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Abstract

Lagrangian coherent structures are used in fluid mechanics and the analysis of dynamic
systems to visualise the most influential flow structures present within a velocity system
over a finite period of time. Over the last two decades, a wide variety of methods have
been conceptualised for the numerical detection of various forms of these structures within
different flows. These include continuous curves of maximal particle repulsion which act as
flow barriers, two dimensional objects such as jets or eddies formed from more robust flow
behaviour, or larger partitions which remain separated from the rest of the domain over an
entire flow interval. While some studies which focus on comparing the basic functionality
of groups of these methods have been undertaken, the impact of certain computational
factors such as the uncertainty of velocity data or the available resolution of said data
on the resultant structures generated from these methods has seldom been investigated.
In this Thesis, we address both of these issues by performing a systematic analysis of
eight of these Lagrangian coherent structure detection methods using a variety of velocity
systems including analytically defined flows (such as the Double Gyre, a non-autonomous
Stuart vortex system and the Bickley jet), computational fluid dynamics velocity data
(corresponding to flows which each contain two layers of Kelvin-Helmholtz instability)
and an oceanographic velocity data set representing the Gulf Stream.

The methods we consider here are the finite time Lyapunov exponent (a measure of
the exponential stretching rate of flow trajectories), variational Lagrangian coherent struc-
tures (geodesic solutions of variational problems related to flow stretching), Lagrangian
averaged vorticity deviation (an objective measure of the vorticity of a flow trajectory
against that of the entire domain), stochastic sensitivity (the expected uncertainty of a
Lagrangian flow trajectory), the transfer operator (a probabilistic method which seeks
density distributions that remain coherent), the dynamic Laplace operator (an exten-
sion of the transfer operator method which explicitly includes diffusivity), fuzzy c-means
clustering (grouping together collections of flow trajectories based on their consistent
proximity) and coherent structure colouring (identifying coherent flow objects from how
similarly groups of flow trajectories evolve as a flow advances). We compare the types
of Lagrangian coherent structure each method is able to produce, and test how these
methods react to the addition of stochastic noise to the velocity data which represents a
flow. From our results, methods which detect two-dimensional coherent flow structures

xxxi
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rather than the boundaries which separate them, such as coherent structure colouring,
Lagrangian averaged vorticity deviation, stochastic sensitivity, the transfer operator and
dynamic Laplace operator; are less sensitive to velocity uncertainty and give a more thor-
ough picture of the most influential flow behaviour observable. We also perform a detailed
analysis on the impact of spatial resolution in comparison to the size of coherent structures
for each of the methods, both qualitatively by visually comparing the coherent structures
produced and quantitatively using the absolute errors of various LCS quantities against
a “reference case” produced from the best velocity data resolution available.



Chapter 1

Introduction

The study of coherence in general, or the identification of consistent particle patterns and
movement within a velocity system, is one of the key foci of fluid dynamics and mechanics.
Analysis of dynamical systems provides understanding into the dominant movement of
particles, pollutants, or even people, within these systems. Elementary studies of coher-
ence primarily involved observing a static velocity field at a particular instance in time,
and studying the system for stable/unstable stagnation points and manifolds (curves in a
two–dimensional flow) which flow trajectories within these systems attract towards or re-
pel from, thereby giving some illustration of how we can expect flow trajectories to evolve
as they move through a flow (Balasuriya et al. 2018). One can also look for instantaneous
coherent surfaces or other objects of dimension higher than one (i.e. other than a point or
a curve) using the instantaneous entropy or vorticity of the flow velocity at a particular
moment in time (Haller & Yuan 2000).

If we aim to seek coherent flow patterns within an autonomous velocity field, then
this is a perfectly appropriate method for identifying dominant flow characteristics. How-
ever, the vast majority of flow systems, particularly those in real world settings, are
non–autonomous systems within which the velocity field changes as time proceeds. Any
analysis performed on an individual Eulerian velocity field at one instance in time is only
relevant for that instance of time, and does not provide a practical or reliable illustration
of transport.

For a long time, this Eulerian analysis of velocity field snapshots was the only way to
obtain any sort of qualitative description of the most important flow behaviour. That all
changed when Haller & Yuan (2000) first coined the term Lagrangian coherent structures,
which are flow objects that are coherent under Lagrangian motion (that is, following the
flow). This takes into account the evolution of a trajectory over a set time interval, and the
consistent movement of collections of these trajectories over this time is used to provide
a qualitative or quantitative measure of flow coherence for this interval. Portions of the
flow domain corresponding to similar patterns of flow behaviour, such as curves along
which particle flow is more extensive and unpredictable or regions corresponding to more

1
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robust flow patterns; are identified as Lagrangian coherent structures which illustrate how
parcels of flow particles evolve together as a flow progresses.

In their paper, Haller & Yuan (2000) defined the first method for Lagrangian coherent
structure detection, involving Lagrangian measures of stretching and compression rates of
flow trajectories, and curves associated with minimal or maximal stretching were identified
as Lagrangian tracers. The method was defined for flows in two–dimensional domains, as
are the majority of Lagrangian coherent structure detection methods. There is emerging
research into Lagrangian coherent structures in higher dimensions (Blazevski & Haller
2014, Froyland et al. 2010, Froyland & Junge 2018, Haller 2001).

Following up from this development, a range of computational methods used to detect
these structures were conceptualised, each one with a different definition of what con-
stitutes a Lagrangian coherent structure. The first, most well known and possibly the
easiest to use Lagrangian coherent structure detection method was developed - the finite
time Lyapunov exponent method (Haller 2001, 2002, Shadden et al. 2005). The finite
time Lyapunov exponent is a measure of the exponential stretching capability of a disk
of fluid centred at each initial location over a forward time flow interval (in backward
time, it is a measure of compression capability instead). By viewing this measure over all
initial positions, this defines a field. Maximal ridges of this field indicate coherent curves
that are claimed to correspond to flow barriers which particles repel from (or attract to)
at a maximal rate. Despite developing and initially promoting this method for its use
in the detection of Lagrangian coherent structures, Haller (2011) later identified issues
in using the finite time Lyapunov exponent to find these structures based on degenerate
results obtained from applying this method to (mostly) simplistic toy flow models such as
autonomous saddle flows. In light of these developments, a new detection method was cre-
ated and used to detect material hyperbolic flow barriers similar in nature to the maximal
ridges of the finite time Lyapunov exponent using variational problems relating to mea-
sures of flow stretching (Haller 2011, Farazmand & Haller 2012, Onu et al. 2015); which
was later expanded in order to detect closed elliptic structures of high vorticity (Haller
& Beron-Vera 2012, 2013) and parabolic current or jet core type structures (Farazmand
et al. 2014).

Over the next decade or so, more and more detection methods were conceptualised for
finding different types of Lagrangian coherent structures, and not just to find coherent
codimension–1 curves. Joseph & Legras (2002) and d’Ovidio et al. (2004) used the finite
size Lyapunov exponent to detect coherent structures in similar fashion to the finite
time Lyapunov exponent except the time taken for two flow particles to be stretched
apart by a particular, pre–determined length is the quantity that needs to be evaluated.
Mezić et al. (2010) developed mesochronic analysis which is used to categorise portions
of a flow domain based on the eigenvalues of the gradient (Jacobian) of a Lagrangian flow
map, while Mancho et al. (2013) found a way to measure flow coherence by calculating the
average velocity for flow trajectories over the flow time interval. The previous two methods
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come with a considerable drawback in that they are not objective, that is, the results
of these methods depend on the flow system’s frame of reference. Haller et al. (2016)
sought to define “coherence” in terms of a frame–independent vorticity, and developed
the Lagrangian averaged vorticity deviation; which is an objective measure of the vorticity
of a flow trajectory relative to the mean of this quantity over the entire domain; used to
find elliptic coherent structures of strong rotational coherence.

Other detection methods have been conceptualised that are not “geometric”, that is,
they do not rely on computing characteristics of the flow map. As examples of these
kinds of methods, Froyland (2005) developed the transfer operator method, and later
the dynamic Laplace operator method (Froyland 2015, Froyland & Junge 2018), which
are both used to determine density distributions which change only marginally by the
flow. As a first step in seeking “coherent sets”, these fields were used to divide a flow
domain into two coherent regions. Other methods which relied on the transitional matrix
used to execute the transfer operator method were later conceived, such as finite time
entropy (Froyland & Padberg-Gehle 2012), which is used to estimate how much stretching
flow particles will undergo based on the probabilistic flow information obtained from the
transfer operator matrix, or defining hierarchical coherent sets by repeating the transfer
operator method on the coherent sets produced (Ma & Bollt 2013).

Alternative definitions of “coherence” were conceived through a series of sparse detec-
tion methods, ideal for use in a flow system defined by a collection of Lagrangian flow
trajectories instead of Eulerian velocity data. Allshouse & Thiffeault (2012) used the
technique of braiding to define coherence by how often trajectories mix or intersect with
each other as a flow progresses. Froyland & Padberg-Gehle (2015) proposed dividing a
flow domain into a pre–determined number of coherent clusters based on the spatial prox-
imity of flow trajectories over their flow interval using fuzzy clustering techniques. As an
alternative to this, Schlueter-Kuck & Dabiri (2017) developed an alternative clustering
technique which involves colouring portions of a flow domain based on the kinematic con-
sistency of flow trajectories (i.e. how similarly these trajectories evolve and mix together
as a flow proceeds) within these portions.

As a final example, Balasuriya (2020a) developed the concept of stochastic sensitivity,
which is a measure of the expected uncertainty of flow trajectories. This can be used
to obtain flow barriers as well as robust flow regions. There are many more Lagrangian
coherent structure detection methods which have been conceptualised in addition to the
aforementioned, which have been discussed in a wide array of review papers into this
subject (Allshouse & Peacock 2015, Hadjighasem et al. 2017, Balasuriya et al. 2018).

As more Lagrangian coherent structure detection methods were conceptualised and
more researchers developed an understanding, and even an appreciation, of the concept;
these detection methods were applied to a wide variety of real world flow systems. The
vast majority of Lagrangian coherent structure applications are concerned with detecting
coherent flow objects within oceanic flow systems, and the finite time Lyapunov exponent
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method became one of the most commonly used methods; owing primarily to its relative
computational simplicity against other methods. Researchers have used patterns emerg-
ing from the scalar field of the finite time Lyapunov exponent to identify coherent flow
patterns and predict the transport of debris or pollutants within bodies of water. These
applications range in scale from identifying flow separating barriers within a smaller body
of water such as the Moreton Bay (Suara et al. 2020) or the Pearl River Estuary (Wei et al.
2018); to visualising larger coherent flow objects such as currents within the Indian Ocean
(Garcia Llamas et al. 2020). Shadden et al. (2006) have even used the FTLE method to
model the formation of vortical coherent structures within bodies of water caused by the
propagation of jellyfish.

There are several bodies of water that are regularly studied through the analysis of
Lagrangian coherent structures, with one of these systems being the Gulf of Mexico. After
the Deepwater Horizon oil spill in 2010, several oceanographic researchers used Lagrangian
coherent structure detection methods to model how oil within the Gulf of Mexico would
flow through the system and over how much of the Gulf it would spread. Modelling
how the oil would be advected through the system was accomplished using several detec-
tion methods, including the hyperbolic variational Lagrangian coherent structure method
(Olascoaga & Haller 2012), mesochronic analysis (Mezić et al. 2010), the hierarchical
transfer operator (Ma & Bollt 2013), the finite time Lyapunov exponent and the transfer
operator (Bollt et al. 2012). Analysis of Lagrangian coherent structures is also used to
illustrate coherent flow behaviour within the Agulhas current, a cold current in the Indian
Ocean off the southern coast of South Africa known for its large eddies which flow to the
Southern Atlantic Ocean transporting warmth (Byrne et al. 1995) and acidity (Orselli
et al. 2019) to this body of water. Researchers have identified the shapes, sizes and lo-
cations of these Agulhas eddies or rings and have traced their movement over particular
flow periods; using the elliptic variational Lagrangian coherent structure method (Haller
& Beron-Vera 2013, Karrasch et al. 2014), the transfer operator method (Froyland et al.
2015) and the dynamic Laplace operator method (Froyland & Junge 2018). Lagrangian
coherent structure analysis has also been implemented on the Gulf Stream, a warm cur-
rent in the North Atlantic Ocean known for its impact on climate in North America and
Western Europe (Liu et al. 2018). Researchers have attempted to predict coherent fluid
transport from flow separating curves obtained from the finite time Lyapunov exponent
(Liu et al. 2018) and the finite size Lyapunov exponent (Haza et al. 2012). In addition
to this, the dynamic Laplace operator has been used to identify the locations of warm
coherent eddies produced by the Gulf Stream (Froyland et al. 2019). Lagrangian coherent
structure analysis has also been performed on the entire global ocean, with the trans-
fer operator (Froyland et al. 2014) and fuzzy c–means clustering methods (Froyland &
Padberg-Gehle 2015) used to divide the global ocean into smaller coherent clusters, with
bodies of water such as the North/South Atlantic Ocean, the North/South Pacific Ocean
and the Indian Ocean identified as these coherent clusters. These results were primarily
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used to model how patches of garbage and other pollutants move through the ocean.

Applications for Lagrangian coherent structure detection methods are not just re-
stricted to oceanic flow systems, with these methods having been used to find coherent
flow behaviour within atmospheric flows. An example of this involves investigating the
atmospheric flow around the well known Antarctic Polar Vortex, using the transfer op-
erator (Froyland et al. 2010) or finite time entropy (Froyland & Padberg-Gehle 2012).
The finite time Lyapunov exponent has also been used to illustrate the split of the polar
vortex witnessed in 2002 (Lekien & Ross 2010). The wind patterns over the east coast of
the United States are a popular choice for Lagrangian coherent structure analysis among
several researchers, in an effort to predict weather patterns and measure the dispersement
of pollutants through the atmosphere. The finite time Lyapunov exponent method has
been used on several occasions to identify flow separating barriers within this atmosphere
(Garaboa-Paz et al. 2017, Mancho et al. 2013, Nolan et al. 2020, Senatore & Ross 2011).
Lagrangian coherent structure analysis has also been used to identify the prominent Red
Spot within the atmosphere of Jupiter using parabolic and elliptic variational Lagrangian
coherent structures (Hadjighasem & Haller 2016). Hadjighasem et al. (2017) have also
used a range of Lagrangian coherent structure detection methods to identify Jupiter’s
Red Spot, done for the sake of comparative analysis of these methods. Applications of
Lagrangian coherent structure detection methods also extend to healthcare, with Teer-
aratkul et al. (2021) using the finite time Lyapunov exponent to model coherent flow
patterns within blood flow to monitor the spread of disease within the bloodstream, and
Benaichouche et al. (2013) and Verma et al. (2016) using fuzzy c–means clustering to
divide an MRI scan of a brain into segments for further medical analysis.

With the present day saturation of Lagrangian coherent structure detection methods,
comparative studies on collections of these methods have been undertaken by a number
of researchers. However, these comparisons are mostly limited to qualitatively assessing
the types of Lagrangian coherent structures produced by these methods (Allshouse &
Peacock 2015, Balasuriya et al. 2018), along with some minor comparisons of the algo-
rithmic complexity of each method taking into consideration factors such as the number
of computational parameters that are required to be defined for each of these methods
(Hadjighasem et al. 2017). Most of these comparisons between coherent structure detec-
tion methods are ill–defined, as every Lagrangian coherent structure detection method
has its own definition of what constitutes a coherent structure. There has been little, if
any, research and analysis undertaken into the self–consistency of these methods and the
reliability of the results. Factors affecting this include the spatial resolution of velocity
and how well this data is refined over a flow domain; and the accuracy of this velocity
data due to experimental, observational or modelling errors. As such issues are unavoid-
able when trying to analyse a real world flow system in this manner, it is imperative
that these are taken into consideration when choosing a Lagrangian coherent structure
detection method to work with. Developing a better understanding of this concept can
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allow for Lagrangian coherent structures to be used effectively in more mainstream fluid
mechanics applications.

Hence, the aim of this research is to take eight Lagrangian coherent structure detection
methods and compare the self–consistency and reliability of these methods; particularly
in more realistic data situations, in order to determine which of these methods are the
most suitable (or the “first choice(s)”) for use in Lagrangian coherent structure detection.
This will be achieved by writing our own numerical algorithms in MATLAB to execute
these methods, implementing these on a variety of analytically and numerically defined
flow systems to compare and contrast the types of structures each method is able to
produce and, through careful manipulation of the velocity data representing these sys-
tems, quantify how each of these methods respond to numerical uncertainty or spatial
resolution of the data. The methods we will consider in this study include “geometric”
methods which compute coherent structures based on characteristics of the Lagrangian
flow maps of particles (such as the finite time Lyapunov exponent, variational Lagrangian
coherent structures, Lagrangian averaged vorticity deviation and stochastic sensitivity),
probabilistic methods used to divide a flow domain into coherent sets (the transfer oper-
ator and dynamic Laplace operator), and sparse methods which can detect coherent flow
objects from flow trajectory data with no necessary reliance on the underlying velocity
data defining a system (fuzzy c–means clustering and coherent structure colouring).

The structure of this Thesis is as follows. In Chapter 2, we detail the methodology
pertaining to our eight methods of choice, discuss the coherent structures we expect to
find from these methods based on previous research, and briefly outline the computational
procedures undertaken to implement each of these methods numerically. In Chapter 3, we
then test all of these methods on a range of flow systems and compare the kinds of coherent
structures each method is able to produce. In this Chapter, we focus on six flow systems.
The first three systems, the Double Gyre, an unsteady version of the Stuart vortex system
and the Bickley jet; are analytically defined toy models with velocity data defined by con-
tinuous equations. The other three systems, two simulated flows with Kelvin–Helmholtz
vortex layers and an observational data set representing the Gulf Stream; are numerically
defined flows available at finite resolution levels. We have implemented our methods on
more than just these six systems, however for the sake of brevity we will not document all
of these results within this Thesis. We show some of the results obtained for these other
systems in Appendix A.

In Chapter 4, we assess how the functionality of each method is affected by the ex-
istence of uncertainty within velocity data. We achieve this by transforming each flow
system into a stochastic dynamical system by applying normally distributed noise to our
Eulerian velocity. We then quantitatively assess this impact by visualising the mean and
standard deviation of quantities and attributes relevant to each method after producing
a large enough number of stochastic flow map realisations. The noise we apply to our
velocity changes with each time step, but is equal over the whole spatial domain in the
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spirit of random dynamical systems.
In Chapter 5, we perform a similar analysis of our methods this time focusing on

how the spatial velocity resolution affects the accuracy of the results. This is another
important consideration, for if a velocity data set has poor or limited spatial resolution,
this will reduce the accuracy of any Lagrangian flow maps produced and any subsequent
Lagrangian coherent structures detected. To assess this, we sub–sample a grid of finite
velocity data to reduce the resolution of this data, and then implement the same La-
grangian coherent structure detection methods on these data sets. If we are working with
an analytically defined velocity system, we produce an interpolant for the velocity of this
system defined over a uniform grid of points. We then (where possible) quantify the dif-
ferences in relevant Lagrangian coherent structure quantities by analysing the statistics
of the error distribution between each resolution and the “reference case”. The “refer-
ence case” quantities are computed either from analytic velocity equations or the highest
resolution possible for a numerically defined data set.

Finally, in our concluding Chapter (Chapter 6), we assess the strengths and weaknesses
of all of the methods considered in this research based on the results obtained and give
recommendations for the more self–consistent and reliable Lagrangian coherent structure
detection methods of those considered in this study. There may be another method that
gives a more complete picture of a flow system in a more efficient manner less susceptible
to poor velocity data quality and resolution, however we give recommendations from
these methods as it is impossible to consider all Lagrangian coherent structure detection
methods in a study of this calibre. Bear in mind that we shall not rank the methods
considered from worst to best (for instance), instead we will endeavour to recommend
the most ideal methods to consider first for accurate, reliable and efficient Lagrangian
coherent structure detection within any type of flow system.
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Chapter 2

Lagrangian Coherent Structure
Detection Methods

In this Chapter, we discuss in detail the eight Lagrangian coherent structure (LCS) detec-
tion methods to feature in this Thesis, demonstrate what the structures produced from
each method represent, and discuss in full the algorithms and steps involved in detecting
these structures numerically using MATLAB. All of these methods are concerned with
finding consistent flow patterns within a velocity system defined by the non–autonomous
system of ordinary differential equations

ẋ = u (x, t) , (2.1)

where x = (x, y), defined on a flow domain Ω ∈ R2, u represents Eulerian velocity, and
we seek coherence in a Lagrangian sense, that is, by following the flow of (2.1) over a
pre–determined time interval. We define the flow map, or a Lagrangian flow trajectory,
Ft0+T
t0 (x0), as the solution generated from advecting an initial point x0 = (x0, y0) through

the flow system (2.1) over the flow interval ranging from t0 to t0 + T . Various metrics
of the flow maps Ft0+T

t0 (x0) defined at different initial points x0, such as the gradient

(or Jacobian) of the flow map ∇Ft0+T
t0 (x0), help determine the shapes and locations of

LCSs within the flow system defined by (2.1). Throughout this study, the flow map of
(2.1) is computed numerically in MATLAB for a range of initial points x0 using ode45,
a function which solves systems of ordinary differential equations using a Runge–Kutta
solver of order (4,5). To estimate the velocity for (2.1) as we generate these flow maps, we
either use analytically defined velocity equations, or we interpolate numerically defined
velocity data in space and time using MATLAB’s griddedInterpolant function, with a
cubic spline method of interpolation chosen for more accurate velocity estimation. How
each of the initial points are seeded is dependent upon the computational requirements
of each individual method.

For conciseness through this Chapter (and this Thesis), we will introduce symbols
and abbreviations for the most important concepts featured throughout this Thesis, in

9
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Table 2.1: Acronyms, abbreviations and symbols first defined in Chapter 2.

Symbol Represents Equation(s) Defined in/at
LCS Lagrangian Coherent Structure N/A Start of Chapter

FTLE Finite Time Lyapunov Exponent (2.3) Section 2.1
VLCS Variational LCS N/A Section 2.2

VLCS–A Variational LCS Algorithm A N/A Section 2.2.2
VLCS–B Variational LCS Algorithm B N/A Section 2.2.3
VLCS–C Variational LCS Algorithm C N/A Section 2.2.4
LAVD Lagrangian Averaged Vorticity Deviation (2.6) Section 2.3
S2 Stochastic Sensitivity (2.9) Section 2.4

Scaled S2 S2 Scaled by Velocity Uncertainty (2.14) Section 2.4
R(L, vr, h) Robust Set Derived Using S2 (2.15) Section 2.4

P Transfer Operator (Finite Approximation) (2.16),(2.17) Section 2.5

P̃ P Scaled by Box Measures (2.19) Section 2.5
∆D Dynamic Laplace Operator (2.23),(2.25) Section 2.6

FCM Fuzzy C–Means Clusters (2.27),(2.28) Section 2.7
CSC Coherent Structure Colouring (2.30) Section 2.8

particular the LCS detection methods used and the flow systems considered. Table 2.1
shows a notation table for concepts first defined in this Chapter.

2.1 The Finite Time Lyapunov Exponent

The finite time Lyapunov exponent (FTLE) is a measure of the largest possible rate of
exponential stretching a flow particle is likely to undergo based on the quantifiable change
of a flow trajectory when an initial point x0 ∈ Ω is perturbed over a disk–shaped fluid
particle of small radius. Suppose we apply a slight alteration to an initial point x0 in the
form

x̂0 = x0 + x1,

where ‖x1‖ is infinitesimally small. Now,

Ft0+T
t0 (x̂0) = Ft0+T

t0 (x0 + x1)

= Ft0+T
t0 (x0) +∇Ft0+T

t0 (x0) x1 +O
(
‖x1‖2

)
,
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from properties defined in Shadden et al. (2005) and Kent (2008). We use the above
expression to define the FTLE as

Φt0+T
t0 (x0) =

1

|T |
sup
x1

ln

∥∥Ft0+T
t0 (x̂0)− Ft0+T

t0 (x0)
∥∥

‖x1‖

=
1

|T |
ln
∥∥∇Ft0+T

t0 (x0)
∥∥ .

After some derivation (Kent 2008), the norm of the flow map gradient∥∥∇Ft0+T
t0 (x0)

∥∥ =
√
λmax (x0),

where λmax (x0) is the largest eigenvalue of the Cauchy–Green strain tensor

Ct0+T
t0 (x0) =

(
∇Ft0+T

t0 (x0)
)>∇Ft0+T

t0 (x0) (2.2)

at the point x0. This provides us with a more computationally friendly definition of the
FTLE

Φt0+T
t0 (x0) =

1

|T |
ln
√
λmax (x0). (2.3)

which we can use to compute the maximal stretching rate of a flow particle beginning at
the point x0 which moves through the flow system defined by (2.1) (Shadden et al. 2005,
Kent 2008). Upon inspecting the scalar field of (2.3), regions of the domain corresponding
to low values of (2.3) exhibit more robust flow behaviour, while continuous ridges which
correspond to the largest values of (2.3) are defined as codimension–1 LCSs of maximal
particle repulsion. This definition of a maximal FTLE ridge is based off simple, ana-
lytically defined flow models with an infinite flow time interval, and providing a similar
definition for a finite time flow is a little more ambiguous (Balasuriya et al. 2016). Flow
trajectories repel these ridges at a maximal rate producing a hypothetical barrier which
divides the flow domain Ω into more coherent sub-regions. This is the case for T > 0,
however if T < 0 the maximal ridges of (2.3) correspond to LCSs of maximal particle
attraction, around which clusters of flow trajectories compress until they gradually form
the shape of these ridges (Shadden et al. 2005).

As (2.3) is relatively easy to evaluate numerically, the FTLE has become a popular
method for detecting LCSs within a wide variety of realistic flow systems. The method
has primarily been used to model fluid, particle and debris transport in oceanic flow
systems (Leclair et al. 2020, Suara et al. 2020), atmospheric flow systems (Garaboa-Paz
et al. 2017) or even through arterial blood flow (Teeraratkul et al. 2021). The FTLE
has also been used to visualise coherent flow structures within simulated velocity systems
modelled to contain flow behaviour not unlike that found in real world systems, either
using computational fluid dynamics (Rockwood et al. 2018) or laboratory experiments
(Lin et al. 2020). On the other hand, some researchers have expressed concern over the
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reliability of this method, most notably Haller (2011) who demonstrated a few examples
of the FTLE producing misleading results within certain flow systems. Most of these
flow systems were analytically defined toy models, including an autonomous saddle flow
where the forward time FTLE was evaluated to be constant over the whole domain and
the backward time FTLE identified the x axis of the domain (an unstable manifold)
as a trough of low particle stretching rather than as a ridge of high particle stretching.
Balasuriya et al. (2016) were able to justify why these degenerate results are obtained
for this flow through the definition of hyperbolic neighbourhoods, or sub–regions of a
domain within which greater particle stretching is observable. This analysis, along with
the relatively frequent use of this method by other researchers, suggest that the FTLE
otherwise remains a competent and reliable method for use in detecting LCSs within a
wide range of flow systems.

To compute (2.3) for flow systems in this study, we define a uniform grid of initial
points x0 within our flow domain Ω and compute the flow map Ft0+T

t0 (x0) for each of

these points. We then calculate ∇Ft0+T
t0 (x0) at each grid point using finite differencing

techniques, generate the Cauchy–Green strain tensor Ct0+T
t0 (x0) and use the largest eigen-

value of this tensor λmax to produce a scalar field for (2.3). In this study, we only consider
forward time flows, and are therefore only concerned with detecting LCSs corresponding
to ridges of maximal particle stretching rather than maximal particle compression.

2.2 Variational Lagrangian Coherent Structures

The aforementioned degenerate results for the FTLE method prompted Haller (2011) to
conceptualise an alternative method for detecting LCSs which correspond to the locally
largest levels of particle stretching or compression. This method is referred to as the
variational LCS (VLCS) detection method, or sometimes as the geodesic LCS detection
method, and is referred to as such because this method defines variational problems for
quantities which are used to measure particle stretching or compression capability. The
geodesic solutions of these problems are smooth, differentiable curves which represent
coherent flow barriers which particles repel from (or attract to) at a locally maximal
rate. What constitutes as “local” within the scope of this method will be made clear
shortly. This method does carry the additional advantage that the curves produced are
“material LCSs”, meaning that they can be flowed forwards (or backwards) under the
velocity system (2.1) to observe how the shapes of these structures change and evolve
away from the initial reference time t0 (Haller 2011).

VLCSs come in three forms - hyperbolic, parabolic and elliptic. This research will fo-
cus on hyperbolic VLCSs only, as this type of structure was the first to be conceptualised
and was done so in response to the creation and development of the FTLE method (Haller
2011). In a two–dimensional flow system, the Cauchy–Green strain tensor (2.2) produces
two strictly positive eigenvalues λ1 and λ2 at each initial point x0 ∈ Ω, where λ1 ≤ λ2. It
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Figure 2.1: Forward (left) and backward (centre) integration of a ξ1 eigenvector field from
a point corresponding to a “local maximum” of λ2 (indicated by a ‘x’ symbol), which is
used to produce a hyperbolic VLCS (right).

is worth noting that λ2 is the same as λmax, the largest eigenvalue of (2.2) used to calculate
the FTLE. Two corresponding orthonormal eigenvectors ξ1 and ξ2 are also obtained, and
are referred to as the strain eigenvector and the stretch eigenvector respectively (Faraz-
mand & Haller 2012). The collection of Cauchy–Green eigenvectors at each of these initial
points x0 form eigenvector fields, and solution curves of these fields are used to produce
hyperbolic variational LCSs. As illustrated in Figure 2.1, we seed initial integration points
for the ξ1 field by obtaining “local maxima” of the flow stretching measure λ2 and then
commence forward and backward integration of the ξ1 field from these points. The com-
bination of the two solution curves produced from this point forms a hyperbolic VLCS of
maximal particle repulsion, which should coincide with ridges of λ2 along which locally
maximal flow stretching capability is observed (Haller 2011, Farazmand & Haller 2012).
Hyperbolic VLCSs of maximal particle attraction are also attainable, either by producing
solution curves of the ξ1 eigenvector field for a backwards time flow commencing from
t0 +T and ending at t0; or solving the stretch eigenvector field ξ2 for the forward time flow
from local minima of the other eigenvalue λ1 (Farazmand & Haller 2012). For the sake of
this research, only hyperbolic VLCSs of maximal particle repulsion will be considered.

Even though they will not be considered in this research, it is worth briefly defining the
two other types of VLCS which have been conceptualised. Parabolic VLCSs are coherent
chains of strain lines (solutions of the ξ1 eigenvector field) and stretch lines (solutions
of the ξ2 field) connected by what are known as Cauchy-Green singularity points; which
are initial points x0 at which λ1 = λ2. These singularity points come in two forms -
trisector type points which break up a collection of strainlines into three distinct zones, and
wedge type points which strainlines fold or bend around in a parabolic fashion (Balasuriya
& Bollt 2021). To produce parabolic VLCSs, one must solve the ξ1 eigenvector field
beginning from trisector type singularity points, solve the ξ2 eigenvector field beginning
from wedge type singularity points, and identify chains of curves which connect trisector
and wedge type singularity points in an alternating fashion. The resultant parabolic
LCSs produced are used to identify centres of coherent streams or jet–type structures
which act as more robust flow separators in comparison to their hyperbolic counterparts,
as they are typically not positioned within regions of the domain where particle flow



14 Chapter 2. Lagrangian Coherent Structure Detection Methods

is most volatile but rather where greater Lagrangian shear is observable (Farazmand
et al. 2014). Elliptic VLCSs are the boundaries of closed, two–dimensional LCSs which
correspond to flow objects of strong rotational coherence within a velocity system, such
as vortices or oceanic eddies. These structures are generated from vector fields formed
from spatially dependent linear combinations of the Cauchy–Green eigenvectors ξ1 and
ξ2 and encapsulate pairs of Cauchy–Green singularity points of the same type (Karrasch
et al. 2014, Haller & Beron-Vera 2012, 2013).

The procedure outlined earlier for numerically detecting hyperbolic VLCSs may ap-
pear simple to implement, however in reality the steps involved with generating these
structures are significantly more complicated due to the dependence of the method on
several computational parameters, and the ambiguity involved in deciding which partic-
ular eigenvector field solution curves qualify as the LCSs corresponding to the largest
“local” particle repulsion capability. This is why several computational algorithms have
been outlined in the available literature for producing a complete picture of all of the most
relevant hyperbolic VLCSs existent within a flow system. In this research, we explicitly
examine two of these published algorithms in Sections 2.2.2 and 2.2.3; and in Section
2.2.4 we propose a third algorithm by using the FTLE as a criterion for selecting initial
integration points for the first eigenvector field ξ1. Firstly, we need to demonstrate how
we numerically integrate the ξ1 field in each of these algorithms.

2.2.1 Solving the Eigenvector Fields

Numerically solving the Cauchy–Green eigenvector fields to produce hyperbolic VLCSs
should be more or less straightforward, but in reality it is not, primarily due to a lack of
smoothness and the presence of orientational discontinuities within these fields; observ-
able when pairs of adjacent eigenvectors face the opposite direction to each other along
ridges within these fields. This occurs as the Cauchy–Green eigenvectors are defined up
to multiplicative constants, so the direction of these eigenvectors is ambiguous. Because
computation of the Cauchy–Green strain tensor is highly sensitive to numerical errors,
particularly within regions of a domain where particle flow is more chaotic (which is
problematic as the purpose of this method is to detect consistent flow structures within
such regions), these computational inconsistencies are generally unavoidable (Farazmand
& Haller 2012). However, there are ways in which we can smoothen out these inconsis-
tencies before and while the relevant eigenvector fields are being solved.

Farazmand & Haller (2012) suggest two computational techniques which should both
be implemented in order to improve the smoothness of the Cauchy–Green eigenvector
fields. The first technique involves defining a “star–grid” (otherwise known as an auxiliary
grid) surrounding each original initial point x0 - consisting of the points xr = (x0 + δx, y0),
xl = (x0 − δx, y0), xu = (x0, y0 + δy) and xd = (x0, y0 − δy); that is, infinitesimally small
perturbations of each initial point of size δx in the x direction and δy in the y direction.
We then compute the flow maps of these four new uniform grids of initial points over the
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Figure 2.2: An original ξ1 eigenvector field (left), the scalar field for the α parameter (2.4)
(centre), and the scaled αξ1 eigenvector field (right).

same flow interval [t0, t0 + T ] and use these to generate the flow map gradient using the
formula

∇Ft0+T
t0 (x0) =

[
F

t0+T
t0

(xr)−Ft0+T
t0

(xl)

2δx

F
t0+T
t0

(xu)−Ft0+T
t0

(xd)

2δy

]
.

Computing the Cauchy–Green eigenvectors from this definition of the flow map gradient
significantly improves the consistency of the orientation of these eigenvectors (Farazmand
& Haller 2012). It is advised that the Cauchy–Green eigenvalues should not be computed
using the flow map gradient derived from the star grid and instead using the flow map
gradient computed from the original uniform grid, because as Lekien & Ross (2010) and
Farazmand & Haller (2012) point out, computing the eigenvalues from the star grid gra-
dient definition causes a diffusion in the values for the stretching parameter λ2, ironing
out ridges and key structures of both this quantity and the FTLE and thereby rendering
these quantities unreliable for use in locating flow structures corresponding to the largest
particle stretching capability.

The second computational technique involves scaling the Cauchy–Green eigenvector
fields by the parameter α, defined as

α (x0) =

(
λ2 (x0)− λ1 (x0)

λ2 (x0) + λ1 (x0)

)2

. (2.4)

At Cauchy–Green singularity points (where λ1 = λ2), the α quantity defined above will
equate to 0 thereby eliminating degenerate Cauchy–Green eigenvectors at these points, as
we illustrate in Figure 2.2. This is not the only way to deal with this issue, with additional
methods defined in Balasuriya & Bollt (2021), and later on in Section 2.2.4 of this Thesis.

These techniques do not remove ridges within the Cauchy–Green eigenvector fields
formed by orientational discontinuities between these eigenvectors. This issue can only
be resolved by reorientating the eigenvectors as integration proceeds in a manner illus-
trated in Figure 2.3. As we integrate these eigenvector fields to produce solution curves,
we interpolate new eigenvectors along the lengths of these curves. As we do this, the
orientation of the interpolated eigenvector must be compared with the orientations of the
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Figure 2.3: A discontinuous grid of four ξ1 eigenvectors along with an interpolation query
point indicated by a blue ’x’ (left) and reorientation of the discontinuous vectors as inte-
gration of the ξ1 field proceeds (centre or right). Red vectors with dashed lines indicate
discontinuous original eigenvectors, while the green solid vectors have been reorientated
in the same direction in which the hyperbolic strainline is traversing the field to produce
the blue interpolated eigenvector.

four surrounding eigenvectors produced from the original grid of initial flow points. This
can be done simply by taking the dot product of the interpolated eigenvector with each of
the four surrounding grid eigenvectors. If the orientation of the interpolated eigenvector
is consistent with all four of the grid eigenvectors then no action is required; however if
any of the four grid eigenvectors are pointing in a different direction to the interpolated
eigenvector then these grid eigenvectors must be rotated by 180 degrees to match the
orientation of the interpolated eigenvector. This will allow the solution curves produced
to cross these ridges of orientational discontinuity and for integration of the eigenvector
fields to continue to produce smooth solution curves that do not reverse direction or warp
in shape (Farazmand & Haller 2012).

