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Abstract

Significance: Monte Carlo radiation transfer (MCRT) is the gold standard for modeling light
transport in turbid media. Typical MCRT models use voxels or meshes to approximate exper-
imental geometry. A voxel-based geometry does not allow for the precise modeling of smooth
curved surfaces, such as may be found in biological systems or food and drink packaging. Mesh-
based geometry allows arbitrary complex shapes with smooth curved surfaces to be modeled.
However, mesh-based models also suffer from issues such as the computational cost of gener-
ating meshes and inaccuracies in how meshes handle reflections and refractions.

Aim: We present our algorithm, which we term signedMCRT (sMCRT), a geometry-based
method that uses signed distance functions (SDF) to represent the geometry of the model.
SDFs are capable of modeling smooth curved surfaces precisely while also modeling complex
geometries.

Approach: We show that using SDFs to represent the problem’s geometry is more precise than
voxel and mesh-based methods.

Results: sMCRT is validated against theoretical expressions, and voxel and mesh-based MCRT
codes. We show that sMCRT can precisely model arbitrary complex geometries such as micro-
vascular vessel network using SDFs. In comparison with the current state-of-the-art in MCRT
methods specifically for curved surfaces, sMCRT is more precise for cases where the geometry
can be defined using combinations of shapes.

Conclusions: We believe that SDF-based MCRT models are a complementary method to voxel
and mesh models in terms of being able to model complex geometries and accurately treat
curved surfaces, with a focus on precise simulation of reflections and refractions. sMCRT is
publicly available at https://github.com/lewisfish/signedMCRT.
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1 Introduction

The modeling of light transport is important to our understanding of how light interacts with
turbid media. It allows us to make predictions of the viability of treatment modalities,1,2 simulate
the behavior of complex shaped light in highly scattering media,3 retrieve images of objects in
highly scattering media,4 and optimize light sensors in the food and drink industry5 among other
applications.

The radiation transfer equation (RTE) describes the transfer of energy in a medium. However,
analytical solutions for the RTE only exist for simple geometries. Therefore, numerical methods
such as the diffusion method6 or the Monte Carlo radiation transfer method (MCRT) must be
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used to compute a solution. The current “gold standard” of modeling light transport in turbid
media is the MCRT method. MCRT can model light transport in arbitrary 3D geometries and
model several microphysics phenomena such as Raman scattering,7,8 fluorescence,9,10 and
polarization11–13 and has been applied to problems ranging from light propagation in dynamic
fluid systems14,15 to simulating thermal gradients in illuminated tissue.16,17

To simulate the transport of light through a medium, the geometry of the problem must be
modeled. Most Monte Carlo codes rely on voxels18–20 or meshes21,22 to approximate the geom-
etry of the problem. Voxel models are only suitable for the simplest problems that do not require
accurate treatment of curved surfaces, due to their cubic nature.23 Curved surfaces arise in many
problems where MCRTmay be used, e.g., the propagation of light through an optical system, the
anatomy of animals or humans such as the brain or vascular networks, among many other pos-
sible examples. In contrast, mesh-based models can more accurately treat curved surfaces but
can be computationally expensive to produce24,25 and MCRT codes require extensive software
engineering to incorporate meshes in a computationally efficient manner. Several authors have
created fast tetrahedral mesh-based codes,21,26,27 which allow better approximate treatment of
curved edges, provided that the tetrahedral meshes are refined to such a level that the underlying
geometry can be precisely modeled. High levels of mesh refinement require more computational
time and large amounts of RAM to create the mesh, and require additional storage space due to
the amount of nodes and elements that make up the mesh. Additionally, even with high levels of
mesh refinement, curved surfaces may still not be precisely modeled28 unless vertex normals are
used with interpolation.29

A number of previous methods have been introduced to tackle the problem of smooth sur-
faces in voxel-based models. Tran and Jacques preprocessed the voxels to determine where the
material interfaces are and computed surface normals for each voxel, which can then be
smoothed via interpolation to create curved surfaces.30 While this method, on the whole,
improves the modeling of curved surfaces, it can have an increased memory footprint and is
more computationally intensive. Alternatively, implicit surfaces can be defined using mathemati-
cal formulas.31–36 Periyasamy and Pramanik’s work, Zhang et al. work, and molecular optical
simulation environment (MOSE) by Li et al. all use a small subset of shapes (spheres, cylinder,
and ellipsoids) to create geometries. Periyasamy and Pramanik’s and Zhang et al.’s works do not
appear to allow the combination of shapes to create more complex shapes via constructive solid
geometry (CSG). However, MOSE allows some combination via a union operation. Majaron
et al. introduce arbitrary mathematical functions to represent undulating skin layers and some
limited shapes (spheres), but again lack any complex geometry via the combination of shapes via
CSG. Finally, Glaser et al.’s work is a plugin for GAMOS, a medical-focused framework for
GEANT4 (geometry and tracking), which is a platform for the simulation of the passage of
particles through matter. GAMOS and GEANT4 both define a large range of shapes allowing
the composition of complex models via CSG operations. While these methods of defining math-
ematical surfaces allow the accurate modeling of smooth surfaces, they have the drawback that
each surface needs an accompanying intersection and surface normal routine. These can be com-
putationally costly to evaluate and increase the workload on the programmer.

