
1.  Introduction
Floods are some of the most destructive natural disasters in the world and they are projected to become more 
severe and frequent with climate change (IPCC, 2021). During a flood event normally dry areas are inundated 
until a maximum inundation extent is reached (flooding period), whereafter the water recedes back to the normal 
state (recession period). Capturing the dynamics of this behavior is of great importance for risk management and 
has led to the development of advanced hydrodynamic models. Hydrodynamic models can represent different 
levels of complexity and precision. For simulating the dynamics of flood inundation, two-dimensional hydro-
dynamic models that numerically solve the depth-averaged Navier-Stokes equations on a high-resolution grid 
is normally applied (Teng et  al.,  2017). These high-resolution hydrodynamic models are often referred to as 
high-fidelity models, where the fidelity refers to the model's degree of realism (Razavi et al., 2012). However, 

Abstract  Accurate flood inundation modeling using a complex high-resolution hydrodynamic 
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challenges in using surrogate methods for modeling the dynamical behavior of flood inundation in an efficient 
manner. Most methods focus on estimating the maximum flood extent due to the high spatial-temporal 
dimensionality of the data. This study presents a hybrid surrogate model, consisting of a low-resolution 
hydrodynamic (low-fidelity) and a Sparse Gaussian Process (Sparse GP) model, to capture the dynamic 
evolution of the flood extent. The low-fidelity model is computationally efficient but has reduced accuracy 
compared to a high-fidelity model. To account for the reduced accuracy, a Sparse GP model is used to 
correct the low-fidelity modeling results. To address the challenges posed by the high dimensionality of the 
data from the low- and high-fidelity models, Empirical Orthogonal Functions analysis is applied to reduce 
the spatial-temporal data into a few key features. This enables training of the Sparse GP model to predict 
high-fidelity flood data from low-fidelity flood data, so that the hybrid surrogate model can accurately simulate 
the dynamic flood extent without using a high-fidelity model. The hybrid surrogate model is validated on 
the flat and complex Chowilla floodplain in Australia. The hybrid model was found to improve the results 
significantly compared to just using the low-fidelity model and incurred only 39% of the computational cost of 
a high-fidelity model.

Plain Language Summary  Floods are the most common type of natural disaster and therefore 
it is important to predict when and where flooding occurs. This is normally done using a complex computer 
model that divides the area of interest into small subareas and then calculates how the water moves between 
each subarea. However, to predict flooding accurately over large areas, it is necessary to use millions of small 
subareas and it takes a long time to calculate the movement of flood water between subareas. To mitigate this 
issue, this study proposes an alternative approach based on a simpler computer model. This simpler model uses 
larger subareas to predict flooding, which makes the model less accurate but much faster. To compensate for 
the reduced accuracy, the results are corrected using an advanced computer method that is calibrated to predict 
the relationship between the predictions made using the complex and simpler models. The new approach is 
used to predict flooding on a large, flat floodplain in Australia. The predictions show a significant improvement 
compared to just using the simpler computer model. Furthermore, the calculations only take about 39% of the 
time taken by a complex model with the small subareas, but the accuracy is similar.
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the high precision of high-fidelity models comes at an expense of high computational cost, which makes them 
unfeasible in many practical applications such as ensemble and real-time modeling (Teng et al., 2017; W. Y. Wu 
et al., 2020). To address this issue, computationally efficient approximation methods named surrogate models 
have been developed (Razavi et al., 2012).

Many different types of surrogate models have been considered and can be divided into three groups: concep-
tual, emulator, and low-fidelity models (McGrath et al., 2018; Razavi et al., 2012; Teng et al., 2017). Simplified 
conceptual models utilize simple hydraulic concepts to make predictions and can provide useful estimates for the 
maximum or final flood inundation extent (McGrath et al., 2018; Teng et al., 2017). However, their capability to 
predict the dynamical behavior of the flood events is limited (McGrath et al., 2018; Teng et al., 2017).

Emulator models, also known as response surface surrogates or meta models (Razavi et al., 2012), are data-driven 
models that are trained to predict observations or results from high-fidelity models. Emulators are capable of 
mapping complex non-linear relationships, and, once trained, have a high computational efficiency (Razavi 
et al., 2012). However, emulators are not physics-based models, and it is not straightforward to employ an emula-
tor to approximate high spatial-temporal dimensional data from a high-fidelity flood inundation model. To deal 
with the hysteresis of system behavior, it is usually necessary to incorporate timeseries data. For emulators, this 
is often done by time-shifting input variables to provide information on previous and future timesteps. This is a 
simple approach to provide the emulator model with a sense of memory, but each time-shifted input creates a new 
input to the model, and thereby increases the dimensionality the input data (Brahim-Belhouari & Bermak, 2004; 
Brahim-Belhouari & Vesian, 2001; Zahura et al., 2020). Consequently, emulator models are often limited to just 
predicting the maximum flood inundation extent (e.g., Devi et al., 2019; Kim & Han, 2020; Lin et al., 2020) 
rather than predicting a timeseries of flood behavior.

However, recently emulator-based surrogate models have been developed to incorporate timeseries data and 
to predict the dynamic flood inundation extent (Chu et  al.,  2020; Kabir et  al.,  2021; Xie et  al.,  2021; Zhou 
et al., 2021). These studies predict flood inundation using numerous individual emulator models. Each of the 
models are independent and predict flooding at a specific location in the floodplain. The number of individual 
models varies with model application. For example, Kabir et al., 2021 used 150, Zhou et al. (2021) used 125, 
Chu et al. (2020) used 14227 and Xie et al. (2021) used 14278. Using many single models is impractical and does 
not account for the spatial correlation of flood inundation behavior (Chu et al., 2020). To address this issue, new 
methods have been proposed, such as the parallel partial approach by Gu and Berger (2016) and Ma et al. (2019) 
where correlation parameters are shared between individual Gaussian Process (GP) emulator models. Even so, 
dealing with spatial correlation is an issue that persists and needs to be addressed when employing emulator 
models.

Low-fidelity models represent the last type of surrogate models. These are physics-based models similar to 
high-fidelity models, but with reduced complexity. Model complexity is reduced by changing the numerical accu-
racy, adopting simplified assumptions for the governing scheme, or applying a simpler model type (e.g., using a 
one-dimensional instead of two-dimensional model) (Asher et al., 2015; Razavi et al., 2012). Due to the reduced 
complexity, low-fidelity models have a lower computational demand than high-fidelity models, but at the cost 
of reduced accuracy (Fernández-Godino et al., 2017, 2019; Liu et al., 2018; Park et al., 2017). In comparison to 
emulator models, low-fidelity models can more easily incorporate hysteresis and spatial dimensionality but with 
a higher computational burden.

Emulator and low-fidelity models both have their strengths and weaknesses, thus a combination of these two or a 
hybrid model utilizing both surrogate model types, is an appealing approach. However, as mentioned previously 
emulator models have issues dealing with the spatial correlation inherent in hydrodynamic behavior, thus many 
single models are used for individual locations across a floodplain. This is often impractical and can lead to 
discontinuity between the estimates derived for neighboring grid cells. To reduce the number of emulator models, 
dimensionality reduction techniques such as feature selection methods have been introduced to identify key loca-
tions in a floodplain (e.g., Zhou et al. (2021)). An alternative way of reducing dimensionality of spatial-temporal 
data is to extract key features in the form of patterns or trends (feature extraction methods). A common feature 
extraction method is Empirical Orthogonal Function (EOF) analysis, which has been used in areas of remote sens-
ing, climate science and oceanography (e.g., Aires et al., 2014, 2020; Alvarez & Pan, 2016; Chang et al., 2020; 
Ghosh et al., 2021; Golestani & Sørensen, 2013; Jolliffe & Cadima, 2016; Marques et al., 2009). EOF analysis 
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reduces the spatial-temporal data into pairs (modes) of spatial patterns (EOF) and temporal variability functions, 
termed expansion coefficients (EC) (Jolliffe & Cadima, 2016; Zhang & Moore, 2015). When ranked, each mode 
explains a descending proportion of the variance in the data, and the dimensional reduction is achieved by using 
only the first few significant modes to explain most of the variance in the data set (Jolliffe & Cadima, 2016; 
Zhang & Moore, 2015). In addition, EOF analysis is reversible, meaning that the data set can be both decomposed 
to and reconstructed from the ECs and EOFs (e.g., Aires et al., 2014).

