 30 s speech duration was statistically different from the ones at longer
duration, defined at 60 s, 90 s, and 120 s (Fig. 5.4g).

Table 5.2 BIO-ACOUSTIC FEATURES ASSOCIATED WITH
DEPRESSION AND SPEECH DURATION

Feature Effect a p-value
Post-hocc

Group Durationb Interaction
Mean Jitter D<ND 0.007 0.582 0.967 −
Mean Pitch D>ND 0.003 0.543 > 0.999 −
Mean SF D<ND 0.009 0.0005 0.999 Seg. 2,3,4
Mean MFCC1 D<ND 0.007 0.040 0.989 Seg. 4
Mean MFCC2 D<ND 0.0045 0.267 0.989 −
Mean MFCC3 D>ND 0.044 0.197 > 0.999 −
Mean MFCC4 D>ND 0.013 0.460 0.999 −
Mean MFCC5 D<ND 0.0003 0.912 0.973 −
Mean MFCC7 D>ND 0.002 > 0.999 0.999 −
Mean MFCC8 D<ND < 0.0001 0.981 0.994 −
Mean MFCC9 D>ND 0.0008 0.971 0.989 −
Mean MFCC10 D<ND 0.0087 0.992 0.995 −
Mean MFCC12 D>ND 0.024 0.936 0.998 −
Mean MFCC13 D<ND 0.046 0.950 0.996 −

Continued on next page
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Table 5.2 – continued from previous page

Feature Effect a p-value
Post-hocc

Group Duration b Interaction
Mean VP D<ND 0.011 0.994 0.864 −
Mean F1 D>ND 0.011 0.998 0.997 −
SD Jitter D<ND 0.007 0.596 0.942 −
SD ZCR D<ND 0.024 0.009 0.992 Seg. 3,4
SD MFCC7 D>ND 0.023 0.593 0.979 −
SD MFCC9 D>ND 0.031 0.835 0.999 −
SD MFCC10 D>ND 0.048 0.902 0.999 −
SD MFCC13 D>ND 0.019 0.905 0.924 −
Skewness Pitch D>ND 0.008 0.0013 0.999 Seg. 2,3,4
Skewness MFCC8 D<ND 0.020 0.909 0.913 −
Skewness MFCC13 D<ND 0.0005 0.990 0.999 −
Kurtosis Pitch D>ND 0.0001 0.014 0.999 Seg. 3,4
Kurtosis SR D>ND 0.0004 0.437 0.954 −
Kurtosis ZCR D>ND 0.032 0.0004 0.835 Seg. 2,3,4
Kurtosis MFCC4 D>ND 0.005 0.630 0.921 −
Kurtosis MFCC5 D>ND 0.0001 0.230 0.961 −
Kurtosis MFCC9 D>ND 0.016 0.933 0.607 −
Kurtosis MFCC10 D<ND 0.012 0.938 0.945 −
Percentile range Shimmer D>ND 0.0001 0.626 0.509 −
Percentile range MFCC7 D>ND 0.041 0.617 0.973 −
Percentile range MFCC10 D>ND 0.035 0.941 0.999 −
Percentile range MFCC13 D>ND 0.022 0.887 0.938 −
Percentile range SC D<ND 0.045 0.0004 0.894 Seg. 2,3,4
a D, Depressed participants; ND, non-depressed participants.
b Bold p-values represent significant differences of speech duration.
c Seg.2, speech segment at 60s; Seg.3, speech segment at 90s; Seg.4, speech segment at 120s.

5.3.2 Effect of speech duration on classification performance

Fig. 5.5 illustrates the depression classification results of bio-acoustic features
obtained at different durations of spontaneous speech task and analysed using RBF
SVM classifier. Generally, the classification performance of the speech segments
with 30 s duration outperformed the ones at longer speech durations. Classification
accuracy was around 70% for the features measured at 30 s speech duration. This
percentage decreased to around 60% at 60 s, and then it stayed relatively stable
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Fig. 5.4 Mean and standard error of bio-acoustic features that are
significantly affected by speech duration in depressed and non-

depressed participants.

when 90 s and 120 s of speech durations were considered. Similarly, the weighted
F1 score achieved 70% at 30 s before it decreased to around 60% at 120 s.