In this work, we present a novel Monte Carlo radiative transfer model where we eschew the
common voxel or mesh-based approaches for an approach based upon signed distance functions
(SDFs), which we call signedMCRT (sMCRT). SDFs have been commonly used to define
implicit surfaces in computational fluid dynamics,37,38 computer graphics,39 video games,40 and
computer vision.41 Recently, there has been considerable interest in using neural networks to
define SDFs from point clouds and meshes. This interest has been led by computer graphics
and deep learning researchers, looking for memory-efficient representations of meshes and point
clouds at high spatial resolutions.41–43

We show in this work that SDFs allow the easier representation of shapes with only the need
to define one function for each shape, the distance to surface function. This function allows the
computation of intersection and the surface normal to be easily computed with just one function.
Several features of SDFs make them an attractive complementary method to voxel and mesh
models. SDFs allow the efficient transport of photon packets through the modeled geometry
using sphere tracing, which is faster, in many cases, compared with traditional ray tracing meth-
ods used in MCRT.39 SDFs, while being similar to the approach of mathematical surfaces, do not
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need individual intersection routines as they are naturally included in the SDF definition.
Moreover, we can use numerical differentiation to provide the surface normals as SDFs are dif-
ferentiable almost everywhere and for the special case when an SDF ¼ 0, the gradient is the
surface normal. SDFs can be incorporated into existing voxel- and mesh-based codes by minor
modifications to the optical depth integration and geometry initialization routines. Alternatively,
SDFs can be used to define the geometry of voxel- or mesh-based codes as SDFs can be easily
rasterized into voxels, and into meshes via the marching cubes algorithm.44

We show in this paper that sMCRT is more precise than voxel or mesh models for curved
surfaces. We also show that sMCRT is more precise than highly refined meshes in scenarios
where reflections and refractions play an important part.

2 Methods

2.1 Monte Carlo Radiation Transfer Algorithm

The Monte Carlo radiation method uses interaction probabilities and probability distribution
functions that describe the physics of light transport, to model light transport through turbid
and nonturbid media. Each photon is propagated a distance τ∕μt, where τ is the optical distance
[−] and μt (cm−1) is the extinction coefficient, before it interacts with the medium. The value of τ
is sampled from the probability distribution function for the mean free path of a photon using
the Monte Carlo method,18 as shown in Eq. (1), where ξ is a random number drawn in the range
[0, 1]

EQ-TARGET;temp:intralink-;e001;116;464τ ¼ − logðξÞ: (1)

The MCRT code presented in this work is broadly based upon previous MCRT codes used in
various astronomical, medical, and biophotonics applications.3,45–47 We use the same routines for
releasing photons, input/output, scattering, random number generation, and helper routines.
What differs in this work is the optical depth integration routine, and the geometry modeling
method, which is accomplished by the use of SDFs.

2.2 Signed Distance Functions

SDFs determine the distance from a point p to the boundary of a specified shape. The function
returns a positive value if p is outside the boundary, and a negative value if inside the boundary.
Formally, this can be described using level set representation. In level set representation, con-
tours are modeled at the zero-level set (ϕ ¼ 0) of a function defined in a higher dimension. Let
Φ∶Ω → R3 be a Lipchitz function that refers to a level set representation for a given shape S48

then

EQ-TARGET;temp:intralink-;e002;116;262Φsðx; y; zÞ ¼
8<
:

0; ðx; y; zÞ ∈ S
þDððx; y; zÞ;SÞ > 0; ðx; y; zÞ ∈ RS

Dððx; y; zÞ;SÞ < 0; −ðx; y; zÞ ∈ ½Ω −RS�
(2)

An example of an SDF is shown in Eq. (4) for a sphere, where r is the radius of the sphere,
and p is the position of a photon

EQ-TARGET;temp:intralink-;e003;116;177Dsphereðx; y; zÞ ¼ jpj − r; (3)

EQ-TARGET;temp:intralink-;e004;116;133p ¼ ½x; y; z�: (4)

SDFs can easily be translated, rotated, twisted, and scaled among many other operations.
CSG operations such as union, intersection and difference can also be used on the SDFs.
Figure 1 shows a subset of shapes and possible operations on SDFs.51,52
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2.3 sMCRT Algorithm

To incorporate SDFs into a pre-existing voxel-based MCRT code requires only relativity small
adjustments: modifications to the geometry initialization routine and to the optical depth inte-
gration routine. An overview of the complete MCRT algorithm is shown in the left panel
of Fig. 2.