EOF analysis can be used for downscaling data from low-resolution to high-resolution, thus making it appeal-
ing for use with low- and high-fidelity flood inundation modeling. For this reason, Carreau and Guinot (2021) 
recently predicted high-resolution water depths and discharge using a hybrid surrogate approach that combined 
a low-resolution hydrodynamic model with Artificial Neural Network (ANN) emulator models to predict ECs 
from a high-resolution hydrodynamic model. Carreau and Guinot (2021) demonstrated the value of using EOF 
analysis and emulator models to downscale the results from low-fidelity models, and they obtained higher reso-
lution predictions of water depth and discharge for flooding events in urban environments. They derived the 
“low-fidelity model results” by averaging the high-fidelity results over selected subdomains. While this approach 
suited their evaluation purposes, in practice the low-fidelity model results need to be derived independently from 
the high-fidelity model to avoid the computational burden involved, and this will most likely introduce additional 
uncertainty to the low-fidelity results. It is also worth noting that they developed individual EOF analyses and 
hybrid models specific to different flow problems. To ensure consistency, the EOF analysis should be performed 
once for the entire data set of flood events, and the same hybrid model should be able to simulate the full duration 
of various flood events on a real-world topology with complex flow patterns and dynamically changing inunda-
tion extents.

An emulator, such as the ANN used by Carreau and Guinot  (2021), is well suited to describe the complex 
functional relationships that exists between the ECs. Nevertheless, in recent years a probabilistic treatment of 
predictions has increased in popularity and with it, interest in Gaussian Process (GP) models. This is due to the 
ability of a GP model to characterize uncertainty by predicting both the mean and standard deviation of the asso-
ciated errors (Schulz et al., 2018). GP models have already been used in numerous studies to predict wave height/
water level (Ma et al., 2019; Malde et al., 2016; Parker et al., 2019), timeseries behavior (Brahim-Belhouari & 
Bermak, 2004; Contreras et al., 2020; Hachino & Kadirkamanathan, 2011), and timeseries with ECs as input 
(Avendaño-Valencia et al., 2017), and they have been used widely in multi-fidelity modeling (Fernández-Godino 
et al., 2017, 2019; Park et al., 2017; Toal, 2015). However, GP models become very computationally demanding 
when dealing with large datasets due to the difficulties encountered when inverting large covariance matrices 
(Bauer et al., 2017; Burt et al., 2019). Flood inundation events can have long timeseries consisting of several 
thousand timesteps, thereby making it computationally infeasible to use the GP model. Fortunately, Sparse 
Gaussian Processes (Sparse GP) offer means to this issue. The Sparse GP models use a number of inducing varia-
bles to approximate the full GP and thereby reduce the computational demand (Leibfried et al., 2021). Despite the 
promising aspects of the Sparse GP models, their applications to real-life problems are still limited, and this study 
therefore aims to investigate approaches that are suited for practical applications of this type of emulator models.

This study proposes a new hybrid Low-fidelity, Spatial analysis, and Gaussian Process (LSG) model to provide 
accurate flood inundation predictions in a computationally efficient manner. The model uses a low-fidelity model 
as a transfer function to capture the dynamics and spatial correlation of a flood event. The key spatial and tempo-
ral features of the low-fidelity model outputs are extracted through EOF dimension reduction techniques, thereby 
enabling the use of a Sparse GP model to refine predictions of the dynamic evolution of the flood inundation 
extent. The LSG model is applied to the simulation of complex flow patterns resulting from flood events in a 
flat  extensive floodplain, which provides a challenging application for the model. The aim of the LSG model is to 
emulate a high-fidelity model and provide comparable results. For this reason, the performance of the LSG model 
is assessed by comparing to high-fidelity model results for the chosen study area.

This paper is organized as follows. In Section 2 the LSG model is presented, including the methodology for the 
EOF analysis and Sparse GP model. In Section 3 the case study for the Chowilla floodplain is outlined with the 
available data and tests performed. Then in Section 4 the results from the case study are presented, followed by 
discussion and conclusion in Sections 5 and 6, respectively.
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2.  LSG Model
The LSG model is a surrogate approach that provides high-fidelity estimates of the dynamic behavior of flood 
inundation. It consists of a low-fidelity hydrodynamic model and a Sparse GP emulator model, where the Sparse 
GP model is used to convert the low-fidelity data to high-fidelity data via conversion of ECs from an EOF analy-
sis. In this study the only difference between the low- and high-fidelity models is the degree of spatial resolution 
adopted, where the lower spatial resolution of the low-fidelity model reduces the accuracy of the predictions.

The workflows for training and prediction are illustrated in Figure 1 and Table 1. EOF analysis is performed on 
the high-fidelity data, thereby reducing the spatial-temporal data to EOF spatial maps and ECs temporal func-
tions. The low-fidelity data is first converted to the same computational grid as the high-fidelity model, thus 
enabling the derivation of low-fidelity ECs through the use of the high-fidelity EOFs. Finally, the low-fidelity 
ECs is used as input and the high-fidelity ECs is used as output to train the Sparse GP model. Once the Sparse 
GP model is trained, the LSG model can be applied to new flood events to predict the dynamic flood inundation 
extent without the need to run a high-fidelity model. A detailed description of the workflows is given in the 
following sections with reference to the steps outlined in Figure 1 and Table 1.

2.1.  EOF Analysis of Hydrodynamic Data

EOF analysis consists of reducing the dimensionality of spatial-temporal data by creating modes of spatial 
maps (i.e., EOFs) and temporal functions (i.e., ECs), where each mode is orthogonal to all others (Jolliffe & 
Cadima, 2016; Zhang & Moore, 2015).

Prior to the EOF analysis, the low- and high-fidelity models are used to simulate several different inundation 
events that span a wide range of inundation behavior from no flood to extreme flood scenarios (Step 1). This 
will enhance the output space coverage of the Sparse GP model and improve prediction accuracy for new unseen 
events (Maier et al., 2010; W. Wu et al., 2013).

As the inundation extent is the focus of this study, the outputs from the low- and high-fidelity models are 
converted to binary values (1 for flooded and 0 for dry) (Steps 2 and 5). The threshold for flooding is chosen to 

Figure 1.  Process of training and prediction for the LSG model to simulate flood inundation extent. Blue ovals indicate the output of each process. Numbers in blue 
correspond to the steps in Table 1.
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be 3 cm to ignore insignificant flooding and reduce numerical errors. The binarization facilitates the grouping 
of the grid cells into the three categories “Always dry” (AD), “Always flooded” (AF), and “Temporary flooded” 
(TF) based on their change of state over time. The state of the AD and AF cells remain constant over time and are 
therefore left out of the EOF analysis. The final step before the EOF analysis is to remove the temporal mean from 
the binary timeseries of each of the TF cells (detrending) and to apply a weighting according to the cell size. As 
hydrodynamic model grids can have cells of varying sizes (unstructured grids), this weighting ensures that larger 
grid cells are given higher weights, as they account for a larger proportion of the inundated area. If the cells have 
the same size (structured grids), the weighting can be disregarded as all cells would be given the same weight.