Now that we have worked out how to numerically generate these hyperbolic strainlines
(candidate VLCSs) from the ξ1 eigenvector field, we must now isolate from the full foliation
of these strainlines hyperbolic VLCSs of “locally maximal” particle repulsion capability.
We will describe three such algorithms for regulating integration of the eigenvector fields
and identifying the most locally repelling strainlines, including an algorithm which identi-
fies hyperbolic LCSs using the theory of VLCSs in Section 2.2.2, a faster algorithm which
pre–determines initial integration points from “local maxima” of λ2 in Section 2.2.3 and,
our own algorithm, a combination of this method with the FTLE to identify the most
influential hyperbolic VLCSs over the whole domain without overcrowding it with more
irrelevant strainlines in Section 2.2.4.

2.2.2 VLCS Algorithm A

One of the first algorithms produced to numerically execute this method was conceptu-
alised by Farazmand & Haller (2012), and was designed to generate hyperbolic VLCSs
which are explicitly consistent with the underlying variational theory pertinent to these
LCSs. The aim of this algorithm, which we will refer to as VLCS Algorithm A or VLCS–A,
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is to generate curves representing hyperbolic VLCSs along which the following necessary
conditions are met for all points x along the curve:

1. λ1 (x) 6= λ2 (x) ,

2. λ2 (x) > 1,

3. 〈ξ2 (x) ,H (λ2 (x)) ξ2 (x)〉 ≤ 0, where 〈·, ·〉 represents the dot product and H sym-
bolises the Hessian, or second derivative matrix of λ2 (Olascoaga & Haller 2012);

4. ξ2 (x) is always perpendicular to the structure; or equivalently as the Cauchy–Green
eigenvectors are orthonormal, ξ1 (x) is always parallel to the structure; and

5. The average value of λ2 along the structure, λ2, is maximal with respect to all
immediately neighbouring candidate structures.

The first two conditions ensure that any hyperbolic VLCS produced does not traverse
through any Cauchy–Green singularity points, at which these conditions are violated,
whilst the third condition is an optimisation condition for the particle repulsion parameter
λ2 which ensures that this quantity is maximal within portions of the domain along which
these hyperbolic VLCSs are located. The fourth condition is a direction to solve the ξ1

eigenvector field to produce strainlines (which we will refer to by the symbol γ) which act
as candidate hyperbolic VLCSs, and the fifth and final condition is used to isolate the
structures of locally maximal particle repulsion capability by ensuring that the particle
stretching measure λ2 is largest along a strainline in comparison to its nearest neighbours
(Farazmand & Haller 2012).

The steps taken here in generating hyperbolic VLCSs using this algorithm are as
follows. We begin by computing the flow map Ft0+T

t0 , its gradient and the Cauchy–
Green strain tensor (2.2) for a set of initial points x0 ∈ Ω which have once again been
organised within a uniform grid. Next, using the second Cauchy–Green eigenvalues λ2

and eigenvectors ξ2 corresponding to each of these initial points, we evaluate conditions
1–3 above for each of these initial points. Points which satisfy all three of these conditions
within an acceptable enough tolerance form an “acceptable set” of initial points used to
integrate the first Cauchy–Green eigenvector field, which will be referred to here as G0.

The next step would then be to begin integrating the ξ1 eigenvector field from each
of the initial points which form the acceptable set G0. However, seeing as G0 will often
contain a very large amount of points x0, and generating strainlines from all of these
candidate points would be extraordinarily time consuming, we subset a smaller partition
of G0 and solve the ξ1 eigenvector field from these points only. Farazmand & Haller (2012)
suggest defining a set of equally spaced horizontal and vertical lines within the domain
Ω and solving the ξ1 field from candidate points which lie along these lines. However,
to eliminate this extra computational step, we instead randomly seed around 500–2000
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Figure 2.4: The acceptable set G0 (area shaded grey), and a hyperbolic strainline coloured
green for line segments inside G0 and red for segments outside G0. The strainline enters
and exits G0 several times as it is being generated, however when the long red line segment
of arc length larger than Lf is produced, integration of the ξ1 field must stop.

candidate points (depending on the system and other factors, e.g. the size of Ω) from
G0. To produce a hyperbolic strainline γ, we integrate the ξ1 field beginning from each
candidate point in both forward and backward time to produce a full, cohesive material
curve.

We then proceed to solve the ξ1 field from the first candidate point using the field in-
tegration techniques detailed in Section 2.2.1. As integration of this field proceeds, checks
are performed at each new point along the strainline to ensure that this solution curve
remains within the region defined by the acceptable set G0. Because of numerical errors
associated with numerical differentiation and integration; as well as numerical uncertainty
expected to be found within numerically defined velocity data, Farazmand & Haller (2012)
allow some tolerance when performing these checks. If the conditions of the acceptable
set G0 are found to have been violated, we begin to measure the length of the segment of
the strainline which sits outside G0. If this length exceeds an allowance parameter Lf , we
stop integrating the eigenvector field from this candidate point and move on to the next
candidate point. If the strainline re-enters G0 before the parameter Lf has been exceeded,
the length measure may be stricken and integration of the ξ1 field can continue. Figure
2.4 illustrates how integration of the ξ1 field is regulated using G0.

Completion of this procedure results in the creation of a hyperbolic strainline γ = γ (s),
where s is discretely defined over N + 1 points along γ, and ranges in value from 0 to
what is assumed to be N∆s, where ∆s is the integration time step used to produce γ
(Farazmand & Haller 2012). Once a strainline γ has been generated from each seeded
candidate point, we single out the hyperbolic VLCSs by first ensuring that each line has
an arc length L (γ) of at least Lmin, and then by comparing the average value of λ2, λ2, of
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each of these strainlines with their immediate neighbours. The way in which Farazmand
& Haller (2012) achieve this involves evaluating λ2 using the formula

λ2 (γ) =
1

L (γ)

∫
γ

λ2 (γ) ds,

locating the two nearest neighbouring strainlines for each γ (using their corresponding
candidate points) and comparing the generated values of λ2 for this set of lines. If the
value of λ2 for a strainline γ is larger than its two nearest neighbours, this strainline
is classified as a hyperbolic VLCS of maximal particle repulsion which satisfies the five
necessary conditions listed earlier. The collection of all of these VLCSs forms a foliation
of the most repelling barrier–type structures of the flow domain Ω, which clusters of flow
trajectories will repel from at a locally maximal rate.

2.2.3 VLCS Algorithm B

While the previous algorithm conforms strongly to the theory of VLCSs, executing the
method requires many algorithmic steps and is computationally inefficient to implement.
In order to reduce the computational time and effort required to produce these hyper-
bolic VLCSs, Onu et al. (2015) proposed a new, more simple algorithm for generating
these structures. Conceptualised under the name “LCS Tool”, the intuition behind this
algorithm involves the notion that hyperbolic variational Lagrangian coherent structures
are curves which represent flow barriers of maximal particle repulsion capability, but this
capability is measured quantitatively by the second Cauchy–Green eigenvalue λ2. In-
tuitively, any hyperbolic variational LCSs produced should capture ridges where λ2 is
largest (or at least locally largest) within the domain, so by choosing initial flow points
x0 corresponding to “locally maximal” values of λ2 as candidate points for solving the ξ1

eigenvector field, hyperbolic VLCSs like those detected from VLCS–A can be detected in
a more timely manner. What constitutes a “locally maximum” point of λ2 as far as Onu
et al. (2015) are concerned will be explained shortly.

Unlike the previous algorithm, the LCS Tool algorithm, which we will refer to as
VLCS Algorithm B or VLCS–B, relies on just two parameters - a separation radius ρ,
and a maximum length for the hyperbolic variational LCSs Lmax. The algorithm begins
once again by seeding candidate points for integration of the ξ1 field, which is done in this
case by identifying initial flow points x0 which correspond to “locally maximal” values of
λ2. What is meant by “locally maximal” values of λ2 is as follows: we begin by identifying
the initial point x0 which corresponds to the globally largest value of λ2 over the whole
flow domain Ω. We then draw a circle of radius ρ around this point, and identify the
point x0 corresponding to the global maximum of λ2 within the remainder of the domain
not covered by this circle. We continue in this fashion until no remaining grid points x0
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Figure 2.5: Candidate points for integration of the ξ1 field (blue ’x’ markers), separated
by circular neighbourhoods of radius ρ (indicated by grey dashed lines).

lie beyond a distance of ρ from a previously determined candidate point. This procedure
produces an image of candidate points much like the one shown in Figure 2.5.

We then perform forward and backward integration of the ξ1 field from the first point
of “locally maximal” λ2 (that is, the point corresponding to the globally maximal value
of λ2) using the same procedure outlined in Section 2.2.1. This time, we do not regulate
this integration using any of the necessary conditions from the previous algorithm or an
acceptable set such as G0, instead integration of the eigenvector field proceeds until a full
strainline of length no larger than Lmax has been generated, which is then automatically
classified as a hyperbolic VLCS of locally maximal particle repulsion. Integration of the ξ1

field then proceeds from the next candidate point so long as this point does not lie within
ρ of the LCS previously detected. Figure 2.6 shows the collection of eligible remaining
candidate points from those shown in Figure 2.5 after the first hyperbolic VLCS has been
produced. This procedure continues until all candidate points lie within ρ of a hyperbolic
VLCS, producing a foliation of these VLCSs which more or less covers the flow domain.

2.2.4 VLCS Algorithm C

The idea of the VLCS–B algorithm is to capture hyperbolic VLCSs which coincide with
maximal ridges of λ2, a measure of the maximal stretching rate of a flow trajectory. How-
ever, as noted by Farazmand & Haller (2012), λ2 is not a smooth measure of particle
stretching, with sharp jumps and large variation in this quantity observable throughout
the domain. The FTLE (2.3) is a scaled version of λ2 (the larger of the two Cauchy–Green
eigenvalues) used to visualise maximal ridges which represent hyperbolic flow barriers for
a dynamic system. This suggests that if the variational LCSs produced using VLCS–B
are designed to coincide with maximal ridges of the λ2 field, these should also coincide
with maximal ridges of the FTLE and this quantity could therefore be used to regulate
the integration of the ξ1 field instead of λ2. Hence, we propose a new VLCS detection
algorithm which essentially combines the computational metrics of the previous two al-
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Figure 2.6: The candidate points from Figure 2.5 shown with the hyperbolic VLCS pro-
duced from the point labelled with a gold ’x’ marker. Points marked with red crosses are
within ρ of the VLCS and cannot be selected as the next initial integration point, whereas
the points marked with green circles are distanced further than ρ from the VLCS and the
point corresponding to the largest value of λ2 among these remaining points is selected
as the next initial integration point.

gorithms with those of the FTLE to find the most influential hyperbolic flow barriers
for a dynamic system, essentially creating synergy between a collection of LCS detection
methods/algorithms which were all designed to detect the same type of coherent structure.

This algorithm, which we will refer to as VLCS Algorithm C or VLCS–C, follows
a similar procedure to VLCS–B, except the FTLE is used to regulate the selection of
candidate points for integrating the ξ1 eigenvector field. In addition, the α parameter
used to scale the ξ1 field to remove degenerate eigenvectors (see Section 2.2.1) is replaced
with a similar quantity,

β (x0) =
1

σ (x0)
Φt0+T
t0 (x0) , (2.5)

where

σ (x0) = max
x0

Φt0+T
t0 (x0) ;

that is, the maximum of the FTLE defined discretely over all initial points x0. We
find this maximum in a similar fashion to how Onu et al. (2015) isolate “local maxima”
of λ2, as the FTLE is not defined continuously over the entire flow domain Ω. The
scaling parameter β ∈ [0, 1], amplifies the ξ1 eigenvectors along ridges where the FTLE
is larger, and diminishes these eigenvectors where the FTLE is smaller and a Cauchy–
Green singularity point is more likely to exist. Furthermore, in an incompressible flow
λmax = 1 at these singularity points and the FTLE vanishes, causing β to vanish at these
points along with the degenerate Cauchy–Green eigenvectors as intended by the original
α parameter. An illustration of how this parameter scales the ξ1 eigenvectors can be
seen in Figure 2.7. In this algorithm, the β parameter is used to scale the ξ1 field, seed
candidate points used to find solution curves for this field, and regulate this process by
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Figure 2.7: An original ξ1 eigenvector field (left), the scalar field for the β parameter (2.5)
(centre), and the scaled βξ1 eigenvector field (right).

ensuring that the strainlines produced do not traverse into regions where the FTLE is
below a pre–determined threshold β0.

This algorithm begins by isolating the initial point x0 at which β = 1 (and hence
the FTLE is globally maximal) and commencing forward and backward integration of
the ξ1 eigenvector field once again using the procedure detailed in Section 2.2.1, with
the β parameter used in place of the α parameter. As integration proceeds, we ensure
that the value of β along the strainline does not drop below the limiting threshold β0.
Throughout this research we choose β0 = β, the mean of β over the whole domain Ω,
which is the simplest possible choice and leaves scope for determining other potential
values for this threshold. If a strainline traverses through a sub-region of the domain
where β < β0 for a length greater than Lf (using a similar technique to that used in
VLCS–A), we terminate integration of the strainline. Otherwise, we let the integration of
the ξ1 field continue until the length of the strainline exceeds Lmax (in similar fashion to
VLCS–B). The next candidate point is then seeded as the initial point x0 corresponding
to the globally largest value of β that does not lie within ρ of any previously generated
strainlines. This procedure continues until all initial points x0 are either within ρ of a
hyperbolic strainline or correspond to a value of β which lies below the threshold β0. The
resultant strainlines represent a foliation of maximally repelling hyperbolic VLCSs for the
flow system.

This method essentially blends geodesic LCS detection techniques from the previous
two algorithms with the FTLE method to produce a collection of the most meaningful
hyperbolic VLCSs within a flow system in a computationally efficient manner.

2.3 Lagrangian Averaged Vorticity Deviation

So far, we have considered Lagrangian coherent structure detection methods which seek
codimension–1 flow barrier type structures which indicate where flow trajectory stretching
is strongest within a flow domain and therefore segregate the domain into more robust



2.3. Lagrangian Averaged Vorticity Deviation 23

sub–regions. There also exist methods used to detect these robust regions themselves,
rather than simply detecting the boundaries which separate them from other coherent
regions of the domain. One such method uses Lagrangian averaged vorticity deviation
(LAVD), a measure of the rotational coherence of pockets of flow trajectories based on the
relative vorticity of these trajectories against the average vorticity of the whole domain.

The theory of Lagrangian averaged vorticity deviation was first derived by Haller
(2016) and expanded and tested further by Haller et al. (2016). To begin, we will rewrite
the velocity system (2.1) in the form

ẋ = u (x, y, t) =

[
u (x, y, t)
v (x, y, t)

]
.

Upon computing the flow map Ft0+T
t0 (x0, y0) of an initial point (x0, y0) ∈ Ω, Haller (2016)

shows that the gradient of this flow map can be decomposed in the fashion

∇Ft0+T
t0 (x0, y0) = Ht0+T

t0 (x0, y0) Dt0+T
t0 (x0, y0) ,

where Ht0+T
t0 (x0, y0) represents the gradient of the rotational flow component of (2.1),

and Dt0+T
t0 (x0, y0) represents the gradient of the stretching/compression flow component.

The rotational flow component gradient can be decomposed further in the fashion

Ht0+T
t0 (x0, y0) = Θt0+T

t0 (x0, y0) Υt0+T
t0 (x0, y0) ,

where Θt0+T
t0 (x0, y0) represents a homogeneous rotation gradient and Υt0+T

t0 (x0, y0) rep-
resents the deviation from this homogeneous rotation under the influence of (2.1). The
rotation angle of Θt0+T

t0 (x0, y0) is used as an objective, frame independent measure of the

rotational coherence of the flow trajectory Ft0+T
t0 (x0, y0), and as shown by Haller et al.

(2016) is equal to half of the Lagrangian averaged vorticity deviation of said trajectory,

Θt0+T
t0 (x0, y0) =

t0+T∫
t0

∣∣ω3

(
Fs
t0

(x0, y0) , s
)
− ω (s)

∣∣ ds. (2.6)

In the above expression, ω3 represents the third component of the vorticity vector ω =
∇ × u, which is the only non-zero component of this vector in a two–dimensional flow
system such as (2.1) and carries a value

ω3 =
∂v

∂x
− ∂u

∂y
;

while ω represents the mean vorticity of (2.1) over the entire domain Ω, which is calculated
using the formula

ω (t) =
1

A (Ω)

∫∫
Ω

ω3 (x, y, t) dA,
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where

A (Ω) =

∫∫
Ω

1 dA,

that is, the area of the domain. In short, (2.6) is a relative measure of the vorticity of a
flow trajectory against the mean vorticity of the whole domain, with structures or shapes
corresponding to larger values of this quantity exhibiting greater rotational coherence
within the flow, in a fashion akin to vortical flow structures such as oceanic eddies Haller
et al. (2016).

To calculate the LAVD (2.6), we begin by producing a uniform grid of initial points
x0 ∈ Ω in the same fashion as we have done for the previous two LCS detection methods.
We can then proceed by computing the flow map Ft0+T

t0 (x0) for each of these points,
retaining flow map information at various time steps t ∈ [t0, t0 + T ], and using this in-
formation to evaluate the integral (2.6) using a numerical integration method such as
the Trapezoidal Formula or Simpson’s Formula. However, Haller et al. (2016) note that
using this method to calculate (2.6) creates a considerable amount of numerical error and
uncertainty for this quantity which can be avoided by solving an extended version of the
velocity system (2.1) which takes the form

ẋ =

u (x, y, t)
v (x, y, t)
θ (x, y, t)

 , (2.7)

where θ (x, y, t) =
∣∣ω3

(
Ft
t0

(x0, y0) , t
)
− ω (t)

∣∣, that is, the integrand of (2.6). Solving
the system (2.7) using a numerical differential equation solver such as ode45 in MATLAB
should reduce the estimation error accrued for the LAVD to a similar level as that obtained
for the flow maps of the initial points x0 (Haller et al. 2016).

2.4 Stochastic Sensitivity

The next method we will focus on in this research concerns the use of stochastic sensitivity
(S2) to detect LCSs for a flow system essentially using the variance of Lagrangian flow
trajectories. As will be explained in due course, this is one of few LCS detection methods
with the flexibility to detect both codimension–1 flow barriers as well as more robust flow
regions based on certain characteristics and parameters pertinent to a dynamic velocity
system. Given the same deterministic velocity system defined by (2.1), we can convert
this system into a stochastic differential equation (SDE) system taking the form

dxt = u (xt, t) dt+ ε σ (xt, t) dWt. (2.8)

In the above equation, the drift function u represents the same deterministic velocity
system defined by (2.1), ε is a parameter representing the known or anticipated level of
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noise or uncertainty present within our Eulerian velocity representing (2.1), σ is a matrix
which represents the diffusion of stochastic volatility through the flow map in each spatial
direction, and Wt ∼ N (0, 1) represents two–dimensional geometric Brownian motion
which has a standard normal distribution. It is important to note that each of these
quantities carry relevant units of measurement, particularly when we are considering a
dimensional velocity system. In the context of this method, the drift velocity u has a
unit of distance per unit of time, ε has a unit of distance per square root of time, the
Brownian motion Wt has a unit of the square root of time and the diffusion matrix σ is
dimensionless and by default set to the 2 × 2 identity matrix I2×2 (Balasuriya 2020a,b).
If we let xT be the solution to (2.8) for the initial point x0 over a flow interval ranging
from t0 to t0 + T , define the quantity

Zε (x0) =
xT − Ft0+T

t0 (x0)

ε
,

where Ft0+T
t0 (x0) is the “true” deterministic solution of (2.1). Essentially, Zε (x0) repre-

sents the deviation between the deterministic flow map beginning from x0 and a stochastic
realisation of this flow map produced from (2.8). We then project this deviation over all
possible angles φ ∈ [−π/2, π/2) using the formula

Pε (x0, φ) =

[
cos (φ)
sin (φ)

]>
Zε (x0) .

As the noise level ε tends to 0, one might expect that Zε (x0) (and therefore also Pε (x0, φ)
regardless of the projection angle φ) will tend to 0 and that a stochastic solution of (2.8)
will tend towards the “true” deterministic solution of (2.1) (Balasuriya 2020a). However,
seeing as Wt is not bounded, individual realisations of xT (and hence Zε (x0)) can also be
unbounded. We can therefore show, as Balasuriya (2020a) has done, that the expectation
of Zε (x0) as ε tends to zero, is zero. What we are interested in is the variation of this
deviation in the flow map, particularly of the quantity Pε (x0, φ). The quantity

A (x0, φ) =
[
lim
ε→0

Var (Pε (x0, φ))
]1/2

,

which is known as the Anisotropic Uncertainty of a flow trajectory, is the expected un-
certainty or variation of a flow trajectory over a particular projection angle φ. If we
maximise this uncertainty over all possible projection angles, we obtain what we can es-
sentially classify as the variance of a Lagrangian flow trajectory, the stochastic sensitivity

S2 (x0) = lim
ε→0

max
φ∈[−π/2,π/2)

Var (Pε (x0, φ)) (2.9)

(Balasuriya 2020a,b). Larger values of this quantity indicate a greater susceptibility of
Lagrangian flow trajectories beginning from a point x0 to velocity uncertainty, and there-
fore the existence of more chaotic flow behaviour within this region of the flow domain. In
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fact, as shown by Balasuriya (2020a) and as will be further illustrated in later Chapters,
for most flow systems the greatest stochastic sensitivity of Lagrangian flow trajectories
is observable along codimension–1 ridge type structures not unlike those observable from
the FTLE. On the other hand, smaller values of this quantity indicate greater resistance
of Lagrangian flow trajectories to numerical uncertainty, thereby offering some guarantee
of more robust and consistent particle flow behaviour within the sub–regions of Ω which
correspond to these low values.

Balasuriya (2020a) has obtained an analytical expression for S2 that does not rely on
the computation of hundreds or even thousands of stochastic realisations of xT . To derive
this expression, we must begin by defining the matrix

Λ (w, t) = exp

 t0+T∫
t0

[∇ · u]
(
Fτ
t0+T (w) , t

)
dτ

σ (Ft
t0+T (w) , t

)> [0 −1
1 0

]
∇Ft

t0+T (w) ,

(2.10)
where w = Ft0+T

t0 (x0) for initial points x0 ∈ Ω and ∇ · u represents the divergence of the
velocity system (2.1). If we choose the default σ = I2×2, (2.10) simplifies to

Λ (w, t) = exp

 t0+T∫
t0

[∇ · u]
(
Fτ
t0+T (w) , t

)
dτ

[0 −1
1 0

]
∇Ft

t0+T (w) . (2.11)

Furthermore, if (2.1) is incompressible, i.e. ∇ · u = 0 over the entire domain, (2.11)
simplifies even further to

Λ (w, t) =

[
0 −1
1 0

]
∇Ft

t0+T (w) , (2.12)

which is just a counterclockwise rotation of the backwards time flow map gradient of w
by an angle of π/2 (Balasuriya 2020a,b). We then use the elements of Λ to compute the
integrals

L (w) =
1

2

t0+T∫
t0

(
Λ2

12 + Λ2
22 −Λ2

11 −Λ2
21

)
dt,

M (w) =

t0+T∫
t0

(Λ11Λ12 + Λ21Λ22) dt,

and the subsequent quantity N (w) =
√
L2 (w) +M2 (w). Generating these quantities is

essential as the optimal projection angle in (2.9) turns out to be −φ∗/2, where cos (φ∗) =
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L (w) /N (w) and sin (φ∗) = M (w) /N (w) (Balasuriya 2020a,b). We then complete the
procedure by calculating

S̃2 (w) =
1

2

t0+T∫
t0

(
Λ2

11 + Λ2
21 + Λ2

12 + Λ2
22

)
dt +N (w) , (2.13)

and mapping the values of S̃2 (w) to their corresponding initial points x0 ∈ Ω at time t0
to obtain the stochastic sensitivity S2 (x0) (Balasuriya 2020a,b).

Numerically evaluating (2.13) for the velocity system defined by (2.1) does involve a
rather lengthy computational process. We begin as we have with the previously defined
LCS detection methods by seeding a uniform grid of initial points x0 ∈ Ω and flowing
these forward under (2.1) to obtain the flow maps w = Ft0+T

t0 (x0) where w = (w, z). We
then need to produce the matrix Λ for each of these advected flow points w over a range
of time steps t ∈ [t0, t0 + T ]. These computations rely on generating the backwards time
flow map gradient for the advected points w, which is challenging as these points are
extremely unlikely to be spaced uniformly after the initial grid points have been advected
through the flow system defined by (2.1). There are a few ways of overcoming this issue to
allow the gradients to be computed using standard finite differencing, and in this research
we shall consider two of these methods.

The first method involves seeding a uniform grid of particles w0 at time t0 + T which
covers the spread of all of the advected points w, flowing these backwards to time t0
and computing the gradient of the backwards time flow map at various time steps t ∈
[t0, t0 + T ] using the same finite differencing techniques employed in some of the previously
discussed LCS detection methods such as the FTLE or VLCS methods. The other method
involves generating the flow map gradient using an auxiliary star grid defined for each
advected point w in similar fashion to the technique discussed in Section 2.2.1 for the
VLCS method, which involves generating the backwards time flow maps for the points
wr = (w + δx, z), wl = (w − δx, z), wu = (w, z + δy) and wd = (w, z − δy) which surround
each w by a small distance of δx in x and δy in y; and generating the flow map gradient
by computing

∇Ft
t0+T (w) =

[
Ft

t0+T (wr)−Ft
t0+T (wl)

2δx

Ft
t0+T (wu)−Ft

t0+T (wd)

2δy

]
.

The latter method is recommended when working with observational data sets, or with a
velocity system where the spread of advected particles w is considerably large (Balasuriya
2020b). We then use these gradients to compute the elements of the matrix Λ, using (2.12)
or (2.11) if the flow system in question is compressible. In the latter case, computation
of the divergence integral required to evaluate (2.11) can be done numerically using a
numerical integration technique such as the Trapezoidal Formula or Simpson’s Formula;
the former of which will be used in this study.
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We then numerically evaluate L (w), M (w) and the integral in (2.13) using the Trape-
zoidal Formula (or Simpson’s Formula if desired) and use these quantities along with

N (w) to compute S̃2 for the points w at time t0 + T . If we have used the star grid
method to compute the backwards time flow gradients, we complete the computation of
S2 by simply assigning the values of S̃2 (w) to the corresponding points x0 at time t0.
However, if we have instead defined a new uniform initial grid w0 at time t0 + T to cal-
culate these gradients, we assign the values of S̃2 (w0) to the points x = Ft0

t0+T (w0) at
the initial time t0, and use scattered interpolation to determine the values of S2 for our
original initial points x0 (Balasuriya 2020a,b).

The raw S2 quantity carries a drawback in that it tends to spike to very large maximal
values in not a very smooth or cohesive fashion, resulting in large variation (and large
gradients) between the values of S2 throughout the flow domain and the production
of a scalar field that can be almost impossible to interpret for some dynamic systems
(Balasuriya 2020a). There are various methods of scaling this quantity to make the key
patterns observable for this quantity more distinguishable within its scalar field, using
parameters relevant to our velocity system such as the resolution of the velocity data or
the initial grid of points; or the known or expected uncertainty present within this data.
The scaled version of S2 which we will use in this research takes the form

Sv (x0) = ε
√
S2 (x0) =

√
hvrS2 (x0), (2.14)

where h is the resolution of the velocity data and vr is the anticipated uncertainty present
within this data. This scaled quantity essentially provides a measure of the lengthscale
over which the flow map of a particle which begins at x0 will experience considerable
variation or uncertainty (Balasuriya 2020a,b).

As mentioned earlier, the stochastic sensitivity can also be used to detect sub–regions
of Ω over which particle flow is less sensitive to velocity uncertainty and is therefore
expected to be more robust or consistent. We define the robust set

R(L, vr, h) = {x0 ∈ Ω : Sv(x0) < L} , (2.15)

which is comprised of partitions of Ω within which the scaled stochastic sensitivity length-
scale Sv (x0) is below a threshold of choice L, and therefore particle flow is expected to be
more consistent under the influence of (2.1) and any associated velocity uncertainty. This
method therefore provides a way to visualise both the most chaotic and the most consis-
tent particle flow behaviour within a velocity system, with the added flexibility of these
coherent structures being able to be fine tuned using lengthscales and velocity uncertainty
levels of choice (Balasuriya 2020a,b).
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2.5 The Transfer Operator

All of the LCS detection methods considered so far have been “geometric” in nature, that
is, the computations relevant to each method rely on characteristics of flow trajectories
such as the flow map gradient and the Cauchy-Green strain tensor; which are usually
generated from initial points that seem to pertain to a uniform grid structure even though
this does not necessarily happen to be the case (Allshouse & Peacock 2015, Hadjighasem
et al. 2017). There are ways of generating LCSs without having to rely on quantities like
these. An example of this involves the consideration of probabilistic coherence, which
involves seeking an initial density of fluid particles over a flow domain which undergoes
the least change under the influence of a dynamic system. One of these methods involves
dividing a flow domain Ω into coherent sets using a flow particle transition matrix which
acts as a finite dimensional approximation of the transfer operator.

The transfer operator (or the Perron–Frobenius operator) operates on an infinite-
dimensional space of density functions in order to model how these functions are mapped
from an initial time t0 to the final time t0 +T under a dynamic velocity system. However,
in order to approximate this operator over a flow domain Ω, we use the transition matrix
P, which is a standard finite-dimensional discretisation of the operator defined over a finite
number of boxes covering Ω at time t0 as well as the advected flow domain Ω̃ = Ft0+T

t0 (Ω)
at time t0 + T (Froyland et al. 2010).

Suppose we divide the domain Ω into a finite collection of boxes Bj, j = 1, 2, . . . ,M ;

and the domain Ω̃ into a similar (or sometimes identical) collection of boxes Ci, i =
1, 2, . . . , N . The transition matrix P is theoretically defined by the column–stochastic
matrix

Pij =
µ
(
Bj ∩ Ft0

t0+T (Ci)
)

µ (Bj)
, (2.16)

where µ represents Lebesgue measure (area in two dimensions) (Froyland 2005, Allshouse
& Peacock 2015). Essentially, if we take a box Ci at time t0 + T , flow it backwards under
the system (2.1), measure the overlap between the resultant, deformed box and the box
Bj defined at time t0, and divide this by the area of Bj, we obtain a probability of a fluid
particle beginning in box Bj at time t0 and ending up in box Ci at time t0 + T under
the influence of the velocity system (2.1) (Tallapragada & Ross 2013). We define the
transition matrix P as column–stochastic, in contrast to the majority of the literature
where it has been defined as a row–stochastic operator (Froyland 2005, Froyland et al.
2010, Froyland 2013, Tallapragada & Ross 2013, Allshouse & Peacock 2015). To estimate
(2.16) numerically, we use a discrete version of this matrix

Pij =

∣∣xk : xk ∈ Bj ∧ Ft0+T
t0 (xk) ∈ Ci

∣∣
Q

, (2.17)

for Q initial points xk = (xk, yk) within the box Bj seeded randomly under a uniform dis-
tribution (Froyland et al. 2010, Allshouse & Peacock 2015). Figure 2.8 gives an illustration
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Figure 2.8: A set of initial points x0 within the box Bj at time t0 (left), and the transfer
operator probabilities Pij for a range of boxes Ci at time t0 + T following advection of
the initial points through a dynamical system (right).

of how we estimate the elements of P using this discrete technique.
Ideally, P should define how the distribution of a concentration of fluid particles at

time t0 is advected through a flow system under the influence of (2.1) over the time
interval [t0, t0 + T ]. If we let the vector v0 define this concentration over all boxes Bj at
time t0, the vector

vT = Pv0

defines the spread of these particles over the boxes Ci at time t0 + T following their
advection through the system. The pullback operator, P>, sends flow particles at the
final flow time t0 + T back to the initial time t0. Applying this to the above equation
gives

P>vT = P>Pv0.

The aim of the transfer operator method is to find an initial particle concentration v0

such that P>vT ≈ v0, thereby preserving v0 after flowing these distributions forward by
P and flowing them back again using P>; that is,

v0 ≈ P>Pv0.

This goal yields the eigenvalue problem

P>Pv0 = λv0. (2.18)

The matrix P>P is symmetric and positive definite, so all eigenvalues will be non–
negative; and in the case of this matrix, the largest eigenvalue is λ1 = 1. The corre-
sponding eigenvector v1 is the indicator function over the entire flow domain. The next
largest eigenvalue λ2 has a value slightly less than 1, and its corresponding eigenvector v2
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produces a “strongly coherent” initial distribution over all of the boxes Bj at time t0. By
partitioning these distributions over a zero contour level, or an optimal non–zero level, we
(in a rather ad hoc fashion) divide Ω into two coherent sets based on the flow behaviour
of particles under the influence of (2.1) over the time interval [t0, t0 + T ] (Froyland et al.
2010, Froyland 2013). Subsequent eigenvectors such as v3 can also be used to find other
pairs of coherent sets provided that there is a sufficient gap (referred to as a spectral
gap) between the corresponding eigenvalue and the subsequent eigenvalue (Tallapragada
& Ross 2013); or a combination of the first k eigenvectors can be used to partition the
flow domain Ω into k coherent flow objects using techniques such as k–means clustering
(Froyland & Junge 2018) or the SEBA algorithm (Froyland et al. 2019). If we define a
large number of boxes Bj at time t0 and Ci at time t0 + T , the matrix P will be con-
siderably large and calculating the matrix product P>P will take up a large amount of
memory in programming software such as MATLAB. To overcome this issue, Froyland
et al. (2010) use a memory–conserving calculation technique which involves obtaining the
same coherent sets for Ω from singular values and vectors of P instead. We define v0 as a
vector of the Lebesgue measures (areas) of all initial boxes Bj at time t0, and define the
spread of these measures vT in the manner done above. The elements of these vectors
v0 and vT define the non–zero entries of the diagonal matrices Π0 and ΠT respectively,
which are used to define the matrix

P̃ = Π
− 1

2
T PΠ

1
2
0 . (2.19)

We then generate the largest singular values (not the largest eigenvalues) of P̃, the first
of which, σ1, should equal 1. The next largest singular value, σ2, is the square root of λ2

which is the second largest eigenvalue of P>P, and corresponds to a right singular vector
yr and a left singular vector yl. Again, singular vectors corresponding to a subsequent
singular value such as σ3 could be used instead. We use these right and left singular
vectors to define “optimal vectors” which are used to obtain coherent sets for Ω at time
t0 and Ω̃ at time t0 + T , respectively. The optimal vector

v∗0 = Π
− 1

2
0 yr

is used to detect two coherent sets at time t0, while the advection of these coherent sets
under (2.1) to the time t0 + T can be detected using the other optimal vector

v∗T = Π
− 1

2
T yl

(Froyland et al. 2010). The primary focus of this research will be on coherent sets relevant
to the initial flow time t0 obtained using v∗0.

To carry out this method numerically, we divide the flow domain Ω at time t0 into
M = Mx ×My rectangular boxes of equal size, and the anticipated advected domain Ω̃
at time t0 + T into N = Nx ×Ny rectangular boxes, initialising the transition matrix P
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as a NxNy ×MxMy matrix. Within each of the boxes Bj at time t0, we seed Q initial
flow points x0 under a uniform distribution. As far as the literature is concerned, only
a small value for Q ranging between 400 (Froyland et al. 2010, Froyland 2013) and 1600
(Froyland 2015) points is sufficient. Over each box Bj, we flow these particles forward for
T units of time under (2.1), identify which boxes Ci at time t0 + T these particles have
“landed” into, and use these to create vectors of sample particle advection probabilities
which form columns of P. The procedure continues for all remaining boxes Bj defined at
t0. We then obtain singular values for P and their corresponding singular vectors using
the technique described above as outlined by Froyland et al. (2010). We will primarily
consider the second right singular vector of P to obtain the optimal vector v∗0 for all of
our flow systems, though we will also use subsequent singular vectors if the coherent sets
produced by these vectors give a meaningful visualisation of the flow system in question.

2.6 The Dynamic Laplace Operator

The dynamic Laplace operator is very similar to the transfer operator defined in the last
section in that it is used to split a flow domain Ω into two (or potentially more) coherent
sets. The key difference is that this operator uses a Laplacian matrix (which will be
defined shortly) to explicitly incorporate diffusion into the flow defined by the transfer
operator matrix. Froyland (2015) first used this technique to divide a flow domain Ω
into two coherent sets using ∆, the static Laplace operator matrix relevant to a velocity
system where Ω does not change shape. The primary motivation of this method is to
find an optimal boundary ζ that divides Ω into two coherent sets by minimising the
ratio between the length of the boundary and the area of the coherent sets subsequently
produced; otherwise known as the Cheeger constant which in this case is defined as

χ = min
ζ

L (ζ)

min (A(S1), A(S2))
, (2.20)

where L indicates the length of the boundary ζ and A indicates the area (Lebesgue
measures in the first and second dimension, respectively) of S1 and S2; the sets separated
by ζ (Froyland 2015, Hadjighasem et al. 2017). Suppose we divide Ω into M = Mx ×My

rectangular boxes of equal size as was done for the transfer operator in the previous
section. Now suppose we have some function f(x, y) defined over the domain Ω. Define
the vector

f = [f1,1 f2,1 · · · fMx,1 f1,2 f2,2 · · · fMx,2 · · · f1,My f2,My · · · fMx,My ],

where fi,j is the value of the function at the central point of the i–th box in the x–direction
and the j–th box in the y–direction. The elements of the Laplace operator matrix ∆ are
the finite element coefficients used to compute the Laplacian ∆f = ∇2f for the function
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defined over this box configuration for Ω. We obtain a vector of these Laplacian values
through the matrix multiplication ∆f . In the corresponding eigenvalue problem

∆v = λv, (2.21)

the first eigenvalue λ1 ≈ 0, and gives an approximation for the static Cheeger constant
χ (Froyland & Junge 2018). All remaining eigenvalues are negative and decreasing in
order tending to negative infinity, i.e. 0 ≈ λ1 > λ2 > λ3 > · · · . Like with the transfer
operator method, the second eigenvector v2 of the eigenvalue problem (2.21) is used to
find two almost invariant coherent sets, which are separated by a zero contour or the
contour corresponding to the aforementioned Cheeger constant estimate λ1 (Froyland &
Junge 2018).