To create the geometry in voxel or mesh-based models, each voxel or tetrahedral element of
the mesh is independently assigned a set of optical properties (scattering and absorption coef-
ficients, refractive index, and anisotropy g value). In sMCRT the geometry is initialized by
selecting the functional form, size, and location of SDF(s) required to model the problem, apply-
ing any CSG operations required to generate more complex shapes, and finally setting the optical
properties for each SDF. Each SDF has its own set of optical properties, which include scattering
and absorption coefficient, refractive index, and the anisotropy g value. We then create a bound-
ing box around all the SDFs, which gives us a simulation volume of interest.

In voxel-based MCRT codes, each photon packet is randomly ascribed a specific optical path
length that it travels before an interaction, such as scattering or absorption, according to Eq. (1)
and is scaled by μt (μt can be different for each voxel). The photon packet is then propagated
through the voxel grid using ray tracing until it reaches that interaction point or leaves the
voxel grid.

In our SDF based MCRTalgorithm, the first step in the SDF optical depth integration routine
is the same as in the voxel case, i.e., randomly assign an optical depth. As before, this is calcu-
lated using Eq. (1) and μt can be different for each SDF. The next step is to acquire the distance
from the current position of the photon packet to the nearest boundary. This is computed by using
the SDFs to calculate the distance to each boundary in the modeled geometry and taking the
minimum value (dsdf). This process is called sphere tracing51 and is illustrated in Fig. 3.

If the remaining optical depth for the photon packet is less than dsdf , the photon packet under-
goes some interaction, and the optical depth integration routine restarts. If the optical depth is not
reached, then we move the full distance dsdf , and then recalculate the distances to all boundaries.
If the SDF of the bounding box returns a positive value we are outside the volume of interest, so
we terminate the packet and start a new packet.

Fig. 1 Several examples of surfaces that can be created by SDFs, rendered in Blender. For illus-
trative purposes, SDFs are voxelized in sMCRT then transformed to a mesh using Skimage’s49

marching cubes algorithm and then rendered using Blender.50 The left two panels show a subset
of basic shapes calculated using SDFs (a)–(d) and (j)–(m). The right two panels show a subset of
possible operations on SDFs: smooth (e) and nonsmooth union (f), intersection (g), subtraction (h),
repetition (i), displacement (n), elongation (o), bend (p), and twist (q).
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If the SDF for the bounding box returns a negative value, we then check if the smallest
distance, dsdf , is less than some threshold, δ. In this case, the photon packet is on a boundary
so we need to check if there is a change in refractive index. If there is a change in refractive index
we calculate the Fresnel coefficients and the surface normals, then reflect or refract the photon

Fig. 3 Example of sphere tracing. Starting a position P , the photon is propagated by a step size, s
(represented here by the blue circle), equal to the distance to the nearest surface (red line) until the
step size is under some threshold δ.

Fig. 2 (a) Flow diagram of an MCRT code. (b) The additional steps needed to incorporate SDFs
into the optical depth integration routine, which governs the movement of photon packets through
the simulated media.
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packet. If dsdf is larger than δ, and all distances to the SDFs are not positive then we start this
whole process again until one of the exit conditions has been met. Surface normals are calculated
using a numerical method based upon central differences, see the Supplemental Material for full
details.53 The above algorithm is shown in Fig. 2(b).

Accurate modeling of curved surfaces is essential for some problems. To illustrate this, Fig. 4
shows a comparison of using voxel-based geometry and SDF-based geometry in our recent work
on simulations of Raman spectroscopy of alcoholic beverages through glass bottles.54

3 Results and Discussion

3.1 Validation

To ensure that our novel SDF-based geometry method works accurately, we validate our algo-
rithm against a theoretical expression and another MCRT code. All simulations are fully paral-
lelized with OpenMP and were run on a workstation with an AMD Ryzen 9 3950X 16-Core
Processor with 64 GB RAM using the full 32 threads available.

We first compare sMCRT’s accuracy by computing the average number of scattering events
occurring to a photon in an isotropic sphere.55

For a photon’s random walk from the center to the edge of a uniformly scattering sphere of
radius r, the average number of scatterings that take place can be written as (see Supplemental
Material)

EQ-TARGET;temp:intralink-;e005;116;198N ≈
τ2

2
þ τ: (5)

To compare Eq. (5) with sMCRT, we model a sphere of radius 0.5 cm, vary the optical depth
between 0.1 and 100 cm−1, and release 10 million photons isotropically from its center. For τr ¼
100 cm−1 typical run-time for sMCRTwas ≈42 s compared with ≈64 s for a voxel-based model.
The agreement of the code and analytical expression can be seen in Fig. 5.

We also validated sMCRT against Jacques et al. MCRT code.56 We validate against Jacques
code as it incorporates all the relevant physics we need in an MCRT code; scattering, absorption,
and refractive index mismatches.

Fig. 4 Comparison of fluence for (a) the voxel model and (b) sMCRT model in a glass bottle. Both
panels show the cross section of the bottle. This shows clearly that the voxel model cannot pre-
cisely model reflections/refraction in an experiment with curved surfaces, as it shows discrete
reflections and refractions, whereas sMCRT shows the expected continuum of reflections and
refractions. For this example the optical properties are set for the contents μs ¼ 2.5 cm−1 and
μa ¼ 0.01 cm−1. The glass has no scattering and has the same absorption coefficient. The refrac-
tive index of the glass is 1.5 and 1.3 for the contents. Both the glass and contents of the bottle have
a g value of 0.7. The bottles radius is 1.75 cm, and the glasses thickness is 0.2 cm.