Let HF be a T×P matrix, where each row is a timestep t for t = 1,…,T, and each column p is a TF cell in the 
high-fidelity model for p = 1,…,P. The EOF analysis is performed via singular value decomposition of the HF 
matrix and follows Equation 1 (Step 3). The EOF analysis is performed using the sklearn.decomposition.PCA 
module in the Scikit-learn machine learning package in Python programming language (Pedregosa et al., 2011).

�� = ����� ⋅ U ⋅ D

= ����� ⋅ ����

≈
�
∑

�=1
����� (�, ∶) ⋅ ���� (∶, �)

� (1)

where EOFHF is a T×P orthogonal matrix where each row corresponds to a spatial map, and ECHF is a T×T matrix 
of column-wise temporal functions. U and D are T×T matrices, where D is diagonal, containing respectively 
the eigenvectors and eigenvalues λ of the covariance matrix from the EOF analysis. To enhance computational 
efficiency, only the first 100 EOF and ECs modes are derived. This is sufficient to ensure the significant modes 
are obtained.

Training

Step Task Result from task Purpose of task

1 Run low- and high-fidelity model for training 
events.

Training data set for the Sparse GP model. Running the low- and high-fidelity model for identical 
events enables the training of the Sparse GP model.

2 Convert high-fidelity data to binary values. New binary representation of the high-
fidelity model data.

Ensures only the flood extent is represented in the 
high-fidelity data.

3 Perform EOF analysis on binary high-fidelity 
data.

Spatial EOF modes and temporal ECs for 
high-fidelity data.

Reduces dimension of spatial-temporal high-fidelity 
data set, so it can be used to train Sparse GP model.

4 Spatially convert low-fidelity data to the high-
fidelity model grid.

New spatial representation of the 
low-fidelity data.

Changing the spatial representation facilitates the use 
of the high-fidelity EOF spatial modes in step 6.

5 Convert low-fidelity data to binary values. New binary representation of the 
low-fidelity model data.

Ensures only the flood extent is represented in the 
low-fidelity data.

6 Derive low-fidelity ECs using high-fidelity EOF 
spatial modes.

Temporal ECs modes for low-fidelity data. Reduces dimension of spatial-temporal low-fidelity 
data set, so it can be used to train Sparse GP model.

7 Train Sparse GP model using low-fidelity ECs as 
inputs and high-fidelity ECs as outputs.

Optimized Sparse GP model. Enables the Sparse GP model to convert low-fidelity 
ECs to high-fidelity ECs.

Prediction

Step Task Result from task Purpose of task

8 Run low-fidelity model for new event and follow 
step 4–6.

Temporal ECs for new event. Creates a new input for the Sparse GP model.

9 Predict high-fidelity ECs using trained Sparse GP 
model.

Predicted high-fidelity ECs. The predicted high-fidelity ECs is needed to reconstruct 
the inundation prediction in high-resolution.

10 Inverse EOF analysis using high-fidelity EOF 
spatial modes and predicted high-fidelity ECs

High-resolution prediction of flood 
inundation extent.

Upskills low-fidelity model prediction of flood 
inundation.

Note. EC, expansion coefficients.

Table 1 
Step-By-Step Workflow for Training and Prediction Using the LSG Model to Be Read in Conjunction With the Process Diagram in Figure 1
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In line three of Equation 1 the data is represented by the first K significant modes. The modes account for a 
decreasing proportion of the variance, meaning the majority of the variance in the data set is described in the first 
K modes, where K≪T. The remaining modes are considered noise and do not contain meaningful information 
about the data set. The error involved in using only the first K modes to reconstruct the high-fidelity data set is 
considered minimal, thus, it is only ECHF(:,1:K) that needs to be predicted using the Sparse GP model. The signif-
icant modes are found using North's test (see Equation 2), which states that modes are significant if the difference 
between the eigenvalues of two modes are bigger than the error limits (North et al., 1982). Furthermore, all modes 
chosen should have eigenvalues above one (Kaisers Rule) to ensure the modes provide more information than just 
using the original individual input variables (Kaiser, 1960).

Δ𝜆𝜆 𝜆 𝜆𝜆

√

2∕𝑇𝑇� (2)

After the ECHF is derived, the next step is to prepare the low-fidelity data as input for the Sparse GP model. The 
low-fidelity model has a lower spatial resolution than the high-fidelity model, but by converting the low-fidelity 
data to the high-fidelity model grid (using the same spatial representation as the high-fidelity data) the EOFHF 
matrix can be used to derive the ECs for the low-fidelity data set (Step 4). This approach obviates the need to 
derive EOF spatial modes for the low-fidelity data as it makes use of the high-fidelity EOFs derived the one time 
in Step 3 from the high-fidelity data. Additionally, this spatial conversion ensures the ECs for all flood events 
for both the low- and high-fidelity data are derived using the same basis of EOF spatial modes. The spatial 
conversion is performed using a nearest neighbor method, where each high-fidelity cell is assigned the value of 
the closest low-fidelity cell for all timesteps by using the Euclidean distance between the x-y coordinates. This 
method is chosen as it is independent of the grid structure and resolution of the low- and high-fidelity model.

As for the high-fidelity data set, only the TF cells are used in the EOF analysis for the low-fidelity data, thereby 
creating a new T×P matrix named LF consisting of the low-fidelity data. The low-fidelity data is detrended and 
weighted in the same manner as for the high-fidelity data. This pre-processing enables the derivation of the ECs 
for the low-fidelity data utilizing the orthogonality of the EOFHF matrix in Equation 3 (Step 6).

���� = �� ⋅ ��� ′
��� (3)

where ECLF is a T×T matrix of temporal functions derived for the low-fidelity data set and 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
′
𝐻𝐻𝐻𝐻

 is the trans-
pose of the EOFHF matrix.

Once both the ECLF and ECHF are derived, they can be used as input and output to train the Sparse GP model.

2.2.  Sparse Gaussian Process (Sparse GP) Model

The ECHF(:,1:K) are predicted using individual Sparse GP models, thereby creating a total of K models. The 
models are assumed to be fully independent due to the orthogonality of the ECHF in the EOF analysis. The 
number of models developed here is significantly reduced compared to the approach of building an emulator for 
each grid cell in the high-fidelity model. The Sparse GP models are implemented in Python using the GPflow 
package (Matthews et al., 2017), which has the advantage of utilizing GPU calculations for optimization of the 
model to reduce computational time. All descriptions under Section 2.2 are linked to Step 7 in Table 1.

2.2.1.  General Concepts of the GP and Sparse GP Models

A GP model can predict non-linear complex relationships with statistical confidence by assuming that the rela-
tionship between input and output follows a Gaussian distribution of functions, explained by the mean and vari-
ance (see Equation 4 below) (Rasmussen & Williams, 2006).

�� (�) ∼ 
(

�(�), �
(

�, �′))� (4)

where m(x) is the mean function, which is normally assumed to be zero (Rasmussen & Williams, 2006), and 
k(x,x′) is the covariance function (popularly referred to as a “kernel”) that is used to generate the covariance 
matrix. The kernel controls the variance of the prediction, and numerous kernel functions have been developed 
(Rasmussen & Williams, 2006). Different kernel functions may lead to different results, and therefore initial tests 
have been carried out using the most commonly used kernel functions including Radial Basis Function, Matern 
3/2, Matern 5/2, and Exponential. The Exponential kernel has been found to provide the most robust performance 
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given the ECLF and ECHF as input and output, respectively. The Exponential kernel (see Equation 5) is a special 
case of the Matern kernel, with 1/2 roughness parameter and double lengthscale.