Recall measures were stable (=40%) when task duration was increased from 30 s
to 90 s. At 120 s, it decreased to around 25%. Speech duration also impacted the
precision values. Increasing speech sample length worsened the precision measure.
It decreased from around 59% to around 39% when features measured at 30 s and
120 s were analysed, respectively.

Table 5.3 showed the performance of depression identification by utilising multiple
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Fig. 5.5 Classification results using RBF SVM at different speech sample
lengths.

Table 5.3 CLASSIFICATION PERFORMANCE USING MULTIPLE
REPRESENTATIONS FROM EACH SPEAKER.

Evaluation metrics Percentage

Accuracy 73.26%

Weighted F1 score 72.30%

Recall 49.20%

Precision 63.62%

representations (i.e., four representations from each speaker) with 30 s speech
duration. For this experiment, accuracy was around 73%, weighted F1 score was
around 72%, recall was around 49% , and precision achieved 63%.

5.4 Discussion

This study explored the effects of depression and speech duration on the
bio-acoustic characteristics obtained from spontaneous speech task. It also
examined the classification performance of acoustic measures, quantified at
different lengths of speech samples, using RBF SVM classifier. Study findings can
be summarised as follows: (i) depression significantly impacted some of the
bio-acoustic features; (ii) length of speech sample affected the values of mean SF
and MFCC1 features, SD ZCR feature, skewness pitch feature, kurtosis pitch and
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ZCR features, and percentile range SC feature. Significant differences observed on
those quantified at 30 s duration compared to the ones measured at 60 s, 90 s, and
120 s; (iii) SVM predictive ability of depression slightly improved when speech
duration is shortened, with accuracy achieved more than 70% at 30 s.

Previous studies characterised speech with depression by higher jitter and shimmer
values [31], [111]. Similarly, percentile range shimmer feature in this study was
higher in depressed individuals. However, this study showed a lower mean jitter
value in depressed compared to non-depressed groups, which is not consistent with
the findings in [31], [111]. A potential reason behind this inconsistency is that Kiss
and Vicsi and Quatieri and Malyska, performed their experiments on vowel voices
and voiced parts of reading-a-story [31], [111], whereas, in this study, spontaneous
speech task was used (i.e., highly variable). Additionally, this study found that the
changes of mean jitter and percentile range shimmer over time were not statistically
significant. The potential reason behind this could be the speech length used in
the current study (i.e., the shortest length was 30 s), which is much longer than the
suggested duration of at least 3 s to get accurate measures of perturbations qualities
[150].

In this study, most of the spectral shape features did not significantly impact by
depression. This could be the reason behind the poor performance of depression
prediction reported by Lopez-Otero et al. when only spectral features were used
[17]. Therefore, spectral shape descriptors could not be good indicators of
depression. Results showed that depression only affected the values of some of SF,
SC, and SR parameters. These parameters could be promising spectral shape
features for depression analyses. This study also found that mean SF and percentile
range SC qualities contain significant information to discriminate between speech
with and without depression, presenting lower values in depression. Their changes
across different speech lengths were significant. Hussenbocus et al. found higher
SC values in non-depressed speech [69]; a similar finding observed in this study. A
flat spectrum was observed in speech with depression [60], this implies patients
experiencing depression have a high SF value. However, in the current study,
lower values of mean SF feature were observed in depressed participants
compared to non-depressed participants. In line with the current study, results
presented by Stolar et al. showed SR values were higher for depressed than
non-depressed groups when cut-off points were higher than 55%, [28]. Meaning
that energy is concentrated in the higher frequencies range in depressed
participants, while it is concentrated in the lower frequencies range in
non-depressed participants. Alghowinem et al. observed that utilising MFCCs
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features for identifying individuals with depression gives relatively good
classification performance; however, MFCCs with its first- and second-derivatives
performed slightly better than MFCCs alone [163]. Although this study showed
that the differences in mean MFCCs parameters between the two groups are
significant, ∆MFCC and ∆∆MFCC were not.