McMillan, Bruce, and Dholakia: Meshless Monte Carlo radiation transfer method for curved geometries. . .

Journal of Biomedical Optics 083003-6 August 2022 • Vol. 27(8)

https://doi.org/10.1117/1.JBO.27.8.083003.s01
https://doi.org/10.1117/1.JBO.27.8.083003.s01
https://doi.org/10.1117/1.JBO.27.8.083003.s01


For this validation, the medium is set up as a semi-infinite slab and light is uniformly incident
on the surface of the slab (negative z-direction) and propagates until it is absorbed or escapes via
the top surface (positive z-direction). We then fit it against Eq. (6) to compare between codes

EQ-TARGET;temp:intralink-;e006;116;424ΨðzÞ ¼ Ψ0ðC1e−ðzk1∕δÞ − C2e−ðzk2∕δÞÞ; (6)

where ΨðzÞ is the penetration of the incident light or equivalently the fluence rate (Wcm−2), Ψ0

is a normalization constant (Wcm−2),Cn and kn are the fitted coefficients [−], and δ is the optical
penetration depth, defined as δ ¼ 1∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3μaðμa þ μsð1 − gÞÞp ðcmÞ. The optical properties for the

slab are shown in Table 1, where we use the Henyey–Greenstein phase function57 with a g of 0.9,
and we model two wavelengths in separate simulations. The refractive index for the medium was
set to 1.38 to mimic the rat skin used in Jacques code,56 and for the surrounding medium a
refractive index of 1.0 was set, to mimic air. sMCRT took ≈33 s, compared with ≈20 s for the
voxel model to run the Jacques test case.

As evidenced in Fig. 6, sMCRT closely matches the results in Jacques et al. An exact match is
not possible, due to the difference in the code underlying workings such as cylindrical fluence
bin shape used by Jacques et al. versus our rectangular bin shape.

3.2 Comparing Voxel and Mesh Models to sMCRT

In this section we compare the accuracy of our new SDF-based MCRT code (sMCRT) to two
alternative MCRT methods: a modified MCRT, which uses interpolated surface normals to

Table 1 Table of optical properties and determined coefficients from Jacques et al.56

Absorption Scattering Penetration

Wavelength (nm) μa (cm−1) μsð1 − gÞ (cm−1) C1 k1 C2 k2 δ (cm−1)

420 1.8 82 5.76 1.00 1.31 10.2 0.047

630 0.23 21 6.27 1.00 1.18 14.4 0.261

Fig. 5 Agreement of analytical expression [Eq. (5)] and sMCRT for several radial optical depths in
the range [0.01, 100]. Photons are released from the center of an isotropic scattering sphere. The
optical density (scattering coefficient) is varied and the average number of scatterings per photon
packet is recorded.
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approximate smooth surface;30 and one of the most widely used mesh-based MCRT methods
(MMC)21 with the most recent BlenderPhotonics58 plug-in for initialization.

To illustrate that sMCRT is more precise than voxel and mesh-based models, for cases where
the geometry can be defined analytically or via the construction of multiple shapes, we devise a
test case. The test is a simple one of modeling a smooth surface: for this we use a similar test case
to the one used to demonstrate the accuracy by Tran and Jacques surface normal approach seen in
reference.30 For our test, we model a glass sphere with radius 0.75 cm with its centre at
½0.0;−1.0� cm and set the refractive index to be 1.33. The glass sphere is set in a medium
of air (n ¼ 1.0) with cubic size 2 cm centered at the origin [0.0, 0.0, 0.0] cm. We illuminate
the geometry with a 2D beam of light of width 0.3 cm propagating along −z. Figure 7 shows a
slice of the fluence through the sphere for the sMCRT, Tran and Jacques approach, and MMC.
Additionally, it shows some rays traced through the sphere as a theoretical comparison for each
of the codes.

The surface normal approach (middle top panel of Fig. 7) shows despite accounting for
curved surfaces with interpolated surface normals, it still suffers from inaccuracies. These inac-
curacies, as evidenced from the missing reflections, arise from their model still being based upon
voxels. They interpolate the surface normals at the refractive index mismatches; however, this
new virtual surface is not in the correct place for precise photon-surface interactions due to dis-
cretization errors.