�
(

�, �′) = �2
� exp

(

−� − �′

2�

)

+ �2
�� (5)

where 𝐴𝐴 𝐴𝐴
2

𝑓𝑓
 is the signal variance, l is the lengthscale, x−x′ is the Euclidean distance between inputs points, and 𝐴𝐴 𝐴𝐴

2

𝑛𝑛 
is the noise variance. The terms 𝐴𝐴 𝐴𝐴

2

𝑓𝑓
 and l represent the hyperparameters of the GP that are optimized by maximum 

likelihood estimation. However, this requires inversion of the covariance matrix that has a computational require-
ment of 

(

� 3
)

 . This makes the GP model optimization infeasible when dealing with timeseries data that can have 
several thousand input samples (Bauer et al., 2017; Leibfried et al., 2021).

To deal with the high computational demand of full GP models, approximation methods called Sparse GP models 
have been developed (Bauer et  al., 2017; Leibfried et  al., 2021). Sparse GP models approximate the full GP 
via introduction of M inducing points, which reduces the computational requirement to 

(

��2
)

 (Snelson & 
Ghahramani, 2006; Titsias, 2009). The adaption of Equation 4 to accommodate the use of inducing points is 
shown in Equation 6.

���� (�) ∼ 
(

�|�′
��−1

� �,��� − �′
��−1

� �� + �2
��

)

� (6)

where kx is �
(

�, �
)

 , KM is �
(

�, �
)

 , and Kxx is k(x,x′). The variables y and x are the observation and input points, 
respectively, where 𝐴𝐴 𝑦𝑦 and 𝐴𝐴 𝑥𝑥 are the inducing points for the observations and input points. The observation induc-
ing points (𝐴𝐴 𝑦𝑦 ) can be removed via integration by assuming a prior distribution following the full GP, which is 
reasonable as 𝐴𝐴 𝑦𝑦 is expected to follow y (Snelson & Ghahramani, 2006). Consequently, inducing points only need 
to be found for the input points.

Several types of Sparse GP models have been developed (Bauer et al., 2017; Leibfried et al., 2021; Titsias, 2009). 
Among them, the variational inference based Sparse GP model has the attractive feature that it improves with 
an increasing number of inducing points, and provides a good approximation to the full GP (Bauer et al., 2017). 
Therefore, the variational inference based Sparse GP model is chosen in this study to predict the relationship 
between ECLF and ECHF. For more information on the Sparse GP model, the reader is referred to Burt et al. (2019) 
and Leibfried et al. (2021).

2.2.2.  Training of Sparse GP Models

The training of the Sparse GP models is performed using the maximum likelihood method, where the maximum 
likelihood estimates of the hyperparameters, 𝐴𝐴 𝐴𝐴

2

𝑓𝑓
 and l, and inducing points are obtained using the L-BFGS-B 

optimization algorithm. Each individual Sparse GP model is trained using all modes of the ECLF(:,1:K) as input 
and only one mode ECHF(:,k) as output (Step 7). This ensures the Sparse GP models are optimized to the specific 
mode k utilizing all the information available in the low-fidelity data. The input and output ECs timeseries are 
standardized to a mean of 0 and variance of 1 before being incorporated in the Sparse GP models to ensure 
numerical stability. A single lengthscale is optimized across all input dimensions in the Sparse GP models, as 
Automatic Relevance Detection with individual lengthscales for each input dimension can lead to overfitting of 
GP models (Cawley & Talbot, 2010).

The optimization process can have several local optima, and therefore the choice of initial conditions is important 
(Bauer et al., 2017; Rasmussen & Williams, 2006). The lengthscale describes how far away from an input sample 
that information can be used, and often a good initial choice of the lengthscale lies within the boundaries of the 
input sample values. The initial value of the lengthscale for each Sparse GP model is chosen as the absolute aver-
age value of the input values. This has shown to be a robust choice and ensures a good optimization. The signal 
variance 𝐴𝐴 𝐴𝐴

2

𝑓𝑓
 is optimized using an initial guess of 1, which is the default value for most applications.

Selecting the number and location of the inducing points is not straightforward. The number of inducing points 
depend on the number and distribution of the input data. When choosing the number of inducing points, the 
number should be significantly less than the number of input points to leverage the computational advantage of 
the sparse approximations. The ratio depends on the amount and distribution of the input data. The initial loca-
tions of the inducing points are chosen by initially distributing them linearly from the minimum to maximum 
value of the input, as this ensures a fast and robust optimization.
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In addition, to further reduce the risk of being stuck in local optima in the optimization process, only the induc-
ing points are optimized initially while the hyperparameters are fixed, as suggested in a previous study (Bauer 
et al., 2017). Thereafter, the hyperparameters are optimized with the inducing points fixed.

2.3.  Reconstruction of Flood Extent Data Using Predicted ECs

Once the Sparse GP models are trained, the low-fidelity model can be run for new flood events (Step 8), and 
the Sparse GP model can be used to predict ECHF (Step 9). By reversing the EOF procedure, the data for the TF 
cells can be reconstructed using the K significant modes, following Equation 1 (Step 10). The flood data does not 
reconstruct fully from the EOF analysis, even if the ECHF is perfectly predicted, as not all modes are used. For this 
reason, the reconstructed flood data is converted to binary values by adopting a standardized threshold of 0.5 to 
differentiate between flooded and dry cells. To reconstruct the data set for all cells (AF, AD and TF), the AD and 
AF cells are added to the reconstructed TF cell data. This provides a high-resolution prediction of the dynamic 
flood inundation extent without the need to run a high-resolution high-fidelity model.

3.  Application of the LSG Model
3.1.  Study Area and Hydrodynamic Models

The LSG model is evaluated on the flat and complex Chowilla floodplain, which is located near the state border 
of New South Wales, Victoria, and South Australia in south-eastern Australia (see Figure  2). The Chowilla 
floodplain is adjacent to the Murray river, and includes several small creeks, wetlands, lakes, and billabongs that 
all contribute to the dynamic change of inundation in the area (Murray-Darling Basin Authority, 2021a). Flood 
events in the Chowilla floodplain can last several months due to the combination of a flat topography and low 

Figure 2.  Study area and boundary locations for the MIKE 11 and MIKE 21 models (ESRI, 2021).
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gradient of the Murray River that together slows down the movement of water. Furthermore, the Murray River 
is roughly 2,500 km long (Murray-Darling Basin Authority, 2021b) and has a large catchment area (>1 million 
km 2 (Murray-Darling Basin Authority, 2022)). The Chowilla floodplain is located in the downstream part of the 
catchment thus resulting in long runoff times and extended periods with high flows. The study area is approxi-
mately 224 km 2.