In terms of prosodic measurements, pitch parameters (mean, skewness, and
kurtosis) showed higher values in depressed group, which is consistent with
findings of Quatieri and Malyska [31]. Speech sample length impacted skewness
and kurtosis pitch features. Duration of speech task affects the F0 stability, as
reported in [152], [153]. Even though loudness quality was observed to be
significantly lower in depressed participants [175], it was not a significant feature
in this study. Similar to my finding, Alpert et al. found no statistical significant
differences in loudness measure, comparing depressed and non-depressed
participants’ voices [208]. Depression and speech duration significantly affected
ZCR (SD and kurtosis) characteristics. Notably, ZCR might be considered an
informative feature when discriminating between speech with and without
depression. Similar to spectral shape features, using only prosodic features to
capture depression level resulted in a poor performance of learning model [17].

By exploring the effect of depression on formants’ properties, only differences on
mean F1 was statistically significant between the groups, showing higher values in
depressed patients. A similar increasing pattern was observed by Mundt et al., but
no significant differences between the control and depressed group were reported
[187]. This study also showed that the duration changes were insignificant in F1
mean. Although this result contradicts that found by Gendrot and Adda-Decker,
who found the speech duration affected both F1 and F2 [181], a different speech
task is used in the current study. They utilised more stable speech samples (i.e.,
vowels), while this study used a highly variable spontaneous speech.

Some bio-acoustic metrics showed instability across time. This instability is mainly
observed at the speech segments with 30 s duration (i.e., selected from the
beginning of the speech task) compared to those with longer durations (i.e., 60 s,
90 s, and 120 s). Instability of the beginning (vocal onset) and end (vocal offset) of
the speech sample, caused by changes in aerodynamic and muscular adjustment
factors, was reported [44]. Due to these changes, an increase in the speech
perturbations values, jitter and shimmer, as an example, was found. Consequently,
acoustic analyses were usually performed on stable regions (i.e., with minimum
jitter, shimmer, and nonlinear dynamic parameter correlation dimension with the
maximum signal-to-noise ratio) of the speech sample [44]. This instability could
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explain the contradictory results in classification performance found in previous
studies [163], [194], [195].

This study also showed that as the speech samples duration decreases from 120 s
down to 30 s, the classification performance slightly improved. The RBF SVM
classifier gave relatively better classification accuracy results (by around 10%)
when the bio-acoustic features extracted from the first 30 s of a speech sample was
utilised. Supporting this finding, Alghowinem et al. pointed out using a smaller
amount of speech data, starts from the beginning of speech recordings, gives better
results than using the full speech length [163]. Although several published studies
found that shortening speech duration resulted in a reduction in depression
classification performance [194], [195], direct comparison between current study
results and their results is not straightforward. Their results were found using
different acoustic features and/or different learning algorithms. Also, Afshan et al.
performed their study on Mandarin speakers [194], while this study used speech
samples of English speakers. Huang et al. utilised speech data with durations
shorter than 35 s [195]. This study examined classification performance at 30 s
duration and longer.

This study indicates that the beginning of speech provides essential discriminative
information that might be considered while analysing speech for depression.
Comparing the results of bio-acoustic features analyses with depression
classification performance at different durations, the instability of these features at
the beginning of speech signals could be a factor affecting the depression
identification, yielding a relatively better discriminative power, which could
augment the conventional evaluation methods in the clinic.

There are some limitations in this study. First, both men and women were analysed
together. Some bio-acoustic features are well known to be gender-dependent (e.g.,
pitch). Gender-based learning models are outperformed gender-independent
models [59]. Due to the limited number of depressed participants,
gender-independent model was employed in this study and only added gender as
a feature to the feature set. Hence, a further investigation is required to analyse
men’s and women’s voices separately. Second, speech samples of different class
labels used in this study are unbalanced, suggesting a replication on a balanced
dataset to avoid computational bias. Furthermore, this study includes only two
minutes selected from the beginning of each recording and analyses bio-acoustic
features at four different speech durations. Therefore, analysing speech data using
a shorter speech sample length (>30 s) with more time steps is necessary. Finally,
this study used RBF SVM classifier, limiting generalisation on other learning
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algorithms. Future studies have to be conducted using different classifiers to
validate and generalise findings of depression detection.