The middle row shows results from MMC for several mesh refinement levels. All three levels
used the same maximum tet volume (0.01): only the refinement level of the input sphere was
varied. MMC also displays an imprecise result for all three levels. This is also due to discre-
tization errors much like the surface normal approach by Tran and Jacques. In MMC the mesh is
made up of tetrahedrons, where each tetrahedron is made up of triangular faces. Thus, when light
is incident on the surface of a tetrahedron it interacts with a planar surface. This discretization
can be alleviated to a certain extent by increasing the number of tetrahedrons in the mesh.
However, this leads to an increased computational load and memory usage when creating and
using the meshes.25 One further method of accounting for the discretization errors would be to
calculate vertex normals when creating the mesh, and then interpolating the vertex normals on
the triangular faces, resulting in a smoother appearing surface.59 To the best of our knowledge,
none of the mesh-based MCRT codes surveyed (fullMonte, TIM-OS, and MMC) include this as

Fig. 6 Validation of sMCRT against Jacques et al. MCRT model. The simulation medium is a
semi-infinite slab (infinite in the x and y dimensions), and has the optical properties as in
Table 1. The medium is uniformly illuminated via the top surface, i.e., is incident from the left
of this figure.
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an option. However, this issue may be overcome with postprocessing or may not be relevant for
certain quantities of interest.

sMCRT, for this test case, shows the most accurate result when compared with the theory
output. This is due to sMCRT precisely modeling the spherical surface with no discretization
errors. The bottom row shows a direct comparison of the accuracies of each model for profiles
of the reflected and refracted light (gray dashed lines in some panels). All three models
exhibit markedly different reflected light profiles. sMCRT shows the expected slowly rising
curve due to more light being reflected by the outer-side of the sphere. Both MMC and the
surface normal approach display noisy profiles due to the aforementioned discretization
errors. All three models show general agreement in their predictions of the refracted light
profile, though MMC and the surface normal approach both exhibit increased noise profiles
due to discretization errors. Additionally, the surface normal approach shows an offset profile
due to the virtual surface location in relation to the true geometric surface. In the future, it
would be interesting to further compare our approach to other modified-voxel-based
approaches such as SVMC.60

Fig. 7 Comparison of simulation accuracy between A.P Tran and S. Jacques surface normal
approach,30 MMC,21 sMCRT models, and theory. (a) Left image shows light rays from theory inci-
dent on the glass sphere. Top middle shows the results from surface normal approach. Top right
shows sMCRT. (b) The output fromMMC for different levels of mesh refinement. The lowest refine-
ment contains 34,752 elements and 6137 nodes, the highest refinement has 490,256 elements
and 78,976 nodes. (c) A comparison of all three models (with the highest refiment model for MMC)
along lines that intersect the reflected light and refracted light (dashed gray lines in the top panels).
For this test, sMCRT is clearly more precise than either mesh and modified-voxel-based models.
Note, for sMCRT and the surface normal approach we use a one voxel wide slice though the
fluence. For MMC we use a three voxel slice though the fluence to account for some of the dis-
cretization error.
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4 Complex Geometry

Thus far we have shown that sMCRT can model simple geometries, so to demonstrate that
sMCRT can model complex shapes, we model a blood vessel network embedded in tissue.
We also show that sMCRT can model arbitrary SDF generated by neural networks, such as
DeepSDF or SIREN, (see Fig. S1 in the Supplemental Material),61 and model other arbitrary
shapes such as the logo of a university after converting a scalable vector graphics image to an
SDF (see Fig. S2 in the Supplemental Material).

The vessels are a 3D synthetic microvascular network from data published in Ref. 62 and
preprocessed by Yuan et al.63 Yuan et al.’s data set comprises of the endpoints of cylinders and
their radii, thus we can easily convert this data set into an SDF model. We model the slab of tissue
using a box SDF (second shape in bottom left panel of Fig. 1), and the vessels as a collection of
capsule SDFs (third shape in top left panel of Fig. 1), which are then joined together using the
CSG operator union (bottom left operation in top right panel of Fig. 1). The simulation volume is
326 × 305 × 611 μm3 and we use a voxel grid of 4003 to record the fluence. The optical proper-
ties of the slab of tissue and the vessels are taken from Ref. 19 and are shown in Table 2. The slab
is uniformly illuminated on its top surface by 10 million photons, which are allowed to propagate
until they are absorbed or leave the simulated medium. Figure 8 shows the fluence on the vessel
network and slices of fluence through the tissue slab.

Table 2 Table of optical properties for the tissue and vessel network.

Absorption Scattering

μa (cm−1) μs (cm−1) g n

Skin 0.459 357 0.9 1.38

Vessels 231 94.0 0.9 1.38

Fig. 8 Fluence and absorption images for the vessel network. Light is uniformly incident on the
X − Y plane of a slab of tissue with an embedded vessel network. (a) The 3D fluence for the vessel
network with tissue’s fluence removed for clarity, arrow indicates direction of incident light. (b) A
slice through the fluence for the tissue and vessels in the Y − Z plane. (c) A slice though the
fluence for the vessels in the Y − Z plane. (d) A slice of absorption for the tissue and vessels
on the Y − Z plane.
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Figure 9 shows a comparison between sMCRT and MMC for the complex blood vessel net-
work. Figure 9(a) and 9(b) show a slice of the fluence in the x − z plane. Both sMCRTand MMC
exhibit broadly the same results, with sMCRT’s background fluence at a higher level with
more noise [Figs. 9(a) and 9(b) of the fluence slice] than MMC’s due to the different fluence
computation method used (path length estimators64 compared with Russian roulette weights).
This is because the path length estimator “deposits”more energy along its path and is eventually
absorbed, whereas the weight system used by MMC deposits less energy and is absorbed in a
later point. Therefore, for the same number of photon packets, the results will not match exactly.