To simulate flood inundation of the study area, a hydrodynamic model provided by the Murray–Darling Basin 
Authority (MDBA) is used. The model is calibrated to simulate the inundation in the Chowilla floodplain, and 
it is currently used by the MDBA to simulate the natural inundation extent (e.g., Nicol et al. (2020)). The model 
is a two-way coupled model, also known as a one-dimensional + two-dimensional (1D-2D) model, consisting 
of a MIKE 11 and a MIKE 21 FM model that are combined using the MIKE FLOOD framework (DHI, 2019). 
The MIKE 11 model simulates the water level and discharge in the river network based on the upstream inflow 
and downstream water level boundaries. The boundary conditions for the MIKE 11 model are obtained from the 
Bureau of Meteorology's (BoM) online water data platform (Bureau of Meteorology, 2021). The river bathymetry 
is incorporated through 796 cross-sections and Manning coefficients varying between 17–33 m 1/3/s. Additionally, 
the MIKE11 model includes 8 weirs, 15 culverts and 13 control structures (gates and overflow regulators that are 
kept steady throughout the simulations) that affect the flow in the river channels. The MIKE 21 model simulates 
the 2D surface flow on a quadratic grid with a spatially varying Manning coefficient of 17–33 m 1/3/s. There is no 
precipitation included, and a “no-flow” boundary is used along the edge of the MIKE 21 model, meaning that any 
changes to water on the floodplain are due to interactions with the MIKE 11 model.

In this study, both high- and low-resolution MIKE 21 models are used. These constitute the high- and 
low-fidelity models used in the EOF analysis, as discussed in Section 2.1. The dimensions of the grid cells in the 
high-fidelity model is 30 × 30 m, and in total 249,263 cells are required to represent the full model domain. The 
low-fidelity  model has coarser grid cells of 100 × 100 m (28,935 cells in total) and is developed by averaging the 
elevation and roughness of the high-fidelity grid cells over the larger area.

3.2.  Generating Training and Validation Data

The hydrodynamic models are used to simulate flood events for the Chowilla floodplain between 15 August 2010 
and 15 January 2021. This period is selected based on the availability of historic data for specifying the boundary 
conditions and includes nine historic events with durations varying from 75 to 290 days. In this period, the aver-
age inflow discharge to the model from the Murray River is 171 m³/s but spans from a minimum of 21 m³/s to a 
maximum of 1,092 m³/s, showing a great variability in the flow conditions. However, four of the nine historical 
events are too small to cause any significant inundation of the floodplain. This causes a problem for training 
the Sparse GP models, as a large number of events spanning a wide range of inundation behavior is needed to 
properly train the models. The training data should include extreme events with respect to the magnitude and 
the duration of their flood behavior. To ensure this, the observed inflow hydrographs and/or duration of the four 
small events were scaled to create 21 synthetic events. As a result, a total of 26 flood events (21 synthetic + 5 
historic events) are available for model development and evaluation. A summary of the events characteristics is 
found in Appendix A.

The simulated inundation events are divided into training and validation datasets. Of the 26 events, 21 synthetic 
and 2 historic events were used for training, and the remaining 3 historic events were used for validation. The 
three validation events are unique historic events covering the periods 15 August 2010–01 June 2011, 01 March 
2012–15 June 2012 and 28 May 2016–30 March 2017. These events are different in magnitude and dynamic 
flood evolution, and are numbered 1, 3 and 6, respectively (numbering is based on the chronological order of the 
historic events). The remaining historic events, including all scaled events, are used for training and consist of a 
total of 10,586 timesteps across all training events.

To ensure the same starting point and the stability of the simulations, all flood events are simulated using the same 
set of initial conditions, where a fixed timestep of 2 s is adopted for both the MIKE 11 and MIKE 21 models. This 
timestep was selected by the MDBA in model development to ensure model stability for the exchange between the 
1D and 2D models during flooding and drying in the model. In addition, a warm-up period of 10 days is used  to 
establish a relationship between the flood levels obtained by the 1D and 2D models. This warm-up period is 
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selected based on examination of initial model simulation results, and data from this warm-up period are removed 
before the EOF analysis.

It is important to have a fine temporal resolution of the hydrodynamic results to accurately describe the flood 
inundation but increasing the number of timesteps also increases the computational cost of training and prediction 
for the Sparse GP models. For the Chowilla floodplain the change in the floodplain inundation is relatively slow 
and therefore a timestep of 6 hr between saved datapoints is chosen. If the LSG model is applied on a more rapidly 
changing flood problem (e.g., local flash flooding), a higher frequency timestep would be needed.

3.3.  Setup of Sparse GP Models for the Case Study

The setup and training of the Sparse GP model follow the procedure describe in Section 2. However, the number 
of modes found by the EOF analysis and the number of inducing variables is dependent on the training data.

For the case study, the number of significant modes (𝐴𝐴 𝐴𝐴 ) is found to be 52 modes via EOF analysis on the 
high-fidelity training data set. These modes explain 97.8% of the variance in the data set and are found by means 
of North's test (see Section 2.1). This means a total of 52 Sparse GP models are developed and trained for this 
case study.

The number of inducing points for each Sparse GP model is chosen to be 2% of the number of input samples. 
This percentage has shown to be sufficient to approximate the ECs in this study and is found via a trial-and-error 
approach with the training data, which is a commonly used approach (Burt et al., 2019).

3.4.  Evaluation of the LSG Model

A number of evaluation metrics are used to evaluate the performance of the LSG model. The relative Root Mean 
Square Error (relRMSE) is used to capture the general performance of the LSG model and is calculated using 
Equation 7:

relRMSE =

√

1
�

∑�
�=1 (����(�) − ��� (�))2

1
�

∑�
�=1 ��� (�)

� (7)

where A LSG is the prediction using the LSG model, and A HF is the inundation extent simulated using the 
high-fidelity model.

The prediction of the peak of a flood inundation event is important, as most areas will be inundated at that stage. 
To reduce the effect of smaller variations the average flood inundation extent of the top 5% highest values is 
compared by using the relative Peak Value Error (relPeakValErr) in Equation 8:

relPeakValErr =
����

����,5% − ���
����,5%

���
����,5%

� (8)

where 𝐴𝐴 𝐴𝐴
𝐿𝐿𝐿𝐿𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5%
 and ���

����,5% are the average inundation extent for the 5% highest values obtained from the LSG 
and high-fidelity models, respectively. The reason for choosing the highest 5% of peak values and not a single 
timestep is that the peak can last several days, due to the long duration of the floods in the Chowilla floodplain. 
Tests using the 1%–10% highest values have been carried out, but the adoption of different percentages did not 
change the conclusions.

Another important parameter for flood prediction is the timing of the flood peak, as this is when the greatest 
impact on people and infrastructure is to be expected. The ability of the LSG model to predict the timing of the 
peak is assessed using the relative average peak time error compared to the peak period (relPeakTimeErr−1) for 
the top 5% highest values (See Equation 9), and the overall timing of the flood inundation prediction is deter-
mined using the relative average peak time error (relPeakTimeErr−2) compared to the rising limb of the flood 
event (See Equation 10).
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relPeakTimeErr − 1 =
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where ���
����,5% and 𝐴𝐴 𝐴𝐴

𝐿𝐿𝐿𝐿𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5%
 are vectors containing the timesteps at which the top 5% highest flood inundation extent 

are registered (peak period), 𝐴𝐴 𝑡𝑡
𝐿𝐿𝐿𝐿𝐿𝐿

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝5%
 and ���

����,5% are the average timestep for the peak period for the LSG and 
high-fidelity models, respectively. ���

����,10% indicates the start of the rising limb of the flood event, which is chosen 
to be at a 10% increase compared to the minimum flood extent.

The ability of the LSG model to predict the spatial location of the inundation is assessed using the Probability of 
Detection (POD) and Rate of False alarm (RFA) as shown in Equations 11 and 12.