For a non–autonomous dynamical system such as (2.1), the dynamic Laplace operator
now applies the diffusion effect on top of the dynamics of the flow. In this case, the
Cheeger constant now takes the form

χD = min
ζ

L (ζ) + L
(
Ft0+T
t0 (ζ)

)
2 min (A(S1), A(S2))

, (2.22)

(Froyland 2015), and the dynamic Laplace operator is defined as

∆D =
1

2

(
∆0 + P>∆TP

)
, (2.23)

where P is the finite–dimensional discretisation of the transfer operator as defined in the
previous section, and ∆0 and ∆T are Laplacian operator matrices defined over the box
configurations of Ω at time t0 and Ω̃ at time t0 + T , respectively. The elements of each of
these Laplacian operators are found using the finite difference formula

1

4h2
x

um+1,n

um,n
fm+2,n +

1

4h2
x

um−1,n

um,n
fm−2,n +

1

4h2
y

um,n+1

um,n
fm,n+2 +

1

4h2
y

um,n−1

um,n
fm,n−2

−
(

1

4h2
x

um+1,n − um−1,n

um,n
+

1

4h2
y

um,n+1 − um,n−1

um,n

)
fm,n,

where hx and hy are the lengths of each box in the x and y directions respectively, f is the
function for which we would compute the Laplacian with discrete values expressed within
the vector f defined above, and each u is taken from a vector representing the areas of
each box defined at time t0 (or t0 + T ) with similar dimensions to f (Froyland & Kwok
2017). We then solve a similar eigenvalue problem to (2.21)

∆Dv = λv, (2.24)

which produces an analogous spectrum of eigenvalues and their corresponding eigenvectors
to those produced from (2.21). Like with the transfer operator, we can obtain two coherent
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sets for Ω using the second eigenvector v2, obtain a different pair of coherent sets using
a subsequent eigenvector such as v3, or find k coherent sets using techniques such as k–
means clustering applied to the first k eigenvectors obtained from the eigenvalue problem
(2.24) (Froyland & Junge 2018).

While we will use the matrix definition of the dynamic Laplace operator (2.23) for the
majority of flow systems considered in this study, we will also use a sparse computational
algorithm for this LCS detection method conceptualised by Froyland & Junge (2018). This
method comes in useful for computing two coherent sets for a dynamic system defined
by flow trajectory data over a sparse collection of initial points, a non–rectangular or
otherwise awkwardly shaped flow domain, or obstruction of certain portions of the flow
domain by land in an oceanographic flow system; features of flow data which would
otherwise make producing a Laplacian matrix operator over a uniform grid of rectangular
boxes difficult or impossible. The method has been derived using finite element techniques
and does not require the prior computation of the transition matrix P as the relevant
information obtained from this matrix is embedded within the finite element definitions
of the operator. Suppose we have N initial points within our domain Ω, defined in a
uniformly spaced grid or in a sparse fashion. We then obtain, or are given (depending on
the flow data available), flow trajectories relevant to each of these points defined over K+1
time steps tk = t0 +k∆t, where k = 0, 1, 2, . . . , K and K∆t = T . Each initial point, along
with corresponding points along its flow trajectory, is assigned an index ranging from 1
to N . At each time step tk, we take the formation of all flow trajectory points as they
stand within Ω at that time, and produce a triangular mesh of these points either using
Delaunay triangulation or an Alpha Triangulation method in MATLAB. We take one of
these triangles, which we will denote by Υ, with vertices xa = (xa, ya), xb = (xb, yb) and
xc = (xc, yc), where a, b and c are the respective indices for these points corresponding to
a particular flow trajectory. This triangle will carry three finite element basis functions
respective to each vertex, which we can define by the formulae

φa (x, y) =
1

|X|
((yb − yc)x+ (xc − xb) y + (xbyc − xcyb)) ,

φb (x, y) =
1

|X|
((yc − ya)x+ (xa − xc) y + (xayc − xcya)) ,

φc (x, y) =
1

|X|
((ya − yb)x+ (xb − xa) y + (xayb − xbya)) ,

where

|X| = det

1 xa ya
1 xb yb
1 xc yc

 .
We use these formulae to produce a mass matrix M and a stiffness matrix D for this
triangle. The mass matrix Mij contains the inner products of the basis functions φi and
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φj defined over this triangle. After some hand calculation, this matrix is found to take
the form

M =
A (Υ)

12

2 1 1
1 2 1
1 1 2

 ,
where A (Υ) denotes the area of the triangle. The stiffness matrix Dij contains the
Lebesgue integrals of the dot products of the gradient vectors of the basis functions φi
and φj over the area of this triangle. After some further hand calculation, the elements
on the diagonal of this matrix turn out to equal

D11 =
A (Υ)

|X|2
(
(yb − yc)2 + (xc − xb)2) ,

D22 =
A (Υ)

|X|2
(
(yc − ya)2 + (xa − xc)2) ,

D33 =
A (Υ)

|X|2
(
(ya − yb)2 + (xb − xa)2) ,

which look the like the squares of the distances between the vertices at which each re-
spective basis function vanishes multiplied by the area of the triangle and divided by the
square of the above defined matrix determinant. For the remaining matrix elements,

D12 = D21 =
A (Υ)

|X|2
((yb − yc) (yc − ya) + (xc − xb) (xa − xc)) ,

D13 = D31 =
A (Υ)

|X|2
((yb − yc) (ya − yb) + (xc − xb) (xb − xa)) ,

D23 = D32 =
A (Υ)

|X|2
((yc − ya) (ya − yb) + (xa − xc) (xb − xa)) .

We then consider a larger stiffness matrix D(k) and a larger mass matrix M(k), each of
size N ×N and relevant to the time step t0 + k∆t. We add the elements of the first row
of D to the (a, a)-th, (a, b)-th and (a, c)-th entries of D(k) respectively, the elements of
the second row of D to the (b, a)-th, (b, b)-th and (b, c)-th entries of D(k) respectively, and
the elements of the third row of D to the (c, a)-th, (c, b)-th and (c, c)-th entries of D(k)

respectively. We carry out a similar procedure for adding the elements of M to the entries
of M(k). After completing this for one triangle at time tk, we repeat this procedure for
all of these triangles to complete the matrices D(k) and M(k). If two points xi and xj do

not form a triangle with a third point at time tk, D
(k)
ij = M

(k)
ij = 0. After producing these

matrices for each time step tk, we define the matrices

Dt0+T
t0 = − 1

K + 1

K∑
k=0

D(k),
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Mt0+T
t0 =

1

K + 1

K∑
k=0

M(k)

and solve the generalised eigenvalue problem

Dt0+T
t0 v = λMt0+T

t0 v. (2.25)

The dynamic Laplace operator ∆D is discretised into the matrices Dt0+T
t0 and Mt0+T

t0 using
finite element techniques. Upon solving this system, we obtain an analogous collection of
eigenvalues 0 ≈ λ1 > λ2 > λ3 > · · · and corresponding eigenvectors v1,v2,v3, . . ., which
are used to obtain coherent sets for Ω as was the case with the dynamic Laplace operator
defined over a rectangular grid of boxes.

2.7 Fuzzy C–Means Clustering

All of the aforementioned discussed LCS detection methods (aside from the finite element
discretisation of the dynamic Laplace operator) share one common thread - each of these
methods rely on knowledge of analytic or Eulerian velocity data representing the flow
system (2.1). In some instances of real world data, only sparsely defined flow trajectories
are available without the underlying velocity data, and in these instances none of the
above methods can be used to find LCSs. We therefore need to consider the use of
sparse LCS detection methods which group together batches of flow trajectories based
on the consistent closeness of flow trajectories over the duration of a flow or familiar
mixing behaviour observable between groups of these trajectories. One of these methods
is the fuzzy c–means (FCM) clustering method, which groups together a series of sparsely
defined flow trajectories into a pre-determined number of coherent clusters.

Bezdek et al. (1984, 1987) conceptualised the FCM clustering algorithm to cluster
together groups of individual Cartesian data points by iteratively updating the centres
of a number of pre-determined clusters and the membership probabilities of a point be-
longing to any of these clusters. This algorithm was subsequently expanded to cluster
discretely defined flow trajectories instead of just grid points based on their proximity
and the likelihood of groups of flow particles maintaining a similar shape (Froyland &
Padberg-Gehle 2015, Allshouse & Peacock 2015). This method can be executed using
more continuous definitions of flow trajectories (Froyland & Padberg-Gehle 2015); how-
ever in this research we will only focus on the simplest version of this method, which
involves the use of discretely defined Lagrangian flow trajectories.

We begin with a collection of flow trajectories for the system (2.1) defined over the

time interval [t0, t0 + T ] which begin from N distinct initial points x
(j)
0 ∈ Ω, j = 1, . . . , N ,

arranged either sparsely or in a uniform grid. Each flow trajectory is arranged into a
vector of the form

Xj =
[
Ft0
t0

(
x

(j)
0

)
,Ft0+∆t

t0

(
x

(j)
0

)
,Ft0+2∆t

t0

(
x

(j)
0

)
, . . . ,Ft0+T

t0

(
x

(j)
0

)]
, (2.26)
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for n equispaced time steps ∆ = T/n. We then pre-determine an appropriate number
of clusters K expected to exist within Ω based on the behaviour of (2.1) over this time
interval, either through a priori information if available or by arbitrarily guessing a value.
We submit the trajectories Xj to MATLAB’s in–built fcm algorithm, which implements
the FCM clustering algorithm to group these trajectories into K clusters or groups. The
algorithm achieves this by iteratively updating the “central trajectory” of each cluster,

Ck =

N∑
j=1

(pk,j)
m Xj

N∑
j=1

(pk,j)
m

, (2.27)

and the membership probability, or the likelihood of a trajectory belonging to each cluster,

pk,j =

[
K∑
i=1

(
‖Xj −Ck‖
‖Xj −Ci‖

) 2
m−1

]−1

(2.28)

(Allshouse & Peacock 2015). The process continues until the quantity

K∑
k=1

N∑
j=1

(pk,j)
m ‖Xj −Ck‖2

has been minimised with respect to an acceptable threshold (Froyland & Padberg-Gehle
2015). In the above equations, the parameter m is a sharpness parameter which deter-
mines the resolution of each FCM cluster. The value of m must be greater than 1, and
larger values of m will result in poorer resolution and the formation of clusters which will
have much less of a well-defined shape. m = 1.5 is a typical value for this parameter
(Allshouse & Peacock 2015, Froyland & Padberg-Gehle 2015), while stronger resolution
can be obtained in some instances by lowering m to between 1.1 and 1.25 (Froyland &
Padberg-Gehle 2015, Hadjighasem et al. 2017). It is not recommended to assign this pa-
rameter a value greater than 2 (Froyland & Padberg-Gehle 2015). Once the procedure has
been completed, K coherent clusters are obtained for Ω by grouping the sparse or uniform
flow trajectories Xj by their membership probabilities against a probability threshold p0.
If the likelihood of a trajectory Xj belonging to cluster K is greater than or equal to this
probability threshold, the trajectory is a “member” of this coherent cluster. The choice
of p0 depends on a number of factors pertinent to the velocity system being investigated,
though in some instances it can be selected by arbitrarily guessing a threshold or selecting
one following some experimentation with the parameter (Allshouse & Peacock 2015).
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2.8 Coherent Structure Colouring

A major drawback with the FCM clustering detection method is that the number of
coherent clusters expected to exist within Ω under (2.1) over the time interval [t0, t0 + T ]
has to be pre-determined before implementing the algorithm, either through some a priori
known information or just by making an arbitrary guess. In some simplistic flow systems,
such as the Double Gyre system, pre-determining the number of clusters is straightforward
(Allshouse & Peacock 2015). However, this will not be true for the vast majority of real
world type flow systems where “true” LCSs are known to exist, and implementing the
FCM clustering method will require experimentation with the number of pre-determined
clusters with no guarantee of a cohesive or meaningful result to emerge from this. Instead,
one can use an alternative sparse LCS detection method which involves the use of coherent
structure colouring (CSC).

The CSC method embodies techniques from graph theory to group together flow tra-
jectories for (2.1) over [t0, t0 + T ] based on their kinematic similarities. What this involves
is quantifying how similarly flow trajectories move through a system, and how they braid,
mix or weave together with other trajectories as a flow progresses; by way of defining a
network graph involving the flow particles at a series of time steps between t0 and t0 +T ;
and quantifying how this network changes shape and formation with each time step. By
solving a generalised eigenvalue problem related to these metrics, one is able to divide
Ω into a range of shapes and sets where all trajectories beginning within these coherent
shapes move together in a more or less similar fashion (Schlueter-Kuck & Dabiri 2017).

To carry out this method, we begin by once again producing a set of N flow trajectories
Xj in a scattered or uniform formation and arrange these in the form (2.26) used for the
previous method. Then at each time step tk = t0 + k∆t, k = 0, 1, 2, . . . , K − 1, we define
a network graph for each of the trajectory points at time tk, where the trajectory points
form the nodes, and the edge weights rij (tk) are the Euclidean distances between node
i and node j at time tk (Schlueter-Kuck & Dabiri 2017). The distances between flow
trajectories is an easy choice for the quantity used to measure the kinematic similarities
between these trajectories, though there may be scope for using other quantities such
as the absolute difference in the vorticities of these trajectories. Next, we construct the
N ×N adjacency matrix

Aij = sij/rij, (2.29)

where rij is the mean distance between trajectories i and j over all time steps tk, and

sij =
1√
K

√√√√K−1∑
k=0

(rij (tk)− rij)2;

which is essentially the standard deviation of the distances rij. The adjacency matrix
entries can be calculated all at once, but if the number of trajectories N and/or the



2.8. Coherent Structure Colouring 39

number of time steps K are too large, resulting in system memory issues in MATLAB,
the quantities rij and sij can be computed iteratively using the formulae

rij
(k) =

1

k

(
rij (tk) + (k − 1) rij

(k−1)
)
,

σ
(k)
ij =

k − 2

k − 1
σ

(k−1)
ij +

1

k

(
rij (tk)− rij(k−1)

)2
,

for each time step tk, where σij = s2
ij (Welford 1962). We then sum the rows of A to

produce the entries for the diagonal matrix D, use both of these matrices to calculate the
Graph Laplacian L = D−A, and solve the generalised eigenvalue problem

Lv = λDv. (2.30)

We seek the largest eigenvalue λmax of (2.30), and its corresponding eigenvector vmax.
The values of vmax are coherent structure colouring coefficients assigned to each of the
N trajectories, in the order in which they were indexed to produce the adjacency matrix
A. Clusters of flow trajectories which correspond to similar values of this coefficient form
LCSs for the domain Ω, and can take many shapes from coherent jet type streams to
elliptic vortices and coherent flow bundles of ambiguous shape (Schlueter-Kuck & Dabiri
2017). To visualise these coherent shapes, we either directly produce a scalar field of
the coefficients if the initial points x0 were uniformly distributed, or if these points were
initially scattered, we produce a uniform grid of points which covers (but does not go
beyond) the range of initial points x0 in both the x and y directions, and interpolate
the coherent structure colouring coefficients over the points in this grid. If the option
is available, it is preferable to define a uniform grid of initial points at time t0 to avoid
this extra calculation and the interpolation errors associated with it, however if the initial
data set consists only of scattered flow trajectory data with no information regarding
the underlying velocity data, this extra step cannot be avoided (Schlueter-Kuck & Dabiri
2017).
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Chapter 3

Resultant Coherent Structures From
Each Method

In this Chapter, we document the results of implementing each of the LCS detection
methods described in Chapter 2 on a range of flow systems. First, we display LCS results
for a range of analytically defined idealised flow systems to familiarise ourselves with each
of the methods and (where possible) compare our results with those published in the
literature. The analytically defined flows which we will consider here are the Double Gyre
flow, a non-autonomous version of the Stuart vortex system, and the Bickley Jet flow.
We then turn our attention to three flavours of “real–world” type data, including two
versions of velocity data simulated under the Navier–Stokes equations featuring Kelvin–
Helmholtz vortex layers, and an oceanographic data set representing the well known Gulf
Stream system in the North Atlantic Ocean. We have written our own code in MATLAB
to implement each of these methods, with evidence of validation of this code on both
analytically and numerically defined velocity data sets available to view in Appendix A.
Table 3.1 shows abbreviations for some of the flow systems introduced in this Chapter.

Table 3.1: Flow systems first defined in Chapter 3, and their abbreviations.
Flow System Abbreviation Equation(s) Defined in/at
Double Gyre DG (3.1) Section 3.1

Unsteady Stuart Vortex USV (3.2) Section 3.2
Bickley Jet N/A (3.3) Section 3.3

Kelvin–Helmholtz Version 1 KH1 (3.4) Section 3.4
Kelvin–Helmholtz Version 2 KH2 (3.5) Section 3.5

Gulf Stream N/A N/A Section 3.6

41
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3.1 Double Gyre

The first system which we will consider is the Double Gyre (DG) flow, which has regularly
been used for LCS analysis in many published studies. The Double Gyre system takes
the form

ẋ = u (x, y, t) :=

[
−πA sin (πf (x, t)) cos (πy)

πA cos (πf (x, t)) sin (πy) ∂f
∂x

]
, (3.1)

where
f (x, t) = x2 (ε∗ sin (ωt)) + x (1− 2ε∗ sin (ωt)) .

The flow is defined over a closed domain Ω = [0, 2] × [0, 1] and is characterised by two
counter–rotating gyres centred at (1/2, 1/2) and (3/2, 1/2). If the perturbation parameter
ε∗ = 0, the sizes of the gyres do not change and a consistent vertical flow barrier centred
along x = 1 separates Ω into two square “gyre chambers” as these gyres rotate in an
autonomous version of this system. However if ε∗ > 0, the gyres stretch and shrink in
horizontal size causing this vertical flow barrier to deform and fluid particles to move
between gyre chambers. The parameter ω determines the time over which one period of
this full sliding action occurs, which is 2π/ω, while A determines the scale or amplitude
of the velocity (Shadden et al. 2005, Balasuriya 2020a). The existence of flow barriers
with wild and unpredictable shapes alongside the more coherent rotating gyres within
this system; along with the relative simplicity of this method from its analytical velocity
definition, makes this a popular method for use at the very least as a first experiment for
LCS detection using a wide variety of methods (Shadden et al. 2005, Farazmand & Haller
2012, Tallapragada & Ross 2013, Allshouse & Peacock 2015, Froyland & Padberg-Gehle
2015, Onu et al. 2015, Balasuriya 2020a,b). We choose a similar set of parameters to those
used in Shadden et al. (2005) and Farazmand & Haller (2012), which are A = 0.1, ε = 0.1
and ω = π/5. We choose the same flow period used in Farazmand & Haller (2012), which
ranges from t0 = 0 to t0 + T = 20.

Figure 3.1: The FTLE Φ20
0 for the DG flow.

We begin with the FTLE for this flow, which is displayed in Figure 3.1. We compute
this field using Lagrangian flow data defined over a uniform grid of 1000 × 1000 points.
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Figure 3.2: Hyperbolic VLCSs for the DG flow computed using the VLCS–A (top–left),
VLCS–B and VLCS–C (bottom) algorithms.

The maximal ridges of this field indicate how the vertical flow barrier of the Double Gyre
system has warped in shape under the influence of the gyres which expand and shrink as
the flow progresses. We do not have several maximal ridges of the FTLE within Ω, but
rather one continuous curve which begins from approximately the point (1.05, 0), wraps
around the left gyre from above, produces a parabolic loop with a vertex positioned
at approximately the point (0.15, 0.38), traverses the upper edge of the domain, curls
around the right gyre from below, produces another parabolic loop with approximate
vertex (1.4, 0.75), curls back around the right gyre, traverses the upper and left edges of
the domain, before traversing the lower edge of the left gyre chamber, wrapping around
the left gyre again and terminating about the point (0.6, 0.35). More coherent flow is
observable from the regions of the domain corresponding to the lowest FTLE values,
which include the two gyres themselves and long, thin “tails” which emanate from these
circular regions.

Next, we consider the VLCS detection method, with the results from our three detec-
tion algorithms featured in Figure 3.2. To carry out this method, we once again compute
the Lagrangian flow map for 1000×1000 initial points x0 ∈ Ω. For VLCS–A, we randomly
sample 500 points from the acceptable set G0 to begin integration of the ξ1 eigenvector
field, set the allowance parameter Lf = 2, and isolate the five strainlines of largest size
to avoid overcrowding the domain. In VLCS–B, we choose ρ = 0.2 and Lmax = 30, and
in VLCS–C we maintain ρ = 0.2 and Lmax = 30 while reducing Lf = 0.5 due to the
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Figure 3.3: The LAVD Θ20
0 for the DG flow.

smoothness of the FTLE in comparison to G0. Each of these algorithms has detected
multiple flow barriers of similar shape to the maximal ridge of the FTLE field identified
in Figure 3.1, though several key differences are observable. For instance, the parabolic
loops produced vary in width, these loops rotate at different angles around the gyres
(particularly in the case of the right gyre), and hyperbolic LCSs appear to have been
generated within the gyres themselves; though these structures are “locally maximal” by
the definitions of the method (Farazmand & Haller 2012, Onu et al. 2015). The methods
each produce a slightly different foliation of VLCSs, due to variations in the initial points
of eigenvector field integration and differences in the regulation of these computations
between each algorithm.

We next consider the LAVD method, which we calculate by solving (2.7) for the same
uniform grid of 1000 × 1000 initial points within the domain Ω. The resultant scalar
field can be viewed in Figure 3.3. Convex structures corresponding to large values of
the LAVD are LCSs which exhibit strong rotational coherence within Ω, which for this
flow are the olive coloured, bean shaped structures surrounding each gyre. Interestingly,
the lowest values of the LAVD are observable along the vertical line x = 1 and along a
shape not too dissimilar to the flow barriers extracted from the previous two methods.
It must be stressed that this is a special case of the LAVD, and that structures of low
level LAVD as a rule do not necessarily coincide with flow barriers or structures of large
particle repulsion capability in all dynamic velocity systems (Haller et al. 2016).

The S2 for the DG system is then computed over the same initial grid of points
defined for the previous three methods, using the end–time grid expansion technique for
computing the gradient as Ω is closed. In Figure 3.4, we plot the natural logarithm of the
scaled S2 quantity (2.14), along with three robust sets for this system subject to three
different lengthscales L. As the Double Gyre is a non–dimensional flow and we have no a
priori estimate regarding the velocity uncertainty given in non–dimensional coordinates,
we choose ε = 1× 10−2. The Scaled S2 shown in Figure 3.4 looks almost identical to the
FTLE scalar field shown in Figure 3.1 bar some minor differences, such as the relative
smoothness of the “tails” emanating from the gyres themselves, and considerably low
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Figure 3.4: The Scaled S2 for the DG flow, with ε = 1× 10−2 (top–left), and three robust
sets for this flow corresponding to lengthscales L = 0.2 (top–right), 0.125 (bottom–left)
and 0.075 (bottom–right).

values of the Scaled S2 within the epicentre of the gyres. It is not unusual for the FTLE
field and the Scaled S2 field to have similar or even identical features, but this is not true
for all systems, and will not be true for systems with particularly large amounts of flow
turbulence spread across the whole domain (Balasuriya 2020a).

As stated earlier, the robust sets indicate more coherent flow regions of our domain Ω
by highlighting regions where the Scaled S2 (the lengthscale of uncertainty) is less than
a threshold L. In our first example, we choose L = 0.2 and generate the gyres along
with thick tails which emanate from these structures as “foetal–shaped” LCSs, along
with some thin ridge type structures which wrap around the edges of the left and right
gyre chambers. Upon reducing the threshold to 0.125, we maintain the gyres along with
thinner tails emanating from them; and when L is reduced to 0.075, only small elliptical
structures representing the centres of the gyres remain, though the left hand structure
takes a tadpole shape as it still retains some of its tail. These structures correspond to
the lowest levels of S2, and therefore flow trajectories beginning from within these sets
exhibit the most self–consistency and robustness against noise or uncertainty within the
velocity data representing this system.

We next turn our attention to the transfer operator method, which we compute for
this system by dividing Ω into 240 × 120 rectangular boxes of equal size at both the
initial time t0 = 0 and the final time t0 + T = 20, and computing the flow maps of
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Figure 3.5: Scalar fields of the second (top–left) and third (top–right) right singular
vectors of P for the DG flow and two coherent sets for the flow obtained by dividing Ω
along the zero contour lines of each respective field (bottom Figures).

1000 uniformly distributed initial points within each box to estimate the entries of this
operator. After carrying out this method, the first six singular vectors of P calculated
were 1, 0.9997, 0.9996, 0.9994, 0.9992 and 0.9991. Figure 3.5 shows the optimal vector v∗0
computed using both the second and third right singular vectors of P and two coherent sets
obtained from each of these vectors. Even though the spectral gap between the singular
values is not remarkably large, we consider the third singular vector of P based on the
results obtained by Tallapragada & Ross (2013). From the two coherent sets obtained
from the second singular vector, we more or less define each gyre chamber as a coherent
set, with parabolic hook type structures which wrap around each gyre included due to
particle flow which crosses the vertical barrier along x = 1 into opposite chambers. Using
the third singular vector, we instead identify the two gyres as one disjoint coherent set,
while the remainder of the domain forms the other coherent set. Both of these results are
claimed to be correct, seeing as parcels of flow trajectories sampled within each set will
not mix with trajectories from opposing sets. The spectral gap between singular values in
most cases is a good guide for determining which singular vector to use to produce these
coherent sets (Froyland et al. 2010).

We next consider the dynamic Laplace operator method, computed using the same
box configurations as those defined above for the transfer operator method. The first
six eigenvalues generated for this operator are 0, -34.3621, -60.4858, -102.9318, -120.9574
and -159.2938. Figure 3.6 shows the scalar fields for the second and third eigenvectors
of ∆D and the two coherent sets extracted from each of these eigenvectors. The results
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Figure 3.6: Scalar fields of the second (top–left) and third (top–right) eigenvectors of ∆D

for the DG flow and two coherent sets for the flow obtained by dividing Ω along the zero
contour lines of each respective field (bottom Figures).

for the second eigenvector are consistent with the coherent sets produced in Figure 3.5
using the second right singular vector of P, with each gyre chamber and an adjoining
parabolic hook which ventures over into the other chamber forming each set. When we
consider the third eigenvector of the operator, we once again manage to isolate the gyres
to form a disjoint coherent set separate from the rest of Ω. Again, like with the transfer
operator results, both versions of these pairs of coherent sets are claimed to be correct
and mixing will not occur between particles with initial positions located within opposing
sets (Froyland & Junge 2018).

We next consider the FCM clustering method, using two different a priori guesses for
the number of clusters expected to exist within the DG system. We apply the algorithm
to the previously defined uniform grid of 1000 × 1000 initial flow points, and we set the
sharpness parameter m = 1.5. We start by looking for K = 2 clusters, with the resultant
membership probability fields and the clusters obtained from a membership probability
threshold of 80% on display in Figure 3.7. One coherent cluster is formed approximately
from the left gyre chamber with a parabolic shape missing from the left hand end of the
domain. This shape forms part of the other coherent cluster, along with the right gyre
chamber without a hook shape curve curling around the right gyre from its lower end.
Particles which begin within this hook shaped structure seem to have a 50–50 chance of
ending up in either cluster, indicating that particle flow within this structure is incoherent
with no guarantee of ending up in either of the clusters.

We next increase the number of clusters K to 4, and run the algorithm again with all
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Figure 3.7: Membership probability fields for two FCM clusters of the DG flow (left
Figures) and two clusters for this flow obtained at the 80% membership probability level
(right Figures).

Figure 3.8: Membership probability fields for four FCM clusters of the DG flow.
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Figure 3.9: Four FCM clusters for the DG flow obtained at the 80% membership proba-
bility level.

Figure 3.10: The CSC scalar field for the DG flow.

remaining computational parameters remaining consistent. The membership probability
scalar fields are on display in Figure 3.8 and Figure 3.9 isolates four coherent clusters
within our domain based once again on the 80% membership probability threshold. Here,
we produce similar results to those published by Allshouse & Peacock (2015) where, rather
than dividing our domain based on the two gyre chambers existent within it, we find
smaller and more detailed coherent structures, such as the gyres themselves rather than
the full gyre chambers. The four clusters identified at an 80% membership probability
level (visible in Figure 3.9) are the two gyres with thin tails emanating from them, and
one primarily oblong shaped cluster in each gyre chamber.

Finally, we carry out the coherent structure colouring algorithm on a uniform grid
of 100 × 50 initial points x0 ∈ Ω. We use a uniform grid in most of our computations
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for this method to avoid the extra step of numerical interpolation to produce a uniform
scalar field from scattered data, along with the numerical estimation errors that come with
it. Figure 3.10 shows the resultant scalar field for the CSC coefficients. From strongly
positive values of these coefficients, we are able to identify the gyres themselves once
again, while strongly negative valued CSC coefficients are used to identify hook shaped
structures which wrap around each of the gyres, as well as the parabolic shaped structure
which sits next to the left hand gyre.

From the results displayed above, all of these detection methods were able to detect
at least some of the most definitive structures observable within this system. The most
obvious coherent structures within this system are the counter rotating gyres, which were
detected using the LAVD, transfer operator, dynamic Laplace operator and CSC methods
most comprehensively. We also detect these structures using the S2 robust sets and the
FCM clustering method, though in these cases a thin “tail” emerges from each of the
gyres. The gyres and their tails are also identifiable from smaller values of the FTLE and
S2, but are not identifiable from the VLCS foliations. Had we have produced code to
generate elliptic VLCSs, there is a good chance that we may have been able to identify
these gyres from this method (Karrasch et al. 2014, Onu et al. 2015). In some instances,
a gyre chamber (the left or right hand end of the domain Ω) is identified as a coherent
structure or set, using the transfer operator or dynamic Laplace operator methods; or by
generating two FCM clusters. We do not generate rectangular sets in these cases, rather
each one contains a parabolic hook shaped structure from particles which spill over from
one gyre chamber to the other, due to the deformation of the vertical barrier positioned
along x = 1. Also visible within this system are warped versions of this vertical barrier,
identifiable from the FTLE, S2 and VLCS methods. The VLCS algorithms each produce
large foliations of closely bunched flow barriers due to the variation in seeding initial points
for eigenvector field integration and how this integration is regulated by each algorithm.

3.2 Unsteady Stuart Vortex

The next analytically defined toy model which we concentrate our attention towards is
the unsteady Stuart vortex (USV) system, a non–autonomous extension of the well known
steady Stuart vortex flow (Stuart 1967, Crowdy 2004). The USV flow takes the form

ẋ = u (x, y, t) :=
1

a cosh (y) + b cos (x+ ct)

[
a sinh (y)

b sin (x+ ct)

]
, (3.2)

where a is arbitrary, b =
√
a2 − 1 and we define c as a horizontal translation parameter

for the Stuart vortices. If c = 0, we obtain the original, autonomous Stuart vortex system
characterised by a vortex layer consisting of two Stuart vortices, one being centred at
(−π, 0) and the other at (π, 0); which rotate in place over the whole flow. However if
c 6= 0, the vortices flow at a consistent rate to the left or right of the domain (depending
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Figure 3.11: The FTLE Φ4π
0 for the USV flow.

on the sign of c) as they rotate in a style reminiscent of a real world vortex layer such
as a Kelvin–Helmholtz layer (which we will consider later on in this Chapter). For our
LCS analysis, we define this system over the domain Ω = [−2π, 2π) × [−r, r] with r = 4
(arbitrary), which is periodic in the x–direction. We set a = 2, b =

√
a2 − 1 =

√
3 and

c = −0.5 (which translates the vortices in the positive x direction); and consider the
period of flow ranging from t0 = 0 to t0 + T = 4π, which represents one full period of the
velocity system in t given our choice of c.

The FTLE for this system was computed from a uniform initial grid of 600 × 400
initial points, with the resultant scalar field produced on display in Figure 3.11. The key
structures which can be extracted from this field are sinusoidally shaped maximal ridges
tucked under each vortex, which curl to the left of each vortex, traverse towards the other
vortex producing a barrier between the two, and wrap around the other vortex until it sits
just above it. One can also detect another sinusoidal curve which supports the vortex layer
from below, though this is a ridge that is mostly of a medium level of FTLE. The lowest
values of the FTLE are observable at the exact central point of each vortex, small patches
tucked between the vortex support wave and the vortex separation ridge (approximately
half way between the centres of each vortex) and the regions of the domain above and
below the vortex layer, where the flow velocity has almost zero magnitude.

We next consider the VLCS detection method, generated from Lagrangian flow data
defined over a uniform initial grid of 600 × 400 points once more. The results obtained
from each algorithm are on display in Figure 3.12. In VLCS–A, we randomly sample
500 candidate points from G0, set Lf = 2 and choose the strainlines corresponding to
Lmin = 2.5. In VLCS–B, we choose a separation radius ρ = 2π/3 ≈ 2.1, and set Lmax = 30.
We reuse the parameter choices for ρ and Lmax in VLCS–C, and choose Lf = 0.5. From the
results in Figure 3.12, VLCS–A struggles to identify a VLCS of considerable length, which
is most likely due to the presence of thin ridges within the acceptable set G0 (not shown)
which hyperbolic strainlines slide off of very quickly. By contrast, VLCS–B produces a
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Figure 3.12: Hyperbolic VLCSs for the USV flow computed using the VLCS–A (top–left),
VLCS–B (top–right) and VLCS–C (bottom) algorithms.

Figure 3.13: The LAVD Θ4π
0 for the USV flow.

large number of VLCSs which do coincide with the maximal and more medium level ridges
of the FTLE field seen in Figure 3.11, but also produces a large number of VLCSs in the
stagnant flow regions of Ω above and below the vortex layers. The results of VLCS–C are
much more useful, with hyperbolic VLCSs produced of a reasonable length which do not
enter regions of the domain where particle flow is more robust or non–existent.

Next, we consider the LAVD for this system computed on the same initial grid of
600 × 400 uniformly spaced points by solving the extended ODE system (2.7). The
resultant scalar field for the system is shown in Figure 3.13. As expected, only two
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Figure 3.14: The Scaled S2 for the USV flow, with ε = 1×10−2 (top–left), and three robust
sets for this flow corresponding to lengthscales L = 0.35 (top–right), 0.25 (bottom–left)
and 0.05 (bottom–right).

small circles representing the epicentres of the Stuart vortices are found to be the most
rotationally coherent structures within the system. The LAVD is low throughout the
remainder of the scalar field, as there is no rotational coherence observable within the
rest of our flow domain.

The next method to consider is the S2 method, where this quantity is calculated again
using the same initial grid of 600 × 400 uniformly spaced points and by expanding the
grid of advected points at time t0 +T to compute the entries for the matrix Λ. The scalar
field for the Scaled S2 is shown in Figure 3.14, with ε = 1 × 10−2 like with the DG flow
discussed in the previous Section; along with robust sets produced from three different
lengthscale tolerances L, taking values of 0.35, 0.25 and 0.05 in non–dimensional units.
Like with the DG flow, the Scaled S2 field looks almost identical to the FTLE field shown
in Figure 3.11 bar some minor differences, such as the round parcels of low FTLE centred
approximately at the points (0, 0.5) and (2π, 0.5) not being found in the Scaled S2 field.
Letting L = 0.35 for the first robust set, most of the domain Ω seems to be included
within this set, except for annulus shaped structures within the vortices and surrounding
their centres; triangular shaped fluid parcels located to the right of each vortex, and thin
ridges which wrap around each vortex in a shape similar to the maximal ridges obtained
from the FTLE and Scaled S2 fields. Reducing the lengthscale threshold to 0.25 makes a
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Figure 3.15: Scalar fields of the second (top–left) and third (top–right) right singular
vectors of P for the USV flow and two coherent sets for the flow obtained by dividing the
domain Ω along the zero contour lines of each respective field (bottom Figures).

minor change to the coverage of the robust set, however when we reduce the threshold to
0.05, only the stagnant flow surrounding the vortex layer is included within the set, along
with very tiny circular sets positioned at the centres of each of the Stuart vortices.

We next focus on computing the transfer operator for this system, achieved by dividing
Ω at time t0 into 180 × 120 rectangular boxes of equal size, and Ω̃ = Ft0+T

t0 (Ω) at time
t0 + T into 210 × 140 rectangular boxes also of equal size. Seeing as Ω is periodic in x,
we map particles which spill over one horizontal end of the domain back into the domain
on the other side, while extending the domain slightly in the y direction to estimate Ω̃.
1000 points are uniformly sampled within each box and flowed forward to estimate the
entries of P. Upon completion of the algorithm, the first six singular values produced for
P are 1, 0.9999, 0.9998, 0.9997, 0.9996 and 0.9996. The optimal vector v∗0 computed using
both the second and third right singular vectors of P and the corresponding coherent sets
produced from each vector are featured in Figure 3.15. Using the second right singular
vector of P, we obtain the upper half of the domain and the entire Stuart vortex layer
as one coherent set with the remaining lower portion of the domain forming the other
coherent set. If we use the third singular vector instead, we obtain the vortex layer and
surrounding flows as one coherent set, while the stagnant flow regions at the upper and
lower edges of the domain form a disjoint second coherent set.