5 Conclusion and Outlook

We have shown a meshless, geometrical method for Monte Carlo radiation transport, using
SDFs. SDF-based models achieve higher precision than voxel and mesh-based models, particu-
larly for modeling smooth surfaces, such as computing fluence in droplets or accurate modeling
of human anatomy for light transport calculations. We envision that SDF-based models provide
a complementary method to that of voxel and mesh-based methods for modeling geometry in
MCRT simulations.

However, there are a number of potential downsides to using SDFs. In certain configurations,
the number of steps needed to be taken by a photon packet can be extremely large, see Fig. S3 in

Fig. 9 Comparison of MMC and sMCRT for the complex blood vessel geometry. (a) and
(c) sMCRT and (b) and (d) MMC. (a) and (b) Energy absorbed for a slice though the center of
the geometry. (c) and (d) The red box indicated in the (a) and (b).
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the Supplemental Material. This occurs when the photon is approximately parallel to a surface
while the distance between the photon and the surface is small. Recent work has been undertaken
to alleviate this problem. This includes segment tracing, which accelerates the sphere tracing
method by improving the marching step computation and enhanced sphere tracing, which uses
an over-relaxation-based method for accelerating sphere tracing.65,66

Large collections of SDFs can also cause massive slowdowns due having to evaluate every
SDF each time the photon needs to be moved (i.e., is a global method), which equates to OðnÞ
time complexity where n is the number of SDFs in the geometry. This is analog to the same issue
in Monte Carlo models, which use triangular meshes. As in the triangular mesh case, another
global method, this can be diminished by using a space-partitioning data structure leading to at
best time complexity of Oðlog nÞ.67 Tetrahedral meshes intersections are local and therefore are
Oð1Þ in time complexity, as each intersection test only needs to evaluate four different face-ray
intersections. However, these intersections tests are more frequent as they are a function of mesh
refinement. In global methods, the evaluation, in general, is reduced compared with that of local
methods. However, global method’s evaluation complexity depends on the model complexity
whereas local methods do not depend on model complexity.

SDFs are not as general as mesh-based geometries. This means that creating a mesh of a
mouse for example is easier than creating an SDF of a mouse. The mesh can be generated from
experimental data using an image-based mesh generator.68 There are no such comparable tools
for SDFs currently. The only possible way of using this type of data with SDFs is to use a neural
network like SIREN42 to convert the mesh into an SDF, which can have a high computational
cost. Though currently, this is not a precise process (see Fig. S1 in the Supplemental Material).
However, neural representation of meshes and point clouds is a highly active topic in Computer
Science so this may change in the near future. However, it is not impossible to create complex
models with SDFs. As shown, we created a model with a complex vessel network, converted
a university logo to an SDF, and converted a mesh to an SDF. Furthermore, there are hundreds
of examples of complex SDF model in the field of computer graphics, where programmers/
artists have created complex animated scenes using SDFs alone.69–71 Some recent work in the
field of computer graphics has created an open data set of complex SDF models for research
purposes.72

The final potential issue is the combination of multiple CSG operations can lead to non-
bounded SDFs. Nonbounded SDFs can pose a problem in terms of accuracy and speed.73 In
terms of speed, nonbounded SDFs only give a conservative distance to the surface, resulting
in more SDF evaluations, which can cause computational slowdown. The accuracy problem
only affects the computation of surface normals and is therefore only applicable at refractive
index interfaces. Despite these potential drawbacks, we envision MCRT codes using SDFs
to model the geometry to probe problems such as the effect of skin color on pulse oximetry
accuracy, fluence calculation of droplets with viral loads such as COVID-19, and accurate sim-
ulations of light propagation in fruit. In these problems, using SDF over voxels would allow
precise modeling of curved surfaces allowing better accuracy in the simulations. We believe
that SDF-based MCRT models will occupy the position between voxel and mesh-based
MCRT models in terms of being able to model complex geometries and accurately treat curved
surfaces but with the caveat that currently producing SDF models of experimental data remains
challenging.
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32. B. Majaron, M. Milanič, and J. Premru, “Monte Carlo simulation of radiation transport in
human skin with rigorous treatment of curved tissue boundaries,” J. Biomed. Opt. 20(1),
015002 (2015).

33. H. Li et al., “Amouse optical simulation environment (MOSE) to investigate bioluminescent
phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9),
1029–1038 (2004).

34. Y. Zhang et al., “Efficient and accurate simulation of light propagation in bio-tissues using
the three-dimensional geometric Monte Carlo method,” Numer. Heat Transfer A: Appl.
68(8), 827–846 (2015).