POD =
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� (11)

RFA =
������ �����

��������� + ������ �����
� (12)

where Adetected is the area detected as flooded or dry at a given timestep using both the high-fidelity and LSG 
models, Amissed is flooded areas predicted using the high-fidelity model but which is dry using the LSG model, 
and Afalse alarm is the flooded areas predicted using the LSG model but not the high-fidelity model. Furthermore, 
Adetected, Amissed, and Afalse alarm are plotted on maps for the maximum inundation extent to inspect the locations of 
error. Bounds and values corresponding to a good prediction for all the evaluations metrics are shown in Appen-
dix B, Table B1.

4.  Results
4.1.  Inundation Extent

The inundation extent for the low-fidelity, LSG and high-fidelity models is shown in Figure 3 for event 1 at three 
different timesteps. The timesteps are chosen according to the flooding, peak, and recession periods of the flood 
event (See Figure 4). The resolution of the low-fidelity model is coarse, and the floodplain topology is not well 
described. In general, the low-fidelity model significantly underestimates the flood inundation extent. This is 
unexpected, as models with a low-resolution are known to overestimate the flood inundation extent compared 
to models with a finer resolution (Chatterjee et al., 2008; Yu & Lane, 2006). One reason for this is related to the 
coupling of the 1D and 2D models. The low- and high-fidelity MIKE 21 models are coupled to the MIKE 11 
model at the same location, but not necessarily at the same elevation. As the low-fidelity model is averaged over 
a larger area, the lower elevations in the river are smoothed out by the floodplain, thus resulting in a higher eleva-
tion of the grid cell and of the 1D-2D coupling. This means the river level in the MIKE 11 model has to reach 
a higher elevation before flooding on the floodplain occurs, and as a result, less water inundates the floodplain.

The LSG model can compensate for this underestimation and demonstrates clear improvement over the predic-
tions from the low-fidelity model. The LSG model overestimates the inundation extent slightly, but in general 
shows a similar inundation extent to the high-fidelity model at all three timesteps in Figure 3. The performance of 
the LSG model compared to the high-fidelity model is assessed in detail in the following paragraphs.

The prediction of the LSG model is summarized as a timeseries of the inundation extent for the three validation 
events in Figure 4. For all three events the low-fidelity model underestimates the flood inundation extent but 
provides a similar evolution of the flood extent compared to the high-fidelity model. This demonstrates not only 
the low-fidelity model's ability to capture the dynamic features (timing) of the flood inundation events, but also 
the need for the Sparse GP models to correct the low-fidelity results.
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Figure 3.  Flood inundation extent for validation event 1 simulated using the low-fidelity, Low-fidelity LSG, and high-fidelity 
models. Rivers are showed as dark blue lines, inundated areas are colored in light blue and the extent is showed in km 2 in the 
lower left corner of each subfigure.

Figure 4.  Inundation extent obtained using the high-fidelity and LSG models to simulate the three validation events.
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For event 1 the LSG model significantly improves the low-fidelity model 
predictions, especially during the first flat period and the rising limb before 
the first peak. The first smaller peak is overestimated, but for the second 
and larger peak, the LSG model performs well, and the peak and recession 
period are only slightly overestimated. For event 3 the LSG model performs 
significantly better than the low-fidelity model in predicting the rising 
limb. However, the peak is overestimated significantly, showing the same 
tendency as for the first smaller peak in event 1. The recession period for 
event 3 obtained from the LSG model is underpredicted, but it still shows an 
improvement compared the low-fidelity model. For the last validation event 
(Event 6), the LSG model predicts the flood inundation extent well from start 
to finish of the event, despite overpredicting the peak. This shows the LSG 

model does have the ability to correct the low-fidelity results and to predict a flood inundation extent  that is simi-
lar to the high-fidelity model. The difference in the prediction accuracy between the validation events is a result 
of the differences between validation and training events, and more training events could potentially  improve the 
performance of the LSG model.

Considering the evaluation metrics in Table 2, the relative RMSE (relRMSE) for event 3 is lower than that of 
the other two validation events. This is because event 3 shows signs of both over- and under-prediction, which 
on average evens out the errors. The peak value is overestimated for all three events (relPeakValErr > 0), but 
the relative error compared to the size of the flood event is low, especially for event 1 and 6. In general, both the 
relRMSE and relPeakValErr metrics show errors less than 0.10 compared to the high-fidelity model for all three 
validation events, which is considered a good performance.

The timing of the peak shows a similar tendency for both event 1 and 6, where the LSG predicts the peak 
earlier than the high-fidelity model, as indicated by the negative peak timing errors (relPeakTimeErr-1 and 
relPeakTimeErr-2). In the LSG model structure, the low-fidelity model is assumed to capture the dynamics of 
the event, where the key difference between the high- and low-fidelity models is the spatial resolution of the 
grid cells. Any systematic differences in timing errors could be compensated for by calibrating the roughness of 
the low-fidelity model to match the evolution of the flood inundation (Yu & Lane, 2006), or the results of the 
low-fidelity model could be shifted according to the average timing error in the training data. However, for event 
3, the LSG model predicts the peak later than the high-fidelity model, and an adjustment of the low-fidelity model 
results would therefore not improve predictions for event 3.

4.2.  Detection of Flooding

The POD and RFA obtained from the LSG model for the three validation events are shown in Figure 5. The 
results demonstrate that the ability of the LSG model to detect the spatial extent of inundation varies throughout 
the events. The POD is above 0.76 and the RFA is below 0.20 for the entire duration of all three validation events, 
and the POD shows better performance of the LSG model at the beginning of the events. Event 6 has a low point 
in the POD around 20 December 2016, which is due to a timing error of the falling limb of the flood event. 
The LSG model demonstrates high prediction accuracy for the POD of Event 6 until this point. The RFA varies 
throughout the events due to the general overprediction of the LSG model. Examining the timeseries behavior of 
POD and RFA is not typically done, as these metrics are generally used to characterize errors in the maximum 
flood inundation extent. The LSG model's ability to predict the dynamical flood inundation extent is therefore 
hard to compare to that of other surrogate models.

Considering the POD and RFA for the maximum inundation extent in Table 3, the LSG model performs well. The 
POD and RFA of the maximum inundation extent are comparable and are better than found in similar studies, 
which used surrogate models to predict flood inundation (e.g., Zhou et al. (2021) showed a POD of 0.99–0.999 
and RFA of 0.046–0.067, and Xie et al. (2021) showed a POD of 0.955–1 and a RFA of 0.001–0.07).

The extent of the maximum inundation, as well as the detections, misses and false alarms from the LSG model, 
are shown in Figure 6. In general, there is a good agreement between the LSG and high-fidelity models consid-
ering the spatial inundation detection ability of the LSG model, although there are false alarms for all three 
validation events and misses for events 1 and 3. Events 1 and 6 are larger than event 3 and most of the floodplain 

Metric Event 1 Event 3 Event 6

relRMSE 0.09 0.04 0.09

relPeakValErr 0.02 0.06 0.03

relPeakTimeErr-1 −0.25 0.06 −0.25

relPeakTimeErr-2 −0.04 0.01 −0.04

Table 2 
Evaluation of the Relative Performance of the LSG Model Compared to the 
High-Fidelity Model to Simulate the Validation Events
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is inundated at some point during these events. Given the “no-flow” boundary in the MIKE 21 model (described 
in Section 3.1), flood flows cannot escape by crossing the boundary, which results in a build-up of water on the 
floodplain. This means most cells will be inundated at some point during the events, and thereby detected in the 
maximum inundation extent.

The eastern and western parts of the floodplain show the biggest errors between the LSG model prediction and the 
high-fidelity simulation. These are also the areas that are normally the last to be inundated during a flood event 
in this floodplain, and inundation in these areas is thus harder to predict than in areas that always get inundated.