5.5 Conclusion

This study evaluated the association between bio-acoustic features obtained from
different speech durations and depression. It also investigated the impact of
spontaneous speech task length on the performance of RBF SVM classifier. Only 37
acoustic characteristics (out of 125) provided important information to differentiate
between depressed and non-depressed participants. The most informative
bio-acoustic features were: jitter, shimmer, pitch, VP, ZCR, SF, SR, SC, and MFCC.
Of 37 measures, only seven qualities were influenced by duration changes.
Instability of these features is observed at the beginning of each speech recording
(i.e., measured at 30 s) compared to longer speech durations (60 s, 90 s, and 120 s).
Further, this study found a slight improvement in the classifier predictive power
when speech segments with 30 s duration were utilised.

Speech sample length affected the stability of bio-acoustic descriptors, and
therefore, their analyses through SVM classifier. Differences in the prediction
performances for the speech at different durations may underscore the need for
more research to link variations of acoustic features quantified from the beginning
of a speech to the performance of depression prediction. Therefore, vocal acoustic
measures quantified from the beginning of speech are unstable and seem to be
more effective in clinical depression prediction.
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Chapter 6

Conclusions

Speech signal carries essential information about the physiological condition and
pathophysiological state of a speaker. Bio-acoustic qualities of voice show evolving
value in analysing psychiatric illnesses. Obtaining a sufficient speech sample
length to quantify these qualities is essential. However, the impact of sample
duration on the reproducibility of bio-acoustic features of speech with and without
depression has not been systematically explored. Still, discriminative power of
acoustic features obtained from depressed and non-depressed individuals across
different sample lengths has to be explored. This thesis delineated the effect of
speech task duration on the reproducibility, stability, and classification of
depressed and non-depressed bio-acoustic characteristics. This chapter
summarises the main findings of the studies conducted for this thesis and potential
future studies extended form this thesis.

6.1 Thesis Summary

Examining reproducibility of bio-acoustic characteristics against changes in speech
task durations and speech task types is the most significant contribution of this
thesis. The evaluation was conducted over features quantified from normal
English-speaking adults (n = 185; 87 m, 98 w) for reading-a-story and counting
tasks. It was also carried out on features obtained from a spontaneous speech task
of depressed (n = 56; 25 m, 31 w) and non-depressed (n = 133; 77 m, 56 w) English
speakers. The extracted bio-acoustic features are source, spectral, cepstral, formant,
and prosodic features. The intraclass correlation coefficients (ICCs) test was used to
assess the degree of agreement between features measured at different durations.
A two-way analysis of variance (ANOVA) test was applied to evaluate the
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influence of duration and gender on the agreement level of feature parameters.
Results showed that the number of reproducible features (out of 125) in
reading-a-story and spontaneous speech tasks decreased stepwise with duration
reduction. Gender differences on ICC values of some acoustic measures were
significant. Changing speech task type from reading-a-story to counting tasks,
keeping speech duration at 10 s, significantly impacted the reproducibility of the
most measured qualities, in part due to the short counting task duration.
Therefore, bio-acoustic features are less reproducible in shorter samples and are
affected by gender.