35. A. K. Glaser et al., “A GAMOS plug-in for GEANT4 based Monte Carlo simulation of
radiation-induced light transport in biological media,” Biomed. Opt. Express 4(5),
741–759 (2013).

36. S. Ren et al., “Molecular optical simulation environment (MOSE): a platform for the sim-
ulation of light propagation in turbid media,” PloS One 8(4), e61304 (2013).

37. M. Sakai et al., “Recent progress on mesh-free particle methods for simulations of multi-
phase flows: a review,” KONA Powder Particle J. 37, 132–144 (2020).

38. A. Roosing, O. Strickson, and N. Nikiforakis, “Fast distance fields for fluid dynamics mesh
generation on graphics hardware,” arXiv:1903.00353 (2019).

39. J. C. Hart, D. J. Sandin, and L. H. Kauffman, “Ray tracing deterministic 3-D fractals,” in
Proc. 16th Annu. Conf. Comput. Graph. and Interactive Tech., pp. 289–296 (1989).

40. A. Evans, “Learning from failure: a survey of promising, unconventional and mostly aban-
doned renderers for ‘Dreams PS4’, a geometrically dense, painterly UGC game,” ACM
SIGGRAPH Course Notes (2015).

41. J. J. Park et al., “DeepSDF: Learning continuous signed distance functions for shape rep-
resentation,” in Proc. IEEE/CVF Conf. Comput. Vis. and Pattern Recognit., pp. 165–174
(2019).

42. V. Sitzmann et al., “Implicit neural representations with periodic activation functions,” in
Adv. Neural Inf. Process. Syst., Vol. 33 (2020).

43. T. Takikawa et al., “Neural geometric level of detail: Real-time rendering with implicit 3d
shapes,” in Proc. IEEE/CVF Conf. Comput. Vis. and Pattern Recognit., pp. 11358–11367
(2021).

44. W. E. Lorensen and H. E. Cline, “Marching cubes: a high resolution 3D surface construction
algorithm,” ACM SIGGRAPH Comput. Graph. 21(4), 163–169 (1987).

45. K. Wood and R. J. Reynolds, “A model for the scattered light contribution and polarization
of the diffuse H galactic background,” Astrophys. J. 525(2), 799 (1999).

46. I. R. M. Barnard et al., “Quantifying direct DNA damage in the basal layer of skin exposed
to UV radiation from sunbeds,” Photochem. Photobiol. 94(5), 1017–1025 (2018).

47. I. R. M. Finlayson et al., “Depth penetration of light into skin as a function of wavelength
from 200 nm-1000 nm,” Photochem. Photobiol. 12(10), 99–100 (2021).

McMillan, Bruce, and Dholakia: Meshless Monte Carlo radiation transfer method for curved geometries. . .

Journal of Biomedical Optics 083003-14 August 2022 • Vol. 27(8)

https://doi.org/10.1145/3386569.3392374
https://doi.org/10.1145/3386569.3392385
https://doi.org/10.1088/0031-9155/55/4/003
https://doi.org/10.1364/BOE.10.004711
https://doi.org/10.1364/BOE.2.000044
https://doi.org/10.1145/263834.263849
https://doi.org/10.1145/263834.263849
https://doi.org/10.1117/1.JBO.25.2.025001
https://doi.org/10.1117/1.JBO.19.4.045003
https://doi.org/10.1117/1.JBO.20.1.015002
https://doi.org/10.1016/j.acra.2004.05.021
https://doi.org/10.1080/10407782.2015.1023140
https://doi.org/10.1364/BOE.4.000741
https://doi.org/10.1371/journal.pone.0061304
https://doi.org/10.14356/kona.2020017
https://doi.org/10.1145/74334.74363
https://doi.org/10.1109/CVPR.2019.00025
https://doi.org/10.1145/37402.37422
https://doi.org/10.1086/307939
https://doi.org/10.1111/php.12935
https://doi.org/10.1111/php.13550


48. N. Paragios, M. Rousson, and V. Ramesh, “Matching distance functions: a shape-to-area
variational approach for global-to-local registration,” Lect. Notes Comput. Sci. 2351,
775–789 (2002).

49. S. Van der Walt et al., “scikit-image: image processing in python,” PeerJ 2, e453 (2014).
50. Blender Online Community, Blender - A 3D Modelling and Rendering Package, Blender

Foundation, Blender Institute, Amsterdam (2021).
51. J. C. Hart, “Sphere tracing: a geometric method for the antialiased ray tracing of implicit

surfaces,” Visual Comput. 12(10), 527–545 (1996).
52. I. Quilez, “Distance functions,” https://iquilezles.org/www/articles/distfunctions/distfunctions

.htm.
53. I. Quilez, “Normals for an SDF,” https://iquilezles.org/www/articles/normalsSDF/normalsSDF

.htm.
54. G. E. Shillito et al., “To focus-match or not to focus-match inverse spatially offset Raman

spectroscopy: a question of light penetration,” Opt. Express 30, 8876–8888 (2022).
55. G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics, John Wiley & Sons