4.3.  Computational Demand

The simulations are carried out on a High-Performance Computer with a 3.70 GHz Intel® Xeon® E-2288G 
CPU with 64 GB ram and an NVIDIA Quadro RTX 5000 graphic card for GPU calculations. The computational 
time of the low-fidelity model is approximately 39% of that of the high-fidelity model, see Table 4. The training 
and prediction time of the EOF analysis and the Sparse GP models is considerably shorter than that of running 
the low-fidelity model. Further reducing the complexity of the low-fidelity model would increase computational 
efficiency of the LSG model, but this is likely to also reduce the accuracy of model predictions. The nature of this 
trade-off is an aspect that needs further exploration.

5.  Discussion
The results in Section  4 demonstrate the potential for the LSG model to 
provide fast and accurate predictions of flood inundation extent over time. 
The LSG model has been tested in its ability to successfully emulate a 
high-fidelity model. The high-fidelity model used in this study was calibrated 
by the MDBA and little attention has therefore been given to precision of the 
high-fidelity model compared to observations. However, as the LSG model 

Figure 5.  Probability of detection and Rate of false alarm for the three validation events.

Parameter Event 1 Event 3 Event 6

POD 0.99 1.00 1.00

RFA 0.03 0.06 0.02

Table 3 
Probability of Detection and Rate of False Alarm of the Maximum Flood 
Inundation Extent for the Three Validation Events



Water Resources Research

FRAEHR ET AL.

10.1029/2022WR032248

15 of 21

is compared to the high-fidelity model and not observations, the accuracy 
of the high-fidelity model does not affect the study results. For applying the 
LSG model to new real-world applications to replace a high-fidelity model, it 
is important to ensure the high-fidelity model is well calibrated and validated 
according to observational data.

1D-2D hydrodynamic models, such as the high- and low-fidelity model used 
in this study, are especially suitable for simulations that are focused on flood-
plain inundation and less on the river flow (Bates, 2022), but computational 
advances have made fully 2D models a more practical option, making them 
more feasible for flood inundation modeling. As mentioned in Section  2, 
the methodology presented in this paper is not limited to 1D-2D models 
with constant quadratic grid cells. For confirmation, tests have been carried 
out using a fully 2D hydrodynamic model with unstructured grid for the 
Edward-Wakool floodplain (a major anabranch and floodplain of the River 
Murray, located in southern New South Wales, Australia) and the results (not 
shown in this paper) are similar to the ones reported for the 1D-2D model for 
the Chowilla floodplain.

In the development of the low-fidelity model, little attention has been given 
to the model structure and parameters used. The grids cells in the low-fidelity 
model are simply averaged over a larger area than in the high-fidelity model. 
This is a fast, but also crude method to develop the low-fidelity model, as the 

model parameters are most likely sensitive to the spatial resolution. However, the results show that even using 
an uncalibrated and coarse low-fidelity model can result in reasonably accurate final predictions. This is due to 
the powerful transformation of the low-fidelity data through the EOF analysis and Sparse GP that successfully 
upskills the low-fidelity model results. Furthermore, in this study the low-fidelity model accounts for 99.7% of 
the computational burden of the LSG model. Although the low-fidelity model is approximately 2.5 times faster 
than the high-fidelity model, the hybrid model setup used in this study is not feasible for practical applications, 
such as ensemble and real-time modeling. In ensemble modeling, 10–100 of model realizations are normally 
used for uncertainty estimates and flood risk assessments (W. Y. Wu et al., 2020). This means the low-fidelity 
model needs to be several orders of magnitude faster than the high-fidelity model. It is therefore worth exploring 
possibilities of using an even simpler low-fidelity model structure. Simplifications of the low-fidelity model 
will compromise the accuracy, thereby creating trade-offs between accuracy and computational burden. In the 
case study considered, the low-fidelity model is simply a coarser version of the high-fidelity model. To reduce 
the number of grid cells an unstructured grid that adopts a fine resolution in the river and a coarser resolution 
on the floodplains could be applied. Additionally, a simplified governing physics scheme can be applied, such 
as the  diffusive wave model used in programs like HEC-RAS and LISFLOOD-FP. This is interesting future 
direc tions for the LSG model and will be explored in future research.

One objective of this study was also to examine the Sparse GP model and its performance as an emulator. In 
training the Sparse GP models, it is essential that the training data includes events of different magnitudes and 
variability in the evolutional patterns of the flood inundation, so the training data covers the entire output space 
required (Maier et  al.,  2010; W. Wu et  al.,  2013). Once trained, Sparse GP models are able to handle large 

input datasets and describe the complex relationship between the low- and 
high-fidelity model for a flat complex floodplain. Inclusion of the Sparse 
GP model is an important component in achieving accurate predictions in 
this study and are considered to be an effective emulator for flood inundation 
simulation.

Besides the choice of low-fidelity and/or emulator model, an important 
aspect of surrogate modeling is the effort needed to setup the modeling 
framework. The setup of the LSG model can be tedious due to the need to 
generate suitable training data set. This is because numerous simulations 
with the high-fidelity model are needed to train the Sparse GP models and 
create a robust hybrid surrogate model that can be applied to future flood 

Figure 6.  Detected, Misses and False alarms for the LSG model compared to 
the high-fidelity model for the maximum flood extent.

High-
fidelity 
model

Low-fidelity 
model

EOF 
analysis + Sparse 

GP models

Import and data conversion – – 10 min

Training of Sparse GP – – 11 min

Prediction 1012 min 396 min 1 min

Table 4 
Training and Prediction Time of the High-Fidelity Model Compared to the 
Low-Fidelity for Simulation of Validation Event 3
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problems. For this reason, the LSG model is mostly appropriate for a study area where a high-fidelity model and 
several relevant simulation results are already available, or for projects with a long time-horizon so the training 
data can be generated, such that the desirable gains in the computational efficiency after training can be achieved. 
Furthermore, the EOF analysis and Sparse GP model is undertaken using Python without a graphical user inter-
face. To make the model more accessible for industry users, a simple modeling package with instructions for how 
to best derive low- and high-fidelity results and how to use the model could be developed, hence advancing the 
method from theory to more practical applications.

After the prediction of the inundation extent, the next natural step for the LSG model is to extend the method-
ology to predict other parameters such as water depth and discharge. This is important, as only predicting the 
inundation extent can misrepresent the severity of a flood (Hunter et al., 2007). The MIKE 21 hydrodynamic 
model already simulates these parameters but reconstructing continuous hydraulic variables using the EOF anal-
ysis is more complicated than reconstructing binary depth data. To reconstruct continuous hydraulic variables, 
boundary constraints on the EOF analysis may be required to avoid negative values, as suggested by Giordani and 
Kiers (2007). Alternatively, other dimension reduction techniques like Self-organizing Maps (Kohonen, 1982) or 
Auto-encoders (Hinton & Salakhutdinov, 2006) could be explored.

In this study, the LSG model is applied to a floodplain that is particularly flat and extensive, which is a chal-
lenging example to consider when relating differences between high- and low-fidelity model predictions. The 
methodology as described is not restricted to this floodplain, or only fluvial flood problems. In theory, the LSG 
model could be applied to any flood inundation problem, or to other similar problems, such as downscaling 
remotely sensed data.