We next consider the dynamic Laplace operator method, using the same computational
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Figure 3.16: Scalar fields of the second (top–left) and third (top–right) eigenvectors of
∆D for the USV flow and two coherent sets for the flow obtained by dividing the domain
Ω along the zero contour lines of each respective field (bottom Figures).

parameters defined above for the transfer operator method including the application of
periodic boundary conditions in the x direction. In this case, the first six eigenvalues pro-
duced for the dynamic Laplace operator came out to be -0.0000, -0.1106, -0.2266, -0.3453,
-0.4756 and -0.6237. In Figure 3.16, we display the second and third eigenvector scalar
fields for the dynamic Laplace operator and the two coherent sets produced from each
of these fields. The second eigenvector has divided the domain Ω in a similar fashion to
the transfer operator method (see Figure 3.15), while if we consider the third eigenvector,
the coherent sets obtained each contain one of the Stuart vortices, and portions of the
flow domain subsequently advected along with these vortices as they move through the
system.

Next, we use the FCM Clustering method to divide Ω for this system into K = 2
coherent clusters. We again seed 600 × 400 initial points in a uniform grid, and set the
sharpness parameter m = 1.5. The membership probabilities for these clusters are shown
in Figure 3.17, along with two FCM clusters isolated at an 80% probability level. From
these results, we have been able to divide the flow domain Ω in half in a similar fashion
to the coherent sets obtained from the second eigenvector of ∆D (see Figure 3.16). The
first cluster contains the upper half of the domain including the vortex layer, with the two
vortices separated by a wave–shaped structure which sits between the vortices. The other
cluster contains the lower half of the domain, with its upper boundary approximately
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Figure 3.17: Membership probability fields for two FCM clusters of the USV flow (left
Figures) and two clusters for this flow obtained at the 80% membership probability level
(right Figures).

forming the shape of the vortex layer support curve, until it begins to deviate away from
this support barrier in similar fashion to the zero contour level curve of the dynamic
Laplace operator’s second eigenvector field.

We then repeat the FCM Clustering method, this time seeking K = 6 clusters. The
membership probability scalar fields for these six clusters are shown in Figure 3.18, and
six coherent clusters isolated at the 80% probability level are shown in Figure 3.19. By
choosing K = 6 clusters, we are able to identify the Stuart vortices and their immediate
surrounds as coherent structures, as noted by the red and blue clusters in 3.19. We also
extract four more coherent shapes located in each corner of the domain. These coherent
shapes hardly move, as they are located above and below the Stuart vortex layer where
particle flow is stagnant. However, as they retain their shape they are therefore deemed
coherent shapes.

Finally, in Figure 3.20 we consider the coherent structure colouring method applied
to this system, on a uniform grid of 90× 60 initial points. From the positive valued CSC
coefficients, we are able to identify the centres of the Stuart vortices along with their
elliptic surrounds; combined with the top half of the domain and hook shaped structures
which curl into the elliptic regions containing the vortices. From the negative valued CSC
coefficients, we identify the sinusoidal wave type structure which supports the vortex layer
along with the lower half of the domain. We also identify a hook type structure which
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Figure 3.18: Membership probability fields for six FCM clusters of the USV flow.

Figure 3.19: Six FCM clusters for the USV flow obtained at the 80% membership proba-
bility level.



58 Chapter 3. Resultant Coherent Structures From Each Method

Figure 3.20: The CSC scalar field for the USV flow.

folds in towards the centre of the Stuart vortex as the flow progresses.

By applying a time–dependent horizontal translation to the Stuart vortex velocity
system in the fashion seen in (3.2), the ordinarily stationary vortices form a transport
layer that is also defined by parcels of flow particles dragged along by the vortices as they
rotate and move through the system. The Stuart vortices themselves are still identifiable
from the LCS analysis undertaken above, featuring prominently in the CSC scalar field, S2

robust sets, and the LAVD field (in the latter case, these vortices are all that is identified).
Low values of the FTLE and Scaled S2 fields identify only the centres of these vortices,
but their boundaries can be identified from medium values of these quantities, along with
some of the hyperbolic VLCSs identified which tend towards the centres of these objects.
Key structures that are also identifiable within this field are elliptic shaped structures
formed from the vortices and the surrounding flow which gravitates towards their centres.
These are identifiable from the CSC and FCM Clustering methods, and are outlined by
the FTLE, VLCSs, and S2. The latter three methods are also useful in determining flow
barriers which separate the two vortices within the layer, as well as a sinusoidal wave
which is tucked under the vortex layer and acts as a support barrier for these vortices.
The transfer operator and dynamic Laplace operator methods, on the other hand, only
manage to divide this flow domain into two sets in different ways based on the evolution
of the vortex layer. The disparities observed between the results obtained from these two
methods is most likely as a result of a lack of significant spectral gap between the second
and third singular values of P, and the second and third eigenvalues of ∆D. If a lack of
a spectral gap between these singular values/eigenvalues is observable, this indicates that
the flow domain in question cannot be cohesively split into two coherent sets, and such
disparities may therefore arise between the results from each of these methods. We note
a similar observation with the Taylor–Green vortex system in Appendix A.2, which is
rectified upon selecting a subsequent singular vector/eigenvector of these operators where
a larger spectral gap can be identified.
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3.3 Bickley Jet

The third and final analytically defined toy flow which we will consider in this Chapter is
the Hamiltonian Bickley Jet (3.3), a system sold as an analytically defined, quasi–realistic
flow system with characteristics that mimic a stratospheric polar vortex system with an
impenetrable zonal jet (del Castillo-Negrete & Morrison 1993, Rypina et al. 2007) which
is used regularly for LCS analysis in the literature. The version of this system which we
will consider is the same as that used by Froyland & Junge (2018) and Froyland et al.
(2019); which takes the form

ẋ = u(x, y, t) :=

[
u(x, y, t)
v(x, y, t)

]
, (3.3)

where

u(x, y, t) = U0 sech2

(
y

L0

)
+ 2U0 sech2

(
y

L0

)
tanh

(
y

L0

) 3∑
i=1

Ai cos(ki(x− cit)),

v(x, y, t) = −U0L0 sech2

(
y

L0

) 3∑
i=1

Ai sin(ki(x− cit)),

with parameters U0 = 62.66ms−1 = 5.4138Mmd−1, L0 = 1.770Mm, A1 = 0.0075, A2 =
0.15, A3 = 0.3, ki = (2i)/re, i = 1, 2, 3, re = 6.371Mm, c2 = 0.205U0, c3 = 0.461U0 and
c1 = c3 + ((

√
5 − 1)/2)(k2/k1)(c2 − c3) ≈ 0.1446U0. The system is defined over the flow

domain Ω = [0, 20)× [−3, 3], which is defined in units of megametres (Mm) and is periodic
in the x-direction. We consider the time interval which ranges from t0 = 0 to t0 + T = 40
days (d). There are many different versions of this system which can be conceptualised
based on the time interval or parameters chosen.

The key feature of this system is a sinusoidal jet type structure centred along y = 0 Mm
which forms a solid, impermeable border between two large vortex layers. Each of these
layers contain a set of equally spaced vortices which retain their shape and move through
the domain in a consistent fashion across the interval of flow. This is in contrast to the
flow behaviour observable between the vortices, which is considerably unpredictable in
nature. The vortices exist in this system based on the parameters chosen above, but can
be broken apart or dissolved by choosing different values for the Ai parameters (Rypina
et al. 2007, Froyland et al. 2010). Like with the DG system, the Bickley Jet flow is a
popular analytical flow model for use in LCS detection in the literature (Haller & Beron-
Vera 2012, Hadjighasem et al. 2017, Schlueter-Kuck & Dabiri 2017), particularly when
it comes to testing the transfer operator or dynamic Laplace operator methods as the
two vortex layers in this system form two very well defined almost invariant coherent sets
(Froyland et al. 2010, Froyland 2013, Froyland & Junge 2018, Froyland et al. 2019).

We start once more with the FTLE for this system, generated on a uniform grid of
900×300 initial points within our domain Ω and displayed in Figure 3.21. Maximal ridges
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Figure 3.21: The FTLE Φ40
0 for the Bickley Jet flow.

Figure 3.22: Hyperbolic VLCSs for the Bickley Jet flow computed using the VLCS–A
(top–left), VLCS–B (top–right) and VLCS–C (bottom) algorithms.

of the FTLE are observable along the edges of the zonal jet as expected, as well as within
the vortex layers wrapping around the vortices in parabolic and hook type shapes, but
not strictly forming boundaries of these vortices. The resolution of the ridges observable
within the vortex layers are grainy in resolution due to the unpredictable flow behaviour
observable within these vortex layers, with small parcels of low FTLE observable between
these ridges. The lowest FTLE values are observable along the zonal jet itself, along with
the centres of the coherent vortices and crescent–shaped objects which surround these
centres.

The hyperbolic VLCS results from our three detection algorithms are illustrated in
Figure 3.22. We compute the Lagrangian flow map and its corresponding Cauchy–Green
eigenbasis for 900×300 initial points organised in the same fashion as done above to carry
out the FTLE method. For VLCS–A, we randomly select 500 initial points for eigenvector
field integration from the acceptable set G0, set the allowance parameter Lf = 2 and
dispose of all strainlines with an arc length less than 2.5 Mm. In VLCS–B, we set the
local radius ρ ≈ 0.556 Mm and Lmax = 30. These parameters are maintained in VLCS–C,
however we reduce the allowance parameter Lf to a value of 0.5. The VLCS–A algorithm
produces a significant number of small hyperbolic VLCS segments which attempt to form
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Figure 3.23: The LAVD Θ40
0 for the Bickley Jet flow.

the boundaries of the Bickley Jet vortices and the shapes of the sinusoidal ridges which
form above and below the zonal jet; which is likely due to the presence of thin ridges
within the acceptable set G0 (not shown) which hyperbolic strainlines slide off of quickly.
By contrast, the hyperbolic VLCSs produced from VLCS–B are longer and cover a much
greater area of the domain, including the centres of the coherent vortices. It can be argued
that the VLCSs produced using VLCS–C form the middle ground between the results of
the previous two algorithms, with borders of the vortices and the zonal jet identifiable, but
only two structures observable within the zonal jet and no structures seen to be present
inside the vortices.

The LAVD scalar field for this system can be seen in Figure 3.23, and was computed
by solving the extended ODE system (2.7) for the same uniform grid of 900× 300 initial
points in our domain Ω as those used for the previous two methods. As anticipated,
the largest values of the LAVD are observable within the clearly identifiable Bickley Jet
vortices. The lowest LAVD values are observable along the zonal jet core itself, seeing
as this structure is not associated with any rotational coherence, but rather extensional
coherence as a sinusoidal flow barrier. We observe plenty of ridges of low to medium
LAVD value between the vortices, which can most likely be explained by high Lagrangian
shear and low rotational coherence.

We now turn our attention to the S2 method once again, where the relevant quantity
is computed on the same initial grid of 900× 300 uniformly spaced points and this time
using the star grid method to evaluate the backwards time flow gradients due to memory
constraints. In Figure 3.24, we display the Scaled S2 scaled by ε =

√
hvr, where h ≈

2.22× 10−2 Mm and vr ≈ 1.4× 10−3 Mm · d−1, thereby letting ε = 5.6× 10−3 Mm · d− 1
2 .

We also display three robust sets for this system in this Figure, using the same value of
ε and lengthscale thresholds L of 0.5, 0.3 and 0.1 Mm. Once again, the Scaled S2 field
is qualitatively similar to the FTLE field (see Figure 3.21) bar again some exceptions,
such as the absence of the crescent shaped structures within the vortices corresponding
to low values of the FTLE from the Scaled S2 field, and the presence of medium level
ridges in the Scaled S2 field which curl around the vortex centres, and which either aren’t
observable in the FTLE field or are only partially observable.

Beginning with the lengthscale L = 0.5 Mm, the Robust Set for this flow is able to
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Figure 3.24: The Scaled S2 for the Bickley Jet flow, with h ≈ 2.22 × 10−2 Mm and
vr ≈ 1.4×10−3 Mm·d−1 (top–left); along with three robust sets for this flow corresponding
to lengthscales L = 0.5 Mm (top–right), 0.3 Mm (bottom–left) and 0.1 Mm (bottom–
right).

Figure 3.25: Scalar fields of the second (top–left) and ninth (top–right) right singular
vectors of P for the Bickley Jet flow and two coherent sets for the flow obtained by dividing
the domain Ω along the zero contour lines of each respective field (bottom Figures).

capture the zonal jet as a coherent structure as well as the Bickley jet vortices, though with
a thin line curling towards the centre of each vortex excluded. Also captured by the set
are sparse and incoherent clusters of points which appear to surround each of the coherent
vortices. As we reduce the lengthscale L to 0.3 Mm, the zonal jet shrinks slightly and the
vortices have decreased in size, with an increase in the deviation observable between the
centres of the vortices and their fringes. Eventually as L is reduced to 0.1 Mm, all that
remains within the robust set are the centres of the Bickley jet vortices and a very thin
zonal jet with noticeable gaps.
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Figure 3.26: Scalar fields of the second (top–left) and ninth (top–right) eigenvectors of
∆D for the Bickley Jet flow and two coherent sets for the flow obtained by dividing the
domain Ω along the zero contour lines of each respective field (bottom Figures).

We next consider the transfer operator method, which we execute on this flow by
dividing the domain Ω at time t0 into 300×90 rectangular boxes of equal size, and seeding
1000 uniformly distributed initial flow points within each of these boxes. In determining
the domain at the final flow time t0 + T , we treat Ω as periodic in x, extend the domain
in y from [−3, 3] to [−4.5, 4.5] and define 300× 120 rectangular boxes of equal size. After
estimating the entries for the transfer operator P, we compute the first ten singular values
for this matrix which have turned out to equal 1, 0.9996, 0.9984, 0.9984, 0.9984, 0.9983,
0.9980, 0.9976, 0.9954 and 0.9940. Figure 3.25 shows the scalar fields representing the
optimal vectors generated from the second and ninth right singular vectors of P and two
coherent sets extracted from each of these vectors. We can clearly identify two coherent
sets from the second singular vector field, which are the upper and lower vortex layers
separated by the zero contour which (as expected) lies along the zonal jet. From the field
of the ninth right singular vector, we identify one coherent set consisting of the zonal jet
itself along with all of the coherent vortices; and the remainder of the domain as the other
coherent set.

We execute the dynamic Laplace operator method for this system using the same set
of parameters defined above for the transfer operator method. The first ten eigenvalues
produced for the dynamic Laplace operator were calculated to be 0, -3.9665, -6.4184,
-6.4748, -6.5077, -6.5522, -7.9136, -13.9962, -17.4218 and -22.4814. Figure 3.26 shows
different pairs of coherent sets obtained from both the second and ninth eigenvectors
of ∆D. The two coherent sets obtained in Figure 3.26 from the second eigenvector are
practically identical to those obtained from the second right singular vector of P (see
Figure 3.25), with the domain divided into two coherent vortex layers separated by the
zonal jet. The ninth eigenvector of ∆D also produces the same coherent sets as the ninth
singular vector of P (see Figure 3.25), albeit with a minor lack of smoothness observable
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Figure 3.27: Membership probability fields for two FCM clusters of the Bickley Jet flow
(left Figures) and two clusters for this flow obtained at the 80% membership probability
level (right Figures).

in the eigenvector scalar field.

Next, in Figure 3.27, we apply the FCM clustering method to this flow seeking K = 2
clusters. We use a uniform grid of 900×300 initial points and set the sharpness parameter
m = 1.1. For this number of clusters, the method shows no difficulty in dividing the
domain into two coherent clusters, with the first being the zonal jet (along with some
excess lines which leak into the vortex layers), and the second comprising of both vortex
layers in a disjoint fashion. We then increase the number of clusters K to 3, with Figure
3.28 showing the membership probability fields and Figure 3.29 showing the clusters
extracted at the 80% threshold. The method demonstrates no difficulty in identifying the
zonal jet as a coherent cluster once more, with the other two clusters produced from the
greater elliptic regions surrounding the coherent vortices, and the partitions of the vortex
layers lying between these vortices.

Finally, we apply the CSC method to the Bickley jet flow using a uniform initial grid
of 80 × 80 points to produce the scalar field shown in Figure 3.30. Strongly positive
CSC coefficients from this field enable us to identify the coherent Bickley jet vortices
once more, while the strongest negative values of the CSC coefficients help visualise the
zonal jet which divides the domain into two coherent vortex layers. Between each of the
coherent vortices, we see an incoherent scatter of CSC coefficient values which lie close
to zero, which may indicate that particle movement in these regions is rapid and highly
incoherent.

To some degree, each of the methods detailed above has been able to identify the
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Figure 3.28: Membership probability fields for three FCM clusters of the Bickley Jet flow.

Figure 3.29: Three FCM clusters for the Bickley Jet flow obtained at the 80% membership
probability level.
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Figure 3.30: The CSC scalar field for the Bickley Jet flow.

same collection of structures within the Bickley jet system. It must be noted that this
is a rare occurrence when investigating Lagrangian coherent structures in general, as the
Bickley jet is a highly idealised flow with sturdy, coherent flow objects highly unlikely
to be detected within realistic flow systems. The definitive coherent structure of this
system is the zonal jet which separates the flow domain into two vortex layers and is itself
coherent by keeping flow particles within a sinusoidal fragment of the domain. All of the
methods were able to identify this structure either as a boundary between the vortex layers
(FTLE, VLCSs, dynamic Laplace operator, transfer operator, S2) or as a coherent flow
object in its own right (LAVD, CSC, S2 Robust Sets, FCM Clustering, transfer operator,
dynamic Laplace operator). The vortices are another key feature of this system and were
identified practically by every method except for the VLCS method, though the foliations
of hyperbolic VLCSs identified (particularly those from VLCS–C) wrap around these
vortices to form disjoint boundaries for these structures. Other LCSs identified include the
vortex layers themselves (identified from the transfer operator, dynamic Laplace operator
and FCM clustering), hyperbolic flow barriers which weave around the vortices (from the
FTLE, VLCS and S2), and the flow regions between the vortices (from FCM clustering,
which defines these regions as consistent in the sense that fluid particles initially positioned
here do not enter the vortices or cross the zonal jet).

3.4 Kelvin–Helmholtz Version 1 (KH1)

We have examined how each of the LCS detection methods we consider in this study
detect coherent flow objects within analytically defined “toy models”, which have well
defined, idealised coherent flow structures that are unlikely to exist within more realistic
flows. Hence, we now turn our attention to more realistic flavours of flows to see if our
LCS detection methods will be just as effective in detecting coherent flow objects here
as they were when applied to the analytically defined flows discussed in the previous
three sections. Our first two “realistic”–type flows will be simulated through solving the
Navier–Stokes equations through spectral methods and techniques to obtain two versions
of computational fluid dynamics (CFD) velocity data representing flow systems which
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contain Kelvin–Helmholtz type vortex layers, based on previous work in this endeavour
(Lesieur et al. 1988, Metcalfe et al. 1987, Lee & Kim 2015, Schroeder et al. 2019). Our
first version of this system (which we will refer to as Kelvin–Helmholtz (Version 1), or
KH1) is obtained by solving the Navier–Stokes equations with the initial condition

u0 (x, y) =

[
1
2

(
tanh

[
1
δ

(
y − π

2

)]
− tanh

[
1
δ

(
y − 3π

2

)])
1

100
sin (mx)

]
, (3.4)

where δ = 0.05 and m = 5. We generate the velocity data for this system by solving the
Navier–Stokes equations using a fast Fourier transform algorithm which we have coded
(and verified) ourselves in MATLAB. The equations are solved over a uniform initial grid
of 1024× 1024 equally spaced points within the 2π periodic domain Ω = [0, 2π)× [0, 2π)
using a third–order Runge–Kutta integration scheme in spectral wavenumber space, with
∆t = 0.001 and Eulerian velocity data saved after one tenth of a unit of time for a total
of ten units of time. We define this velocity data to have units, with length measured in
metres, time measured in seconds and velocity measured in metres per second, with each
respective unit scaled by a factor of 1. We also apply viscosity to these simulations using
a Reynolds number of 103, computed from the lengthscale of 1 metre, maximal velocity
of 1 ms−1 and kinematic viscosity ν = 10−3m2/s.

These simulations produce a flow system which consists of a wide transient flow channel
centred along y = π metres and approximately π metres in length, where particles flow
consistently to the right of the domain Ω at a velocity no larger than 1 ms−1. The
vorticity of fluid particles along y = π/2 metres and y = 3π/2 metres results in the
gradual construction of Kelvin–Helmholtz vortex layers, with consistent vortices forming
in shape and becoming more well defined as the flow proceeds. In the remaining portions
of the domain, where y < π/2 metres and y > 3π/2 metres, flow velocity is virtually
nil and fluid particles remain more or less stagnant. For the LCS analysis to follow, we
consider the initial time t0 = 5 seconds, by which time sizeable Kelvin–Helmholtz vortices
would have formed, and we consider the time interval which extends to t0 +T = 8 seconds.

We begin once again with the FTLE, which was computed over the full grid of
1024 × 1024 uniformly spaced initial points used to simulate the velocity for this sys-
tem and is on display in Figure 3.31. The maximal ridges of this field are sinusoidal
curves which sit between the vortex layers and the central flow channel and act both as
flow barriers between these components of the flow and also as support curves for the vor-
tices themselves. In addition to these maximal ridges, we also observe more grainy ridges
of high level FTLE between the vortices and the flow channel which reduce in FTLE
value as we tend towards the channel, and medium level ridges which weave towards the
centres of each of our vortices. This is to be expected as, unlike in a flow system such
as the Double Gyre (see Figure 3.1) or Bickley Jet (see Figure 3.21), the vortices in this
system are not present immediately at t0 = 0. Instead, the vortex layers begin as straight
lines and the lines change shape, forming vortices as the flow progresses. Lower values of
the FTLE are observable within the central flow channel itself, the stagnant flow regions
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Figure 3.31: The FTLE Φ8
5 for the KH1 flow.

present around the upper and lower boundaries of the domain, and the centres of the
vortices themselves.

Next, we consider all three of our VLCS detection algorithms on the full set of 1024×
1024 initial points, as was the case with the FTLE method. The results from each of
these algorithms can be seen in Figure 3.32. For VLCS–A, we again randomly sample 500
initial points from the acceptable set G0 and choose the allowance parameter Lf = 1 m.
For VLCS–B and VLCS–C, we choose a local separation parameter ρ = 25π/512 ≈ 0.153
m and a maximal length for the structures Lmax = 30; and in VLCS–C we reduce the
allowance parameter Lf to 0.5. The foliation of hyperbolic VLCSs produced from each
of these algorithms consists primarily of wave shaped curves whose curved crests sit to
the left of each vortex, providing a flow barrier between each vortex while also separating
off the vortex layer and the stagnant outer flow regions from the central channel. VLCS–
A not only produces these structures, but also extracts curves which spiral towards the
centres of the coherent vortices in similar fashion to the medium value FTLE ridges
from Figure 3.31. VLCS–B detects this type of hyperbolic structure for only one vortex
(though it could do it for more vortices if a parameter such as ρ were to be changed), and
VLCS–C does not detect these at all, as the FTLE values are only of medium range (and
therefore, below the threshold). Both VLCS–A and VLCS–B have extracted curves which
veer into the stagnant flow regions of the domain, while VLCS–B produces curves which
begin to tend towards the centre of the flow channel where particle flow is supposed to
be linear and robust. VLCS–C appears to produce the simplest and cleanest picture of
hyperbolic VLCSs in this system, with only the aforementioned wave shaped structures
which separate the vortex layers from the central flow channel detected.
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Figure 3.32: Hyperbolic VLCSs for the KH1 flow computed using the VLCS–A (top–left),
VLCS–B (top–right) and VLCS–C (bottom) algorithms.
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Figure 3.33: The LAVD Θ8
5 for the KH1 flow.

The LAVD method will next be applied to this system, again by solving (2.7) for the
full initial grid of 1024×1024 uniformly spaced points. The resultant scalar field produced
can be seen in Figure 3.33. As expected, the largest LAVD values are observable within
the coherent vortices of this system, allowing these structures to be easily identifiable from
the scalar field. However, in a surprising result, we also observe large values of the LAVD
within the flow barriers which sit under (and support) the vortices and separate these from
the central flow channel. The likely reason we observe this is that Lagrangian shear is
very strong within these portions of the domain, and even though these sinusoidal–shaped
surfaces are not elliptical in shape, flow particles within these structures exhibit rotational
coherence not unlike what we would expect to see within the bounds of a vortex. The
LAVD is low throughout the remaining portions of the domain, including the central flow
channel which is an extensionally (not rotationally) coherent structure for this system.

Next we consider the stochastic sensitivity method, computed on the same initial grid
of 1024×1024 uniformly spaced points using the star grid method for the backwards time
flow gradients once more due to memory constraints in MATLAB. Figure 3.34 shows the
scalar field of the Scaled S2, where h = 2π/1024 ≈ 6.1×10−3 m and vr ≈ 1.63×10−2 ms−1,
corresponding to a precise value for ε of 10−2 m · s−1/2. A subsequent collection of robust
sets are on display in the same Figure, which have been produced using the same values
of h and vr and with the lengthscales L chosen to be 0.45 m, 0.2 m and 0.08 m. Like with
all of the other flow systems considered thus far, the Scaled S2 field looks almost identical
to the FTLE field (see Figure 3.31) in that it carries the same features and identifies
very similar coherent structures. The biggest difference between these fields is that in the
Scaled S2 field we do not obtain a maximal ridge of the stochastic sensitivity which wraps
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Figure 3.34: The Scaled S2 for the KH1 flow, with h = 2π/1024 ≈ 6.1 × 10−3 m and
vr ≈ 1.63× 10−2 ms−1 (top–left); along with three robust sets for this flow corresponding
to lengthscales L = 0.45 m (top–right), 0.2 m (bottom–left) and 0.08 m (bottom–right).
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around the vortices and instead larger values of this quantity are more or less distributed
evenly throughout the shear layers.

In analysing the robust sets, one thing that stands out quite clearly from these results
is that pretty much regardless of the value of L that we choose in this Figure, the robust
set will practically always contain the central flow channel and the upper and lower
stagnant flow regions. These structures are particularly consistent and robust within our
Kelvin–Helmholtz flow system (with the stagnant regions robust in the sense that flow
particles hardly move), and only undergo minor alterations when L is changed, such as a
minor decrease in the width of the central flow channel. The biggest changes we observe
within this set as L decreases are visible within and close to the vortex layers themselves.
Beginning with L = 0.45 m, the centres of the vortices along with their boundaries are
contained within the set, with the shear layer below the vortices excluded along with a
small annular region surrounding the centres of each vortex. As L is reduced to 0.2 m, the
shear layer along with some wave type shapes which curl into the vortices are excluded
from the set, with only small centres of the vortices and hook type curves surrounding
them remaining within the set. Reducing L even further to 0.08 m reduces the robust set
to just the central flow channel, the stagnant flow regions and the centre–most points of
the vortices.

We next consider the transfer operator method, which we carry out by dividing the
domain Ω into 150 × 150 boxes of equal size and sampling 1000 uniformly distributed
initial points within each box once more to compute the elements of the transfer operator
matrix P. In consideration of the final time t0+T , we define periodic boundary conditions
in both the x and y directions and divide the domain Ω̃ into 150× 150 rectangular boxes
of equal size once again. After producing the transfer operator matrix P, the first ten
singular values of this matrix we calculated to be 1, 0.9999, 0.9999, 0.9997, 0.9997, 0.9995,
0.9995, 0.9995, 0.9994 and 0.9994. Figure 3.35 shows the scalar fields of the second and
third right singular vectors of P and two pairs of coherent sets obtained from these singular
vectors. The second singular vector has divided the flow domain Ω almost precisely in
half, with a zero contour line along y = π acting as the boundary between each half of
the domain Ω. Because we have defined periodic boundary conditions in y, some “spilling
over” of portions of these coherent sets from the upper boundary to the lower boundary
of Ω (or vice versa) can be observed. In contrast, when using the third right singular
vector we detect the central flow channel as one coherent set while the domain above and
below the channel (each containing a vortex layer) forms the second coherent set.

We obtain similar results when we apply the dynamic Laplace operator method to this
flow system. We use the same parameters as those defined earlier for the transfer operator
method, and the first ten eigenvalues produced for ∆D have come out to be 0, -0.2664,
-0.5747, -1.1543, -1.7192, -1.8084, -2.1355, -2.1759, -2.6637 and -3.0581. In Figure 3.36, we
divide Ω into a pair of coherent sets in two ways using the second and third eigenvectors
produced for ∆D. The resultant coherent sets obtained from the second eigenvector
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Figure 3.35: Scalar fields of the second (top–left) and third (top–right) right singular
vectors of P for the KH1 flow and two coherent sets for the flow obtained by dividing the
domain Ω along the zero contour lines of each respective field (bottom Figures).

have come out to be almost exactly the same as those produced from the second right
singular vector of P, with the top half of the flow domain classified as one coherent set
and the bottom half of the domain classified as the other. The same can be said for the
third eigenvector of ∆D, which isolates the central flow channel as one coherent set and
the remainder of the flow domain which sits above and below this channel as the other
coherent set, just as the third right singular vector of P was able to do.

Next, we apply the FCM clustering method to this flow in order to seek K = 2
clusters. We use the full uniform grid of 1024× 1024 initial points and set the sharpness
parameter m = 1.5. Figure 3.37 shows the membership probability scalar fields for these
clusters along with two coherent clusters extracted at the 70% membership probability
level. The first cluster contains the central flow channel and is bounded by the vortex
layers on either side (as demonstrated by the sinusoidal boundaries of the cluster); while
the other cluster contains the vortex layers and the surrounding stagnant flow reaching to
the closest vertical boundary to each layer. We next increase K to 4, with the membership
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Figure 3.36: Scalar fields of the second (top–left) and third (top–right) eigenvectors of
∆D for the KH1 flow and two coherent sets for the flow obtained by dividing the domain
Ω along the zero contour lines of each respective field (bottom Figures).

probability scalar fields shown in Figure 3.38 and the clusters subsequently obtained at
the 70% threshold shown in Figure 3.39. We again extract the central flow channel
as one coherent cluster for this flow, while the upper and lower vortex layers and their
neighbouring stagnant flow regions have been identified as separate coherent clusters. The
fourth cluster is a disjoint combination of the upper and lower shear layers which separate
the vortex layers from the central flow channel.

Finally, we execute the CSC method on a uniformly spaced grid of 80 × 80 initial
points in Ω to generate the scalar field shown in Figure 3.40. The central flow channel
stands out as the key coherent structure of the system from this field, as flow particles
corresponding to the strongest positive values of the CSC coefficient cover this region of
Ω. Strong negative values of this coefficient can be found in the stagnant flow regions
close to the upper and lower edges of the domain, and also within the coherent vortices
of the flow. Medium level values of this coefficient are used to identify the shear layers
which surround the central flow channel along with wave shaped flow objects that have
been produced as the vortex layer changes shape and the coherent vortices take shape.

The key structures which define the KH1 flow are the central flow channel and the
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Figure 3.37: Membership probability fields for two FCM clusters of the KH1 flow (left
Figures) and two clusters for this flow obtained at the 70% membership probability level
(right Figures).

vortex layers which surround it from above and below. Most of the methods were able
to locate the central flow channel, however each method had a different way of distin-
guishing this from the vortex layers. The S2 robust sets, the transfer operator, dynamic
Laplace operator, FCM Clustering and CSC methods were all able to explicitly detect
this structure as a rectangular flow channel centred along y = π m, though the width
of this channel and the shapes of its upper and lower boundaries varied slightly between
each of these methods. The FTLE did not explicitly detect this structure, but was able
to demonstrate that this was a coherent flow region corresponding to low FTLE values
and low particle stretching. The LAVD failed to detect the flow channel as it is exten-
sionally and not rotationally coherent, while the VLCS method also failed to detect the
flow channel but was able to find wave–shaped flow barriers which separate the channel
from the upper and lower vortex layers. The vortices within this system are more real-
istic in the sense that they build up as the flow progresses, do not exist immediately as
the flow commences and are not defined by a rigid vortex boundary like in the DG or
Bickley Jet systems. The LAVD was able to explicitly identify these vortices, as were
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Figure 3.38: Membership probability fields for four FCM clusters of the KH1 flow.

Figure 3.39: Four FCM clusters for the KH1 flow obtained at the 70% membership
probability level.
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Figure 3.40: The CSC scalar field for the KH1 flow.

the S2 robust sets for larger lengthscale thresholds L. The S2 scalar field and the FTLE
were also able to identify these structures, along with codimension–1 flow structures of
greater flow stretching or uncertainty which folded towards the centres of the vortices.
The transfer operator, dynamic Laplace operator, FCM clustering and CSC methods all
failed to detect the vortex centres, but were able to identify the full vortex layers as
coherent structures to some extent, along with surrounding flow which was advected as
the vortex layer took shape. Another interesting feature is the sinusoidal or wave type
shear layers which separate the Kelvin–Helmholtz vortices from the central flow channel
on either side of the channel. The FTLE, S2, FCM clustering and CSC methods were all
able to identify these features of the flow to some extent, as was the LAVD method where
this quantity had a large value within these layers due to the strong Lagrangian shear
observable within these structures. The VLCS method found wave shaped flow barriers
which form the boundaries of these layers and curl around the vortices, while the transfer
operator and dynamic Laplace operator methods both failed to find these layers even
as boundaries between the coherent sets identified. The results obtained from our first
numerically defined flow system illustrate just how different the LCSs obtained from each
detection method can be, particularly as we are no longer working with an analytically
defined toy model which features strongly idealised flow structures.

3.5 Kelvin–Helmholtz Version 2 (KH2)

For our next numerically defined system, we consider another simulated flow with Kelvin–
Helmholtz vortex layers which move through the flow in a much more unpredictable
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fashion than in the KH1 flow considered in the previous Section. While the KH1 flow
contained two vortex layers within which separate and distinct vortices formed gradually
as the flow progressed, in this flow (which we will denote as Kelvin–Helmholtz (Version
2) or KH2) Kelvin–Helmholtz vortices take form more quickly and collide and combine
with other vortices as the flow progresses. We simulate the KH2 system by solving the
Navier–Stokes equations using the same computational methods and parameters defined
in the previous section for the KH1 flow, except in this case we simulate 20 seconds worth
of velocity data and we change the initial condition for the velocity to
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where δ = 0.05 once more and α = 9, the nearest whole number to 0.22/θ0 = 0.44/δ ≈ 8.8
which is an estimate for the most unstable wavenumber computed from θ0, the initial
thickness of the vortex layers which exist within the system (Mattner 2011). In the KH2
flow, we begin at the initial time of t = 0 seconds with a flow channel centred along y = π
m of the same length as that which exists within the KH1 system, two vortex layers
centred along y = π/2 m and y = 3π/2 m and stagnant flow close to the upper and lower
boundaries of the domain Ω = [0, 2π)× [0, 2π). A line of vortices begin to take form along
each layer just like in the KH1 flow, however these vortices are smaller in size and are
packed closer together along each vortex layer. By the time we have reached t = 5 seconds
worth of flow, the vortices on each layer begin to move to the right of the domain and
collide and merge with each other to form larger vortices and wider vortex layers; causing
the width of the central flow channel to decrease. By the time we reach t = 15 seconds
worth of flow, four large travelling vortices (two on each layer) have been generated, and
the width of the central flow channel is now half of its original width. By changing the
initial condition to produce vortices that move and collide with each other rather than
just gradually taking shape in one spot, the vortex layers in the KH2 system now exhibit
much more unpredictable flow behaviour in comparison to the layers in the KH1 system.
We implement each of our LCS detection methods on the KH2 system over the flow time
interval ranging from t0 = 12 to t0 +T = 15 seconds. All other computational parameters
pertinent to each LCS detection method remain the same as those selected for the KH1
flow unless stated otherwise.

We begin with the FTLE method, with the scalar field generated for the KH2 flow on
display in Figure 3.41. The maximal ridges of this field are tucked between the vortices and
the flow channel in similar fashion to what was observed for the KH1 system. However,
this time around, the maximal ridges do not form the boundaries of the flow channel
completely due to the enlargement of the vortex layers caused by the merging of these
vortices. The shear layers between the vortices and the flow channel have extended in size
and changed in shape; with the positions and trace of these layers indicated by ridges of
medium level FTLE. In similar fashion to the KH1 flow, medium level ridges of the FTLE
are also observable within the vortices themselves, on this occasion traversing towards the
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Figure 3.41: The FTLE Φ15
12 for the KH2 flow.

centre of the vortices. Minimal values of the FTLE are found throughout the centre of the
flow channel, which has considerably shrunk in length in comparison to the flow channel
present in the KH1 system.

Next, we consider the three VLCS detection algorithms, with the results obtained
from each of these algorithms featured in Figure 3.42. Like with the KH1 system, each
of the VLCS detection algorithms are able to obtain LCSs that coincide with maximal
and medium level ridges of the FTLE scalar field. The structures produced by VLCS–A
separate the central flow channel and the surrounding shear layers, and spiral in towards
the centres of most of the vortices present after 12 seconds of flow. In a fashion consistent
with the other flow systems considered thus far, this algorithm has produced repeated
LCSs which lie in similar regions of the domain and are separated from each other by
only a small distance. The use of a separation radius ρ prevents this occurring within the
results produced by the other two algorithms. The results of VLCS–B separate the vortex
layers from the greater flow region containing the central flow channel, feature some (but
not all) of the variational structures spiralling towards the centres of the vortices and, as
was seen with the KH1 system, include structures of “locally maximal” particle repulsion
capability located within the flow channel itself. VLCS–C produces a picture of results
that may be viewed as a sensible centre between the results of the previous two algorithms,
with the production of structures within the vortex layers excluding those which sit too
close and are shaped too similarly to other structures that have already been generated;
some structures which spiral in towards the centres of the vortices and no structures
present within the central flow channel.