(1991).
56. S. L. Jacques, R. Joseph, and G. Gofstein, “How photobleaching affects dosimetry and fluo-

rescence monitoring of PDT in turbid media,” Proc. SPIE 1881, 168–180 (1993).
57. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83

(1941).
58. Y. Zhang and Q. Fang, “BlenderPhotonics – a versatile environment for 3-d complex bio-

tissue modeling and light transport simulations based on blender,” bioRxiv (2022).
59. I. Gkioulekas, “Ray tracing and geometric representations, lecture 2,” http://graphics.cs.cmu

.edu/courses/15-468/lectures/lecture2.pdf.
60. S. Yan and Q. Fang, “Hybrid mesh and voxel based monte carlo algorithm for accurate and

efficient photon transport modeling in complex bio-tissues,” Biomed. Opt. Express 11(11),
6262–6270 (2020).

61. G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proc. 21st Annu.
Conf. Comput. Graph. and Interactive Tech., pp. 311–318 (1994).

62. G. Tetteh et al., “Deepvesselnet: vessel segmentation, centerline prediction, and bifurcation
detection in 3-D angiographic volumes,” Front. Neurosci. 14, 1285 (2020).

63. Y. Yuan, S. Yan, and Q. Fang, “Light transport modeling in highly complex tissues using the
implicit mesh-based Monte Carlo algorithm,” Biomed. Opt. Express 12(1), 147–161 (2021).

64. L. B. Lucy, “Computing radiative equilibria with Monte Carlo techniques,” Astron.
Astrophys. 344, 282–288 (1999).

65. E. Galin et al., “Segment tracing using local Lipschitz bounds,” Comput. Graph. Forum 39,
545–554 (2020).

66. B. Keinert et al., “Enhanced sphere tracing,” Smart Tools Apps Graph. 8(4) (2014).
67. A. Watt, “3D computer graphics,” (1999).
68. Q. Fang and D. R. Kaeli, “Accelerating mesh-based Monte Carlo method on modern CPU

architectures,” Biomed. Opt. Express 3(12), 3223–3230 (2012).
69. I. Quilez, “Slisesix,” https://www.shadertoy.com/view/NtlSDs.
70. F. Berger, “zztop ’33 ford eliminator,” https://www.shadertoy.com/view/tltGWj.
71. I. Quilez, “Selfie girl,” https://www.shadertoy.com/view/WsSBzh.
72. T. Takikawa, A. Glassner, and M. McGuire, “A dataset and explorer for 3D signed distance

functions,” J. Comput. Graph. Tech. 11(2), 1–29 (2022).
73. I. Quilez, “Interior SDFs,” https://iquilezles.org/www/articles/interiordistance/interiordistance

.htm.

Lewis McMillan is a post-doctoral research fellow in physics at the University of St Andrews.
He holds a PhD in computational physics from the University of St Andrews. His interests lie
in using code to solve various research problems in the fields of marine biology, biophotonics,
optics, medicine, and physics.

Biographies of the other authors are not available.

McMillan, Bruce, and Dholakia: Meshless Monte Carlo radiation transfer method for curved geometries. . .

Journal of Biomedical Optics 083003-15 August 2022 • Vol. 27(8)

https://doi.org/10.1007/3-540-47967-8_52
https://doi.org/10.7717/peerj.453
https://doi.org/10.1007/s003710050084
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/distfunctions/distfunctions.htm
https://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
https://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
https://iquilezles.org/www/articles/normalsSDF/normalsSDF.htm
https://doi.org/10.1364/OE.451496
https://doi.org/10.1117/12.146307
https://doi.org/10.1086/144246
http://graphics.cs.cmu.edu/courses/15-468/lectures/lecture2.pdf
http://graphics.cs.cmu.edu/courses/15-468/lectures/lecture2.pdf
http://graphics.cs.cmu.edu/courses/15-468/lectures/lecture2.pdf
http://graphics.cs.cmu.edu/courses/15-468/lectures/lecture2.pdf
http://graphics.cs.cmu.edu/courses/15-468/lectures/lecture2.pdf
https://doi.org/10.1364/BOE.409468
https://doi.org/10.3389/fnins.2020.592352
https://doi.org/10.1364/BOE.411898
https://doi.org/10.1111/cgf.13951
https://doi.org/10.2312/stag.20141233
https://doi.org/10.1364/BOE.3.003223
https://www.shadertoy.com/view/NtlSDs
https://www.shadertoy.com/view/NtlSDs
https://www.shadertoy.com/view/NtlSDs
https://www.shadertoy.com/view/tltGWj
https://www.shadertoy.com/view/tltGWj
https://www.shadertoy.com/view/tltGWj
https://www.shadertoy.com/view/WsSBzh
https://www.shadertoy.com/view/WsSBzh
https://www.shadertoy.com/view/WsSBzh
https://iquilezles.org/www/articles/interiordistance/interiordistance.htm
https://iquilezles.org/www/articles/interiordistance/interiordistance.htm
https://iquilezles.org/www/articles/interiordistance/interiordistance.htm