Major depressive disorder (MDD) altered several bio-acoustic features of speech.
The identification of MDD by analysing these characteristics might be considered
an objective biomarker. However, the stability of bio-acoustic features across
different durations may affect the classification performance of depressed and
non-depressed acoustic features. Therefore, this thesis explored the effect of
depression on bio-acoustic measures across different lengths of spontaneous
speech task, determined at 30 s, 60 s, 90 s, and 120 s from the beginning of each
recording. A two-way ANOVA test was conducted to evaluate the differences
between depressed and non-depressed acoustic features and among the four
sample lengths. The post-hoc test was applied, if the duration factor is significant, to
determine where the differences between speech durations came from.
Experimental results found that only 37 features were highly sensitive to
depression. Of these measures, only seven features were affected by duration
changes; differences were mainly found between speech segments with 30 s
duration and other durations. Finally, this thesis assessed the predictive ability of
depression against changes in length of speech data utilising a support vector
machine algorithm with a radial basis function (RBF SVM). Results indicated that
classification performance of bio-acoustic qualities was affected by task duration.
Shortening speech duration down to 30 s slightly improved classification metrics.

6.2 Future Research

The findings of this thesis were based on speech samples of reading-a-story task (i.e.,
mean duration=124.4 s) and counting task (i.e., mean duration=26 s) for English
speakers with healthy voices (as shown in Chapter 3). They were also based on
spontaneous speech task (duration=120 s) for depressed and non-depressed English
speakers (as shown in Chapter 4 and 5). Therefore, verifying the main findings
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presented in this thesis using different speech corpora, speech task types, speech
task lengths, and languages could be valuable to obtain more reliable results.

Bio-acoustic features have shown remarkable success in the depression detection
field. This thesis continues to support that depression exhibit some changes in
bio-acoustic characteristics (as shown in Chapter 5). Therefore, it would be
beneficial to build a fully automated system integrated into the clinical settings for
depression detection, including speaker diarisation, features extraction, and feature
analysis. It would also be valuable to investigate more the relation between
features instability along the speech sample (i.e., during vocal onset) and the
classification performance of depressed and non-depressed bio-acoustic features.
Employing a similar method (i.e., features extraction from short speech duration)
using different SVM kernels, different learning algorithms and a large and
balanced depression corpora would be helpful. Selecting the story to be read could
be further refined in future through a process of optimisation (e.g. the story that
maximises the reproducibility and results of classification), thus improving
standardisation. Further studies on monitoring mental health remotely using
voice-controlled interfaces (e.g., Amazon Alexa and Apple Siri) is required,
especially when Alexa device became Health Insurance Portability and
Accountability Act (HIPAA) compliant by setting standards for
protection-sensitive data of patients and avoiding user privacy violations [209].

Finally, this thesis only focused on analysing acoustic characteristics of voice as a
function of speech duration. Analyses of speech linguistic features at different
speech durations could be a rich source to identify depression.
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Appendix A

Supplementary Material

 

 
 
 
 
Personal Health Questionnaire 
Depression Scale (PHQ-8) 
 

 
 
 
Over the last 2 weeks, how often have you been bothered by any of the following problems?  
(circle one number on each line) 

    More than  
How often during the past 2 Not Several half Nearly 
weeks were you bothered by... at all days the days every day 
 
1. Little interest or pleasure in 
 doing things ....................................................... 0 1 2 3 
 
2. Feeling down, depressed, or hopeless .............. 0 1 2 3 
 
3. Trouble falling or staying asleep, or  
 sleeping too much ............................................. 0 1 2 3 
 
4. Feeling tired or having little energy .................... 0 1 2 3 
 
5. Poor appetite or overeating ............................... 0 1 2 3 
 
6. Feeling bad about yourself, or that you  
 are a failure, or have let yourself or  
 your family down ................................................ 0 1 2 3 
 
7. Trouble concentrating on things, such as  
 reading the newspaper or watching  
 television ............................................................ 0 1 2 3 
 
8. Moving or speaking so slowly that other  
 people could have noticed. Or the opposite – 
 being so fidgety or restless that you have  
 been moving around a lot more than usual ....... 0 1 2 3 
 
 
Scoring 
If two consecutive numbers are circled, score the higher (more distress) number. If the numbers are not 
consecutive, do not score the item. Score is the sum of the 8 items. If more than 1 item missing, set the 
value of the scale to missing. A score of 10 or greater is considered major depression, 20 or more is 
severe major depression. 
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