Next, the LAVD scalar field for the KH2 flow is shown in Figure 3.43. This method
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Figure 3.42: Hyperbolic VLCSs for the KH2 flow computed using the VLCS–A (top–left),
VLCS–B (top–right) and VLCS–C (bottom) algorithms.

illustrates quite clearly that after 12 seconds of particle flow, collections of smaller vortices
have merged to form what appear to be two large vortices in the upper vortex layer (the
right most vortex combines with the left most vortex under periodic boundary conditions),
and three slightly smaller vortices in the lower vortex layer. In comparison to the LAVD
results for the KH1 flow, we were not able to identify any shear layers which support these
vortex layers from the LAVD results for this flow. This is most likely due to the expansion
and rapid change in the shape of the vortex layers resulting in the boundaries between
the vortex layers and the flow channel being defined by strong fluid particle stretching
rather than strong Lagrangian shear in this system.

We next consider the S2 method, with the Scaled S2 scalar field shown in Figure 3.44,
along with three robust sets for this system corresponding to lengthscale thresholds L
of 0.4 m, 0.25 m and 0.1 m. The Scaled S2 field once again appears quite qualitatively
similar to the FTLE field, though again there are some minor differences, such as medium
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Figure 3.43: The LAVD Θ15
12 for the KH2 flow.

level ridges of the Scaled S2 separating the vortices from the central flow channel instead
of maximal ridges like in the case of the FTLE field; along with “ripple” type structures
observable within the Scaled S2 field around the points (x, y) = (2.5, 5.7) and (4.75, 0.5);
instead of troughs as observed in the FTLE field. Each robust set contains the central
flow channel of the KH2 system, though the width of this structure progressively shrinks
as the threshold L decreases. For a large enough value of L, the robust set captures
the centres of the coherent vortices above and below the channel along with a range of
coherent clusters of miscellaneous shape which surround these vortices within the layers.

Next, we focus on applying the transfer operator method to the KH2 system. Upon
producing P for this flow, the first ten singular values produced came out to be 1, 0.9998,
0.9997, 0.9997, 0.9996, 0.9992, 0.9992, 0.9991, 0.9990 and 0.9990. Figure 3.45 shows the
scalar fields for the second and third right singular vectors of P and pairs of coherent
sets for this flow generated from each of these vectors. From the second right singular
vector, the coherent flow channel is classified as one coherent set and the remainder of Ω is
classified as the other coherent set. These results are similar to the coherent sets obtained
for the KH1 flow, however those coherent sets were obtained from the third singular vector
rather than the second. In contrast, the third right singular vector produces the top half
of the domain as one coherent set and the bottom half of the domain as the other. We
obtained similar results for the KH1 flow from the second singular vector of P instead of
the third, however in the KH2 flow we see more “spilling” of the coherent sets over the
upper and lower edges of the doubly periodic domain than we did in the KH1 flow.

We obtain similar results upon the implementation of the dynamic Laplace operator
method on this flow. The first ten eigenvalues generated for ∆D were 0, -0.2034, -0.3477,
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Figure 3.44: The Scaled S2 for the KH2 flow, with h = 2π/1024 ≈ 6.1 × 10−3 m and
vr ≈ 1.63× 10−2 ms−1 (top–left); along with three robust sets for this flow corresponding
to lengthscales L = 0.4 m (top–right), 0.25 m (bottom–left) and 0.1 m (bottom–right).

-0.6764, -0.9588, -1.3553, -2.2505, -2.3670, -3.0580 and -3.2800. Figure 3.46 shows the
scalar fields of the second and third eigenvectors of ∆D and two coherent sets produced
from each of these fields. From the second eigenvector, we have produced an almost
identical pair of coherent sets to those obtained from the second singular vector of P,
with the central flow channel identified as one coherent set and the remainder of the
domain (including the two vortex layers) identified as the other set. Similarly, the results
generated from the third eigenvector of ∆D are practically identical to those obtained
from the third singular vector of P, bar some minor differences and inconsistencies.

Next, we apply the FCM clustering method with K = 2 to this flow to obtain the
membership probability scalar fields and coherent clusters shown in Figure 3.47. As we
observed with the KH1 flow, the two clusters identified in this case are the central flow
channel and a disjoint combination of the two vortex layers above and below this channel;
with the biggest observable difference being the sinusoidal boundaries of these clusters.
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Figure 3.45: Scalar fields of the second (top–left) and third (top–right) right singular
vectors of P for the KH2 flow and two coherent sets for the flow obtained by dividing the
domain Ω along the zero contour lines of each respective field (bottom Figures).

Upon increasing K to 4, we obtain the membership probability fields shown in Figure 3.48
and the four coherent clusters shown in Figure 3.49. We have obtained a similar collection
of clusters to those generated from the K = 4 case in the KH1 flow, with the central flow
channel, the upper and lower vortex layers; and the disjoint shear layers which separate
the central flow channel from the vortex layers identified for this flow.

Finally, we apply the CSC method to the KH2 flow and produce the scalar field
shown in Figure 3.50. From this result, strongly positive CSC coefficients correspond
to the central flow channel in similar fashion to the KH1 flow, while strongly negative
CSC coefficients are used to identify the two vortex layers. Unlike in the KH1 flow, the
CSC method has been able to identify at least the outlines of the coherent vortices from
strongly negative CSC coefficients, along with portions of the domain which were dragged
along with the vortices as they merged and the vortex layers expanded. The shear layers
between the flow channel and the vortices correspond to CSC coefficients of low magnitude
or a value of zero; indicating a lack of coherent flow behaviour within these regions of the



84 Chapter 3. Resultant Coherent Structures From Each Method

Figure 3.46: Scalar fields of the second (top–left) and third (top–right) eigenvectors of
∆D for the KH2 flow and two coherent sets for the flow obtained by dividing the domain
Ω along the zero contour lines of each respective field (bottom Figures).

domain.

In comparison to all of the previously discussed dynamic velocity systems, the KH2
flow has been the most volatile and unpredictable dynamic system we have encountered
thus far. In light of this, each of our LCS detection methods has detected a range of
coherent flow objects with varying shapes, sizes and formations. Like with the KH1
flow, the definitive structure of this flow is the central flow channel, which in this flow
is shorter in width due to the more volatile vortex layers. The shape of the central flow
channel varies with each of these methods, with the S2 robust sets, transfer operator,
dynamic Laplace operator, FCM clustering (K = 4 case) and CSC methods identifying
an oblong shaped flow channel which approximately spreads out between y = 2 m and
y = 4 m. Meanwhile the FTLE, Scaled S2 and FCM clustering (with K = 2) methods
all identify the flow channel combined with the shear layer between the vortices and the
channel as one structure; and the VLCS algorithms detect sinusoidal flow barriers which
give this channel a similar shape. Like with the KH1 flow, the LAVD fails to detect the
central channel as this structure is extensionally coherent and not rotationally coherent.
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Figure 3.47: Membership probability fields for two FCM clusters of the KH2 flow (left
Figures) and two clusters for this flow obtained at the 70% membership probability level
(right Figures).

The LAVD method is able to clearly identify the vortices present within this flow, while
the S2 robust sets identify their centres for large enough lengthscale thresholds L and
the CSC method identifies the approximate outlines of these vortices. Interestingly, the
FTLE, Scaled S2 and VLCS methods detect curves of large particle stretching which
spiral in towards the centres of these vortices; which is likely due to the fact that these
vortices are the result of the gradual merging of smaller vortices, and strong stretching
of flow trajectories is observable as this occurs. The transfer operator, dynamic Laplace
operator and FCM clustering methods do not identify any of these vortices but instead
identify the overall vortex layers as coherent clusters or sets, which was similarly observed
in the results for the KH1 flow.
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Figure 3.48: Membership probability fields for four FCM clusters of the KH2 flow.

Figure 3.49: Four FCM clusters for the KH2 flow obtained at the 70% membership
probability level.
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Figure 3.50: The CSC scalar field for the KH2 flow.

3.6 Gulf Stream

The final flow system to be considered in this study is an oceanographic data set focusing
on the Gulf Stream, a warm current in the North Atlantic Ocean. The Gulf Stream is
a rapidly moving jet stream which changes shape frequently and produces objects such
as coherent cyclonic eddies as it evolves over time (Liu et al. 2018, Kang & Curchitser
2013). While this current is considered highly influential regarding climate patterns in the
Northern and Western hemispheres (Liu et al. 2018), it has been seldom considered for
LCS analysis up until the last few years (Liu et al. 2018, Froyland et al. 2019, Balasuriya
2020b). To examine Lagrangian coherent structures within this system, we use absolute
geostrophic velocity data compiled by SSALTO/DUACS and supplied by the AVISO
Satellite Altimetry Data service (https://www.aviso.altimetry.fr). The relevant velocity
data has been defined over the spatial domain which ranges from 82 to 25 degrees West and
30 to 50 degrees North; with Eulerian snapshots of this data recorded daily at midnight
(UTC) from January 1st, 2015 to March 31st, 2020 (inclusive). The velocity has been
provided in units of metres per second at equidistant points spaced apart by 0.25 degrees
latitude/longitude in each direction. For our study, we consider a spatial domain and
time parameterisation similar to that used by Froyland et al. (2019) to study the dynamic
Laplace operator method. The domain in question Ω = [65◦ W, 35◦ W]× [30◦ N, 50◦ N],
and the interval of flow considered ranges from t0 = midnight, January 15th, 2015 to
t0 + T = midnight, April 15th, 2015 (UTC), i.e. covering a period of T = 90 days worth
of flow. As we will see from the results displayed later on in this Section, it is rather
difficult to make out important coherent structures within this system over such a large
domain and interval of flow time, however we proceed with these choices for the sake of
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Figure 3.51: The FTLE Φt0+T
t0 for the Gulf Stream flow, with t0 = midnight, January

15th, 2015 (UTC) and T = 90 days.

maintaining consistency with Froyland et al. (2019). Froyland et al. (2019) use 291× 224
uniformly spaced points in Ω to evaluate the dynamic Laplace operator using the sparse
method defined in Froyland & Junge (2018). We will endeavour to use the same set
up of points in each of our methods where possible, however this will not be possible
for all of these methods due to system memory limitations and considerations regarding
computation time. To solve the velocity system and produce the necessary flow maps for
each of our initial points x0, we convert the velocity to units of degrees latitude/longitude
per day to match the units of spatial distance and the temporal resolution of the data,
and assign velocities of 0 to particles initially positioned on land (where the velocity is
otherwise defined as NaN, or “Not a Number”). To prevent flow particles from leaving
the domain, the boundary of the data set is layered with values of NaN for the velocity,
so that flow trajectories “wash up” on the boundaries of the domain rather than leaving
the domain altogether. This ensures that a value of each relevant LCS quantity can be
computed at all points within our domain, but it can result in the production of some
anomalous or unreliable flow patterns as illustrated by the following results.

We begin with the FTLE, with the scalar field produced for this quantity displayed
in Figure 3.51. Unlike in the previous flow systems where curves representing maximal
ridges of the FTLE quantity were easily identifiable, in this flow system large values of the
FTLE are spread out throughout most of our domain. These large FTLE values attempt
to represent the overall spread of the Gulf Stream over the domain after the 90–day period
of flow, over which time the shape of the Gulf Stream would have changed considerably.
We do have some minor indication of the shape of the Gulf Stream from this field, though
it is difficult to extract this explicitly amidst a sea of large FTLE values. Smaller values of
the FTLE help identify more coherent flow structures within this system, such as coherent
eddies and vortices produced by the Gulf Stream. Closer to land, along the upper and
lower boundaries of the flow domain, and within the Gulf of St Laurence (in the top–
left corner of the domain), FTLE values are small or negative, indicating minimal fluid
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Figure 3.52: Hyperbolic VLCSs for the Gulf Stream flow computed using the VLCS–A
(top–left), VLCS–B (top–right) and VLCS–C (bottom) algorithms.

particle stretching or flow folding or compression.

Next, we consider the three hyperbolic VLCS detection algorithms. In VLCS–A, we
randomly sample 2000 candidate points for eigenvector field integration from the accept-
able set G0, set the allowance parameter Lf = 2 degrees latitude/longitude, and discard
all structures produced which are less than 2 degrees in arc length. For both VLCS–B
and VLCS–C, we set the maximal length of the structures Lmax = 30 degrees and set the
separation radius ρ = 1 degree. In VLCS–C, the allowance parameter Lf is reduced to 1
degree. The resultant foliations of hyperbolic VLCSs produced from each of these algo-
rithms can be viewed in Figure 3.52. These results do not give a very clear picture of the
most influential flow structures within this system. Rather than illustrating the bound-
aries of the Gulf Stream (for instance), the structures produced from this method cover
the domain in an almost random fashion, and only occasionally indicate the boundaries
of key structures such as the coherent eddies. In all of the other flow systems examined
in this Thesis, the VLCS method was able to produce at least some meaningful flow
structures, though in the vast majority of these cases these structures were generated
within analytically defined toy flows and such idealised structures are highly unlikely to
be observed in a more realistic system.

We next consider the LAVD for this system, with the scalar field for this quantity
shown in Figure 3.53. From this field, we are able to gain a clear and cohesive picture
of the eddies produced from the Gulf Stream as the most rotationally coherent flow
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Figure 3.53: The LAVD Θt0+T
t0 for the Gulf Stream flow, with t0 = midnight, January

15th, 2015 (UTC) and T = 90 days.

objects within this system. These eddies are clearly identifiable as elliptic objects of
medium to large LAVD values, with the LAVD varying in magnitude depending on how
strongly coherent these structures are over the whole flow interval. It is likely that the
eddies corresponding to larger LAVD values remain as consistent structures over the whole
duration of the flow, while those corresponding to slightly lower values may not necessarily
last over the complete course of this flow. We can also identify the Gulf Stream to some
degree from these results, due to the medium levels of the LAVD observable within the
Stream generated by the significant amounts of Lagrangian shear present within this
structure. Low values of the LAVD are observable closer to land and within the Gulf
of St Laurence, implying that flow behaviour within these portions of the domain is not
necessarily incoherent, but rather that this flow is not rotationally coherent in the fashion
of a vortex or an eddy.

We now turn our attention to the S2 method, with the Scaled S2 field shown in Figure
3.54 along with three robust sets for this flow corresponding to lengthscale thresholds L
of 18, 6 and 2 degrees latitude/longitude. For this flow system, the Scaled S2 field is
considerably more grainy and less coherent in comparison to those produced for the flow
systems considered earlier on in this Chapter. This is likely due either to the resolution of
the velocity data, or the large length of flow T taken for this study. That said, we are still
able to identify what appears to be the Gulf Stream from this field, identifiable from the
largest values of the Scaled S2. Structures corresponding to lower S2 values are difficult
to spot due to the graininess of the field, however we can still identify the Gulf Stream
eddies or the Gulf of St Laurence in the top left corner of the domain from these values.
Due to the aforementioned graininess of the S2 field, extracting clear coherent structures
from the robust sets generated from this system has proven to be difficult. When L = 18
degrees, the robust set contains a number of coherent eddies within this system, small
parcels of flow surrounding the Gulf Stream and most of the Gulf of St Laurence. Most
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Figure 3.54: The Scaled S2 for the Gulf Stream flow, with h = 0.125 degrees lati-
tude/longitude and vr ≈ 1.27× 10−2 degrees per day (top–left); along with three robust
sets for this flow corresponding to lengthscales L = 18 degrees (top–right), 6 degrees
(bottom–left) and 2 degrees (bottom–right).

of these structures begin to fade and dissolve as the threshold L is reduced; and by the
time we reach a threshold of 2 degrees, all that remains are small parcels of flow within
the Gulf of St Laurence and scattered collections of points below the Gulf Stream which
do not appear to form any coherent, robust structures.

Next, we apply the transfer operator method to the Gulf Stream flow by dividing the
domain Ω into 120 × 90 rectangular boxes of equal size, and once again sampling 1000
uniformly distributed initial points within each of these boxes; skipping over any boxes
where over half of the box contains land. We expand the domain Ω̃ at time t0 + T to
cover the full domain over which velocity data is available, i.e. Ω̃ = [82◦ W, 25◦ W] ×
[30◦ N, 50◦ N], and divide this into 150 × 90 boxes. After estimating the entries of the
transfer operator matrix P, the first ten singular values of this matrix were computed to
be 1, 0.9651, 0.9507, 0.9448, 0.9390, 0.9340, 0.9317, 0.9299, 0.9291 and 0.9259. In Figure
3.55, we produce two pairs of coherent sets for the Gulf Stream flow using both the second
and third right singular vectors of P. The results from both of these singular vectors are
consistent with the results obtained from the dynamic Laplace operator by Froyland et al.
(2019). Using the second right singular vector, the Gulf of St Laurence and its immediate
surrounds are identified as one coherent set, and the remainder of the domain is identified
as the other coherent set. Considering the third right singular vector instead, we identify
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Figure 3.55: Scalar fields of the second (top–left) and third (top–right) right singular vec-
tors of P for the Gulf Stream flow and two coherent sets for the flow obtained by dividing
the domain Ω along the zero contour lines of each respective field (bottom Figures).

most of the top half of the flow domain as one coherent set, with the other coherent set
featuring a disjoint combination of the lower half of the flow domain and the Gulf of St
Laurence. Interestingly, the contour which separates the upper half of the domain from
the lower half appears to take the shape of part of the Gulf Stream itself, though as we
can see in the third singular vector scalar field, larger positive values of the third singular
vector entries curl up towards the upper boundary of the domain, in similar fashion to
the Gulf Stream shapes produced from previously discussed methods, such as the FTLE,
LAVD and S2.

We obtain similar coherent sets for this flow system using the dynamic Laplace op-
erator method. Defining a matrix operator for the Laplacian over this domain is rather
difficult, particularly due to its awkward shape caused by the presence of land in the
top–left corner of the domain. Hence, for this flow we will replicate the calculations un-
dertaken by Froyland et al. (2019) using the sparse version of this method and the same
set of computational parameters. The first ten eigenvalues produced for ∆D from this
method have come out to be 0, -0.7096, -1.5057, -1.8395, -2.1443, -2.8906, -2.9380, -3.5367,
-4.2314 and -4.3876. Figure 3.56 shows two pairs of coherent sets produced for the Gulf
Stream flow using both the second and third eigenvectors of ∆D. Like with the second
singular vector of P, the first coherent set obtained from the second eigenvector of ∆D
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Figure 3.56: Scalar fields of the second (top–left) and third (top–right) eigenvectors of
∆D for the Gulf Stream flow and two coherent sets for the flow obtained by dividing the
domain Ω along the zero contour lines of each respective field (bottom Figures).

includes the Gulf of St Laurence and its surrounds, while the second coherent set includes
the remainder of the domain. When we use the third eigenvector of ∆D, the majority of
the top half of the domain forms one coherent set, while the other set contains most of
the Gulf of St Laurence along with the bottom half of the domain in a disjoint fashion.
Bar some minor differences, the results are consistent with those produced by Froyland
et al. (2019).

Next, we apply the FCM clustering method to this system, firstly by seeking K = 2
clusters with the sharpness parameter m set to a value of 1.5. The membership proba-
bility fields and two clusters obtained at the 75% threshold can be seen in Figure 3.57.
Unlike in some of the previously discussed methods, such as the transfer operator and
dynamic Laplace operator methods, this method has divided the domain more or less by
its latitudinal centre, with most of the left hand side of the domain forming one coherent
cluster, and most of the right hand side of the domain forming the other cluster. The sec-
ond cluster (the red cluster in Figure 3.57) contains a horizontal streak of flow surrounded
by the first (blue) cluster, illustrating a portion of the flow domain dragged across to the
right hand side of the domain by the Gulf Stream as it evolves over the duration of the
flow. We then increase the number of clusters K to 5, with the resultant membership
probability fields and five FCM clusters produced again at the 75% threshold shown in
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Figure 3.57: Membership probability fields for two FCM clusters of the Gulf Stream flow
(left Figures) and two clusters for this flow obtained at the 75% membership probability
level (right Figures).

Figure 3.58. This time, the FCM clustering method has divided the domain more or less
into five coherent clusters of equal size, and has not been able to identify the Gulf Stream
or any other coherent flow objects detected by other methods (such as the eddies).

Finally, we apply the CSC method to the Gulf Stream flow system. Due to system
memory constraints in MATLAB, we could only use a smaller initial grid of 210 × 150
uniformly spaced initial points (disregarding all points based on land once more), to
execute this method. The resultant scalar field produced from this method can be seen
in Figure 3.59. Like with the S2 scalar field, there is a level of graininess and a slight lack
of clarity with the scalar field produced, however it is not as detrimental to the method
in this case. From the largest positive CSC coefficients, we are able to visualise a large
collection of coherent eddies and eddy–type pockets of flow which exist within this system,
along with the majority of flow within or surrounding the Gulf of St Laurence. Negative
values of this coefficient identify streams of flow between coherent eddies, particularly in
the bottom–right corner of the domain, along with the Gulf Stream itself; though the
identification of this is hindered slightly by the graininess of the CSC field within the
Stream.

The Gulf Stream system is arguably the most complex flow we have considered in
this study, owing to its complicated combination of flow features, from the large and
rapidly moving Gulf Stream to the coherent eddies produced from this Stream; all of
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Figure 3.58: Membership probability fields for five FCM clusters of the Gulf Stream flow
(left Figures) and five clusters for this flow obtained at the 75% membership probability
level (right Figures).
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Figure 3.59: The CSC scalar field for the Gulf Stream flow.

which move through the system in unpredictable patterns. As a result of this, each of
our methods detect a different collection of LCSs in a variety of different ways. The
most influential structure in this flow is the Gulf Stream itself, due to its consistency and
influence over the system; even though it is not strictly a “coherent” structure. The Gulf
Stream is identifiable from most of the methods considered earlier, including the LAVD
(from strong Lagrangian shear), the Scaled S2 field, the transfer operator, the dynamic
Laplace operator, and the CSC field. The FTLE can also be used to find the Gulf Stream,
though high particle stretching spread out across the domain makes this difficult to isolate.
The eddies produced by the Gulf Stream are also key structures within this flow, and have
been identified using the LAVD, CSC, low values of the FTLE and the S2 robust sets
(though L needs to be large and the structures are grainy in resolution). The Gulf of St
Laurence was also identified as a coherent flow region as flow trajectories within this region
remain separate from the greater Atlantic Ocean due to the Gulf Stream. The transfer
operator and dynamic Laplace operator methods explicitly identified this region, though
it is also identifiable from the S2 robust sets, CSC and the FTLE. The two methods
which have fared the worst in identifying meaningful coherent structures within this flow
are the VLCS and FCM clustering methods. As mentioned earlier, a significant handicap
of the FCM clustering method is that the number of clusters expected to exist within a
flow needs to be known or guessed. In a real world data set such as this one, predicting
the exact number of coherent clusters expected to exist within the flow is difficult to do,
and regardless of the value of K chosen, the FCM Clustering method will most likely
just divide the flow domain into K clusters of roughly equal size; as was done with this
system in both the K = 2 and K = 5 cases. Each VLCS algorithm has identified an
incoherent collection of flow separating barriers spread out across the flow domain, with
no meaningful flow objects identifiable from these structures (such as the boundary of the
Gulf Stream or a coherent eddy).



Chapter 4

Sensitivity of Lagrangian Coherent
Structures to Velocity Uncertainty

In this Chapter, we examine how each of the LCS detection methods discussed in the
previous two Chapters respond to noise or uncertainty present within the velocity data
which represents a dynamic flow system. The vast majority of observational or numeri-
cally defined velocity data sets available will carry some amount of numerical uncertainty,
due to observational, computational or experimental errors. Depending on how severe
this numerical uncertainty is, this is likely to have an impact on the reliability and ac-
curacy of the results generated from various LCS detection methods. Other studies have
investigated the impact of stochastic uncertainty on the functionality of LCS detection
methods such as the FTLE (Guo et al. 2016) and Lagrangian descriptors based on tra-
jectory length (Balibrea-Iniesta et al. 2016); with Balasuriya (2020b) also formulating an
analytically defined quantification of the error for the FTLE using S2. We therefore aim
to add to this work by quantifying the impact of this uncertainty on all of our eight LCS
detection methods.

A reminder that a stochastic differential equation (SDE) system takes the form

dxt = u (xt, t) dt+ ε σ (xt, t) dWt. (4.1)

As has been done in the literature (Balibrea-Iniesta et al. 2016, Guo et al. 2016), we can
use the above equation to convert the Eulerian velocity u of a deterministic dynamical
system defined by (2.1) into a stochastic flow system which adds normally distributed
uncertainty to our deterministic velocity data through the two–dimensional Brownian
motion defined by Wt. How much uncertainty we add to our original velocity data
depends on the noise parameter ε which, in a dimensional flow system, like all of the
flows which will be dealt with in this Chapter, is defined by

√
hvr. In this expression, h

is a lengthscale parameter which represents the resolution of the available velocity data
and is determined by the mesh size of this data (or the mesh size of the grid of initial
points x0 if the flow is analytically defined); and vr represents the scale of uncertainty in
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this velocity data which can be known or guessed based on the precision of the velocity
data. The parameter σ in (4.1) represents a diffusion matrix for the stochastic volatility
imposed on u. In this research, σ is dimensionless as we have chosen ε to be dimensional
and will simply be set to the default choice I2×2, the 2 × 2 identity matrix (Balasuriya
2020a,b).

We begin our stochastic noise analysis by converting the Eulerian velocity for three
of our flow systems (namely the Bickley Jet, KH2 and Gulf Stream flows) into stochastic
flow systems of the form (4.1). The value of the noise parameter ε will change with each
flow system as the velocity resolution parameter h changes, however we will keep the
velocity uncertainty level vr consistent across all of these flows. We then solve (4.1) for all
of our flows over an initial grid of points x0 ∈ Ω using the Euler–Maruyama integration
scheme, ensuring that the same amount of normally distributed stochastic noise is applied
to every point within the initial grid so that continuity necessary for the computation of
quantities such as the flow map gradient is maintained. We then produce a stochastic
realisation of the LCS results from each method using the flow solutions of (4.1), and start
by qualitatively assessing how the stochastic LCS results differ from the deterministic LCS
results obtained earlier.

We then perform quantitative analysis of these stochastic LCS results by generating
100 realisations of LCS quantities such as the FTLE, the coefficients of the optimal vector
of P, or the membership probability of an FCM cluster for each of our flow systems; itera-
tively calculating the mean and standard deviation of these quantities as these realisations
are produced. After some experimentation, 100 was found to be a sufficient number of
stochastic realisations needed to obtain convergence of the means and standard deviations
for each of these methods applied to all of the flows considered, as we demonstrate in Ap-
pendix B of this Thesis. From these results, we should be able to determine common LCS
patterns from the mean fields of these quantities, while the standard deviation fields tell
us within which areas of the flow domain our LCS methods are more susceptible to this
velocity uncertainty.

This approach cannot be used to quantify the impacts of stochastic noise on the VLCS
method or the S2 robust sets, as these methods produce curves or subsets of the flow do-
main Ω rather than scalar fields. Instead, we estimate the probability/likelihood of a
portion of the domain being traversed by a VLCS or being contained within a robust
set from 100 stochastic realisations of these methods. In the case of the VLCS method,
we divide Ω into “bins” of equal size, record which of these bins each hyperbolic VLCS
traverses through for each realisation of the VLCS method and use this to produce a sam-
ple probability (likelihood) field that should reveal curve patterns which these hyperbolic
VLCSs would be expected to follow. We also include a similar field showing the iteratively
calculated variation (standard deviation) of these sample probabilities. We will only carry
out this analysis using the VLCS–B algorithm as the underlying computations necessary
to produce these VLCSs remain the same for all three algorithms, so there is no point in
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repeating this analysis for the other two algorithms. To perform quantitative analysis on
the realisations of the S2 robust sets, we generate a probability density function for the
robust set based on the points which form each stochastic realisation of this set.

It is worth noting that we do not use one single batch of 100 stochastic flow map
realisations to perform quantitative analysis of each of our LCS detection methods. The
differences in the calculations required to carry out each of these methods prevent us from
doing this. For instance, to compute the FTLE we define a uniform grid of initial points,
flow these forward and use the maximal eigenvalues of the Cauchy–Green strain tensor
to obtain a scalar field for the FTLE. Compare this with the transfer operator method,
where we randomly seed 1000 initial flow points within each of a collection of boxes at
time t0 to estimate the entries of the transition matrix P; and we therefore would not be
using the same initial flow points as those used to generate the FTLE. From the results
produced, no significant difference between the stochastic LCS means/standard deviations
produced from two independent samples of 100 stochastic flow trajectories was observed
(we will not document this in the Thesis).

4.1 Bickley Jet

We begin with the Bickley Jet defined over the flow period ranging from t0 = 0 to
t0 + T = 40 days, examined in Section 3.3. In performing noise analysis for this system
(and all other flows considered in this Chapter), the values of all computational parameters
relevant to each individual method (such as the number of initial grid points for flow map
computation or the box configurations taken for the transfer operator or dynamic Laplace
operator) will remain the same as defined in the previous Chapter. Seeing as the Bickley
Jet is an analytically defined flow, we define the horizontal mesh size of the uniform grid of
initial points x0 as the resolution lengthscale parameter h ≈ 2.22×10−2 Mm. We estimate
the velocity uncertainty level vr ≈ 1.4× 10−3 Mm per day, thereby giving ε ≈ 5.6× 10−3

Mm per square root day for use in (4.1) to produce the stochastic flow map realisations.

We begin with the FTLE method, which has shown to be reasonably self–consistent
under the influence of velocity uncertainty as we gather from the results observable in
Figure 4.1. For all of the LCS detection methods applied to the Bickley Jet system, we
plot twice the standard deviation or variation in a quantity to emphasise key features
present within these fields which could not otherwise be made out if just 1× the standard
deviation was plotted. Upon application of stochastic noise to the Bickley Jet velocity, the
FTLE scalar field proceeds to wobble quite considerably, particularly in the vortex layers
between the coherent eddies where particle flow is exceptionally volatile. Despite this, the
zonal jet and the centres of the vortices appear to remain consistent in shape. The mean
FTLE field appears to look like a smoothened out version of the deterministic field, while
the standard deviation is, as expected, larger within the volatile flow regions between the
coherent vortices, and considerably small within the vortices themselves along with the
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Figure 4.1: The deterministic FTLE of the Bickley Jet flow (top-left), one realisation of
this quantity with noise applied to the velocity (top-right) and the mean (bottom-left) and
twice the standard deviation (bottom-right) of 100 realisations of the stochastic FTLE.

zonal jet.

Unlike the FTLE method, the VLCSs produced for this system are highly susceptible
to velocity noise and irregularity; as the results shown in Figure 4.2 illustrate. The
stochastic hyperbolic VLCSs produced completely deform in shape in comparison to their
deterministic counterparts. We divide the domain Ω into 180× 60 = 10800 equally sized
rectangular bins to produce the likelihood field. Each bin in this field carries a value
(between 0 and 1) which indicates the probability of a hyperbolic VLCS generated under
stochastic conditions entering that particular bin based on all of the VLCSs produced from
each realisation. Some sinusoidal green curves are identifiable within this field, indicating
that a VLCS of this shape is somewhat quite robust and (at the very least) a portion of
this structure will be identified even with stochastic noise added to the velocity. However,
the large amount of light blue coloured streaks of incoherent shape scattered throughout
the field demonstrate a lack of consistency in the hyperbolic VLCSs produced for this
system, as a large number of deformed curves have been produced for this system under
the influence of noise. The variation scalar field illustrates the standard deviation of the
likelihood for each of the bins, and it appears that this variation is consistently high
throughout this flow domain, which casts further doubt over the validity of the results
produced by the VLCS method. The results that we observe here are most likely owed
to the fact that the VLCS method relies on calculating numerical flow map gradients,
performing interpolation on eigenvector fields to produce solution curves and regulating
the integration of these fields as it progresses. These processes will come with a great deal
of numerical estimation error and uncertainty; which will only be amplified through the
existence of extra uncertainty within the velocity data.
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Figure 4.2: Deterministic hyperbolic VLCSs of the Bickley Jet flow (top–left), one real-
isation of these VLCSs with noise applied to the velocity (top–right) and the likelihood
(bottom–left) and twice the variation in this likelihood (bottom–right) of a VLCS passing
through one of 180× 60 = 10800 bins computed from 100 stochastic realisations of these
VLCSs.

Figure 4.3: LAVD results for the Bickley Jet flow arranged in the same fashion as seen in
Figure 4.1.
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Figure 4.4: Scaled S2 diagnostics for the Bickley Jet flow arranged in the same fashion as
seen in Figure 4.1.

Figure 4.5: The robust set of lengthscale L = 0.3 Mm for the Bickley Jet flow (left)
and the probability density function obtained from the stochastic realisations of this set
(right).

The LAVD for the Bickley Jet is structurally robust against velocity uncertainty im-
posed on the system, as the results shown in Figure 4.3 attest. The stochastic LAVD
illustrates the same LCSs (such as the vortices and the zonal jet), though the LAVD
values between the vortices have changed and the vortical structures corresponding to
maximal LAVD values appear to have shrunk in size. The mean field looks more like a
smoothened out version of the stochastic LAVD field rather than the deterministic one,
and the standard deviation is overall quite small and concentrated within the flow be-
tween the coherent vortices and along the edges of these vortices. This method is robust
to velocity uncertainty in the sense that we detect similar LCSs amidst the presence
of this uncertainty, however the LAVD quantity itself appears to be less robust due to
fluctuations in its values and minor alterations to the shapes of the LCSs detected.

The results generated from the S2 method show a considerable amount of suscepti-
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Figure 4.6: Transfer operator optimal vector diagnostics for the Bickley Jet flow arranged
in the same fashion as seen in Figure 4.1.

bility to the noise imposed on the Bickley jet velocity, as the results shown in Figure 4.4
illustrate. The maximal ridges of the stochastic realisation of the Scaled S2 change shape
considerably, with noticeable wobbling in the ridges and maximal spikes of this quantity;
along with the shrinkage of the Bickley jet vortices. The mean field generated shows that
the largest Scaled S2 values are concentrated within the flow between the vortices, while
smaller Scaled S2 values within the (smaller) vortices and the zonal jet remain much
more consistent. The standard deviation of the Scaled S2 is also quite large, particularly
between the vortices where we observe these larger Scaled S2 values. The large variation
in this quantity can be attributed to the sharp increases in the values of S2 which result
in large gradients for this quantity even after we have scaled it (Balasuriya 2020a), which
therefore causes more rapid changes to the values of S2 amidst the presence of even mild
amounts of velocity noise or uncertainty.

While the S2 itself appears to be rather sensitive to this velocity uncertainty, the
robust sets produced from this quantity are more self–consistent as we see from the results
shown in Figure 4.5. We focus on the robust set relevant to a lengthscale L = 0.3 Mm, and
produce a probability density function for this set from all of the stochastic realisations
of S2 produced. Large values of this function are observable within the centres of the
Bickley jet vortices along with the zonal jet, which indicate that these structures are
almost guaranteed to be included within this robust set even with this level of velocity
uncertainty. The remainder of the domain corresponds to low values of the probability
density function, indicating little to no probability of flow particles beginning within
these regions belonging in this set at this velocity uncertainty level; with few regions of
the domain corresponding to a medium level of this probability density function (aside
from some thin light blue to green coloured streaks which surround the vortices).
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Figure 4.7: Dynamic Laplace operator second eigenvector diagnostics for the Bickley Jet
flow arranged in the same fashion as seen in Figure 4.1.

The scalar field for the optimal vector of P shows considerable robustness to this
velocity uncertainty, as we see from the results presented in Figure 4.6. The stochastic
optimal vector scalar field does not differ too much from the deterministic result, save
for the considerable amount of fuzziness observable around the edges of key coherent
structures such as the zonal jet or the coherent vortices. These inconsistencies appear
to have been smoothened out in the mean optimal vector field, with the structure of
this field appearing more like that of the stochastic result rather than the deterministic
result, owing mainly to the shrinkage of the Bickley jet vortices. The standard deviation
field shows low variation in the optimal vector entries over the domain, with this variation
concentrated more in or around the zonal jet and the vortices, accounting for the fuzziness
observable in these structures under the influence of stochastic velocity noise.

The second eigenvector of the dynamic Laplace operator appears to have been slightly
more compromised under the influence of stochastic velocity uncertainty, as we observe
from the results displayed in Figure 4.7. The vortices produced in the stochastic reali-
sation of this eigenvector have become larger in size and look considerably squashed or
smudged. The flow between each vortex within both of these layers is highly volatile even
without stochastic velocity uncertainty, and this combined with the numerical uncertainty
triggered by the estimation of the Laplacian matrix operator is likely what is causing these
anomalous results. As we will show in the next two Sections of this Chapter, this be-
haviour is not observable for the dynamic Laplace operator method in the other flow
systems considered. It is worth noting that if the overall goal of this method is to divide
our flow domain into two coherent sets, and the zonal jet (which acts as the separating
boundary between these sets in this system) does not change shape or become too fuzzy
under the influence of stochastic velocity noise, the division will be consistent with that
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Figure 4.8: The deterministic membership probability fields for three FCM clusters rele-
vant to the Bickley Jet flow (first row); one realisation of each of these fields with noise
applied to the velocity (second row) and the mean (third row) and twice the standard
deviation (fourth row) of 100 stochastic realisations of these probabilities.

achieved in the deterministic case. The mean eigenvector field looks much more like the
stochastic realisation of this field, and the standard deviation is low and is concentrated
around the edges of the vortices. Unlike with the transfer operator method (see Figure
4.6), we do not obtain high values of the standard deviation within the zonal jet or the
vortices themselves.