6.  Conclusion
Accurate predictions of the dynamic behavior of flood inundation extent are of great importance to operational 
flood risk management. Traditional methods based on high-fidelity hydrodynamic models are known to provide 
accurate results, but at high computational cost. This has led to the development of surrogate models that can 
reduce computational cost whilst still maintaining an acceptable level of accuracy. However, current surrogate 
models have difficulties in handling the high spatial-temporal dimensionality of flood inundation data. The hybrid 
LSG surrogate model proposed in this study addresses this challenge. By focusing on the dynamic behavior of the 
flood inundation extent, the LSG model goes beyond the normal application of emulator surrogate models which 
generally only predict the maximum inundation extents.

The hybrid model consists of a low-fidelity hydrodynamic model to capture the dynamic and spatial correlation 
of the flood inundation event and a Sparse GP model to improve the accuracy of the low-fidelity model. The 
hydrodynamic model results are decomposed through EOF analysis into EOF spatial maps and ECs temporal 
function. This enables the Sparse GP model to transform the low-fidelity ECs into high-fidelity ECs, whereafter 
the predicted high-fidelity ECs are used to reconstruct the dynamic inundation extent with improved accuracy 
without actually running a computationally heavy high-fidelity model.

The LSG model is evaluated on the flat and complex Chowilla floodplain using three different historic events. 
Compared to just using a low-fidelity model, the LSG model significantly improves predictions of the flood 
inundation extent, thereby showing the benefit of using Sparse GP models to correct the low-fidelity results. The 
LSG model achieved a POD above 0.76 and a RFA below 0.20 for the entire duration of the validation events 
compared to the results obtained using the high-fidelity model. Furthermore, if only the maximum inundation 
extent is considered, then a POD > 0.99 and an RFA < 0.05 are achieved, which demonstrates high prediction 
accuracy of the LSG model.

The LSG model shows a good overall ability to capture the dynamic behavior of flood inundation, but it tends 
to overpredict the peak inundation extent (e.g., 1%–6% for the case study considered). Regarding the timing, the 
predictions follow the patterns of the high-fidelity model predictions, and there is no general tendency for  the 
timing of the peaks to be over- or under-predicted. Once trained, the LSG model reduces the computational 
demand to 39% of that of the original high-fidelity model for the selected case study.

In future studies, the trade-offs between model simplicity and computational efficiency need to be investigated. 
The low-fidelity model is the most computationally demanding part of the hybrid model, meaning a reduction 
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in the low-fidelity model complexity could lead to significant reduction in the computational time, but this is 
expected to degrade the accuracy of the hybrid model. Another aspect to consider is to extend the methodology to 
estimate flood parameters such as water depth or velocity. These parameters are simulated using hydrodynamic 
models and are highly relevant in flood and hazard estimation. A surrogate model should therefore be able to esti-
mate these parameters to be a fully comparable alternative to a high-fidelity model. Finally, as the methodology 
is not dependent on the case study, the hybrid model is applicable to other flood inundation problems (e.g., urban 
flooding, storm surge) and applications (e.g., downscaling of remote sensing data). New applications would 
therefore shed further light on the potential of the LSG model.

Appendix A:  Historic Events for Training and Validation
The flood events used for training and validation of the Low-fidelity, Spatial analysis, and Gaussian Process 
(LSG) model is shown in Table A1 and Figure A1. Data to simulate the events is obtained from Bureau of Mete-
orology's online water data platform (Bureau of Meteorology, 2021) for the three inflow boundaries, Murray 
river (Station no. 426200), Mullaroo creek (Station no. 414211) and Lindsay river (Station no. 414212), and the 
downstream water level boundary for the Murray river (Station no. A4260512). All boundary data is recorded as 
daily mean values of both discharge and water level. However, some days only contain a recorded water level for 
an inflow boundary location. To address this issue, polynomial functions have been fitted to describe the relation 
between water level and discharge for days with both variables recorded. These functions are used to calculate an 

Event no. Start End Inflow scaling factor Extended duration Validation event

1 a 15 August 2010 01 June 2011 1 – Yes

2 a 01 July 2011 15 October 2011 1 – No

3 01 March 2012 15 June 2012 1 – Yes

4 20 June 2012 01 November 2012 1 – No

5a 01 July 2013 01 December 2013 3 – No

5b 01 July 2013 01 December 2013 4 – No

5c b 01 July 2013 01 December 2013 3 x2 No

5d b 01 July 2013 01 December 2013 4 x2 No

6 a 01 July 2016 01 February 2017 1 – Yes

7a 01 November 2017 15 January 2018 3 – No

7b 01 November 2017 15 January 2018 4 – No

7c 01 November 2017 15 January 2018 5 – No

7d 01 November 2017 15 January 2018 6 – No

7e b 01 November 2017 15 January 2018 5 x2 No

7f b 01 November 2017 15 January 2018 6 x2 No

8a 01 September 2019 01 December 2019 3 – No

8b 01 September 2019 01 December 2019 4 – No

8c 01 September 2019 01 December 2019 5 – No

8d 01 September 2019 01 December 2019 6 – No

8e b 01 September 2019 01 December 2019 5 x2 No

8f b 01 September 2019 01 December 2019 6 x2 No

9a 01 November 2020 15 January 2021 3 – No

9b 01 November 2020 15 January 2021 4 – No

9c 01 November 2020 15 January 2021 5 – No

Table A1 
Flood Events Simulated Using the High- and Low-Fidelity Models for Training and Validation of the LSG Model
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estimated discharge, for days with missing discharge recordings. For days with neither water level nor discharge 
recorded, the daily values are found using linear interpolation.

For 3 of the flood events, inflow data is only available for the Murray river, see Table A1. The discharge in the 
Murray river is main source for the flooding and on average a factor ⁓790 and ⁓10 higher than the discharge in the 
Lindsay river and Mullaroo creek, respectively. The difference between these 3 events compared to the remaining 
events is therefore considered negligible.

As both the low- and high-fidelity models is run with the same boundary conditions, these adaptations of the 
boundary values do not affect the results of the LSG model in this paper.

Table A1 
Continued

Event no. Start End Inflow scaling factor Extended duration Validation event

9d 01 November 2020 15 January 2021 6 – No

9e b 01 November 2020 15 January 2021 5 x2 No

Note. Bold indicates to highlight the few events that are different from the others.
 aOnly data for the Murray River is available for the inflow boundaries. Linear interpolation is used for the other inflow 
boundaries.  bStart and end dates reflect original dates of the event. Events are extended by the factor in the extended duration 
column.

Figure A1.  Inflow hydrographs for discharge in the Murray river during the historic and synthetic flood events. In the legend “a, b, … , f” refers to the event number in 
Table A1. Events without a letter corresponds to the “a” hydrograph.
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Appendix B:  Evaluation Metrics
The evaluation metrics used in this paper can take a variety of values. In Table B1 is an overview of the possible 
values and what corresponds a good prediction.

Metric Bounds Good prediction Notes

relRMSE [0, 1] 0

relPeakValErr [−1, 1] 0 Negative and positive value indicates an under- and over-prediction, 
respectively.

relPeakTimeErr-1 [−∞, ∞] 0 Negative and positive value indicate the peak being early or late, respectively

relPeakTimeErr-2 [−∞, ∞] 0 Negative and positive value indicate the peak being early or late, respectively

POD [0, 1] 1

RFA [0, 1] 0

Table B1 
Evaluation Metrics and Bounds for Values They Can Take

Data Availability Statement
The Python code, MIKE 21 model results and boundary data, together with the data generated to create the results 
presented in this paper, are available at https://doi.org/10.26188/19100996.v3. The programming is performed 
using Python (version 3.9). All necessary dependencies are open-source libraries and stated in the import section 
of the code. Additionally, a GitHub repository has been created for sharing the code and future updates to the 
LSG model (https://github.com/nfraehr/Hybrid_LSG_model).
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