The FCM clustering method also shows a sufficient degree of self–consistency under
the influence of added velocity uncertainty, as observable by the results shown in Figure
4.8. We consider the K = 3 case for this system, and we undertake quantitative analysis
on the membership probability fields relevant to each FCM cluster. In the fields pertaining
to the stochastic realisations of these probabilities, we see only a minor deviation in the
first cluster (representing the zonal jet), and a slight change in the sizes of the coherent
vortices (the second cluster) as their edges become part of the chaotic sections of flow
sitting between these vortices (the third cluster). The mean membership probability fields
look like smoothened out versions of the stochastic realisations (a common observation
amongst most of our methods so far), though the general formation of each cluster is
more or less consistent in comparison to our deterministic result, bar the aforementioned
alterations. The standard deviation is low in the case of the zonal jet cluster, but is
slightly larger and more or less consistent between the vortex cluster and the rapid vortex
layer flow cluster. In each case, the standard deviation is strongest around the edges of
each Bickley jet vortex, where we see strongly chaotic particle flow behaviour and where
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Figure 4.9: CSC diagnostics for the Bickley Jet flow arranged in the same fashion as seen
in Figure 4.1.

the cluster classifications of each flow trajectory around these edges are most likely to
switch with each stochastic realisation.

Finally we consider the CSC method, which is considerably robust to the presence of
added stochastic velocity uncertainty as demonstrated by the results shown in Figure 4.9.
The extremal values of the CSC coefficients in the stochastic realisation of this method
considered have changed, though the same structures are visible and comprehensible from
this scalar field and there is minimal fuzziness or lack of resolution observable within the
field, in the same fashion as what we observed within stochastic realisations of the FTLE
or transfer operator fields. In consistent fashion with most of the previously discussed
methods, the mean field looks almost identical to the stochastic version of the CSC field
instead of the deterministic one, due to the differences observable in the maximal values of
the CSC coefficients between the mean field and the deterministic field, and the standard
deviation is low with larger values of this more prominently observable in the chaotic flow
regions lying between the Bickley jet vortices.

4.2 Kelvin–Helmholtz Version 2 (KH2)

We next turn our attention to the KH2 flow system, discussed earlier in Section 3.5. We
consider the same time parameterisation used for the KH2 flow in Section 3.5, which
ranges from t0 = 12 seconds to t0 + T = 15 seconds, and we do not change any of the
values for the computational parameters pertinent to each LCS detection method when
applied to this flow. As mentioned earlier, we wish to keep the velocity uncertainty scale
vr consistent amongst all three flow systems considered in this Chapter. This parameter
now takes a value of 1.63×10−2 ms−1, after converting vr for the Bickley jet flow into the
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relevant units for this system. The mesh size for the data points within this numerically
defined velocity system h = 2π/1024 ≈ 6.1 × 10−3 m, which corresponds to a value of
ε = 10−2 ms−1/2, which is the value we insert into the SDE system (4.1) to produce the
stochastic flow maps for this system.

Figure 4.10: The deterministic FTLE of the KH2 flow (top-left), one realisation of this
quantity with noise applied to the velocity (top-right) and the mean (bottom-left) and
twice the standard deviation (bottom-right) of 100 realisations of the stochastic FTLE.

We begin again with the FTLE method, which is once again reasonably self–consistent
under the influence of added velocity uncertainty as we can see from the results shown
in Figure 4.10. We again plot twice the standard deviation or variation of a quantity in
order to emphasise important features present within these fields which were not clearly
observable when only 1× the standard deviation was plotted. As was the case with the
Bickley jet system, the addition of stochastic noise to the KH2 velocity data has resulted
in wobbling of the scalar field and the maximal ridges of the field becoming jagged and
incoherent. Entities corresponding to low FTLE values, such as the central flow channel,
have more or less maintained their shape. The mean field obtained looks like an ironed out
version of our deterministic field which has lost the intricate detail of said field, including
ridges corresponding to medium level values of the FTLE. That said, maximal ridges
sitting between vortices and the flow channel are still identifiable, as is the flow channel
itself. As expected, the standard deviation is largest within the Kelvin–Helmholtz vortex
layers, between the vortices where chaotic flow particle advection is stronger.
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Figure 4.11: Deterministic hyperbolic VLCSs of the KH2 flow (top–left), one realisation
of these VLCSs with noise applied to the velocity (top–right) and the likelihood (bottom–
left) and twice the variation in this likelihood (bottom–right) of a VLCS passing through
one of 50× 50 = 2500 bins computed from 100 stochastic realisations of these VLCSs.

The self–consistency of the VLCS method has again been compromised under the
influence of velocity uncertainty, as observed from the results shown in Figure 4.11. Ap-
plying noise to our velocity data has once again resulted in the total disfigurement of the
hyperbolic VLCSs produced for this system in comparison to our deterministic results.
To produce a likelihood field from 100 of these stochastic realisations, we this time di-
vide the flow domain into 50 × 50 = 2500 equally sized bins so that the width of each
of these boxes is approximately the same as the separation radius parameter ρ used to
carry out the VLCS–B algorithm. From this field, despite the presence of some coherent
hook shaped VLCSs which surround the coherent vortices within the vortex layers, we
see the trace of these hyperbolic VLCSs more or less covering the flow domain, including
the central flow channel which these structures should not traverse. The variation in this
likelihood supports the poor self–consistency of this method under even mild velocity
uncertainty, as this variation is considerably high across the whole domain, except for
partitions of the flow lying closer to the centres of the coherent vortices where we detect
almost no hyperbolic VLCSs at all.

The LAVD method again demonstrates structural, but not numerical, self–consistency
under the influence of velocity noise as seen by the results shown in Figure 4.12. In this
stochastic realisation of the LAVD, we detect the vortices in this system in approximately
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Figure 4.12: LAVD diagnostics for the KH2 flow arranged in the same fashion as seen in
Figure 4.10.

the same position as the deterministic results. However, these vortices have diminished
in size and the maximal values of the LAVD recorded have decreased. The mean LAVD
scalar field appears to look more like an ironed out version of the stochastic realisation
of the scalar field rather than the deterministic field, as the vortices in the mean field are
not as large as those in the deterministic field and do not correspond to the same LAVD
values recorded in the deterministic case. The standard deviation is considerably high
and concentrated around the centres of our vortices. While the method was able to find
the same vortices in the same locations of the domain, the shapes and the corresponding
LAVD values of these structures have considerably changed, so there is some partial self–
consistency observable for the LAVD in this system. We did not observe a strong change
in the LAVD values in the centres of the Bickley jet vortices, which most likely owes to
the fact that those vortices remain in one position and do not change shape or merge with
other vortices as the flow proceeds.

We again observe some inconsistencies in the values of the S2 for this system when
stochastic noise is applied to the velocity, as we see from the results shown in Figure
4.13. The maximal ridges of the stochastic Scaled S2 field become jagged and much
less smooth, in similar circumstances to the FTLE results for this system. The mean
field produced looks like a smoothened out version of the stochastic version of the S2

field, not the deterministic field as the mean S2 maximal ridges are not as smooth as the
deterministic maximal ridges. The standard deviation is again considerably high closer to
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Figure 4.13: Scaled S2 diagnostics for the KH2 flow arranged in the same fashion as seen
in Figure 4.10.

Figure 4.14: The robust set of lengthscale L = 0.25 m for the KH2 flow (left) and the
probability density function obtained from the stochastic realisations of this set (right).
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Figure 4.15: Transfer operator optimal vector diagnostics for the KH2 flow arranged in
the same fashion as seen in Figure 4.10.

these maximal ridges, which again is to be anticipated given the large spikes observable
in this quantity and the consequential high gradients which cause more rapid changes in
this quantity when noise is applied to the velocity of this flow.

That said, as the results in Figure 4.14 attest, the robust set manages to withstand this
added velocity uncertainty more considerably. We present a probability density function
from the 100 L = 0.25 m robust sets produced from each stochastic realisation. Each
of these realisations is almost guaranteed to contain the yellow regions of this function,
including the central flow channel and certain flow structures which surround the centres
of the vortices. Detecting the centres of the vortices themselves is not guaranteed when
stochastic noise is added to our velocity data, however this is likely attributable to the
fact that these are the products of merging the vortices and having these vortices move
through the system as the flow progresses, which we do not see in a system such as
the Bickley jet. The lack of a large number of structures corresponding to a medium
level value of the probability density function indicates the overall self–consistency of this
robust set once more.

The transfer operator optimal vector again is shown to be robust against the presence
of velocity uncertainty, as we see from the results shown in Figure 4.15. While the
stochastic optimal vector field becomes fuzzy as expected, we are still able to identify
approximately the same two coherent sets for this system from this field. The features
of the mean optimal vector field look similar to those identifiable in the stochastic field,
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Figure 4.16: Dynamic Laplace operator second eigenvector diagnostics for the KH2 flow
arranged in the same fashion as seen in Figure 4.10.

though the smoothness of the field is comparable to that of the deterministic result. The
standard deviation is relatively low and can be observed more along the zero contour lines
of the optimal vector field, with larger values also scattered throughout the central flow
channel.

The second eigenvector field of the dynamic Laplace operator also manages to remain
self–consistent under the influence of stochastic noise, as we can see from the results
shown in Figure 4.16. There is almost no discernible impact on the eigenvector field side
from some minor fuzziness observable within some of the contour lines. This owes to the
fact that the Laplacian matrix operator diffuses and smoothens out variations which may
exist in the transfer operator matrix.

We again observe robustness in the FCM clustering membership probability scalar
fields from the results seen in Figure 4.17. We consider K = 4 clusters, and observe only
minor changes to the membership probability fields for each of the clusters produced under
the influence of stochastic noise. The mean irons out the variations observable within each
scalar field, and the standard deviation generated is low and primarily concentrated along
the boundaries of these clusters.

Finally we consider the CSC method, which has again shown to be robust under the
influence of velocity uncertainty as demonstrated in Figure 4.18. The stochastic noise
causes the CSC scalar field to become more jagged and lose its form in places; however
the general shape of the field and the values recorded remain more or less consistent in
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Figure 4.17: The deterministic membership probability fields for four FCM clusters rele-
vant to the KH2 flow (first row); one realisation of each of these fields with noise applied
to the velocity (second row) and the mean (third row) and twice the standard deviation
(fourth row) of 100 stochastic realisations of these probabilities.

comparison to the deterministic results. The mean field appears to be a diffused, smooth
version of the deterministic field while the standard deviation is overall relatively low
and more concentrated within the vortex layers; particularly within the shear layer which
separates the vortices from the flow channel.
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Figure 4.18: CSC diagnostics for the KH2 flow arranged in the same fashion as seen in
Figure 4.10.
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4.3 Gulf Stream

Finally, we consider our oceanographic velocity data set which represents the Gulf Stream
flow, defined over the time interval ranging from t0 = midnight, January 15, 2015 to
t0 + T = midnight, April 15, 2015 (UTC) and using the same computational parameters
for each LCS detection method as detailed earlier in Section 3.6. We again wish to
keep the velocity uncertainty scale vr consistent, and given the dimensions of this data
set this parameter now takes a value of 1.27 × 10−2 degrees latitude/longitude per day.
The velocity data is defined over a uniform initial grid with mesh size h = 1/8 degrees,
therefore giving us a value of ε ≈ 4×10−2 degrees per square root day which we insert into
(4.1) and then solve the equation to produce stochastic flow maps for our LCS analysis.

Figure 4.19: The deterministic FTLE of the Gulf Stream flow (top-left), one realisation
of this quantity with noise applied to the velocity (top-right) and the mean (bottom-left)
and standard deviation (bottom-right) of 100 realisations of the stochastic FTLE.

We begin once more with the FTLE, which has remained more or less robust as
observable by the results shown in Figure 4.19. This time, there is no need to scale the
standard deviation or variation fields in order to emphasise the structures present within
these fields, so we only plot 1× the standard deviation instead of twice the standard
deviation as was done with the previous two flow systems. We once again observe wobbling
in the maximal ridges of the stochastic FTLE field. Because these ridges more or less
cover the whole domain, and because the flow time of 90 days is considerably large, the
wobbling of these ridges is considerably amplified, causing the small Gulf Stream eddies
corresponding to low or negative FTLE values to vanish from the field altogether. Upon
taking the mean of 100 of these realisations, we obtain a smooth field which has lost a lot
of the detail observable in the deterministic field, and the standard deviation is relatively
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Figure 4.20: Deterministic hyperbolic VLCSs of the Gulf Stream flow (top–left), one
realisation of these VLCSs with noise applied to the velocity (top–right) and the likeli-
hood (bottom–left) and the variation in this likelihood (bottom–right) of a VLCS passing
through one of 241×159 = 38319 bins computed from 100 stochastic realisations of these
VLCSs.

low though more concentrated more along the Northern and Southern edges of the domain
and within and around the Gulf of St Laurence at the top left hand corner of the domain.

Once again, the VLCS method has proven to be considerably susceptible to the pres-
ence of velocity uncertainty within our flow system, from the results in Figure 4.20. The
VLCSs produced deform considerably once again, and all seem to become jagged diag-
onal lines which run across the area of the domain. We obtain these results most likely
because over the course of our 90 day flow, many flow particles end up leaving the domain
or washing up on land. We produce a likelihood field by dividing up the flow domain into
241 × 159 = 38319 bins, and we notice a large number of light blue or green coloured
streaks forming similar shapes as observable in the stochastic realisations of this method.
The variation in this likelihood is consistently large throughout the whole domain, indi-
cating once again that the VLCSs are highly susceptible to uncertainty, and hence the
reliability of the deterministic structures produced is in doubt.

We next consider the LAVD and observe structural robustness in the results produced
for this quantity from the results shown in Figure 4.21. When we apply noise as with the
previous two flow systems considered, we detect the same vortices and coherent structures
with strong Lagrangian shear; however the values of the LAVD quantity have diminished
in comparison to the deterministic results. The mean field looks like a diffused, smooth
version of the stochastic results, not the deterministic result as the maximal LAVD values
obtained in the deterministic field were not obtained in the mean LAVD field. The
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Figure 4.21: LAVD diagnostics for the Gulf Stream flow arranged in the same fashion as
seen in Figure 4.19.

standard deviation is relatively small but concentrated more within the vortices and the
Gulf Stream (i.e. where the LAVD is larger). Over the 90 days of flow, the Gulf Stream
vortices move through the system and in some cases may break apart altogether, which
is why we see such fluctuations in the LAVD values within the vortices, which was also
observed in the KH2 flow but not in the Bickley Jet.

The S2 once again appears to have been compromised to some degree by the addition
of noise, as we can see from Figure 4.22. The stochastic realisation of the Scaled S2 field
produces more or less the same structures; however we observe more extremal values once
again attributable to the large gradients and rapid spikes we normally observe for this
quantity. We obtain once again a smoothened out version of the stochastic version of this
field after taking the mean, and the standard deviation is again noticeably large where
S2 is large, particularly in the Western half of the domain due to large fluctuations in the
quantity and the changing positions of the large spikes.

Once again, however, the robust set produced using S2 remains self–consistent as
we observe in Figure 4.23. We produce another probability density function from 100
stochastic versions of the robust set, this time considering the lengthscale L = 6 degrees
latitude/longitude. The largest values are observable within the Gulf of St Laurence,
along with flame shaped structures which lie along the Southern edge of the domain.
This “coherence” we observe is likely attributed to the “washing up” of particles along
the Southern boundary of the domain over the 90 day period of flow. Throughout the
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Figure 4.22: Scaled S2 diagnostics for the Gulf Stream flow arranged in the same fashion
as seen in Figure 4.19.

Figure 4.23: The robust set of lengthscale L = 6 degrees for the Gulf Stream flow (left)
and the probability density function obtained from the stochastic realisations of this set
(right).



4.3. Gulf Stream 119

Figure 4.24: Transfer operator optimal vector diagnostics for the Gulf Stream flow ar-
ranged in the same fashion as seen in Figure 4.19.

Gulf Stream itself, the probability density function is low, which is consistent with the
results achieved from the deterministic robust set and indicates that over 90 days of flow,
the Gulf Stream moves and evolves considerably to the extent that it cannot be considered
robust or coherent in the sense of predictability of eventual particle locations.

Next, we consider the transfer operator optimal vector, which is also reasonably ro-
bust to this velocity uncertainty as indicated by Figure 4.24. Consistent with the study
undertaken by Froyland et al. (2019), we consider the third right singular vector of the
transfer operator to produce the optimal vector rather than the second singular vector.
When stochastic noise is added to the velocity, we obtain a scalar field that somewhat
looks similar to the deterministic result, except that we see more extremal values in the
transfer operator vector coefficients around land and the Gulf of St Laurence, while ex-
tremal negative values along the Southern boundary of the domain iron out and decrease
in value. The mean field looks like a smoothened version of the deterministic field, bar
some differences in the values of the transfer operator entries, particularly those along
the Northern and Southern edges of the domain. The standard deviation is mostly low,
especially around the Gulf Stream and the zero contour lines of the field, which is impor-
tant in considering the reliability of the method in producing two coherent sets for the
domain. Large values of the standard deviation are concentrated more within the Gulf of
St Laurence, closer to land, and along the Northern and Southern edges of the domain.

The third eigenvector of the dynamic Laplace operator is also quite self–consistent
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Figure 4.25: Dynamic Laplace operator third eigenvector diagnostics for the Gulf Stream
flow arranged in the same fashion as seen in Figure 4.19.

as we can observe from Figure 4.25. Again, we consider the third eigenvector instead of
the second, in line with the work undertaken by Froyland et al. (2019). Adding noise
does not change the eigenvector field a great deal, except for the reduction in extremal
values of the field and considerable fuzziness along the zero contours within the Eastern
half of the domain (the contours within the Western half of the domain remain more or
less consistent). The mean field looks like the deterministic field bar some differences,
and the standard deviation is low and concentrated more close to land and in the South
Eastern corner of the domain. Like with the transfer operator, the standard deviation is
low around the zero contours of the field, which is promising when assessing the reliability
of this method.

The FCM Clustering method again shows to be robust as we see from Figure 4.26. We
consider the K = 5 case assessed previously in section 3.6, and upon adding noise to our
velocity data, we observe minimal changes in the formation of the membership probability
scalar fields for each of these clusters. The mean fields once again look like smoothened
versions of the deterministic scalar fields, and the standard deviation is relatively low and
concentrated around the borders of each cluster. While the results appear to be robust,
it must be stressed that the results of this method only divide our flow domain into five
roughly equal portions, and do not give a greater picture of the finer flow patterns.

Finally, we consider the coherent structure colouring method, which again shows self–
consistency amidst velocity noise as demonstrated in Figure 4.27. Upon adding noise
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Figure 4.26: The deterministic membership probability fields for five FCM clusters rele-
vant to the Gulf Stream flow (first row); one realisation of each of these fields with noise
applied to the velocity (second row) and the mean (third row) and standard deviation
(fourth row) of 100 stochastic realisations of these probabilities.

Figure 4.27: CSC diagnostics for the Gulf Stream flow arranged in the same fashion as
seen in Figure 4.19.
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to this system, we obtain a similar picture of the Gulf Stream and the various coherent
objects (such as the eddies) observable within the flow, with the only noticeable change
being the extremal positive and negative CSC coefficients softening in comparison to the
deterministic results. The mean field looks like a smooth version of the stochastic version
of the CSC field, and differs from the deterministic field in the maximal and minimal
values of the CSC coefficients. The standard deviation is relatively low and looks to be
spread more or less uniformly across the whole flow domain, bar some small exceptions.



Chapter 5

Sensitivity of Lagrangian Coherent
Structures to Spatial Velocity
Resolution

In this Chapter, we examine the functionality of each of our LCS detection methods
against changes in the spatial resolution of a velocity data set, that is, how much velocity
data is available and how much interpolation of this data will be required to “fill in the
gaps” in order to produce Lagrangian flow trajectories. When considering a flow system
where the velocity is analytically defined through continuous functions, obtaining the ve-
locity necessary to calculate Lagrangian flow trajectories will be relatively straightforward.
Rarely, if ever, will observational flow data be defined by analytic velocity equations, and
instead will be defined by instances of velocity data available over a finite grid of points
and at a finite number of time steps. While every effort can and often is taken to reduce
the grid mesh size of the spatial velocity data to obtain the maximum velocity resolution
possible, there will always be gaps in the velocity data of these observational data sets
which need to be filled by interpolation (estimation) of the velocity between these data
points. If the spacing between data grid points is too large and therefore the velocity
resolution is not strong enough, the construction of flow trajectories will be inaccurate,
thereby producing unreliable LCSs and an unreliable visualisation of the flow system
overall.

We therefore seek to examine what sort of an impact a reduction in the spatial resolu-
tion of velocity has on the reliability of our LCS detection methods. In similar fashion to
our stochastic noise analysis in the previous Chapter, we consider three of the flow sys-
tems defined in Chapter 3, namely the Bickley Jet, the KH1 flow (instead of KH2), and
the Gulf Stream. We perform LCS analysis on each of these systems using analytically
defined velocity (where possible), or numerically defined velocity of the largest resolution
available, and compare these “reference case” results to the same analysis undertaken at
lower resolutions. We then qualitatively compare the structures produced for each reso-
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lution level to see how similar the results are in each case, and to try and estimate “how
low is too low” when it comes to the available resolution levels of a data set. In doing
this, we will be able to identify a rule of thumb for the number of velocity data points
which must be contained within a coherent structure in order for it to be identified by a
detection method.

We will also consider more quantitative methods of assessing these results, specifically
relating to the errors between certain LCS quantities computed with the best spatial
resolution available and with reduced resolution. We achieve this by producing histograms
of the absolute errors between an LCS quantity computed using the maximal resolution
and at a reduced resolution level over all initial grid points x0 ∈ Ω; assessing the features
of this histogram (such as the distribution of the errors, the mode of this distribution,
the spread of the errors etc.), and comparing this with similar results for the same LCS
quantity generated with other resolution levels. We will also feature log–log plots of the
medians of these absolute errors against the velocity data grid mesh size h to see if there
is any noteworthy correlation between these quantities. We will perform this quantitative
analysis on the FTLE, LAVD, S2 and entries of the transfer operator optimal vector,
the dynamic Laplace operator eigenvector and the CSC coefficient vector. We will not
perform this analysis on the VLCS method as this method produces material curves that
are difficult to quantitatively compare in this manner, or the membership probabilities of
the FCM clustering method because, as will be demonstrated later on in this Chapter,
the sets of coherent clusters produced using this method do not remain consistent with
each change in the spatial resolution of the velocity.

5.1 Bickley Jet

We begin with the Bickley Jet flow, considered earlier in Sections 3.3 and 4.1. Since this
flow is analytically defined, one could argue that it makes no sense to perform resolution
analysis on this system as the velocity of the flow can be obtained at any point in Ω
and at any time step using the system of equations (3.3). However, we can artificially
transform this system into a numerically defined velocity system by sampling a grid of
points within Ω at various time steps, recording the velocity at these points using the
provided equations, and producing an interpolant for the velocity based on this data like
we would for a numerically defined velocity system like the simulated Kelvin–Helmholtz
systems or the Gulf Stream flow. We produce an interpolant for the Bickley Jet system
over time steps ranging from t0 = 0 to t0 + T = 40 days separated by a step of 0.01 days,
and over spatial grids with points separated by grid mesh sizes h of 0.083 Mm, 0.167 Mm,
0.333 Mm, 0.667 Mm, 0.952 Mm, 1.333 Mm and 2.222 Mm. To execute each of the LCS
detection methods, we again use the same computational parameters for each method as
defined in Section 3.3. For the sake of brevity, we will not consider all of these resolution
levels when qualitatively illustrating the resultant LCSs in the following Figures, rather
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Figure 5.1: The FTLE (Column 1), VLCSs (Column 2), Scaled S2 (Column 3) and L = 0.3
Mm robust sets (Column 4) for the Bickley Jet flow computed from analytically defined
velocity (Row 1), and numerically defined velocity over a grid with spacing h ≈ 0.167 Mm
(Row 2), 0.667 Mm (Row 3), 0.952 Mm (Row 4), 1.33 Mm (Row 5) and 2.22 Mm (Row
6).

we will only show instances of resolution levels where significant changes in the LCSs
produced from each method are observable.

In Figure 5.1, we display LCSs produced from the FTLE, VLCS (VLCS–B only, as
done in the previous Chapter) and S2 (including the robust set with L = 0.3 Mm)
methods produced from varying spatial resolution levels. A common thread observable
amongst all of these results is that while some of the structures identified vary in shape
as the resolution reduces, key robust structures (such as the Bickley jet vortices and the
zonal jet) appear to maintain their shape until the resolution of the velocity becomes
unworkably small. In addition, the deterioration of the results as the resolution becomes
worse appears to be consistent across all of the methods, due to consistencies in the
inaccuracies of the Lagrangian flow trajectories generated. In the case of the FTLE
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method, most of the maximal ridges and key structures maintain their shape (bar some
minor differences), until we reach the h ≈ 0.952 Mm case where we notice changes in
the interior detail of the vortices, though they still maintain their shape along with most
of the other structures. The same can be observed for the 1.33 Mm case, however when
the grid spacing for the velocity data increases to 2.22 Mm, the vortices have smeared
out and are no longer identifiable, while the zonal jet can somehow still be identified. A
possible theory explaining this is that the grid spacing of the velocity data is too large
in comparison to the size of the coherent structures in the flow, and without a sufficient
number of data points covering the structure (say, four or five points), the structure will
no longer be identifiable. A similar set of observations are identifiable for the VLCS
method, which appears to be much less sensitive to changes in resolution that it has
been to changes in velocity uncertainty. The composition of VLCSs changes with each
resolution level, giving a slightly different picture of hyperbolic flow barriers with each
iteration produced. This can have a lot to do with the algorithms of this method, and
how the candidate points for eigenvector field integration subsequently change with each
new iteration and computation of Lagrangian flow trajectories. The S2 method, however,
appears to be more acutely sensitive to changes in data resolution, as the ridges are
considerably more fuzzy and disoriented; resulting in the robust set identifying fewer
and more incoherent flow objects with each decrease in resolution. This is an expected
result due to the large gradients and rapid spikes in S2, which cannot be resolved as the
spatial resolution decreases. This is likely to have been further amplified by the fact that
particle flow between the Bickley jet vortices (as mentioned earlier) is highly chaotic and
unpredictable, with this unpredictability only amplified by the decrease in fidelity of the
velocity data.

Similarly, the results shown in Figure 5.2 demonstrate that the LAVD, transfer oper-
ator, dynamic Laplace operator and CSC methods behave in similar general fashion to
the methods shown in Figure 5.1. Consistently across all of these methods, a reduction in
the spatial resolution of the velocity does not immediately cause the resultant LCSs iden-
tified to change too drastically, however in the h ≈ 1.33 Mm case, the Bickley jet vortices
begin to fade from view, completely disappearing in the h ≈ 2.22 Mm case with similarly
meaningless flow features as in Figure 5.1. In similar fashion to the velocity uncertainty
analysis from the previous Chapter, the LAVD typically decreases in value as the resolu-
tion decreases even though the same structures are identifiable, with the values increasing
in the h ≈ 2.22 Mm case as more meaningless flow structures are produced. In all of the
vector based methods (transfer operator, dynamic Laplace operator and CSC), it can be
observed that a decrease in resolution facilitates the production of discontinuities within
the scalar fields. This is likely a direct result of the lack of velocity resolution available
and the associated difficulty in assigning an eigenvector/singular vector coefficient to each
initial box/point within the grid. Despite this, all of these methods are able to identify
the zonal jet, the transfer operator and dynamic Laplace operator methods can identify
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Figure 5.2: The LAVD (Column 1), second P singular vector (Column 2), second ∆D

eigenvector (Column 3) and CSC scalar field (Column 4) for the Bickley Jet flow computed
from analytically defined velocity (Row 1), and numerically defined velocity over a grid
with spacing h ≈ 0.167 Mm (Row 2), 0.667 Mm (Row 3), 0.952 Mm (Row 4), 1.33 Mm
(Row 5) and 2.22 Mm (Row 6).

the upper and lower vortex layers as coherent sets (even though the vortices can no longer
be identified when h ≈ 2.22 Mm); and the CSC method can still outline the shapes of the
Bickley jet vortices even in the worst resolution case, despite increased discontinuities.

The results for the FCM clustering method are generally quite inconsistent across all
of the resolution levels considered, as can be seen from the membership probability fields
shown in Figure 5.3. We again consider K = 3 clusters, and while for most of the resolu-
tion levels the three clusters are consistent with the results obtained from the analytically
defined velocity, in the h ≈ 0.667 Mm and h ≈ 0.952 Mm cases three completely different
clusters have been isolated by this method. The zonal jet cluster has become more thin, a
second cluster consists of the two disjoint full vortex layers, and a third cluster has been
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Figure 5.3: Scalar fields of the membership probabilities for three FCM clusters for the
Bickley Jet flow computed from analytically defined velocity (Row 1), and numerically
defined velocity over a grid with spacing h ≈ 0.167 Mm (Row 2), 0.667 Mm (Row 3),
0.952 Mm (Row 4), 1.33 Mm (Row 5) and 2.22 Mm (Row 6). Each column represents one
of the FCM clusters identified for each resolution level, with FCM clusters that feature
similar coherent patterns grouped in the same column.
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formed from two jet shaped objects above and below the central jet cluster detected. The
most likely explanation for the inconsistencies is that due to the variation in flow trajec-
tories produced, the algorithm will group these together differently. Strangely enough, we
return to the original group of three clusters when h ≈ 1.33 Mm, and when h ≈ 2.22 Mm
we obtain the zonal jet and two muddled clusters with flow objects which look similar
to those obtained from the methods discussed earlier. The inconsistent FCM Clusters
obtained can possibly be rectified by altering the cluster sharpness parameter m, or by
changing the number of initial points seeded within the domain. We will not perform
quantitative analysis on this LCS detection method as it makes little sense to given the
inconsistencies observed.

Now that we have qualitatively assessed how the results of these LCS detection meth-
ods change, we turn our attention to more quantitative resolution analysis focusing on
the distribution of the absolute error in relevant LCS fields as the resolution changes.
We produce probability density functions of the absolute errors, scaling the LCS quan-
tities by their largest values computed under analytically defined velocity and removing
outliers from the sample. For ease of illustration, the histograms of these probability
density functions have been split into two Figures - Figure 5.4 shows the functions for the
FTLE, LAVD and S2 (without scaling the latter quantity first); while Figure 5.5 shows
similar functions for the entries obtained from the transfer operator second singular vec-
tor, the dynamic Laplace operator second eigenvector, and the CSC coefficient vector. A
key feature across all of these density functions is that for larger resolution levels, the
distribution of these functions for the errors is concentrated around zero before decaying
in shape, with the maximal height of the functions decreasing. From these results, one
can speculate that the distribution of these errors will take the form of a Dirac delta
distribution at infinite velocity resolution, and will approach a uniform distribution when
the resolution is unreasonably coarse. In terms of the spread of these errors, the largest
spread is observable within the FTLE and LAVD errors where the largest errors recorded
are of order 10−1 when the velocity data grid spacing is especially large. The transfer
operator and dynamic Laplace operator coefficients can have error up to the order of
10−3, with the mode of the errors shifting closer towards the median of these values with
decreasing resolution. The CSC coefficients also have an error spread reaching an order
of 10−3, though at the coarsest resolution the error density function looks much more
like a uniform distribution. The S2 errors appear to be extremely low even at a coarse
resolution (order 10−8), however we have removed all outliers from the error distribution
of which most of these can be extremely large (the largest of order ∼ 1020), again due to
large spikes and gradients in the S2 field. Where these spikes are low and more smooth,
the values appear to remain much more consistent, however this large disparity in the
range of the error prevents the absolute errors of this quantity from assuming a uniform
distribution, even for extremely coarse data resolution.

As an added quantitative experiment for these absolute errors, we have recorded the
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Figure 5.4: Probability density function histograms for the absolute differences between
various Bickley Jet LCS quantities computed from analytically defined velocity and nu-
merically defined velocity over a grid with spacing h ≈ 0.167 Mm (Row 1), 0.667 Mm
(Row 2), 0.952 Mm (Row 3), 1.33 Mm (Row 4) and 2.22 Mm (Row 5). The quantities in
question are the FTLE (Column 1), LAVD (Column 2) and S2 (Column 3).
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Figure 5.5: Probability density function histograms for the absolute differences between
various Bickley Jet LCS quantities computed from analytically defined velocity and nu-
merically defined velocity over a grid with spacing h ≈ 0.167 Mm (Row 1), 0.667 Mm
(Row 2), 0.952 Mm (Row 3), 1.33 Mm (Row 4) and 2.22 Mm (Row 5). The quantities in
question are the second singular vector of P (Column 1), the second eigenvector of ∆D

(Column 2) and the CSC (Column 3).
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Figure 5.6: Log–log plots of the median absolute differences between various LCS quanti-
ties for the Bickley Jet flow computed from analytically defined velocity and numerically
defined velocity defined over data grids of different levels of spacing. The quantities in
question are (from left to right): the FTLE, the LAVD, S2 (row 1), the transfer operator
second singular vector, the dynamic Laplace operator second eigenvector and the CSC
(row 2). For comparison against this data, a dashed line of slope 1 (in log–log space) has
been included within each plot.

median values of all of the reduced resolution errors listed above and produced log–log
plots of these median values against the grid spacing of the velocity data. We have
experimented with other average measures such as the mean and root mean square error,
but have settled with the median as the plots produced for these other measures have
similar shape and form to those produced using the median with no greatly distinguishable
features making these more viable of a measure for the average of these error values. In
addition, the median is a more accommodating average measure for these errors as the
absolute error data for each of the relevant LCS quantities is skewed and contains a
considerable number of outliers. The log–log plots themselves can be seen in Figure 5.6,
with the addition of a line of slope 1 in log–log space as guide. Some positive correlation
between the velocity grid spacing and the median absolute error of these LCS quantities
may appear to exist, with the slopes of these relationships lying somewhere between 0.5
and 2. This relationship can be further verified by computing the median absolute errors
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for more values of the data grid mesh size h, which was not done in this case because the
computation time required to complete these extra calculations was rather extensive.

5.2 Kelvin–Helmholtz Version 1 (KH1)

Next, we consider version 1 of the numerically simulated Kelvin–Helmholtz flow (the
KH1 flow), which we have previously looked at in detail in Section (3.4). While we have
considered the KH2 flow in Section 4.2 for analysis into the impact of velocity uncertainty
on our LCS detection methods, we instead turn our attention to the KH1 flow this time
as it contains more robust vortices which can change shape or disappear as the resolution
of the system changes. Unlike the previously studied Bickley Jet system, this flow is
not analytically defined, hence the “reference case” will be derived from the best data
resolution available, which was derived from the 1024× 1024 grid of initial points within
the domain Ω for this system, corresponding to a grid mesh size h = 2π/1024 ≈ 6.1×10−3

m. We obtain velocity data of reduced spatial resolution by sub–sampling on our originally
simulated velocity data over grids with spacing h = 2π/256 ≈ 0.0245 m, h = 2π/128 ≈
0.0491 m, h = 2π/64 ≈ 0.0982 m, h = 2π/32 ≈ 0.196 m, h = 2π/16 ≈ 0.393 m and
h = 2π/8 ≈ 0.785 m. Again, for the sake of brevity we will not display the results for
all of these resolution levels in the below Figures. All other computational parameters
pertinent to each method remain consistent with those selected in Section (3.4).

We begin with Figure 5.7, where we show the results for the FTLE, VLCS and S2 (with
robust set, L = 0.2 m) methods given gradual reductions in the resolution of our velocity
data. Like with similar results displayed for the Bickley jet system (see Figure 5.1), the
FTLE and S2 methods are initially resistant to changes in the resolution, but the Kelvin–
Helmholtz vortices begin to warp when h = 2π/16 m, before vanishing completely when
h = 2π/8 m. The maximal ridges of the scalar fields of these quantities display similar
behaviour. The central flow channel hardly changes shape for any of these realisations,
owing to the size of the structure and that there are enough velocity data points within
the structure to enable it to be detected sufficiently. Unlike for the Bickley Jet, the S2

field and robust set are now much more robust against these changes in resolution, as we
do not observe any fuzziness in the scalar field or grainy robust flow objects within the
robust set plot. The foliations of VLCS curves appear to noticeably change with each
new resolution level, as observed within the Bickley jet system earlier on. This is likely
due to a variation in the candidate points for eigenvector field integration selected due
to the change in flow trajectory behaviour brought on by the change in data resolution.
By the time the spatial resolution decreases to h = 2π/8 m, the VLCS method ends up
producing a foliation of almost straight lines, with most of these horizontal particularly
where the vortex layers should exist.

Next, we turn our attention to the LAVD, transfer operator, dynamic Laplace operator
and CSC results for this system; displayed in Figure 5.8. The patterns we observe here are
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Figure 5.7: The FTLE (Column 1), VLCSs (Column 2), Scaled S2 (Column 3) and L = 0.2
m robust sets (Column 4) for the KH1 flow computed from numerically defined velocity
of the best available resolution (grid spacing h = 2π/1024 m) (Row 1), and of reduced
resolution levels over grids with spacing h = 2π/128 m (Row 2), 2π/64 m (Row 3), 2π/32
m (Row 4), 2π/16 m (Row 5) and 2π/8 m (Row 6).
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Figure 5.8: The LAVD (Column 1), third P singular vector (Column 2), third ∆D eigen-
vector (Column 3) and CSC scalar field (Column 4) for the KH1 flow computed from
numerically defined velocity of the best available resolution (grid spacing h = 2π/1024
m) (Row 1), and of reduced resolution levels over grids with spacing h = 2π/128 m (Row
2), 2π/64 m (Row 3), 2π/32 m (Row 4), 2π/16 m (Row 5) and 2π/8 m (Row 6).
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comparable to those observed for the Bickley jet flow (see 5.2), with the majority of flow
structures beginning to fade only at extremely low levels of resolution (except for the large
central flow channel which is always observable to some degree). The vortices and shear
layers detected by the LAVD method retain their shape until h = 2π/16 m, after which
point the vortices warp and combine with the shear layers to produce two incoherent
flow channels above and below the central flow channel when h = 2π/8 m. Similar
behaviour is observable for the other three methods and, like with the Bickley jet flow
system, as the spatial resolution decreases more discontinuities appear in the scalar fields
of the P third singular vector, the ∆D third eigenvector and the CSC; as resolving these
coherent structures becomes harder. These discontinuities are more greatly observable in
the transfer operator and dynamic Laplace operator methods, though considerably less
so in the case of the CSC method.

In Figure 5.9, we consider the results for the FCM clustering method, with K = 4
clusters being sought. While the results for this flow are overall more consistent with
the other LCS detection methods than the results for the Bickley jet flow (see Figure
5.3), we still obtain one unusual collection of clusters from one realisation of this method.
When h = 2π/64 m, we obtain consistent clusters containing the top and bottom vortex
layers which extend to the closest vertical boundary; however rather than obtaining the
full central flow channel as one cluster, only the right hand end of this channel forms one
cluster while the left hand end is grouped up with the shear layers on either vertical end
of the channel.

We next turn our attention to the probability density functions of the absolute errors
recorded for our LCS results for instances of lower resolution against the reference cases
generated from the best available resolution. Figure 5.10 shows the sample probability
density function histograms for the FTLE, LAVD and raw S2; while in Figure 5.11 we
consider the transfer operator third singular vector and the dynamic Laplace operator
third eigenvector; along with the CSC coefficients. While the histograms exhibit somewhat
similar behaviour to the results obtained from the Bickley jet flow (see Figures 5.4 and
5.5), for most of the methods (aside from the transfer operator and dynamic Laplace
operator methods), by the time the data spacing reaches a level of 2π/8 m, there is still a
considerable skew in the distribution in the positive direction, caused by a large amount
of small error values. These small values are likely located within the central flow channel
which, as seen earlier, retains more or less a consistent shape for each of these methods
even when the spatial resolution is extremely coarse. The FTLE and LAVD again exhibit
large spreads in their collections of error values (with said values extending to an order
of 10−1), while the spread extends to an order of 10−3 for the transfer operator, dynamic
Laplace operator and CSC methods. In the S2 case, the spread extends to an order of
10−7; however we have once again excluded extreme outlying error values which were
found to exist, though were not as numerous as the errors recorded from the more volatile
Bickley jet system.
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Figure 5.9: Scalar fields of the membership probabilities for four FCM clusters for the
KH1 flow computed from numerically defined velocity of the best available resolution
(grid spacing h = 2π/1024 m) (Row 1), and of reduced resolution levels over grids with
spacing h = 2π/128 m (Row 2), 2π/64 m (Row 3), 2π/32 m (Row 4), 2π/16 m (Row 5)
and 2π/8 m (Row 6). Each column represents one of the FCM clusters identified for each
resolution level, with FCM clusters that feature similar coherent patterns grouped in the
same column.
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Figure 5.10: Probability density function histograms for the absolute differences between
various KH1 LCS quantities computed from numerically defined velocity of the best avail-
able resolution (grid spacing h = 2π/1024 m) and of reduced resolution levels over grids
with spacing h = 2π/128 m (Row 1), 2π/64 m (Row 2), 2π/32 m (Row 3), 2π/16 m (Row
4) and 2π/8 m (Row 5). The quantities in question are the FTLE (Column 1), LAVD
(Column 2) and S2 (Column 3).
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Figure 5.11: Probability density function histograms for the absolute differences between
various KH1 LCS quantities computed from numerically defined velocity of the best avail-
able resolution (grid spacing h = 2π/1024 m) and of reduced resolution levels over grids
with spacing h = 2π/128 m (Row 1), 2π/64 m (Row 2), 2π/32 m (Row 3), 2π/16 m (Row
4) and 2π/8 m (Row 5). The quantities in question are the third singular vector of P
(Column 1), the third eigenvector of ∆D (Column 2) and the CSC (Column 3).
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Figure 5.12: Log–log plots of the median absolute differences between various LCS quan-
tities for the KH1 flow computed from numerically defined velocity of the best available
resolution and of reduced resolution defined over different grid mesh sizes h. The quan-
tities in question are (from left to right): the FTLE, the LAVD, S2 (row 1), the transfer
operator third singular vector, the dynamic Laplace operator third eigenvector and the
CSC (row 2). For comparison against this data, a dashed line of slope 1 (in log–log space)
has been included within each plot.
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Finally, we pinpoint a positive (but not a linear) correlation between the median values
of these absolute errors and the grid spacing h. These plots can be seen in Figure 5.12,
again with a line of slope 1 included to compare the scatter plot against. Like with the
results obtained for the Bickley jet flow, a positive correlation between h and the median
absolute error values can be seen for each of these detection methods, however it does
not look as though the slope of the correlation is 1. In the case of the FTLE, LAVD, S2

and CSC, we may be able to identify some correlation of slope greater than 1, with the
correlation in the LAVD case looking particularly strong for this system. In the case of
the transfer operator and dynamic Laplace operator, the correlation appears to begin flat
for smaller values of h, before a more positive correlation emerges for larger values of h
(greater than 0.1).

5.3 Gulf Stream

Finally, we consider our oceanographic data set representing the Gulf Stream, which we
have previously considered in Section 3.6, and in Section 4.3 for analysis related to velocity
uncertainty. The best available resolution that we have for this data set corresponds to a
grid spacing h = 0.125◦ latitude/longitude, which will serve as our “reference” situation.
We will reduce the resolution of this data set in similar fashion to the KH1 flow by sub–
sampling the reference data. The resolution levels which we have considered correspond
to grid spacing levels h of 0.167◦, 0.2◦, 0.25◦, 0.333◦, 0.5◦, 1◦, 2◦ and 3.33◦. Again, we
won’t display the results for all of these resolution levels below, particularly when two or
more realisations are too similar with no notable or distinguishable differences. All other
computational parameters considered for each of our LCS detection methods are the same
as those used in Sections 3.6 and 4.3.

The plots shown in Figure 5.13 detail how the results obtained from the FTLE, VLCS
and S2 methods (including the robust set, L = 6◦) change as the resolution is reduced
in fidelity. Once again, we see that all of these methods are robust to these changes in
resolution up until a certain point where the distinguishing features of the flow system
change. As the grid spacing h reaches 1 degree, the vortices surrounding the Gulf Stream
vanish or change shape, the Gulf Stream itself becomes less distinguishable, and patches
of “robust” particle flow (characterised by low values of the FTLE and S2) begin forming
around the Northern edge of the domain, likely caused by the exodus of flow particles
from the domain and the lack of refinement of the underlying velocity grid. These patches
become larger when h = 2 degrees, but then oddly disappear when h ≈ 3.33 degrees.
Interestingly, the S2 field becomes less fuzzy as the resolution of the velocity becomes more
coarse, as a result of this velocity undersampling which irons out large variations. This
was not observed for the previous two systems, with the fuzziness of this field remaining
more or less consistent as the resolution changed. The VLCSs, while (consistently with
other methods) incorrect for highly coarse resolution levels, still manage to remain quite
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Figure 5.13: The FTLE (Column 1), VLCSs (Column 2), Scaled S2 (Column 3) and
L = 6◦ robust sets (Column 4) for the Gulf Stream flow computed from numerically
defined velocity of the best available resolution (grid spacing 0.125◦ latitude/longitude)
(Row 1), and of reduced resolution levels over grids with spacing 0.2◦ (Row 2), 0.5◦ (Row
3), 1◦ (Row 4), 2◦ (Row 5) and 3.33◦ (Row 6).
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smooth in these instances, in contrast to its high susceptibility to velocity uncertainty

Next, in Figure 5.14, we display the results for the LAVD, transfer operator, dynamic
Laplace operator and CSC methods. In consistent fashion with the other two flows consid-
ered in this Chapter, as the resolution of the velocity decreases the peak values recorded
for the LAVD method decrease. When h = 1 degree, we can still roughly pinpoint the
coherent vortices and the shear within the Gulf Stream for this system, however after
that point the coherent structures obtained begin to smear out and by the time h ≈ 3.33
degrees, obtaining coherent vortices along with the Gulf Stream itself becomes virtually
impossible. The dilapidation of the structures is consistent with the results observed in
Figure 5.13. The transfer operator and dynamic Laplace operator are still able to identify
the same coherent sets isolated for this system earlier when the resolution is relatively
coarse, however as we have seen with the other two flow systems, discontinuities in the
eigenvector/singular vector entries begin to appear by h = 1 degree. After that point,
the coherent sets identified begin to significantly change shape, particularly in the worst
resolution case (h ≈ 3.33 degrees). This is not something that we observed in the other
two systems, as both of these methods were still able to more or less identify the same
coherent sets when the resolution of the data was at its worst (such as the Bickley jet
vortex layers or the Kelvin–Helmholtz flow channel). The reason for this observation is
that the coherent structures in this system are considerably smaller than the grid mesh
size h in these instances of highly coarse resolution. The CSC method is still able to
identify the wide array of coherent objects present within this flow system up until the
grid spacing h increases beyond 1 degree, by which point more discontinuities begin to
form within the CSC coefficients and coherent objects previously detected have now been
lost. This occurs at roughly the same resolution threshold for all of our LCS methods.

In Figure 5.15, we display the results for the FCM clustering method with K = 5
coherent clusters sought. The five clusters remain consistent up until the same resolution
level as the other methods began to produce meaningless results (h = 1 degree), after
which they change shape and location.

Next, we consider the probability density function histograms for the absolute errors.
In Figure 5.16, we show the histograms for the FTLE, LAVD and raw S2, while in Figure
5.17 we focus on the transfer operator third singular vector, the dynamic Laplace operator
third eigenvector and the CSC. In consistent manner to our observations from the previous
two methods, it would appear that the distributions of each of these errors are mostly
concentrated near zero, approaching more uniformity as h gets larger. The spread of the
errors is considerably higher in comparison to the previous two flows, with the FTLE
error spread reaching an order of 1, 10−1 for the LAVD, 10−2 for the CSC and transfer
operator, and 10−3 for the dynamic Laplace operator. The biggest change is observable
in S2, where the error spread, even with the extreme outliers removed, sits at a value of
around 7 or 8, rather than an extremely small value of order 10−7. This most likely can
be explained by the reduction in fuzziness as the resolution decreases, as this was not
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Figure 5.14: The LAVD (Column 1), third P singular vector (Column 2), third ∆D eigen-
vector (Column 3) and CSC scalar field (Column 4) for the Gulf Stream flow computed
from numerically defined velocity of the best available resolution (grid spacing 0.125◦ lat-
itude/longitude) (Row 1), and of reduced resolution levels over grids with spacing 0.2◦

(Row 2), 0.5◦ (Row 3), 1◦ (Row 4), 2◦ (Row 5) and 3.33◦ (Row 6).
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Figure 5.15: Scalar fields of the membership probabilities for five FCM clusters for the Gulf
Stream flow computed from numerically defined velocity of the best available resolution
(grid spacing 0.125◦ latitude/longitude) (Row 1), and of reduced resolution levels over
grids with spacing 0.2◦ (Row 2), 0.5◦ (Row 3), 1◦ (Row 4), 2◦ (Row 5) and 3.33◦ (Row
6). Each column represents one of the FCM clusters identified for each resolution level,
with FCM clusters that feature similar coherent patterns grouped in the same column.
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Figure 5.16: Probability density function histograms for the absolute differences between
various Gulf Stream LCS quantities computed from numerically defined velocity of the
best available resolution (grid spacing 0.125◦ latitude/longitude) and of reduced resolution
levels over grids with spacing 0.2◦ (Row 1), 0.5◦ (Row 2), 1◦ (Row 3), 2◦ (Row 4) and
3.33◦ (Row 5). The quantities in question are the FTLE (Column 1), LAVD (Column 2)
and S2 (Column 3).
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Figure 5.17: Probability density function histograms for the absolute differences between
various Gulf Stream LCS quantities computed from numerically defined velocity of the
best available resolution (grid spacing 0.125◦ latitude/longitude) and of reduced resolution
levels over grids with spacing 0.2◦ (Row 1), 0.5◦ (Row 2), 1◦ (Row 3), 2◦ (Row 4) and
3.33◦ (Row 5). The quantities in question are the third singular vector of P (Column 1),
the third eigenvector of ∆D (Column 2) and the CSC (Column 3).
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Figure 5.18: Log–log plots of the median absolute differences between various LCS quan-
tities for the Gulf Stream flow computed from numerically defined velocity of the best
available resolution and of reduced resolution defined over different grid mesh sizes h.
The quantities in question are (from left to right): the FTLE, the LAVD, S2 (row 1), the
transfer operator third singular vector, the dynamic Laplace operator third eigenvector
and the CSC (row 2). For comparison against this data, a dashed line of slope 1 (in
log–log space) has been included within each plot.

observed in the results for the previous two flows.
Finally, we look to see if there is a correlation between the median errors recorded and

the grid spacing of our velocity data h using the log–log plots featured in Figure 5.18. Like
with the other two flows, we observe a positive correlation between these two variables for
each of these methods. The results for the FTLE and dynamic Laplace operator methods
both appear to have reasonably strong positive correlation, while the LAVD, S2 and CSC
errors seem to have a positive correlation for smaller h before this is seen to plateau as h
gets larger. The transfer operator follows a line almost of slope 1 in log–log space, before
suddenly spiking in value and assuming a different slope for larger h.
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5.4 Chapter Summary

From our qualitative assessment of the impact of spatial resolution on the detection of
LCSs, it is evident that the robustness of an LCS detection method is dependent on the
size of the coherent structures present within a flow. For most of our detection methods,
making small reductions in the resolution does not have a highly significant impact on the
results obtained. We only begin to notice a change in these results when the resolution
becomes so low that an LCS can no longer be detected as not enough velocity grid points
cover the lengthscale or area of this structure. The FCM clustering method is a notable
exception in this case, as the sets of coherent clusters generated by this method have
been found to be inconsistent between different resolution levels (see in particular Figures
5.3 and 5.9). These inconsistencies are observed as a result of how the FCM clustering
algorithm groups together Lagrangian flow trajectories with each resolution level, and
as mentioned earlier can be repaired by altering the computational parameters pertinent
to this method; such as the number of flow trajectories used or the cluster sharpness
parameter m.

From our quantitative analysis of the LCS error histograms, we estimate that the
distribution of these errors will take the form of a Dirac delta distribution when our
velocity has infinite spatial resolution. As the resolution decreases, the errors have a
decaying distribution with the mode being 0; though for some of our methods the mode
can increase with smaller resolutions. This decay continues until the resolution becomes so
unworkably small that the errors become completely uncorrelated and assume a uniform
distribution. We have also been able to show that the median values of these errors have
some positive correlation with h, the mesh size of the grid over which our velocity has
been defined.
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Chapter 6

Conclusion

The core focus of this research was to investigate the self–consistency of a range of La-
grangian coherent structure (LCS) detection methods, in particular how these methods
respond to velocity uncertainty and how dependent these methods are on spatial veloc-
ity resolution. We have implemented these detection methods on analytically defined
flow models initially to gain some intuition into how each method works and what kinds
of coherent structures are detected with each method. However, more importantly we
also consider three flavours of realistic velocity data to gain some idea of which of these
detection methods would be the most suitable for use in real world analysis of fluids.

The eight Lagrangian coherent structure detection methods considered in this research
form the tip of the iceberg as far as this concept is concerned, with many other detection
methods available and each one detecting different types of coherent structures through
various computational means. That said, out of these eight methods some clear “win-
ners” and “losers” have emerged from the group, based on the structures these methods
are able to identify, how user–friendly their computational algorithms are, and how the
functionality of these methods is impacted by the quality of the velocity data representing
a flow; specifically how much data is available and how accurate this data is. Ultimately,
no Lagrangian coherent structure detection method is perfect and which method is con-
sidered for which particular data set will have to be determined on a case–by–case basis.
While there is no one–size–fits–all method for detecting these coherent structures, there
are some which may be considered a more go–to option to consider over others.

The finite time Lyapunov exponent (FTLE) method is one of the most frequently
used Lagrangian coherent structure detection methods in the literature, owing primarily
to its relative ease in computation in comparison to most other methods. Despite this
method having been shown to be unreliable for Lagrangian coherent structure detection
in some flow systems (Haller 2011, Balasuriya et al. 2018), our results indicate that this
method is more than capable of detecting viable coherent flow objects that are consistent
with those produced by other detection methods. Despite some minor differences and
discrepancies, the results for this method featured in Chapter 3 are comparable with
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the results of other methods, such as maximal ridges of the stochastic sensitivity field
and material curves produced by the variational LCS method. While this method is
primarily used to detect these flow barriers, the FTLE scalar field can also be used to
identify more robust particle flow from its minimal values. Structures such as the rotating
gyres in the Double gyre flow, the zonal jet within the Bickley jet flow, the Kelvin–
Helmholtz central flow channel and vortices within the Bickley jet, Kelvin–Helmholtz and
Gulf Stream flows were all identifiable to a considerable degree and shared similar shapes,
sizes and features to structures of similar form identified from other methods such as the
LAVD, CSC and S2 robust sets. The FTLE method is robust and workably reliable when
the resolution of velocity data is reduced to a reasonable level, however the presence of
velocity uncertainty within said data will cause the maximal ridges of the FTLE scalar
field to considerably change in shape and smoothness. That said, regions of a flow domain
corresponding to lower levels of FTLE are more robust against this velocity uncertainty,
so if this method was to be used to detect more robust coherent structures instead of
hyperbolic flow barriers, the results obtained would most certainly be more reliable.

Out of all of the methods considered in this study, the variational LCS detection
method is by far the least recommended detection method based on our results. While
this method has been sold as a viable alternative to the FTLE method for the detection
of flow segregating material curves, executing this method numerically has proven par-
ticularly arduous. In our research, three different algorithms were tested to execute this
method (with possibly more being available in the literature), with each one relying on
a different set of computational parameters and different numerical criteria to regulate
integration of the Cauchy–Green eigenvector fields and choose the most influential flow
barriers contained within a flow system. Ideally, each algorithm should produce similar
coherent structures and while for most of the flows detailed above the general picture
remains the same, the individual foliations of hyperbolic variational structures changes
with each algorithm. This is owed to the fact that each of these algorithms give very ad
hoc ways of selecting coherent structures from collections of hyperbolic strainlines. It is
therefore no surprise that this method is highly sensitive to uncertainty within velocity
data, so much so that the collection of structures produced (regardless of the flow system
considered) can completely deform to the extent that they bear no resemblance to their
deterministic counterparts. The structures do hold their form under reduced velocity res-
olution, but the overall foliation of structures changes as the (highly sensitive) acceptable
set of candidate points change. Unlike the FTLE method, where low values of this quan-
tity can be used to highlight more robust particle flow, such inferences cannot be made
from the hyperbolic variational LCSs as these are merely material curves representing the
structures from which flow trajectories repel at a locally maximal rate.

The Lagrangian averaged vorticity deviation (LAVD) method has proven to be a useful
tool for detecting elliptic or vortical structures present within a flow system. The method
is easy to program, with the LAVD computable using a system of ODEs or an integral,
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and the quantity itself can be used to isolate vortical structures corresponding to strong
rotational coherence, or even stream like objects with strong Lagrangian shear (such as
the Gulf Stream or the shear layers observable in version 1 of the Kelvin–Helmholtz flow).
The method is slightly sensitive to noise in that the value of the LAVD changes when
additional uncertainty is added to the velocity, though the overall shapes of the coherent
structures detected remain consistent, and this method is resistant to changes in spatial
resolution so long as this resolution is not too coarse (a consistent observation for most
of our LCS detection methods). The only downside to this method is that extensionally
coherent structures, such as the central flow channels in the Kelvin–Helmholtz systems,
cannot be detected as this method is designed to isolate rotationally coherent flow objects
only, which it accomplishes well.

The stochastic sensitivity (S2), a relatively new method, was not expressly designed
for detecting Lagrangian coherent structures. That said, the flow attributes observable
from this quantity and other sets and characteristics derived from it behave in very sim-
ilar manner to these Lagrangian coherent structures obtained from other methods. The
stochastic sensitivity method is quite flexible in that the S2 field itself can be used to
find flow regions where the uncertainty of a flow trajectory, and therefore the likelihood
of more chaotic flow behaviour, is heightened; or S2 can instead be used to isolate robust
sets (containing a wide array of flow objects) within which particle flow is more controlled.
The S2 field is quite similar to the FTLE scalar field for each of our systems, though this
is not always guaranteed (Balasuriya 2020a), and the robust sets corresponding to small
stochastic sensitivity against a lengthscale and velocity uncertainty level of choice can
identify a wide variety of rotationally and extensionally coherent flow objects. As a slight
disadvantage to this method, the S2 field exhibits large variations. Not only is it harder
to extract coherent structures without scaling the field, but the maximal ridges are more
susceptible to velocity uncertainty. This velocity uncertainty does not have a considerable
impact on the robust sets, or regions of the domain where stochastic sensitivity is low.
This method is also reasonably robust to changes in data resolution, so long as the flow
contained within a system is not highly volatile (e.g. in a flow such as the Bickley jet;
which is regular across most of the domain except where the eddies meet the zonal jet).
However, the computational steps required to produce this quantity are rather extensive
and can consume a reasonably large amount of system memory.

The transfer operator and dynamic Laplace operator methods are very similar in the
sense that both of these methods seek particle density distributions which remain “robust”
(consistent) under a flow. From this, one can obtain a curve or line along which to divide a
flow domain into two separate coherent sets based on the overall flow patterns observable
within a system. From the results obtained for both of these methods (except in the case
of the Unsteady Stuart Vortex system), each of these methods has been able to divide
our flow domain into two coherent sets in more or less the same fashion. Systems such as
the Bickley Jet or Kelvin–Helmholtz flows manage to divide nicely into two coherent sets,
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whereas in the case of a system such as the Unsteady Stuart Vortex or the Gulf Stream,
these methods divide the flow domain in half in a more or less trivial fashion. There is
also the further complication of deciding which singular vector/eigenvector of the transfer
operator/dynamic Laplace operator to use in order to find these coherent sets. The second
vector is normally the one chosen, however one can also choose a subsequent vector so long
as there is a sizeable spectral gap between its respective eigenvalue and the next eigenvalue
in the sequence. There are even techniques available in the literature for producing
further coherent sets using multiple transfer operator singular vectors or dynamic Laplace
operator eigenvectors with tools such as k–means clustering (Froyland & Junge 2018) or
the SEBA algorithm (Froyland et al. 2019); however the latter algorithm was primarily
used by Froyland et al. (2019) to extract elliptic coherent structures from systems such as
the Gulf Stream and numerically simulated turbulence models, which could be achieved
in an easier fashion using a method such as the LAVD. Both of these methods are robust
to acute velocity uncertainty, though the boundaries of the coherent sets obtained from
the transfer operator method become considerably more fuzzy even though the sets retain
their shape. We do not observe this with the dynamic Laplace operator method, as these
inconsistencies are ironed out by the Laplacian operator matrix used to generate the
dynamic Laplace operator. Both of these methods also show resistance to changes in
velocity resolution, though as the grid spacing of velocity data becomes unworkably large,
the scalar fields for the vectors produced contain a large number of discontinuities and
the coherent sets become considerably harder to identify.

The fuzzy c–means clustering method is a sparse LCS detection method used to find
k coherent clusters within a flow domain based on the proximity of a collection of flow
trajectories within this domain. The method itself is efficient and easy to program as it
relies on a pre–prepared clustering algorithm available in MATLAB, and the membership
probabilities for the k clusters sought are robust against velocity uncertainty. Of the
method’s disadvantages, while it is normally robust against changes to the resolution of
velocity data, we have seen instances of the clusters formed from this method changing
in shape completely when the resolution is lowered, then changing back to their original
form following another change in resolution. As mentioned earlier, this can be rectified
by sampling more flow trajectories or by changing the sharpness parameter m for this
method. The biggest issue with this method, however, is the requirement of the user to
pre–determine k, the number of clusters expected to exist within a flow system. For some
analytically defined systems, such as the Double Gyre or Bickley jet flows, this can be a
relatively easy task. However, in a real world flow such as the Gulf Stream, choosing k
is a very difficult task which will require a fair amount of trial and error, and most likely
will not isolate key structures such as streams or vortices but will rather divide the flow
domain into k portions of more or less equal size that do not speak a great deal about
the most influential flow patterns observable within our dynamical system of interest.

The coherent structure colouring (CSC) method can be considered an improvement
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on the fuzzy c–means clustering method, as the number of clusters does not need to be
guessed beforehand, and the method groups together flow trajectories based on how these
mix and braid around each other as the flow progresses; rather than simply how close their
points remain bundled together over the course of the flow. Out of all of the methods
considered in this research, the CSC method has stood out as one of the strongest. It is
a relatively easy method to program (especially in comparison to some methods such as
the variational LCS method), and in one calculation can give a detailed picture of all of
the key coherent structures present within a flow, including streams, jet cores, vortices
and even the rough outlines of flow barriers. The method shows considerable resistance
against velocity data uncertainty, and works well for some lower levels of resolution,
though like with the transfer operator and dynamic Laplace operator methods if the
resolution of the data is too small, then discontinuities will form within the CSC coefficient
field and coherent structures will be harder to identify. The downsides are the large
amount of system memory required if there are many trajectories or time steps and the
large computation time if the adjacency matrix entries are calculated iteratively. This
generally should not be too much of an issue because as Schlueter-Kuck & Dabiri (2017)
have pointed out, a decent enough image of coherent structures within a flow can be
produced using a relatively small number of trajectories. Our research has verified this
to some extent, as the CSC method has produced viable coherent structures for all of
our methods using considerably fewer points than the number of points used for other
methods such as the FTLE, LAVD or variational LCS method. More in depth analysis
into how many trajectories are required to obtain viable LCS results from each method
is recommended, and is suggested as future work.

In light of our findings, we consider the most functional LCS detection methods out of
those considered in this study to be the CSC, LAVD and stochastic sensitivity methods.
The former two methods rely on relatively simple computation algorithms, produce viable
coherent structures amidst the presence of velocity uncertainty and relatively poor (but
not unworkably poor) levels of data resolution, and produce two–dimensional Lagrangian
coherent structures which give a more complete picture of the most robust flow regions of
a dynamical system rather than just detecting the boundaries which separate them. Even
though the stochastic sensitivity computational algorithm is complex and shows mild
sensitivity to velocity uncertainty and lack of resolution, we also recommend this method
as this quantity can be scaled to detect flow barriers and more robust flow regions which
depend on computational parameters connected directly to the velocity data of the system
of interest. While the FTLE method shows some susceptibility to velocity uncertainty,
the algorithms for this method are far easier to use than the variational LCS method
and the results produced appear to correlate with similar results obtained from other
detection methods as noted earlier. We recommend considering the FTLE method over
the variational LCS method for detecting hyperbolic flow barriers, and conducting further
investigations into how the FTLE can be used to isolate more robust flow behaviour using
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minimal values of this quantity. The transfer operator and dynamic Laplace operator
methods are robust against velocity data uncertainty and lack of resolution to a reasonable
degree. However, these methods mostly do not achieve a great deal in terms of visualising
coherent structures, as they seek to obtain robust particle density concentrations used
primarily to divide a flow domain into two coherent “halves”. Some systems (such as
the Bickley Jet) are designed to be divided in this way, however we cannot guarantee
that all real world flow domains will divide nicely into two coherent sets. While other
techniques such as the SEBA algorithm exist for extracting more detailed coherent flow
objects using multiple singular vectors/eigenvectors of these operators, the flow structures
detected would look very similar to those obtained from the LAVD and CSC methods, and
we therefore recommend the use of these methods instead if this is the desired outcome.
We do not recommend the use of the algorithmically complex and susceptible variational
LCS method, nor do we recommend the fuzzy c–means clustering method due to the
requirement of the number of coherent clusters within a flow to be guessed, and the lack
of detail that these clusters can provide especially in a harder to predict real world flow
such as the Gulf Stream.

There is much scope for further analysis into the functionality of Lagrangian coherent
structure detection methods from the results displayed in this Thesis. Firstly, further
resolution analysis can be undertaken to verify the positive relationship between velocity
grid mesh size and LCS error obtained in this study; including the derivation of a slope or
correlation coefficient relevant to these relationships. Secondly, analysis into the impact
of computational parameters on the self–consistency of LCS results can be undertaken.
These can be parameters relevant to all methods (e.g. time parameterisation, order of the
ODE solving method) or can be method specific (e.g. allowance parameters for variational
LCSs, box sizes for the transfer operator matrix, and the sharpness parameter for fuzzy
c–means clusters). Thirdly, we can consider the synergy of various existing LCS detection
methods to produce more efficient and/or more accurate LCS detection methods. We have
attempted this in this research by combining the FTLE with the variational LCS method
(see Section 2.2.4). Finally, as the LCS detection methods considered in this study have
all been applied to two dimensional flows, these methods can be extended to define and
detect LCSs in higher dimensional flows, as has so far been done with the variational LCS
(Blazevski & Haller 2014), LAVD (Haller et al. 2016), transfer operator (Froyland et al.
2010, 2012), dynamic Laplace operator (Froyland & Junge 2018) and CSC (Martins et al.
2021) methods extended to three dimensional flows.



Appendix A

Verification of Detection Algorithms

In this Appendix, we detail efforts in validating the MATLAB code produced for each
of our Lagrangian coherent structure detection methods on analytic Lagrangian coherent
structure results for simplistic flows (where possible) or against results documented within
relevant literature. We also validate this code for numerically defined flow systems using
simulated velocity representing the simplistic Taylor–Green vortex system.

A.1 Validation of Code - Analytically Defined Flows

Rather than relying on published code for each Lagrangian coherent structure detection
method that has been published in the literature, we develop our own MATLAB code
for implementation of these methods in order to gain more of an understanding of the
fundamentals of each of these methods. To ensure that this code works to the best of our
knowledge, we validate this code by testing it either on simplistic flows where Lagrangian
coherent structure metrics can be defined analytically or, where this is not possible or
not readily straightforward to implement, on resultant coherent structures for toy models
published within the literature and accepted to be “true”.

We focus on each Lagrangian coherent structure detection method in the order in
which they were defined in Chapter 2. We begin with the finite time Lyapunov exponent
implemented on the Poiseuille flow system, a simplistic flow consisting of a linear flow
channel with consistent linear particle movement to the right–hand direction in x. The
velocity for this system takes the form

ẋ = u (x, y) =

[
y2 − 1

0

]
(A.1)

and will be defined over the domain Ω = [0, 10]× [−1, 1]. The relative simplicity of this
system enables its flow map at any initial point x0 = (x0, y0) ∈ Ω over the flow interval
[t0, t0 + T ] to be computed analytically, and this happens to take the form
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Figure A.1: The FTLE Φ5
0 for the Poiseuille flow computed using its analytic expression

(top) and numerically using our own MATLAB code (bottom). The supremum for the
absolute error between these calculations is 5.5095× 10−14.

Ft0+T
t0 (x0, y0) =

[
x0 + (y2

0 − 1)T
y0

]
. (A.2)

After some derivation, the finite time Lyapunov exponent for this system

Φt0+T
t0 (x0, y0) =

1

|T |
ln

(√
(2T 2y2

0 + 1) + 2T |y0|
√
T 2y2

0 + 1

)
. (A.3)

We test our MATLAB code on a 1000 × 400 grid of points within Ω defined above,
with t0 = 0 and t0 +T = 5. The resultant finite time Lyapunov exponents calculated both
from (A.3) analytically and numerically from our code can be seen Figure A.1. The finite
time Lyapunov exponent for this system produces a trough along y = 0, which represents
a coherent flow channel for this system, along with two ridges along y = −1 and y = 1
which indicate where particle stretching capability is greatest within this system. From
the Figure caption the largest recorded value of absolute error between the analytic and
numerical quantities for Φ5

0 is 5.5095×10−14, which is a rather impressively low bound for
the error. The likely causes for such a low error include an accurate numerical computation
for the flow map using ode45 ((A.2) was not used for this numerical computation), and a
refined grid of points helped ensure low errors when computing the gradient of the flow
map ∇Ft0+T

t0 (x0).
While we could use the Poiseuille system (A.1) to test the variational method for La-

grangian coherent structure detection, this would involve numerically checking the eigen-
basis of the Cauchy–Green strain tensor (2.2), along with analytically checking other
conditions necessary for the algorithm including the acceptable set G0. Instead, we will
test this algorithm by attempting to replicate the results for the Double Gyre system
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Figure A.2: The field of acceptable points G0 used to generate hyperbolic variational LCSs
using Farazmand and Haller’s (2012) algorithm. Compare with Figure 9(a) in Farazmand
and Haller (2012).

published in Farazmand & Haller (2012) using a similar set of computational parameters.
The Double Gyre system takes the form

ẋ = u (x, y, t) =

[
−πA sin (πf (x, t)) cos (πy)

πA cos (πf (x, t)) sin (πy) ∂f
∂x

]
,

where

f (x, t) = x2 (ε∗ sin (ωt)) + x (1− 2ε∗ sin (ωt)) ,

A = 0.1, ε∗ = 0.1 and ω = π/5, defined over the flow domain Ω = [0, 2] × [0, 1] with
the flow period ranging from t0 = 0 to t0 + T = 20. Farazmand & Haller (2012) imple-
ment their first variational hyperbolic Lagrangian coherent structure detection algorithm
(VLCS Algorithm A) on this system, and publish an acceptable set G0 and the resultant
Lagrangian coherent structures for this system in their paper. Since all of these detection
algorithms rely on the same strategy to solve the first Cauchy–Green eigenvector field,
with the resultant structures and hyperbolic curves regulated in different ways, all we
need to do is implement VLCS Algorithm A on the Double Gyre system (3.1) to ensure
that integration of the field ξ1 has been done appropriately.

Figure A.2 shows the acceptable set of initial points G0 for this system, from which
we seed initial integration points for solving the ξ1 field, and within which all strainlines
produced must remain. Comparing this qualitatively with Figure 9(a) in Farazmand &
Haller (2012), our acceptable set matches nicely with the published Figure as similar
shapes and structures are captured within this set. Figure A.3 shows the hyperbolic
variational LCS produced for the Double Gyre system with the longest length. We use
the same parameters as in Farazmand & Haller (2012), except we extend the fail allowance
parameter Lf = 1 instead of 0.2 to allow for extra uncertainty. Our curve matches that
featured in Figure 10(b) in Farazmand & Haller (2012), and contains more detail as
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Figure A.3: The hyperbolic variational LCS of longest arc length generated using Faraz-
mand and Haller’s (2012) algorithm. Compare with Figure 10(b) in Farazmand and Haller
(2012).

Figure A.4: The LAVD Θ5
0 for the Poiseuille flow computed using its analytic expression

(top) and numerically using our own MATLAB code for solving the integral (2.6) (bot-
tom). The supremum for the absolute error between these calculations is 1.1546× 10−14.

we have made Lf considerably larger than theirs. From these results, we are satisfied
that computation of the Cauchy–Green eigenbasis and the solution curve of ξ1 using our
MATLAB code is acceptable.

Next, we return to the Poiseuille flow (A.1) to test out our MATLAB algorithms for
the Lagrangian averaged vorticity deviation method. While we don’t expect any vortical
structures within this linear channel flow, this flow can still be used to test out the method
as the LAVD quantity can be computed analytically, and takes the form

Θt0+T
t0 (x0, y0) = 2T |y0| . (A.4)

Figure A.4 shows the Poiseuille flow LAVD Θ5
0 computed from numerically evaluating

the integral (2.6), while Figure A.5 shows the same field computed instead by solving the
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Figure A.5: The LAVD Θ5
0 for the Poiseuille flow computed using its analytic expression

(top) and numerically using our own MATLAB code for solving the extended ODE sys-
tem (2.7) (bottom). The supremum for the absolute error between these calculations is
5.3291× 10−15.

extended ordinary differential equation system (2.7); with both Figures comparing these
results to their analytical counterparts. Again, no vortical structures were anticipated
to exist within this flow, but the LAVD of this system starts off at zero along the jet
positioned at y = 0, and gradually gets larger towards the upper and lower edges of the
domain Ω. In both cases, the supremum of the error between the analytic and numerical
LAVD quantities is extremely low, verifying our MATLAB code for both of these algo-
rithms. We compute the LAVD primarily using the extended ODE system (A.5) due to
its relative ease of computation and, as Haller et al. (2016) have claimed, using (A.5)
to compute the LAVD is more convenient and less prone to errors than evaluating the
integral (2.6) numerically.

Next, we test our algorithm for computing the stochastic sensitivity of a flow system
using the Poiseuille flow (A.1) once more. As with the FTLE and LAVD methods, the
stochastic sensitivity of the Poiseuille flow can be computed analytically, which after some
derivation comes out to be

S2 (x0, y0) =
2

3
y2

0((t0 +T )3−t30)+T+

√
4

9
y4

0((t0 + T )3 − t30)2 + y2
0((t0 + T )2 − t20)2. (A.5)

This equation looks rather complicated, however it simplifies quite readily as we have
t0 = 0, to become

S2 (x0, y0) =
2

3
y2

0T
3 + T +

√
4

9
y4

0T
6 + y2

0T
4. (A.6)
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Figure A.6: The Stochastic Sensitivity for the Poiseuille flow over the time interval [0, 5]
computed using its analytic expression (top) and numerically using a grid which covers
the range of the flow map at time t0 + T = 5 (bottom). The supremum for the absolute
error between these calculations is 3.2631× 10−4.

Figure A.7: The Stochastic Sensitivity for the Poiseuille flow over the time interval [0, 5]
computed using its analytic expression (top) and numerically by defining a star grid at
every flow map point at time t0 + T = 5 (bottom). The supremum for the absolute error
between these calculations is 3.5390× 10−4.
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Figure A.8: Scalar fields representing the second (top) and third (bottom) singular vectors
of the transfer operator for the second incarnation of the Double Gyre system over the
flow interval [0, 10]. Compare with Figures 18(a) and 18(b) in Tallapragada and Ross
(2013).

Figure A.6 shows the Stochastic Sensitivity computed for the Poiseuille flow by pro-
ducing a uniform grid covering the range of flow map points at time t0 + T = 5, while
Figure A.7 shows the same quantity computed instead by defining a star grid at each
flow map point; with each result compared to its analytically defined equivalent in each
Figure. The stochastic sensitivity fields do not look too unlike the FTLE scalar field
shown in Figure A.1, with lower values present within the linear channel and larger values
observable along the upper and lower boundaries of the domain. The MATLAB code for
both of our methods appears to be working well once again, though unlike in the case of
the FTLE and LAVD methods, the supremum of the error for the stochastic sensitivity
is larger, now of order 10−4 in both cases. This is likely due to more calculations in-
volved in generating these fields, including several instances of numerical integration and
interpolation of relevant quantities, particularly for the grid extension method (our first
method); which generates considerably more numerical error than it would for the FTLE
or LAVD methods. That said, this level of error is still acceptable enough for verification
of the codes for this method. Due to system memory considerations, we primarily use the
star grid method for computing the stochastic sensitivity in this research unless otherwise
specified.

Next, we turn our attention to the transfer operator method by returning to the above
defined Double Gyre system (3.1), with a slight alteration to the parameters and time
interval to match those used in Tallapragada & Ross (2013); these being A = 0.25, ε = 0.25
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Figure A.9: The scalar field representing the second right singular vector of the transfer
operator for the Bickley jet system (top) and two coherent sets relevant to the initial flow
time t0 = 0 days produced from this field (bottom). Compare with Figure 2(g) and the
first plot in the left column of Figure 6 in Hadjighasem et al. (2017).

and ω = 2π, with t0 = 0 and t0 +T = 10. The domain Ω remains the same as used above
for the variational LCS method. Figure A.8 shows the scalar fields produced from the
second and third right singular values of the transfer operator computed using this version
of the Double Gyre flow. The second singular vector field divides the domain Ω at time
t0 approximately in half in producing two coherent sets, while the third singular vector
field instead chooses the two gyres as one coherent set with the remainder of Ω forming
the other set. The use of singular vectors other than the second when using the transfer
operator or dynamic Laplace operator has been investigated in the literature (Froyland &
Junge 2018, Froyland et al. 2019) and will be discussed further later on in this Chapter.
These scalar fields look comparable with those produced in Tallapragada & Ross (2013),
even though the scale of the singular vector values is different and the colours of the third
singular vector field have been inverted (indicating an inversion of the sign of the singular
vector values in this case). This is acceptable as a singular vector, like an eigenvector, can
be multiplied by any scalar without the formation of the vector changing. Tallapragada
& Ross (2013) also publish the first six eigenvalues generated for the matrix P>P, which
were 1, 0.9997, 0.9995, 0.9987, 0.9981 and 0.9971. Our computations produced the six
leading eigenvalues 1, 0.9997, 0.9995, 0.9986, 0.9986 and 0.9985, which differ slightly due
to variations in computational techniques and numerical estimation errors, though the
differences are not so large that they become a concern.

As an added check for the transfer operator method, we test this on a version of the
Bickley jet flow system used in Hadjighasem et al. (2017) as we use the Bickley jet for
LCS analysis throughout this Thesis. The Bickley jet velocity system takes the form
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Figure A.10: The scalar field representing the second left singular vector of the transfer
operator for the Bickley jet system (top) and two coherent sets relevant to the final flow
time t0 + T = 11 days produced from this field (bottom). Compare with Figure 4(a) and
the first plot in the right column of Figure 6 in Hadjighasem et al. (2017).

ẋ = u(x, y, t) =

[
u(x, y, t)
v(x, y, t)

]
,

where

u(x, y, t) = U0 sech2(
y

L0

) + 2U0 sech2(
y

L0

) tanh(
y

L0

)
3∑
i=1

Ai cos(ki(x− cit)),

v(x, y, t) = −U0L0 sech2(
y

L0

)
3∑
i=1

Ai sin(ki(x− cit)),

with parameters U0 = 62.66ms−1 = 5.4138Mmd−1, L0 = 1.770Mm, A1 = 0.075, A2 =
0.4, A3 = 0.3, ki = (2i)/re, i = 1, 2, 3, re = 6.371Mm, c2 = 0.205U0, c3 = 0.461U0 and
c1 = c3+((

√
5−1)/2)(k2/k1)(c2−c3) ≈ 0.1446U0; over the flow domain Ω = [0, 20)×[−3, 3],

which is defined in units of megametres (Mm) and is periodic in the x-direction; and over
the time interval which ranges from t0 = 0 to t0 + T = 11 days.

Figure A.9 shows the scalar field pertaining to the second right singular vector of the
transfer operator, and two coherent sets produced for this system by dividing along the
zero contour of the singular vector field. In line with the results shown in Tallapragada
& Ross (2013), the transfer operator method divides the flow domain by the coherent
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Figure A.11: The scalar field representing the second eigenvector of the dynamic Laplace
operator for the Bickley jet system (top) and two coherent sets relevant to the initial flow
time t0 = 0 days produced from this field (bottom). Compare with the first plot in the
right column of Figure 15 in Froyland and Junge (2018) and the second plot in the left
column of Figure 3 in Froyland et al. (2019).

jet stream centred along y = 0, with the two vortex layers within the system identified
as these sets. The singular vector field shows some more detail of the coherent vortices
which exist within each vortex layer. Figure A.10 shows the scalar field and coherent
sets obtained from the left singular vector of the transfer operator matrix, which show
the evolution of the coherent sets computed for the initial time t0 following advection
through the Bickley jet system over T units of time. The coherent sets have considerably
deformed in shape, but as Figure A.10 attests, practically no mixing of particles between
these coherent sets is observed, producing two almost invariant coherent flow objects
and fulfilling the objective of the transfer operator method. We have included these
time advected coherent sets here for the sake of observation and testing the method,
however throughout this research only the coherent sets obtained for the initial time t0
from the right singular vector of the transfer operator P will be considered. Tallapragada
& Ross (2013) do not detail the eigenvalues obtained for P>P in this case, however in
comparing the coherent sets visually, we were able to obtain similar results from similar
computational parameters and techniques. The values of the singular vector entries do
again look different, however this is once again acceptable as a singular vector or an
eigenvector of a matrix can be multiplied by a scalar without affecting the vector.

We test the dynamic Laplace operator defined in matrix form using the Bickley jet
flow once again to replicate an experiment considered in Froyland & Junge (2018) and
Froyland et al. (2019). We use the same parameters for the flow, except this time we make
A1 = 0.0075 and A2 = 0.15; and focus on the time interval which ranges from t0 = 0 to
t0 + T = 40 days. Figure A.11 shows the scalar field pertaining to the second eigenvector
of the dynamic Laplace operator and two coherent sets produced by partitioning along the
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Figure A.12: Membership probability scalar fields for four FCM clusters within a third
incarnation of the Double Gyre system over the flow interval [2.5, 42.5] computed over a
uniform grid of initial points. Compare with Figure 5 in Allshouse and Peacock (2015).

zero contour level of the eigenvector scalar field once more. Our results considerably match
the published Figures bar a few slight differences, with similar coherent sets produced from
the transfer operator method which differ slightly due to a change in the flow interval and
some of the Bickley jet flow parameters. Again, the eigenvector field itself displays more
detail regarding the coherent objects within this flow particularly by enabling visualisation
of the coherent vortices within each of the vortex layers. The first six eigenvalues produced
for the dynamic Laplace operator here were 0 (to within 10−15), -3.9665, -6.4184, -6.4748,
-6.5077 and -6.5522. While these differ slightly from the spectrum of eigenvalues provided
in Froyland & Junge (2018) and Froyland et al. (2019), this is again likely due to estimation
errors and differences in computational techniques. The results aren’t wildly different,
the first eigenvalue is close to machine zero and the spectral gap between the second
and third eigenvalues has been maintained. We obtain similar eigenvalues and the same
visual results displayed in Figure A.11 using the sparse definition of the dynamic Laplace
operator and similar computational parameters to those detailed in Froyland & Junge
(2018).

We next test the fuzzy c–means clustering method, by returning to the Double Gyre
system (3.1) and our original parameter choices A = 0.1, ε = 0.1 and ω = π/5. We
attempt to replicate the results published in Allshouse & Peacock (2015) for the flow
interval defined from t0 = 2.5 to t0 + T = 42.5, using initial points defined in a uniform
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Figure A.13: Four fuzzy c–means clusters relevant to a third incarnation of the Double
Gyre system over the flow interval [2.5, 42.5] computed over a uniform grid of initial points.
Compare with Figure 5 in Allshouse and Peacock (2015).

Figure A.14: Four fuzzy c–means clusters relevant to a third incarnation of the Double
Gyre system over the flow interval [2.5, 42.5] computed from 500 uniformly distributed
initial points. Compare with Figure 6 in Allshouse and Peacock (2015).
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Figure A.15: The coherent structure colouring scalar field for the steady Quadruple Gyre
system over the flow interval [0, 40] computed from 300 uniformly distributed initial points.
Compare with Figure 1(c) in Schlueter–Kuck and Dabiri (2017).

grid and a set of sparse initial points defined under a uniform distribution. In our first
example, we compute four fuzzy c–means clusters for this system using a uniform grid
of initial points. Figure A.12 shows the membership probability fields for four FCM
clusters of this system, while in Figure A.13 we explicitly isolate these four clusters using
a membership probability threshold of 70%, as was the case in Allshouse & Peacock (2015).
The clusters we obtain look very similar to those obtained in Allshouse & Peacock (2015),
with both gyres and their “tails” isolated along with deformed oblong type structures
which sit to the left of each gyre. The clusters are presented in a different order to that
presented in Allshouse & Peacock (2015), which was done to highlight the fact that the
FCM Clustering algorithm was found to produce coherent clusters in an arbitrary order
after each iteration. In Figure A.14, we test this algorithm on 500 (rather than 300 as
in Allshouse & Peacock (2015)) sparse initial points chosen randomly under a uniform
distribution. The plot indicates the initial locations of each trajectory at time t0 = 2.5,
with circular plot points of the same colour belonging to one of four FCM clusters at
the 70% membership probability threshold once again. Points indicated by grey “x”
marks do not belong to any of these clusters at this probability threshold. We were once
again able to produce results similar to those published in Allshouse & Peacock (2015),
however, unless otherwise specified, we apply the FCM clustering algorithm to trajectories
computed from initial points defined over a uniform grid.

Finally, we test the coherent structure colouring method by replicating some experi-
ments performed on analytically defined flow models in Schlueter-Kuck & Dabiri (2017).
Specifically, we consider the Quadruple Gyre system, which has the same velocity as
the Double Gyre system (3.1), except we extend the domain Ω in y in the fashion
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Figure A.16: The coherent structure colouring scalar field for the unsteady Quadruple
Gyre system over the flow interval [2.5, 42.5] computed from 300 uniformly distributed
initial points. Compare with Figure 2(a) in Schlueter–Kuck and Dabiri (2017).

Ω = [0, 2] × [−1, 1] to produce four rotating gyres instead of two with diagonally ad-
jacent gyres rotating in the same direction. In this system, A = 0.1 again and we con-
sider a steady (autonomous) version of this system with ε = ω = 0, and an unsteady
(non–autonomous) version where we once again let ε = 0.1 and ω = π/5. We test the
CSC method for both of these systems using a uniformly distributed set of 300 sparse
initial points as was done in Schlueter-Kuck & Dabiri (2017). Figure A.15 shows the
coherent structure colouring scalar field for the steady Quadruple Gyre system over the
time interval [0, 40], which identifies the top–left and bottom–right cells as coherent sets
corresponding to similar positive values of the CSC coefficient, while the top–right and
bottom–left cells have been identified with negative CSC values. These similarities are
most likely due to the direction of gyre rotation being the same within cells of similar
CSC value as suggested in Schlueter-Kuck & Dabiri (2017). Figure A.16 shows the CSC
scalar field for the unsteady version of this system over the time interval [2.5, 42.5], which
in this case identifies the four gyres by similar positive CSC coefficient values and the
remainder of Ω by negative CSC values, as in this case the gyres retain their shapes as
they rotate, but fluid moves between the four cells as ε no longer has a value of 0. The
scalar fields produced along with the CSC coefficient values recorded are strongly similar
to those published in Schlueter-Kuck & Dabiri (2017), bar some minor differences. Like
with the FCM Clustering method, unless otherwise specified we apply the CSC method to
trajectory data defined from initial points within a uniform grid as the relevant velocity
data will be available for all data sets considered in this study.
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A.2 Taylor–Green Vortex (Validation of Code for Nu-

merically Defined Velocity)

From the results detailed in the previous Section, we have developed a confidence that the
MATLAB code and algorithms written for each Lagrangian coherent structure detection
method work in accurately detecting these structures for a wide variety of flows. However,
we have only tested this code on analytically defined toy models thus far, and since this
research also considers the analysis of Lagrangian coherent structures within systems
defined by Eulerian velocity data over a finite amount of time steps, we must test our
code on a numerically simulated velocity data set whose analytically defined velocity
is easy to compute. Therefore in this Section we apply the same MATLAB code to a
relatively simple flow system defined using both analytically defined velocity equations
and Eulerian velocity data. The system we consider is the steady–state (autonomous)
Taylor–Green vortex system, which takes the analytic form

ẋ = u (x, y) =

[
cos (x) sin (y)
− sin (x) cos (y)

]
. (A.7)

We seek out Lagrangian coherent structures relevant to this system over the time
interval ranging from t0 = 0 to t0 + T = 5 using all of the Lagrangian coherent structure
detection methods considered for this study. We apply each method to the version of this
system with analytically defined velocity, and using Eulerian velocity data defined over a
finite number of time steps. We obtain this data through simulation of velocity adherent
to the Navier–Stokes system of equations with (A.7) chosen as our initial condition. We
simulate this data over a 2π–periodic domain Ω = [0, 2π)× [0, 2π) using a uniform initial
grid of 256 × 256 points, solve the Navier–Stokes equations using a third–order Runge–
Kutta integration scheme in MATLAB with an integration time step of ∆t = 0.01, and
save velocity data after 1 unit of time for a total flow period of 10 units of time. By
conducting this experiment, not only do we validate our LCS detection code for each
method, but we validate the code used to simulate velocity data under the Navier–Stokes
equations which we will use to simulate other turbulent flow systems for Lagrangian
coherent structure analysis throughout this Thesis.

We begin with the FTLE for the steady Taylor–Green flow, computed from both
analytic and numerically defined velocity and displayed in Figure A.17. From both of
these Figures, the FTLE is low within each Taylor–Green vortex cell with the boundaries
of these cells identifiable by the maximal ridges of the field. These maximal ridges do not
touch or intersect, due to lower levels of the FTLE on either side of the central points of
each maximal ridge, which happen to be stagnation points for the Taylor–Green vortex
field. Both of these FTLE fields produce similar looking scalar fields with consistent
values of the quantity, and the maximal absolute error between these quantities being of
order 10−5 thereby providing us with a confidence that our FTLE algorithm works for
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Figure A.17: The FTLE Φ5
0 for the Taylor–Green vortex system computed using its

analytic velocity expression (left) and simulated velocity data which represents the system
(right). The supremum for the absolute error between these quantities is 1.2307× 10−5.

Figure A.18: The acceptable set of initial points G0 used to generate hyperbolic variational
LCSs for the Taylor–Green vortex system computed using its analytic velocity expression
(left) and simulated velocity data which represents the system (right).

numerical data just as well as it does for analytically defined velocity.

We next turn our attention to the hyperbolic variational LCS algorithm, which we
validate once again just by testing VLCS Algorithm A. As was the case in the previous
Section, we are simply focused on ensuring that integration of the first eigenvector field ξ1

is executed appropriately as all of the VLCS detection algorithms rely on this. Figure A.18
shows the acceptable set G0 computed for VLCS Algorithm A, which from observation
appears to be more or less identical when computed using analytical or numerical Taylor–
Green velocity. The hyperbolic VLCSs for this system are shown in Figure A.19, computed
from 500 randomly sampled points within G0 and given the allowance parameter Lf = 1,
and appear to not only coincide with the maximal ridges of the FTLE field, but are
also comprised of curves which curl or spiral towards the centre of each vortex cell. The
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Figure A.19: Hyperbolic variational Lagrangian coherent structures for the Taylor–Green
vortex system computed using its analytic velocity expression (left) and simulated velocity
data which represents the system (right).

Figure A.20: The LAVD Θ5
0 for the Taylor–Green vortex system computed using its

analytic velocity expression (left) and simulated velocity data which represents the system
(right). The supremum for the absolute error between these quantities is 4.0× 10−3.

structures produced look more or less similar between the two plots, except in the plot
produced from numerical velocity data some of the hyperbolic LCS curves which run
along boundaries of the vortex cells bend to the side as they approach a corner of the cell
rather than ending just before they reach these corners.

Next we consider the LAVD, with the scalar fields produced from this method shown
in Figure A.20. This method has been able to identify each vortex cell much more clearly,
with the rotational coherence of flow trajectories strong close to the centres of these cells
and weak along the boundaries between these cells. Aesthetically, the LAVD computed
from analytic velocity and numerically defined velocity is strongly similar although the
largest maximal error recorded between the quantities is of order 10−3. This error is
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Figure A.21: The natural logarithm of the stochastic sensitivity for the Taylor–Green
vortex system over the flow interval [0, 5] computed using its analytic velocity expression
(left) and simulated velocity data which represents the system (right). The supremum for
the absolute error between the raw S2 quantities is 2.8× 10−1.

likely owed to the fact that the vorticity of flow trajectories has to be interpolated along
with the relevant velocity vectors to compute the LAVD, and is nonetheless not a greatly
concerning value for the error.

We next examine the stochastic sensitivity of the Taylor–Green vortex flow from the
results shown in Figure A.21. We plot the natural logarithm of the raw S2 quantity in this
Figure to enhance the visibility of coherent structures within this field. From both scalar
fields, the stochastic sensitivity field looks similar to the FTLE fields seen in Figure A.17,
with low stochastic sensitivity and more predictable flow observable within the centres of
each vortex cell and maximal ridges of this field forming boundaries between these cells.
However, unlike in the FTLE field where the maximal ridges approach the stagnation
points of the field but never touch them, the maximal ridges in the ln (S2) field “fan
open” as they approach a stagnation point. There are also no observable “blobs” of low
stochastic sensitivity measure on either side of the maximal points of this quantity like
in the FTLE field, rather very thin ridges of low S2 value surround each maximal ridge.
The scalar fields produced look similar and correspond to similar S2 values, however the
largest absolute error recorded for the quantity is of order 10−1. This is an expected
observation due to the large gradients observable within the S2 field, particularly where
this quantity is extremal.

The optimal vector produced from the second right singular vector of the transfer
operator also looks similar when computed from analytical or numerical Taylor–Green
velocity as attested by the results shown in Figure A.22. To compute the transfer operator
for this system, we divide Ω into 150 × 150 rectangular boxes of equal size and sample
1000 initial flow points within each box. From these results, the transfer operator method
produces one coherent set from the central vortex cell and the other coherent set from
the vortex cells on each corner of the domain. Each coherent set contains portions of the
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Figure A.22: Scalar fields for the second right singular vector of the transfer operator for
the Taylor–Green vortex system over the flow interval [0, 5] computed using its analytic
velocity expression (left) and simulated velocity data which represents the system (right).
The supremum for the absolute error between the singular vector entries is 4.5616×10−4.

Figure A.23: Scalar fields for the second eigenvector of the dynamic Laplace operator for
the Taylor–Green vortex system over the flow interval [0, 5] computed using its analytic
velocity expression (left) and simulated velocity data which represents the system (right).
The supremum for the absolute error between the singular vector entries is 1.2423×10−4.

other vortex cells where flow trajectories spill or leak between cells after beginning flow on
the boundaries between vortex cells, for instance. Once again, the two fields are visually
similar and the maximal error between coefficients of the optimal vectors computed is of
order 10−4, which is appropriate enough.

The coherent sets produced from the second eigenvector of the dynamic Laplace op-
erator also look similar between analytic and numerically defined versions of the Taylor–
Green vortex system, as observed from the results shown in Figure A.23. We use the
same box configuration for Ω and the same number of points sampled within each box
defined above for the transfer operator method. The two coherent sets obtained from this
method differ considerably from those generated from the transfer operator method, with
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Figure A.24: Scalar fields for the fourth right singular vector of the transfer operator for
the Taylor–Green vortex system over the flow interval [0, 5] computed using its analytic
velocity expression (left) and simulated velocity data which represents the system (right).
The supremum for the absolute error between the singular vector entries is 5.4791×10−4.

Figure A.25: Scalar fields for the fourth eigenvector of the dynamic Laplace operator for
the Taylor–Green vortex system over the flow interval [0, 5] computed using its analytic
velocity expression (left) and simulated velocity data which represents the system (right).
The supremum for the absolute error between the singular vector entries is 7.3726×10−6.

the middle column of vortex cells identified as one coherent set, and the two remaining
columns identified as the other coherent set. The two fields once again are similar aes-
thetically, while the largest absolute error recorded between the eigenvector entries is of
order 10−4, which is acceptable enough.

It is worth noting that the coherent sets produced from the fields shown in Figures
A.22 and A.23 do not give the most comprehensive picture of the Taylor–Green vor-
tex flow, though this could have something to do with the lack of a spectral gap, or
large jump, between the second and third eigenvalues/singular values recorded for these
operators (Froyland et al. 2010, Froyland & Junge 2018). The first six singular values
recorded for the transfer operator P were 1, 0.9998, 0.9998, 0.9998, 0.9995 and 0.9995;
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Figure A.26: Membership probability scalar fields for five FCM clusters within the Taylor–
Green vortex system over the flow interval [0, 5] computed using its analytic velocity
expression (left) and simulated velocity data which represents the system (right). The
suprema for the absolute errors between the membership probabilities of each cluster are
(respectively): 8.7869×10−6, 9.5237×10−6, 9.5593×10−6, 9.5743×10−6 and 9.5387×10−6.

and the first six eigenvalues recorded for the dynamic Laplace operator were 0, -3.9443,
-3.9476, -4.0712, -9.0016 and -9.6093. In both of these sets, a spectral gap is observ-
able by the difference between the fourth and fifth value recorded (the jump is much
larger for the dynamic Laplace operator eigenvalues), indicating that the fourth singular
vector/eigenvector should be used to obtain coherent sets using this method. When we
use the fourth singular vector of the transfer operator or the fourth eigenvector of the
dynamic Laplace operator, we can clearly identify the coherent vortex cells for this sys-
tem, as demonstrated by the results shown in Figures A.24 and A.25. The maximum
absolute error for the singular vector entries for the transfer operator method computed
between analytic and numerical velocity data is still of order 10−4, while in the case of
the fourth dynamic Laplace operator eigenvector the maximal error is now of order 10−6,
a considerable improvement on the second eigenvector.
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Figure A.27: Coherent structure colouring scalar fields for the Taylor–Green vortex sys-
tem over the flow interval [0, 5] computed using its analytic velocity expression (left)
and simulated velocity data which represents the system (right). The supremum for the
absolute error between the CSC coefficients is 1.53× 10−2.

We next turn our attention to the FCM clustering method, with the membership
probability fields for five Taylor–Green vortex clusters detailed in Figure A.26. We choose
to extract five clusters from 256× 256 trajectories whose initial points are organised in a
uniform grid, and choose the sharpness parameter m to have a value of 1.5. The algorithm
identifies the central vortex cell as one coherent cluster, and four oblong shaped clusters
which each comprise two of the vortex cells which surround the central cell. Once again,
the membership probabilities produced from analytic and numerical velocity data appear
to be similar, both visually and seeing as the maximal absolute error recorded between
the analytic and numerical membership probabilities are of order 10−6 for each cluster.

Finally, we focus on the coherent structure colouring method, with the resultant scalar
fields for this system featured in Figure A.27. We compute the CSC scalar field for the
Taylor–Green vortex system using 25 × 25 = 625 flow trajectories, whose initial points
are arranged in a uniform grid. From the scalar fields produced, the CSC coefficients
with positive sign allow us to visualise the central vortex cell and all diagonally adjacent
cells, while the negative CSC coefficients allow us to visualise the remaining cells which are
horizontally or vertically adjacent to the central cell. The shapes and structures identified
within each field look the same from the results obtained from analytic and numerical
Taylor–Green velocity, although the largest absolute error recorded between the quantities
is of order 10−2. This is likely due to differences between the flow maps computed from
analytic and numerical velocity at different time steps between t0 and t0 + T , which
impact the elements of the CSC adjacency matrix A and all subsequent calculations.
Nonetheless, we have achieved acceptable Lagrangian coherent structure results for the
numerically defined Taylor–Green velocity flow from each method in comparison to the
results produced from the analytically defined velocity, which not only verifies our Navier–
Stokes solver for velocity simulation, but also assures that our LCS algorithms work just
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as well for numerically defined velocity systems as they do for analytic toy models.
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Appendix B

Convergence of Noise Realisations

In this Appendix, we briefly provide evidence justifying our decision that a sample size of
100 was sufficient for producing means and standard deviations of stochastic realisations
of various LCS quantities, as discussed in Chapter 4. We also explain why we have
selected the particular histogram bin configurations for the VLCS histograms outlined in
this Chapter.

B.1 Bickley Jet

Figure B.1 shows the scalar fields for the mean and double the standard deviation of the
Bickley Jet FTLE, computed from 25, 100 and 200 stochastic realisations using the same
parameters detailed in Chapter 4. As we can see from this Figure, convergence of the
stochastic realisations of this quantity to a suitable mean has occurred relatively quickly,
as there appears to be little (if any) observable difference between the fields computed for
each sample size. We observe this for all of the other LCS detection methods as well, as
we see from Figures B.3–B.12. In Figure B.2, we show different bin configurations for the
VLCS likelihood histograms. If we choose the 90× 30 case, we can see a jagged shape of
the zonal jet, however we lose a considerable amount of detail into the structures close to
and within the coherent Bickley jet vortices. In the 300× 100 case, the resolution of the
Figure becomes too refined and we are left with a large number of dark blue coloured bins
representing areas of little or zero probability of being traversed by a hyperbolic LCS. If
the separation radius ρ used in the VLCS–B algorithm were to be lowered, this would
reduce the number of these boxes but it would also significantly increase the computational
run time necessary to complete each stochastic realisation of this algorithm. We therefore
settle for the sensible centre between these two cases, where we define 180× 60 histogram
bins of equal size.

181
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Figure B.1: The mean (top row) and twice the standard deviation (bottom row) of N = 25
(left column), 100 (centre column) and 200 (right column) stochastic realisations of the
FTLE for the Bickley Jet flow from t0 = 0 days to t0 + T = 40 days.

Figure B.2: The likelihood of a hyp–VLCS passing through one of 90× 30 = 2700 (left),
180×60 = 10800 (centre) and 300×100 = 30000 (right) bins generated from 100 stochastic
realisations of the variational LCS method for the Bickley Jet flow from t0 = 0 days to
t0 + T = 40 days.

Figure B.3: The likelihood (top row) and twice the variation in this likelihood (bottom
row) of a hyp–VLCS passing through one of 180×60 = 10800 bins generated from N = 25
(left column), 100 (centre column) and 200 (right column) stochastic realisations of the
variational LCS method for the Bickley Jet flow from t0 = 0 days to t0 + T = 40 days.
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Figure B.4: Fields of the mean and twice the standard deviation of the Bickley Jet LAVD
arranged in the same fashion as seen in Figure B.1.

Figure B.5: Fields of the mean and twice the standard deviation of the quantity
ln
(√

hvrS2
)

for the Bickley Jet flow arranged in the same fashion as seen in Figure
B.1.

Figure B.6: Sample probability density function fields for the robust set R(0.3, 5.6 ×
10−3, 2.22 × 10−2) of the Bickley Jet flow generated from 25 (left), 100 (centre) and 200
(right) realisations of the stochastic sensitivity method.
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Figure B.7: Fields of the mean and twice the standard deviation of the transfer operator
optimal vector for the Bickley Jet flow arranged in the same fashion as seen in Figure
B.1.

Figure B.8: Fields of the mean and twice the standard deviation of the dynamic Laplace
operator second eigenvector for the Bickley Jet flow arranged in the same fashion as seen
in Figure B.1.

Figure B.9: Fields of the mean and twice the standard deviation of the membership
probability for the first FCM cluster of the Bickley Jet flow arranged in the same fashion
as seen in Figure B.1.
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Figure B.10: Fields of the mean and twice the standard deviation of the membership
probability for the second FCM cluster of the Bickley Jet flow arranged in the same
fashion as seen in Figure B.1.

Figure B.11: Fields of the mean and twice the standard deviation of the membership
probability for the third FCM cluster of the Bickley Jet flow arranged in the same fashion
as seen in Figure B.1.

Figure B.12: Fields of the mean and twice the standard deviation of the Bickley Jet CSC
arranged in the same fashion as seen in Figure B.1.



186 Appendix B. Convergence of Noise Realisations

Figure B.13: The mean (top row) and twice the standard deviation (bottom row) of
N = 25 (left column), 100 (centre column) and 200 (right column) stochastic realisations
of the FTLE for the KH2 flow from t0 = 12 seconds to t0 + T = 15 seconds.

B.2 Kelvin–Helmholtz (Version 2)

We next consider the KH2 flow system, with Figure B.13 showing the scalar fields for the
mean and double the standard deviation of the FTLE for this flow computed from 25,
100 and 200 stochastic realisations of this quantity using the same parameters detailed
in Chapter 4. Like with the Bickley Jet flow, convergence of these realisations happens
quickly with not too many discernible differences observable between the resultant fields,
aside from some very minor differences observable in both the mean and standard devi-
ation fields between the N = 25 and N = 100 cases of these fields. This is a common
observation across all our LCS detection methods, as the results shown in Figures B.15–
B.25 attest. In Figure B.14, we show how the VLCS likelihood field changes in form
as the histogram bin configuration changes. Using similar reasoning as that applied to
the Bickley Jet flow, we choose the 50× 50 bins case as it gives sufficient detail into the
formation of the likelihood field without leaving a large number of bins corresponding to
zero or low probability of being traversed through by a hyperbolic VLCS.
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Figure B.14: The likelihood of a hyp–VLCS passing through one of 25× 25 = 625 (left),
50×50 = 2500 (centre) and 100×100 = 10000 (right) bins generated from 100 stochastic
realisations of the variational LCS method for the KH2 flow from t0 = 12 seconds to
t0 + T = 15 seconds.

Figure B.15: The likelihood (top row) and twice the variation in this likelihood (bottom
row) of a hyp–VLCS passing through one of 50× 50 = 2500 bins generated from N = 25
(left column), 100 (centre column) and 200 (right column) stochastic realisations of the
variational LCS method for the KH2 flow from t0 = 12 seconds to t0 + T = 15 seconds.
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Figure B.16: Fields of the mean and twice the standard deviation of the KH2 LAVD
arranged in the same fashion as seen in Figure B.13.

Figure B.17: Fields of the mean and twice the standard deviation of the quantity
ln
(√

hvrS2
)

for the KH2 flow arranged in the same fashion as seen in Figure B.13.
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Figure B.18: Sample probability density function fields for the robust set R(0.25, 1.63 ×
10−2, 6.1 × 10−3) of the KH2 flow generated from 25 (left), 100 (centre) and 200 (right)
realisations of the stochastic sensitivity method.

Figure B.19: Fields of the mean and twice the standard deviation of the transfer operator
optimal vector for the KH2 flow arranged in the same fashion as seen in Figure B.13.
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Figure B.20: Fields of the mean and twice the standard deviation of the dynamic Laplace
operator second eigenvector for the KH2 flow arranged in the same fashion as seen in
Figure B.13.

Figure B.21: Fields of the mean and twice the standard deviation of the membership
probability for the first FCM cluster of the KH2 flow arranged in the same fashion as seen
in Figure B.13.
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Figure B.22: Fields of the mean and twice the standard deviation of the membership
probability for the second FCM cluster of the KH2 flow arranged in the same fashion as
seen in Figure B.13.

Figure B.23: Fields of the mean and twice the standard deviation of the membership
probability for the third FCM cluster of the KH2 flow arranged in the same fashion as
seen in Figure B.13.
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Figure B.24: Fields of the mean and twice the standard deviation of the membership
probability for the fourth FCM cluster of the KH2 flow arranged in the same fashion as
seen in Figure B.13.

Figure B.25: Fields of the mean and twice the standard deviation of the KH2 CSC
arranged in the same fashion as seen in Figure B.13.
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Figure B.26: The mean (top row) and the standard deviation (bottom row) of N = 25
(left column), 100 (centre column) and 200 (right column) stochastic realisations of the
FTLE for the Gulf Stream flow from t0 = midnight, January 15th 2015 to t0 + T =
midnight, April 15th 2015 (UTC).

B.3 Gulf Stream

Finally we consider the Gulf Stream flow, starting with the mean and standard devia-
tion fields of the FTLE for this system generated from sample sizes of 25, 100 and 200
stochastic realisations of this quantity on display in Figure B.26. Once again, this verifies
that 100 is a sufficient number of stochastic realisations for this method as there are little
observable differences within the scalar fields for each of these sample sizes, with some mi-
nor differences observable between the N = 25 and N = 100 cases. This fast convergence
of the stochastic realisations is again observable across all of our detection methods, as
we see from the results shown in Figures B.28–B.39. In Figure B.27, we display different
likelihood fields for the VLCS method corresponding to different histogram bin configura-
tions for the domain Ω. We again desire a bin configuration that provides greater clarity
of the shapes observable within the likelihood field, but do not want to reduce the size of
the bins to such a low point that we are left with a large number of bins left uncharted
by the VLCSs, so we settle for the 240× 160 bin configuration.
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Figure B.27: The likelihood of a hyp–VLCS passing through one of 60× 40 = 2400 (left),
240 × 160 = 38400 (centre) and 480 × 320 = 153600 (right) bins generated from 100
stochastic realisations of the variational LCS method for the Gulf Stream flow from t0 =
midnight, January 15th 2015 to t0 + T = midnight, April 15th 2015 (UTC).

Figure B.28: The likelihood (top row) and the variation in this likelihood (bottom row)
of a hyp–VLCS passing through one of 240 × 160 = 38400 bins generated from N = 25
(left column), 100 (centre column) and 200 (right column) stochastic realisations of the
variational LCS method for the Gulf Stream flow from t0 = midnight, January 15th 2015
to t0 + T = midnight, April 15th 2015 (UTC).

Figure B.29: Fields of the mean and the standard deviation of the Gulf Stream LAVD
arranged in the same fashion as seen in Figure B.26.
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Figure B.30: Fields of the mean and the standard deviation of the quantity ln
(√

hvrS2
)

for the Gulf Stream flow arranged in the same fashion as seen in Figure B.26.

Figure B.31: Sample probability density function fields for the robust set R(6, 1.27 ×
10−2, 0.125) of the Gulf Stream flow generated from 25 (left), 100 (centre) and 200 (right)
realisations of the stochastic sensitivity method.

Figure B.32: Fields of the mean and the standard deviation of the transfer operator
optimal vector for the Gulf Stream flow arranged in the same fashion as seen in Figure
B.26.
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Figure B.33: Fields of the mean and the standard deviation of the dynamic Laplace
operator third eigenvector for the Gulf Stream flow arranged in the same fashion as seen
in Figure B.26.

Figure B.34: Fields of the mean and the standard deviation of the membership probability
for the first FCM cluster of the Gulf Stream flow arranged in the same fashion as seen in
Figure B.26.

Figure B.35: Fields of the mean and the standard deviation of the membership probability
for the second FCM cluster of the Gulf Stream flow arranged in the same fashion as seen
in Figure B.26.
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Figure B.36: Fields of the mean and the standard deviation of the membership probability
for the third FCM cluster of the Gulf Stream flow arranged in the same fashion as seen
in Figure B.26.

Figure B.37: Fields of the mean and the standard deviation of the membership probability
for the fourth FCM cluster of the Gulf Stream flow arranged in the same fashion as seen
in Figure B.26.

Figure B.38: Fields of the mean and the standard deviation of the membership probability
for the fifth FCM cluster of the Gulf Stream flow arranged in the same fashion as seen in
Figure B.26.
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Figure B.39: Fields of the mean and the standard deviation of the Gulf Stream CSC
arranged in the same fashion as seen in Figure B.26.
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